Main research areas PhD Nicoletta Bianchi investigates interactions between nucleic acids and proteins focusing on transcriptional gene modulation through interference with consensus sequences in promoters or regulatory regions (intergenic/intronic and enhancers/repressors) [1-4], taking in account the accumulation of transcripts (and proteins of network), as biomarkers, also possible therapeutic targets. She is an expert in gene modulation by drugs affecting the transcriptional modification and the expression of altered transcripts of splicing/skipping exons or with different 5’UTR/3’UTR, ncRNA and others [5-7]. In addition, several reports dealt with microRNAs analysis and treatment/silencing using antagomirs, mimics, triple DNA helices, oligonucleotides with decoy activity and modified oligonucleotide, including peptide nucleic acids [8,9]. Their efficacies were tested in rare haematological diseases (thalassemia) and several types of cancers [10,11]. The activity of synthetic or naturally derived molecules as erythro-differentiating agents and embryo-fetal hemoglobin inducers was studied on tumor cell lines and erythroid precursors, isolated from peripheral blood from both healthy and haemoglobinopatic donors, in whom the efficacy of the treatment has been analyzed in association with molecular therapy/gene therapy strategies. The data derived from studies of molecules regulating post-transcriptional control mechanisms evidenced non-coding RNAs (microRNAs and other non-coding RNAs) that were explored as biomarkers and as potential targets for molecular therapy. The skill of Dr Bianchi in the culture of erythroid precursors from patients has allowed the development of a cell biobank, including stem cells ready to be thawed for in vitro assays of active molecules aimed at personalized therapy [12]. Working at this project, she defined significant SNPs affecting the response to therapeutic molecules and binding of transcription factors [13-14]. Since 2018 she is an independent researcher and applies the acquired knowledge on the study of gene expression for Transglutaminase type 2 (TGM2), an interesting gene model coding a multifunctional enzyme involved in inflammation, cancer and neurodegeneration. This gene encodes numerous transcripts [15], alternative splicing isoforms with altered functional domains, whose actions are not yet fully defined. Recent evidences point to these variants in blood of patients as markers of neurodegenerative disease, like in multiple sclerosis, or autoimmune disorders, like celiac disease. The expression of TGM2 is also studied in association with neoplasms and in relation to the expression of non-coding RNAs, as well as models for the investigation of areas still little known in inflammatory processes and could be modulated by stimuli (hormones, drugs) as transcriptional inducers. In addition, the gene produces 2 long non-coding RNAs, which have already been investigated in some types of cancer (gastric, pancreatic, renal cancers) [16] and interfering with expression/stability of the variants themselves [17]. The more recent activity took into account the involvement of Transcription Factors interacting with intronic sequences, pivotal to drive the expression of altered isoforms and non-coding RNA of the gene under drug stimulation analyzed by RNA Immunoprecipitation (RIP experiments combined to RT-quantitative PCR). The characterization of SNPs or mutations at binding sites of regulatory proteins or affecting specific regulatory RNAs could be useful to understand individual responsiveness to therapies or progression of the diseases.

Selected references of Bianchi N.:

  1. Bianchi N., Passadore M., Rutigliano C., Feriotto G., Mischiati C., Gambari R. (1996) Targeting of the Sp1 binding sites of HIV-1 long terminal repeat with chromomycin: disruption of nuclear factor · DNA complexes and inhibition of in vitro transcription. Biochemical Pharmacology, vol. 52, pag. 1489-1498. DOI: 10.1016/S0006-2952(96)00510-2
  2. Bianchi N., Rutigliano C., Passadore M., Tomassetti M., Pippo L., Mischiati C., Feriotto G., Gambari R. (1997) Targeting of the HIV-1 long terminal repeat with chromomycin potentiates the inhibitory effects of a triplex-forming oligonucleotide on Sp1-DNA interactions and in vitro transcription. Biochemical Journal, vol. 326, pag. 919-927. DOI: 10.1042/bj3260919
  3. Bianchi N., Osti F., Rutigliano C., Ginanni Corradini F., Borsetti E., Tomassetti M., Mischiati C., Feriotto G., Gambari R. (1999) The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. British Journal of Haematology, vol. 104, pag. 258-265. DOI: 10.1046/j.1365-2141.1999.01173.x
  4. Fibach E., Bianchi N., Borgatti M., Prus E., Gambari R. (2003) Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood, vol. 102, pag. 1276-1281. DOI: 10.1182/blood-2002-10-3096
  5. Bianchi N., Zuccato C., Lampronti I., Borgatti M., Gambari R. (2009) Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Reports, vol. 42(8), pag. 493-499. DOI: 10.5483/BMBRep.2009.42.8.493
  6. Bianchi N., Zuccato C., Finotti A., Lampronti I., Borgatti M., Gambari R. (2012) Involvement of miRNA in erythroid differentiation. Epigenomics, vol.4(1), pag. 51-65. DOI: 10.2217/epi.11.104
  7. Bianchi N., Finotti A., Ferracin M., Lampronti I., Zuccato C., Breveglieri G., Brognara E., Fabbri E., Borgatti M., Negrini M., Gambari R. (2015) Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells. Plos One. 10(4):e0121567. DOI: 10.1371/journal.pone.0121567
  8. Brognara E., Fabbri E., Bazzoli E., Montagner G., Ghimenton C., Eccher A., Cantù C., Manicardi A., Fabbri E., Manicardi A., Tedeschi T., Sforza S., Bianchi N., Brognara E., Finotti A., Breveglieri G., Borgatti M., Corradini R., Marchelli R., Gambari R. (2011) Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem, vol. 6(12), pag. 2192-2202. DOI: 10.1002/cmdc.201100270
  9. Brognara E., Fabbri E., Bazzoli E., Montagner G., Ghimenton C., Eccher A., Cantù C., Manicardi A., Bianchi N., Finotti A., Breveglieri G., Borgatti M., Corradini R., Bezzerri V., Cabrini G., Gambari R. (2014) Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-Oncology, vol. 118(1), pag. 19-28. DOI: 10.1007/s11060-014-1405-6

10.  Fabbri E., Montagner G., Bianchi N., Finotti A., Borgatti M., Lampronti I., Cabrini G., Gambari R. (2016) MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncology Reports, vol. 35(5), pag. 2866-2872. DOI: 10.3892/or.2016.4676

11.  Fabbri E., Brognara E., Montagner G., Ghimenton C., Eccher A., Cantù C., Khalil S., Bezzerri V., Provezza L., Bianchi N., Finotti A., Borgatti M., Moretto C., Chilosi M., Cabrini G., Gambari R. (2015) Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer, vol. 15, pag. 661-676. DOI: 10.1186/s12885-015-1659-1

12.  Cosenza L.C., Breveglieri G., Zuccato C., Breda L., Finotti A., Lampronti I., Borgatti M., Chiavilli F., Gamberini M.R., Stefania S., Manunza L., Demartis F.R., Moi P., Rivella R., Gambari R., Bianchi N. (2016) A validated cellular biobank for β-thalassemia. Journal of Translational Medicine, vol. 14, pag. 255-268. DOI: 10.1186/s12967-016-1016-4

13.  Bianchi N., Cosenza L.C., Lampronti I., Finotti A., Breveglieri G., Zuccato C., Fabbri E., Marzaro G., Chilin A., De Angelis G., Borgatti M., Gallucci C., Alfieri C., Ribersani M., Isgrò A., Marziali M., Gaziev J., Morrone A., Sodani P., Lucarelli G., Gambari R., Paciaroni K. (2016) Structural and functional insights on an uncharacterized Aγ-globin-gene polymorphism present in four β0-thalassemia families with high fetal hemoglobin levels. Molecular Diagnosis & Therapy, vol. 20(2), pag. 161-173. DOI: 10.1007/s40291-016-0187-2

14.  Breveglieri G.*, Bianchi N.*, Cosenza L.C., Gamberini M.R., Chiavilli F., Zuccato C., Montagner G., Borgatti M., Lampronti I., Finotti A., Gambari R. (2017) An Aγ-globin G->A gene polymorphism associated with β039 thalassemia globin gene and high fetal hemoglobin production. BMC Medical Genetics, vol. 18, pag. 93-100. DOI: 10.1186/s12881-017-0450-3

15.  Bianchi N., Beninati S., Bergamini C.M. (2018) Spotlight on the transglutaminase 2 gene, a focus on genomic and transcriptional aspects. Biochemical Journal, vol. 475(9), 1643-1667. DOI: 10.1042/BCJ20170601

16.  Minotti L., Baldassari F., Galasso M., Volinia S., Bergamini CM, Bianchi N. (2018) A long non-coding RNA inside the type 2 transglutaminase gene tightly correlates with the expression of its transcriptional variants. Amino Acids, vol. 50(3-4), pag 421-438. DOI: 10.1007/s00726-017-2528-9

17.  Franzese O., Minotti L., Aguiari G., Corrà F., Cervellati C., Ferrari C., Volinia S., Bergamini C.M.*, Bianchi N.* (2019) Involvement of non-coding RNAs and transcription factors in the induction of Transglutaminase isoforms by ATRA. Amino Acids, vol. 51(9), 1273-1288. DOI: 10.1007/s00726-019-02766-7


Experimental methods: cell and tissue cultures, including primary cultures from human peripheral blood), molecular analysis of nucleic acids and proteins, DNA recombination, transfections, siRNA technology, ELISA, immunoblotting, protein-protein interaction studies, enzymatic activity assays, nucleic acids-protein interaction studies (RNA immunoprecipitation, Chromatin immunoprecipitation, EMSA), quantitative reverse transcription and PCRs,