
ORIGINAL INVESTIGATION

Human loci involved in drug biotransformation: worldwide
genetic variation, population structure, and pharmacogenetic
implications

Pierpaolo Maisano Delser • Silvia Fuselli

Received: 20 September 2012 / Accepted: 8 January 2013 / Published online: 26 January 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Understanding the role of inheritance in indi-

vidual variation in drug response is the focus of pharma-

cogenetics (PGx). A key part of this understanding is

quantifying the role of genetic ancestry in this phenotypic

outcome. To provide insight into the relationship between

ethnicity and drug response, this study first infers the global

distribution of PGx variation and defines its structure.

Second, the study evaluates if geographic population

structure stems from all PGx loci in general, or if structure

is caused by specific genes. Lastly, we identify the genetic

variants contributing the greatest proportion of such

structure. Our study describes the global genetic structure

of PGx loci across the 52 populations of the Human

Genome Diversity Cell-Line Panel, the most inclusive set

of human populations freely available for studies on human

genetic variation. By analysing genetic variation at 1,001

single nucleotide polymorphisms (SNPs) involved in bio-

transformation of exogenous substances, we describe the

between-populations PGx variation, as well geographical

groupings of diversity. In addition, with discriminant

analysis of principal component (DAPC), we infer how

many and which groups of populations are supported by

PGx variation, and identify which SNPs actually contribute

to the PGx structure between such groups. Our results show

that intergenic, synonymous and non-synonymous SNPs

show similar levels of genetic variation across the globe.

Conversely, loci coding for Cytochrome P450s (mainly

metabolizing exogenous substances) show significantly

higher levels of genetic diversity between populations than

the other gene categories. Overall, genetic variation at PGx

loci correlates with geographic distances between popula-

tions, and the apportionment of genetic variation is similar

to that observed for the rest of the genome. In other words,

the pattern of PGx variation has been mainly shaped by the

demographic history of our species, as in the case of most

of our genes. The population structure defined by PGx loci

supports the presence of six genetic clusters reflecting

geographic location of samples. In particular, the results of

the DAPC analyses show that 27 SNPs substantially con-

tribute to the first three discriminant functions. Among

these SNPs, some, such as the intronic rs1403527 of NR1I2

and the non-synonymous rs699 of AGT, are known to be

associated with specific drug responses. Their substantial

variation between different groups of populations may

have important implications for PGx practical applications.

Introduction

Response and adverse reaction to drug treatment are

influenced by a number of factors such as age, gender,

environment, and by an individual’s genetic make-up.

Differences between individuals and populations are

exacerbated by the polymorphic nature of the genes

involved in drug biotransformation (Leabman et al. 2003;

Ingelman-Sundberg et al. 2007). Investigating the popula-

tion structure of pharmacogenetic loci (PGx) is important
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to shed light on the evolutionary history of these genes, but

at the same time, it may have important practical impli-

cations. For example, genome-wide association studies

(GWAS) have recently been applied to pharmacogenomics

(Cooper et al. 2008; Takeuchi et al. 2009; Teichert et al.

2009; Bailey and Cheng 2010) raising concerns about the

possibility that population stratification may lead to false

positive genetic associations with drug response (Nelson

et al. 2008; Visscher et al. 2009).

Drug response genes: examples of spatial patterns

and evolutionary inferences

Several genes determining drug response in humans show a

clear geographic structure. The gene UGT2B17, coding for

a conjugation enzyme with important roles in elimination

of xenobiotics and endogenous compounds, varies in copy

numbers from zero to two. This polymorphism shows very

high worldwide diversity: two distinct clusters of haplo-

types were identified with deleted chromosomes confined

to one cluster and forming its majority. Both clusters were

found in Africa, Europe, and East Asia, but at different

frequencies, with gene deletion being the major allele in

East Asia (Xue et al. 2008). Genes coding for Cytochrome

P450 (CYP) drug metabolizing enzymes are highly poly-

morphic, and some genetic variants are known to affect the

outcome in drug treatment to a very high extent (Ingelman-

Sundberg et al. 2007). Several CYP genes show specific

geographic patterns of genetic variation. CYP2C9,

CYP2C19 and CYP2D6 defective alleles occur globally in

all geographic regions, reaching extremely high frequen-

cies in some populations. Interestingly, each of the CYP

genes shows a distinct geographic pattern: CYP2C9

decreased metabolic activity reaches high frequency in

Europe, CYP2C19 in East Asia, and CYP2D6 increased

metabolic activity is common in certain African and East

Asian regions (Sistonen et al. 2009). The CYP3A drug

metabolizing enzymes are involved in the metabolism and

elimination of a wide range of xenobiotics, including about

50 % of all therapeutic drugs used in the clinics. The fre-

quency of CYP3A5*3, the most common CYP3A5 defec-

tive allele, is about 20 % in Africa, which is the major

allele in non-African populations, almost fixed in some

European regions (Thompson et al. 2004).

Examples of spatial structure and differences among

groups of populations have also been reported for treatment

responses associated with specific gene variants. A strong

association between a genetic marker, the human leukocyte

antigen HLA–B*1502, and a reactions of the skin called

Stevens–Johnson syndrome induced by carbamazepine has

been repeatedly shown in Han Chinese (Chung et al. 2004;

Man et al. 2007). This association was absent in

populations of European origin, in which another HLA

variant seems to be a good marker for the same phenotype

(McCormack et al. 2011). Treatment for chronic infection

with hepatitis C virus shows a significantly higher efficacy

and tolerability in patients of European ancestry than in

patients of African ancestry. In both groups of patients, the

presence of a particular allele near the IL28B gene,

encoding interferon-l-3, is associated with an approxi-

mately twofold change in response to treatment. The dif-

ference in response rates is partially explained by the

greater frequency of this allele in European than African

populations (Ge et al. 2009). Given these observations and

their practical pharmacogenetic consequences, it would be

of great relevance to understand whether common ethnic

labels may be useful to predict an individual’s drug

response in general, or if drug response phenotypes are

more influenced by gene-specific patterns.

During the last 10 years, efforts have been made to

answer similar questions considering whole-genome vari-

ation. A number of studies on human genetic diversity

across the globe inferred the existence of population clus-

ters supported by genomic data roughly corresponding to

continental regions (Rosenberg et al. 2002; Li et al. 2008;

Jakobsson et al. 2008), although no consensus has ever

been reached on the number and definition of these clusters

(Tishkoff and Kidd 2004; Barbujani and Colonna 2010).

For this reason, there is still debate as to whether discrete

geographical groups supported by a discontinuous distri-

bution of human genetic variation would be useful, for

example, for biomedical studies, or to understand differ-

ential response to pharmacological agents, with important

consequent personal and societal implications (Weiss and

Long 2009; Barbujani and Colonna 2010; Royal et al.

2010). Moreover, discontinuities between groups of pop-

ulations explain only a small fraction of human genetic

variance, whereas the great majority of it is explained by

clinal patterns (i.e. geographic distance). The relationship

between genetic and geographic distance is well known

since the first half of last century. The seminal article by

Haldane (1940) revealed gradients of allele frequencies of

the ABO blood group in Europe, an observation that has

been generalised in the 1970s to populations representative

of human diversity (Lewontin 1972). Further analyses have

shown that, in general, genetic differentiation between

pairs of populations correlates with geographic distance

separating them (Cavalli-Sforza et al. 1994), and recent

genomic studies on globally diverse populations confirmed

this trend at both continental and global scales (Rama-

chandran et al. 2005; Li et al. 2008). This pattern is

expected given the recent African origin of modern

humans, the founder effect associated with colonisation of

new lands, and the short-range gene flow that occurred

during expansions. In other words, the spatial pattern of the
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polymorphism shown by our genes was largely shaped by

the demographic history of our species with some excep-

tions in which adaptation by natural selection to specific

environments may have contributed substantially (Coop

et al. 2009; Novembre and Di Rienzo 2009).

As for the rest of the genome, human demographic

history should be taken into account to interpret the spatial

distribution of genetic variation at loci involved in bio-

transformation of exogenous substances. However, adap-

tation may have played a role in the evolution of genes

coding for molecules that mediate the relationships

between the organism and the environment. Indeed, sig-

natures of natural selection have been observed at several

PGx loci. Among Phase I drug metabolizing enzymes, the

most convincing evidence of natural selection are provided

by the pattern of evolution of CYP3A locus that includes

four genes, CYP3A4, CYP3A5, CYP3A7, and CYP3A43. In

particular, Thompson et al. (2004) found evidence of

positive selection on the defective CYP3A5*3 allele in non-

African populations. Significant correlation of its allelic

frequency with distance from the equator was interpreted

as an adaptation underlying salt regulation. A complex

pattern of natural selection was further identified for other

genes of the CYP3A locus (Chen et al. 2009). Genetic

variation in the noncoding sequence 50 of the CYP1A2 gene

suggests that the regulatory sequences of this P450 enzyme

may have evolved under positive selection, although

alternative demographic explanation could not be defini-

tively ruled out (Wooding et al. 2002). Different patterns of

evolution have been observed in populations with different

lifestyles at CYP2D6, the most variable P450 gene. In

particular, the increased frequency of alleles associated

with a slower rate of metabolism with transition to agri-

culture maybe due to the pronounced substrate-dependent

activity of most of these enzymes that allowed expanding

the spectrum of the metabolic response to diet compounds

(Fuselli et al. 2010). Similarly, Neolithic transition would

be responsible for the signature of selection showed in

western/central Eurasians by NAT2, a Phase II metabolis-

ing enzyme. A possible explanation is that the slow-acet-

ylator phenotype has been positively selected as conferring

a reduced activation of environmental carcinogens (Patin

et al. 2006). Finally, signatures of positive selection have

been observed on both coding and regulatory regions of the

ABCBI transporter gene in different human populations

(Wang et al. 2007a).

Overview of the study

The first aim of this study was to answer the following

question: is there a specific geographic structure of genetic

variation involved in drug biotransformation, or do PGx

loci behave like most of the rest of the genome? To answer

this question, data on 1,001 single nucleotide polymor-

phisms (SNPs) representing 143 genes involved in drug

biotransformation were extracted from a publicly available

database including more than 650,000 SNPs in 52 popu-

lations from the Human Genome Diversity Panel (HGDP)

(Li et al. 2008). In this study, we analyse the distribution of

genetic diversity at these loci between populations and

groups, and define its relationship with geography. Spe-

cifically, we use discriminant analysis of principal com-

ponents (DAPC, Jombart et al. 2010) to define clusters of

genetically close individuals supported by PGx variation,

and describe the spatial distribution of between-clusters

differentiation. The second goal of this study was to

identify and describe the set of markers that actually con-

tribute to the separation between groups of populations

and, thus, give rise to specific geographic patterns.

Knowing which genes involved in drug biotransformation

show a detectable population structure may be of great use

for practical purposes, such as drug dosage determination.

Additionally, this information can help avoid population

stratification in association studies on drug efficacy and

tolerability.

Methods

Populations, samples and markers

In this study, we used the set of 1,043 HGDP individuals

from 52 worldwide distributed populations (Rosenberg

2006) genotyped previously on Illumina’s Human-

Hap650Y platform (Li et al. 2008). Among the SNPs

genotyped, a total of 1,001 were extracted and analysed in

this study.

Part of the genetic markers analysed in our study was

selected starting from a previously published panel of SNPs

(Visscher et al. 2009). The rest of the SNPs have been

retrieved from the SNPper database (http://snpper.chip.org/,

Riva and Kohane 2002) which combines information from

both dbSNP and the UCSC Genome Browser.

In the study by Visscher et al. (2009), a customised SNP

genotyping assay was designed to capture the genetic

variation of 220 key drug biotransformation genes (i.e.

phases I and II drug-metabolism enzymes, drug transport-

ers, drug targets, drug receptors, transcription factors, ion

channels and other disease-specific genes related to the

physiological pathway of Adverse Drug Reactions). In

total, the authors of the study could analyse 2,094 SNPs.

Half of the panel consisted of tagSNPs of the candidate

genes (tagSNPs selection based on the International Hap-

Map project with four populations—CEU, CHB, JPT,

YRI—LD statistic threshold r2 = 0.8, minor allele
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frequency[0.05). The other half included functional SNPs

identified by literature review or from public databases as

SNPs with known or probable effect on enzyme activity or

function. Of these 2,094 SNPs selected by Visscher et al.

(2009), we could extract 614 SNPs located within or near

123 genes in the dataset of HGDP populations genotyped

on Illumina’s HumanHap650Y platform.

Additionally, from the same dataset, we extracted 471

SNPs that represent the genetic variation at 45 Cytochrome

P450 (CYP) loci involved in metabolism of exogenous or

endogenous molecules. Among these 471, 84 were already

present among the 2,094 SNPs selected by Visscher et al.

(2009). Excluding these 84 overlapping SNPs between the

two databases, a total of 1,001 pharmacogenetic markers

(hereafter PGx loci) in 143 genes were analysed (Online

Resource Table 1a).

Genetic variation in different SNP classes

Fst values were calculated for each SNP and their distri-

bution was analysed by dividing markers on the basis of

their location in non-genic or genic regions. Non-genic

SNPs were further subdivided in upstream (including 50

UTRs and promoters) or downstream (including 30 UTRs)

with respect to the closest gene, while genic SNPs were

subdivided into intronic (including intron boundaries),

synonymous, and non-synonymous. A second set of anal-

yses was computed by classifying SNPs depending on the

functional role of the gene in which they are located, or the

functional role of the closest PGx gene in case of non-genic

SNPs. Gene classes were defined according to Pharma-

ADME core list and related gene list (pharmaADME.org),

CYP genes metabolizing primarily exogenous or endoge-

nous substrates were defined based on information from the

literature (Nebert and Russell 2002; Guengerich 2003;

Thomas 2007). Locus by locus Fst values was calculated

using Arlequin suite v.3.5 (Excoffier and Lischer 2010).

The independence between number of SNPs in the top

10 % Fst and gene class (or SNP role) was tested by means

of a v2 test (SNP categories with less than 5 SNPs were

excluded). To identify which SNP class (or SNP role)

determined deviation from independency (i.e. P \ 0.05),

the same test was performed excluding one class (or role)

of SNP at a time. In the case of SNP classes, a second

analysis was performed excluding rare SNPs (minor allele

frequency, MAF B 0.05).

Spatial patterns of genetic variation

The role of geographic distances in shaping genetic

diversity at PGx loci was tested by means of a Mantel test

of matrices correlation. Genetic distances between pairs of

populations were calculated as Fst values using the

software Arlequin suite v.3.5 and geographic (great-circle)

distances were calculated between all population pairs

considering the likely routes of human migration out of

Africa, following the criteria set by Ramachandran et al.

(2005). The test was performed with the software Passage

version 2.0 (Rosenberg and Anderson 2001) and signifi-

cance was assessed with 10,000 permutations.

The amount of genetic diversity within and between the

seven major geographic regions of the world (i.e. Africa,

Middle East, Europe, Central/South Asia, East Asia, Oce-

ania, and America) was evaluated by means of a hierar-

chical analysis of molecular variance (AMOVA) using

Arlequin suite v.3.5. AMOVA allowed us to quantify

genetic diversity at three levels, namely between members

of the same population, between populations of the same

group and between groups.

Discriminant analysis of principal components (DAPC)

DAPC is a multivariate method that may be used to iden-

tify and describe clusters of genetically related individuals

(Jombart et al. 2010). First, data are converted into

uncorrelated variables, which account for most of the

genetic variation, using a principal component analysis

(PCA). These uncorrelated components are then assessed

with a discriminant analysis (DA) that aims to maximise

the variation between groups relative to the diversity within

group, finding linear combinations of alleles (the discrim-

inant functions, DFs), which best separate the clusters.

Two analyses were run for the dataset including 1,001

PGx loci analysed in this study. First, DAPC was used to

investigate the genetic structure of the 52 sampled popu-

lations defining a priori 52 groups. 300 principal compo-

nents of PCA were retained during the preliminary variable

transformation, which accounted for approximately 90 %

of the total genetic variability.

The aim of the second analysis was to identify how

many and which genetic clusters were supported by PGx

genetic markers. The cluster algorithm k-means was used

to find a given number of groups (k) maximising the var-

iation between them. k-means was run sequentially with

increasing values of k (from 1 to 100), then different cluster

solutions were compared using Bayesian information cri-

terion (BIC). Finally, the curve of BIC values as a function

of k was inspected to identify the best supported number of

clusters (i.e. the minimum number after which the BIC

increases or decreases by a negligible amount; Jombart

et al. 2010). This number was used as prior k for a further

DAPC analysis.

The contribution to the first, second, and third discrim-

inant function of this second analysis was quantified for

each of the 1,001 SNPs analysed. A series of thresholds

(85th, 90th, 95th and 99th percentile of the distribution of
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variable contributions to DF1, DF2 and DF3) were con-

sidered to identify alleles actually contributing to the

inferred structure. All the analyses were performed in the R

environment 2.14.1 (R Development Core Team 2008)

while the DAPC functions were implemented in the ade-

genet R package (Jombart 2008). A locus-specific AM-

OVA analysis was performed for each of the SNPs that

significantly contributed to the inferred structure to quan-

tify the amount of the total genetic variation accounted for

by the between-groups component (Fct index; Arlequin

suite v.3.5). For the same SNPs, the 1000 Genomes Project

database (1000 genomes pilot 1 low coverage panel,

http://www.1000genomes.org/) was interrogated to identify

genetic variants with known or possible phenotypic effect

(e.g. non-synonymous substitutions) in strong linkage dis-

equilibrium (LD; minimum r2 = 0.8, minimum D0 = 0.8,

maximum distance between variation 50 kb). LD data are

available for three groups of populations: 59 Youruba from

Africa (YRI), 60 Utah residents of European ancestry

(CEU), and 60 Chinese ? Japanese (CHB ? JPT).

Results

Markers showing high degree of population

differentiation

Genetic variation measured as Fst values among the 52

HGDP populations was equally distributed across markers

located in different genic and non-genic regions. More

specifically, the proportion of SNPs showing a high degree

of population differentiation (those SNPs found within the

top 10 % of all Fst values) was similar for downstream,

upstream, intronic, synonymous, and non-synonymous

markers. Conversely, a less homogeneous distribution of

SNP-specific Fst values was observed when SNPs were

subdivided according to the class of genes they represent

[i.e. CYPs metabolizing exogenous substrates, CYPs with

endogenous substrates, non-CYP Phase I metabolizing

enzymes, Phase II metabolizing enzymes, transporters, and

loci involved in pharmacodynamics (others), Table 1].

Among these classes, CYP genes known to principally

metabolize exogenous molecules show the highest pro-

portion of highly differentiated SNPs (proportion of SNPs

in the top 10 % Fst = 15.32 % representing 8/15 genes),

while Phase II DMEs are at the other extreme (6.81 %

located in 6/23 genes). Because rare SNPs are more fre-

quent in CYP classes than in the other gene classes, the

same analysis was performed excluding rare SNPs (minor

allele frequency, MAF B 0.05). When rare variants are

excluded (Table 1, values in parenthesis), the uneven dis-

tribution of genetic variation across gene classes is more

evident and statistically significant, as shown by the result

of a v2 test of independence between number of SNPs in

the top 10 % Fst and gene categories (P = 0.01).

Geographic structure of PGx genetic variation

Our results indicate that the amount of genetic divergence

accounted for by geographic distances between populations

is 62 % (Mantel test of matrices correlation, r = 0.79,

P \ 0.001). An AMOVA analysis was then performed to

test a population structure based on PGx loci largely cor-

responding to continents or subcontinents, namely Sub-

Saharan Africa (7 populations), Middle East (4 popula-

tions), Europe (8 populations), Central/South Asia (9

populations), East Asia (17 populations), Oceania (2 popu-

lations), and America (5 populations). In this analysis, we

tested the geographic structure proposed in previously

published studies on the same set of populations (Rosenberg

et al. 2002; Li et al. 2008; Biswas et al. 2009). The amount

of genetic variation attributable to differences among these

7 groups is 9 % (Fct = 0.09, Fst = 0.12, P \ 0.001 for

both indices), as observed for markers representing the

whole-genome variation in the same set of populations

(Excoffier and Hamilton 2003; Li et al. 2008). Within

geographic regions, populations seem quite homogeneous,

showing Fst values from 1 to 4 %, with the exception of

Oceania and America, where the within-region genetic

variation equals that observed worldwide (Table 2). Within

populations, the average gene diversity is highest in Middle

East, followed in order of decreasing genetic variation by

Central/South Asia, Europe, East Asia, Africa, Oceania and

America (Online Resource Table 1b). African populations

are less variable than expected; the most plausible expla-

nation for this observation is the ascertainment bias

towards populations of European origin that characterises

the discovery of important PGx loci.

Genetic structure and cluster membership

When the genetic structure of the 52 HGDP populations was

investigated by means of DAPC (Jombart et al. 2010), most

of the genetic variation between groups was captured by the

first three discriminant functions (DFs), as shown by the

first three eigenvalues (i.e. between/within variance ratio of

the corresponding discriminant functions) (Online Resource

2). In this analysis, the 52 populations of HGDP were used

as prior clusters. The two-dimensional graphic representa-

tions of the first three discriminant functions, DF1, DF2,

and DF3, look similar to what was obtained simulating

genetic data according to a hierarchical island model by

Jombart et al. (2010). Populations are clinally distributed

along DF1 from Africa to the Middle East and Europe, to

Central/South Asia, East Asia, Oceania and America. This

result was expected given the observed correlation between
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geographic and genetic distances. The divergence of Afri-

can and American populations from the rest of the world is

highlighted by DF2 and DF3, respectively. Although a great

part of the total variance between groups is explained by

DF1, DF2, and DF3, in this analysis, further DFs explain

still a large portion of it (Online Resource 2). Thus, to better

describe the spatial distribution of genetic variation at PGx

loci, we first evaluated how many groups of populations

Table 1 Genetic variation of the 1,001 SNPs grouped by gene class and SNP role

Mean Fst Tot SNPs No SNPs top 10 %

Fst

Percentage of SNPs top 10 %

Fst

Tot

genes

No genes top 10 %

Fst

Gene class

CYP exogenous substrates 0.109

(0.137)a
127 (101) 21 (18) 15.32 (17.82) 15 8

CYP endogenous

substrates

0.103

(0.222)

334 (296) 26 (22) 7.78 (7.43) 28 11

CYP with unknown

substratesb
0.227 10 6 60.00 2 1

Non-CYP Phase I DMEs 0.117

(0.111)

101 (99) 11 (10) 10.89 (10.10) 20 8

Phase II DMEsc 0.091 88 6 6.81 (6.98) 23 6

Transporters 0.106

(0.108)

229 (221) 21 9.17 (9.50) 31 11

Others 0.104

(0.106)

111 (108) 9 8.11 (8.33) 23 7

Transcription factor 0.162 1 0 0.00 1 0

Total 0.106 1,001

(924)

100 (92) v2: P = 0.08 (0.01) 143 52

SNP role

Non-synonymous 0.111 67 7 10.45

Synonymous 0.109 21 1 4.76

Intronic 0.104 549 51 9.29

Upstream 0.115 155 20 12.90

Downstream 0.102 205 21 10.24

Pseudogene (FMO6) 0.067 4 0 0.00

Total 0.106 1,001 100 Yates v2: P = 0.81

DME drug metabolizing enzymes
a In parenthesis are the values for SNPs with MAF [ 0.05
b CYP3A43 and CYP2A7
c UGT1A loci counted only once

Table 2 Analysis of molecular

variance (AMOVA)
Groups Populations Variance explained (%) Fst Fct Nr

loci
Among pops within

regions

Among

regions

World 1 52 0.110 1,001

World 7 52 2.67 9.56 0.123 0.096 1,001

Africa 1 7 0.048 994

Middle East 1 4 0.015 995

Europe 1 8 0.013 966

Central/South

Asia

1 9 0.016 982

East Asia 1 17 0.017 954

Oceania 1 2 0.101 831

America 1 5 0.123 883
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could be useful to describe the PGx data, and then used

these inferred clusters as prior clusters for DAPC analysis.

The results suggest that genetic variation in our dataset

supports a subdivision of the 52 populations into six clusters

(Fig. 1).

We then labelled the individuals of our dataset based on

their geographic regions of origin (i.e. Africa, Middle East,

Europe, Central/South Asia, East Asia, Oceania, and

America, see the AMOVA analysis), and estimated their

membership to each of the six inferred clusters (Fig. 2).

Our results show that five of the six inferred groups almost

perfectly match the five geographic regions of origin,

namely Africa (group 1), Central/South Asia (group 6),

East Asia (group 3), Oceania (group 2) and America (group

5), while individuals from Middle East and Europe have

been assigned to the same genetic group (group 4). Inter-

estingly, when the same analysis was run considering an

additional cluster (i.e. with k = 7), America was split into

two groups, while Middle East and Europe remained in the

same cluster (Online Resource 3).5150

5250

5350

3 6 9 12 15 18 21 24 27 30

Number of clusters

B
IC

Fig. 1 Inference of the number of clusters supported by the genetic

markers analysed in this study (PGx SNPs). The cluster algorithm k-

means was used to find a given number of groups (k) maximising the

variation between them. k-means was run sequentially with increasing

values of k (from 1 to 100). The Bayesian information criterion (BIC)

was used as a model selection to choose between different cluster

solutions. In this figure, the curves of BIC values as a function of k are

provided for k = 1, 2,…,30 clusters (BIC constantly grows for

30 \ k B 100). Ten overlapping curves represent ten independent

runs. The chosen number of clusters (i.e. the minimum number of

clusters after which the BIC increases or decreases by a negligible

amount) is indicated by the dashed line
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East Asia

G
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G
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G
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G
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G
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G
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25    75    125    275     225 

America

Oceania

Fig. 2 Membership of individuals from each of the seven geographic

regions of origin (i.e. Africa, Middle East, Europe, Central/South

Asia, East Asia, Oceania, and America) to each of the six genetic

clusters inferred by DAPC and k-means algorithm (columns, Gr1–6).

The square size is proportional to the number of individuals (see the

legend at the bottom)
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Gr4 ME/Eu

Gr1 Af 
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Gr2 Oc

Gr3 EA

eigenvalues 

eigenvalues 

Gr3 EA

Gr5 Am 

Gr1 Af 

(a)

(b)

Fig. 3 Scatterplots showing a the first two (x-axis: DF1; y-axis:

DF2); and b the second and the third (x-axis: DF2; y-axis: DF3)

discriminant functions of 1,001 PGx SNPs. The six groups (Gr1–Gr6)

obtained as the best supported structure (k = 6, see Fig. 1) were used

as prior clusters. Groups are indicated by different symbols and inertia

ellipses obtained by DAPC. Gr1 Af, Group1 Africa (open circle); Gr2

Oc, Group2 Oceania (filled square); Gr3 EA, Group3 East Asia (9);

Gr4 ME/Eu, Group4 Middle East/Europe (?); Gr6 CSA, Group6

Central/South Asia (filled up-pointing triangle); Gr5 Am: Group5

America (filled circle)
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In the scatterplot of the first two discriminant functions

obtained with k = 6 (Fig. 3a), both the African and the

American populations are clearly differentiated from the

rest of the world and from each other. In the same scat-

terplot, DF1 displays a cline of genetic differentiation from

Africa to Eurasia to Oceania and America, as observed in

the previous DAPC analysis and consistent with the main

expansion of modern humans from Africa. DF2 highlights

the divergence of Africa and America, while Middle-

Eastern and European populations are at the other extreme.

Native American populations are separated from the rest of

the world by DF3 (Fig. 3b).

To assess the existence of substructure within clusters,

DAPC was applied separately to each of the six inferred

groups. The results showed that no subclusters are sup-

ported by the data within group 3 (East Asia), group 4

(Middle East and Europe), and group 6 (Central/South

Asia), as expected given the AMOVA results (Fst \ 2 % in

each group). Conversely, group 1 (Africa, Fst = 5 %) and

group 2 (Oceania, Fst = 10 %) could be further subdivided

into 2 subclusters, and group 5 (America, Fst = 12 %) into

four subclusters (Table 3). In Africa, DAPC inferred two

subgroups largely corresponding to different subsistence

patterns, with subgroup 1 (SGr1.1) including farmers

(Bantu, Mandenka and Yoruba), and subgroup 2 (SGr1.2)

including hunter-gatherers (Pygmies and San).

Contribution of alleles to genetic clustering

The distribution of allele contributions was plotted for each

of the first three DFs and four thresholds were set to

identify the genetic variants that defined the six groups

structure shown in Fig. 3. On average 150, 100, and 50

alleles showed a contribution above the 85th, 90th, and

95th percentile of the distribution, respectively. Given that

the number of retained alleles in the case of these three

thresholds was too high to be informative, we focused on

the 99th percentile of the distribution. In total, 27 SNPs

were found to significantly contribute the most to the six

groups structure (Fig. 3). Of these, 8, 9, and 10 contributed

to the first, the second and the third discriminant function,

respectively (Table 4). In this paragraph, we describe SNPs

with known or possible functional impact or association

with specific phenotypes. Possible pharmacogenetic

implications are commented in ‘‘Discussion’’ section. The

distributions of allele frequency across populations and

groups are summarised in Online Resource Table 1a and

Online Resource 4.

Four of the SNPs contributing to DF1, which traces the

‘‘Out of Africa’’ expansion of modern humans, are located

downstream or upstream the closest PGx gene, while the

other four are intronic. In other words, none of these

variants affects the protein structure of the enzyme encoded

by the gene with which they are associated. One of these

markers, rs1403527, is among the most differentiated SNPs

of our dataset, showing an Fst value of 30 %. The marker is

located in the intron of the gene coding for the nuclear

receptor subfamily 1, group I, member 2 (NR1I2, OMIM

603065). The ancestral allele A has a frequency higher than

80 % in the whole world with the exception of Sub-Sah-

aran Africa, where the average frequency is 30 %. This

SNP is in strong linkage disequilibrium with several other

intronic variants in all the three populations of the 1000

Genomes Project for which LD data are available. No

variation affecting the coding region was found signifi-

cantly associated with this SNP.

Among the 9 markers contributing to DF2, one is reported

by dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) as

associated with a probable pathogenic effect: rs699, located

on chromosome 1, a non-synonymous substitution of the gene

angiotensinogen (AGT, OMIM 106150) having a key role

in the renin–angiotensin system. The C allele reaches a

Table 3 Number of subgroups (Sgr) inferred within each of the 6 groups, and populations or individuals in each subgroup

Inferred groups No. of inferred subgroups Populations or individuals in subgroups

Gr1 (Africa) 2 Sgr1.1 (Bantu NE and SEW, Mandenka, Yoruba, 1 Biaka pygmy)

Sgr1.2 (Mbuti and Biaka pygmies, San, 1 Bantu NE)

Gr2 (Oceania) 2 Sgr2.1 (Nan Melanesian)

Sgr2.2 (Papuan)

Gr3 (East Asia) 1

Gr4 (Middle East and Europe) 1

Gr5 (America) 4 Sgr5.1 (Colombians, Maya, 1 Karitiana)

Sgr5.2 (Pima, 1 Maya)

Sgr5.3 (Surui)

Sgr5.4 (Karitiana)

Gr6 (Central/South Asia) 1

Gr group, Sgr subgroup, Bantu NE Bantu North-East, Bantu SEW Bantu South-East ? West
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Table 4 Genetic features of the 27 SNPs that significantly contributed to the six-groups structure for the first three discriminant functions (DFs)

rs Gene Chromosome Role Amino

acid

change

(position)

Relevant linked

SNPsa (population)

Class Locus-specific

analysis

of molecular

variance

(6 groups)

DF1

rs1403527 NR1I2 chr3 Genic

(intron)

– Other 0.34

rs899729 CYBA chr16 Upstream – Other 0.14

rs12460831 CYP4F11 chr19 Upstream – CYP endogenous substrates 0.15

rs10426628 SULT2B1 chr19 Genic

(intron)

– Phase II metabolizing

Enzyme

0.24

rs11249454 UGT2A1 chr4 Genic

(intron)

– Phase II metabolizing

enzyme

0.18

rs729147 ADH7 chr4 Downstream – Non-CYP Phase I

metabolizing enzyme

0.16

rs6455682 SLC22A1 chr6 Downstream – Transporter 0.11

rs3850290 SLC7A7 chr14 Genic

(intron)

– Transporter 0.30

DF2

rs1395 SLC5A6 chr2 Genic (ns) S/F (481) Transporter 0.22

rs406113 GPX6 chr6 Genic (ns) F/L (13) Non-CYP Phase I

metabolizing enzyme

0.14

rs2472304 CYP1A2 chr15 Genic

(intron)

– rs1378942 (CEU)

CSK gene, intronic

CYP exogenous substrates 0.29

rs2231164 ABCG2 chr4 Genic

(intron)

– Transporter 0.29

rs3813720 ADRB1 chr10 Downstream – rs1801253,

CM994344b (YRI;

CHB ? JPT)

ns: R/G (389)

Other 0.04

rs1339821 CYP26C1 chr10 Upstream – CYP endogenous substrates 0.18

rs2197296 SLC22A1 chr6 Genic

(intron)

– Transporter 0.06

rs699 AGT chr7 Genic (ns) M/T

(268)

Other 0.19

rs2461817 NR1I2 chr3 Genic

(intron)

– Other 0.05

DF3

rs746713 NCF4 chr22 Genic

(Intron)

– Other 0.12

rs2066714 ABCA1 chr9 Genic (ns) I/M

(883)

Transporter 0.19

rs4668115 ABCB11 chr2 Genic

(intron)

– Transporter 0.12

rs7011901 CYP11B2 chr8 Upstream – rs4545, CM033362b

(CHB ? JPT)

ns: G/S (435)

CYP endogenous substrates 0.27

rs2762926 CYP24A1 chr20 Downstream – CYP endogenous substrates 0.20

rs338600 CYP2S1 chr19 Genic

(intron)

– CYP endogenous substrates 0.10

rs10743413 SLCO1A2 chr12 Genic

(intron)

– Transporter 0.12

rs2072671 CDA chr1 Genic (ns) K/Q (27) Other 0.09
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frequency higher than 50 % in 45 out of 52 populations of this

study, being almost fixed in Africa, Oceania and America.

Two other non-synonymous substitutions contribute sub-

stantially to DF2, namely rs1395 of the sodium-dependent

multivitamin transporter (SLC5A6, OMIM 604024) and

rs406113 of the glutathione peroxidase 6 (GPX6, OMIM

607913). In both cases, the aminoacid change has been pre-

dicted to be benign by Polyphen (http://genetics.bwh.

harvard.edu/pph/) and no association with variation in drug

metabolism has been reported. Although intronic, the tag

SNP rs2472304 of CYP1A2 (OMIM 124060) contributing to

DF2, and specifically the derived A allele being the major

allele in Europe, may be of pharmacogenetic interest (see

‘‘Discussion’’). In individuals of European origin (CEU),

rs2472304 is in strong LD with the intronic rs1378942

located in the cytoplasmic tyrosine kinase (CSK) gene

(OMIM 124095) and significantly associated with blood

pressure (Newton-Cheh et al. 2009; Wain et al. 2011).

Another association between a SNP contributing to DF2 and a

variant of possible phenotypic interest has been found in

Yoruba from Africa (YRI) and East Asians from China and

Japan (CHB ? JPT). In these populations, but not in CEU,

the rs3813720 located downstream of the gene ADRB1

(OMIM 109630) is in strong LD with rs1801253, a non-

synonymous SNP of the same gene with a gain of function

effect (Mason et al. 1999). Rs1801253 is reported in The

Human Gene Mutation Database as CM994344.

Two non-synonymous substitutions contribute to DF3,

rs2066714 of the ATP-binding cassette A1 (ABCA1,

OMIM 600046) and rs2072671 of the Cytidine deaminase

(CDA, OMIM 123920). Polyphen predicted a benign effect

of both aminoacid changes. One SNP contributing to DF3,

rs7011901 located upstream of the gene CYP11B2 (also

known as aldosterone synthase, OMIM 124080), is in

strong LD with the non-synonymous rs4545 of the same

gene in the CHB ? JPT sample of the 1000 Genomes

Project. This SNP is also reported in the Human Gene

Mutation Database (CM033362), and the respective ami-

noacid change is known to reduce the enzyme activity

(Kuribayashi et al. 2003).

Discussion

One of the central problems in pharmacogenetics is to

understand to what extent genetic ancestry affects drug

response. To achieve this, it is first necessary to describe the

distribution of variation at PGx loci across human populations

and to try to predict the possible phenotypic consequences.

Overall, the results of our study showed that the genetic

variation at drug metabolizing enzymes, receptors, and

other molecules involved in drug biotransformation, is

distributed and structured similarly to the rest of the gen-

ome. More specifically, genetic and geographic distances

correlate, consistent with a model of a serial founder effect

followed by expansions. Between populations, we observed

a global Fst of about 10 % at PGx loci, mostly attributable

to variation between geographic regions (9 %, Table 2),

which are internally homogeneous. Exceptions to this pat-

tern are Africa, America, and Oceania where populations

are highly differentiated for reasons mainly due to the

sampling scheme (few and scattered populations) and to the

demographic history of these continents (Mulligan et al.

2004; Wang et al. 2007b; Tishkoff et al. 2009). The same

geographic trend and apportionment of genetic variation

have been previously observed for markers representative

of the whole genome (Excoffier and Hamilton 2003;

Ramachandran et al. 2005; Li et al. 2008).

Description of the distribution of human PGx variation

mentioned above is based on pre-defined groups of pop-

ulations (Table 2), roughly corresponding to continents,

and consistent with the population structure assessed in

Table 4 continued

rs Gene Chromosome Role Amino

acid

change

(position)

Relevant linked

SNPsa (population)

Class Locus-specific

analysis

of molecular

variance

(6 groups)

rs2608632 GSTA2 chr6 Genic

(intron)

– Phase II metabolizing

enzyme

0.13

rs7151065 SLC7A7 chr14 Genic

(intron)

– Transporter 0.05

SNPs are listed in order of decreasing contribution

ns non-synonymous
a Source: 1000 Genomes Project (http://www.1000genomes.org). CEU: Utah residents (CEPH) with Northern and Western European ancestry;

CHB ? JPT: Han Chinese in Beijing, China ? Japanese in Toyko, Japan; YRI: Yoruba in Ibadan, Nigeria
b Human Gene Mutation Database (HGMD) dataset (http://www.hgmd.org)

572 Hum Genet (2013) 132:563–577

123

http://genetics.bwh.harvard.edu/pph/
http://genetics.bwh.harvard.edu/pph/
http://www.1000genomes.org
http://www.hgmd.org


previous studies (Rosenberg et al. 2002; Li et al. 2008).

However, because our aim was to identify the actual

global structure of PGx variation, we inferred the number

and the spatial distribution of population groups supported

by PGx markers using k-means algorithm and DAPC. Our

results suggest the existence of six groups of populations,

three of which are highly homogeneous, while three are

internally structured. As in the AMOVA analysis, the

latter corresponds to Africa, Oceania and America.

The five American populations of the HGDP panel are

native descendants of the first colonizers, so that variation

in their genome has been affected by the initial founder

effect, followed by isolation and small effective population

size, especially in the case of the Brazilian Surui and

Karitiana. However, for practical pharmacogenetics and

epidemiology, it should be considered that in some Central

and South American Countries, urban populations are quite

different from native ones. In Brazil, for example, urban

populations are characterised by a high level of native

American, European, and African admixture, and by a

large census size (Suarez-Kurtz and Pena 2006). A recent

study showed that, in this country, genetic variation of

CYP2C18, CYP2C19, CYP2C9 and CYP2C8 (together

accounting for the biotransformation of 20–30 % of all

drugs prescribed worldwide) correlates with the individual

proportions of European, African and Amerindian bio-

geographical ancestry (Suarez-Kurtz et al. 2012). Given

that polymorphisms in these genes have been associated

with clinically relevant consequences in drug responses

(see, for e.g., CYP2C9 and the anticoagulant warfarin, or

CYP2C19 and proton pump inhibitors; Ingelman-Sundberg

et al. 2007) the authors suggest that ancestry inferred by

means of ancestry informative markers should be taken

into account in practice. By contrast, other South American

regions, in particular Andean ones, are characterised by

large Native American populations (Scliar et al. 2012), and

large urban centres such as Lima, have subpopulations with

predominant Native American ancestry (Pereira et al.

2012). Implications of this pattern of ancestry have been

shown in the case of NAT2 enzyme in Peru, where native

and admixed populations show similar frequencies of dif-

ferent genotype coding for this protein (Fuselli et al. 2007).

NAT2 metabolizes commonly prescribed antibiotics, such

as the anti-tubercular drug isoniazid, and slow metabolizers

have an increased risk to experience adverse reactions to

normal doses of antibiotics (Roy et al. 2008). For this

reason, a therapy based on individual’s genotype should be

considered both for native and admixed populations to

avoid treatment interruption and the development of drug-

resistant bacteria.

Recently, principal component analyses have been

applied to genes involved in drug biotransformation

(Visscher et al. 2009). However, as the authors

acknowledge, the small and European-biased set of popu-

lations used in the study may have limited the ability to

infer a detailed population structure. To overcome this

problem, we used the HGDP panel that includes 52 pop-

ulations from different parts of the world. This dataset is

therefore more inclusive than those with fewer and evo-

lutionary more distant populations analysed in previously

published attempts to define discrete groups of humans

using PGx genes (Wilson et al. 2001; Visscher et al. 2009).

However, the HGDP dataset is not sampled densely,

especially in Africa, and entire geographic regions are not

represented, for example, India, most of Siberia, and North

America. Such a scheme biases the estimation of groups of

populations supported by genetic data (Royal et al. 2010).

For example, we might have lost the fine-scale structure of

the highly diversified African continent (Tishkoff et al.

2009), or the clear separation between Central/South Asia

and East Asia may have been exacerbated by the absence

of geographically intermediate populations. A bias that

clearly affects inferences of population structure is the

ascertainment bias that characterises the discovery of

genetic variation involved in drug response, typically based

on populations of European origin. As we have already

mentioned, this may be the reason why Africa shows a

lower than expected within-populations genetic variation.

Finally, similar to previous studies (Wilson et al. 2001;

Visscher et al. 2009), only relatively frequent SNPs can be

retrieved from the freely available database used in this

study (Li et al. 2008). The lack of rare genetic variants,

some of which may be of great importance in drug bio-

transformation, can affect the identification of groups since

frequent SNPs are usually old and thus shared among most

human populations. Despite all these limitations, the

HGDP panel and the database of markers used in this study

still represent the best characterisation of human genetic

variation, and allowed us to compare our results with other

important studies on genome-wide distributed markers

(Rosenberg et al. 2002; Zhivotovsky et al. 2003; Rama-

chandran et al. 2005; Li et al. 2008; Jakobsson et al. 2008).

As mentioned above, the question of the appropriate

way to infer human population genetic structure important

for drug metabolism was addressed in two previous studies.

Wilson et al. (2001) concluded that the genetic structure of

PGx loci matched that inferred using neutral markers by

means of a cluster-based algorithm, but was not accurately

described by commonly used ethnic labels. Notably, in

their study, the proportion of membership of Bantu and

Afro-Caribbean populations to the same cluster was

[70 %, while the 62 % of Ethiopians clustered together

with Europeans and Ashkenazi (see Table 2, Wilson et al.

2001). Conversely, applying PCA to PGx data, Visscher

et al. (2009) could define groups of individuals with dif-

ferent biogeographic ancestry. Similarly, the six groups
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inferred in our study on the basis of PGx variation roughly

correspond to geographic regions, although of the 1,001

analysed SNPs, only 27 significantly contributed to this

structure (Table 4). In other words, the six groups structure

is mainly defined by a small proportion of the genetic

variation analysed in our study. The rest appears differently

or more evenly distributed across geographic regions, as

supported by the fact that only 16 SNPs show a global

Fst C 30 % (Online Resource Table 1a). In this respect,

however, it should be noted that the bias towards common

alleles in our analysis could reduce the proportion of highly

differentiated variants. Finally, as highlighted in previous

studies (Sistonen et al. 2009), here we show that different

SNPs can have remarkably different geographic patterns

(Online Resource 4), which makes impossible to consis-

tently define groups of individuals based on PGx variation.

Altogether, these observations suggest that any use of

ethnicity as proxy of genetic variation involved in drug

biotransformation would overly simplify the concept of

pharmacogenetics.

The main novel aspect of our study is that, in addition to

characterising genetic structure between populations and

groups, we also identified the SNPs contributing to the

predominant discriminant functions. As already mentioned,

DF1 reflects a geographic gradient tracing the main human

expansion from Africa, and the distribution of allele fre-

quency of most of the markers contributing to it follows

this pattern (Online Resource 4). This gradient has been

produced by a combination of events in human demo-

graphic history; it is therefore reasonable to expect that loci

contributing to it have not been subjected to strong natural

selection. According to this expectation, the genetic vari-

ation associated with DF1 does not include non-synony-

mous SNPs (Table 4). However, this view may be

oversimplified given that selection does not act only on

aminoacid changes, and in many cases, mutations in reg-

ulatory regions may have a strong impact on gene

expression (Wray 2007). The most interesting among these

markers, rs1403527, is located in the gene NR1I2 coding

for the human nuclear receptor 1I2, whose frequency pat-

tern distinguishes Africa from the rest of the world. NR1I2

is of particular pharmacogenetic interest given its role in

regulating the expression of several key proteins involved

in drug metabolism and transport (Zhou et al. 2009). It

functions as a xenobiotic sensor able to control (via

induction) the expression of genes involved in xenobiotic

metabolism, many of which have broad substrate speci-

ficity. In particular, in response to a diversity of natural and

synthetic compounds, the nuclear receptor 1I2 activates the

transcription of several P450 enzymes, such as CYP2B6,

CYP2C8, and CYP3A4, the most important cytochrome

P450 in terms of number of clinically used drugs and

natural xenobiotics metabolized (Ingelman-Sundberg et al.

2007). Similarly, NR1I2 can activate the expression of

Phase II drug metabolizing enzymes and transporters, the

multidrug resistance protein 1 (MDR1) among the others

(Synold et al. 2001). NR1I2 is also activated by several

drugs such as the chemotherapeutic agent Taxol, the anti-

biotic Rifampicin and peptide mimetic HIV protease

inhibitors such as Ritonavir (Dussault and Forman 2002).

Considering its broad activity spectrum, mutated NR1I2

may be responsible for variation among individuals and

populations ability to metabolize several substrates.

Indeed, the molecular basis of the variable drug response

for CYP3A4 substrates is still unclear (Ingelman-Sundberg

et al. 2007), and it is likely that NR1I2 plays an important

role in this process.

Previous studies identified several markers showing a

significantly high degree of genetic differentiation in west

Eurasian populations. This pattern has been attributed to a

specific form of directional selection, termed by some

authors west Eurasian sweep (Pickrell et al. 2009; Coop

et al. 2009). In our study, a similar trend was shown by

DF2 (Fig. 3). Among the markers contributing to DF2, the

non-synonymous rs699 located in the gene AGT is the most

interesting for pharmacogenetic and epidemiological

aspects. The ancestral C allele of rs699 has been associated

with hypertension (Luft 2001) and preeclampsia (Ward

et al. 1993), and it is involved in metabolic pathways of

drugs such as ACE inhibitors (http://www.pharmgkb.org/).

Variation at this SNP correlates with distance from equator

(Thompson et al. 2004), a spatial pattern that was inter-

preted as an adaptation underlying salt regulation, as pro-

posed by the sodium retention hypothesis (Nakajima et al.

2004). More specifically, the C allele is the most frequent

in 45 out of 52 populations of this study, being almost fixed

in Africa, Oceania and America (Online Resource

Table 1a, Online Resource 4). If the geographic pattern of

rs699 has been shaped by a selective sweep as shown in

previous studies, the frequency distribution of the C allele

suggests a temperature-dependent selective effect (Han-

cock et al. 2011) rather than a phenomenon common to all

non-African populations. Another interesting association

between a genetic marker and a pharmacogenetic pheno-

type is the A allele of the tag SNP rs2472304 of CYP1A2,

contributing to DF2, and paroxetine treatment remission in

individuals from Thailand (Lin et al. 2010). This associa-

tion suggests that this SNP itself, or another variant in

linkage disequilibrium, is involved in drug efficacy. The

genetic structure of rs2472304 clearly shows the West

Eurasian sweep pattern (Online Resource 4), and an Fct of

0.29 (Table 4), suggesting that the remittent phenotype

could be common in Europe and Central/South Asia. In

Europeans, rs2472304 is in strong linkage disequilibrium

with the intronic rs1378942 located in the gene CSK.

Genome-wide analyses in populations of European origin
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showed that this locus is significantly associated with

systolic or diastolic blood pressure, and found substantial

evidence for association with hypertension (Newton-Cheh

et al. 2009; Wain et al. 2011). We searched the frequency

of this SNP in all the available samples of the 1000 Gen-

omes database and observed that its global geographic

distribution was extremely similar to that of rs2472304 of

CYP1A2, which in turn overlaps with that of the already

described AGT rs699 (Online Resource Table 1a and

Online Resource 4). Interestingly, in European populations,

both CSK rs1378942 and AGT rs699 are involved in reg-

ulation of blood pressure, and both show a pattern of allele

frequency that correlates with distance from equator. This

observation may further support the sodium retention

hypothesis (Nakajima et al. 2004) at least for European

populations. Among the SNPs that significantly contributed

to DF2, rs3813720 located in ADRB1 is in strong LD with a

gain of function mutation of the same gene (rs1801253,

Mason et al. 1999) in YRI and CHB ? JPT samples of the

1000 Genomes. This variant is of great pharmacogenetics

and epidemiological interest (see http://www.pharmgkb.

org/rsid/rs1801253?tabType=tabVip for a summary and for

references).

One variant among those significantly contributing to

DF3, rs7011901 located in CYP11B2, is in strong LD with

a non-synonymous substitution (rs4545) of the same gene

in Asian populations (CHB ? JPT). Although some evi-

dence suggest a phenotypic effect of this substitution

(Kuribayashi et al. 2003), its biomedical interest is

controversial.

The criteria used to select the genetic markers analysed

in this study led our analysis to focus on genes considered

of primary importance for drug metabolism. However, it

should be noted that genetic variation of other loci involved

in pharmacodynamics, such as the HLA locus (Profaizer

and Eckels 2012), may contribute to the geographic

structure of variable drug response.

Finally, although in this study, we did not focus on

evolutionary aspects, some speculations may be attempted

that could suggest further investigations. In particular, an

interesting and still open question is the role of natural

selection in the evolution of pharmacogenetic variation.

Genetic distances between populations and groups higher

or lower than expected may be due to local adaptation (i.e.

local selective sweep) or to a similar pattern of polymor-

phism across different regions of the world (i.e. balancing

selection), respectively. PGx genes are important for the

interaction between humans and their environment, and for

this reason can be good candidates for natural selection.

Because selection acts on phenotypes, different patterns of

genetic variation at non-synonymous variants and variants

in regulatory regions are expected compared with synon-

ymous, intronic and non-regulatory intergenic variants.

The 1,001 SNPs analysed in this study did not show spe-

cific trends when subdivided into groups with different

roles, suggesting that in general the action of natural

selection, if any, did not shape the pattern of differentiation

between populations at PGx loci. Conversely, highly dif-

ferentiated SNPs are significantly more frequent among

CYP preferentially involved in the metabolism of exoge-

nous substances, as the requirement of living organisms to

adapt to their environments would predict (Table 1). Given

the role of molecules involved in biotransformation of

xenobiotics, characterising the evolution of those genes

identified in our study as showing extreme values of

genetic variation and/or contributing to the first three dis-

criminant functions, can give insights into important

questions about how humans evolved in response to spe-

cific selective pressures.
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