
Surface Thermodynamics and general crystal shape

Internal energy of a homogeneous thermodynamic system, having in mind the 

bulk crystal. This is given by the Euler equation

Now suppose that this crystal is cleaved and a surface area is created. Suppose 

further that this process is carried out reversibly at a constant temperature, 

system volume and chemical potential. The creation of the surface adds a term

to the energy which must be proportional to the amount of surface area created

and positive because otherwise bulk crystals would cleave spontaneously. The 

energy is then

where the constant has the dimension of energy per surface area and is

called the surface tension. Unfortunately, it is very difficult to measure the 

surface tension (or energy) of a solid/vacuum interface. 

Some hint about the magnitude of the quantity can be taken from

measurements of the liquid gas interface but this is not sufficient to test the 

interesting details in the theory. 



When we think about the microscopic origin of it is obvious that it will be

different for the various possible surface planes of a crystal. 

As we shall see below, the number of bonds which have to be broken to

generate a certain surface plane depends on the orientation of the plane. A 

surface with many steps might be particularly unfavourable because

several of bonds have to be broken to create a low-coordination step atom. 

Therefore we write with a directional dependence . 

These considerations have important consequences on the macroscopic shape

of crystals. 

While liquids are always found in the shape of smallest surface area (a sphere) 

this is not the case for solids. 

The solid crystal wants to have a shape where a large fraction of the surface

area is given by crystal planes with a low     . More formally, if we look for the 

minimum in the free energy (but at zero temperature) we have to require that



This requirement leads to quite complex equilibrium shapes of crystals. 

If is known, the problem can be solved graphically by the so-called Wulff

construction shown in Figure.

The procedure for finding the equilibrium crystal shape at 0K is as follows: 

Draw . 

Draw a plane perpendicular to the radius vector which intersects at each

point. 

The inner envelope of all these planes is the equilibrium crystal shape. 





It is interesting to consider this crystal shape if we want to prepare a 

surface by cleaving a crystal. 

The cleaving process will only work (if at all) for surfaces which also 

appear on the equilibrium crystal. If we attempt a cleavage in another 

direction, the result will be a surface with facets of low-energy planes. 

At finite temperature the situation changes. Now excitations which do not 

cost much energy but increase the entropy of the system become 

important. Such excitations are steps and other defects. 

As the temperature is raised, the free energy for the steps decreases. The 

sharp edges of the Wulff-crystal disappear and the facets decrease. 

Eventually, the facets will vanish completely and the crystal will have a 

round shape. 

This behaviour can be described by a phase transition, the so-called 

roughening transition



Another process worth mentioning is the phenomenon of surface melting. 

This is the formation of a thin, liquid-like phase on the surface below the melting

temperature of the bulk. The most important example of this phenomenon is the 

surface melting of ice which permits for example skating. The existence of

surface melting can be made plausible by considering the Lindemann formula 

for bulk melting. It states that

where is the melting temperature and    is the Debye temperature. 

The latter is often found to be much smaller at the surface. 

A rule of thumb is that the surface Debye temperature is about a factor of

smaller than its bulk counterpart. 

This simply means that the surface atoms vibrate more strongly than the bulk 

atoms at a given temperature and this eventually leads to melting. 

But one has to keep in mind that this point of view is much too simple. Note that

also the completely counter-intuitive phenomenon of surface overheating is

found in which the bulk melts at a lower temperature than the surface. 



Surface geometry: truncated bulk, relaxation, reconstruction, 
defects and super-structures

General phenomena

The simplest picture of a microscopic surface structure is that of the truncated bulk 

(the so-called ideal surface). 

Suppose the crystal is cleaved along a plane specified by its Miller indices (hkl) . 

In the truncated bulk model, all the atoms on the cleaved crystal's surface stay 

exactly where they have been in the bulk crystal. This means that one can 

immediately draw the surface geometry of the crystal. 

Figure shows the surface geometry for the fcc(111) surface. 

The (111) surface of an fcc crystal



When looking at a surface, we think of the bulk as being made of planes parallel

to the surface plane. 

We define a unit cell in the first plane and, if required, a basis. 

We define furthermore a vector connecting the atoms in successive planes. 

A ``plane" does of course not necessarily mean that all the atoms have the same

z value (z being the distance perpendicular to the surface). We can extend the 

unit cell over several layers if we want to. 

In Figure however, we have chosen a primitive unit cell and all the atoms in one

layer are at the same height. We call the z component of the distance

between the planes. In the side view of the surface in Figure we can see the 

familiar ABCABC... stacking sequence of the fcc lattice. 

The (111) surface of an fcc crystal
Side view





In Figure the truncated bulk surfaces of a few important cases are shown. 



The concepts for lattice and reciprocal lattice on surfaces are very similar to what 

we know from the bulk. In any case, it is worth repeating them! 

The 14 possible Bravais lattices of the bulk are reduced to 5 two-dimensional 

surface Bravais lattices which are shown below:

The point group will be some sub-group of the highest possible symmetry 

compatible with the Bravais lattice under consideration. The final symmetry of 

the system, the space group, is then formed by a combination of the translation 

group (i.e. the Bravais lattice) and the point group. Like in the three dimensional 

case this combination can lead to entirely new symmetry elements which are 

glide-lines in the two-dimensional case. In total, there are 17 possible two-

dimensional space groups.

The two-dimensional lattice is then the 

combination of one of the Bravais

lattices and a basis. It is important to 

notice that since a surface is not two-

dimensional, the basis atoms need not 

be in one plane. Once the basis is 

assigned one can find out the two-

dimensional point group of the lattice.



The reciprocal lattice of the surface is defined in the same way as that of the 

three-dimensional crystal: 

This means that

and 

The two last equations also give a simple recipe to construct the reciprocal

lattice. 



The most severe problem with the truncated bulk model is that it completely 

neglects the dramatic change in the coordination and potential due to the abrupt 

termination of the crystal in the direction normal to the surface. This change will 

for almost all surfaces lead to a phenomenon called relaxation

A relaxation is a change in the distances between the first few layers with respect

to the bulk values. 

For most surfaces the distance d1 is smaller than the corresponding bulk value. 



In the bulk (of a metal) the ion cores are screened by the conduction electrons 

around them. If we divide up the crystal in Wigner-Seitz cells, it is easy to see 

what happens in the surface case: the original distribution of electrons in the 

Wigner-Seitz cells would lead to a highly corrugated electron distribution at the 

surface. 

This is, however, very unfavourable because of the high kinetic energy of ``bent'' 

wave functions. 

The electrons at the surface will re-distribute themselves leading to a smooth 

charge density at the surface. This creates an asymmetric screening of the ion 

cores in the first layer and a net electrostatic force which pushes them ``into'' the 

crystal and thus reduces d1.

The charge smoothing at the surface is called the Smoluchowski effect

This can be made plausible by the model of Finnis and Heine shown below:



A more severe change of structure is the phenomenon of surface reconstruction

In a reconstruction the periodicity parallel to the surface is changed with respect 

to that of the bulk. 

Surface reconstructions are the rule in the case of semiconductors. There the 

bonds are highly directional. Cleaving the crystal leaves the structure in a 

unfavourable elastic state and also gives rise to half-occupied ̀ `dangling'' 

bonds. 

Reconstructions give a considerable gain in energy and reduce the number of 

dangling bonds. The resulting structures can be rather complicated (the

bond strength varies with the coordination number: for a low-coordinated atom 

the single bonds are stronger than for a high-coordinated atom.). 

Most metals surfaces do not reconstruct but some do. In most cases, this 

happens for metals were localized d or f electrons take part in the bonding for 

reasons similar as on the semiconductor surfaces. But there are also a few 

simple metal surfaces which reconstruct. 



Another phenomenon, somewhat similar to reconstruction, happens when 

atoms or molecules are adsorbed on a surface. The adsorbates often form 

ordered structures (due to their mutual interaction) which have unit cells larger 

than the substrate unit cell.

In most cases, however, there is still a simple ratio between the substrate and 

adsorbate unit cell (due to the adsorbate - substrate interaction). Adsorbates

will in general change the structure of the underlying substrate. In particular, 

they can induce a lift of the reconstruction of the clean surface.

Apart from these simple phenomena there are many things which can make 

life much more complicated: adsorbate structures have domains and domain 

boundaries, the surface may have many imperfections such as steps and 

terraces, the atoms and molecules which are adsorbed on the surface do not 

show any long-range order and so on.



The phenomena of reconstruction and ordered overlayers make it necessary to

have a nomenclature which describes the periodicity and symmetry of the surface

with respect to that of the bulk. 

Suppose the two-dimensional lattice vectors of the bulk are   and      . 

By ``two-dimensional lattice vectors of the bulk'' we mean the lattice vectors for

the bulk-truncated crystal or, equivalently, the vectors which represent the lattice 

of the bulk projected onto the surface. 

Let the lattice vectors of the surface including possible adsorbate overlayers be

and      . A simple nomenclature of surface structures is that of Woods . The 

surface structure is described by

where N=''p'' or ``c'' for primitive or centred cells, respectively, and     is the angle 

by which the surface vectors have to be rotated with respect to those of the bulk 

The nomenclature of Woods has the advantage of simplicity. It is, however, not 

possible to describe all surface structures because the rotation angle might not be 

the same for both vectors. 



Some examples for the application of the Woods nomenclature are given in Figure.



A more general description of the surface structure is the so-called matrix notation 

The inspection of the matrix directly allows the classification of the overlayer

structures into three types which are illustrated in Figure

- All the matrix elements are integer: the adsorbate and substrate lattices are called 

simply related and the lattice of the whole surface (adsorbate and substrate) has the 

same translational symmetry as the adsorbate lattice.

- Some matrix elements are rational: the adsorbate and substrate lattices are called 

rationally related. The lattice of the whole surface (adsorbate and substrate) has a 

translational symmetry which is given by the distance it takes before adsorbate

lattice and substrate lattice come into coincidence again.

- Some matrix elements are irrational. In this case the adsorbate lattice is 

incommensurate with the substrate and no true lattice for the whole surface 

(adsorbate plus substrate) exists. 

or, in other words

It is obvious that the relative strength of the substrate-adsorbate and adsorbate-

adsorbate interactions will favour one type of structure over the others. 

(a) simply related to the substrate, (b) rationally related and (c) a incommensurate structure with no common periodicity



Work function

The electronic structure of surfaces: basic ideas

All materials have a work function, i.e. that one has to pay some energy in order to 

extract an electron from a solid.

The workfunction of a metal is defined as the smallest energy needed to extract an 

electron at 0 K

This is the energy, typically a few eV, 

required to move an electron from the 

Fermi Level, EF, to the vacuum level, 

E0. The work function depends on the 

crystal face {hkl} and rough surfaces

typically have lower work function.



The electronic structure of surfaces: basic ideas

Electron Affinity and Ionisation Potential

Both of these would be the same for a metal, and equal to

f, but for a semiconductor or insulator, they are different. 

The electron affinity is the difference between the vacuum

level E0, and the bottom of the Conduction Band EC. 

The ionisation potential is E0 - EV, where EV is the top of the 

valence band. 

These terms are not specific to surfaces: they are also used

for atoms and molecules generally, as the energy level which

a) the next electron goes into, and b) the last electron comes

from. 



Work function

The electronic structure of surfaces: basic ideas

All materials have a work function, i.e. that one has to pay some energy in order to 

extract an electron from a solid.

The workfunction of a metal is defined as the smallest energy needed to extract an 

electron at 0 K. Formally, this definition is made for an infinitely large crystal plane. 

One takes an electron from infinitely deep inside the crystal and brings it through 

the surface, infinitely far away into the vacuum. In practice, one wishes to avoid 

external fields and fields set up by the edges of the crystal. The definition is 

modified such that one brings the electron far away from the surface compared to 

atomic dimensions but not far compared to crystal dimensions. The energetics

involved in this is displayed in Figure



There are two potentials displayed. The first is the electrostatic potential . This

potential changes a little when going into the crystal. The change is due to the 

surface dipole layer which is caused by the spill-out of the conduction electrons

The potential difference between inside and outside the crystal is called . The 

other potential is the full one-electron potential . This is obtained from the 

electrostatic potential by adding the exchange-correlation potential .     

shows that the electron reaches a much lower total potential energy inside 

the crystal than that caused by the electrostatic part. This must be so, because the 

exchange and correlation will cause the electrons to go out of each others way 

and therefore their potential energy will decrease. 

The zero for the kinetic energy in the bulk is different from the zero outside. The 

difference is the so-called inner potential , i.e. the occupied band width

plus the work function. 



The chemical potential can now be referenced to the          or to . 

It is called or      , respectively. 

The workfunction, finally, is the difference between the Fermi level and the vacuum

level. It is called .      We can write down an expression for the workfunction: 

The right hand side of this equation now allows us to think about the workfunction as

being made of two parts. 

A surface-part and a bulk-part      . 

Workfunctions of metals have values between about 1.5 eV and 5.5 eV. 



The surface part of the workfunction is of interest here because any change of the 

surface in terms of morphology or adsorption will be changing the workfunction. The 

workfunction (change) can be used as a fingerprint of the state the surface is in. 

Workfunction changes upon adsorption can be in the range of 100 meV to 1.5 eV

for a full monolayer. 

One can measure workfunction changes within about 1 meV.

We just give give two examples for workfunction changes. 

First we illustrate how the workfunction for a specific material depends on the 

surface orientation. Consider a closed packed and an ``open'' surface of some 

material. On the open surface we find the Smoluchowski effect of charge 

smoothing

This smoothing leads to a dipole moment which opposes the dipole created by the 

flow-out of the electrons.

Hence, the work function of a closed packed surface will be higher than that of an 

open surface.

Charge distribution at a closed packed (left) and at an open (right) surface.



This is illustrated in Figure for a number of W surfaces. The closed packed (110) 

surface has the highest workfunction. 



Another important example is the change of the workfunction upon adsorption. 

A famous case is the adsorption of alkali metals which drastically lowers the 

workfunction. 

In very simple terms, the bond is ionic and the alkali metal gives an electron to the 

surface. This does also lead to a dipole moment which also opposes the spill-out

of the electrons and reduces the workfunction. At low coverage, the dipole-dipole

interaction between the alkali atoms will keep them far apart and the workfunction

decreases linearly as a function of coverage. At high coverage, the same

interaction causes a depolarization of the dipoles and leads to a metallic bond. 

This increases the workfunction again by a small amount. Figure shows the 

workfunction change upon the adsorption of potassium on tungsten. 

Alkali metal adsorption can be used to lower 

the workfunction of tungsten filaments such that 

they do not have to be heated so much to 

produce the same amount of electrons and 

therefore live longer. 

Workfunction change upon the adsorption of K on W(110)



Surface States and related ideas

In an infinite periodic solid the electron states are described by Bloch functions

giving rise to allowed bands and forbidden gaps.

Bloch states are by definition non-localized, that is, they are extended over the all

real space.

As a surface is introduced, the crystal becomes finite in at least one dimension. The 

original Bloch states will be modified along the corresponding coordinate.

The energy states of the allowed bands will not be affected strongly since the 

surface represents only a small fraction of the total crystal but the wavefunctions

may be considerably modified near the interface. New states may be allowed at the 

surface and, if their energy, correspond to a band gap in the bulk, such states are 

termed surface states.



Surface states are therefore trapped at the crystal-vacuum interface. Consequently

they are called localized states with the understanding that they may be well

delocalized (Bloch-like) in the two dimensions parallel to the surface.

In this case surface states form band analogous of bulk bands, in the two-

dimensional reciprocal space of wavevectors parallel to the surface k.

All electron states at the surface, that is, bulk states that extend to the surface as

well as localized states, are described by local density of states at the surface.

N(E,r) = N(E)|E(r)|2

where is an eigenstate of the system at energy E. If the real space coordinate r is

limited to the surface, the above equation defines a surface local density of states.

Surface States and related ideas
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Surface States and related ideas

Schematic illustration of the electron states and wavefunctions near an interface.

The top left diagram shows bulk band states at the surface.

The normal k-vector component (k) is not a good quantum number at the surface

due to the lack of periodicity normal to it, while k is. 

So for each value of k a range of states is possible for different allowed values of

normal momentum, as shown by the dashed area.

For k = 0 the behaviour of bulk states inside the solid is shown as a function of k.
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Surface States and related ideas

Schematic illustration of the electron states and wavefunctions near an interface.

The width of this band gived the quasi-continuum of allowed states at the surface.

The density of states of these “bulk” states at the surface is in general not the same

as in the voulme. The wavefunction amplitude (lower diagram on the left) cna be

different near the surface leading to different local density of states
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Surface States and related ideas

Schematic illustration of the electron states and wavefunctions near an interface.

The situation for the surface states is shown in the two centre diagrams.

Surface states may occur only in a bulk band gap for any particular k, but may well

overlap with bulk states for other parallel wavevectors, since k is a good quantum 

number. The wavefunction of the surface state is concentrated near the surface

plane, decaying both into the bulk and into the vacuum (bound state).
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Surface States and related ideas

Schematic illustration of the electron states and wavefunctions near an interface.

In the last two diagrams of the figure an example is shown of a state that exists as a 

surface state only for a limited range of k and is degenerate with bulk bands for

other k. The corresponding wavefunction is enhanced near the surface, but

extends into the volume of the crystal and is therefore called a surface resonance.



One can obtain new solutions to the Schrödinger equation caused by the 

introduction of the surface. Inside the crystal they have the form

with a complex wave-vector k^ perpendicular to the surface, leading to decay

away from the surface on both sides.

The new solutions decay exponentially both into the vacuum

and into the bulk and are thus located at the surface and 

called surface states. 

They are characterized by the quantum number and an energy .   

is not a good quantum number any more because of the broken periodicity

in the direction perpendicular to the surface.

We have assumed a perfect surface in the sense that the periodicity parallel to

the surface remains the same as in the bulk

Surface States and related ideas



Surface States and related ideas

The translational symmetry parallel to the surface results in selection rule of

the conservation of the wavenumber parallel to the surface in analogy with

the case of the three-dimensional periodicity in the theory of optical

properties of solid (vertical transitions).

It is important to realize that a true surface state can not be degenerate with any

bulk state. 

By this we mean the following: For a true surface state with and   there can 

not be any bulk state with the same energy and   for any value of , i.e. on the 

whole -rod of the surface state. 

If there was such a state, the surface state could couple to it and penetrate infinitely

into the bulk. It would not be a surface state any more (surface resonance, 

increased amplitude at the surface, but evolves continuosly into a bulk state). 



This requirement gives a necessary condition for the existence of a surface state. 

We can illustrate it by introducing the concept of the projected bulk band structure. 

Figureshows the structure and Brillouin zone of the hcp metal Be and the surface

Brilloin zone for the closed packed Be(0001) surface. 

Every point in the surface Brillouin zone is characterized by a    . For every point

we can ask: at which binding energies are there bulk electronic states with this

particular and an arbitrary somewhere in the bulk Brilloin zone. The answer

to this question for many points along high-symmetry lines of the surface Brilloin

zone is the so-called projected band structure . For Be(0001), it is shown in Figure

Real space structure and Brillouin zone of Be. The 
surface Brillouin zone of Be(0001) is the projection of 
the bulk Brillouin zone in the (0001) direction.

Projected bulk band structure and electronic surface
states for Be(0001). For the shaded areas there are 
bulk states with the same k and energy for a  k
somewhere in the bulk Brilloin zone.



In order to illustrate again how the projected band 

structure is formed, we calculate it for just one

point,   , i.e. the centre of the surface

Brillouin zone. For this point we have to consider all

the k-points in the bulk Brilloin zone with the same

These points lie all along the   direction of

the bulk Brillouin zone. Now let us look at the bulk 

band structure in this direction in Figure . There is a 

free-electron like band going from to A, being

folded back to . For all energies between the 

bottom of the valence band and a binding energy of

about 4 eV it is possible to find a value of such

that there is a bulk state with at that

energy. So there can not be any surface states. 

This energy range is also shaded for the   point, 

i.e. for in Figure. At higher energies, up 

to the Fermi level, there are no bulk states in the   

direction. There is a gap in the projected bulk 

band structure where a surface state could ``live''. 

Figure before does indeed show one as a dashed

line. 

http://www.philiphofmann.net/surflec/node30.html


A close inspection of Figure shows that there are also dashed lines

(meaning surface states) which do go into the projected bulk band 

continuum, in contrast to what we have said above. 

They are the so called surface resonances introduced above.

These are bulk states with a high amplitude at the surface.. 



Surface States and related ideas

In metals absolute band gaps are in general not present. Surface states are 

expected to exist in relative gaps, that is, for specific values of k.

Calculations of bulk bands extended to a local density of states at the surface show 

a pronounced narrowing of the bulk bands near the surface, the width being roughly

proportional to the square root of the number of neighbouring atoms (coordination

number).

The narrowing is occurring at the bottom of the band (lowest energies).



Surface Brillouin Zone

A surface state takes the form of a Bloch wave in the 2-dimensions of

the surface, in which there can be energy dispersion as a function of

the k// (parallel) vector. For electrons crossing the surface barrier, k//

is conserved, k^ (perpendicular) is not. The k// conservation is to

within a 2D reciprocal lattice vector, i.e. ±G//. This is the theoretical

basis of (electron and other) diffraction from surfaces. 

Band Bending, due to Surface States

In a semiconductor, the bands can be bent near the surface due to

surface states. Under zero bias, the Fermi level has to be „level‟, 

and this level typically goes through the surface states which lie in 

the band gap. Thus you can convince yourself that a p-type

semiconductor has bands which are bent downwards as you

approach the surface. This leads to a reduction in the electron 

affinity. Some materials (eg Cs/p-type GaAs) can even be activated

to negative electron affinity, and such materials form a potent

source of electrons, which can also be spin-polarised as a result of

the band structure. 



Optical properties of solids:

Mfi = <f|A.p + p.A|i>: matrix element, Fermi Golden rule.

Normally .A = 0 everywhere in a medium with constant dielectric properties.
This allows to simplify Mfi = <f|A.p |i>  (dipole matrix element). 

Now:  .A = c/ew E . e

At an interface, where there is a discontinuity in the dielectric properties of the 
medium, the divergence of the vector potential may take appreciable values.

This is particularly relevant in for the optical properties, since the gradient of the 
dielectric constant will vanish except within a few ångstrom from the interface.

.A ≠ 0        p.A has to be considered too, in the matrix
element. This is termed divergence term or surface-field term, being surface
specific (surface selection rules).

Very important in photoemission.



Photoemission from surfaces

At surface, the non-periodicity normal to the solid-vacuum interface can supply normal
momentum as required during the electron-escape process. The surface can be
regarded as a momentum source. 

The simples way to visualize this is by use of the Heisenberg uncertainty principle. 
Localization of the wave function near the solid-vacuum interface imposes limitation
on the z-coordinate of the electron, so its momentum spread normal to the surface
increases. A spatial limitation into the lattice layer in the surface results in a normal
momentum uncertainty equal to the size of the Brillouin zone in the bulk, so optical
transition may be excited between electron states without consideration of
wavevector selection rules.

In other words, the surface offers a continuous spectrum of normal k-vectors, from
which the energy selection rule picks the appropriate one for the optical excitation.



Escape across the surface

The electrons capable of escaping are those whose component of kinetic energy normal
to the surface is sufficient to surmont the potential barrier.

This means ħ k^
2/2m ≥ f.

This conditiondefines a cone (escape cone). If q denotes the angle between k and the 
normal at the surface, the condition above becomes:

cosq = k^ /k ≥ (f/E)1/2

where E equal ħk2/2m, the kinetic energy inside the metal (works well at high energy).

But we have to apply the k conservation law (single crystal faces or flat surface as a 
consequence of wavefunction continuity) togetehr with E/k^ >0.  Due to the energy
conservation kout≠ kin, the electron is refracted into direction kout outside.
The normal momentum difference inherent in the in the refraction process is taken up 
by the surface.

Even more: the surface can act both as a source or a sink of normal momentum!. It
supplies the momentum required to fulfil both k and energy conservation laws. 
There is no minimum positive group velocity (E/k^) necessary for emission, which
explains the puzzling observation that fotoelectron spectra “see” electron at the centre
or border of the Brillouin zone, where the group velocity vanishes.



The Image Force

You will recall from elementary electrostatics that a charge outside a 

conducting plane has a field on it equivalent to that produced by a ficticious

„image charge‟. 

The corresponding potential felt by the electron, V(z) = -e/4z. 

For a dielectric, with permitivity e, there is also a (reduced) potential

V(z) = -(e/4z) (e-1)/(e+1). 

It is often useful to think of metals as the limit e , and vacuum as e  1.

There is also a completely different type of surface states which we should 

mention in a few words. Consider an electron in front of a metal surface. The 

screening properties of the metal can be described by a positive image 

charge in the metal which has an attractive interaction with the electron. One 

can describe this as if the electron moves inside an attractive Coulomb 

potential in front of the surface. Such a potential can actually support 

unoccupied bound states, so-called image potential states . These states lie 

above the Fermi energy of the solid but below the vacuum energy. This 

means that image potential states can be populated but the electrons in 

these states can not leave the solid. 



• An electron can be trapped by its own image potential.

• The problem is similar to the radia Schrödinger equation for the hydrogen

atom with the boundary condition  = 0 at z = 0 (potential infinitely repulsive 

at z = 0).

• Binding energies are given by:

– en = 1/16 n2. (e - 1)2 / (e +1)2 n = 1, 2 ……
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Plasmons

















We can distinguish between two cases: if  < P then e is real and negative 

and Eq. above) gives only exponentially damped solutions. This means that an

electric field can not penetrate a metal, the metal is reflecting all the light. 

Above the plasma frequency Eq. above does permit propagating solutions of the 

electric field. For simple metals, there is a good agreement with the calculated

plasma frequencyP, or plasmon energy ħP, and the experimental values.





A Surface plasmon mode is localized at a metal surface and decays exponentially

towards both metal and dielectric can be described as a longitudinal wave

A plasmon propagates along the metal-dielectric interface.

Figure shows the field and charge distribution for such a mode. 

Charge and field distribution for a surface plasmon

Surface plasmons (SPs), are coherent electron oscillations that exist at the interface 

between any two materials where the real part of the dielectric function changes 

sign across the interface (e.g. a metal-dielectric interface, such as a metal sheet in 

air). 

SPs have lower energy than bulk (or volume) plasmons which quantise the 

longitudinal electron oscillations about positive ion cores within the bulk of an 

electron gas (or plasma). 



The planar component of the      field associated with this is continuos but the 

perpendicular component is not. Just above and below the surface it is

Now the               field must be continuos. 

This gives us the condition for the existence of the surface plasmon

and hence

A surface plasmon is a collective excitation located at the surface, with 

frequency typically or more in general                                        .

In case of air

For a general dielectric



Surface plasmons are those plasmons that are confined to surfaces and that 

interact strongly with light resulting in a polariton.

When SPs couple with a photon, the resulting hybridised excitation is called a 

surface plasmon polariton (SPP). This is a surface mode trapped at the interface 

which will have electromagnetic fields decaying into both media, but which tied to 

the oscillating surface charge density propagates along the interface.

This SPP can propagate along the surface of a metal until energy is lost either via 

absorption in the metal or radiation into free-space. 

A propagating wave has the mathematical form
kx is a complex function; kx= kx’ + ikx’’. The real part is that of a travelling wave while 
the imaginary part is a damping term due to real metals having resistive scattering. 
Therefore as the surface plasmon propagates in the x direction it will decay in 
amplitude. The propagation length depends on the frequency of the SPP (Surface 
Plasmon Polariton) mode and the plasma frequency. For silver it is around 100 μm



http://en.wikipedia.org/wiki/File:Coordinates.png




At an interface between two transparent media of different refractive index (glass 

and water), light coming from the side of higher refractive index is partly reflected 

and partly refracted. Above a certain critical angle of incidence, no light is refracted 

across the interface, and total internal reflection is observed. While incident light is 

totally reflected the electromagnetic field component penetrates a short (tens of 

nanometers) distance into a medium of a lower refractive index creating an 

exponentially attenuating evanescent wave. If the interface between the media is 

coated with a thin layer of metal (gold), and light is monochromatic and TM-

polarized, the intensity of the reflected light is reduced at a specific incident angle 

producing a sharp shadow (called surface plasmon resonance) due to the 

resonance energy transfer between evanescent wave and surface plasmons. 

Excitation of surface plasmons









Surface plasmon resonance is an excellent method to monitor changes of the refractive 
index in the near vicinity of the metal surface. When the refractive index changes, the 
angle at which the intensity minimum is observed will shift as indicated in Figure


