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1 Electronic wave functions

1.1 The Born—Oppenheimer approximation

The total molecular Hamiltonian for a system with n electrons and N nuclei
is given by
H = Tnuc + Tel + ‘/én + ‘/ee + Vnn (1)

where the various terms are defined by the following expressions:
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Actually the expression (1) is only an approximation to the true Hamiltonian,
since it lacks all the magnetic terms arising from the fact that the molecule
is a system of moving charges endowed with spin. Anyway such magnetic
terms are usually rather small so that their exclusion from the Hamiltonian
can be considered to be a reasonable approximation.

The resolution of the time-independent Schrédinger equation

qutot(xa Q) = Etot\IJ(l", Q) (2)

provides us with all the possible energies and stationary states of the molecule.
In the above equation, x and () designate the totality of electronic and nu-
clear coordinates, respectively. In order to alleviate the formidable task of
solving the time—independent Schrodinger equation, Born and Oppenheimer
showed that, due to the small ratio between electronic and nuclear masses,
eq.(2) can be approximately decoupled in two separate equations, the first
referring to the electronic motion and the second to the nuclear one. Defining
the electronic Hamiltonian as

Hel - Tel +‘/8TL+‘/86+VTLTL



Born and Oppenheimer were able to show that

\Ijtot,n,k (.’L‘, Q) ~ \Iln (.’L‘; Q)Xn,k(@) (3)
HoWn(2;Q) = EnWn(z;Q) (4)
(Tnuc + En (Q))Xn,k (Q) = Etot,n,an,k (Q) (5)

Eq. (4) plays the role of a Schrodinger equation for the motion of the electrons
in the field generated by the fized nuclei: the solutions provide electronic
wavefunctions ¥V, (z; Q) (with n enumerating the various possible electronic
states) and electronic energies E,(Q)) where the nuclear coordinates @) only
enter as external parameters. Eq. (5) is the equation associated to the nuclei,
where the electronic energy F,(Q) plays the role of a potential energy gov-
erning the nuclear motion. Index k enumerates the roto—vibrational states
associated with the electronic energy F,. This Born-Oppenheimer separa-
tion is essential in Chemistry: most of our understanding of the very notion
of molecular structure rests upon the geometrical properties of the potential
energy surface E,(Q).

In the rest of these lessons we shall be mainly concerned with the (ap-
proximate) resolution of (4) for electronically excited states. We shall rewrite
the electronic Schrodinger equation in the form

H,¥9,(1,2,...,n) = E,¥,(1,2,...,n) (6)

where 1,2,... denote the spatial and spin coordinates of the various electrons
and where it is understood that the nuclei are kept fixed at a certain specified
geometry.

1.2 Expansion of the electronic wavefunction over a
set of Slater determinants

The electronic wavefunction, solution of eq. (6), must obey the antisymmetry
principle for fermions, stating that ¥, (1,2,...,n) must change in sign upon
transposition of the spin—coordinates of two electrons:

PyUn(1,2, .. 0y gem) = =W (1,2, 4, dyon) (7)

Consequently ¥,, can be expanded over a complete set of n—electron functions
provided that each of them satisfies the antisymmetry principle. An easy
way of building such a basis is to resort to a complete set of molecular spin—
orbitals (11,19, ...) and to construct all possible Slater determinants of the



form:

Uk (1) (1) -0 g, (1)
Uk (2) Uns(2) -0 U, (2)

P = (8)

A great simplification is obtained if the spin—orbital basis is chosen to be
orthonormal, i.e. (1; | ;) = 0;;. In this case the determinants also constitute
an orthogonal set ((®% | ®7) = 0 if K # L) and any determinant can be
easily normalized upon multiplication by the factor —+— (®x = —+—®".).

\/Zn!) \/Zn’)

In the following we shall often designate a normalized determinant with the
abbreviated symbol ||t Vg, - - - Vg, ||-

The determinants @ constitute a complete set of antisymmetric func-
tions and consequently the wavefunction W, solution of the electronic Schro-
dinger equation 6, can be expanded over such a set:

Substitution in eq. 6 gives:

ZHel(I)KcK = EZ(I)KCK (10)
K K

and multiplication of both sides of the above equation by ®; with integration
over the electronic coordinates (i.e. application of the “bra” vector (@)
provides:

Z<@L|Hel|q)l(> Ck :ECL (1].)
K
Introducing the matrix H defined by Hyx = (9, |Hy| Pk ) and the column
vector ¢ having as elements the cx coefficients, eq. 11 can be put in matrix
form:
Hc = Ec (12)

and the problem of finding the eigenvalues and eigenfunctions of the elec-
tronic Schrodinger equation has been turned into the algebraic problem of
the diagonalization of the hermitian hamiltonian matrix H.

The expression 9 is then able to provide the solution to the electronic
Schrédinger equation and is known as the full Configuration Interaction (CI)
expansion. The matrix elements Hy; are easily obtained if one resorts to
the famous Slater’s rules for one—electron and two—electron operators, which
we now briefly recall.



n
Given a one—electron operator Hyy = »_ h(i), the matrix elements of H

=1
between two Slater determinants ®; and ®, are different from zero only in

two cases:
n

o & =Py with Hgxg = > (Uy, |h] ¥r,)
i=1
e &, # Oy for one spinorbital difference (¢, # ), with Hyx =

<77blz h| %J

In the above formula it is supposed that the equal spinorbitals have the
same ordering in both determinants. If such should not be the case, one has
to take into account a possible sign change associated to the parity of the
permutation necessary to bring the spinorbitals into coincidence. Similarly,

for a two—electron operator G = — Z g(7,7), only three cases are possible for
i#]
the matrix element G to be different from zero:
n

o ©, = O with G = 2 > ((Grtdn; gl mtoe ) — (betin gl ;. )

2=

e &, # Oy for one spinorbital difference (¢, # tx,), with Grx =

n

Z(<¢lﬂ/)kj 9] T/Jkﬂbk]-> — <¢lﬂ/)kj 9] 7/)19]-1/)1%->)

=1
o &, # &g for two spinorbital differences (vy, # w0, # Yr;), with
G = (U, gl i, ) — (Yut, ol vn, Y, )
In the following a two—electron integral (1), (1)15(2) |g(1,2)] 1e(1)14(2)) will
often be written in the simplified notation (ab|cd) and the combination

(ab| ed) — (ab| dc), known as an antisymmetrized two—electron integral, will
be abbreviated in (ab || cd).

1.3 Diagonalization of large CI matrices

Nowadays full CI calculations yielding a few energy eigenvalues for small
molecular systems are possible. Such calculations require the partial di-
agonalization of the Hamiltonian matrix which, as has been shown in the
previous paragraph, is a large sparse N x N matrix. Currently diagonaliza-
tions with N surpassing 10° are routinely done (as of this writing N = 10°
seems to be the limit of feasible diagonalizations). In this paragraph we shall
briefly examine the main methods used in Quantum Chemistry to compute
a few (usually the lowest) eigenvalues and the corresponding eigenvectors of
the Hamiltonian matrix.



1.3.1 Subspace projection methods

Subspace projection methods start from the concept of Krylov subspace
which is spanned by the vectors of the form

' I r_ /
¢, ¢, = Hey,...c, = Hep,

with ¢} a given guess vector. In the old power method the last vector
is shown to approach for large k the eigenvector associated to the high-
est eigenvalue. Actually, if vi, vo,...,vy denotes the basis of orthonormal
eigenvectors associated to the eigenvalues in increasing order of the moduli
|E1| < |Ey| < ... < |Ey|, one has:

N N N
/ / / k—1
C, = E Q;V;, Cy = E O[iEiVi, - Cp = E OéiEi V;
i=1 i=1 1=1

Ey
Ex
from which the stated result follows at once, provided that Fy_; is different
from Ey.

An improvement to the power method consists in seeking an eigenvector
of H in the form

Ey )k—l

¢, = BN o (=) " 'vi + (aa—=2) " vy + ..+ anvy]

k
u, = Z sgk)ci =Cs
i=1

where the c¢; are orthonormal vectors providing a basis for the Krylov space
(obtained for instance by applying the Graham—Schmidt orthonormalization
procedure to the ¢, vectors), C is the rectangular N x k& matrix having c;
as i—th column and s is the £—dimensional vector having sgk) as components.
The procedure consists in projecting the Hamiltonian matrix onto the Krylov
space and diagonalizing such a reduced matrix H®). The reduced matrix is
written as H® = CYHC, has the (low) dimensionality k¥ x k and can be

easily diagonalized with standard techniques:
C'HCs = H®s = AW

To be definite we suppose here to be interested to the smallest eigenvalue of
H. Taking into account that P = CC' is a (N x N) matrix which projects
any N—-dimensional vector onto the Krylov space, one has

PHPCs = \®Cs or PHPu;, = \#y,



with u; = Cs. So A®) and uy, are an approximate eigenvalue-eigenvector
couple for the problem of the diagonalization of H. It can be remarked that,
by the variational principle

u,'Hu, = s'CTHCs = A\ > FE

Increasing the dimension of the Krylov space one improves the approximation
of \*) for E; and usually one obtains good approximations for modest values
of £ (<< N). One can easily control the quality of the approximation by
evaluating the residual vector

r, = Hllk - )\(k)uk (13)

and stopping the iterations when ||rg|| < e.
In Lanczos’ approach the c; vectors are defined so as to build an or-
thonormal basis which tridiagonalizes the small H*) matrix. Starting from

a normalized guess ¢y, one builds ¢, = Hc; —a;c; with a; = CIHCI and next
!

cy = . € is normalized to 1 and is immediately seen to be orthogonal
Cy Ch
to ¢;. A quantity (3, is then defined so that fyce = ¢, or By = cgc’2 = \/cgc’2

and the general iteration scheme is:
Bit1€iv1 = He; — aye; — fBici

with o; = c} Hc; and 3; being defined by the requirement that c} c; = 1. The
vectors c; are readily seen to be orthonormal and are such that the matrix
H®) = CTHC is tridiagonal

a; B 0
62 D) 53
(k) _
HY =19 Bs g P
. ' 51%1 O

and can be easily diagonalized with standard techniques.

1.3.2 Davidson’s method

In 1975 Davidson developed a method which is at present the most widely
used in Quantum Chemistry for the diagonalization of large Hamiltonian
matrices. Supposing to have a given starting space with orthonormalized
vectors cp,...,C, and to have an approximate eigenvalue—eigenvector pair
A®) u, obtained with the projection method described previously, we look



for the correction z which makes u; + z the true eigenvector corresponding
to the true eigenvalue E; of H

(H-E1)(u,+2z) = 0 (14)
(H-Eil)z = —(H—- E1)uy (15)

Now the r.h.s. of eq. (15) can be approximated with the residual vector ry
(see eq. 13) while the Lh.s., if H is diagonally dominant (as is usually the
case in the Hamiltonian matrix), can be replaced by (D — A*)1)z, where
D contains just the diagonal of H. Consequently z = —(D — A1),
is the desired correction vector. Adding such vector to the preceding basis
and carrying out an orthonormalization, one obtains an augmented basis
C1,Cy,...,Cry1 and the process can be iterated until convergence is reached.
If more than one eigenvalue—eigenvector couple is wanted, the c; vectors
obtained at convergence for the first eigenvalue are usually a good guess for
another one.

2 Second quantization techniques

Given an orthonormal spin—orbital basis 11,15, ... and a generic n—electron
determinant |M) = ||tk . . . || we shall define the destruction (or anni-
hilation) operator a, in the following way:

ag | [rtatls .- || = [|Yathy . . . ] (16)

i.e., the result of the application of a, to |M) is a (normalized) (n-1)-
determinant |N) deprived of the spin-orbital 9. In eq. (16) spin—orbital
1 was assumed to be in the first column of the determinant; if such should
not be the case, one has to take into account the necessary transpositions to
shift spin—orbital v, to the first position, obtaining:

ag Wty || = (=1 [ty ... | (17)

with 7, equal to the number of spin—orbitals preceding ;. If 1 is not occu-
pied in |M ) we have by definition a, |M) = 0. Besides, q,, is by definition
a linear operator and this allows its effect on any function to be known (one
only needs to expand the function over the set of determinants |M ) and to
apply a, to every determinant). Let us now investigate on the properties of
the adjoint operator aj = a}. From a, |[M) = |N) we have <N ‘ak ‘ M> =1

and also, by definition of adjoint operator!, <M ‘aﬂ N> = 1. On the other

H(f AT g) = (g1ALf)”



hand, <M’

a,ﬂ N> =0 if |M') # |M) allowing one to write

> M) (M o | N) = |M)

M/
and consequently:

ag |N) = [M) (18)
since Y |[M") (M'| =1 (resolution of the identity). Therefore o} acts on the
M/

(n-1)—electron determinant |N) = ||¢g1)p .. .|| giving as result a n—electron
determinant |M) = ||tgtap ... ||. a; is called the operator of creation of

an electron in spin—orbital 1. If |M') already contains v, the result is zero
because a determinant containing two equal columns vanishes (an expression
of the Pauli principle).

2.1 Anticommutation properties

We now consider a determinant |[AM ) = ||1;1);1,¢ ... || and apply to it the
product of destruction operators a; a;

a; a; |[ibiady .. || = ||vathy . . .|
If we apply such a product in reversed order we obtain
a; a; [|[0itsbathy . . || = —||Yatls . .. ||

Summing these two equalities one has:
(aja; +a;a;)|M)=0 (19)

and we see easily that such equation holds true for any |M ), irrespective of
whether spin-orbitals ¢; and ; are occupied or not in | ). So one has the
operator identity:

aja; +a;a; =0 (20)
which states that the anticommutator between two destruction operators

[ai , 0 L = a; a; +a; a; is zero. Taking the adjoint of eq. (20) one imme-

diately sees that the same rule also holds for the creation operators:

o, a,jL =0 (21)
Putting i = j in eqs (20) and (21) one gets:

+2_0

a?=0 and af =

10



that is, the operators a, and a; are nilpotent.
Let us now see the action of a;"a; with i # j. Let [M) = ||ttty ... ||;
one has:

afa; |M) = [[¢ibathy. .. ||
N

So, a;"a; is a replacement operator, substituting spin—orbital ¢; with
(notice that this results holds for whatever position the index j occupies in

the determinant). The effect of a; a; is instead:

a; af [|Viathy - - || = a; [[ihjhathy - . || = =||0ithathy - - ||

Thus (a; a; 4+ a; o) |M) = 0 and one sees easily that the same result holds
in all cases, irrespective of whether ¢; is occupied or not in |AM') or whether

1; is already occupied in |M ). Consequently we conclude that [aj, a; ] =0

for i # j. The case i = j is also very easy: if ); is occupied in |M) we have
afa; M) = |M) and a; af |M) = 0, else, if t; is not occupied in |M):
a;a; |M) =0 and a; aj |M) = |M). In any case (aja; +a; a;) | M) =
|M). We can then state that for the anticommutator between a creator and
a destructor one has:

[aﬂ' a,; ]+ == 6i,j (22)

177

We conclude this paragraph with the following observations:

e A determinant |M ) = ||¢;, ¢, - - - 14, || can be successively depleted by
application of the destructors a; , a,,,..., a; . The final outcome is the
completely ionized molecule, indicated with |vac) (the vacuum state).

In other terms a; a;  ...a; |M) = |vac)

e Conversely, any n—electron determinant can be thought of as deriving

from the application of a product of creation operators to the vacuum:

M) =aaf ... af |vac)

2.2 One— and two—electron operators

We shall consider an operator of the form

T = Ztrsajas (23)

with the T matrix hermitian (f,, = ¢*,). It is easily seen that the operator T
is hermitian (77 = T'). Given a generic determinant [M) = ||, g, - = - ¥, ||,
we shall now investigate the matrix element

<M‘T‘M> = Zt (M

+
a?‘ a’S

M) (24)

11



Since the operator a;fa, replaces spin—orbital ¢; in |M) (if possible) with
Yy, it is immediately recognized that the only possibility for (M |afa, | M)
to be different from zero is that s equals an occupied index and r = s. So

Let us now consider the matrix element of operator T between two different
determinants |M ) and |N), where |M) = ||tg, Yk, - - - g - .. Uy, || and |[N) =
|1V, Yky - - - - . .y, ||, 1.e. the two determinants differ by one spin—orbital

difference (¢, # p):

ata, M> (26)

(N|T| M) = Zt (N
The only non zero result can be obtained with s = a and r = b, yielding
(N|T| M) = th, (27)

If determinant |N) differs from |[M) by more than one spin-orbital, it is
immediately seen that <N ‘T‘ M> = 0. It has been thus recognized that

operator T satisfies Slater’s rules (see sec. 1.2 at page 4) for a one—electron
n

operator. In other terms, if £ is a one-electron operator (F = > f@@),
i=1
it is equivalent to Y _ fr,aia, where f., = (¢(1)|f(1)[9s(1)). Thus the
7,8
expression (23) is the most general form to represent a one—electron operator
in the so—called “second quantization” formalism.
Let us now consider an operator of the following form:

A1
G = 3 > Grsputy) ata, a, (28)

rstu
where the four-index matrix g satisfies the hermitian requisite g5 = gy, -
Operator G is promptly seen to be hermitian. Furthermore, as happens in
almost all practical cases, we shall require the symmetry property g,su =
Gsrut- 1t is then easily shown, noticing that the product a."afa, a, performs
a double replacement (substituting the ordered couple (¢1),) with (1,1y5)),
that operator G obeys Slater’s rules for a two—electron operator:

A 1 &
<M G M> = 5 'Zl(gkikj;kikj _gkikjvkjki)
)=
n

<N G M> = Y (kbia — Gribar;) (one orb. diff.)

i=1
M> = Yedab — YGed,ba (two orb. diff.)

—~
=
%

12



Consequently the form (28) represents the most general expression for a
two—electron operator in the second quantization formalism. For instance

1S
the interelectronic repulsion operator G = — Z, — becomes in the language
irj
of second quantization:
| 1
G =3 % (6 (L) | — | i)() Y a7 at aya, (29)
rstu 12
As concerns the electronic Hamiltonian
"1
el - Z h + 2 Z -
i g

where h(i) collects the kinetic energy and nuclear coulombic attraction po-
tential for electron 7, one promptly gets the second—quantized form:

8l - Z <77br |h| st> a Qg + 3 Z <1/)r"/)s wu> Q. CL:CL a (30)

T, rstu

It should be noted that the second—quantized version of the operators does
not make any reference to the number of electrons, formulas (23) and (28)
being valid for an arbitrary ionization state of the system.

2.3 Unitary transformations of the spin—orbital basis

We shall now study how the second quantization operators transform when
one passes from a spin-orbital basis to another one: |¢) — [|¢'), where
we define the row vector |tp) = {|¢1), [¢2),...} and similarly for [¢"). If
|1p) and |¢') are both orthonormal basis sets, the only way to perform the
transformation is through a unitary operator U

) =U |¢) = |[¢)U (31)

where U is a given unitary matrix.
In the basis |¢') the operators will have the same form as in the old |¢)
basis. A generic one—electron operator T' can be written as:

o + /+ li
T_Ztrsara Ztm a,
r,s

where a. (a.") is the destruction (creation) operator associated to spin—

orbital ¢!. Making use of the vector notation

a1

a=| G and at =

13



we can write
T=a"Ta=a"Ta

Taking then into consideration that

= (P tly) =U @' |t| ) UT

and consequently T = atuT UTa, one promptly deduces the formulas for
the transformation of the destruction and creation operators:

a=U'a and a" =a'U (32)

or, in detail
a, => Ulas and at ZcﬁUsr (33)

(notice that the creators transform exactly as the spin—orbitals).

We shall now investigate the action of U/ on a generic determinant |K) =
|[41902 ... b ||. Remembering that |[K) = aia; ...a} [vac) and that a uni-
tary transformation of a generic operator? A is given by A’ = UAU™, one
has the following steps

U|K) = Udataf...a |vac)
= Udi U UafUYUat ... UatUTU |vac)
= a'fa';“ ..at vac)

Thus, U |K) is another determinant where spin-orbitals 1; have been re-
placed by the transformed spin-orbitals .

At this point we recall from Linear Algebra than any unitary operator U
can be put in exponential form as U = ¢ where A is a suitable hermitian
operator. It is not difficult to show that A s just a simple one—electron

operator X
=Y Asafa, (34)
T,

where matrix A is hermitian and is associated to matrix U by the exponential
relation

U=¢"4 (35)
We shall barely sketch the demonstration which is based on the expansion of
the transformed operator a/" using the Baker—Campbell-Hausdorff identity:

ABe = B[4, B+ 24,14, B + 24,14, 4, B]] +

It AU = &, application of U to both sides gives UAU+(U\II) (U®), which shows
that UAU™ expresses the transformation of operator A effected by U

14



Assuming A to have the form (34) and making use of the commutator rela-
tionship [a; a, , a] = 6,4a;, one readily arrives at the expansion:
2
N N ) 7 .
UatUT =af +4i)_ Mpaf + BT S AL af +. =Y (€Mpaf = Upaf
t ot t

t

which proves the assumption. Often one sets T= z’f&, with 7" antihermitian
(I'" = =T). If, as is usually the case, the two sets of orbitals ¢ and ¢’ are
real, the T matrix (¢,s = i)\,5) has to be skew—symmetric, i.e. T = —T.

2.4 The spin—traced replacement operators

Operators which do not have dependence upon the spin allow a simplification
to be introduced by integrating over the spin variables in the matrix elements.
Supposing that the spin—orbitals ¢; are derived from a unique set of spatial
orbitals ¢; with allocation of either av or [ factors, one has for a spinless
one—electron operator:

T=% (W ltlvs) afa, =37 (or [t @) (af,a,0 + afpas) (36)

s rs
where in the last term the summation runs over the spatial orbitals and where
with af, etc. we mean the creation operator associated to spin—orbital ¢,«

etc.
One can define the spin—traced replacement operators

roaTsa

grs == a+ a + a;‘FBa’Sﬂ (37)
which allow any spinless one—electron operator to be rewritten as

T =Y (o, |t] 05) Ers (38)

r,8

The commutation of two such operators is given by the following rule (easy
to demonstrate for the reader)

[grs; gtu] = 5stgru - 6ru8ts (39)

The above commutation property —we observe just in passing— has an im-
portant connection with the Unitary Group Approach (UGA) for the evalu-
ation of the matrix elements of the Hamiltonian between spin eigenfunctions
(rather than mere determinants).

An important property of the spin—traced replacement operators is that
they commute with the total spin momentum and with its z component

[grsa 52] = 07 [grsa Sz] =0 (40)

15



as can be verified by expressing S? and S, in second quantization. As a
consequence the application of &, to an eigenfunction of S? and S, produces
a function with that same property.

For a two—electron operator we can proceed analogously

G = Z(d@d& |9|¢t1/)u>a a’ (y Ay

rstu

= Z (gprgps |g| gotgpu> ( QoG :aauaata + ajﬂa:ﬁauﬂatﬁ

rstu
+ .+ + ,+
+ a’rﬁa’saa’uaa’tﬁ + a’raa’sﬁa’uﬂa’m)

= Z (gprgps |g| thgpu> (grtgsu - 6tsgru)

rstu

The Hamiltonian operator can then be expressed as

H Z hpsErs + = 5 Z rs | tu ( Ertsu — 6tsg7“u) (41)

rstu

3 Best one—determinant wavefunctions:
Hartree—Fock theory

Using the techniques exposed in the preceding section it is an easy matter
to find the best approximation to the wave function of the electronic ground
state in the form of a single Slater’s determinant ¥ = ||1)11), . . . 1, ||. Actually
the method we are going to present applies not only to the ground state but
also to the lowest state of a given spatial or spin symmetry. With the term
“best approximation” we mean that the spin—orbitals we are in quest of
should satisfy the variational theorem, i.e. they should minimize the energy
functional E = <\I’ ‘H‘ > with the orthonormality constraints (v; | ¥;) = d;;.

At the point of minimum, any infinitesimal variation v; — ; + dv; leads
to 0E = 0. Such a variation can be done, as has been seen in the previous
section, by applymg to W a unitary operator U= ¢l Wlth T =-1" =
Ztrsa, a; (t,s=—t;). B = <\IJ’ HF\IJ > with |¥') = e? |¥), one has

T8

E' = (" |H| ") = (W] H | W)
and -
0E=FE'—E=(¥|eTHe" — H| W)
Taking the t¢,, parameters as infinitesimal, one obtains an infinitesimal vari-
ation of the energy. The expansion

~

e THe" = H— [T, H] + =[T,[T, H]] +

DN | =

16



can be truncated to first order and consequently:
0F = (V|H +[H,T] - H|W) = (¥ |[H,1]|v)

It is now convenient to use the replacement operators E,s = aa, (with the
property Ef = E.) which allow the expression for 0 F to be rephrased as:

OF =t (U|H| B ¥) = 3t (B, ¥ |H| ¥) (42)

In the first term of the r.h.s. of eq (42) E,, substitutes ¢, with ¥, in ¥ and
consequently s must designate the index of a spin—orbital occupied in ¥; r,
on the contrary, must be either the index of a wvirtual spin-orbital (i.e. not
occupied in ¥) or the same index as s. In the second term of eq. (42) the
situation is reversed, with r occupied and s virtual (or coincident with r).
Introducing now the convention of designating with ¢, j,... indices referring
to occupied spin—orbitals and with a, b, .. . indices for virtual orbitals, eq.(42)
can be rewritten as:

0F = iztai (w|H|w) - 2::2; ia (U

i=1a>n

H| ) (43)

where we have set U = E,; ¥ (a singly excited determinant, with spin—orbital
; replaced by 1),) and where we notice that the terms with ¢;; have canceled
out. Since t;, = —t*., one can also write

= i >t (W|H| W)+ coc. (44)

i=1a>n

where “c.c.” designates the complex conjugate of the preceding term. Since
the quantities t,; are arbitrary, in order for 6 E' to vanish it is necessary that

(w|H|wt) =0 (45)

The above result is known as Brillouin’s theorem, stating that the spin—
orbitals which minimize F are such that the interactions between ¥ and any
singly excited determinant E ;¥ are zero.

Now ¥ = ||w1w2 .. ’l[)z .. wnH and \Ifg = ||’l[)1'l/)2 .. .wa .. wnH, SO that,
remembering Slater’s rules, one has immediately:
1
o)
12

(e i) = (bt |-

) = i) + 35 (oo |
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One can introduce two auxiliary operators J and K (Coulomb and exchange
operators, respectively) through their matrix elements:

(o] ]y = jil@rwj — |
(vel&lo) = 3 (v | = wsws)

=1

With these operators condition (45) can be cast in the form:

(o |h+J = K| ;) =0 (46)
Fock’s operator is now defined as F= il+j—K, so that one has the equation
(v |F| ) =0 (47)

Condition (47) states that the vector F |¢);) must be orthogonal to any vir-
tual |1h, ). As a consequence F' |ib;) belongs to the subspace generated by the
occupied spin-orbitals {11, 19, ...¢,} and one obtains the so—called gener-
alized Hartree—Fock equations:

F i) =3 ) e (19)

Since the Fock operator Fis hermitian, matrix € is also hermitian:
iy = (Vi [Flws) = (i [F| i) = <

The hermiticity of € can be exploited by considering the unitary matrix U
which diagonalizes e:

UteU =
0 ... 0 €,
Changing the occupied spin—orbitals according to the transformation:

1/)2 = Z %Uji

j=1

and noticing that the Fock operator is invariant under such a transformation,
one arrives at the canonical Hartree—Fock equations

Py = el (49)
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It should be noticed that eq. (49) is not a simple eigenvalue equation, because
the operator F' depends upon the solutions ¢;’s. In order to solve eq. (49) one

has to resort to an iterative procedure, starting from a set of uess orbltals
{1/)1 ,wQ ,...}, building an initial F©_ diagonalizing it ( ei wm)

7
and proceeding successively until convergence ( “self COHSlstence ) is attained.
The eigenvalues ¢; of eq. (49) are called “orbital energies” and possess
a neat physical meaning, as is shown by the following argument: if one
considers the ionized state ¥ = a, ¥, where an electron has been removed

from spin—orbital ¢); in the determinant ¥, one obtains for the energy:

Ef = (o, V|H|a, ¥) = (¥ |a} Ha, | ¥) (50)
= <\If ‘]:Iajai > <\If‘ af, Hla, > (51)
= E+ (V| Hlo, | ¥) (52)

It is remarkable that eq. (52) provides the ionization energy (E;" — E) as the

expectation value in the ground state of a certain operator ([a;", H]a; ). It is

not difficult to evaluate the commutator appearing in eq. (52) and, after a few
algebraic steps (the reader can avail himself of the two basic commutation

rules: [a;,ata,] = —d;,a and [a),aafa, a; | = djuatafa, — dyatafa,)
one gets (Koopmans’ theorem):

Analogously, upon creating a negatively ionized determinant with the addi-
tion to W of an electron in the virtual spin—orbital ¢,, one gets : EY —FE = ¢,.
Also, one can have a (usually rough) approximation to an electronically
excited state in the form ¢ = ala, U with excitation energy F¢ — F =
€a — € — (Jai - Kai)-

3.1 Restricted and unrestricted Hartree—Fock
equations

The Hartree—Fock equations considered in the previous section were devel-
oped in terms of spin-orbitals. Taking into account that ;(z1,y1, 21, 51) =
©i(x1, Y1, 21)Nm(s1), where ; is a spatial orbital and 7, is a spin function
(either a if m = § or § if m = —3), one can develop new equations in
which the spin functions have been disposed of. The simplest situation to
deal with is the so called closed shell case which is also the most frequent.
Most molecules are in a singlet ground state and, close to the equilibrium

geometry, are reasonably well described by a single Slater determinant where
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a given spatial orbital ¢; occurs twice, giving rise to the two spin—orbitals
p;a and ¢; 3. The Slater determinant describing the molecule is thus given
by:

U(1,2,...,2n) = |le1(Da(1)@1(2)5(2) - - ¢ (2n = Da(2n — 1)@, (2n) 5(2n) ]

In this case the Hartree-Fock equations (eq. 49), upon integration over the
spin functions, are easily seen to simplify to the following form:

f%‘ = €p; (54)

with f = h+ 2J — K, where J and K are defined only in terms of spatial

orbitals:
<S0r ‘ PsPj >

<<;0r ‘ 80]805>

In case one wants to describe an open—shell situation, e.g. when the molecule
is not in a singlet state, the equations become more intricate: a determinant
of the form

J

ps) = i<w

Ps) = Z<90r90y

K

\I](la 27 RN 2n + m) = ||30104301B ce Qpnagpnﬂ@n+la s Qon+ma||

describes a state with spin quantum number S = . The equations which
determine the best orbitals ¢; are rather complicated to write down and are
termed “Restricted Open-shell Hartree-Fock” equations (ROHF). A simpler
alternative, often employed in practice, is to resort to different orbitals for
different spins, i.e. to adopt two distinct sets of spatial orbitals, the first

being associated to « spin—orbitals and the second to the [ ones:

U(L,2,....2n+m) = |lp10¢ B .. 0a00, Bpni1cr- .. pnimal

The resulting equations are called “Unrestricted Hartree-Fock equations”
(UHF); they are simpler than the ROHF equations but suffer from the in-
convenience of not providing an eigenstate of S2.

3.2 Expansion in a set of atomic orbitals: Roothan’s
equations

The Hartree-Fock equations seen in the previous sections are complicated
integro—differential equations not amenable to analytical solutions. The usual
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way to solve such equations is to resort to an expansion of the molecular
orbitals ¢; in a chosen atomic basis set of orbitals {x1, x2,...}:

PYi = ZXTCTi (55)

thus reducing our problem to an algebraic one, where the mixing coefficients
¢r; have to be determined. If the atomic basis set is complete the true so-
lutions of the Hartree-Fock equations can in principle be obtained through
the following steps (we envisage the closed-shell case here):

foi = €

Z erCri = € Z XrCri

S|l e = @Y (6l x) e

r r

In matrix form one has the Roothan’s SCF (“Self Consistent Filed”) equa-
tions:

FCi = €iSCZ' (56)
where c¢; is a column vector containing the c¢,; coefficients, S is the overlap
matrix (Ss; = (xs | xr)) and F is the Fock matrix:

Fy = <Xs f Xr>
= <Xs |h,| Xr> + Z (2 <Xs§0j ijXr>>
7=1
Upon expansion of the ¢; orbitals according to eq. (55) one gets

1 1
Fy = (xs |h| xr) + Z (2 <Xth XuXr>> R, (57)
t,u

1

12

1

12

Xrgoj> - <Xs<10j

12 12

XrXu> - <X5Xt

where the density matriz R has been introduced:
n

R, = Z CujCtj  OT
j=1

R = CCf

with C designating the rectangular matrix having as columns the c; vectors.

Roothans’ equations (56) are classified as pseudoeigenvalue equations be-
cause matrix F needs the knowledge of the solutions c; to be constructed.
Their solution is generally carried out in an iterative way, starting from a
guess coefficient matrix C(© from which an initial R and F matrix are built
up; diagonalization of F (actually, due to the occurrence of the overlap S
matrix, eq. (56) is a generalized eigenvalue equation) produces a new coeffi-
cient matrix C") which permits the process to be iterated until convergence
(self-consistence) is reached.

21



3.3 The CIS approximation for the calculation of ex-
cited states

We have seen that the Hartree—Fock equations can be derived from Bril-
louin’s theorem (eq. 45 at page 17) which states that at self consistence
there is no interaction between the H-F determinant and any single excita-
tion. In other terms, no improvement is obtained for the ground state by
diagonalizing the Hamiltonian matrix H built on the functions {¥g, ¥?, ...}
containing, besides Wy, all the single excitations V¢ = E,;¥,. So, the di-
agonalization of the Hamiltonian matrix (Hec = Ec) yields as its lowest
eigenvalue Ey = (¥, |H| ¥y) with ¢ = [1,0,...,0]. The higher eigenvalues,
anyway, constitute approximations for the energies of excited states and the
resulting method is usually referred to as “Configuration Interaction with
Singles” (CIS) or Tamm-Dancoff approximation. The expression of the ma-
trix elements of the Hamiltonian is straightforward recalling Slater’s rules
and yields at once:

(U0 |H| W) = — (bi || aj) + 0padijl(ea — €) + Ei] (58)

Also, the dimension of the Hamiltonian matrix is modest (by today’s stan-
dards), being determined by the product of the number of occupied orbitals
times that of the virtual ones. The CIS approximation is often used as
one of the simplest methods able to provide reasonable results for excited
states, its validity being chiefly confined to those states whose physical na-
ture does not require higher excitations than the singles. Starting from a
singlet Hartree-Fock wavefunction only singlet and triplet excited states can
be obtained with the CIS method. Singlets can be obtained by applying the
spin-traced operators £q; = aj,a;, + ;50,5 to ¥y and by diagonalizing the
resulting Hamiltonian matrix. Triplet states, conversely, can be formed with
the operators &, = al a;, — a;“ﬂaw.

aaVia
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4 Multiconfigurational Self Consistent Field
methods (M CSCF)

We have already remarked that a full configuration interaction (Full CI) can
exactly solve the Schrodinger equation. Unfortunately a full CI is only feasi-
ble in very simple cases, with few electrons and with not too much extended
orbital basis sets. Often one makes use of a truncated CI

N

U =Y CkPg (59)

K=1

where the electronic configurations estimated to be the most important are
included in the CI. With the term MCSCF (Multiconfigurational Self Con-
sistent Field) one means a generalization of Hartree-Fock’s equations where,
along with the CI coefficients Ck, also the orbitals ; utilized to build up
the determinants @y, are optimized. In other terms, the energy associated
to eq. (59) B = <\If H \I/>, has to be stationary with respect to both a vari-
ation in the expansion coefficients (C')y — Cx + dC) and a variation in the
orbitals (¢} — ¢; + d¢) with the orthonormality constraints (3 CjCx =1
and (p; | ;) = 6i;). We shall now describe an iterative procedure, consisting

of two successive steps repeated until convergence, which is able to solve the
MCSCEF problem.

1. One finds the coefficients C'x obtained by building determinants @y
with a given set of orbitals

2. Once the coefficients Cx are obtained, a set of orbitals minimizing
E = <\If ‘fl‘ \I/> is looked for

Step 1 is in principle easy, since one just needs to solve the matrix eigenvalue
equation Hc = FEc with Hg, = <<I>K ‘ﬁL®L> easily obtainable through
Slater’s rules. Step 2 can be faced with techniques similar to those met for
the case of a single determinant. We have already learned that the operator
U associated to a unitary transformation of a spin—orbital basis, can be cast
in the form U = e’ with T = Dors trsafa, (t,s = —t%.). For an infinitesimal
transformation the expansion of e’ can be truncated to the first order and,
as we already know, e™" He!' = H — [T, H] so that the condition for ¥ to
give the minimum energy is:

OF = (V|[H,T)|¥)=0
By utilizing the replacement operators E,.s, one can write:
(W[HT| W) — (¥ [TH| V)
> trs (U [H| By W) — (B, W |H| W) = 0 (60)

r,s
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Assuming for simplicity that our functions are real, one has the equality
(Es,V |H| V) = (V|H| E;. V) and, given the arbitrariness of the ¢, coeffi-
cients, equation (60) can only be satisfied if

<\Ij |H| (Ers - Esr)\I]> =0 (61)

Condition 61 is called “extended Brillouin’s theorem” or “Brillouin—Levy—
Berthier’s theorem”. The function (E,; — E, )V does not interact with W
when the orbitals are optimized. E,, substitutes spin—orbital 1, with v, in
all the determinants of ¥ that contain ¢, and do not contain 1, (else it
gives zero); conversely, F, substitutes 1), with ¢); when possible. By setting
U = (E,s — Ey )V, one must have at self-consistence <\IJ ‘f[‘ \If§> = 0. This

means that trying to improve the wave function with ¥ — \II+Z s ¥ would
r>s
be of no avail if self-consistence has been reached. On the contrary, far from

SCF, the diagonalization of the Hamiltonian matrix in the set {¥, W7 ...}
brings about an improvement of W. One can then identify the corrected

function ¥' = ¥ + ZC”\I/: as the first-order development of e/ ¥ = ¥ +
r>s

Ztm(Ers — E,)U + ... and one can utilize the ¢4 coefficients to obtain a
r>s
new spin—orbital basis:

P =pet with t, = ¢,

The improved spinorbitals can then be employed to rebuild the CI wavefunc-
tion and to continue the iterative process until convergence is reached. This
method is referred to as the Super—CI (SCI) approach.

Other approaches, such as those based on second—order Newton—Raphson
techniques, are more effective than super—CI and can solve the MCSCEF prob-
lem with a single step procedure, i.e. optimizing at the same time the C CI
coefficients and the orbitals. Anyway the super—CI approach is still in use
since it requires rather modest computational resources.

A problem in MC-SCF is related to which configurations should be cho-
sen to build the CI wavefunction (59). Often one resorts to the concept of
Complete Active Space (CAS) which consists in a partition of the spinorbitals
in three classes:

1. core spinorbitals, always having occupation 1 in all the determinants
of ¥

2. active spinorbitals, appearing with all possible occupations in the de-
terminants (0 or 1)
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3. virtual spinorbitals, being never occupied in the determinants

The resulting wavefunction, once convergence of the MC-SCF has been at-
tained, is called a CAS-SCF wavefunction.

For a CAS-SCF wavefunction the extended Brillouin’s theorem, eq. (61)
assumes a somewhat simplified form. If we designate with ¢,7,..., a,b,...
and r, s, ... indices for orbitals belonging to the core, active and virtual set,
respectively, it can easily be shown that eq. (61) is automatically satisfied for
any couple of indices belonging to the same set. Furthermore, ¥¢ = (afa; —
a;a, )V = afa; U, ¥ = (a}a; —ala, )V = afa; ¥ and ¥" = (afa, —
afa, )V = ata, ¥, so the minlmlzatlon condition with respect to orbital
rotations is reduced to the request that the excitations aja; ¥, aa; ¥ and
a,fa, ¥ do not interact with the CAS-SCF wavefunction via the Hamﬂtoman
operator.

5 The Coupled Clusters method

The coupled clusters method (CC) is based on the so called “exponential
ansatz”, which states that the exact wavefunction, solution of the Schrodinger
equation, can be obtained from the Hartree-Fock wavefunction through the
application of a suitable exponential operator, in the form:

U ="y, (62)

Depending upon the H-F wavefunction ¥y, the CC method can be applied,
besides the ground state, to the calculation of the lowest state of a given
(space and/or spin) symmetry. The T operator of eq. (62) is expressed as a
summation ' =T, + 15+ ... + 1, where

Tl = Zztzaz

=1 a>n
— ab
1, = Y Y #afafa;a
1<j a>b>n
— abc.. +,,+
T, = > Y therafafal . aya;q

i<j<k<..a>b>e>...
It is clear that the expansion (62) contains all the possible configurations and,

upon a proper choice of the amplitudes t{, t?;’, ... the full CI wavefunction

can be recovered. The Schrodinger equation can be written as

Hel'Wy = Eel'0, (63)
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Upon application of (¥y| to eq. (63) one obtains the energy in the form
E = (W, |H|e" W) (64)
and upon application of <\Iff]b‘ (a generic excitation) one gets
(Wt | H| "Wy ) = (W |H| "Wy ) (W20 | 7Ty (65)

Developing the exponential operator in the above equation, one obtains a
system of non—linear equations from which, in principle, all the amplitudes
can be derived. We have seen from Brillouin’s theorem (eq. 45 at page 17)
that the single excitations ¥{ do not interact with ¥, and, consequently,
it is to be expected that the contribution of 7} is negligible. We shall now
approximate 7" only with the T, term (7" =~ T5) and shall try to solve
eq. (65). We notice that

1 1
U =~ 20y = Uy + 10 + §T§\110 + 3'T3\110 +.

and

T22‘I’0 = Zzt?}’ i Zzt?fﬁad a, ay, )W

1<jJ a<b k<l c<d

_ abyed + +

= DD tithaga alaja; apa;a; Wy
i<j a<b
2<]l c<d

The above equality means that in the expansion of ¥ the quadruple excita-
tions play a role, but in a special form, i.e. as products of double excitations
(and the same happens for the sextuples, octuples and so on). Let us now
go back to eq. (65) and let us consider the \IJ?;-’ double excitation:

<\IJ“” |H|(1+ T+ %TZ?)\IIO> = (U [H| (14 T3)¥,) <\IJ“” | T2\110> (66)

We notice that a) on the left hand side of eq. (66) we can truncate the
expansion to the second order in 715 because \If%’ cannot interact with more
than a quadruple excitation, b) on the right hand side, in the first term,
we truncate to the first order because W, cannot interact with more than a
double and, in the second term, only T,¥, can overlap with W§/ (giving t¢ as
contribution). The various terms of eq. (66) give the following contributions:

(U |H| W) = (ij|| ab)
(Wi || Two) = 5t (Wiy | H| W)

k<l
c<d
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(W |H|T3w) = 3 teteed, (wed | H|wyel )
k,l,m,n
c,d,e,f
(Wo |H| W) = EJ'"
(Vo |[H|T2¥o) = ;t%<‘1’0|}[|‘1’%> ;t (KL || cd)
< <
c<d c<d

<\Ifab|T2\Ifo> — t?;’

Therefore eq. (66) becomes a system of non-linear (quadratic) equations in
the amplitudes t” , with one equation for each amplitude; the system is solu-
ble with appropriate iterative procedures (such as Gauss—Jordan’s method).
This simplified form of coupled cluster theory is termed CCD (Coupled Clus-
ters with Doubles). An improvement which is usually done consists in in-
cluding also the singles, i.e. el =~ eTt*T2 obtaining what is called CCSD
(CC with singles and doubles). A further improvement would consist in in-
cluding also the triples but, due to the complexity of the resulting equations,
usually just a perturbative treatment of the triples is added, obtaining the
CCSD(T). This last form usually gives quite accurate results when applied
to molecules which can reasonably well be described by a single determinant
(HF). We remark that the CC method is not variational and therefore the
energy calculated with such a method cannot be expected to be an upper
bound to the true energy.

6 Equations—of-motion methods

If the exact ground state wavefunction were known (|0)), one could define
an “excitation creation” operator (O;"), able to generate an excited state |n)
when applied to |0)

n) = O, [0) (67)

An operator with such desired characteristic is obviously given by the shift
operator |n) (0]. It is also promptly recognized that such excitation operator
is by no means unique: for instance, any operator of the form |n) (0| +
Smzo [n) (m| a, would do the job with arbitrary values of the parameters
@,. The idea of the “equations—Of-Motion” Method (EOM) is to express
O;F as a suitable expansion of products of creation/destruction operators
so as to reproduce reasonably well an excited state even starting from an
approximate ground state. The development of the EOM runs as follows:
supposing that |0) and |n) are exact, one can write:

O, [0) = |n) (68)
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HO; |0) = E.O; |0) (69)

OfH |0) = E,O; |0) (70)
Subtracting eq. (70) from eq. (69), one gets

[H,0,]10) = AE, 0, 10) (71)

Taking now into account the adjoint of operator O (O,), we can apply
(0] Oy, to both sides of eq. (71), which leads to

00x[H,0;]]0)
(010,071 0)

Eq. (72) is one form of the EOM method, providing us with a functional
yielding the excitation energies for a given approximation of the ground
state. Other forms are anyway possible if one thinks of the nature of the
de-excitation operator O,. In the form O} = |n) (0| one would have O,, =
|0) (n|, from which O, |n) = |0) and O,, |0) = 0 are immediately obtained.
The first of these equations shows the “de-excitation” nature of O,. The
second one, valid for the exact ground state, is called the “killer condition”
and allows one to substitute eq. (72) with an equivalent one:

(0][On, [H, O]+ 0)
(0][On, O]+ 0)

Eq. (73) provides an alternative functional of the EOM method which, as
will be shown later on, can be computationally simpler than eq. (72). The
+ sign appearing in eq. (73) means that one is formally free to choose ei-
ther the commutator or the anticommutator: it is convenient to adopt the
commutator (sign —) when the operators are boson-like, i.e. are made up of
products of an even number of creation/destruction operators and to adopt
the anticommutator in the opposite case of fermion—like operators, products
of an odd number of creation/destruction operators.

We shall now consider a simple application of eq. (72) to the calculation
of the ionization potentials. We approximate the O, operator in the form
O} =3 cra, so that eq. (72) becomes:

T

AEOn — <

(72)

AEﬂOn -

(73)

AEOn — Ers C::Cs <0 |CL;|_[H, ar ]| O>
Xrs cics (0afa, [0)
Introducing the two matrices R and K with elements R,; = (0|afa, |0) (a

representation of the one—particle density matriz) and K,; = (0 |af[H, a, ]| 0)
(Koopmans’ matrix), one has:

(74)
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The preceding equation has the well known form of the linear variational
principle for the determination of the ¢ vector that minimizes the energy F,
and leads immediately to the generalized eigenvalue equation

Kc = AEy,Re (76)

a result known as “Extended Koopmans’ theorem”. Let us evaluate the
commutator that appears in the definition of K:

[Hva’r] = thua’tG’UJ r]+ Z tu|vw>[a’z—€|—a’;—a’wa’v7a’r]
2 tuvw
= _Zhrua _Z |Uw>aja'ua’w
tvw
where we have made use of the commutators [a)a,,a,.] = —d,a, and
lafafaya,,a,] = dwaa,a, —dyala,a, (as the knowledgeable reader will

take care to Verify). So one arrives at the following form:

J|0) = (Z hewRys + 3 (tr | vw) wu’st) (77)

tow

K., = < allH,a, |

where we have introduced the representation of the two—particle density ma-
trix R0 = <0 ‘a*az’a aw‘ 0> It is interesting to see what is the expression
of K for the case in which we approximate |0) with the Hartree-Fock wave-
function. In such a case R,; = 0 unless both indices refer to occupied orbitals
(Rij = 6;;) and Ry, s must also have its four indices referring to occupied or-
bitals (R;;;; = 1 and R;;;; = —1 with ¢ # j), so that the following expression
for K;; is readily seen to hold:

n

Ky = —hy =Y _((ti| tj) — (ti] jt)) = —Fy; = €0
t=1
In this case the Koopmans’ matrix is diagonal and its eigenvalues are equal
to minus the orbital energies, recovering the already known Koopmans’ the-
orem, eq (53) of page 19.

We notice that in the general case, when the ground state |0) is approx-
imate in some form, it is not guaranteed that the K matrix is hermitian.
Defining the auxiliary matrix

)=

which is easily recognized as hermitian (reader, please verify), one gets (for
real functions):

+
a, Ha,

Yrs = < CL:CLT H‘ 0> + Ko

K. — Ko = (0|(af a, — afa, )H]|0)
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From the above formula one can see that the K matrix is hermitian if |0)
is given by a MCSCF wavefunction, by virtue of the extended Brillouin’s
theorem.
We shall now utilize the formulation of the EOM method given by eq. (73),
again considering the case of the ionization potentials with O} = > cla, .
r

Now, the form of AFEj, is given by:
> cies (0][af, [H,a, ]| 0)

> cies (0][a7, 0,14 [0)

c'K'c
cfc

AEOn —

with K/, = (0|[a},[H,a, ]]+| 0) Now we have the steps:

H,a,] = =) hua, =Y (tr|vw)afa,a,
U tvw
@l [Hoa | = =Y hulala,)e =Y (tr|vw) [af o a, a,)
U tvw
K, = —hy— > (tr||vs) Ry
tv
where use has been made of the anticommutator [a], a; a, a, ]+ = =007 a,+

Ssway a, . The K' matrix is simpler than the Koopmans’ matrix K previously
defined, because the former only involves the one—particle density matrix.

Let us now pass on to an application of eq. (73) involving the calculation
of excited states. Before doing that, it is convenient to enforce hermiticity
in the operator at the numerator of eq. (73), by substituting it with the
symmetric double commutator

(On, H,0;1i = 5[0, H), OF ) + [0, [H,0;])2)

such step being justified by the consideration that, for real functions, taking
into account the definition of adjoint operator

(0](On, [H,0;11| 0) = (0|[[On, H], 01| 0)
Thus, eq. (73) can be substituted with the new form:

(0][On, H,0;]+|0)

AEy, =
’ (0[O, 0511 0)

(78)
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We shall now assume O, to be in the form O = Z ¢rsFrs and shall utilize
rZ£s
the minus sign (i.e. the commutator) in eq. (78). Proceeding along exactly

the same lines as those already met for the ionization case, one immediately
arrives at an eigenvalue equation

Ac = AEOTLSC (79)

where ¢ is a column vector collecting the ¢, coefficients, S and A are
square matrices with elements S,y ,s = <0 (Bl B O> and Apyg . =
<0 ‘[ETJ?S,, H, E,s]‘ 0>. In order to better elucidate the nature of such equation,
it is convenient to rewrite the expression of the excitation operator in the form
O = ¥, 2s(XpsErs — Yo EL) (which is reminiscent of the expression of an
orbital rotation, even though no request for antihermiticity is here asked for)
or, indicating the couple (r, s) with u: Oy = 3, (X, E, —Y,E[). In this way
the matrices A and S can be partitioned in four submatrices: Ay; = M, with
My, = (0|[E}, H,E,)|0), Azp = M/, with M}, = (0|[E,, H, E]]|0) = M,
Az = Q with Q= — (0 ([E;,H, Ef1|0), Az = Q' with @), = Q;,,. For
the S matrix one has, analogously: S;; = V with V,, = <0 [EI,E,,] 0>,
S22 = —V*, 812 = W with W, = — (0[], E/]|0), Sa1 = —W*. With
such replacements the eigenvalue eq. (79) takes on the form

[(15/[ l\%*HéleEOn[_gv* _v\\/f—Hél (80)

The simplest application of eq. (80) concerns the case of a Hartree-Fock
approximation to the ground state |0). Of the eight components of the
double symmetric commutator which enter the construction of matrices M
and Q only those of type Ef HE, and Ef EfH give contributions, yielding:

Myjai = Oadij(€a — €) — (bi|] aj) (81)
Qujai = (ab|]if) (82)

Furthermore, W = 0 and V = 1. The resulting reformulation of eq. (80) is
called the Random Phase Approzimation (RPA). It should be remarked that
the RPA equation is not a usual generalized eigenvalue equation, because the
metric matrix is not positive definite. In case all the quantities appearing in
the RPA equation are real, one can write:

MX + QY = )X
QX + MY = -)\Y
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or, equivalently (summing and subtracting)

M+Q)(X+Y) = MX-Y)
M-Q)(X-Y) = MX+Y)

Substituting X — Y from the second equation into the first, gives:
M+ QX+Y)=MM-Q) '(X+Y) (83)

and this generalized eigenvalue equation can be solved with the usual tech-
niques, provided that the metric (M — Q)~! is positive definite, which is
usually the case.

7 Perturbation methods

Rayleigh—Schrédinger perturbation theory (RSPT) can be successfully ap-
plied to improve the results obtained at a certain level of approximation
such as Hartree—Fock or MCSCEF. In particular the application of RSPT to
a zero order wavefunction obtained by solving the H-F equations bears the
name of Moller—Plesset PT and has revealed itself as very successful in pro-
viding a large fraction of the correlation energy. We shall here limit ourselves
to recalling the working formulas of RSPT and shall consider the applica-
tions to a H-F determinant and to a multireference wavefunction in the next
paragraphs.

In RSPT the wavefunction and energy for the eigenvalue problem HV, =
E, ¥, are expressed as series expansions

U, = U049l pg@
E, = EOY4+EV L+ E® 4

where the k—th term in either equation above is called the k—th order cor-
rection to the wavefunction or to the energy, respectively. The Hamiltonian
is partitioned according to H = Hy + V', with V' playing the role of a per-
turbation operator to a zero order Hamiltonian H for which the eigenvalues
(E®)) and eigenfunctions are known (¥(9)). In order to obtain the k—th order
correction to the energy one has

B — (9 v wit )

n

The results up to the second order in the energy and to the first in the
wavefunction are given by:

B = (80 V])

n
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We shall now apply the above results to the case of a single reference (H-F)
and then to a multireference (MCSCF) zero order wavefunction.

7.1 Mgller—Plesset theory

If ¥, is a Slater determinant whose orbitals have been optimized by solving
the Hartree—Fock equations fi); = €;4;, one can build the n—particle Fock
n

operator (also termed the Fockian) F = Zf(z) which, in the language of
i=1

second quantization, is turned into F' = ) e.a'a, . It is then recognized
T

n
that ¥, is an eigenfunction of F' with eigenvalue Ey = Z €¢;. Generally, any
i=1
other determinant W built with n arbitrary spin—orbitals (||¢k, ¥k, - - - ¥, ||)
n

is still eigenfunction of F' with eigenvalue Fx = ZGki' Mgller—Plesset PT
i=1

utilizes F' as zero order Hamiltonian and V' = H — F as perturber (also called

the fluctuation potential). Thus, the perturbation formulas for the first two

orders are:

EP + B = (W |H| W) = BF

| (Wo [H] W)
E(()Q) _ _Z LO; EK
K#0 K= =0

In the above formula the determinants expressing single substitutions do
not give any contribution due to Brillouin’s theorem ((¥, |H|¥¢) = 0) and
consequently the only contribution is obtained from the double replacements
\11%@ so that the MP2 result (Mpller—Plesset to second order) is

B = _y y _lab]ly) |2

i—ta>n €a T € — € — €

The MP2 theory is very simple, requires little computational effort over a
H-F calculation and usually yields a large fraction of the correlation energy.
Even though we have derived MP2 for the ground state determinant, it can
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be successfully applied to all cases where a single determinant is a good
approximation for the description of the molecule under study. This usually
happens for closed shell molecules near the equilibrium geometry.

7.2 Multireference perturbation theory

The success of Mgller—Plesset perturbation theory fostered the researchers to
extend it to zero order multireference wavefunctions which are necessary both
for a correct description of the ground state in situations deprived of closed
shell nature (such as bond breaking, for instance) and especially for excited
states which can seldom be satisfactorily described by a single determinant.

We shall be concerned only with the application of PT to a variational zero
order wavefunction, a situation which is sometimes referred to as “diagonalize
then perturb”, limiting ourselves to barely recalling that also the opposite
approach (“perturb then diagonalize”) has been intensely studied.

The main difficulty in multireference perturbation theory (MRPT) arises
when one is confronted with the definition of a good zero order Hamilto-
nian, which should aim at guaranteeing some important properties such as
size consistence and absence of intruder states. Size consistence (or “strict
separability”) requires that the energy of a system made up of two non in-
teracting parts should yield the same result as the sum of the energies of
the two separate parts. With the term “intruder state” one indicates a zero
order state quasi degenerate with the one under study, causing divergences
in the expansion of the second order correction to the energy.

In MRPT one starts from a variational wavefunction built upon a given
determinantal space S

Kes
with
PHPYY = OO

where P is the projector onto the S space

P =73 |®k) (Pl

KeS

The rest of the space spanned by the determinants @, ¢ S is referred to as
the outer space. In the early treatments of MRPT simple Slater determinants
were chosen as zero order wavefunctions in the outer space providing the
perturbation corrections. For instance in the CIPSI method (developed in
1973) the zero order Hamiltonian in the so called Mpller—Plesset barycentric
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partition (MPB) is given by:

HO\IJS? = <\I’,(72) |F| \IJSP> \If,(qg) within the S space
Hy®x = (O e,)Px outside S

i=1
The F operator is a suitable Fock-like one-electron operator F = > _€.a, a,
T

with the energies €, usually chosen as
€ = hyy + Zns (rs||rs)

ns being the occupation number of spin—orbital ¢);. The ), spin—orbitals are
here assumed to be natural spin—-orbitals, i.e. diagonalizing the one—particle
density matrix (<\If,(£) lata, |\IJ$2)>) Another possibility used in CIPSI is
to adopt an Epstein-Nesbet partition with Hy¥® = EQOW©) inside S and
Hy®y = (Pk |H| Pk) Pk outside S.

In the more recent treatments of MRPT the zero order functions outside
the S space are not assumed to be simple determinants but, rather, are built
upon contracted excitations carried out on the variational wavefunction, i.e.
they are of the type afafa,a, U9, In the CAS-PT2 approach (1990) one
starts from a CAS-SCF variational wavefunction and the zero order Hamil-
tonian is built by projection of a suitable generalized Fock operator onto the
space generated by the contracted excitations. The resulting perturbation
theory is very efficient and usually produces high quality results for both the
ground and the excited states. A shortcoming of CAS-PT2 lies in the fact
that, due to the one—electron nature of Hy, it is occasionally subjected to the
occurrence of intruder states.

A recent formulation of MRPT also applied to a CAS-SCF wavefunction
makes use of a two—electron zero order Hamiltonian, is exempt from intruder
states and is entirely size consistent. The new theory (2001), called “n—
electron valence state perturbation theory” (NEV-PT) makes use of zero
order wavefunctions that are of CAS—CI type both inside the S space and
outside of it. The state of interest ¥,, is approximated at the zero order by a
CAS-SCF (or more generally CAS-CI) wave function U(9 obtained, as usual,
by solving the variational eigenvalue problem PHPU¥(®) = EOWO)  The
zero order wavefunctions different from those of the CAS space are referred
to as “perturber functions” and belong to CAS—CI spaces characterized by
well defined occupation patterns of the orbitals. One such CAS—CI space
will be designated by Sl(k), where k£ is the number of electrons promoted
to (or removed from) the active orbital space (=2 < k < 2 for a second
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order treatment) and [ describes the fixed occupation pattern of the inactive

(core + virtual) orbitals. A generic perturber function belonging to Sl(k)
will be denoted by \Ijl(lit) where p enumerates the various functions in Sl(k).
It is possible to define different variants of the NEV-PT2 according to the
number of perturber functions that are chosen from the Sl(k) subspaces: if the
full dimensionality of Sl(k) is exploited one has the “totally uncontracted” case
and if just one perturber is selected we speak of the “strongly contracted”
case; between these two extremes a “partially contracted” case can also be
defined. All three variants can be shown to be endowed with the desirable
properties of strict separability and absence of intruder states. Up to now the
strongly contracted and partially contracted cases have been implemented in
an efficient code and have been shown to yield accurate results for both the
ground and the excited electronic states.

The subspaces Sl(k) which contain the perturber wave functions can be
classified in 8 distinct types, according to the number k of electrons promoted
into the active orbital space and to the occupation of inactive orbitals. With
k = 0 two types are possible according to whether two or one core electrons
have been transferred to the virtual orbital space; a typical representative
of the first type will be indicated as Sg{ Z«s, meaning that two electrons have
been moved from the core orbitals ¢; and ¢; to the virtual orbitals ¢, and ;.
The second type with £ = 0 will contain all subspaces Si(g) with one electron
moved from ¢; to ¢,. Analogously, with £k = £1 two distinct types are pos-
sible, containing subspaces SZ(JIZ« (S-(_l)) and SZ-(I) (S(=V), respectively. With

1,rs

given subspace Sl(k) the strongly contracted NEV-PT (SC-NEV-PT) consid-
ers only one perturber wave function, according to the following definition:

k = %2 only one type is possible, containing the subspaces Si(f) (S(’Q)). In a

wf = Py ) )

where P is the projector onto subspace Sl(k). The perturber functions \115’“
4

are orthogonal but are not normalized to unity. The squared norm

k k k
N = (a9 90 = (g

HPS(k>H‘ \11;2>>
l

plays an important role in the strongly contracted NEV-PT. Once a suitable
energy El(k) has been attributed to \Ill(k) the zero order hamiltonian can be
defined through the spectral decomposition:

/ /
=5 ) 60

1,k

CAS
+ 30 [e@) B (v (85)

m
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where

! 1

\Ifl(k) > = = \Ifl(k). The expressions for the first order correction
Ny

to the wave function and for the second order correction to the energy are

then:

o H )

I
g
L
=z
~
—~

o) (86)
k.l E,SS’ — El(k)
k
k (o |H|wO)
= 2| P 0) %)
Kl Nz( ) Ew — E|
k
- \II(k),> N
- l
el o _ El(k)
k)’ 2
. (" 1w )
E2 = 87
kl o _ El(k) 87)
k
N

For the definition of the energies El(k) one can use either the true Hamiltonian

H or an approximation of it. From the computational point of view, a
particularly convenient form is provided by Dyall’s approximation to the
electronic hamiltonian:

H” = H; + H, (88)
where H; is a simple one—electron (diagonal) operator

core virt

Hi = Z Glg” + Z Grgrr +C

and H, is a two—electron operator limited to the active space

act act
Hy = Y i€+ 5 2 (ab] ed) (Eucbi = Oucia)
abed

core

with A = hyy + Z (aj| bj) — (aj|jb)). An appropriate choice of the

constant C

core core core

C =23 hat L2051 = 150) =23
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ensures that H? is equivalent to the full hamiltonian within the CAS space:

HP \117(72) — EO)y(0)

m —m

The energies ¢; and ¢, are suitable orbital energies which we choose to be:

¢ = —(a; U |H|a, OQ) + EY
o = (o e H]ar D) - EY

The energies associated to the perturber functions \115’“

hamiltonian:

are defined via Dyall’s

1

Y = < (u" 1" )
!

Such definition, while guaranteeing that the interactions among the active

electrons are properly taken into consideration, affords a particularly conve-

nient formulation.

The “partially contracted” approach of NEV-PT hinges on the definition
of a suitable subspace Sl C Sz and utilizes the eigenfunctions of the
hamiltonian in such a subspace.

In order to define the S'l(k) subspaces of the PC-NEV-PT, the action upon
\If,(qg) of the strings of excitation operators present in His considered, in the
same way already seen for the contracted excitations of CAS-PT2. Thus a
set of functions @5’2 is generated which serve as basis for the Sl(k) subspace;
the collective index m designates the active orbital indices involved in the
excitation operators

In case the <I> functlons should not be linearly independent, a new suit-
able set will be bullt by the usual technlque of removing the zero eigenvalues
from the overlap matrix M( ) = < | <I> >, where <I>( ) is a row vector

collecting the <I> func’mons
We shall denote by <I>( " the orthonormahzed basis functions for the Sz
subspaces and by \If and El the eigenfunctions and eigenvalues of the

projection of the electromc hamiltonian H onto Sl(k)

k k
Py H Py 0T = phe), (89)

Such eigenfunctions and eigenvalues will serve to define the zero order hamil-
tonian H, through its spectral decomposition

CAS

=3 ) e (| + 3 vy g (] o0)

a»u’
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Actually, it is more convenient from a computational point of view to utilize
in formulas (89) Dyall’s approximation to the hamiltonian, already intro-
duced in the strongly contracted case.

In spite of the larger number of pertuber functions employed in the par-
tially contracted approach with respect to the strongly contracted one, the
results obtained with the two variants have turned out to be very similar in
all the test calculations performed thus far.
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