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1 Ele
troni
 wave fun
tions

1.1 The Born{Oppenheimer approximation

The total mole
ular Hamiltonian for a system with n ele
trons and N nu
lei

is given by

H = T

nu


+ T

el

+ V

en

+ V

ee

+ V

nn

(1)

where the various terms are de�ned by the following expressions:

T
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 energy
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=
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V
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tron{nu
lei potential energy

V

ee
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X
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e
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ij

ele
troni
 repulsion
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nn
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N
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Z

�

e
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r

��

nu
lear repulsion

A
tually the expression (1) is only an approximation to the true Hamiltonian,

sin
e it la
ks all the magneti
 terms arising from the fa
t that the mole
ule

is a system of moving 
harges endowed with spin. Anyway su
h magneti


terms are usually rather small so that their ex
lusion from the Hamiltonian


an be 
onsidered to be a reasonable approximation.

The resolution of the time{independent S
hr�odinger equation

H	

tot

(x;Q) = E

tot

	(x;Q) (2)

provides us with all the possible energies and stationary states of the mole
ule.

In the above equation, x and Q designate the totality of ele
troni
 and nu-


lear 
oordinates, respe
tively. In order to alleviate the formidable task of

solving the time{independent S
hr�odinger equation, Born and Oppenheimer

showed that, due to the small ratio between ele
troni
 and nu
lear masses,

eq.(2) 
an be approximately de
oupled in two separate equations, the �rst

referring to the ele
troni
 motion and the se
ond to the nu
lear one. De�ning

the ele
troni
 Hamiltonian as

H

el

= T

el

+ V

en

+ V

ee

+ V

nn
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Born and Oppenheimer were able to show that

	

tot;n;k

(x;Q) � 	

n

(x;Q)�

n;k

(Q) (3)

H

el

	

n

(x;Q) = E

n

	

n

(x;Q) (4)

(T

nu


+ E

n

(Q))�

n;k

(Q) = E

tot;n;k

�

n;k

(Q) (5)

Eq. (4) plays the role of a S
hr�odinger equation for the motion of the ele
trons

in the �eld generated by the �xed nu
lei: the solutions provide ele
troni


wavefun
tions 	

n

(x;Q) (with n enumerating the various possible ele
troni


states) and ele
troni
 energies E

n

(Q) where the nu
lear 
oordinates Q only

enter as external parameters. Eq. (5) is the equation asso
iated to the nu
lei,

where the ele
troni
 energy E

n

(Q) plays the role of a potential energy gov-

erning the nu
lear motion. Index k enumerates the roto{vibrational states

asso
iated with the ele
troni
 energy E

n

. This Born{Oppenheimer separa-

tion is essential in Chemistry: most of our understanding of the very notion

of mole
ular stru
ture rests upon the geometri
al properties of the potential

energy surfa
e E

n

(Q).

In the rest of these lessons we shall be mainly 
on
erned with the (ap-

proximate) resolution of (4) for ele
troni
ally ex
ited states. We shall rewrite

the ele
troni
 S
hr�odinger equation in the form

H

el

	

n

(1; 2; : : : ; n) = E

n

	

n

(1; 2; : : : ; n) (6)

where 1,2,: : : denote the spatial and spin 
oordinates of the various ele
trons

and where it is understood that the nu
lei are kept �xed at a 
ertain spe
i�ed

geometry.

1.2 Expansion of the ele
troni
 wavefun
tion over a

set of Slater determinants

The ele
troni
 wavefun
tion, solution of eq. (6), must obey the antisymmetry

prin
iple for fermions, stating that 	

n

(1; 2; : : : ; n) must 
hange in sign upon

transposition of the spin{
oordinates of two ele
trons:

P

ij

	

n

(1; 2; : : : ; i; : : : ; j; : : : ; n) = �	

n

(1; 2; : : : ; j; : : : ; i; : : : ; n) (7)

Consequently 	

n


an be expanded over a 
omplete set of n{ele
tron fun
tions

provided that ea
h of them satis�es the antisymmetry prin
iple. An easy

way of building su
h a basis is to resort to a 
omplete set of mole
ular spin{

orbitals ( 

1

;  

2

; : : :) and to 
onstru
t all possible Slater determinants of the
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form:

�
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=
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1
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k
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k
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k

1
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k

2

(2) � � �  

k

n

(2)

.

.

.

.

.

.

.

.

.

.

.

.

 

k

1

(n)  

k

2

(n) � � �  

k

n

(n)

�

�

�

�

�

�

�

�

�

�

(8)

A great simpli�
ation is obtained if the spin{orbital basis is 
hosen to be

orthonormal, i.e. h 

i

j  

j

i = Æ

ij

. In this 
ase the determinants also 
onstitute

an orthogonal set (h�

0

K

j �

0

L

i = 0 if K 6= L) and any determinant 
an be

easily normalized upon multipli
ation by the fa
tor

1

p

(n!)

(�

K

=

1

p

(n!)

�

0

K

).

In the following we shall often designate a normalized determinant with the

abbreviated symbol jj 

k

1

 

k

2

� � � 

k

n

jj.

The determinants �

K


onstitute a 
omplete set of antisymmetri
 fun
-

tions and 
onsequently the wavefun
tion 	

n

, solution of the ele
troni
 S
hr�o-

dinger equation 6, 
an be expanded over su
h a set:

	 =

X

K

�

K




K

(9)

Substitution in eq. 6 gives:

X

K

H

el

�

K




K

= E

X

K

�

K




K

(10)

and multipli
ation of both sides of the above equation by �

�

L

with integration

over the ele
troni
 
oordinates (i.e. appli
ation of the \bra" ve
tor h�

L

j)

provides:

X

K

h�

L

jH

el

j�

K

i 


K

= E


L

(11)

Introdu
ing the matrix H de�ned by H

LK

= h�

L

jH

el

j�

K

i and the 
olumn

ve
tor 
 having as elements the 


K


oeÆ
ients, eq. 11 
an be put in matrix

form:

H
 = E
 (12)

and the problem of �nding the eigenvalues and eigenfun
tions of the ele
-

troni
 S
hr�odinger equation has been turned into the algebrai
 problem of

the diagonalization of the hermitian hamiltonian matrix H.

The expression 9 is then able to provide the solution to the ele
troni


S
hr�odinger equation and is known as the full Con�guration Intera
tion (CI)

expansion. The matrix elements H

KL

are easily obtained if one resorts to

the famous Slater's rules for one{ele
tron and two{ele
tron operators, whi
h

we now brie
y re
all.
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Given a one{ele
tron operator H

M

=

n

X

i=1

h(i), the matrix elements of H

M

between two Slater determinants �

L

and �

K

are di�erent from zero only in

two 
ases:

� �

L

= �

K

with H

KK

=

n

X

i=1

h 

k

i

jhj 

k

i

i

� �

L

6= �

K

for one spinorbital di�eren
e ( 

l

i

6=  

k

i

), with H

LK

=

h 

l

i

jhj 

k

i

i

In the above formula it is supposed that the equal spinorbitals have the

same ordering in both determinants. If su
h should not be the 
ase, one has

to take into a

ount a possible sign 
hange asso
iated to the parity of the

permutation ne
essary to bring the spinorbitals into 
oin
iden
e. Similarly,

for a two{ele
tron operator G =

1

2

X

i 6=j

g(i; j), only three 
ases are possible for

the matrix element G

LK

to be di�erent from zero:

� �

L

= �

K

with G

KK

=

1

2

n

X

i;j=1

(

D

 

k

i

 

k

j

jgj 

k

i

 

k

j

E

�

D

 

k

i

 

k

j

jgj 

k

j

 

k

i

E

)

� �

L

6= �

K

for one spinorbital di�eren
e ( 

l

i

6=  

k

i

), with G

LK

=

n

X

j=1

(

D

 

l

i

 

k

j

jgj 

k

i

 

k

j

E

�

D

 

l

i

 

k

j

jgj 

k

j

 

k

i

E

)

� �

L

6= �

K

for two spinorbital di�eren
es ( 

l

i

6=  

k

i

, 

l

j

6=  

k

j

), with

G

LK

=

D

 

l

i

 

l

j

jgj 

k

i

 

k

j

E

�

D

 

l

i

 

l

j

jgj 

k

j

 

k

i

E

In the following a two{ele
tron integral h 

a

(1) 

b

(2) jg(1; 2)j 




(1) 

d

(2)i will

often be written in the simpli�ed notation hab j 
di and the 
ombination

hab j 
di � hab j d
i, known as an antisymmetrized two{ele
tron integral, will

be abbreviated in hab jj 
di.

1.3 Diagonalization of large CI matri
es

Nowadays full CI 
al
ulations yielding a few energy eigenvalues for small

mole
ular systems are possible. Su
h 
al
ulations require the partial di-

agonalization of the Hamiltonian matrix whi
h, as has been shown in the

previous paragraph, is a large sparse N �N matrix. Currently diagonaliza-

tions with N surpassing 10

6

are routinely done (as of this writing N = 10

9

seems to be the limit of feasible diagonalizations). In this paragraph we shall

brie
y examine the main methods used in Quantum Chemistry to 
ompute

a few (usually the lowest) eigenvalues and the 
orresponding eigenve
tors of

the Hamiltonian matrix.
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1.3.1 Subspa
e proje
tion methods

Subspa
e proje
tion methods start from the 
on
ept of Krylov subspa
e

whi
h is spanned by the ve
tors of the form




0

1

; 


0

2

= H


0

1

; : : : 


0

k

= H


0

k�1

with 


0

1

a given guess ve
tor. In the old power method the last ve
tor

is shown to approa
h for large k the eigenve
tor asso
iated to the high-

est eigenvalue. A
tually, if v

1

, v

2

,: : :,v

N

denotes the basis of orthonormal

eigenve
tors asso
iated to the eigenvalues in in
reasing order of the moduli

jE

1

j � jE

2

j � : : : � jE

N

j, one has:




0

1

=

N

X

i=1

�

i

v

i

; 


0

2

=

N

X

i=1

�

i

E

i

v

i

; : : : 


0

k

=

N

X

i=1

�

i

E

k�1

i

v

i




0

k

= E

k�1

N

[�

1

(

E

1

E

N

)

k�1

v

1

+ (�

2

E

2

E

N

)

k�1

v

2

+ : : :+ �

N

v

N

℄

from whi
h the stated result follows at on
e, provided that E

N�1

is di�erent

from E

N

.

An improvement to the power method 
onsists in seeking an eigenve
tor

of H in the form

u

k

=

k

X

i=1

s

(k)

i




i

= Cs

where the 


i

are orthonormal ve
tors providing a basis for the Krylov spa
e

(obtained for instan
e by applying the Graham{S
hmidt orthonormalization

pro
edure to the 


0

i

ve
tors), C is the re
tangular N � k matrix having 


i

as i{th 
olumn and s is the k{dimensional ve
tor having s

(k)

i

as 
omponents.

The pro
edure 
onsists in proje
ting the Hamiltonian matrix onto the Krylov

spa
e and diagonalizing su
h a redu
ed matrix H

(k)

. The redu
ed matrix is

written as H

(k)

= C

y

HC, has the (low) dimensionality k � k and 
an be

easily diagonalized with standard te
hniques:

C

y

HCs = H

(k)

s = �

(k)

s

To be de�nite we suppose here to be interested to the smallest eigenvalue of

H. Taking into a

ount that P = CC

y

is a (N � N) matrix whi
h proje
ts

any N{dimensional ve
tor onto the Krylov spa
e, one has

PHPCs = �

(k)

Cs or PHPu

k

= �

(k)

u

k

7



with u

k

= Cs. So �

(k)

and u

k

are an approximate eigenvalue{eigenve
tor


ouple for the problem of the diagonalization of H. It 
an be remarked that,

by the variational prin
iple

u

k

y

Hu

k

= s

y

C

y

HCs = �

(k)

� E

1

In
reasing the dimension of the Krylov spa
e one improves the approximation

of �

(k)

for E

1

and usually one obtains good approximations for modest values

of k (<< N). One 
an easily 
ontrol the quality of the approximation by

evaluating the residual ve
tor

r

k

= Hu

k

� �

(k)

u

k

(13)

and stopping the iterations when jjr

k

jj < �.

In Lan
zos' approa
h the 


i

ve
tors are de�ned so as to build an or-

thonormal basis whi
h tridiagonalizes the small H

(k)

matrix. Starting from

a normalized guess 


1

, one builds 


0

2

= H


1

��

1




1

with �

1

= 


y

1

H


1

and next




2

=




0

2

q




0y

2




0

2

. 


2

is normalized to 1 and is immediately seen to be orthogonal

to 


1

. A quantity �

2

is then de�ned so that �

2




2

= 


0

2

, or �

2

= 


y

2




0

2

=

q




0y

2




0

2

and the general iteration s
heme is:

�

i+1




i+1

= H


i

� �

i




i

� �

i




i�1

with �

i

= 


y

i

H


i

and �

i

being de�ned by the requirement that 


y

i




i

= 1. The

ve
tors 


i

are readily seen to be orthonormal and are su
h that the matrix

H

(k)

= C

y

HC is tridiagonal

H

(k)

=

2

6

6

6

6

4

�

1

�

2

0 � � �

�

2

�

2

�

3

� � �

0 �

3

�

3

�

4

.

.

.

.

.

.

�

k�1

�

k

3

7

7

7

7

5

and 
an be easily diagonalized with standard te
hniques.

1.3.2 Davidson's method

In 1975 Davidson developed a method whi
h is at present the most widely

used in Quantum Chemistry for the diagonalization of large Hamiltonian

matri
es. Supposing to have a given starting spa
e with orthonormalized

ve
tors 


1

; : : : ; 


k

and to have an approximate eigenvalue{eigenve
tor pair

�

(k)

;u

k

obtained with the proje
tion method des
ribed previously, we look

8



for the 
orre
tion z whi
h makes u

k

+ z the true eigenve
tor 
orresponding

to the true eigenvalue E

1

of H

(H� E

1

1)(u

k

+ z) = 0 (14)

(H� E

1

1)z = �(H� E

1

1)u

k

(15)

Now the r.h.s. of eq. (15) 
an be approximated with the residual ve
tor r

k

(see eq. 13) while the l.h.s., if H is diagonally dominant (as is usually the


ase in the Hamiltonian matrix), 
an be repla
ed by (D � �

(k)

1)z, where

D 
ontains just the diagonal of H. Consequently z = �(D � �

(k)

1)

�1

r

k

is the desired 
orre
tion ve
tor. Adding su
h ve
tor to the pre
eding basis

and 
arrying out an orthonormalization, one obtains an augmented basis




1

; 


2

; : : : ; 


k+1

and the pro
ess 
an be iterated until 
onvergen
e is rea
hed.

If more than one eigenvalue{eigenve
tor 
ouple is wanted, the 


i

ve
tors

obtained at 
onvergen
e for the �rst eigenvalue are usually a good guess for

another one.

2 Se
ond quantization te
hniques

Given an orthonormal spin{orbital basis  

1

;  

2

; : : : and a generi
 n{ele
tron

determinant jM i = jj 

k

 

a

 

b

: : : jj we shall de�ne the destru
tion (or anni-

hilation) operator a

k

in the following way:

a

k

jj 

k

 

a

 

b

: : : jj = jj 

a

 

b

: : : jj (16)

i.e., the result of the appli
ation of a

k

to jM i is a (normalized) (n-1){

determinant jN i deprived of the spin{orbital  

k

. In eq. (16) spin{orbital

 

k

was assumed to be in the �rst 
olumn of the determinant; if su
h should

not be the 
ase, one has to take into a

ount the ne
essary transpositions to

shift spin{orbital  

k

to the �rst position, obtaining:

a

k

jj 

a

 

b

: : :  

k

: : : jj = (�1)

�

k

jj 

a

 

b

: : : jj (17)

with �

k

equal to the number of spin{orbitals pre
eding  

k

. If  

k

is not o

u-

pied in jM i we have by de�nition a

k

jM i = 0. Besides, a

k

is by de�nition

a linear operator and this allows its e�e
t on any fun
tion to be known (one

only needs to expand the fun
tion over the set of determinants jM i and to

apply a

k

to every determinant). Let us now investigate on the properties of

the adjoint operator a

+

k

= a

y

k

. From a

k

jM i = jN i we have

D

N

�

�

�a

k

�

�

�M

E

= 1

and also, by de�nition of adjoint operator

1

,

D

M

�

�

�a

+

k

�

�

�N

E

= 1. On the other

1




f

�

�

A

y

�

�

g

�

= hg jAj fi

�

9



hand,

D

M

0

�

�

�a

+

k

�

�

�N

E

= 0 if jM

0

i 6= jM i allowing one to write

X

M

0

jM

0

i

D

M

0

�

�

�a

+

k

�

�

�N

E

= jM i

and 
onsequently:

a

+

k

jN i = jM i (18)

sin
e

X

M

0

jM

0

i hM

0

j = 1 (resolution of the identity). Therefore a

+

k

a
ts on the

(n-1){ele
tron determinant jN i = jj 

a

 

b

: : : jj giving as result a n{ele
tron

determinant jM i = jj 

k

 

a

 

b

: : : jj. a

+

k

is 
alled the operator of 
reation of

an ele
tron in spin{orbital  

k

. If jM i already 
ontains  

k

the result is zero

be
ause a determinant 
ontaining two equal 
olumns vanishes (an expression

of the Pauli prin
iple).

2.1 Anti
ommutation properties

We now 
onsider a determinant jM i = jj 

i

 

j

 

a

 

b

: : : jj and apply to it the

produ
t of destru
tion operators a

j

a

i

a

j

a

i

jj 

i

 

j

 

a

 

b

: : : jj = jj 

a

 

b

: : : jj

If we apply su
h a produ
t in reversed order we obtain

a

i

a

j

jj 

i

 

j

 

a

 

b

: : : jj = �jj 

a

 

b

: : : jj

Summing these two equalities one has:

(a

j

a

i

+ a

i

a

j

) jM i = 0 (19)

and we see easily that su
h equation holds true for any jM i, irrespe
tive of

whether spin{orbitals  

i

and  

j

are o

upied or not in jM i. So one has the

operator identity:

a

j

a

i

+ a

i

a

j

= 0 (20)

whi
h states that the anti
ommutator between two destru
tion operators

h

a

i

; a

j

i

+

= a

i

a

j

+ a

j

a

i

is zero. Taking the adjoint of eq. (20) one imme-

diately sees that the same rule also holds for the 
reation operators:

h

a

+

i

; a

+

j

i

+

= 0 (21)

Putting i = j in eqs (20) and (21) one gets:

a

2

i

= 0 and a

+

i

2

= 0

10



that is, the operators a

i

and a

+

i

are nilpotent.

Let us now see the a
tion of a

+

i

a

j

with i 6= j. Let jM i = jj 

j

 

a

 

b

: : : jj;

one has:

a

+

i

a

j

jM i = jj 

i

 

a

 

b

: : : jj

So, a

+

i

a

j

is a repla
ement operator, substituting spin{orbital  

j

with  

i

(noti
e that this results holds for whatever position the index j o

upies in

the determinant). The e�e
t of a

j

a

+

i

is instead:

a

j

a

+

i

jj 

j

 

a

 

b

: : : jj = a

j

jj 

i

 

j

 

a

 

b

: : : jj = �jj 

i

 

a

 

b

: : : jj

Thus (a

+

i

a

j

+ a

j

a

+

i

) jM i = 0 and one sees easily that the same result holds

in all 
ases, irrespe
tive of whether  

j

is o

upied or not in jM i or whether

 

i

is already o

upied in jM i. Consequently we 
on
lude that

h

a

+

i

; a

j

i

+

= 0

for i 6= j. The 
ase i = j is also very easy: if  

i

is o

upied in jM i we have

a

+

i

a

i

jM i = jM i and a

i

a

+

i

jM i = 0, else, if  

i

is not o

upied in jM i:

a

+

i

a

i

jM i = 0 and a

i

a

+

i

jM i = jM i. In any 
ase (a

+

i

a

i

+ a

i

a

+

i

) jM i =

jM i. We 
an then state that for the anti
ommutator between a 
reator and

a destru
tor one has:

h

a

+

i

; a

j

i

+

= Æ

i;j

(22)

We 
on
lude this paragraph with the following observations:

� A determinant jM i = jj 

i

1

 

i

2

� � � 

i

n

jj 
an be su

essively depleted by

appli
ation of the destru
tors a

i

1

, a

i

2

,: : :, a

i

n

. The �nal out
ome is the


ompletely ionized mole
ule, indi
ated with jva
i (the va
uum state).

In other terms a

i

n

a

i

n�1

: : : a

i

1

jM i = jva
i

� Conversely, any n{ele
tron determinant 
an be thought of as deriving

from the appli
ation of a produ
t of 
reation operators to the va
uum:

jM i = a

+

i

1

a

+

i

2

: : : a

+

i

n

jva
i

2.2 One{ and two{ele
tron operators

We shall 
onsider an operator of the form

^

T =

X

r;s

t

rs

a

+

r

a

s

(23)

with the T matrix hermitian (t

rs

= t

�

sr

). It is easily seen that the operator

^

T

is hermitian (

^

T

y

= T ). Given a generi
 determinant jM i = jj 

k

1

 

k

2

� � � 

k

n

jj,

we shall now investigate the matrix element

D

M

�

�

�

^

T

�

�

�M

E

=

X

r;s

t

rs

D

M

�

�

�a

+

r

a

s

�

�

�M

E

(24)
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Sin
e the operator a

+

r

a

s

repla
es spin{orbital  

s

in jM i (if possible) with

 

r

, it is immediately re
ognized that the only possibility for hM ja

+

r

a

s

jMi

to be di�erent from zero is that s equals an o

upied index and r = s. So

D

M

�

�

�

^

T

�

�

�M

E

=

n

X

i=1

t

k

i

;k

i

(25)

Let us now 
onsider the matrix element of operator

^

T between two di�erent

determinants jM i and jN i, where jM i = jj 

k

1

 

k

2

: : :  

a

: : :  

k

n

jj and jN i =

jj 

k

1

 

k

2

: : :  

b

: : :  

k

n

jj, i.e. the two determinants di�er by one spin{orbital

di�eren
e ( 

a

6=  

b

):

D

N

�

�

�

^

T

�

�

�M

E

=

X

r;s

t

rs

D

N

�

�

�a

+

r

a

s

�

�

�M

E

(26)

The only non zero result 
an be obtained with s = a and r = b, yielding

D

N

�

�

�

^

T

�

�

�M

E

= t

ba

(27)

If determinant jN i di�ers from jM i by more than one spin{orbital, it is

immediately seen that

D

N

�

�

�

^

T

�

�

�M

E

= 0. It has been thus re
ognized that

operator

^

T satis�es Slater's rules (see se
. 1.2 at page 4) for a one{ele
tron

operator. In other terms, if

^

F is a one{ele
tron operator (

^

F =

n

X

i=1

f(i)),

it is equivalent to

X

r;s

f

rs

a

+

r

a

s

where f

rs

= h 

r

(1) jf(1)j 

s

(1)i. Thus the

expression (23) is the most general form to represent a one{ele
tron operator

in the so{
alled \se
ond quantization" formalism.

Let us now 
onsider an operator of the following form:

^

G =

1

2

X

rstu

g

rs;tu

a

+

r

a

+

s

a

u

a

t

(28)

where the four{index matrix g satis�es the hermitian requisite g

rs;tu

= g

�

tu;rs

.

Operator

^

G is promptly seen to be hermitian. Furthermore, as happens in

almost all pra
ti
al 
ases, we shall require the symmetry property g

rs;tu

=

g

sr;ut

. It is then easily shown, noti
ing that the produ
t a

+

r

a

+

s

a

u

a

t

performs

a double repla
ement (substituting the ordered 
ouple ( 

t

 

u

) with ( 

r

 

s

)),

that operator

^

G obeys Slater's rules for a two{ele
tron operator:

D

M

�

�

�

^

G

�

�

�M

E

=

1

2

n

X

i;j=1

(g

k

i

k

j

;k

i

k

j

� g

k

i

k

j

;k

j

k

i

)

D

N

�

�

�

^

G

�

�

�M

E

=

n

X

i=1

(g

k

i

b;k

i

a

� g

k

i

b;ak

i

) (one orb. di�.)

D

N

�

�

�

^

G

�

�

�M

E

= g


d;ab

� g


d;ba

(two orb. di�.)
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Consequently the form (28) represents the most general expression for a

two{ele
tron operator in the se
ond quantization formalism. For instan
e

the interele
troni
 repulsion operator

^

G =

1

2

n

X

0

i;j

1

r

ij

be
omes in the language

of se
ond quantization:

^

G =

1

2

X

rstu

�

 

r

(1) 

s

(2)

�

�

�

�

1

r

12

�

�

�

�

 

t

(1) 

u

(2)

�

a

+

r

a

+

s

a

u

a

t

(29)

As 
on
erns the ele
troni
 Hamiltonian

^

H

el

=

n

X

i=1

h(i) +

1

2

n

X

0

i;j

1

r

ij

;

where h(i) 
olle
ts the kineti
 energy and nu
lear 
oulombi
 attra
tion po-

tential for ele
tron i, one promptly gets the se
ond{quantized form:

^

H

el

=

X

r;s

h 

r

jhj 

s

i a

+

r

a

s

+

1

2

X

rstu

�

 

r

 

s

�

�

�

�

1

r

12

�

�

�

�

 

t

 

u

�

a

+

r

a

+

s

a

u

a

t

(30)

It should be noted that the se
ond{quantized version of the operators does

not make any referen
e to the number of ele
trons, formulas (23) and (28)

being valid for an arbitrary ionization state of the system.

2.3 Unitary transformations of the spin{orbital basis

We shall now study how the se
ond quantization operators transform when

one passes from a spin{orbital basis to another one: j i ! j 

0

i, where

we de�ne the row ve
tor j i = fj 

1

i ; j 

2

i ; : : :g and similarly for j 

0

i. If

j i and j 

0

i are both orthonormal basis sets, the only way to perform the

transformation is through a unitary operator

^

U

j i

0

=

^

U j i = j iU (31)

where U is a given unitary matrix.

In the basis j 

0

i the operators will have the same form as in the old j i

basis. A generi
 one{ele
tron operator

^

T 
an be written as:

^

T =

X

r;s

t

rs

a

+

r

a

s

=

X

r;s

t

0

rs

a

0+

r

a

0

s

where a

0

r

(a

0+

r

) is the destru
tion (
reation) operator asso
iated to spin{

orbital  

0

r

. Making use of the ve
tor notation

a =

2

6

6

4

a

1

a

2

.

.

.

3

7

7

5

and a

+

= [a

+

1

; a

+

2

; : : :℄

13



we 
an write

^

T = a

+

Ta = a

0+

T

0

a

0

Taking then into 
onsideration that

T = h jtj i = U h 

0

jtj 

0

iU

+

and 
onsequently

^

T = a

+

UT

0

U

+

a, one promptly dedu
es the formulas for

the transformation of the destru
tion and 
reation operators:

a

0

= U

+

a and a

0+

= a

+

U (32)

or, in detail

a

0

r

=

X

s

U

�

sr

a

s

and a

0+

r

=

X

s

a

+

s

U

sr

(33)

(noti
e that the 
reators transform exa
tly as the spin{orbitals).

We shall now investigate the a
tion of

^

U on a generi
 determinant jK i =

jj 

1

 

2

: : :  

n

jj. Remembering that jK i = a

+

1

a

+

2

: : : a

+

n

jva
i and that a uni-

tary transformation of a generi
 operator

2

^

A is given by

^

A

0

=

^

UA

^

U

+

, one

has the following steps

^

U jK i =

^

Ua

+

1

a

+

2

: : : a

+

n

jva
i

=

^

Ua

+

1

^

U

+

^

Ua

+

2

^

U

+

^

Ua

+

3

: : :

^

Ua

+

n

^

U

+

^

U jva
i

= a

0+

1

a

0+

2

: : : a

0+

n

jva
i

= jj 

0

1

 

0

2

: : :  

0

n

jj

Thus,

^

U jK i is another determinant where spin{orbitals  

i

have been re-

pla
ed by the transformed spin{orbitals  

0

i

.

At this point we re
all from Linear Algebra than any unitary operator

^

U


an be put in exponential form as

^

U = e

i

^

�

where

^

� is a suitable hermitian

operator. It is not diÆ
ult to show that

^

� is just a simple one{ele
tron

operator

^

� =

X

r;s

�

rs

a

+

r

a

s

(34)

where matrix� is hermitian and is asso
iated to matrixU by the exponential

relation

U = e

i�

(35)

We shall barely sket
h the demonstration whi
h is based on the expansion of

the transformed operator a

0+

r

using the Baker{Campbell{Hausdor� identity:

e

A

Be

�A

= B + [A;B℄ +

1

2!

[A; [A;B℄℄ +

1

3!

[A; [A; [A;B℄℄℄ + : : :

2

If

^

A	 = �, appli
ation of

^

U to both sides gives

^

U

^

A

^

U

+

(

^

U	) = (U�), whi
h shows

that

^

U

^

A

^

U

+

expresses the transformation of operator

^

A e�e
ted by

^

U

14



Assuming

^

� to have the form (34) and making use of the 
ommutator rela-

tionship [a

+

t

a

u

; a

+

r

℄ = Æ

ru

a

+

t

, one readily arrives at the expansion:

^

Ua

+

r

^

U

+

= a

+

r

+ i

X

t

�

tr

a

+

t

+

i

2

2!

X

t

�

2

tr

a

+

t

+ : : : =

X

t

(e

i�

)

tr

a

+

t

=

X

t

U

tr

a

+

t

whi
h proves the assumption. Often one sets

^

T = i

^

�, with

^

T antihermitian

(

^

T

y

= �

^

T ). If, as is usually the 
ase, the two sets of orbitals  and  

0

are

real, the T matrix (t

rs

= i�

rs

) has to be skew{symmetri
, i.e.

~

T = �T.

2.4 The spin{tra
ed repla
ement operators

Operators whi
h do not have dependen
e upon the spin allow a simpli�
ation

to be introdu
ed by integrating over the spin variables in the matrix elements.

Supposing that the spin{orbitals  

i

are derived from a unique set of spatial

orbitals '

i

with allo
ation of either � or � fa
tors, one has for a spinless

one{ele
tron operator:

^

T =

X

rs

h 

r

jtj 

s

i a

+

r

a

s

=

X

rs

h'

r

jtj'

s

i (a

+

r�

a

s�

+ a

+

r�

a

s�

) (36)

where in the last term the summation runs over the spatial orbitals and where

with a

+

r�

et
. we mean the 
reation operator asso
iated to spin{orbital '

r

�

et
.

One 
an de�ne the spin{tra
ed repla
ement operators

E

rs

= a

+

r�

a

s�

+ a

+

r�

a

s�

(37)

whi
h allow any spinless one{ele
tron operator to be rewritten as

^

T =

X

r;s

h'

r

jtj'

s

i E

rs

(38)

The 
ommutation of two su
h operators is given by the following rule (easy

to demonstrate for the reader)

[E

rs

; E

tu

℄ = Æ

st

E

ru

� Æ

ru

E

ts

(39)

The above 
ommutation property {we observe just in passing{ has an im-

portant 
onne
tion with the Unitary Group Approa
h (UGA) for the evalu-

ation of the matrix elements of the Hamiltonian between spin eigenfun
tions

(rather than mere determinants).

An important property of the spin{tra
ed repla
ement operators is that

they 
ommute with the total spin momentum and with its z 
omponent

[E

rs

; S

2

℄ = 0; [E

rs

; S

z

℄ = 0 (40)
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as 
an be veri�ed by expressing S

2

and S

z

in se
ond quantization. As a


onsequen
e the appli
ation of E

rs

to an eigenfun
tion of S

2

and S

z

produ
es

a fun
tion with that same property.

For a two{ele
tron operator we 
an pro
eed analogously

G =

X

rstu

h 

r

 

s

jgj 

t

 

u

i a

+

r

a

+

s

a

u

a

t

=

X

rstu

h'

r

'

s

jgj'

t

'

u

i (a

+

r�

a

+

s�

a

u�

a

t�

+ a

+

r�

a

+

s�

a

u�

a

t�

+ a

+

r�

a

+

s�

a

u�

a

t�

+ a

+

r�

a

+

s�

a

u�

a

t�

)

=

X

rstu

h'

r

'

s

jgj'

t

'

u

i (E

rt

E

su

� Æ

ts

E

ru

)

The Hamiltonian operator 
an then be expressed as

^

H =

X

rs

h

rs

E

rs

+

1

2

X

rstu

hrs j tui (E

rt

E

su

� Æ

ts

E

ru

) (41)

3 Best one{determinant wavefun
tions:

Hartree{Fo
k theory

Using the te
hniques exposed in the pre
eding se
tion it is an easy matter

to �nd the best approximation to the wave fun
tion of the ele
troni
 ground

state in the form of a single Slater's determinant 	 = jj 

1

 

2

: : :  

n

jj. A
tually

the method we are going to present applies not only to the ground state but

also to the lowest state of a given spatial or spin symmetry. With the term

\best approximation" we mean that the spin{orbitals we are in quest of

should satisfy the variational theorem, i.e. they should minimize the energy

fun
tional E =

D

	

�

�

�

^

H

�

�

�	

E

with the orthonormality 
onstraints h 

i

j  

j

i = Æ

ij

.

At the point of minimum, any in�nitesimal variation  

i

!  

i

+ Æ 

i

leads

to ÆE = 0. Su
h a variation 
an be done, as has been seen in the previous

se
tion, by applying to 	 a unitary operator

^

U = e

^

T

with

^

T = �

^

T

+

=

X

r;s

t

rs

a

+

r

a

s

(t

rs

= �t

�

sr

). If E

0

=

D

	

0

�

�

�

^

H

�

�

�	

0

E

with j	

0

i = e

^

T

j	i, one has

E

0

=

D

e

^

T

	

�

�

�

^

H

�

�

� e

^

T

	

E

=

D

	

�

�

�e

�

^

T

^

He

^

T

�

�

�	

E

and

ÆE = E

0

� E =

D

	

�

�

�e

�

^

T

^

He

T

�H

�

�

�	

E

Taking the t

rs

parameters as in�nitesimal, one obtains an in�nitesimal vari-

ation of the energy. The expansion

e

�

^

T

^

He

T

=

^

H � [

^

T ;

^

H℄ +

1

2

[

^

T ; [

^

T ;

^

H℄℄ + : : :
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an be trun
ated to �rst order and 
onsequently:

ÆE =

D

	

�

�

�

^

H + [

^

H;

^

T ℄�

^

H

�

�

�	

E

=

D

	

�

�

�[

^

H;

^

T ℄

�

�

�	

E

It is now 
onvenient to use the repla
ement operators E

rs

= a

+

r

a

s

(with the

property E

+

rs

= E

sr

) whi
h allow the expression for ÆE to be rephrased as:

ÆE =

X

r;s

t

rs

D

	

�

�

�

^

H

�

�

�E

rs

	

E

�

X

r;s

t

rs

D

E

sr

	

�

�

�

^

H

�

�

�	

E

(42)

In the �rst term of the r.h.s. of eq (42) E

rs

substitutes  

s

with 	

r

in 	 and


onsequently s must designate the index of a spin{orbital o

upied in 	; r,

on the 
ontrary, must be either the index of a virtual spin{orbital (i.e. not

o

upied in 	) or the same index as s. In the se
ond term of eq. (42) the

situation is reversed, with r o

upied and s virtual (or 
oin
ident with r).

Introdu
ing now the 
onvention of designating with i; j; : : : indi
es referring

to o

upied spin{orbitals and with a; b; : : : indi
es for virtual orbitals, eq.(42)


an be rewritten as:

ÆE =

n

X

i=1

X

a>n

t

ai

D

	

�

�

�

^

H

�

�

�	

a

i

E

�

n

X

i=1

X

a>n

t

ia

D

	

a

i

�

�

�

^

H

�

�

�	

E

(43)

where we have set 	

a

i

= E

ai

	 (a singly ex
ited determinant, with spin{orbital

 

i

repla
ed by  

a

) and where we noti
e that the terms with t

ii

have 
an
eled

out. Sin
e t

ia

= �t

�

ai

, one 
an also write

ÆE =

n

X

i=1

X

a>n

t

ai

D

	

�

�

�

^

H

�

�

�	

a

i

E

+ 
.
. (44)

where \
.
." designates the 
omplex 
onjugate of the pre
eding term. Sin
e

the quantities t

ai

are arbitrary, in order for ÆE to vanish it is ne
essary that

D

	

�

�

�

^

H

�

�

�	

a

i

E

= 0 (45)

The above result is known as Brillouin's theorem, stating that the spin{

orbitals whi
h minimize E are su
h that the intera
tions between 	 and any

singly ex
ited determinant E

ai

	 are zero.

Now 	 = jj 

1

 

2

: : :  

i

: : :  

n

jj and 	

a

i

= jj 

1

 

2

: : :  

a

: : :  

n

jj, so that,

remembering Slater's rules, one has immediately:

D

	

a

i

�

�

�

^

H

�

�

�	

E

= h 

a

jhj 

i

i+

n

X

j=1

��

 

a

 

j

�

�

�

�

1

r

12

�

�

�

�

 

i

 

j

�

�

�

 

a

 

j

�

�

�

�

1

r

12

�

�

�

�

 

j

 

i

��
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One 
an introdu
e two auxiliary operators

^

J and

^

K (Coulomb and ex
hange

operators, respe
tively) through their matrix elements:

D

 

r

�

�

�

^

J

�

�

� 

s

E

=

n

X

j=1

�

 

r

 

j

�

�

�

�

1

r

12

�

�

�

�

 

s

 

j

�

D

 

r

�

�

�

^

K

�

�

� 

s

E

=

n

X

j=1

�

 

r

 

j

�

�

�

�

1

r

12

�

�

�

�

 

j

 

s

�

With these operators 
ondition (45) 
an be 
ast in the form:

D

 

a

�

�

�

^

h +

^

J �

^

K

�

�

� 

i

E

= 0 (46)

Fo
k's operator is now de�ned as

^

F =

^

h+

^

J�

^

K, so that one has the equation

D

 

a

�

�

�

^

F

�

�

� 

i

E

= 0 (47)

Condition (47) states that the ve
tor

^

F j 

i

i must be orthogonal to any vir-

tual j 

a

i. As a 
onsequen
e

^

F j 

i

i belongs to the subspa
e generated by the

o

upied spin{orbitals f 

1

;  

2

; : : :  

n

g and one obtains the so{
alled gener-

alized Hartree{Fo
k equations:

^

F j 

i

i =

n

X

j=1

j 

j

i �

ji

(48)

Sin
e the Fo
k operator

^

F is hermitian, matrix � is also hermitian:

�

ij

=

D

 

i

�

�

�

^

F

�

�

� 

j

E

=

D

 

j

�

�

�

^

F

�

�

� 

i

E

�

= �

�

ji

The hermiti
ity of � 
an be exploited by 
onsidering the unitary matrix U

whi
h diagonalizes �:

U

+

�U =

2

6

6

6

6

4

�

1

0 : : : 0

0 �

2

0 : : :

.

.

.

.

.

.

.

.

.

0 : : : 0 �

n

3

7

7

7

7

5

Changing the o

upied spin{orbitals a

ording to the transformation:

 

0

i

=

n

X

j=1

 

j

U

ji

and noti
ing that the Fo
k operator is invariant under su
h a transformation,

one arrives at the 
anoni
al Hartree{Fo
k equations

^

F 

0

i

= �

i

 

0

i

(49)

18



It should be noti
ed that eq. (49) is not a simple eigenvalue equation, be
ause

the operator

^

F depends upon the solutions  

i

's. In order to solve eq. (49) one

has to resort to an iterative pro
edure, starting from a set of guess orbitals

f 

(0)

1

;  

(0)

2

; : : :g, building an initial

^

F

(0)

, diagonalizing it (

^

F

(0)

 

(1)

i

= �

(0)

i

 

(1)

i

)

and pro
eeding su

essively until 
onvergen
e (\self 
onsisten
e") is attained.

The eigenvalues �

i

of eq. (49) are 
alled \orbital energies" and possess

a neat physi
al meaning, as is shown by the following argument: if one


onsiders the ionized state 	

+

i

= a

i

	, where an ele
tron has been removed

from spin{orbital  

i

in the determinant 	, one obtains for the energy:

E

+

i

=

D

a

i

	

�

�

�

^

H

�

�

� a

i

	

E

=

D

	

�

�

�a

+

i

^

Ha

i

�

�

�	

E

(50)

=

D

	

�

�

�

^

Ha

+

i

a

i

�

�

� 

E

+

D

	

�

�

�[a

+

i

;

^

H℄a

i

�

�

�	

E

(51)

= E +

D

	

�

�

�[a

+

i

;

^

H℄a

i

�

�

�	

E

(52)

It is remarkable that eq. (52) provides the ionization energy (E

+

i

�E) as the

expe
tation value in the ground state of a 
ertain operator ([a

+

i

;

^

H℄a

i

). It is

not diÆ
ult to evaluate the 
ommutator appearing in eq. (52) and, after a few

algebrai
 steps (the reader 
an avail himself of the two basi
 
ommutation

rules: [a

+

i

; a

+

r

a

s

℄ = �Æ

is

a

+

r

and [a

+

i

; a

+

r

a

+

s

a

u

a

t

℄ = Æ

iu

a

+

r

a

+

s

a

t

� Æ

it

a

+

r

a

+

s

a

u

)

one gets (Koopmans' theorem):

D

	

�

�

�[a

+

i

;

^

H℄a

i

�

�

�	

E

= �h

ii

� (J

ii

�K

ii

) = ��

i

(53)

Analogously, upon 
reating a negatively ionized determinant with the addi-

tion to 	 of an ele
tron in the virtual spin{orbital  

v

, one gets : E

v

�

�E = �

v

.

Also, one 
an have a (usually rough) approximation to an ele
troni
ally

ex
ited state in the form 	

a

i

= a

+

a

a

i

	 with ex
itation energy E

a

i

� E =

�

a

� �

i

� (J

ai

�K

ai

).

3.1 Restri
ted and unrestri
ted Hartree{Fo
k

equations

The Hartree{Fo
k equations 
onsidered in the previous se
tion were devel-

oped in terms of spin{orbitals. Taking into a

ount that  

i

(x

1

; y

1

; z

1

; s

1

) =

'

i

(x

1

; y

1

; z

1

)�

m

(s

1

), where '

i

is a spatial orbital and �

m

is a spin fun
tion

(either � if m =

1

2

or � if m = �

1

2

), one 
an develop new equations in

whi
h the spin fun
tions have been disposed of. The simplest situation to

deal with is the so 
alled 
losed shell 
ase whi
h is also the most frequent.

Most mole
ules are in a singlet ground state and, 
lose to the equilibrium

geometry, are reasonably well des
ribed by a single Slater determinant where

19



a given spatial orbital '

i

o

urs twi
e, giving rise to the two spin{orbitals

'

i

� and '

i

�. The Slater determinant des
ribing the mole
ule is thus given

by:

	(1; 2; : : : ; 2n) = jj'

1

(1)�(1)'

1

(2)�(2) : : : '

n

(2n� 1)�(2n� 1)'

n

(2n)�(2n)jj

In this 
ase the Hartree{Fo
k equations (eq. 49), upon integration over the

spin fun
tions, are easily seen to simplify to the following form:

^

f'

i

= �

i

'

i

(54)

with

^

f =

^

h + 2

^

J �

^

K, where

^

J and

^

K are de�ned only in terms of spatial

orbitals:

D

'

r

�

�

�

^

J

�

�

�'

s

E

=

n

X

j=1

�

'

r

'

j

�

�

�

�

1

r

12

�

�

�

�

'

s

'

j

�

D

'

r

�

�

�

^

K

�

�

�'

s

E

=

n

X

j=1

�

'

r

'

j

�

�

�

�

1

r

12

�

�

�

�

'

j

'

s

�

In 
ase one wants to des
ribe an open{shell situation, e.g. when the mole
ule

is not in a singlet state, the equations be
ome more intri
ate: a determinant

of the form

	(1; 2; : : : ; 2n+m) = jj'

1

�'

1

� : : : '

n

�'

n

�'

n+1

� : : : '

n+m

�jj

des
ribes a state with spin quantum number S =

m

2

. The equations whi
h

determine the best orbitals '

i

are rather 
ompli
ated to write down and are

termed \Restri
ted Open{shell Hartree{Fo
k" equations (ROHF). A simpler

alternative, often employed in pra
ti
e, is to resort to di�erent orbitals for

di�erent spins, i.e. to adopt two distin
t sets of spatial orbitals, the �rst

being asso
iated to � spin{orbitals and the se
ond to the � ones:

	(1; 2; : : : ; 2n+m) = jj'

1

�'

0

1

� : : : '

n

�'

0

n

�'

n+1

� : : : '

n+m

�jj

The resulting equations are 
alled \Unrestri
ted Hartree-Fo
k equations"

(UHF); they are simpler than the ROHF equations but su�er from the in-


onvenien
e of not providing an eigenstate of S

2

.

3.2 Expansion in a set of atomi
 orbitals: Roothan's

equations

The Hartree{Fo
k equations seen in the previous se
tions are 
ompli
ated

integro{di�erential equations not amenable to analyti
al solutions. The usual
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way to solve su
h equations is to resort to an expansion of the mole
ular

orbitals '

i

in a 
hosen atomi
 basis set of orbitals f�

1

; �

2

; : : :g:

'

i

=

X

r

�

r




ri

(55)

thus redu
ing our problem to an algebrai
 one, where the mixing 
oeÆ
ients




ri

have to be determined. If the atomi
 basis set is 
omplete the true so-

lutions of the Hartree{Fo
k equations 
an in prin
iple be obtained through

the following steps (we envisage the 
losed{shell 
ase here):

^

f'

i

= �

i

'

i

X

r

^

f�

r




ri

= �

i

X

r

�

r




ri

X

r

D

�

s

�

�

�

^

f

�

�

��

r

E




ri

= �

i

X

r

h�

s

j �

r

i 


ri

In matrix form one has the Roothan's SCF (\Self Consistent Filed") equa-

tions:

F


i

= �

i

S


i

(56)

where 


i

is a 
olumn ve
tor 
ontaining the 


ri


oeÆ
ients, S is the overlap

matrix (S

sr

= h�

s

j �

r

i) and F is the Fo
k matrix:

F

sr

=

D

�

s

�

�

�

^

f

�

�

��

r

E

= h�

s

jhj�

r

i+

n

X

j=1

�

2

�

�

s

'

j

�

�

�

�

1

r

12

�

�

�

�

�

r

'

j

�

�

�

�

s

'

j

�

�

�

�

1

r

12

�

�

�

�

'

j

�

r

��

Upon expansion of the '

j

orbitals a

ording to eq. (55) one gets

F

sr

= h�

s

jhj�

r

i+

X

t;u

�

2

�

�

s

�

t

�

�

�

�

1

r

12

�

�

�

�

�

r

�

u

�

�

�

�

s

�

t

�

�

�

�

1

r

12

�

�

�

�

�

u

�

r

��

R

ut

(57)

where the density matrix R has been introdu
ed:

R

ut

=

n

X

j=1




�

uj




tj

or

R = CC

y

with C designating the re
tangular matrix having as 
olumns the 


j

ve
tors.

Roothans' equations (56) are 
lassi�ed as pseudoeigenvalue equations be-


ause matrix F needs the knowledge of the solutions 


i

to be 
onstru
ted.

Their solution is generally 
arried out in an iterative way, starting from a

guess 
oeÆ
ient matrix C

(0)

from whi
h an initial R and F matrix are built

up; diagonalization of F (a
tually, due to the o

urren
e of the overlap S

matrix, eq. (56) is a generalized eigenvalue equation) produ
es a new 
oeÆ-


ient matrix C

(1)

whi
h permits the pro
ess to be iterated until 
onvergen
e

(self{
onsisten
e) is rea
hed.
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3.3 The CIS approximation for the 
al
ulation of ex-


ited states

We have seen that the Hartree{Fo
k equations 
an be derived from Bril-

louin's theorem (eq. 45 at page 17) whi
h states that at self 
onsisten
e

there is no intera
tion between the H{F determinant and any single ex
ita-

tion. In other terms, no improvement is obtained for the ground state by

diagonalizing the Hamiltonian matrix H built on the fun
tions f	

0

;	

a

i

; : : :g


ontaining, besides 	

0

, all the single ex
itations 	

a

i

= E

ai

	

0

. So, the di-

agonalization of the Hamiltonian matrix (H
 = E
) yields as its lowest

eigenvalue E

0

= h	

0

jHj	

0

i with 


y

= [1; 0; : : : ; 0℄. The higher eigenvalues,

anyway, 
onstitute approximations for the energies of ex
ited states and the

resulting method is usually referred to as \Con�guration Intera
tion with

Singles" (CIS) or Tamm{Dan
o� approximation. The expression of the ma-

trix elements of the Hamiltonian is straightforward re
alling Slater's rules

and yields at on
e:

D

	

b

j

jHj	

a

i

E

= �hbi jj aji+ Æ

ba

Æ

ij

[(�

a

� �

i

) + E

0

℄ (58)

Also, the dimension of the Hamiltonian matrix is modest (by today's stan-

dards), being determined by the produ
t of the number of o

upied orbitals

times that of the virtual ones. The CIS approximation is often used as

one of the simplest methods able to provide reasonable results for ex
ited

states, its validity being 
hie
y 
on�ned to those states whose physi
al na-

ture does not require higher ex
itations than the singles. Starting from a

singlet Hartree{Fo
k wavefun
tion only singlet and triplet ex
ited states 
an

be obtained with the CIS method. Singlets 
an be obtained by applying the

spin{tra
ed operators E

ai

= a

+

a�

a

i�

+ a

+

a�

a

i�

to 	

0

and by diagonalizing the

resulting Hamiltonian matrix. Triplet states, 
onversely, 
an be formed with

the operators E

0

ai

= a

+

a�

a

i�

� a

+

a�

a

i�

.
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4 Multi
on�gurational Self Consistent Field

methods (MCSCF)

We have already remarked that a full 
on�guration intera
tion (Full CI) 
an

exa
tly solve the S
hr�odinger equation. Unfortunately a full CI is only feasi-

ble in very simple 
ases, with few ele
trons and with not too mu
h extended

orbital basis sets. Often one makes use of a trun
ated CI

	 =

N

X

K=1

C

K

�

K

(59)

where the ele
troni
 
on�gurations estimated to be the most important are

in
luded in the CI. With the term MCSCF (Multi
on�gurational Self Con-

sistent Field) one means a generalization of Hartree{Fo
k's equations where,

along with the CI 
oeÆ
ients C

K

, also the orbitals '

i

utilized to build up

the determinants �

K

, are optimized. In other terms, the energy asso
iated

to eq. (59) E =

D

	

�

�

�

^

H

�

�

�	

E

, has to be stationary with respe
t to both a vari-

ation in the expansion 
oeÆ
ients (C

0

K

! C

K

+ ÆC

K

) and a variation in the

orbitals ('

0

i

! '

i

+ Æ') with the orthonormality 
onstraints (

P

K

C

�

K

C

K

= 1

and h'

i

j '

j

i = Æ

ij

). We shall now des
ribe an iterative pro
edure, 
onsisting

of two su

essive steps repeated until 
onvergen
e, whi
h is able to solve the

MCSCF problem.

1. One �nds the 
oeÆ
ients C

K

obtained by building determinants �

K

with a given set of orbitals

2. On
e the 
oeÆ
ients C

K

are obtained, a set of orbitals minimizing

E =

D

	

�

�

�

^

H

�

�

�	

E

is looked for

Step 1 is in prin
iple easy, sin
e one just needs to solve the matrix eigenvalue

equation H
 = E
 with H

KL

=

D

�

K

�

�

�

^

H

�

�

��

L

E

easily obtainable through

Slater's rules. Step 2 
an be fa
ed with te
hniques similar to those met for

the 
ase of a single determinant. We have already learned that the operator

U asso
iated to a unitary transformation of a spin{orbital basis, 
an be 
ast

in the form U = e

T

with T =

P

r;s

t

rs

a

+

r

a

s

(t

rs

= �t

�

sr

). For an in�nitesimal

transformation the expansion of e

T


an be trun
ated to the �rst order and,

as we already know, e

�T

He

T

= H � [T;H℄ so that the 
ondition for 	 to

give the minimum energy is:

ÆE = h	 j[H; T ℄j	i = 0

By utilizing the repla
ement operators E

rs

, one 
an write:

h	 jHT j	i � h	 jTHj	i = 0

X

r;s

t

rs

(h	 jHjE

rs

	i � hE

sr

	 jHj	i) = 0 (60)
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Assuming for simpli
ity that our fun
tions are real, one has the equality

hE

sr

	 jHj	i = h	 jHjE

sr

	i and, given the arbitrariness of the t

rs


oeÆ-


ients, equation (60) 
an only be satis�ed if

h	 jHj (E

rs

� E

sr

)	i = 0 (61)

Condition 61 is 
alled \extended Brillouin's theorem" or \Brillouin{Levy{

Berthier's theorem". The fun
tion (E

rs

� E

sr

)	 does not intera
t with 	

when the orbitals are optimized. E

rs

substitutes spin{orbital  

s

with  

r

in

all the determinants of 	 that 
ontain  

s

and do not 
ontain  

r

(else it

gives zero); 
onversely, E

sr

substitutes  

r

with  

s

when possible. By setting

	

r

s

= (E

rs

� E

sr

)	, one must have at self{
onsisten
e

D

	

�

�

�

^

H

�

�

�	

r

s

E

= 0. This

means that trying to improve the wave fun
tion with 	! 	+

X

r>s




rs

	

r

s

would

be of no avail if self{
onsisten
e has been rea
hed. On the 
ontrary, far from

SCF, the diagonalization of the Hamiltonian matrix in the set f	;	

r

s

; : : :g

brings about an improvement of 	. One 
an then identify the 
orre
ted

fun
tion 	

0

= 	 +

X

r>s




rs

	

r

s

as the �rst{order development of e

T

	 = 	 +

X

r>s

t

rs

(E

rs

� E

sr

)	 + : : : and one 
an utilize the 


rs


oeÆ
ients to obtain a

new spin{orbital basis:

 

0

=  e

T

with t

rs

= 


rs

The improved spinorbitals 
an then be employed to rebuild the CI wavefun
-

tion and to 
ontinue the iterative pro
ess until 
onvergen
e is rea
hed. This

method is referred to as the Super{CI (SCI) approa
h.

Other approa
hes, su
h as those based on se
ond{order Newton{Raphson

te
hniques, are more e�e
tive than super{CI and 
an solve the MCSCF prob-

lem with a single step pro
edure, i.e. optimizing at the same time the C

K

CI


oeÆ
ients and the orbitals. Anyway the super{CI approa
h is still in use

sin
e it requires rather modest 
omputational resour
es.

A problem in MC{SCF is related to whi
h 
on�gurations should be 
ho-

sen to build the CI wavefun
tion (59). Often one resorts to the 
on
ept of

Complete A
tive Spa
e (CAS) whi
h 
onsists in a partition of the spinorbitals

in three 
lasses:

1. 
ore spinorbitals, always having o

upation 1 in all the determinants

of 	

2. a
tive spinorbitals, appearing with all possible o

upations in the de-

terminants (0 or 1)
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3. virtual spinorbitals, being never o

upied in the determinants

The resulting wavefun
tion, on
e 
onvergen
e of the MC{SCF has been at-

tained, is 
alled a CAS{SCF wavefun
tion.

For a CAS{SCF wavefun
tion the extended Brillouin's theorem, eq. (61)

assumes a somewhat simpli�ed form. If we designate with i; j; : : :, a; b; : : :

and r; s; : : : indi
es for orbitals belonging to the 
ore, a
tive and virtual set,

respe
tively, it 
an easily be shown that eq. (61) is automati
ally satis�ed for

any 
ouple of indi
es belonging to the same set. Furthermore, 	

a

i

= (a

+

a

a

i

�

a

+

i

a

a

)	 = a

+

a

a

i

	, 	

r

i

= (a

+

r

a

i

� a

+

i

a

r

)	 = a

+

r

a

i

	 and 	

r

a

= (a

+

r

a

a

�

a

+

a

a

r

)	 = a

+

r

a

a

	, so the minimization 
ondition with respe
t to orbital

rotations is redu
ed to the request that the ex
itations a

+

a

a

i

	, a

+

r

a

i

	 and

a

+

r

a

a

	 do not intera
t with the CAS{SCF wavefun
tion via the Hamiltonian

operator.

5 The Coupled Clusters method

The 
oupled 
lusters method (CC) is based on the so 
alled \exponential

ansatz", whi
h states that the exa
t wavefun
tion, solution of the S
hr�odinger

equation, 
an be obtained from the Hartree{Fo
k wavefun
tion through the

appli
ation of a suitable exponential operator, in the form:

	 = e

^

T

	

0

(62)

Depending upon the H{F wavefun
tion 	

0

, the CC method 
an be applied,

besides the ground state, to the 
al
ulation of the lowest state of a given

(spa
e and/or spin) symmetry. The

^

T operator of eq. (62) is expressed as a

summation T = T

1

+ T

2

+ : : :+ T

n

, where

T

1

=

n

X

i=1

X

a>n

t

a

i

a

+

a

a

i

T

2

=

n

X

i<j

X

a>b>n

t

ab

ij

a

+

a

a

+

b

a

j

a

i

.

.

.

T

n

=

X

i<j<k<:::

X

a>b>
>:::

t

ab
:::

ijk:::

a

+

a

a

+

b

a

+




: : : a

k

a

j

a

i

It is 
lear that the expansion (62) 
ontains all the possible 
on�gurations and,

upon a proper 
hoi
e of the amplitudes t

a

i

, t

ab

ij

; : : : the full CI wavefun
tion


an be re
overed. The S
hr�odinger equation 
an be written as

He

T

	

0

= Ee

T

	

0

(63)
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Upon appli
ation of h	

0

j to eq. (63) one obtains the energy in the form

E =

D

	

0

jHj e

T

	

0

E

(64)

and upon appli
ation of

D

	

ab:::

ij:::

�

�

� (a generi
 ex
itation) one gets

D

	

ab:::

ij:::

jHj e

T

	

0

E

=

D

	

0

jHj e

T

	

0

E D

	

ab:::

ij:::

j e

T

	

0

E

(65)

Developing the exponential operator in the above equation, one obtains a

system of non{linear equations from whi
h, in prin
iple, all the amplitudes


an be derived. We have seen from Brillouin's theorem (eq. 45 at page 17)

that the single ex
itations 	

a

i

do not intera
t with 	

0

and, 
onsequently,

it is to be expe
ted that the 
ontribution of T

1

is negligible. We shall now

approximate T only with the T

2

term (T =� T

2

) and shall try to solve

eq. (65). We noti
e that

	 =� e

T

2

	

0

= 	

0

+ T

2

	

0

+

1

2

T

2

2

	

0

+

1

3!

T

3

2

	

0

+ : : :

and

T

2

2

	

0

= (

X

i<j

X

a<b

t

ab

ij

a

+

a

a

+

b

a

j

a

i

)(

X

k<l

X


<d

t


d

kl

a

+




a

+

d

a

l

a

k

)	

0

=

X

i<j

k<l

X

a<b


<d

t

ab

ij

t


d

kl

a

+

a

a

+

b

a

+




a

+

d

a

l

a

k

a

j

a

i

	

0

The above equality means that in the expansion of 	 the quadruple ex
ita-

tions play a role, but in a spe
ial form, i.e. as produ
ts of double ex
itations

(and the same happens for the sextuples, o
tuples and so on). Let us now

go ba
k to eq. (65) and let us 
onsider the 	

ab

ij

double ex
itation:

�

	

ab

ij

jHj (1 + T

2

+

1

2

T

2

2

)	

0

�

= h	

0

jHj (1 + T

2

)	

0

i

D

	

ab

ij

j T

2

	

0

E

(66)

We noti
e that a) on the left hand side of eq. (66) we 
an trun
ate the

expansion to the se
ond order in T

2

be
ause 	

ab

ij


annot intera
t with more

than a quadruple ex
itation, b) on the right hand side, in the �rst term,

we trun
ate to the �rst order be
ause 	

0


annot intera
t with more than a

double and, in the se
ond term, only T

2

	

0


an overlap with 	

ab

ij

(giving t

ab

ij

as


ontribution). The various terms of eq. (66) give the following 
ontributions:

D

	

ab

ij

jHj	

0

E

= hij jj abi

D

	

ab

ij

jHjT

2

	

0

E

=

X

k<l


<d

t


d

kl

D

	

ab

ij

jHj	


d

kl

E
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D

	

ab

ij

jHjT

2

2

	

0

E

=

X

k;l;m;n


;d;e;f

t


d

kl

t

ef

mn

D

	

ab

ij

jHj	


def

klmn

E

h	

0

jHj	

0

i = E

HF

0

h	

0

jHjT

2

	

0

i =

X

k<l


<d

t


d

kl

D

	

0

jHj	


d

kl

E

=

X

k<l


<d

t


d

kl

hkl jj 
di

D

	

ab

ij

j T

2

	

0

E

= t

ab

ij

Therefore eq. (66) be
omes a system of non{linear (quadrati
) equations in

the amplitudes t

ab

ij

, with one equation for ea
h amplitude; the system is solu-

ble with appropriate iterative pro
edures (su
h as Gauss{Jordan's method).

This simpli�ed form of 
oupled 
luster theory is termed CCD (Coupled Clus-

ters with Doubles). An improvement whi
h is usually done 
onsists in in-


luding also the singles, i.e. e

T

=� e

T

1

+T

2

, obtaining what is 
alled CCSD

(CC with singles and doubles). A further improvement would 
onsist in in-


luding also the triples but, due to the 
omplexity of the resulting equations,

usually just a perturbative treatment of the triples is added, obtaining the

CCSD(T). This last form usually gives quite a

urate results when applied

to mole
ules whi
h 
an reasonably well be des
ribed by a single determinant

(HF). We remark that the CC method is not variational and therefore the

energy 
al
ulated with su
h a method 
annot be expe
ted to be an upper

bound to the true energy.

6 Equations{of{motion methods

If the exa
t ground state wavefun
tion were known ( j0i), one 
ould de�ne

an \ex
itation 
reation" operator (O

+

n

), able to generate an ex
ited state jni

when applied to j0i

jni = O

+

n

j0i (67)

An operator with su
h desired 
hara
teristi
 is obviously given by the shift

operator jni h0j . It is also promptly re
ognized that su
h ex
itation operator

is by no means unique: for instan
e, any operator of the form jni h0j +

P

m6=0

jni hmj �

m

would do the job with arbitrary values of the parameters

�

m

. The idea of the \equations{Of{Motion" Method (EOM) is to express

O

+

n

as a suitable expansion of produ
ts of 
reation/destru
tion operators

so as to reprodu
e reasonably well an ex
ited state even starting from an

approximate ground state. The development of the EOM runs as follows:

supposing that j0i and jni are exa
t, one 
an write:

O

+

n

j0i = jni (68)
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HO

+

n

j0i = E

n

O

+

n

j0i (69)

O

+

n

H j0i = E

0

O

+

n

j0i (70)

Subtra
ting eq. (70) from eq. (69), one gets

[H;O

+

n

℄ j0i = �E

0n

O

+

n

j0i (71)

Taking now into a

ount the adjoint of operator O

+

n

(O

n

), we 
an apply

h0j O

n

to both sides of eq. (71), whi
h leads to

�E

0n

=

h0 jO

n

[H;O

+

n

℄j 0i

h0 jO

n

O

+

n

j 0i

(72)

Eq. (72) is one form of the EOM method, providing us with a fun
tional

yielding the ex
itation energies for a given approximation of the ground

state. Other forms are anyway possible if one thinks of the nature of the

de-ex
itation operator O

n

. In the form O

+

n

= jni h0j one would have O

n

=

j0i hnj , from whi
h O

n

jni = j0i and O

n

j0i = 0 are immediately obtained.

The �rst of these equations shows the \de-ex
itation" nature of O

n

. The

se
ond one, valid for the exa
t ground state, is 
alled the \killer 
ondition"

and allows one to substitute eq. (72) with an equivalent one:

�E

0n

=

h0 j[O

n

; [H;O

+

n

℄℄

�

j 0i

h0 j[O

n

; O

+

n

℄

�

j 0i

(73)

Eq. (73) provides an alternative fun
tional of the EOM method whi
h, as

will be shown later on, 
an be 
omputationally simpler than eq. (72). The

� sign appearing in eq. (73) means that one is formally free to 
hoose ei-

ther the 
ommutator or the anti
ommutator: it is 
onvenient to adopt the


ommutator (sign �) when the operators are boson{like, i.e. are made up of

produ
ts of an even number of 
reation/destru
tion operators and to adopt

the anti
ommutator in the opposite 
ase of fermion{like operators, produ
ts

of an odd number of 
reation/destru
tion operators.

We shall now 
onsider a simple appli
ation of eq. (72) to the 
al
ulation

of the ionization potentials. We approximate the O

+

n

operator in the form

O

+

n

=

X

r




�

r

a

r

so that eq. (72) be
omes:

�E

0n

=

P

rs




�

r




s

h0 ja

+

s

[H; a

r

℄j 0i

P

rs




�

r




s

h0 ja

+

s

a

r

j 0i

(74)

Introdu
ing the two matri
es R and K with elements R

rs

= h0 ja

+

s

a

r

j 0i (a

representation of the one{parti
le density matrix ) andK

rs

= h0 ja

+

s

[H; a

r

℄j 0i

(Koopmans' matrix), one has:

�E

0n

=




y

K





y

R


(75)
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The pre
eding equation has the well known form of the linear variational

prin
iple for the determination of the 
 ve
tor that minimizes the energy E

n

and leads immediately to the generalized eigenvalue equation

K
 = �E

0n

R
 (76)

a result known as \Extended Koopmans' theorem". Let us evaluate the


ommutator that appears in the de�nition of K:

[H; a

r

℄ =

X

tu

h

tu

[a

+

t

a

u

; a

r

℄ +

1

2

X

tuvw

htu j vwi [a

+

t

a

+

u

a

w

a

v

; a

r

℄

= �

X

u

h

ru

a

u

�

X

tvw

htr j vwia

+

t

a

v

a

w

where we have made use of the 
ommutators [a

+

t

a

u

; a

r

℄ = �Æ

tr

a

u

and

[a

+

t

a

+

u

a

w

a

v

; a

r

℄ = Æ

ur

a

+

t

a

w

a

v

� Æ

tr

a

+

u

a

w

a

v

(as the knowledgeable reader will

take 
are to verify). So one arrives at the following form:

K

rs

=

D

0

�

�

�a

+

s

[H; a

r

℄

�

�

� 0

E

= �

 

X

u

h

ru

R

us

+

X

tvw

htr j vwiR

wv;st

!

(77)

where we have introdu
ed the representation of the two{parti
le density ma-

trix R

wv;st

=

D

0

�

�

�a

+

s

a

+

t

a

v

a

w

�

�

� 0

E

It is interesting to see what is the expression

of K for the 
ase in whi
h we approximate j0i with the Hartree{Fo
k wave-

fun
tion. In su
h a 
ase R

rs

= 0 unless both indi
es refer to o

upied orbitals

(R

ij

= Æ

ij

) and R

wv;st

must also have its four indi
es referring to o

upied or-

bitals (R

ij;ij

= 1 and R

ij;ji

= �1 with i 6= j), so that the following expression

for K

ij

is readily seen to hold:

K

ij

= �h

ij

�

n

X

t=1

(hti j tji � hti j jti) = �F

ij

= �

i

Æ

ij

In this 
ase the Koopmans' matrix is diagonal and its eigenvalues are equal

to minus the orbital energies, re
overing the already known Koopmans' the-

orem, eq (53) of page 19.

We noti
e that in the general 
ase, when the ground state j0i is approx-

imate in some form, it is not guaranteed that the K matrix is hermitian.

De�ning the auxiliary matrix




rs

=

D

0

�

�

�a

+

s

Ha

r

�

�

� 0

E

=

D

0

�

�

�a

+

s

a

r

H

�

�

� 0

E

+K

rs

whi
h is easily re
ognized as hermitian (reader, please verify), one gets (for

real fun
tions):

K

rs

�K

sr

=

D

0

�

�

�(a

+

r

a

s

� a

+

s

a

r

)H

�

�

� 0

E
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From the above formula one 
an see that the K matrix is hermitian if j0i

is given by a MCSCF wavefun
tion, by virtue of the extended Brillouin's

theorem.

We shall now utilize the formulation of the EOMmethod given by eq. (73),

again 
onsidering the 
ase of the ionization potentials with O

+

n

=

X

r




�

r

a

r

.

Now, the form of �E

0n

is given by:

�E

0n

=

X

rs




�

r




s

D

0

�

�

�[a

+

s

; [H; a

r

℄℄

+

�

�

� 0

E

X
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�

r




s

D

0

�

�

�[a

+

s

; a

r

℄

+

�

�

� 0

E

=




y

K

0







y




with K

0

rs

= h0 j[a

+

s

; [H; a

r

℄℄

+

j 0i Now we have the steps:

[H; a

r

℄ = �

X

u

h

ru

a

u

�

X

tvw

htr j vwia

+

t

a

v

a

w

h

a

+

s

; [H; a

r

℄

i

+

= �

X

u

h

ru

[a

+

s

; a

u

℄

+

�

X

tvw

htr j vwi [a

+

s

; a

+

t

a

v

a

w

℄

+

K

0

rs

= �h

rs

�

X

tv

htr jj vsiR

vt

where use has been made of the anti
ommutator [a

+

s

; a

+

t

a

v

a

w

℄

+

= �Æ

sv

a

+

t

a

w

+

Æ

sw

a

+

t

a

v

. The K

0

matrix is simpler than the Koopmans' matrixK previously

de�ned, be
ause the former only involves the one{parti
le density matrix.

Let us now pass on to an appli
ation of eq. (73) involving the 
al
ulation

of ex
ited states. Before doing that, it is 
onvenient to enfor
e hermiti
ity

in the operator at the numerator of eq. (73), by substituting it with the

symmetri
 double 
ommutator

[O

n

; H;O

+

n

℄

�

=

1

2

([[O

n

; H℄; O

+

n

℄

�

+ [O

n

; [H;O

+

n

℄℄

�

)

su
h step being justi�ed by the 
onsideration that, for real fun
tions, taking

into a

ount the de�nition of adjoint operator

D

0

�

�

�[O

n

; [H;O

+

n

℄℄

�

�

�

� 0

E

=

D
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�

�

�[[O

n

; H℄; O
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n

℄

�

�

�

� 0

E

Thus, eq. (73) 
an be substituted with the new form:

�E

0n

=

h0 j[O

n

; H;O

+

n

℄

�

j 0i

h0 j[O

n

; O

+

n

℄

�

j 0i

(78)
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We shall now assume O

+

n

to be in the form O

+

n

=

X

r 6=s




rs

E

rs

and shall utilize

the minus sign (i.e. the 
ommutator) in eq. (78). Pro
eeding along exa
tly

the same lines as those already met for the ionization 
ase, one immediately

arrives at an eigenvalue equation

A
 = �E

0n

S
 (79)

where 
 is a 
olumn ve
tor 
olle
ting the 


rs


oeÆ
ients, S and A are

square matri
es with elements S

r

0

s

0

;rs

=

D

0

�

�

�[E

+

r

0

s

0

; E
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℄

�

�

� 0

E

and A

r

0

s

0

;rs

=

D

0

�

�

�[E

+

r

0

s

0

; H; E

rs

℄

�

�

� 0

E

. In order to better elu
idate the nature of su
h equation,

it is 
onvenient to rewrite the expression of the ex
itation operator in the form

O

+

n

=

P

r>s

(X

rs

E

rs

� Y

rs

E

+

rs

) (whi
h is reminis
ent of the expression of an

orbital rotation, even though no request for antihermiti
ity is here asked for)

or, indi
ating the 
ouple (r; s) with �: O

+

n

=

P

�

(X

�

E

�

�Y

�

E

+

�

). In this way

the matri
esA and S 
an be partitioned in four submatri
es: A

11

=M, with

M

��

=

D

0

�

�

�[E

+

�

; H; E

�

℄

�

�

� 0

E

, A
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=M

0

, with M
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��
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�

; H; E
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�

℄j 0i =M

�

��

,

A
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= Q with Q
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D

0

�

�

�[E

+

�
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℄
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, A

21

= Q

0

with Q

0

��

= Q

�

�;�

. For

the S matrix one has, analogously: S

11

= V with V

��

=

D
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�

�

�[E

+

�

; E

�

℄

�

�

� 0

E

,

S

22

= �V

�

, S
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= W with W

��

= �
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�[E

+

�

; E

+

�

℄

�

�

� 0

E

, S

21

= �W

�

. With

su
h repla
ements the eigenvalue eq. (79) takes on the form

"

M Q

Q

�

M

�

# "

X

Y

#

= �E

0n

"

V W

�W

�

�V

�

# "

X

Y

#

(80)

The simplest appli
ation of eq. (80) 
on
erns the 
ase of a Hartree{Fo
k

approximation to the ground state j0i. Of the eight 
omponents of the

double symmetri
 
ommutator whi
h enter the 
onstru
tion of matri
es M

and Q only those of type E

+

�

HE

�

and E

+

�

E

+

�

H give 
ontributions, yielding:

M

bj;ai

= Æ

ab

Æ

ij

(�

a

� �

i

)� hbi jj aji (81)

Q

bj;ai

= hab jj iji (82)

Furthermore, W = 0 and V = 1. The resulting reformulation of eq. (80) is


alled the Random Phase Approximation (RPA). It should be remarked that

the RPA equation is not a usual generalized eigenvalue equation, be
ause the

metri
 matrix is not positive de�nite. In 
ase all the quantities appearing in

the RPA equation are real, one 
an write:

MX+QY = �X

QX+MY = ��Y
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or, equivalently (summing and subtra
ting)

(M +Q)(X+Y) = �(X�Y)

(M�Q)(X�Y) = �(X+Y)

Substituting X�Y from the se
ond equation into the �rst, gives:

(M+Q)(X+Y) = �

2

(M�Q)

�1

(X+Y) (83)

and this generalized eigenvalue equation 
an be solved with the usual te
h-

niques, provided that the metri
 (M � Q)

�1

is positive de�nite, whi
h is

usually the 
ase.

7 Perturbation methods

Rayleigh{S
hr�odinger perturbation theory (RSPT) 
an be su

essfully ap-

plied to improve the results obtained at a 
ertain level of approximation

su
h as Hartree{Fo
k or MCSCF. In parti
ular the appli
ation of RSPT to

a zero order wavefun
tion obtained by solving the H{F equations bears the

name of M�ller{Plesset PT and has revealed itself as very su

essful in pro-

viding a large fra
tion of the 
orrelation energy. We shall here limit ourselves

to re
alling the working formulas of RSPT and shall 
onsider the appli
a-

tions to a H{F determinant and to a multireferen
e wavefun
tion in the next

paragraphs.

In RSPT the wavefun
tion and energy for the eigenvalue problem H	

n

=

E

n

	

n

are expressed as series expansions

	

n

= 	

(0)

n

+	

(1)

n

+	

(2)

n

+ : : :

E

n

= E

(0)

n

+ E

(1)

n

+ E

(2)

n

+ : : :

where the k{th term in either equation above is 
alled the k{th order 
or-

re
tion to the wavefun
tion or to the energy, respe
tively. The Hamiltonian

is partitioned a

ording to H = H

0

+ V , with V playing the role of a per-

turbation operator to a zero order Hamiltonian H

0

for whi
h the eigenvalues

(E

(0)

n

) and eigenfun
tions are known (	

(0)

n

). In order to obtain the k{th order


orre
tion to the energy one has

E

(k)

n

=

D

	

(0)

n

jV j	

(k�1)

n

E

The results up to the se
ond order in the energy and to the �rst in the

wavefun
tion are given by:

E

(1)

n

=

D

	

(0)

n

jV j	

(0)

n

E
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E

(2)

n

= �

X

k 6=n

j

D

	

(0)

n

jV j	

(0)

k

E

j

2

E

(0)

k

� E

(0)

n

	

(1)

n

= �

X

k 6=n

D

	

(0)

n

jV j	

(0)

k

E

E

(0)

k

� E

(0)

n

	

(0)

k

We shall now apply the above results to the 
ase of a single referen
e (H{F)

and then to a multireferen
e (MCSCF) zero order wavefun
tion.

7.1 M�ller{Plesset theory

If 	

0

is a Slater determinant whose orbitals have been optimized by solving

the Hartree{Fo
k equations

^

f 

i

= �

i

 

i

, one 
an build the n{parti
le Fo
k

operator (also termed the Fo
kian)

^

F =

n

X

i=1

^

f(i) whi
h, in the language of

se
ond quantization, is turned into

^

F =

X

r

�

r

a

+

r

a

r

. It is then re
ognized

that 	

0

is an eigenfun
tion of

^

F with eigenvalue E

0

=

n

X

i=1

�

i

. Generally, any

other determinant 	

K

built with n arbitrary spin{orbitals (jj 

k

1

 

k

2

� � � 

k

n

jj)

is still eigenfun
tion of

^

F with eigenvalue E

K

=

n

X

i=1

�

k

i

. M�ller{Plesset PT

utilizes

^

F as zero order Hamiltonian and

^

V =

^

H�

^

F as perturber (also 
alled

the 
u
tuation potential). Thus, the perturbation formulas for the �rst two

orders are:

E

(0)

0

+ E

(1)

0

= h	

0

jHj	

0

i = E

HF

0

E

(2)

0

= �

X

K 6=0

j h	

0

jHj	

K

i j

2

E

K

� E

0

In the above formula the determinants expressing single substitutions do

not give any 
ontribution due to Brillouin's theorem (h	

0

jHj	

a

i

i = 0) and


onsequently the only 
ontribution is obtained from the double repla
ements

	

ab

ij

so that the MP2 result (M�ller{Plesset to se
ond order) is

E

(2)

0

= �

n

X

i=1

X

a>n

j hab jj iji j

2

�

a

+ �

b

� �

i

� �

j

The MP2 theory is very simple, requires little 
omputational e�ort over a

H{F 
al
ulation and usually yields a large fra
tion of the 
orrelation energy.

Even though we have derived MP2 for the ground state determinant, it 
an
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be su

essfully applied to all 
ases where a single determinant is a good

approximation for the des
ription of the mole
ule under study. This usually

happens for 
losed shell mole
ules near the equilibrium geometry.

7.2 Multireferen
e perturbation theory

The su

ess of M�ller{Plesset perturbation theory fostered the resear
hers to

extend it to zero order multireferen
e wavefun
tions whi
h are ne
essary both

for a 
orre
t des
ription of the ground state in situations deprived of 
losed

shell nature (su
h as bond breaking, for instan
e) and espe
ially for ex
ited

states whi
h 
an seldom be satisfa
torily des
ribed by a single determinant.

We shall be 
on
erned only with the appli
ation of PT to a variational zero

order wavefun
tion, a situation whi
h is sometimes referred to as \diagonalize

then perturb", limiting ourselves to barely re
alling that also the opposite

approa
h (\perturb then diagonalize") has been intensely studied.

The main diÆ
ulty in multireferen
e perturbation theory (MRPT) arises

when one is 
onfronted with the de�nition of a good zero order Hamilto-

nian, whi
h should aim at guaranteeing some important properties su
h as

size 
onsisten
e and absen
e of intruder states. Size 
onsisten
e (or \stri
t

separability") requires that the energy of a system made up of two non in-

tera
ting parts should yield the same result as the sum of the energies of

the two separate parts. With the term \intruder state" one indi
ates a zero

order state quasi degenerate with the one under study, 
ausing divergen
es

in the expansion of the se
ond order 
orre
tion to the energy.

In MRPT one starts from a variational wavefun
tion built upon a given

determinantal spa
e S

	

(0)

m

=

X

K2S




K

�

K

with

PHP	

(0)

m

= E

(0)

m

	

(0)

m

where P is the proje
tor onto the S spa
e

P =

X

K2S

j�

K

i h�

K

j

The rest of the spa
e spanned by the determinants �

K

62 S is referred to as

the outer spa
e. In the early treatments of MRPT simple Slater determinants

were 
hosen as zero order wavefun
tions in the outer spa
e providing the

perturbation 
orre
tions. For instan
e in the CIPSI method (developed in

1973) the zero order Hamiltonian in the so 
alled M�ller{Plesset bary
entri
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partition (MPB) is given by:

H

0

	

(0)

m

=

D

	

(0)

m

jF j	

(0)

m

E

	

(0)

m

within the S spa
e

H

0

�

K

= (

n

X

i=1

�

k

i

)�

K

outside S

The F operator is a suitable Fo
k{like one{ele
tron operator F =

X

r

�

r

a

+

r

a

r

with the energies �

r

usually 
hosen as

�

r

= h

rr

+

X

s

n

s

hrs jj rsi

n

s

being the o

upation number of spin{orbital  

s

. The  

s

spin{orbitals are

here assumed to be natural spin{orbitals, i.e. diagonalizing the one{parti
le

density matrix (

D

	

(0)

m

ja

+

r

a

s

j	

(0)

m

E

). Another possibility used in CIPSI is

to adopt an Epstein{Nesbet partition with H

0

	

(0)

m

= E

(0)

m

	

(0)

m

inside S and

H

0

�

K

= h�

K

jHj�

K

i�

K

outside S.

In the more re
ent treatments of MRPT the zero order fun
tions outside

the S spa
e are not assumed to be simple determinants but, rather, are built

upon 
ontra
ted ex
itations 
arried out on the variational wavefun
tion, i.e.

they are of the type a

+

r

a

+

s

a

u

a

t

	

(0)

m

. In the CAS{PT2 approa
h (1990) one

starts from a CAS{SCF variational wavefun
tion and the zero order Hamil-

tonian is built by proje
tion of a suitable generalized Fo
k operator onto the

spa
e generated by the 
ontra
ted ex
itations. The resulting perturbation

theory is very eÆ
ient and usually produ
es high quality results for both the

ground and the ex
ited states. A short
oming of CAS{PT2 lies in the fa
t

that, due to the one{ele
tron nature of H

0

, it is o

asionally subje
ted to the

o

urren
e of intruder states.

A re
ent formulation of MRPT also applied to a CAS{SCF wavefun
tion

makes use of a two{ele
tron zero order Hamiltonian, is exempt from intruder

states and is entirely size 
onsistent. The new theory (2001), 
alled \n{

ele
tron valen
e state perturbation theory" (NEV{PT) makes use of zero

order wavefun
tions that are of CAS{CI type both inside the S spa
e and

outside of it. The state of interest 	

m

is approximated at the zero order by a

CAS{SCF (or more generally CAS{CI) wave fun
tion 	

(0)

m

obtained, as usual,

by solving the variational eigenvalue problem PHP	

(0)

m

= E

(0)

m

	

(0)

m

. The

zero order wavefun
tions di�erent from those of the CAS spa
e are referred

to as \perturber fun
tions" and belong to CAS{CI spa
es 
hara
terized by

well de�ned o

upation patterns of the orbitals. One su
h CAS{CI spa
e

will be designated by S

(k)

l

, where k is the number of ele
trons promoted

to (or removed from) the a
tive orbital spa
e (�2 � k � 2 for a se
ond
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order treatment) and l des
ribes the �xed o

upation pattern of the ina
tive

(
ore + virtual) orbitals. A generi
 perturber fun
tion belonging to S

(k)

l

will be denoted by 	

(k)

l;�

where � enumerates the various fun
tions in S

(k)

l

.

It is possible to de�ne di�erent variants of the NEV{PT2 a

ording to the

number of perturber fun
tions that are 
hosen from the S

(k)

l

subspa
es: if the

full dimensionality of S

(k)

l

is exploited one has the \totally un
ontra
ted" 
ase

and if just one perturber is sele
ted we speak of the \strongly 
ontra
ted"


ase; between these two extremes a \partially 
ontra
ted" 
ase 
an also be

de�ned. All three variants 
an be shown to be endowed with the desirable

properties of stri
t separability and absen
e of intruder states. Up to now the

strongly 
ontra
ted and partially 
ontra
ted 
ases have been implemented in

an eÆ
ient 
ode and have been shown to yield a

urate results for both the

ground and the ex
ited ele
troni
 states.

The subspa
es S

(k)

l

whi
h 
ontain the perturber wave fun
tions 
an be


lassi�ed in 8 distin
t types, a

ording to the number k of ele
trons promoted

into the a
tive orbital spa
e and to the o

upation of ina
tive orbitals. With

k = 0 two types are possible a

ording to whether two or one 
ore ele
trons

have been transferred to the virtual orbital spa
e; a typi
al representative

of the �rst type will be indi
ated as S

(0)

ij;rs

, meaning that two ele
trons have

been moved from the 
ore orbitals '

i

and '

j

to the virtual orbitals '

r

and '

s

.

The se
ond type with k = 0 will 
ontain all subspa
es S

(0)

i;r

with one ele
tron

moved from '

i

to '

r

. Analogously, with k = �1 two distin
t types are pos-

sible, 
ontaining subspa
es S

(1)

ij;r

(S

(�1)

i;rs

) and S

(1)

i

(S

(�1)

r

), respe
tively. With

k = �2 only one type is possible, 
ontaining the subspa
es S

(2)

ij

(S

(�2)

rs

). In a

given subspa
e S

(k)

l

the strongly 
ontra
ted NEV{PT (SC{NEV{PT) 
onsid-

ers only one perturber wave fun
tion, a

ording to the following de�nition:

	

(k)

l

= P

S

(k)

l

H	

(0)

m

(84)

where P

S

(k)

l

is the proje
tor onto subspa
e S

(k)

l

. The perturber fun
tions 	

(k)

l

are orthogonal but are not normalized to unity. The squared norm

N

(k)

l

=

D

	

(k)

l

j 	

(k)

l

E

=

�

	

(0)

m

�

�

�

�

HP

S

(k)

l

H

�

�

�

�

	

(0)

m

�

plays an important role in the strongly 
ontra
ted NEV{PT. On
e a suitable

energy E

(k)

l

has been attributed to 	

(k)

l

the zero order hamiltonian 
an be

de�ned through the spe
tral de
omposition:

H

0

=

X

l;k

�

�

�

�

	

(k)

l

0

�

E

(k)

l

�

	

(k)

l

0

�

�

�

�

+

CAS

X

m

�

�

�	

(0)

m

E

E

(0)

m

D

	

(0)

m

�

�

� (85)
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where

�

�

�

�

	

(k)

l

0

�

=

1

q

N

(k)

l

	

(k)

l

. The expressions for the �rst order 
orre
tion

to the wave fun
tion and for the se
ond order 
orre
tion to the energy are

then:

	

(1)

m

=

X

k;l

�

�

�

�

	

(k)

l

0

�

�

	

(k)

l

0

jHj	

(0)

m

�

E

(0)

m

� E

(k)

l

(86)

=

X

kl

�

�

�

�

	

(k)

l

0

�

1

q

N

(k)

l

D

	

(k)

l

jHj	

(0)

m

E

E

(0)

m

� E

(k)

l

=

X

kl

�

�

�

�

	

(k)

l

0

�

q

N

(k)

l

E

(0)

m

� E

(k)

l

E

(2)

m

=

X

k;l

�

	

(k)

l

0

jHj	

(0)

m

�

2

E

(0)

m

� E

(k)

l

(87)

=

X

kl

N

(k)

l

E

(0)

m

� E

(k)

l

For the de�nition of the energies E

(k)

l

one 
an use either the true Hamiltonian

^

H or an approximation of it. From the 
omputational point of view, a

parti
ularly 
onvenient form is provided by Dyall's approximation to the

ele
troni
 hamiltonian:

H

D

= H

i

+H

v

(88)

where H

i

is a simple one{ele
tron (diagonal) operator

H

i

=


ore

X

i

�

i

E

ii

+

virt

X

r

�

r

E

rr

+ C

and H

v

is a two{ele
tron operator limited to the a
tive spa
e

H

v

=

a
t

X

ab

h

e�

ab

E

ab

+

1

2

a
t

X

ab
d

hab j 
di (E

a


E

bd

� Æ

b


E

ad

)

with h

e�

ab

= h

ab

+


ore

X

j

(2 haj j bji � haj j jbi). An appropriate 
hoi
e of the


onstant C

C = 2


ore

X

i

h

ii

+


ore

X

ij

(2 hij j iji � hij j jii)� 2


ore

X

i

�

i
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ensures that H

D

is equivalent to the full hamiltonian within the CAS spa
e:

H

D

	

(0)

m

= E

(0)

m

	

(0)

m

The energies �

i

and �

r

are suitable orbital energies whi
h we 
hoose to be:

�

i

= �

D

a

i

	

(0)

m

jHj a

i

	

(0)

m

E

+ E

(0)

m

�

r

=

D

a

+

r

	

(0)

m

jHj a

+

i

	

(0)

m

E

� E

(0)

m

The energies asso
iated to the perturber fun
tions 	

(k)

l

are de�ned via Dyall's

hamiltonian:

E

(k)

l

=

1

N

(k)

l

D

	

(k)

l

�

�

�H

D

�

�

�	

(k)

l

E

Su
h de�nition, while guaranteeing that the intera
tions among the a
tive

ele
trons are properly taken into 
onsideration, a�ords a parti
ularly 
onve-

nient formulation.

The \partially 
ontra
ted" approa
h of NEV{PT hinges on the de�nition

of a suitable subspa
e

�

S

(k)

l

� S

(k)

l

and utilizes the eigenfun
tions of the

hamiltonian in su
h a subspa
e.

In order to de�ne the

�

S

(k)

l

subspa
es of the PC{NEV{PT, the a
tion upon

	

(0)

m

of the strings of ex
itation operators present in

^

H is 
onsidered, in the

same way already seen for the 
ontra
ted ex
itations of CAS{PT2. Thus a

set of fun
tions �

(k)

l;m

is generated whi
h serve as basis for the

�

S

(k)

l

subspa
e;

the 
olle
tive index m designates the a
tive orbital indi
es involved in the

ex
itation operators.

In 
ase the �

(k)

l;m

fun
tions should not be linearly independent, a new suit-

able set will be built by the usual te
hnique of removing the zero eigenvalues

from the overlap matrix M

(k)

l

=

D

�

(k)

l

j �

(k)

l

E

, where �

(k)

l

is a row ve
tor


olle
ting the �

(k)

l;m

fun
tions.

We shall denote by �

(k)0

l;m

the orthonormalized basis fun
tions for the

�

S

(k)

l

subspa
es and by 	

(k)

l;�

and E

(k)

l;�

the eigenfun
tions and eigenvalues of the

proje
tion of the ele
troni
 hamiltonian H onto

�

S

(k)

l

:

P

�

S

(k)

l

HP

�

S

(k)

l

	

(k)

l;�

= E

(k)

l;�

	

(k)

l;�

: (89)

Su
h eigenfun
tions and eigenvalues will serve to de�ne the zero order hamil-

tonian H

0

through its spe
tral de
omposition

H

0

=

CAS

X

m

�

�

�	

(0)

m

E

E

(0)

m

D

	

(0)

m

�

�

� +

X

k;l;�

�

�

�	

(k)

l;�

E

E

(k)

l;�

D

	

(k)

l;�

�

�

� (90)
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A
tually, it is more 
onvenient from a 
omputational point of view to utilize

in formulas (89) Dyall's approximation to the hamiltonian, already intro-

du
ed in the strongly 
ontra
ted 
ase.

In spite of the larger number of pertuber fun
tions employed in the par-

tially 
ontra
ted approa
h with respe
t to the strongly 
ontra
ted one, the

results obtained with the two variants have turned out to be very similar in

all the test 
al
ulations performed thus far.
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Further reading

Ex
ellent advan
ed textbooks that 
over pra
ti
ally all the topi
s dealt with

in these lessons are:

� R. M
Weeny, \Methods of Mole
ular Quantum Me
hani
s", A
ademi


Press, 1989.

� T. Helgaker, P. J�rgensen, J. Olsen, \Mole
ular Ele
troni
{Stru
ture

Theory", John Wiley & Sons, 2000.

� P. J�rgensen, J. Simons, \Se
ond Quantization{based Methods in Quan-

tum Chemistry", A
ademi
 Press, 1981.

A few arti
les referring to the multireferen
e perturbation theory exposed in

se
tion 7 are:

CIPSI B. Huron, P. Ran
urel, J.P. Malrieu, J. Chem. Phys., vol. 58, p. 5745

(1973)

CASPT2 K. Andersson, P. Malmqvist, B.O. Roos, A.J. Sadlej, K. Wolinski,

J. Phys. Chem., vol. 94, p. 5483 (1990)

CASPT2 K. Andersson, P. Malmqvist, B.O. Roos, J. Chem. Phys, vol. 96,

p. 1218 (1992)

NEVPT2 C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P. Mal-

rieu, J. Chem. Phys., vol. 114, p. 10252 (2001)

NEVPT2 C. Angeli, R. Cimiraglia, J.P. Malrieu, Chem. Phys. Letters,

vol. 350, p. 297 (2001)
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