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1 Eletroni wave funtions

1.1 The Born{Oppenheimer approximation

The total moleular Hamiltonian for a system with n eletrons and N nulei

is given by

H = T

nu

+ T

el

+ V

en

+ V

ee

+ V

nn

(1)

where the various terms are de�ned by the following expressions:

T

nu

=

N

X

�=1

p

2

�

2M

�

nulear kineti energy

T

el

=

n

X

i=1

p

2

i

2m

eletroni kineti energy

V

en

= �

N

X

�=1

n

X

i=1

Z

�

e

2

r

�i

eletron{nulei potential energy

V

ee

=

1

2

n

X

i 6=j

e

2

r

ij

eletroni repulsion

V

nn

=

1

2

N

X

�6=�

Z

�

Z

�

e

2

r

��

nulear repulsion

Atually the expression (1) is only an approximation to the true Hamiltonian,

sine it laks all the magneti terms arising from the fat that the moleule

is a system of moving harges endowed with spin. Anyway suh magneti

terms are usually rather small so that their exlusion from the Hamiltonian

an be onsidered to be a reasonable approximation.

The resolution of the time{independent Shr�odinger equation

H	

tot

(x;Q) = E

tot

	(x;Q) (2)

provides us with all the possible energies and stationary states of the moleule.

In the above equation, x and Q designate the totality of eletroni and nu-

lear oordinates, respetively. In order to alleviate the formidable task of

solving the time{independent Shr�odinger equation, Born and Oppenheimer

showed that, due to the small ratio between eletroni and nulear masses,

eq.(2) an be approximately deoupled in two separate equations, the �rst

referring to the eletroni motion and the seond to the nulear one. De�ning

the eletroni Hamiltonian as

H

el

= T

el

+ V

en

+ V

ee

+ V

nn
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Born and Oppenheimer were able to show that

	

tot;n;k

(x;Q) � 	

n

(x;Q)�

n;k

(Q) (3)

H

el

	

n

(x;Q) = E

n

	

n

(x;Q) (4)

(T

nu

+ E

n

(Q))�

n;k

(Q) = E

tot;n;k

�

n;k

(Q) (5)

Eq. (4) plays the role of a Shr�odinger equation for the motion of the eletrons

in the �eld generated by the �xed nulei: the solutions provide eletroni

wavefuntions 	

n

(x;Q) (with n enumerating the various possible eletroni

states) and eletroni energies E

n

(Q) where the nulear oordinates Q only

enter as external parameters. Eq. (5) is the equation assoiated to the nulei,

where the eletroni energy E

n

(Q) plays the role of a potential energy gov-

erning the nulear motion. Index k enumerates the roto{vibrational states

assoiated with the eletroni energy E

n

. This Born{Oppenheimer separa-

tion is essential in Chemistry: most of our understanding of the very notion

of moleular struture rests upon the geometrial properties of the potential

energy surfae E

n

(Q).

In the rest of these lessons we shall be mainly onerned with the (ap-

proximate) resolution of (4) for eletronially exited states. We shall rewrite

the eletroni Shr�odinger equation in the form

H

el

	

n

(1; 2; : : : ; n) = E

n

	

n

(1; 2; : : : ; n) (6)

where 1,2,: : : denote the spatial and spin oordinates of the various eletrons

and where it is understood that the nulei are kept �xed at a ertain spei�ed

geometry.

1.2 Expansion of the eletroni wavefuntion over a

set of Slater determinants

The eletroni wavefuntion, solution of eq. (6), must obey the antisymmetry

priniple for fermions, stating that 	

n

(1; 2; : : : ; n) must hange in sign upon

transposition of the spin{oordinates of two eletrons:

P

ij

	

n

(1; 2; : : : ; i; : : : ; j; : : : ; n) = �	

n

(1; 2; : : : ; j; : : : ; i; : : : ; n) (7)

Consequently 	

n

an be expanded over a omplete set of n{eletron funtions

provided that eah of them satis�es the antisymmetry priniple. An easy

way of building suh a basis is to resort to a omplete set of moleular spin{

orbitals ( 

1

;  

2

; : : :) and to onstrut all possible Slater determinants of the
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form:

�
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=
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�

�

�

�

�

�

�

�

�

 

k

1

(1)  

k

2

(1) � � �  

k

n

(1)

 

k

1

(2)  

k

2

(2) � � �  

k

n

(2)

.

.

.

.

.

.

.

.

.

.

.

.

 

k

1

(n)  

k

2

(n) � � �  

k

n

(n)

�

�

�

�

�

�

�

�

�

�

(8)

A great simpli�ation is obtained if the spin{orbital basis is hosen to be

orthonormal, i.e. h 

i

j  

j

i = Æ

ij

. In this ase the determinants also onstitute

an orthogonal set (h�

0

K

j �

0

L

i = 0 if K 6= L) and any determinant an be

easily normalized upon multipliation by the fator

1

p

(n!)

(�

K

=

1

p

(n!)

�

0

K

).

In the following we shall often designate a normalized determinant with the

abbreviated symbol jj 

k

1

 

k

2

� � � 

k

n

jj.

The determinants �

K

onstitute a omplete set of antisymmetri fun-

tions and onsequently the wavefuntion 	

n

, solution of the eletroni Shr�o-

dinger equation 6, an be expanded over suh a set:

	 =

X

K

�

K



K

(9)

Substitution in eq. 6 gives:

X

K

H

el

�

K



K

= E

X

K

�

K



K

(10)

and multipliation of both sides of the above equation by �

�

L

with integration

over the eletroni oordinates (i.e. appliation of the \bra" vetor h�

L

j)

provides:

X

K

h�

L

jH

el

j�

K

i 

K

= E

L

(11)

Introduing the matrix H de�ned by H

LK

= h�

L

jH

el

j�

K

i and the olumn

vetor  having as elements the 

K

oeÆients, eq. 11 an be put in matrix

form:

H = E (12)

and the problem of �nding the eigenvalues and eigenfuntions of the ele-

troni Shr�odinger equation has been turned into the algebrai problem of

the diagonalization of the hermitian hamiltonian matrix H.

The expression 9 is then able to provide the solution to the eletroni

Shr�odinger equation and is known as the full Con�guration Interation (CI)

expansion. The matrix elements H

KL

are easily obtained if one resorts to

the famous Slater's rules for one{eletron and two{eletron operators, whih

we now briey reall.
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Given a one{eletron operator H

M

=

n

X

i=1

h(i), the matrix elements of H

M

between two Slater determinants �

L

and �

K

are di�erent from zero only in

two ases:

� �

L

= �

K

with H

KK

=

n

X

i=1

h 

k

i

jhj 

k

i

i

� �

L

6= �

K

for one spinorbital di�erene ( 

l

i

6=  

k

i

), with H

LK

=

h 

l

i

jhj 

k

i

i

In the above formula it is supposed that the equal spinorbitals have the

same ordering in both determinants. If suh should not be the ase, one has

to take into aount a possible sign hange assoiated to the parity of the

permutation neessary to bring the spinorbitals into oinidene. Similarly,

for a two{eletron operator G =

1

2

X

i 6=j

g(i; j), only three ases are possible for

the matrix element G

LK

to be di�erent from zero:

� �

L

= �

K

with G

KK

=

1

2

n

X

i;j=1

(

D

 

k

i

 

k

j

jgj 

k

i

 

k

j

E

�

D

 

k

i

 

k

j

jgj 

k

j

 

k

i

E

)

� �

L

6= �

K

for one spinorbital di�erene ( 

l

i

6=  

k

i

), with G

LK

=

n

X

j=1

(

D

 

l

i

 

k

j

jgj 

k

i

 

k

j

E

�

D

 

l

i

 

k

j

jgj 

k

j

 

k

i

E

)

� �

L

6= �

K

for two spinorbital di�erenes ( 

l

i

6=  

k

i

, 

l

j

6=  

k

j

), with

G

LK

=

D

 

l

i

 

l

j

jgj 

k

i

 

k

j

E

�

D

 

l

i

 

l

j

jgj 

k

j

 

k

i

E

In the following a two{eletron integral h 

a

(1) 

b

(2) jg(1; 2)j 



(1) 

d

(2)i will

often be written in the simpli�ed notation hab j di and the ombination

hab j di � hab j di, known as an antisymmetrized two{eletron integral, will

be abbreviated in hab jj di.

1.3 Diagonalization of large CI matries

Nowadays full CI alulations yielding a few energy eigenvalues for small

moleular systems are possible. Suh alulations require the partial di-

agonalization of the Hamiltonian matrix whih, as has been shown in the

previous paragraph, is a large sparse N �N matrix. Currently diagonaliza-

tions with N surpassing 10

6

are routinely done (as of this writing N = 10

9

seems to be the limit of feasible diagonalizations). In this paragraph we shall

briey examine the main methods used in Quantum Chemistry to ompute

a few (usually the lowest) eigenvalues and the orresponding eigenvetors of

the Hamiltonian matrix.
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1.3.1 Subspae projetion methods

Subspae projetion methods start from the onept of Krylov subspae

whih is spanned by the vetors of the form



0

1

; 

0

2

= H

0

1

; : : : 

0

k

= H

0

k�1

with 

0

1

a given guess vetor. In the old power method the last vetor

is shown to approah for large k the eigenvetor assoiated to the high-

est eigenvalue. Atually, if v

1

, v

2

,: : :,v

N

denotes the basis of orthonormal

eigenvetors assoiated to the eigenvalues in inreasing order of the moduli

jE

1

j � jE

2

j � : : : � jE

N

j, one has:



0

1

=

N

X

i=1

�

i

v

i

; 

0

2

=

N

X

i=1

�

i

E

i

v

i

; : : : 

0

k

=

N

X

i=1

�

i

E

k�1

i

v

i



0

k

= E

k�1

N

[�

1

(

E

1

E

N

)

k�1

v

1

+ (�

2

E

2

E

N

)

k�1

v

2

+ : : :+ �

N

v

N

℄

from whih the stated result follows at one, provided that E

N�1

is di�erent

from E

N

.

An improvement to the power method onsists in seeking an eigenvetor

of H in the form

u

k

=

k

X

i=1

s

(k)

i



i

= Cs

where the 

i

are orthonormal vetors providing a basis for the Krylov spae

(obtained for instane by applying the Graham{Shmidt orthonormalization

proedure to the 

0

i

vetors), C is the retangular N � k matrix having 

i

as i{th olumn and s is the k{dimensional vetor having s

(k)

i

as omponents.

The proedure onsists in projeting the Hamiltonian matrix onto the Krylov

spae and diagonalizing suh a redued matrix H

(k)

. The redued matrix is

written as H

(k)

= C

y

HC, has the (low) dimensionality k � k and an be

easily diagonalized with standard tehniques:

C

y

HCs = H

(k)

s = �

(k)

s

To be de�nite we suppose here to be interested to the smallest eigenvalue of

H. Taking into aount that P = CC

y

is a (N � N) matrix whih projets

any N{dimensional vetor onto the Krylov spae, one has

PHPCs = �

(k)

Cs or PHPu

k

= �

(k)

u

k

7



with u

k

= Cs. So �

(k)

and u

k

are an approximate eigenvalue{eigenvetor

ouple for the problem of the diagonalization of H. It an be remarked that,

by the variational priniple

u

k

y

Hu

k

= s

y

C

y

HCs = �

(k)

� E

1

Inreasing the dimension of the Krylov spae one improves the approximation

of �

(k)

for E

1

and usually one obtains good approximations for modest values

of k (<< N). One an easily ontrol the quality of the approximation by

evaluating the residual vetor

r

k

= Hu

k

� �

(k)

u

k

(13)

and stopping the iterations when jjr

k

jj < �.

In Lanzos' approah the 

i

vetors are de�ned so as to build an or-

thonormal basis whih tridiagonalizes the small H

(k)

matrix. Starting from

a normalized guess 

1

, one builds 

0

2

= H

1

��

1



1

with �

1

= 

y

1

H

1

and next



2

=



0

2

q



0y

2



0

2

. 

2

is normalized to 1 and is immediately seen to be orthogonal

to 

1

. A quantity �

2

is then de�ned so that �

2



2

= 

0

2

, or �

2

= 

y

2



0

2

=

q



0y

2



0

2

and the general iteration sheme is:

�

i+1



i+1

= H

i

� �

i



i

� �

i



i�1

with �

i

= 

y

i

H

i

and �

i

being de�ned by the requirement that 

y

i



i

= 1. The

vetors 

i

are readily seen to be orthonormal and are suh that the matrix

H

(k)

= C

y

HC is tridiagonal

H

(k)

=

2

6

6

6

6

4

�

1

�

2

0 � � �

�

2

�

2

�

3

� � �

0 �

3

�

3

�

4

.

.

.

.

.

.

�

k�1

�

k

3

7

7

7

7

5

and an be easily diagonalized with standard tehniques.

1.3.2 Davidson's method

In 1975 Davidson developed a method whih is at present the most widely

used in Quantum Chemistry for the diagonalization of large Hamiltonian

matries. Supposing to have a given starting spae with orthonormalized

vetors 

1

; : : : ; 

k

and to have an approximate eigenvalue{eigenvetor pair

�

(k)

;u

k

obtained with the projetion method desribed previously, we look

8



for the orretion z whih makes u

k

+ z the true eigenvetor orresponding

to the true eigenvalue E

1

of H

(H� E

1

1)(u

k

+ z) = 0 (14)

(H� E

1

1)z = �(H� E

1

1)u

k

(15)

Now the r.h.s. of eq. (15) an be approximated with the residual vetor r

k

(see eq. 13) while the l.h.s., if H is diagonally dominant (as is usually the

ase in the Hamiltonian matrix), an be replaed by (D � �

(k)

1)z, where

D ontains just the diagonal of H. Consequently z = �(D � �

(k)

1)

�1

r

k

is the desired orretion vetor. Adding suh vetor to the preeding basis

and arrying out an orthonormalization, one obtains an augmented basis



1

; 

2

; : : : ; 

k+1

and the proess an be iterated until onvergene is reahed.

If more than one eigenvalue{eigenvetor ouple is wanted, the 

i

vetors

obtained at onvergene for the �rst eigenvalue are usually a good guess for

another one.

2 Seond quantization tehniques

Given an orthonormal spin{orbital basis  

1

;  

2

; : : : and a generi n{eletron

determinant jM i = jj 

k

 

a

 

b

: : : jj we shall de�ne the destrution (or anni-

hilation) operator a

k

in the following way:

a

k

jj 

k

 

a

 

b

: : : jj = jj 

a

 

b

: : : jj (16)

i.e., the result of the appliation of a

k

to jM i is a (normalized) (n-1){

determinant jN i deprived of the spin{orbital  

k

. In eq. (16) spin{orbital

 

k

was assumed to be in the �rst olumn of the determinant; if suh should

not be the ase, one has to take into aount the neessary transpositions to

shift spin{orbital  

k

to the �rst position, obtaining:

a

k

jj 

a

 

b

: : :  

k

: : : jj = (�1)

�

k

jj 

a

 

b

: : : jj (17)

with �

k

equal to the number of spin{orbitals preeding  

k

. If  

k

is not ou-

pied in jM i we have by de�nition a

k

jM i = 0. Besides, a

k

is by de�nition

a linear operator and this allows its e�et on any funtion to be known (one

only needs to expand the funtion over the set of determinants jM i and to

apply a

k

to every determinant). Let us now investigate on the properties of

the adjoint operator a

+

k

= a

y

k

. From a

k

jM i = jN i we have

D

N

�

�

�a

k

�

�

�M

E

= 1

and also, by de�nition of adjoint operator

1

,

D

M

�

�

�a

+

k

�

�

�N

E

= 1. On the other

1




f

�

�

A

y

�

�

g

�

= hg jAj fi

�

9



hand,

D

M

0

�

�

�a

+

k

�

�

�N

E

= 0 if jM

0

i 6= jM i allowing one to write

X

M

0

jM

0

i

D

M

0

�

�

�a

+

k

�

�

�N

E

= jM i

and onsequently:

a

+

k

jN i = jM i (18)

sine

X

M

0

jM

0

i hM

0

j = 1 (resolution of the identity). Therefore a

+

k

ats on the

(n-1){eletron determinant jN i = jj 

a

 

b

: : : jj giving as result a n{eletron

determinant jM i = jj 

k

 

a

 

b

: : : jj. a

+

k

is alled the operator of reation of

an eletron in spin{orbital  

k

. If jM i already ontains  

k

the result is zero

beause a determinant ontaining two equal olumns vanishes (an expression

of the Pauli priniple).

2.1 Antiommutation properties

We now onsider a determinant jM i = jj 

i

 

j

 

a

 

b

: : : jj and apply to it the

produt of destrution operators a

j

a

i

a

j

a

i

jj 

i

 

j

 

a

 

b

: : : jj = jj 

a

 

b

: : : jj

If we apply suh a produt in reversed order we obtain

a

i

a

j

jj 

i

 

j

 

a

 

b

: : : jj = �jj 

a

 

b

: : : jj

Summing these two equalities one has:

(a

j

a

i

+ a

i

a

j

) jM i = 0 (19)

and we see easily that suh equation holds true for any jM i, irrespetive of

whether spin{orbitals  

i

and  

j

are oupied or not in jM i. So one has the

operator identity:

a

j

a

i

+ a

i

a

j

= 0 (20)

whih states that the antiommutator between two destrution operators

h

a

i

; a

j

i

+

= a

i

a

j

+ a

j

a

i

is zero. Taking the adjoint of eq. (20) one imme-

diately sees that the same rule also holds for the reation operators:

h

a

+

i

; a

+

j

i

+

= 0 (21)

Putting i = j in eqs (20) and (21) one gets:

a

2

i

= 0 and a

+

i

2

= 0

10



that is, the operators a

i

and a

+

i

are nilpotent.

Let us now see the ation of a

+

i

a

j

with i 6= j. Let jM i = jj 

j

 

a

 

b

: : : jj;

one has:

a

+

i

a

j

jM i = jj 

i

 

a

 

b

: : : jj

So, a

+

i

a

j

is a replaement operator, substituting spin{orbital  

j

with  

i

(notie that this results holds for whatever position the index j oupies in

the determinant). The e�et of a

j

a

+

i

is instead:

a

j

a

+

i

jj 

j

 

a

 

b

: : : jj = a

j

jj 

i

 

j

 

a

 

b

: : : jj = �jj 

i

 

a

 

b

: : : jj

Thus (a

+

i

a

j

+ a

j

a

+

i

) jM i = 0 and one sees easily that the same result holds

in all ases, irrespetive of whether  

j

is oupied or not in jM i or whether

 

i

is already oupied in jM i. Consequently we onlude that

h

a

+

i

; a

j

i

+

= 0

for i 6= j. The ase i = j is also very easy: if  

i

is oupied in jM i we have

a

+

i

a

i

jM i = jM i and a

i

a

+

i

jM i = 0, else, if  

i

is not oupied in jM i:

a

+

i

a

i

jM i = 0 and a

i

a

+

i

jM i = jM i. In any ase (a

+

i

a

i

+ a

i

a

+

i

) jM i =

jM i. We an then state that for the antiommutator between a reator and

a destrutor one has:

h

a

+

i

; a

j

i

+

= Æ

i;j

(22)

We onlude this paragraph with the following observations:

� A determinant jM i = jj 

i

1

 

i

2

� � � 

i

n

jj an be suessively depleted by

appliation of the destrutors a

i

1

, a

i

2

,: : :, a

i

n

. The �nal outome is the

ompletely ionized moleule, indiated with jvai (the vauum state).

In other terms a

i

n

a

i

n�1

: : : a

i

1

jM i = jvai

� Conversely, any n{eletron determinant an be thought of as deriving

from the appliation of a produt of reation operators to the vauum:

jM i = a

+

i

1

a

+

i

2

: : : a

+

i

n

jvai

2.2 One{ and two{eletron operators

We shall onsider an operator of the form

^

T =

X

r;s

t

rs

a

+

r

a

s

(23)

with the T matrix hermitian (t

rs

= t

�

sr

). It is easily seen that the operator

^

T

is hermitian (

^

T

y

= T ). Given a generi determinant jM i = jj 

k

1

 

k

2

� � � 

k

n

jj,

we shall now investigate the matrix element

D

M

�

�

�

^

T

�

�

�M

E

=

X

r;s

t

rs

D

M

�

�

�a

+

r

a

s

�

�

�M

E

(24)
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Sine the operator a

+

r

a

s

replaes spin{orbital  

s

in jM i (if possible) with

 

r

, it is immediately reognized that the only possibility for hM ja

+

r

a

s

jMi

to be di�erent from zero is that s equals an oupied index and r = s. So

D

M

�

�

�

^

T

�

�

�M

E

=

n

X

i=1

t

k

i

;k

i

(25)

Let us now onsider the matrix element of operator

^

T between two di�erent

determinants jM i and jN i, where jM i = jj 

k

1

 

k

2

: : :  

a

: : :  

k

n

jj and jN i =

jj 

k

1

 

k

2

: : :  

b

: : :  

k

n

jj, i.e. the two determinants di�er by one spin{orbital

di�erene ( 

a

6=  

b

):

D

N

�

�

�

^

T

�

�

�M

E

=

X

r;s

t

rs

D

N

�

�

�a

+

r

a

s

�

�

�M

E

(26)

The only non zero result an be obtained with s = a and r = b, yielding

D

N

�

�

�

^

T

�

�

�M

E

= t

ba

(27)

If determinant jN i di�ers from jM i by more than one spin{orbital, it is

immediately seen that

D

N

�

�

�

^

T

�

�

�M

E

= 0. It has been thus reognized that

operator

^

T satis�es Slater's rules (see se. 1.2 at page 4) for a one{eletron

operator. In other terms, if

^

F is a one{eletron operator (

^

F =

n

X

i=1

f(i)),

it is equivalent to

X

r;s

f

rs

a

+

r

a

s

where f

rs

= h 

r

(1) jf(1)j 

s

(1)i. Thus the

expression (23) is the most general form to represent a one{eletron operator

in the so{alled \seond quantization" formalism.

Let us now onsider an operator of the following form:

^

G =

1

2

X

rstu

g

rs;tu

a

+

r

a

+

s

a

u

a

t

(28)

where the four{index matrix g satis�es the hermitian requisite g

rs;tu

= g

�

tu;rs

.

Operator

^

G is promptly seen to be hermitian. Furthermore, as happens in

almost all pratial ases, we shall require the symmetry property g

rs;tu

=

g

sr;ut

. It is then easily shown, notiing that the produt a

+

r

a

+

s

a

u

a

t

performs

a double replaement (substituting the ordered ouple ( 

t

 

u

) with ( 

r

 

s

)),

that operator

^

G obeys Slater's rules for a two{eletron operator:

D

M

�

�

�

^

G

�

�

�M

E

=

1

2

n

X

i;j=1

(g

k

i

k

j

;k

i

k

j

� g

k

i

k

j

;k

j

k

i

)

D

N

�

�

�

^

G

�

�

�M

E

=

n

X

i=1

(g

k

i

b;k

i

a

� g

k

i

b;ak

i

) (one orb. di�.)

D

N

�

�

�

^

G

�

�

�M

E

= g

d;ab

� g

d;ba

(two orb. di�.)

12



Consequently the form (28) represents the most general expression for a

two{eletron operator in the seond quantization formalism. For instane

the intereletroni repulsion operator

^

G =

1

2

n

X

0

i;j

1

r

ij

beomes in the language

of seond quantization:

^

G =

1

2

X

rstu

�

 

r

(1) 

s

(2)

�

�

�

�

1

r

12

�

�

�

�

 

t

(1) 

u

(2)

�

a

+

r

a

+

s

a

u

a

t

(29)

As onerns the eletroni Hamiltonian

^

H

el

=

n

X

i=1

h(i) +

1

2

n

X

0

i;j

1

r

ij

;

where h(i) ollets the kineti energy and nulear oulombi attration po-

tential for eletron i, one promptly gets the seond{quantized form:

^

H

el

=

X

r;s

h 

r

jhj 

s

i a

+

r

a

s

+

1

2

X

rstu

�

 

r

 

s

�

�

�

�

1

r

12

�

�

�

�

 

t

 

u

�

a

+

r

a

+

s

a

u

a

t

(30)

It should be noted that the seond{quantized version of the operators does

not make any referene to the number of eletrons, formulas (23) and (28)

being valid for an arbitrary ionization state of the system.

2.3 Unitary transformations of the spin{orbital basis

We shall now study how the seond quantization operators transform when

one passes from a spin{orbital basis to another one: j i ! j 

0

i, where

we de�ne the row vetor j i = fj 

1

i ; j 

2

i ; : : :g and similarly for j 

0

i. If

j i and j 

0

i are both orthonormal basis sets, the only way to perform the

transformation is through a unitary operator

^

U

j i

0

=

^

U j i = j iU (31)

where U is a given unitary matrix.

In the basis j 

0

i the operators will have the same form as in the old j i

basis. A generi one{eletron operator

^

T an be written as:

^

T =

X

r;s

t

rs

a

+

r

a

s

=

X

r;s

t

0

rs

a

0+

r

a

0

s

where a

0

r

(a

0+

r

) is the destrution (reation) operator assoiated to spin{

orbital  

0

r

. Making use of the vetor notation

a =

2

6

6

4

a

1

a

2

.

.

.

3

7

7

5

and a

+

= [a

+

1

; a

+

2

; : : :℄

13



we an write

^

T = a

+

Ta = a

0+

T

0

a

0

Taking then into onsideration that

T = h jtj i = U h 

0

jtj 

0

iU

+

and onsequently

^

T = a

+

UT

0

U

+

a, one promptly dedues the formulas for

the transformation of the destrution and reation operators:

a

0

= U

+

a and a

0+

= a

+

U (32)

or, in detail

a

0

r

=

X

s

U

�

sr

a

s

and a

0+

r

=

X

s

a

+

s

U

sr

(33)

(notie that the reators transform exatly as the spin{orbitals).

We shall now investigate the ation of

^

U on a generi determinant jK i =

jj 

1

 

2

: : :  

n

jj. Remembering that jK i = a

+

1

a

+

2

: : : a

+

n

jvai and that a uni-

tary transformation of a generi operator

2

^

A is given by

^

A

0

=

^

UA

^

U

+

, one

has the following steps

^

U jK i =

^

Ua

+

1

a

+

2

: : : a

+

n

jvai

=

^

Ua

+

1

^

U

+

^

Ua

+

2

^

U

+

^

Ua

+

3

: : :

^

Ua

+

n

^

U

+

^

U jvai

= a

0+

1

a

0+

2

: : : a

0+

n

jvai

= jj 

0

1

 

0

2

: : :  

0

n

jj

Thus,

^

U jK i is another determinant where spin{orbitals  

i

have been re-

plaed by the transformed spin{orbitals  

0

i

.

At this point we reall from Linear Algebra than any unitary operator

^

U

an be put in exponential form as

^

U = e

i

^

�

where

^

� is a suitable hermitian

operator. It is not diÆult to show that

^

� is just a simple one{eletron

operator

^

� =

X

r;s

�

rs

a

+

r

a

s

(34)

where matrix� is hermitian and is assoiated to matrixU by the exponential

relation

U = e

i�

(35)

We shall barely sketh the demonstration whih is based on the expansion of

the transformed operator a

0+

r

using the Baker{Campbell{Hausdor� identity:

e

A

Be

�A

= B + [A;B℄ +

1

2!

[A; [A;B℄℄ +

1

3!

[A; [A; [A;B℄℄℄ + : : :

2

If

^

A	 = �, appliation of

^

U to both sides gives

^

U

^

A

^

U

+

(

^

U	) = (U�), whih shows

that

^

U

^

A

^

U

+

expresses the transformation of operator

^

A e�eted by

^

U

14



Assuming

^

� to have the form (34) and making use of the ommutator rela-

tionship [a

+

t

a

u

; a

+

r

℄ = Æ

ru

a

+

t

, one readily arrives at the expansion:

^

Ua

+

r

^

U

+

= a

+

r

+ i

X

t

�

tr

a

+

t

+

i

2

2!

X

t

�

2

tr

a

+

t

+ : : : =

X

t

(e

i�

)

tr

a

+

t

=

X

t

U

tr

a

+

t

whih proves the assumption. Often one sets

^

T = i

^

�, with

^

T antihermitian

(

^

T

y

= �

^

T ). If, as is usually the ase, the two sets of orbitals  and  

0

are

real, the T matrix (t

rs

= i�

rs

) has to be skew{symmetri, i.e.

~

T = �T.

2.4 The spin{traed replaement operators

Operators whih do not have dependene upon the spin allow a simpli�ation

to be introdued by integrating over the spin variables in the matrix elements.

Supposing that the spin{orbitals  

i

are derived from a unique set of spatial

orbitals '

i

with alloation of either � or � fators, one has for a spinless

one{eletron operator:

^

T =

X

rs

h 

r

jtj 

s

i a

+

r

a

s

=

X

rs

h'

r

jtj'

s

i (a

+

r�

a

s�

+ a

+

r�

a

s�

) (36)

where in the last term the summation runs over the spatial orbitals and where

with a

+

r�

et. we mean the reation operator assoiated to spin{orbital '

r

�

et.

One an de�ne the spin{traed replaement operators

E

rs

= a

+

r�

a

s�

+ a

+

r�

a

s�

(37)

whih allow any spinless one{eletron operator to be rewritten as

^

T =

X

r;s

h'

r

jtj'

s

i E

rs

(38)

The ommutation of two suh operators is given by the following rule (easy

to demonstrate for the reader)

[E

rs

; E

tu

℄ = Æ

st

E

ru

� Æ

ru

E

ts

(39)

The above ommutation property {we observe just in passing{ has an im-

portant onnetion with the Unitary Group Approah (UGA) for the evalu-

ation of the matrix elements of the Hamiltonian between spin eigenfuntions

(rather than mere determinants).

An important property of the spin{traed replaement operators is that

they ommute with the total spin momentum and with its z omponent

[E

rs

; S

2

℄ = 0; [E

rs

; S

z

℄ = 0 (40)
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as an be veri�ed by expressing S

2

and S

z

in seond quantization. As a

onsequene the appliation of E

rs

to an eigenfuntion of S

2

and S

z

produes

a funtion with that same property.

For a two{eletron operator we an proeed analogously

G =

X

rstu

h 

r

 

s

jgj 

t

 

u

i a

+

r

a

+

s

a

u

a

t

=

X

rstu

h'

r

'

s

jgj'

t

'

u

i (a

+

r�

a

+

s�

a

u�

a

t�

+ a

+

r�

a

+

s�

a

u�

a

t�

+ a

+

r�

a

+

s�

a

u�

a

t�

+ a

+

r�

a

+

s�

a

u�

a

t�

)

=

X

rstu

h'

r

'

s

jgj'

t

'

u

i (E

rt

E

su

� Æ

ts

E

ru

)

The Hamiltonian operator an then be expressed as

^

H =

X

rs

h

rs

E

rs

+

1

2

X

rstu

hrs j tui (E

rt

E

su

� Æ

ts

E

ru

) (41)

3 Best one{determinant wavefuntions:

Hartree{Fok theory

Using the tehniques exposed in the preeding setion it is an easy matter

to �nd the best approximation to the wave funtion of the eletroni ground

state in the form of a single Slater's determinant 	 = jj 

1

 

2

: : :  

n

jj. Atually

the method we are going to present applies not only to the ground state but

also to the lowest state of a given spatial or spin symmetry. With the term

\best approximation" we mean that the spin{orbitals we are in quest of

should satisfy the variational theorem, i.e. they should minimize the energy

funtional E =

D

	

�

�

�

^

H

�

�

�	

E

with the orthonormality onstraints h 

i

j  

j

i = Æ

ij

.

At the point of minimum, any in�nitesimal variation  

i

!  

i

+ Æ 

i

leads

to ÆE = 0. Suh a variation an be done, as has been seen in the previous

setion, by applying to 	 a unitary operator

^

U = e

^

T

with

^

T = �

^

T

+

=

X

r;s

t

rs

a

+

r

a

s

(t

rs

= �t

�

sr

). If E

0

=

D

	

0

�

�

�

^

H

�

�

�	

0

E

with j	

0

i = e

^

T

j	i, one has

E

0

=

D

e

^

T

	

�

�

�

^

H

�

�

� e

^

T

	

E

=

D

	

�

�

�e

�

^

T

^

He

^

T

�

�

�	

E

and

ÆE = E

0

� E =

D

	

�

�

�e

�

^

T

^

He

T

�H

�

�

�	

E

Taking the t

rs

parameters as in�nitesimal, one obtains an in�nitesimal vari-

ation of the energy. The expansion

e

�

^

T

^

He

T

=

^

H � [

^

T ;

^

H℄ +

1

2

[

^

T ; [

^

T ;

^

H℄℄ + : : :
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an be trunated to �rst order and onsequently:

ÆE =

D

	

�

�

�

^

H + [

^

H;

^

T ℄�

^

H

�

�

�	

E

=

D

	

�

�

�[

^

H;

^

T ℄

�

�

�	

E

It is now onvenient to use the replaement operators E

rs

= a

+

r

a

s

(with the

property E

+

rs

= E

sr

) whih allow the expression for ÆE to be rephrased as:

ÆE =

X

r;s

t

rs

D

	

�

�

�

^

H

�

�

�E

rs

	

E

�

X

r;s

t

rs

D

E

sr

	

�

�

�

^

H

�

�

�	

E

(42)

In the �rst term of the r.h.s. of eq (42) E

rs

substitutes  

s

with 	

r

in 	 and

onsequently s must designate the index of a spin{orbital oupied in 	; r,

on the ontrary, must be either the index of a virtual spin{orbital (i.e. not

oupied in 	) or the same index as s. In the seond term of eq. (42) the

situation is reversed, with r oupied and s virtual (or oinident with r).

Introduing now the onvention of designating with i; j; : : : indies referring

to oupied spin{orbitals and with a; b; : : : indies for virtual orbitals, eq.(42)

an be rewritten as:

ÆE =

n

X

i=1

X

a>n

t

ai

D

	

�

�

�

^

H

�

�

�	

a

i

E

�

n

X

i=1

X

a>n

t

ia

D

	

a

i

�

�

�

^

H

�

�

�	

E

(43)

where we have set 	

a

i

= E

ai

	 (a singly exited determinant, with spin{orbital

 

i

replaed by  

a

) and where we notie that the terms with t

ii

have aneled

out. Sine t

ia

= �t

�

ai

, one an also write

ÆE =

n

X

i=1

X

a>n

t

ai

D

	

�

�

�

^

H

�

�

�	

a

i

E

+ .. (44)

where \.." designates the omplex onjugate of the preeding term. Sine

the quantities t

ai

are arbitrary, in order for ÆE to vanish it is neessary that

D

	

�

�

�

^

H

�

�

�	

a

i

E

= 0 (45)

The above result is known as Brillouin's theorem, stating that the spin{

orbitals whih minimize E are suh that the interations between 	 and any

singly exited determinant E

ai

	 are zero.

Now 	 = jj 

1

 

2

: : :  

i

: : :  

n

jj and 	

a

i

= jj 

1

 

2

: : :  

a

: : :  

n

jj, so that,

remembering Slater's rules, one has immediately:

D

	

a

i

�

�

�

^

H

�

�

�	

E

= h 

a

jhj 

i

i+

n

X

j=1

��

 

a

 

j

�

�

�

�

1

r

12

�

�

�

�

 

i

 

j

�

�

�

 

a

 

j

�

�

�

�

1

r

12

�

�

�

�

 

j

 

i

��
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One an introdue two auxiliary operators

^

J and

^

K (Coulomb and exhange

operators, respetively) through their matrix elements:

D

 

r

�

�

�

^

J

�

�

� 

s

E

=

n

X

j=1

�

 

r

 

j

�

�

�

�

1

r

12

�

�

�

�

 

s

 

j

�

D

 

r

�

�

�

^

K

�

�

� 

s

E

=

n

X

j=1

�

 

r

 

j

�

�

�

�

1

r

12

�

�

�

�

 

j

 

s

�

With these operators ondition (45) an be ast in the form:

D

 

a

�

�

�

^

h +

^

J �

^

K

�

�

� 

i

E

= 0 (46)

Fok's operator is now de�ned as

^

F =

^

h+

^

J�

^

K, so that one has the equation

D

 

a

�

�

�

^

F

�

�

� 

i

E

= 0 (47)

Condition (47) states that the vetor

^

F j 

i

i must be orthogonal to any vir-

tual j 

a

i. As a onsequene

^

F j 

i

i belongs to the subspae generated by the

oupied spin{orbitals f 

1

;  

2

; : : :  

n

g and one obtains the so{alled gener-

alized Hartree{Fok equations:

^

F j 

i

i =

n

X

j=1

j 

j

i �

ji

(48)

Sine the Fok operator

^

F is hermitian, matrix � is also hermitian:

�

ij

=

D

 

i

�

�

�

^

F

�

�

� 

j

E

=

D

 

j

�

�

�

^

F

�

�

� 

i

E

�

= �

�

ji

The hermitiity of � an be exploited by onsidering the unitary matrix U

whih diagonalizes �:

U

+

�U =

2

6

6

6

6

4

�

1

0 : : : 0

0 �

2

0 : : :

.

.

.

.

.

.

.

.

.

0 : : : 0 �

n

3

7

7

7

7

5

Changing the oupied spin{orbitals aording to the transformation:

 

0

i

=

n

X

j=1

 

j

U

ji

and notiing that the Fok operator is invariant under suh a transformation,

one arrives at the anonial Hartree{Fok equations

^

F 

0

i

= �

i

 

0

i

(49)
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It should be notied that eq. (49) is not a simple eigenvalue equation, beause

the operator

^

F depends upon the solutions  

i

's. In order to solve eq. (49) one

has to resort to an iterative proedure, starting from a set of guess orbitals

f 

(0)

1

;  

(0)

2

; : : :g, building an initial

^

F

(0)

, diagonalizing it (

^

F

(0)

 

(1)

i

= �

(0)

i

 

(1)

i

)

and proeeding suessively until onvergene (\self onsistene") is attained.

The eigenvalues �

i

of eq. (49) are alled \orbital energies" and possess

a neat physial meaning, as is shown by the following argument: if one

onsiders the ionized state 	

+

i

= a

i

	, where an eletron has been removed

from spin{orbital  

i

in the determinant 	, one obtains for the energy:

E

+

i

=

D

a

i

	

�

�

�

^

H

�

�

� a

i

	

E

=

D

	

�

�

�a

+

i

^

Ha

i

�

�

�	

E

(50)

=

D

	

�

�

�

^

Ha

+

i

a

i

�

�

� 

E

+

D

	

�

�

�[a

+

i

;

^

H℄a

i

�

�

�	

E

(51)

= E +

D

	

�

�

�[a

+

i

;

^

H℄a

i

�

�

�	

E

(52)

It is remarkable that eq. (52) provides the ionization energy (E

+

i

�E) as the

expetation value in the ground state of a ertain operator ([a

+

i

;

^

H℄a

i

). It is

not diÆult to evaluate the ommutator appearing in eq. (52) and, after a few

algebrai steps (the reader an avail himself of the two basi ommutation

rules: [a

+

i

; a

+

r

a

s

℄ = �Æ

is

a

+

r

and [a

+

i

; a

+

r

a

+

s

a

u

a

t

℄ = Æ

iu

a

+

r

a

+

s

a

t

� Æ

it

a

+

r

a

+

s

a

u

)

one gets (Koopmans' theorem):

D

	

�

�

�[a

+

i

;

^

H℄a

i

�

�

�	

E

= �h

ii

� (J

ii

�K

ii

) = ��

i

(53)

Analogously, upon reating a negatively ionized determinant with the addi-

tion to 	 of an eletron in the virtual spin{orbital  

v

, one gets : E

v

�

�E = �

v

.

Also, one an have a (usually rough) approximation to an eletronially

exited state in the form 	

a

i

= a

+

a

a

i

	 with exitation energy E

a

i

� E =

�

a

� �

i

� (J

ai

�K

ai

).

3.1 Restrited and unrestrited Hartree{Fok

equations

The Hartree{Fok equations onsidered in the previous setion were devel-

oped in terms of spin{orbitals. Taking into aount that  

i

(x

1

; y

1

; z

1

; s

1

) =

'

i

(x

1

; y

1

; z

1

)�

m

(s

1

), where '

i

is a spatial orbital and �

m

is a spin funtion

(either � if m =

1

2

or � if m = �

1

2

), one an develop new equations in

whih the spin funtions have been disposed of. The simplest situation to

deal with is the so alled losed shell ase whih is also the most frequent.

Most moleules are in a singlet ground state and, lose to the equilibrium

geometry, are reasonably well desribed by a single Slater determinant where
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a given spatial orbital '

i

ours twie, giving rise to the two spin{orbitals

'

i

� and '

i

�. The Slater determinant desribing the moleule is thus given

by:

	(1; 2; : : : ; 2n) = jj'

1

(1)�(1)'

1

(2)�(2) : : : '

n

(2n� 1)�(2n� 1)'

n

(2n)�(2n)jj

In this ase the Hartree{Fok equations (eq. 49), upon integration over the

spin funtions, are easily seen to simplify to the following form:

^

f'

i

= �

i

'

i

(54)

with

^

f =

^

h + 2

^

J �

^

K, where

^

J and

^

K are de�ned only in terms of spatial

orbitals:

D

'

r

�

�

�

^

J

�

�

�'

s

E

=

n

X

j=1

�

'

r

'

j

�

�

�

�

1

r

12

�

�

�

�

'

s

'

j

�

D

'

r

�

�

�

^

K

�

�

�'

s

E

=

n

X

j=1

�

'

r

'

j

�

�

�

�

1

r

12

�

�

�

�

'

j

'

s

�

In ase one wants to desribe an open{shell situation, e.g. when the moleule

is not in a singlet state, the equations beome more intriate: a determinant

of the form

	(1; 2; : : : ; 2n+m) = jj'

1

�'

1

� : : : '

n

�'

n

�'

n+1

� : : : '

n+m

�jj

desribes a state with spin quantum number S =

m

2

. The equations whih

determine the best orbitals '

i

are rather ompliated to write down and are

termed \Restrited Open{shell Hartree{Fok" equations (ROHF). A simpler

alternative, often employed in pratie, is to resort to di�erent orbitals for

di�erent spins, i.e. to adopt two distint sets of spatial orbitals, the �rst

being assoiated to � spin{orbitals and the seond to the � ones:

	(1; 2; : : : ; 2n+m) = jj'

1

�'

0

1

� : : : '

n

�'

0

n

�'

n+1

� : : : '

n+m

�jj

The resulting equations are alled \Unrestrited Hartree-Fok equations"

(UHF); they are simpler than the ROHF equations but su�er from the in-

onveniene of not providing an eigenstate of S

2

.

3.2 Expansion in a set of atomi orbitals: Roothan's

equations

The Hartree{Fok equations seen in the previous setions are ompliated

integro{di�erential equations not amenable to analytial solutions. The usual

20



way to solve suh equations is to resort to an expansion of the moleular

orbitals '

i

in a hosen atomi basis set of orbitals f�

1

; �

2

; : : :g:

'

i

=

X

r

�

r



ri

(55)

thus reduing our problem to an algebrai one, where the mixing oeÆients



ri

have to be determined. If the atomi basis set is omplete the true so-

lutions of the Hartree{Fok equations an in priniple be obtained through

the following steps (we envisage the losed{shell ase here):

^

f'

i

= �

i

'

i

X

r

^

f�

r



ri

= �

i

X

r

�

r



ri

X

r

D

�

s

�

�

�

^

f

�

�

��

r

E



ri

= �

i

X

r

h�

s

j �

r

i 

ri

In matrix form one has the Roothan's SCF (\Self Consistent Filed") equa-

tions:

F

i

= �

i

S

i

(56)

where 

i

is a olumn vetor ontaining the 

ri

oeÆients, S is the overlap

matrix (S

sr

= h�

s

j �

r

i) and F is the Fok matrix:

F

sr

=

D

�

s

�

�

�

^

f

�

�

��

r

E

= h�

s

jhj�

r

i+

n

X

j=1

�

2

�

�

s

'

j

�

�

�

�

1

r

12

�

�

�

�

�

r

'

j

�

�

�

�

s

'

j

�

�

�

�

1

r

12

�

�

�

�

'

j

�

r

��

Upon expansion of the '

j

orbitals aording to eq. (55) one gets

F

sr

= h�

s

jhj�

r

i+

X

t;u

�

2

�

�

s

�

t

�

�

�

�

1

r

12

�

�

�

�

�

r

�

u

�

�

�

�

s

�

t

�

�

�

�

1

r

12

�

�

�

�

�

u

�

r

��

R

ut

(57)

where the density matrix R has been introdued:

R

ut

=

n

X

j=1



�

uj



tj

or

R = CC

y

with C designating the retangular matrix having as olumns the 

j

vetors.

Roothans' equations (56) are lassi�ed as pseudoeigenvalue equations be-

ause matrix F needs the knowledge of the solutions 

i

to be onstruted.

Their solution is generally arried out in an iterative way, starting from a

guess oeÆient matrix C

(0)

from whih an initial R and F matrix are built

up; diagonalization of F (atually, due to the ourrene of the overlap S

matrix, eq. (56) is a generalized eigenvalue equation) produes a new oeÆ-

ient matrix C

(1)

whih permits the proess to be iterated until onvergene

(self{onsistene) is reahed.
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3.3 The CIS approximation for the alulation of ex-

ited states

We have seen that the Hartree{Fok equations an be derived from Bril-

louin's theorem (eq. 45 at page 17) whih states that at self onsistene

there is no interation between the H{F determinant and any single exita-

tion. In other terms, no improvement is obtained for the ground state by

diagonalizing the Hamiltonian matrix H built on the funtions f	

0

;	

a

i

; : : :g

ontaining, besides 	

0

, all the single exitations 	

a

i

= E

ai

	

0

. So, the di-

agonalization of the Hamiltonian matrix (H = E) yields as its lowest

eigenvalue E

0

= h	

0

jHj	

0

i with 

y

= [1; 0; : : : ; 0℄. The higher eigenvalues,

anyway, onstitute approximations for the energies of exited states and the

resulting method is usually referred to as \Con�guration Interation with

Singles" (CIS) or Tamm{Dano� approximation. The expression of the ma-

trix elements of the Hamiltonian is straightforward realling Slater's rules

and yields at one:

D

	

b

j

jHj	

a

i

E

= �hbi jj aji+ Æ

ba

Æ

ij

[(�

a

� �

i

) + E

0

℄ (58)

Also, the dimension of the Hamiltonian matrix is modest (by today's stan-

dards), being determined by the produt of the number of oupied orbitals

times that of the virtual ones. The CIS approximation is often used as

one of the simplest methods able to provide reasonable results for exited

states, its validity being hiey on�ned to those states whose physial na-

ture does not require higher exitations than the singles. Starting from a

singlet Hartree{Fok wavefuntion only singlet and triplet exited states an

be obtained with the CIS method. Singlets an be obtained by applying the

spin{traed operators E

ai

= a

+

a�

a

i�

+ a

+

a�

a

i�

to 	

0

and by diagonalizing the

resulting Hamiltonian matrix. Triplet states, onversely, an be formed with

the operators E

0

ai

= a

+

a�

a

i�

� a

+

a�

a

i�

.
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4 Multion�gurational Self Consistent Field

methods (MCSCF)

We have already remarked that a full on�guration interation (Full CI) an

exatly solve the Shr�odinger equation. Unfortunately a full CI is only feasi-

ble in very simple ases, with few eletrons and with not too muh extended

orbital basis sets. Often one makes use of a trunated CI

	 =

N

X

K=1

C

K

�

K

(59)

where the eletroni on�gurations estimated to be the most important are

inluded in the CI. With the term MCSCF (Multion�gurational Self Con-

sistent Field) one means a generalization of Hartree{Fok's equations where,

along with the CI oeÆients C

K

, also the orbitals '

i

utilized to build up

the determinants �

K

, are optimized. In other terms, the energy assoiated

to eq. (59) E =

D

	

�

�

�

^

H

�

�

�	

E

, has to be stationary with respet to both a vari-

ation in the expansion oeÆients (C

0

K

! C

K

+ ÆC

K

) and a variation in the

orbitals ('

0

i

! '

i

+ Æ') with the orthonormality onstraints (

P

K

C

�

K

C

K

= 1

and h'

i

j '

j

i = Æ

ij

). We shall now desribe an iterative proedure, onsisting

of two suessive steps repeated until onvergene, whih is able to solve the

MCSCF problem.

1. One �nds the oeÆients C

K

obtained by building determinants �

K

with a given set of orbitals

2. One the oeÆients C

K

are obtained, a set of orbitals minimizing

E =

D

	

�

�

�

^

H

�

�

�	

E

is looked for

Step 1 is in priniple easy, sine one just needs to solve the matrix eigenvalue

equation H = E with H

KL

=

D

�

K

�

�

�

^

H

�

�

��

L

E

easily obtainable through

Slater's rules. Step 2 an be faed with tehniques similar to those met for

the ase of a single determinant. We have already learned that the operator

U assoiated to a unitary transformation of a spin{orbital basis, an be ast

in the form U = e

T

with T =

P

r;s

t

rs

a

+

r

a

s

(t

rs

= �t

�

sr

). For an in�nitesimal

transformation the expansion of e

T

an be trunated to the �rst order and,

as we already know, e

�T

He

T

= H � [T;H℄ so that the ondition for 	 to

give the minimum energy is:

ÆE = h	 j[H; T ℄j	i = 0

By utilizing the replaement operators E

rs

, one an write:

h	 jHT j	i � h	 jTHj	i = 0

X

r;s

t

rs

(h	 jHjE

rs

	i � hE

sr

	 jHj	i) = 0 (60)
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Assuming for simpliity that our funtions are real, one has the equality

hE

sr

	 jHj	i = h	 jHjE

sr

	i and, given the arbitrariness of the t

rs

oeÆ-

ients, equation (60) an only be satis�ed if

h	 jHj (E

rs

� E

sr

)	i = 0 (61)

Condition 61 is alled \extended Brillouin's theorem" or \Brillouin{Levy{

Berthier's theorem". The funtion (E

rs

� E

sr

)	 does not interat with 	

when the orbitals are optimized. E

rs

substitutes spin{orbital  

s

with  

r

in

all the determinants of 	 that ontain  

s

and do not ontain  

r

(else it

gives zero); onversely, E

sr

substitutes  

r

with  

s

when possible. By setting

	

r

s

= (E

rs

� E

sr

)	, one must have at self{onsistene

D

	

�

�

�

^

H

�

�

�	

r

s

E

= 0. This

means that trying to improve the wave funtion with 	! 	+

X

r>s



rs

	

r

s

would

be of no avail if self{onsistene has been reahed. On the ontrary, far from

SCF, the diagonalization of the Hamiltonian matrix in the set f	;	

r

s

; : : :g

brings about an improvement of 	. One an then identify the orreted

funtion 	

0

= 	 +

X

r>s



rs

	

r

s

as the �rst{order development of e

T

	 = 	 +

X

r>s

t

rs

(E

rs

� E

sr

)	 + : : : and one an utilize the 

rs

oeÆients to obtain a

new spin{orbital basis:

 

0

=  e

T

with t

rs

= 

rs

The improved spinorbitals an then be employed to rebuild the CI wavefun-

tion and to ontinue the iterative proess until onvergene is reahed. This

method is referred to as the Super{CI (SCI) approah.

Other approahes, suh as those based on seond{order Newton{Raphson

tehniques, are more e�etive than super{CI and an solve the MCSCF prob-

lem with a single step proedure, i.e. optimizing at the same time the C

K

CI

oeÆients and the orbitals. Anyway the super{CI approah is still in use

sine it requires rather modest omputational resoures.

A problem in MC{SCF is related to whih on�gurations should be ho-

sen to build the CI wavefuntion (59). Often one resorts to the onept of

Complete Ative Spae (CAS) whih onsists in a partition of the spinorbitals

in three lasses:

1. ore spinorbitals, always having oupation 1 in all the determinants

of 	

2. ative spinorbitals, appearing with all possible oupations in the de-

terminants (0 or 1)
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3. virtual spinorbitals, being never oupied in the determinants

The resulting wavefuntion, one onvergene of the MC{SCF has been at-

tained, is alled a CAS{SCF wavefuntion.

For a CAS{SCF wavefuntion the extended Brillouin's theorem, eq. (61)

assumes a somewhat simpli�ed form. If we designate with i; j; : : :, a; b; : : :

and r; s; : : : indies for orbitals belonging to the ore, ative and virtual set,

respetively, it an easily be shown that eq. (61) is automatially satis�ed for

any ouple of indies belonging to the same set. Furthermore, 	

a

i

= (a

+

a

a

i

�

a

+

i

a

a

)	 = a

+

a

a

i

	, 	

r

i

= (a

+

r

a

i

� a

+

i

a

r

)	 = a

+

r

a

i

	 and 	

r

a

= (a

+

r

a

a

�

a

+

a

a

r

)	 = a

+

r

a

a

	, so the minimization ondition with respet to orbital

rotations is redued to the request that the exitations a

+

a

a

i

	, a

+

r

a

i

	 and

a

+

r

a

a

	 do not interat with the CAS{SCF wavefuntion via the Hamiltonian

operator.

5 The Coupled Clusters method

The oupled lusters method (CC) is based on the so alled \exponential

ansatz", whih states that the exat wavefuntion, solution of the Shr�odinger

equation, an be obtained from the Hartree{Fok wavefuntion through the

appliation of a suitable exponential operator, in the form:

	 = e

^

T

	

0

(62)

Depending upon the H{F wavefuntion 	

0

, the CC method an be applied,

besides the ground state, to the alulation of the lowest state of a given

(spae and/or spin) symmetry. The

^

T operator of eq. (62) is expressed as a

summation T = T

1

+ T

2

+ : : :+ T

n

, where

T

1

=

n

X

i=1

X

a>n

t

a

i

a

+

a

a

i

T

2

=

n

X

i<j

X

a>b>n

t

ab

ij

a

+

a

a

+

b

a

j

a

i

.

.

.

T

n

=

X

i<j<k<:::

X

a>b>>:::

t

ab:::

ijk:::

a

+

a

a

+

b

a

+



: : : a

k

a

j

a

i

It is lear that the expansion (62) ontains all the possible on�gurations and,

upon a proper hoie of the amplitudes t

a

i

, t

ab

ij

; : : : the full CI wavefuntion

an be reovered. The Shr�odinger equation an be written as

He

T

	

0

= Ee

T

	

0

(63)
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Upon appliation of h	

0

j to eq. (63) one obtains the energy in the form

E =

D

	

0

jHj e

T

	

0

E

(64)

and upon appliation of

D

	

ab:::

ij:::

�

�

� (a generi exitation) one gets

D

	

ab:::

ij:::

jHj e

T

	

0

E

=

D

	

0

jHj e

T

	

0

E D

	

ab:::

ij:::

j e

T

	

0

E

(65)

Developing the exponential operator in the above equation, one obtains a

system of non{linear equations from whih, in priniple, all the amplitudes

an be derived. We have seen from Brillouin's theorem (eq. 45 at page 17)

that the single exitations 	

a

i

do not interat with 	

0

and, onsequently,

it is to be expeted that the ontribution of T

1

is negligible. We shall now

approximate T only with the T

2

term (T =� T

2

) and shall try to solve

eq. (65). We notie that

	 =� e

T

2

	

0

= 	

0

+ T

2

	

0

+

1

2

T

2

2

	

0

+

1

3!

T

3

2

	

0

+ : : :

and

T

2

2

	

0

= (

X

i<j

X

a<b

t

ab

ij

a

+

a

a

+

b

a

j

a

i

)(

X

k<l

X

<d

t

d

kl

a

+



a

+

d

a

l

a

k

)	

0

=

X

i<j

k<l

X

a<b

<d

t

ab

ij

t

d

kl

a

+

a

a

+

b

a

+



a

+

d

a

l

a

k

a

j

a

i

	

0

The above equality means that in the expansion of 	 the quadruple exita-

tions play a role, but in a speial form, i.e. as produts of double exitations

(and the same happens for the sextuples, otuples and so on). Let us now

go bak to eq. (65) and let us onsider the 	

ab

ij

double exitation:

�

	

ab

ij

jHj (1 + T

2

+

1

2

T

2

2

)	

0

�

= h	

0

jHj (1 + T

2

)	

0

i

D

	

ab

ij

j T

2

	

0

E

(66)

We notie that a) on the left hand side of eq. (66) we an trunate the

expansion to the seond order in T

2

beause 	

ab

ij

annot interat with more

than a quadruple exitation, b) on the right hand side, in the �rst term,

we trunate to the �rst order beause 	

0

annot interat with more than a

double and, in the seond term, only T

2

	

0

an overlap with 	

ab

ij

(giving t

ab

ij

as

ontribution). The various terms of eq. (66) give the following ontributions:

D

	

ab

ij

jHj	

0

E

= hij jj abi

D

	

ab

ij

jHjT

2

	

0

E

=

X

k<l

<d

t

d

kl

D

	

ab

ij

jHj	

d

kl

E
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D

	

ab

ij

jHjT

2

2

	

0

E

=

X

k;l;m;n

;d;e;f

t

d

kl

t

ef

mn

D

	

ab

ij

jHj	

def

klmn

E

h	

0

jHj	

0

i = E

HF

0

h	

0

jHjT

2

	

0

i =

X

k<l

<d

t

d

kl

D

	

0

jHj	

d

kl

E

=

X

k<l

<d

t

d

kl

hkl jj di

D

	

ab

ij

j T

2

	

0

E

= t

ab

ij

Therefore eq. (66) beomes a system of non{linear (quadrati) equations in

the amplitudes t

ab

ij

, with one equation for eah amplitude; the system is solu-

ble with appropriate iterative proedures (suh as Gauss{Jordan's method).

This simpli�ed form of oupled luster theory is termed CCD (Coupled Clus-

ters with Doubles). An improvement whih is usually done onsists in in-

luding also the singles, i.e. e

T

=� e

T

1

+T

2

, obtaining what is alled CCSD

(CC with singles and doubles). A further improvement would onsist in in-

luding also the triples but, due to the omplexity of the resulting equations,

usually just a perturbative treatment of the triples is added, obtaining the

CCSD(T). This last form usually gives quite aurate results when applied

to moleules whih an reasonably well be desribed by a single determinant

(HF). We remark that the CC method is not variational and therefore the

energy alulated with suh a method annot be expeted to be an upper

bound to the true energy.

6 Equations{of{motion methods

If the exat ground state wavefuntion were known ( j0i), one ould de�ne

an \exitation reation" operator (O

+

n

), able to generate an exited state jni

when applied to j0i

jni = O

+

n

j0i (67)

An operator with suh desired harateristi is obviously given by the shift

operator jni h0j . It is also promptly reognized that suh exitation operator

is by no means unique: for instane, any operator of the form jni h0j +

P

m6=0

jni hmj �

m

would do the job with arbitrary values of the parameters

�

m

. The idea of the \equations{Of{Motion" Method (EOM) is to express

O

+

n

as a suitable expansion of produts of reation/destrution operators

so as to reprodue reasonably well an exited state even starting from an

approximate ground state. The development of the EOM runs as follows:

supposing that j0i and jni are exat, one an write:

O

+

n

j0i = jni (68)
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HO

+

n

j0i = E

n

O

+

n

j0i (69)

O

+

n

H j0i = E

0

O

+

n

j0i (70)

Subtrating eq. (70) from eq. (69), one gets

[H;O

+

n

℄ j0i = �E

0n

O

+

n

j0i (71)

Taking now into aount the adjoint of operator O

+

n

(O

n

), we an apply

h0j O

n

to both sides of eq. (71), whih leads to

�E

0n

=

h0 jO

n

[H;O

+

n

℄j 0i

h0 jO

n

O

+

n

j 0i

(72)

Eq. (72) is one form of the EOM method, providing us with a funtional

yielding the exitation energies for a given approximation of the ground

state. Other forms are anyway possible if one thinks of the nature of the

de-exitation operator O

n

. In the form O

+

n

= jni h0j one would have O

n

=

j0i hnj , from whih O

n

jni = j0i and O

n

j0i = 0 are immediately obtained.

The �rst of these equations shows the \de-exitation" nature of O

n

. The

seond one, valid for the exat ground state, is alled the \killer ondition"

and allows one to substitute eq. (72) with an equivalent one:

�E

0n

=

h0 j[O

n

; [H;O

+

n

℄℄

�

j 0i

h0 j[O

n

; O

+

n

℄

�

j 0i

(73)

Eq. (73) provides an alternative funtional of the EOM method whih, as

will be shown later on, an be omputationally simpler than eq. (72). The

� sign appearing in eq. (73) means that one is formally free to hoose ei-

ther the ommutator or the antiommutator: it is onvenient to adopt the

ommutator (sign �) when the operators are boson{like, i.e. are made up of

produts of an even number of reation/destrution operators and to adopt

the antiommutator in the opposite ase of fermion{like operators, produts

of an odd number of reation/destrution operators.

We shall now onsider a simple appliation of eq. (72) to the alulation

of the ionization potentials. We approximate the O

+

n

operator in the form

O

+

n

=

X

r



�

r

a

r

so that eq. (72) beomes:

�E

0n

=

P

rs



�

r



s

h0 ja

+

s

[H; a

r

℄j 0i

P

rs



�

r



s

h0 ja

+

s

a

r

j 0i

(74)

Introduing the two matries R and K with elements R

rs

= h0 ja

+

s

a

r

j 0i (a

representation of the one{partile density matrix ) andK

rs

= h0 ja

+

s

[H; a

r

℄j 0i

(Koopmans' matrix), one has:

�E

0n

=



y

K



y

R

(75)
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The preeding equation has the well known form of the linear variational

priniple for the determination of the  vetor that minimizes the energy E

n

and leads immediately to the generalized eigenvalue equation

K = �E

0n

R (76)

a result known as \Extended Koopmans' theorem". Let us evaluate the

ommutator that appears in the de�nition of K:

[H; a

r

℄ =

X

tu

h

tu

[a

+

t

a

u

; a

r

℄ +

1

2

X

tuvw

htu j vwi [a

+

t

a

+

u

a

w

a

v

; a

r

℄

= �

X

u

h

ru

a

u

�

X

tvw

htr j vwia

+

t

a

v

a

w

where we have made use of the ommutators [a

+

t

a

u

; a

r

℄ = �Æ

tr

a

u

and

[a

+

t

a

+

u

a

w

a

v

; a

r

℄ = Æ

ur

a

+

t

a

w

a

v

� Æ

tr

a

+

u

a

w

a

v

(as the knowledgeable reader will

take are to verify). So one arrives at the following form:

K

rs

=

D

0

�

�

�a

+

s

[H; a

r

℄

�

�

� 0

E

= �

 

X

u

h

ru

R

us

+

X

tvw

htr j vwiR

wv;st

!

(77)

where we have introdued the representation of the two{partile density ma-

trix R

wv;st

=

D

0

�

�

�a

+

s

a

+

t

a

v

a

w

�

�

� 0

E

It is interesting to see what is the expression

of K for the ase in whih we approximate j0i with the Hartree{Fok wave-

funtion. In suh a ase R

rs

= 0 unless both indies refer to oupied orbitals

(R

ij

= Æ

ij

) and R

wv;st

must also have its four indies referring to oupied or-

bitals (R

ij;ij

= 1 and R

ij;ji

= �1 with i 6= j), so that the following expression

for K

ij

is readily seen to hold:

K

ij

= �h

ij

�

n

X

t=1

(hti j tji � hti j jti) = �F

ij

= �

i

Æ

ij

In this ase the Koopmans' matrix is diagonal and its eigenvalues are equal

to minus the orbital energies, reovering the already known Koopmans' the-

orem, eq (53) of page 19.

We notie that in the general ase, when the ground state j0i is approx-

imate in some form, it is not guaranteed that the K matrix is hermitian.

De�ning the auxiliary matrix



rs

=

D

0

�

�

�a

+

s

Ha

r

�

�

� 0

E

=

D

0

�

�

�a

+

s

a

r

H

�

�

� 0

E

+K

rs

whih is easily reognized as hermitian (reader, please verify), one gets (for

real funtions):

K

rs

�K

sr

=

D

0

�

�

�(a

+

r

a

s

� a

+

s

a

r

)H

�

�

� 0

E
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From the above formula one an see that the K matrix is hermitian if j0i

is given by a MCSCF wavefuntion, by virtue of the extended Brillouin's

theorem.

We shall now utilize the formulation of the EOMmethod given by eq. (73),

again onsidering the ase of the ionization potentials with O

+

n

=

X

r



�

r

a

r

.

Now, the form of �E

0n

is given by:

�E

0n

=

X

rs



�

r



s

D

0

�

�

�[a

+

s

; [H; a

r

℄℄

+

�

�

� 0

E

X
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�

r



s

D

0

�

�

�[a

+

s

; a

r

℄

+

�

�

� 0

E

=



y

K

0





y



with K

0

rs

= h0 j[a

+

s

; [H; a

r

℄℄

+

j 0i Now we have the steps:

[H; a

r

℄ = �

X

u

h

ru

a

u

�

X

tvw

htr j vwia

+

t

a

v

a

w

h

a

+

s

; [H; a

r

℄

i

+

= �

X

u

h

ru

[a

+

s

; a

u

℄

+

�

X

tvw

htr j vwi [a

+

s

; a

+

t

a

v

a

w

℄

+

K

0

rs

= �h

rs

�

X

tv

htr jj vsiR

vt

where use has been made of the antiommutator [a

+

s

; a

+

t

a

v

a

w

℄

+

= �Æ

sv

a

+

t

a

w

+

Æ

sw

a

+

t

a

v

. The K

0

matrix is simpler than the Koopmans' matrixK previously

de�ned, beause the former only involves the one{partile density matrix.

Let us now pass on to an appliation of eq. (73) involving the alulation

of exited states. Before doing that, it is onvenient to enfore hermitiity

in the operator at the numerator of eq. (73), by substituting it with the

symmetri double ommutator

[O

n

; H;O

+

n

℄

�

=

1

2

([[O

n

; H℄; O

+

n

℄

�

+ [O

n

; [H;O

+

n

℄℄

�

)

suh step being justi�ed by the onsideration that, for real funtions, taking

into aount the de�nition of adjoint operator

D

0

�

�

�[O

n

; [H;O

+

n

℄℄

�

�

�

� 0

E

=

D

0

�

�

�[[O

n

; H℄; O

+

n

℄

�

�

�

� 0

E

Thus, eq. (73) an be substituted with the new form:

�E

0n

=

h0 j[O

n

; H;O

+

n

℄

�

j 0i

h0 j[O

n

; O

+

n

℄

�

j 0i

(78)
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We shall now assume O

+

n

to be in the form O

+

n

=

X

r 6=s



rs

E

rs

and shall utilize

the minus sign (i.e. the ommutator) in eq. (78). Proeeding along exatly

the same lines as those already met for the ionization ase, one immediately

arrives at an eigenvalue equation

A = �E

0n

S (79)

where  is a olumn vetor olleting the 

rs

oeÆients, S and A are

square matries with elements S

r

0

s

0

;rs

=

D

0

�

�

�[E

+

r

0

s

0

; E

rs

℄

�

�

� 0

E

and A

r

0

s

0

;rs

=

D

0

�

�

�[E

+

r

0

s

0

; H; E

rs

℄

�

�

� 0

E

. In order to better eluidate the nature of suh equation,

it is onvenient to rewrite the expression of the exitation operator in the form

O

+

n

=

P

r>s

(X

rs

E

rs

� Y

rs

E

+

rs

) (whih is reminisent of the expression of an

orbital rotation, even though no request for antihermitiity is here asked for)

or, indiating the ouple (r; s) with �: O

+

n

=

P

�

(X

�

E

�

�Y

�

E

+

�

). In this way

the matriesA and S an be partitioned in four submatries: A

11

=M, with

M

��

=

D

0

�

�

�[E

+

�

; H; E

�

℄

�

�

� 0

E

, A

22

=M

0

, with M

0

��

= h0 j[E

�

; H; E

+

�

℄j 0i =M

�

��

,

A

12

= Q with Q

��
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D

0

�

�

�[E

+

�

; H; E

+

�

℄

�

�

� 0

E

, A

21

= Q

0

with Q

0

��

= Q

�

�;�

. For

the S matrix one has, analogously: S

11

= V with V

��

=

D

0

�

�

�[E

+

�

; E

�

℄

�

�

� 0

E

,

S

22

= �V

�

, S

12

= W with W

��

= �

D

0

�

�

�[E

+

�

; E

+

�

℄

�

�

� 0

E

, S

21

= �W

�

. With

suh replaements the eigenvalue eq. (79) takes on the form

"

M Q

Q

�

M

�

# "

X

Y

#

= �E

0n

"

V W

�W

�

�V

�

# "

X

Y

#

(80)

The simplest appliation of eq. (80) onerns the ase of a Hartree{Fok

approximation to the ground state j0i. Of the eight omponents of the

double symmetri ommutator whih enter the onstrution of matries M

and Q only those of type E

+

�

HE

�

and E

+

�

E

+

�

H give ontributions, yielding:

M

bj;ai

= Æ

ab

Æ

ij

(�

a

� �

i

)� hbi jj aji (81)

Q

bj;ai

= hab jj iji (82)

Furthermore, W = 0 and V = 1. The resulting reformulation of eq. (80) is

alled the Random Phase Approximation (RPA). It should be remarked that

the RPA equation is not a usual generalized eigenvalue equation, beause the

metri matrix is not positive de�nite. In ase all the quantities appearing in

the RPA equation are real, one an write:

MX+QY = �X

QX+MY = ��Y
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or, equivalently (summing and subtrating)

(M +Q)(X+Y) = �(X�Y)

(M�Q)(X�Y) = �(X+Y)

Substituting X�Y from the seond equation into the �rst, gives:

(M+Q)(X+Y) = �

2

(M�Q)

�1

(X+Y) (83)

and this generalized eigenvalue equation an be solved with the usual teh-

niques, provided that the metri (M � Q)

�1

is positive de�nite, whih is

usually the ase.

7 Perturbation methods

Rayleigh{Shr�odinger perturbation theory (RSPT) an be suessfully ap-

plied to improve the results obtained at a ertain level of approximation

suh as Hartree{Fok or MCSCF. In partiular the appliation of RSPT to

a zero order wavefuntion obtained by solving the H{F equations bears the

name of M�ller{Plesset PT and has revealed itself as very suessful in pro-

viding a large fration of the orrelation energy. We shall here limit ourselves

to realling the working formulas of RSPT and shall onsider the applia-

tions to a H{F determinant and to a multireferene wavefuntion in the next

paragraphs.

In RSPT the wavefuntion and energy for the eigenvalue problem H	

n

=

E

n

	

n

are expressed as series expansions

	

n

= 	

(0)

n

+	

(1)

n

+	

(2)

n

+ : : :

E

n

= E

(0)

n

+ E

(1)

n

+ E

(2)

n

+ : : :

where the k{th term in either equation above is alled the k{th order or-

retion to the wavefuntion or to the energy, respetively. The Hamiltonian

is partitioned aording to H = H

0

+ V , with V playing the role of a per-

turbation operator to a zero order Hamiltonian H

0

for whih the eigenvalues

(E

(0)

n

) and eigenfuntions are known (	

(0)

n

). In order to obtain the k{th order

orretion to the energy one has

E

(k)

n

=

D

	

(0)

n

jV j	

(k�1)

n

E

The results up to the seond order in the energy and to the �rst in the

wavefuntion are given by:

E

(1)

n

=

D

	

(0)

n

jV j	

(0)

n

E
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E

(2)

n

= �

X

k 6=n

j

D

	

(0)

n

jV j	

(0)

k

E

j

2

E

(0)

k

� E

(0)

n

	

(1)

n

= �

X

k 6=n

D

	

(0)

n

jV j	

(0)

k

E

E

(0)

k

� E

(0)

n

	

(0)

k

We shall now apply the above results to the ase of a single referene (H{F)

and then to a multireferene (MCSCF) zero order wavefuntion.

7.1 M�ller{Plesset theory

If 	

0

is a Slater determinant whose orbitals have been optimized by solving

the Hartree{Fok equations

^

f 

i

= �

i

 

i

, one an build the n{partile Fok

operator (also termed the Fokian)

^

F =

n

X

i=1

^

f(i) whih, in the language of

seond quantization, is turned into

^

F =

X

r

�

r

a

+

r

a

r

. It is then reognized

that 	

0

is an eigenfuntion of

^

F with eigenvalue E

0

=

n

X

i=1

�

i

. Generally, any

other determinant 	

K

built with n arbitrary spin{orbitals (jj 

k

1

 

k

2

� � � 

k

n

jj)

is still eigenfuntion of

^

F with eigenvalue E

K

=

n

X

i=1

�

k

i

. M�ller{Plesset PT

utilizes

^

F as zero order Hamiltonian and

^

V =

^

H�

^

F as perturber (also alled

the utuation potential). Thus, the perturbation formulas for the �rst two

orders are:

E

(0)

0

+ E

(1)

0

= h	

0

jHj	

0

i = E

HF

0

E

(2)

0

= �

X

K 6=0

j h	

0

jHj	

K

i j

2

E

K

� E

0

In the above formula the determinants expressing single substitutions do

not give any ontribution due to Brillouin's theorem (h	

0

jHj	

a

i

i = 0) and

onsequently the only ontribution is obtained from the double replaements

	

ab

ij

so that the MP2 result (M�ller{Plesset to seond order) is

E

(2)

0

= �

n

X

i=1

X

a>n

j hab jj iji j

2

�

a

+ �

b

� �

i

� �

j

The MP2 theory is very simple, requires little omputational e�ort over a

H{F alulation and usually yields a large fration of the orrelation energy.

Even though we have derived MP2 for the ground state determinant, it an
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be suessfully applied to all ases where a single determinant is a good

approximation for the desription of the moleule under study. This usually

happens for losed shell moleules near the equilibrium geometry.

7.2 Multireferene perturbation theory

The suess of M�ller{Plesset perturbation theory fostered the researhers to

extend it to zero order multireferene wavefuntions whih are neessary both

for a orret desription of the ground state in situations deprived of losed

shell nature (suh as bond breaking, for instane) and espeially for exited

states whih an seldom be satisfatorily desribed by a single determinant.

We shall be onerned only with the appliation of PT to a variational zero

order wavefuntion, a situation whih is sometimes referred to as \diagonalize

then perturb", limiting ourselves to barely realling that also the opposite

approah (\perturb then diagonalize") has been intensely studied.

The main diÆulty in multireferene perturbation theory (MRPT) arises

when one is onfronted with the de�nition of a good zero order Hamilto-

nian, whih should aim at guaranteeing some important properties suh as

size onsistene and absene of intruder states. Size onsistene (or \strit

separability") requires that the energy of a system made up of two non in-

terating parts should yield the same result as the sum of the energies of

the two separate parts. With the term \intruder state" one indiates a zero

order state quasi degenerate with the one under study, ausing divergenes

in the expansion of the seond order orretion to the energy.

In MRPT one starts from a variational wavefuntion built upon a given

determinantal spae S

	

(0)

m

=

X

K2S



K

�

K

with

PHP	

(0)

m

= E

(0)

m

	

(0)

m

where P is the projetor onto the S spae

P =

X

K2S

j�

K

i h�

K

j

The rest of the spae spanned by the determinants �

K

62 S is referred to as

the outer spae. In the early treatments of MRPT simple Slater determinants

were hosen as zero order wavefuntions in the outer spae providing the

perturbation orretions. For instane in the CIPSI method (developed in

1973) the zero order Hamiltonian in the so alled M�ller{Plesset baryentri
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partition (MPB) is given by:

H

0

	

(0)

m

=

D

	

(0)

m

jF j	

(0)

m

E

	

(0)

m

within the S spae

H

0

�

K

= (

n

X

i=1

�

k

i

)�

K

outside S

The F operator is a suitable Fok{like one{eletron operator F =

X

r

�

r

a

+

r

a

r

with the energies �

r

usually hosen as

�

r

= h

rr

+

X

s

n

s

hrs jj rsi

n

s

being the oupation number of spin{orbital  

s

. The  

s

spin{orbitals are

here assumed to be natural spin{orbitals, i.e. diagonalizing the one{partile

density matrix (

D

	

(0)

m

ja

+

r

a

s

j	

(0)

m

E

). Another possibility used in CIPSI is

to adopt an Epstein{Nesbet partition with H

0

	

(0)

m

= E

(0)

m

	

(0)

m

inside S and

H

0

�

K

= h�

K

jHj�

K

i�

K

outside S.

In the more reent treatments of MRPT the zero order funtions outside

the S spae are not assumed to be simple determinants but, rather, are built

upon ontrated exitations arried out on the variational wavefuntion, i.e.

they are of the type a

+

r

a

+

s

a

u

a

t

	

(0)

m

. In the CAS{PT2 approah (1990) one

starts from a CAS{SCF variational wavefuntion and the zero order Hamil-

tonian is built by projetion of a suitable generalized Fok operator onto the

spae generated by the ontrated exitations. The resulting perturbation

theory is very eÆient and usually produes high quality results for both the

ground and the exited states. A shortoming of CAS{PT2 lies in the fat

that, due to the one{eletron nature of H

0

, it is oasionally subjeted to the

ourrene of intruder states.

A reent formulation of MRPT also applied to a CAS{SCF wavefuntion

makes use of a two{eletron zero order Hamiltonian, is exempt from intruder

states and is entirely size onsistent. The new theory (2001), alled \n{

eletron valene state perturbation theory" (NEV{PT) makes use of zero

order wavefuntions that are of CAS{CI type both inside the S spae and

outside of it. The state of interest 	

m

is approximated at the zero order by a

CAS{SCF (or more generally CAS{CI) wave funtion 	

(0)

m

obtained, as usual,

by solving the variational eigenvalue problem PHP	

(0)

m

= E

(0)

m

	

(0)

m

. The

zero order wavefuntions di�erent from those of the CAS spae are referred

to as \perturber funtions" and belong to CAS{CI spaes haraterized by

well de�ned oupation patterns of the orbitals. One suh CAS{CI spae

will be designated by S

(k)

l

, where k is the number of eletrons promoted

to (or removed from) the ative orbital spae (�2 � k � 2 for a seond
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order treatment) and l desribes the �xed oupation pattern of the inative

(ore + virtual) orbitals. A generi perturber funtion belonging to S

(k)

l

will be denoted by 	

(k)

l;�

where � enumerates the various funtions in S

(k)

l

.

It is possible to de�ne di�erent variants of the NEV{PT2 aording to the

number of perturber funtions that are hosen from the S

(k)

l

subspaes: if the

full dimensionality of S

(k)

l

is exploited one has the \totally unontrated" ase

and if just one perturber is seleted we speak of the \strongly ontrated"

ase; between these two extremes a \partially ontrated" ase an also be

de�ned. All three variants an be shown to be endowed with the desirable

properties of strit separability and absene of intruder states. Up to now the

strongly ontrated and partially ontrated ases have been implemented in

an eÆient ode and have been shown to yield aurate results for both the

ground and the exited eletroni states.

The subspaes S

(k)

l

whih ontain the perturber wave funtions an be

lassi�ed in 8 distint types, aording to the number k of eletrons promoted

into the ative orbital spae and to the oupation of inative orbitals. With

k = 0 two types are possible aording to whether two or one ore eletrons

have been transferred to the virtual orbital spae; a typial representative

of the �rst type will be indiated as S

(0)

ij;rs

, meaning that two eletrons have

been moved from the ore orbitals '

i

and '

j

to the virtual orbitals '

r

and '

s

.

The seond type with k = 0 will ontain all subspaes S

(0)

i;r

with one eletron

moved from '

i

to '

r

. Analogously, with k = �1 two distint types are pos-

sible, ontaining subspaes S

(1)

ij;r

(S

(�1)

i;rs

) and S

(1)

i

(S

(�1)

r

), respetively. With

k = �2 only one type is possible, ontaining the subspaes S

(2)

ij

(S

(�2)

rs

). In a

given subspae S

(k)

l

the strongly ontrated NEV{PT (SC{NEV{PT) onsid-

ers only one perturber wave funtion, aording to the following de�nition:

	

(k)

l

= P

S

(k)

l

H	

(0)

m

(84)

where P

S

(k)

l

is the projetor onto subspae S

(k)

l

. The perturber funtions 	

(k)

l

are orthogonal but are not normalized to unity. The squared norm

N

(k)

l

=

D

	

(k)

l

j 	

(k)

l

E

=

�

	

(0)

m

�

�

�

�

HP

S

(k)

l

H

�

�

�

�

	

(0)

m

�

plays an important role in the strongly ontrated NEV{PT. One a suitable

energy E

(k)

l

has been attributed to 	

(k)

l

the zero order hamiltonian an be

de�ned through the spetral deomposition:

H

0

=

X

l;k

�

�

�

�

	

(k)

l

0

�

E

(k)

l

�

	

(k)

l

0

�

�

�

�

+

CAS

X

m

�

�

�	

(0)

m

E

E

(0)

m

D

	

(0)

m

�

�

� (85)
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where

�

�

�

�

	

(k)

l

0

�

=

1

q

N

(k)

l

	

(k)

l

. The expressions for the �rst order orretion

to the wave funtion and for the seond order orretion to the energy are

then:

	

(1)

m

=

X

k;l

�

�

�

�

	

(k)

l

0

�

�

	

(k)

l

0

jHj	

(0)

m

�

E

(0)

m

� E

(k)

l

(86)

=

X

kl

�

�

�

�

	

(k)

l

0

�

1

q

N

(k)

l

D

	

(k)

l

jHj	

(0)

m

E

E

(0)

m

� E

(k)

l

=

X

kl

�

�

�

�

	

(k)

l

0

�

q

N

(k)

l

E

(0)

m

� E

(k)

l

E

(2)

m

=

X

k;l

�

	

(k)

l

0

jHj	

(0)

m

�

2

E

(0)

m

� E

(k)

l

(87)

=

X

kl

N

(k)

l

E

(0)

m

� E

(k)

l

For the de�nition of the energies E

(k)

l

one an use either the true Hamiltonian

^

H or an approximation of it. From the omputational point of view, a

partiularly onvenient form is provided by Dyall's approximation to the

eletroni hamiltonian:

H

D

= H

i

+H

v

(88)

where H

i

is a simple one{eletron (diagonal) operator

H

i

=

ore

X

i

�

i

E

ii

+

virt

X

r

�

r

E

rr

+ C

and H

v

is a two{eletron operator limited to the ative spae

H

v

=

at

X

ab

h

e�

ab

E

ab

+

1

2

at

X

abd

hab j di (E

a

E

bd

� Æ

b

E

ad

)

with h

e�

ab

= h

ab

+

ore

X

j

(2 haj j bji � haj j jbi). An appropriate hoie of the

onstant C

C = 2

ore

X

i

h

ii

+

ore

X

ij

(2 hij j iji � hij j jii)� 2

ore

X

i

�

i
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ensures that H

D

is equivalent to the full hamiltonian within the CAS spae:

H

D

	

(0)

m

= E

(0)

m

	

(0)

m

The energies �

i

and �

r

are suitable orbital energies whih we hoose to be:

�

i

= �

D

a

i

	

(0)

m

jHj a

i

	

(0)

m

E

+ E

(0)

m

�

r

=

D

a

+

r

	

(0)

m

jHj a

+

i

	

(0)

m

E

� E

(0)

m

The energies assoiated to the perturber funtions 	

(k)

l

are de�ned via Dyall's

hamiltonian:

E

(k)

l

=

1

N

(k)

l

D

	

(k)

l

�

�

�H

D

�

�

�	

(k)

l

E

Suh de�nition, while guaranteeing that the interations among the ative

eletrons are properly taken into onsideration, a�ords a partiularly onve-

nient formulation.

The \partially ontrated" approah of NEV{PT hinges on the de�nition

of a suitable subspae

�

S

(k)

l

� S

(k)

l

and utilizes the eigenfuntions of the

hamiltonian in suh a subspae.

In order to de�ne the

�

S

(k)

l

subspaes of the PC{NEV{PT, the ation upon

	

(0)

m

of the strings of exitation operators present in

^

H is onsidered, in the

same way already seen for the ontrated exitations of CAS{PT2. Thus a

set of funtions �

(k)

l;m

is generated whih serve as basis for the

�

S

(k)

l

subspae;

the olletive index m designates the ative orbital indies involved in the

exitation operators.

In ase the �

(k)

l;m

funtions should not be linearly independent, a new suit-

able set will be built by the usual tehnique of removing the zero eigenvalues

from the overlap matrix M

(k)

l

=

D

�

(k)

l

j �

(k)

l

E

, where �

(k)

l

is a row vetor

olleting the �

(k)

l;m

funtions.

We shall denote by �

(k)0

l;m

the orthonormalized basis funtions for the

�

S

(k)

l

subspaes and by 	

(k)

l;�

and E

(k)

l;�

the eigenfuntions and eigenvalues of the

projetion of the eletroni hamiltonian H onto

�

S

(k)

l

:

P

�

S

(k)

l

HP

�

S

(k)

l

	

(k)

l;�

= E

(k)

l;�

	

(k)

l;�

: (89)

Suh eigenfuntions and eigenvalues will serve to de�ne the zero order hamil-

tonian H

0

through its spetral deomposition
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�

�
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m

E
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(0)
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� (90)
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Atually, it is more onvenient from a omputational point of view to utilize

in formulas (89) Dyall's approximation to the hamiltonian, already intro-

dued in the strongly ontrated ase.

In spite of the larger number of pertuber funtions employed in the par-

tially ontrated approah with respet to the strongly ontrated one, the

results obtained with the two variants have turned out to be very similar in

all the test alulations performed thus far.
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Further reading

Exellent advaned textbooks that over pratially all the topis dealt with

in these lessons are:

� R. MWeeny, \Methods of Moleular Quantum Mehanis", Aademi

Press, 1989.

� T. Helgaker, P. J�rgensen, J. Olsen, \Moleular Eletroni{Struture

Theory", John Wiley & Sons, 2000.

� P. J�rgensen, J. Simons, \Seond Quantization{based Methods in Quan-

tum Chemistry", Aademi Press, 1981.

A few artiles referring to the multireferene perturbation theory exposed in

setion 7 are:

CIPSI B. Huron, P. Ranurel, J.P. Malrieu, J. Chem. Phys., vol. 58, p. 5745

(1973)

CASPT2 K. Andersson, P. Malmqvist, B.O. Roos, A.J. Sadlej, K. Wolinski,

J. Phys. Chem., vol. 94, p. 5483 (1990)

CASPT2 K. Andersson, P. Malmqvist, B.O. Roos, J. Chem. Phys, vol. 96,

p. 1218 (1992)

NEVPT2 C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P. Mal-

rieu, J. Chem. Phys., vol. 114, p. 10252 (2001)

NEVPT2 C. Angeli, R. Cimiraglia, J.P. Malrieu, Chem. Phys. Letters,

vol. 350, p. 297 (2001)
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