
Università degli Studi di Ferrara

Facoltà di Scienze Matematiche, Fisiche e Naturali
Corso di Laurea Specialistica in Informatica

Development of a Soil Classification

Web Service and integration

onto the SSE portal

Relatore: Laureando:
Dott. Mirco Andreotti Alan Beccati

Corelatori:
Dott. Marco Folegani, Dott. Stefano Natali

Controrelatore:
Prof. Eleonora Luppi

Anno accademico 2005-2006

to my family
to my lovely girlfriend Erminia

Preface (Italian)

L’Agenzia Spaziale Europea (ESA), con l’obiettivo di espandere il segmento Earth Obser-
vation del mercato Europeo, ha promosso lo sviluppo del sistema Service Support Envi-
ronment (SSE); questo sistema avvicina clienti ed aziende del settore, fornendo all’utente
finale gli strumenti per facilitare la ricerca e l’uso dei prodotti integrati nel sistema ed
alle aziende un sistema standardizzato per la commercializzazione dei loro servizi. L’at-
tività principale del mercato di riferimento è la trasformazione di immagini satellitari in
informazione. L’utilizzo di metodi standardizzati di comunicazione ed accesso a dati e
servizi, facilita inoltre la cooperazione tra le aziende. Un punto centrale di pubblicazione
ed accesso, quale il portale SSE, realizza di fatto un mercato virtuale dove ogni cliente
può facilmente ricercare un servizio adatto alle sue necessità.

Oltre che per applicazioni di mercato, il portale SSE viene utilizzato anche per progetti
di ricerca interni ad ESA: in quest’ambito il progetto KIM Extensions and Installations
(KEI) prevede lo sviluppo di servizi web in ambiente SSE per essere utilizzati in ambito
di classificazione automatica e semi-automatica del suolo ed applicazioni semantiche di
ricerca su ampi database.

MEEO, un’azienda Italiana operante nel settore EO, ha realizzato un sistema automa-
tizzato di classificazione del suolo basato sull’analisi di immagini satellitari multispettrali.
L’integrazione di questo servizio sul portale SSE consentirebbe ai ricercatori l’accesso alle
sue innovative funzionalità, contribuendo all’obiettivo del sistema SSE. Il sistema SSE,
in un ottica orientata ai servizi, implementa un architettura di tipo Service Oriented
Architecture (SOA) che prevede la pubblicazione di ogni servizio da integrare come Web
Service.

Obiettivo di questa tesi è l’integrazione del classificatore SOIL MAPPER (SM), svi-
luppato da MEEO, sul portale SSE secondo le specifiche del sistema, attraverso l’utilizzo
degli strumenti di supporto resi disponibili per SSE.

Questo elaborato è strutturato nel seguente modo:

� Il primo capitolo è una presentazione introduttiva di SM, del quale viene fornita
una panoramica di funzionamento, dei principi di base e del tipo di dati utilizzati
nell’elaborazione. Il capitolo si chiude con una breve introduzione al sistema SSE.

� Il secondo capitolo descrive brevemente la maggior parte delle tecnologie coinvolte

iii

nello sviluppo di un servizio integrato nel sistema SSE. Sono introdotti gli stan-
dard di base atti a garantire l’interoperabilità del sistema quali: EXtensible Markup
Language (XML), per la definizione dei dati ed EXtensible Stylesheet Language
(XSL) per la loro trasformazione. Nel capitolo sono inoltre descritte le due principa-
li tecnologie impiegate nel progetto: i Web Services ed il linguaggio Business Process
Execution Language (BPEL) per la loro organizzazione in processi eseguibili.

� Il terzo capitolo descrive il processo di integrazione del servizio SOIL MAPPER nel
sistema SSE; il capitolo si apre con una panoramica completa sul sistema integrato
seguita dall’analisi dei singoli componenti realizzati.

� Il quarto capitolo contiene le conclusioni, alcuni possibili sviluppi futuri del sistema
ed alcuni suggerimenti per il possibile miglioramento degli strumenti di supporto
all’integrazione dei servizi.

� Nelle due appendici di questo elaborato sono descritti rispettivamente la procedura
completa di installazione e configurazione dell’elaboratore che ospita il servizio SM
ed i listati principali relativi a tale servizio.

L’algoritmo di classificazione del suolo SM analizza immagini satellitari multispettrali,
basandosi sul riconoscimento di particolari modelli di emissione e riflessione delle radiazioni
detti firme spettrali. I sensori Thematic Mapper ed Enhanced Thematic Mapper installati
sui satelliti Landsat 5 e Landsat 7 captano diverse bande di emissione comprese tra lo
spettro visibile ed l’infrarosso; questi dati vengono calibrati in corrispondenti valori di
riflettanza e temperatura per formare la base di analisi per la classificazione. Il risultato
dell’analisi consiste in uno strato aggiuntivo dell’immagine di partenza, contenente la classe
di appartenenza di ogni pixel in essa contenuto. La classificazione può essere fatta secondo
tre livelli con precisione crescente: small, medium e large.

Il sistema SSE facilita all’utente l’accesso alle risorse in esso registrate presentando
un’interfaccia uniforme, accessibile tramite un comune Web browser, che rende disponibile
un catalogo, organizzato in categorie, di tutti i servizi disponibili attraverso il sistema.
Sfruttando il Process Manager integrato nel sistema, inoltre, è possibile fornire all’utente
servizi complessi realizzati attraverso la composizione di più servizi di base registrati nel
sistema SSE.

Mediante il portale SSE, un utente può effettuare la ricerca di un servizio che fornisca
l’elaborazione desiderata, quindi effettuare ricerche su cataloghi di immagini collegati al
servizio scelto ed, infine, richiedere l’elaborazione delle immagini selezionate dai risultati
della precedente ricerca. Se l’elaborazione richiesta dall’utente dovesse necessitare del-
l’utilizzo di più servizi, supponendo che questi siano concatenati in un singolo servizio
complesso, egli potrebbe ottenere il risultato finale dell’elaborazione mediante una singola
richiesta al servizio complesso.

Il sistema SSE garantisce l’interoperabilità fra i vari sistemi coinvolti mediante l’utilizzo
di standard aperti ed estensibili quali:

XML un linguaggio per la descrizione delle informazioni estensibile basato unicamente su
file di testo semplice, utilizzabili quindi su qualsiasi piattaforma tramite un interprete
di questo linguaggio. Un documento XML non utilizza tag standardizzati ma si basa
su uno schema, anch’esso scritto in XML, che ne consente la corretta interpretazione;

XSL un insieme di tre standard progettati per definire come l’informazione contenuta nei
documenti XML possa essere presentata, selezionata o trasformata;

Web Services la tecnologia utilizzata per la comunicazione tra il sistema SSE ed i servizi
integrati. L’architettura Web Services si basa sull’estensione del linguaggio XML
Simple Object Access Protocol (SOAP), orientata alla veicolazione di messaggi XML
tra sistemi eterogenei.

BPEL un linguaggio standardizzato, basato sull’XML, progettato per orchestrare diversi
Web Services in un unico processo. Un processo BPEL può essere astratto oppure
eseguibile; SSE utilizza per l’esecuzione dei processi BPEL Oracle Process Manager.

Il sistema SSE mette a disposizione uno strumento, chiamato TOOLBOX, per facilitare
ai service provider l’integrazione dei loro servizi sollevandoli dalla necessità di realizzare da
zero l’interfaccia richiesta dai Web Service per ricevere ed interpretare i messaggi scambiati
con l’SSE. La TOOLBOX è uno strumento configurabile tramite uno specifico linguaggio
di scripting XML; al service provider è richiesta la realizzazione degli script di programma-
zione e di un sistema di comunicazione fra la TOOLBOX ed il proprio sistema informativo
dove risiede il servizio da integrare.

Il sistema SSE fornisce una specifica formale delle operazioni che un servizio integrato
può fornire, queste operazioni sono:

Search utilizzabile per effettuare ricerche di immagini tramite servizi di catalogo;

Present utilizzabile per richiedere informazioni più dettagliate su un risultato di una
precedente operazione di Search;

Request For Quotation (RFQ) utilizzata per richiedere informazioni riguardanti il
servizio quali, ad esempio, prezzi praticati secondo l’elaborazione richiesta o
presentazione di risultati dimostrativi sul servizio fornito;

Order utilizzabile per effettuare un’effettiva richiesta di elaborazione ad un servizio.

Nessuna di queste operazioni è obbligatoria per un servizio che potrebbe, ad esempio,
fornire solo le prime due operazioni (fornendo di fatto un servizio di consultazione per un
catalogo) od anche la sola operazione di Order.

vi

L’interfaccia che un servizio integrato in SSE mette a disposizione dell’utente è definita
nel suo foglio di stile: un documento XSL che contiene dei modelli di trasformazione,
selezionati dal Portale SSE secondo l’operazione richiesta dall’utente. Il foglio di stile
contiene inoltre le direttive per la composizione dei messaggi XML scambiati tra il sistema
SSE ed il servizio stesso.

Per gli scopi di questo progetto, il servizio SM deve supportare il catalogo ufficiale
ESA, Earthnet OnLine Interactive (EOLI), e consentire inoltre l’elaborazione di imma-
gini direttamente fornite dall’utente; per soddisfare questi requisiti stata realizzato un
unico servizio di base, integrato sul sistema SSE in due versioni differenti: una versio-
ne FTP, per consentire l’elaborazione di immagini accessibili tramite un indirizzo FTP
fornito dall’utente ed una versione EOLI che fornisce il supporto dell’omonimo catalogo.
L’integrazione del servizio SOIL MAPPER sul sistema SSE è ha comportato le attività

descritte nel capitolo 3, di seguito brevemente riportate:

� Installazione e configurazione di un server di calcolo dedicato al servizio SM, descritta
in appendice A.

� Analisi del modello d’utilizzo del classificatore SM e realizzazione del collegamento
(basato su script di shell Linux) fra TOOLBOX e SM.

� Realizzazione dello schema del servizio e dei necessari script di configurazione per la
TOOLBOX

� Realizzazione dei processi BPEL per la gestione delle operazioni fornite dal servizio
SM.

� Realizzazione dei fogli di stile per la gestione dell’interazione con l’utente.

� Registrazione sul portale SSE delle due versioni del servizio realizzate.

� Verifica del corretto funzionamento delle due versioni del servizio tramite il test
center incluso nella TOOLBOX ed il portale SSE.

Il servizio SOIL MAPPER sarà consegnato ad ESA per l’installazione nei suoi siste-
mi di calcolo, rendendo cos̀ı disponibili, ai ricercatori associati all’Agenzia, le innovative
funzionalità del classificatore SM. Questo servizio sarà inoltre utilizzato nell’ambito del
progetto KEI, andando a costituire parte del sistema di estrazione di informazioni previsto
dal progetto.

L’utilizzo del servizio sui sistemi di ESA e nell’ambito del progetto KEI è riservato a

scopi non commerciali; una versione commerciale del servizio, con le opportune integrazioni

proposte nella sezione 4.2, sarà integrata nel sistema SSE e gestita direttamente da MEEO.

Contents

Introduction xv

1 Automated soil classification system and SSE 1

1.1 Principles of spectral categorization . 1

1.2 Landsat imagery system . 1

1.3 SOIL MAPPER overview . 3

1.3.1 Architecture . 3

1.3.2 Classification levels . 4

1.4 Services Support Environment . 4

2 Technology, standards and tools 9

2.1 Base standards . 9

2.1.1 XML . 9

2.1.2 XSL, XPath and XSLT . 11

2.2 Technology . 14

2.2.1 Web Services Architecture . 14

2.2.2 Services orchestration: BPEL . 17

2.3 The Intecs TOOLBOX . 19

2.4 ESA interfaces . 20

2.4.1 SSE Operations . 21

2.4.2 Interface specifications . 22

2.4.3 Graphical interfaces . 27

3 SOIL MAPPER integration 31

3.1 System Overview . 31

3.2 The Legacy Service . 33

3.2.1 Service I/O . 34

3.2.2 Backend script . 34

vii

viii CONTENTS

3.3 TOOLBOX scripting . 36

3.3.1 Service schema . 36

3.3.2 Order scripts . 37

3.4 BPEL processes . 39

3.4.1 Custom BPEL workflows . 40

3.5 Service interfaces . 41

3.5.1 FTP SOIL MAPPER service stylesheet 41

3.5.2 EOLI SOIL MAPPER service stylesheet 43

3.6 Publishing and testing . 43

4 Conclusions and further work 45

4.1 Conclusions . 45

4.2 Further work . 46

A Server Setup 49

A.1 Hardware . 49

A.2 Software . 49

A.2.1 Software components setup . 49

A.2.2 Final system configuration . 53

B Listings 57

B.1 Service schema . 57

B.2 TOOLBOX scripts . 57

B.2.1 First toolbox script: ftpOrder1.xml 57

B.2.2 Second toolbox script: ftpOrder2.xml 61

B.2.3 Third toolbox script: ftpOrder3.xml 62

B.3 Launcher shell script . 63

B.4 FTP Service Stylesheet . 65

B.5 FTP service WSDL description . 67

Acronyms 71

List of Figures

1.1 SOIL MAPPER logical processing blocks 3

1.2 Different SOIL MAPPER classification outputs 5

1.3 An overview of the SSE system . 6

2.1 XSLT Processing . 13

2.2 WSA related technologies . 17

2.3 An overview of the Intecs TOOLBOX . 19

2.4 SSE Operation Modes . 22

2.5 SSE synchronous order mode types . 25

2.6 SSE asynchronous order mode types . 26

2.7 Overview of XSLT transformations . 27

3.1 Overview of the integrated system . 32

3.2 Overview of the SOAP backend shell script 35

3.3 Service Input and Output schema . 37

3.4 Order configuration web interface . 39

3.5 Input interface transformation result . 42

3.6 Output interface transformation result . 43

A.1 IDL setup configuration . 53

A.2 ENVI setup configuration . 53

ix

x LIST OF FIGURES

List of Tables

1.1 Thematic Mapper bands technical data . 2

1.2 Enhanced Thematic Mapper bands technical data 2

2.1 SSE message schemas . 23

2.2 Stylesheet part values and template names 29

xi

xii LIST OF TABLES

Listings

2.1 An example of XML document . 10

2.2 Associated example of XML schema document 10

2.3 An XSL template rule example . 14

2.4 WSDL service description example . 15

2.5 SOAP message structure . 15

2.6 Sample BPEL document structure . 18

2.7 Stylesheet dispatcher section . 28

2.8 Stylesheet service specific section . 28

3.1 Launcher script: elaboration outcome determination 35

3.2 The IDL calibrator launcher . 36

3.3 The IDL classificator launcher . 36

3.4 The order input template with XML mode 42

A.1 Java environment configuration . 52

A.2 Cd mount and setup launch . 52

A.3 tomcat service startup script . 54

A.4 tomcat users . 54

B.1 The soilMapper.xsd schema file . 57

B.2 The first order script file: ftpOrder1.xml . 57

B.3 The second order script file: ftpOrder2.xml 61

B.4 The third order script file: ftpOrder3.xml 62

B.5 The service launcher shell script . 63

B.6 The FTP based service’s stylesheet . 65

B.7 The FTP based service’s WSDL description 67

xiii

xiv LISTINGS

Introduction

Today’s European Earth Observation (EO) market services (e.g. the transformation from

satellite images into information) are performed by a small number of specialised com-

panies each operating independently in its specific application domain. This separation

prevents the optimization of allocated resources, limits the visibility of the companies to

potential customers and provides no standard way for customers to access the company’s

services or for companies to cooperate in synergy. Aiming to solve these problems and in

an effort to broaden the European EO market, the Service Support Environment (SSE) has

been developed for the Ground Segment Research and Technology Development (RTD)

Department at European Space Agency (ESA) - ESRIN (the ESA Centre for Earth Ob-

servation, one of the five ESA specialised European centers).

SSE implements an open service-oriented and distributed environment for users, service

providers and data providers integration into a coherent supply chain thus facilitating

service provision and companies collaboration.

Adhering to a Service Oriented Architecture (SOA) point of view, the SSE system lever-

ages Web Services technology for its communication infrastructure so a service provider,

to integrate its value added service, must implement it as a Web Service which receives

the SSE requests and reacts according to their content. Intecs S.p.A., an italian software

company participating in the SSE framework development, had developed a server side

application, called TOOLBOX, to aid service providers in their service development.

The SSE system interface has been developed to be used also in the framework of the

ESA - ESRIN Ground Segment Projects, these projects involve development of several EO

services focused on the Image Information Mining. This initiative is amied at extracting

useful information from the European satellite image databases.

Meteorological and Environmental Earth Observation (MEEO), an italian company

located near Ferrara, has developed SOIL MAPPER (SM), a soil classification system

based on spectral signals remotely detected by a satellite’s sensor. MEEO has been in-

xv

xvi INTRODUCTION

volved in the KIM Extension and Installation (KEI) project with the aim to integrate its

SM services into the Knowledge based Information Mining (KIM) system. KIM is one

of the Image Information Mining (IIM) projects sponsored by ESA that focuses on the

implementation of a new information mining technique, differing from traditional feature

extraction methods which analyse pixels looking for predefined patterns. KIM extracts

and stores basic image pixel and area characteristics (Primitive Features), which are then

selected by users as representative of the searched high-level feature. The weighted combi-

nation of one or more Primitive Features, resulting from such training, can be associated

by the user to a specific semantic meaning, closely linked to his domain and knowledge[1].

Following ESA SOA oriented intetgration system, scope of this thesis is the integration

of the SM classification algorithm onto the SSE system. This writing describes the SSE

system, focusing on the service integration process and details the integration of the SM

classification system.

This thesis describes some essential concepts of the SSE portal, focusing on the service

integration system, and the MEEO classifier. Furthermore it details the integration process

performed in order to publish SM as a web service integrated on the SSE portal using the

Intecs TOOLBOX. The contents of this writing is structured in the following chapters:

Chapter 1 This introductory chapter provides an overview of the SM classification algo-

rithm, its principles and SSE: the target system for the SM integration;

Chapter 2 Provides a brief description of the technologies and standards upon which the

SSE system is built, description of the Intecs TOOLBOX is also included since it is

the main integration supporting tool of the SSE framework;

Chapter 3 Details the developed classification service and its integration onto the SSE

Portal;

Chapter 4 Holds conclusions and possible further work.

Chapter 1

Automated soil classification
system and SSE

To define the context of the project upon which this writing is based, this chapter describes

the SOIL MAPPER (SM) classification algorithm (along with its base principles of spectral

categorization and the kind of images used as its input) and the SSE portal and its founding

SOA philosophy.

1.1 Principles of spectral categorization

Water, sand, bare soil, plants, urban/artificial areas, etc. differ in the way they reflect or

emits electromagnetic radiation at different wavelengths. The human eye perceives these

differences in the optical (visible) spectrum as color therefore the color of the observed

portion of earth surface, differs according to its material composition or coverage.

Besides visible spectrum, the most effective electromagnetic bands for earth surface

characterization are infrared (IR) and microwave (MW) spectra. Each material has a

specific electromagnetic response to direct solar illumination or emission in the visible and

IR spectrum: this is called spectral signature. Any portion of the earth surface can thus

be characterized by means of its spectral signature but when dealing with discrete units

of measurement like pixels of a satellite acquired image covering different mixed terrain

types some fuzziness will be introduced into the signature definition depending on the

image resolution and this must also be considered.

1.2 Landsat imagery system

The Landsat Program is a series of Earth-observing satellite missions jointly managed

by the National Aeronautics and Space Administration (NASA) and the United States

1

2 CHAPTER 1. AUTOMATED SOIL CLASSIFICATION SYSTEM AND SSE

Geological Survey (USGS). Landsat satellites collect information about Earth from space

(a science known as Remote Sensing (RS)). The Landsat satellites we consider in this

work are Landsat5 and Landsat7 both flying at a 705 km high sun synchronous orbit col-

lecting multi-band earth data with different sensors[2]. The acquired data is collected into

scenes concerning a specific stripe segment of the continuous satellite’s 185Km wide data

acquisition swath. Each satellite has a different set of sensors on board; the classification

algorithm considered in this work is focused on the utilization of the following sensors:

� The Thematic Mapper (TM) sensor mounted on the Landsat5 satellite which pro-

vides a multi-band acquisition divided into six 30mt resolution bands (ranging from

the visible blue band to the mid wave infrared band) and a single 120m resolution

thermal infrared band, see Table 1.1[2];

� The Enhanced Thematic Mapper (ETM) sensor mounted on the Landsat7 satel-

lite which provides a multi-band acquisition divided into six 30mt resolution bands

(ranging from the visible blue band to the mid wave infrared band), a single 60m

resolution thermal infrared band and a panchromatic 15mt resolution band (covering

green, red, and near infrared wavelengths), see Table 1.2[2].

Band Wavelength (µm) Resolution (m) Swath Width (km) Revisit time(days)

Band 1 (VIS) 0.45 to 0.52 30 185 16
Band 2 (VIS) 0.52 to 0.6 30 185 16
Band 3 (VIS) 0.63 to 0.69 30 185 16
Band 4 (NIR) 0.76 to 0.9 30 185 16

Band 5 (SWIR) 1.55 to 1.75 30 185 16
Band 6 (TIR) 10.4 to 12.5 120 185 16

Band 7 (SWIR) 2.08 to 2.35 30 185 16

Table 1.1: Thematic Mapper bands technical data

Band Wavelength (µm) Resolution (m) Swath Width (km) Revisit time(days)

Band 1 (VIS) 0.45 to 0.515 30 185 16
Band 2 (VIS) 0.525 to 0.605 30 185 16
Band 3 (VIS) 0.63 to 0.69 30 185 16
Band 4 (NIR) 0.75 to 0.9 30 185 16

Band 5 (SWIR) 1.55 to 1.75 30 185 16
Band 6 (TIR) 10.4 to 12.5 60 185 16

Band 7 (MWIR) 2.08 to 2.35 30 185 16
Band PAN (VIS) 0.52 to 0.9 15 185 16

Table 1.2: Enhanced Thematic Mapper bands technical data

1.3. SOIL MAPPER OVERVIEW 3

1.3 SOIL MAPPER overview

SM is an innovative RS image rule-based classifier based on spectral prior knowledge

exclusively[3]. SM takes inspiration from a paper published in RS literature[4]. The

algorithm input must be an RS image calibrated into planetary reflectance and absolute

temperature values and its generated output is a preliminary (baseline) classification map

with each pixel of the input image classified into a discrete set of spectral categories. These

spectral categories feature a semantic meaning and are suitable for driving further image

analysis on a stratified basis. A key feature of SM is full automation since its execution

requires neither user supervision nor ground truth data sample.

1.3.1 Architecture

The SM classification system is based on a set (dictionary) of spectral rules built from

a priori spectral knowledge consisting of spectral signatures extracted from existing RS

literature. A two stage architecture allows to handle the inherent variability (fuzziness) of

land cover class-specific spectral signatures.

The first stage classifies each pixel-based input data against a logical (and, or) combi-

nation of inter-band relative relationships (e.g. band 1 > band 2) provided with

tolerance intervals providing a possibly multiple classification by the spectral rules.

The second stage classifies each pixel-based input data by an irregular but complete

grid-partition of the input feature space given by a logical combination of fuzzy sets

(e.g. band 1 is high).

Described in its general logic schema, SM consists of the three processing blocks depicted

in Figure 1.1

Landsat 5 / 7
(GeoTiff or ceos)

Classified Image
(ENVI or GeoTiff)

Radiometic
calibration

Two-stage
classification

Output
generation

SOIL MAPPER classificator

Figure 1.1: SOIL MAPPER logical processing blocks

The SM implementation used for this work accepts either the GeoTiff or the Com-

mittee on Earth Observation Satellites (CEOS) data formats and can write its classified

output image files in either ENVI or GeoTiff data formats. The three processing blocks

functionalities can be summarized as follows:

4 CHAPTER 1. AUTOMATED SOIL CLASSIFICATION SYSTEM AND SSE

Radiometric calibration performs a conversion from the raw multi-band image data to

the needed reflectance and absolute temperature values of the corresponding bands;

Two-stage classification is the core SM rule based classification algorithm implemen-

tation;

Output generation although SM supports three primary types of output products1,

only the classification map of the input image is produced as elaboration result for

this service integration.

1.3.2 Classification levels

In this service integrated version SOIL MAPPER generates, at the user choice, one of three

output classification maps featuring different levels of informational granularity (number

of discrete classes): the Large, Intermediate and Small sets of output categories consisting

of 72, 38 and 15 spectral categories respectively. An example of each classification level

output obtained from the same source image (extracted from a larger Landsat 7 scene to

focus on Lipari island) is depicted in Fig.1.2 where it can be noticed how the coarseness

of the classification results grows as the number of classes is reduced.

1.4 Services Support Environment

Driven by the need to follow a market-pulled user-oriented approach to earth observation

implementation strategy, as stated in the “Oxygen project”[5], the European Space Agency

had sponsored and is running the eoPortal2 which aims to improve market expansion of

EO products and services providing a content updated user-friendly website as a single

access point for those EO products and services thus enhancing people’s ways to access

EO resources.

Among the eoPortal provided features (like satellite imagery catalogues, map services

and cartographic resources), the SSE portal is such a centralized access point that coordi-

nates access to a wide range of value added EO services. A key feature of the SSE portal is

its Interface Control Document (ICD) which holds the formal rules to publish those value

added services in a standard way, providing full interoperability between all the adhering

service provider systems. A service provider is any organization publishing a value added
1Classification maps featuring different aggregation levels of spectral layers, header files summarizing

image-wide classification statistics and continuous spectral indexes (Greenness, Canopy chlorophyll content,
Canopy water content and Water index).

2The eoPortal: Sharing Earth Observation Resources is located at http://www.eoportal.org

1.4. SERVICES SUPPORT ENVIRONMENT 5

(a) Input (b) Large

(c) Intermediate (d) Small

Figure 1.2: An example of the different classification outputs from the input Landsat 7
image of Lipari island acquired on Sep-26-1999. (a) is the input image depicted using the
three visible bands (red, green and blue); (b) is the Large output set classification (72
classes); (c) and (d) are the Intermediate (38 classes) and Small (15 classes) output sets
respectively.

6 CHAPTER 1. AUTOMATED SOIL CLASSIFICATION SYSTEM AND SSE

EO service on the SSE portal. Here follows an example based overview of its working

model; a more detailed description can be found in the SSE whitepaper[6] and in section

2.4.

To get an overview of how the service integration is obtained through the use of the SSE

system lets suppose that a user wants to find an image of interest on a data provisioning

catalogue and then he needs some value added processing of the image. Suppose also

that the required processing system is provided by the sequential application of three

elaboration services registered on the SSE portal by two different providers; this sequential

application can also be published as a single chained EO service, even if the composing

services are provided by different service providers. Figure 1.3 shows this chained service

scenario and the key interactions among the involved entities.

service 3

service provider B

service 1 service 2

service provider A

User request
SSE portal

S1->S2->S3
 output
results

1

2

3 4 5

Image catalogue

6

Figure 1.3: An overview of the SSE system

The user connects to the SSE portal and searches for a service matching its needs. Once

a suitable service is found, the user can search through the appropriate image catalogue

by means of a graphical interface. Once he have chosen an image, the elaborations on the

chosen images can be ordered.

The SSE portal’s workflow manager then handles all the interactions with each in-

volved service provider system by means of the Simple Object Access Protocol (SOAP)

open communication standard, invoking the services and retrieving the results of the elab-

1.4. SERVICES SUPPORT ENVIRONMENT 7

orations; then it returns the relevant information on the elaboration outcome and result

retrieval to the user.

This automatic workflow management system, the interactive graphical interfaces and

the integration of users, service providers and data providers in a coherent supply chain

are key factors to the user-friendliness of the SSE portal bringing transparency and ease

of use to its complex integration mechanism.

The catalogue search can be done on any catalogue service integrated onto the SSE

portal: the official ESA catalogue is the Earthnet OnLine Interactive (EOLI) catalogue

providing access to multiple collections of image metadata from different satellites. This

catalogue has an interface for portal integration and data provisioning and is run by

ESRIN.

The SOA principles upon which ESA built the SSE system are clearly seen on its

characteristics:

� a service provider builds and manages its services using its own fully controlled

resources;

� the SSE acts as service broker registering published services into appropriate search-

able categories;

� a service can be used directly or orchestrated into a complex workflow involving

many services.

Registered Services on the SSE portal are classified into searchable categories providing

to the user a virtual market place that relates them to value adding businesses. The

services are also reusable blocks of arbitrary complexity ranging from small basic services

which can be orchestrated into a workflow to provide large chained complex services.

8 CHAPTER 1. AUTOMATED SOIL CLASSIFICATION SYSTEM AND SSE

Chapter 2

Technology, standards and tools

This chapter is an introductory description of the standards and technologies upon which

the integration project relies and of the tools supporting them.

2.1 Base standards

This section provides an introduction to the founding standards adopted in the integration

framework of the SSE portal. These standards have been developed or approved mainly by

the Word Wide Web Consortium (W3C) and are largely adopted whenever interoperability

is a key success factor.

2.1.1 XML

EXtensible Markup Language (XML) is a W3C recommendation which describes a class

of data objects called XML documents and partially describes the behavior of computer

programs which process them[7]. An XML document has a tree-like structure consisting

in a root element containing storage units called entities. An entity contains either parsed

data (character data and markup tags) or unparsed data. The markup present in the

parsed data is used to describe the document’s storage layout and logical structure.

XML is designed to be straightforwardly usable over the Internet and to be easily used

in a wide range of applications as well as to be clear and human-legible. Terseness is also

of minimal importance in an XML document which shall also be easy to create. Its main

focus is data description thus its not about doing something but only to structure, store

and send information.

One key concept of XML is its extensibility, in fact, no markup tags are predefined by

its specification and a Document Type Definition (DTD) or an XML Schema are used to

define new tags for data description; an XML document must be well formed according to

9

10 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

its specification and it can also be valid if it complies with the definitions in its associated

schema.

An example of a valid XML document and its associated schema are presented in

Listing 2.1 and 2.2 respectively.

Listing 2.1: An example of XML document
<?xml version=” 1 .0 ”?>
<message

xmlns=” ht tp : //message . namespace”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=”message . xsd”>

<to>Al i c e</ to>
<from>Bob</ from>
<t ex t>Here i s my message</ text>
</message>

In an XML document each open tag must either have a corresponding closing tag or be an

empty tag and the elements must be properly nested. With an associated DTD or schema

an XML document is completely self-descriptive.

Listing 2.2: Associated example of XML schema document
<?xml version=” 1 .0 ”?>
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”
targetNamespace=” ht tp : //message . namespace”
xmlns=” ht tp : //message . namespace”
elementFormDefault=” q u a l i f i e d ”>

<xs : e l ement name=”message”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=” to ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”from” type=” x s : s t r i n g ”/>
<xs : e l ement name=” text ” type=” x s : s t r i n g ”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>

</xs:schema>

An XML schema, known as XML Schema Definition (XSD) is the XML version of the

DTD which takes advantage of all the XML features and also adds support for data types.

It constrains the contents of any associated XML document defining which elements are

valid in the document and how to use them. Many basic date types are built-in in the XSD

(like: string, integer, boolean and time), more on XSD can be found in its specification[8].

Being made of plain characters XML provides a way to exchange data between incom-

patible systems (by converting their data formats in a standardized XML document) since

it is not dependent on those system’s software nor hardware. Data storage can also take

advantage of this independent behaviour by using a plain XML file as a fully portable

data store.

2.1. BASE STANDARDS 11

2.1.2 XSL, XPath and XSLT

Since XML is a language focused on information holding, another language is needed to

define how to present the information held by XML documents and to operate rule-based

manipulation of these documents (namely, to transform them). EXtensible Stylesheet

Language (XSL) is a family of W3C recommendations defining a language for the afore-

mentioned purposes which plays a fundamental role in the SSE framework.

XSL was developed as an XML-based Stylesheet Language. Being a stylesheet language

its main purpose was to define how information contained in the XML documents can be

displayed. Since XML does not use predefined and well understood tags the stylesheet

assumes fundamental importance in the document presentation process. XSL has grown

to be more than a stylesheet language and it now consists of three main parts for defining

not only XML presentation but also its transformation[9].

The three parts of XSL are the following:

XSL Transformations (XSLT) is a language for transforming an XML document into

another, XML or other structured language, document.

XML Path Language (XPath) is an expression language used to access or refer to

elements and attributes of an XML document.

XSL Formatting Objects is an XML vocabulary for specifying formatting semantics

and is formally named XSL since it solves the former XSL purposes.

The parts mostly used in the SSE framework are the first two while the third has less

relevance to this work and is not be presented here.

Since XPath is the language used by XSLT to access or refer to the desired informations

in an XML document its knowledge is mandatory to understand XSLT. Here follows a

brief description of this language and its structure.

XPath uses path expressions to address elements and attributes in the tree structure

of an XML document. An XPath expression is evaluated to yield an object having one of

four basic types (node-set, boolean, number or string). A location path is an important

kind of expression which selects a set of nodes that is returned as its result. A general

location path is in the form:

[/] step [/ step]*

12 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

Where the presence of an initial slash character indicates an absolute location path

while its absence indicates a path relative to the current context node. The optional slash

is followed by a mandatory path step which can be followed by zero or more additional

steps divided by slashes. The form of each location step is as follows:

axis nodeTest [predicate]*

The initial node set, selected by a location step, consists of every node which is associated

to the current context node by the relation specified by axis (i.e child, ancestor, self, ...)

and has type and name specified by the nodeTest (i.e. book). The initial node set is then

filtered by the optional predicates, in sequential order of appearance. The exact semantic

of the predicates is axis-dependant, the default axis for location steps is child.

As an example consider the following location path:

/bookstore/book[price<25 and price>10]/title[@lang="it"]

This expression, when processed, initially selects the root bookstore element then all its

child book element nodes filtering them to keep only those having a price element with a

value between 10 and 25, then it selects all the title elements of these book elements and

finally filters them returning as result a set of title elements having the attribute named

lang with value ”it”.

Besides location paths, other expressions are defined in XPath and there are also built-

in functions that can be used in expressions; more information can be found in the XPath

specification document[10].

XSLT is a language for describing how a source XML document is transformed into

another result document. The XML documents are modeled as node trees so, as foretold,

the XPath expressions are used to address their parts. Picture 2.1 shows an overview of a

transformation executed by a component called XSLT processor.

The processor takes an input XML document and builds its corresponding source tree

then, for the transformation engine, XPath expressions defined in the input stylesheet are

tested for matching parts of the source document to one or more templates. When a match

is found, the engine transforms the matching part of the source tree into the result tree.

The processor’s output is then a document which can be an XML document or another

type of structured document represented by the result tree.

Being itself an XML document it is a particular root element that declares it as an XSL

style sheet, such a root element can be either stylesheet or transform qualified, as any of

2.1. BASE STANDARDS 13

source.xml stylesheet.xsl result
document

source
tree

Transformation
engine

result
tree

XSLT Processor

Figure 2.1: XSLT Processing

the stylesheet elements, with the XSLT namespace http://www.w3.org/1999/XSL/Transform1.

The most relevant types of elements that can appear as top-level elements2 in a stylesheet

relating to this writing subject are:

xsl:import is used to add other stylesheets to the importing one ensuring a precedence

policy in the template order.

xsl:param is used to pass parameters into a template or stylesheet being invoked.

xsl:template is used to define template rules.

The transformation processing model is defined as follows:

A node is processed by finding all the template rules with patterns that

match the node, and choosing the best among them; the chosen rule’s template

is then instantiated with the node as the current node and with the list of source

nodes as the current node list. A template typically contains instructions

that select an additional list of source nodes for processing. The process of

matching, instantiation and selection is continued recursively until no new

source nodes are selected for processing[9].

Node identification for template matching is done using Patterns which are a set of

restricted location paths separated by the, or operator-equivalent, | character. Template
1In this subsection the xsl prefix is associated with this namespace but any XSL stylesheet can bound

it to any prefix
2Top-level elements are child elements of the root element

14 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

rules application is invoked by means of the xsl:apply-templates element. An example

template rule is provided in listing 2.3, the listed rule matches the emph elements and

produces a bold HTML formatter then processes its immediate children.

Listing 2.3: An XSL template rule example
<x s l : t emp l a t e match=”emph”>

<xs l : app ly−templates />

</ x s l : t emp l a t e>

XSLT also provides elements to operate flow control selection in a transformation

(xsl:foreach, xsl:if, xsl:choose), value selection (xsl:value-of) as well as some built-in func-

tions; complete information on the aforementioned XSLT elements can be found in the

language specification[9].

2.2 Technology

The main thechnologies adopted in the SSE systems are Web Services and process work-

flows for service orchestration, this section provides an introductory description to these

technologies.

2.2.1 Web Services Architecture

XML web services are an important evolution of web-based technology; they are dis-

tributed server-side software components designed to interface to other software compo-

nents enabling application development in the internet environment. Web services tech-

nology is based upon SOAP which in turn is an XML extension thus Web services are

interoperable in a wide range of heterogeneous systems provided they support the SOAP

protocol.

The Web Service Architecture (WSA)[11] is a W3C note aimed at providing a con-

ceptual model and context to understand Web Services and the relations between the

conceptual model’s elements. It promotes the interoperability defining standardized com-

patible protocols neither restricting Web Services to a particular implementation nor to a

specific use case. The WSA definition of a Web Service is:

Definition: A Web service is a software system designed to support inter-

operable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using

2.2. TECHNOLOGY 15

SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards[11].

In the WSA model Web Services are implemented by software components called agents

designed by a service provider to provide some functionality to a requester agent. The

message exchange between these agents are documented in a machine-processable “agree-

ment” which provides description of the expected message contents and exchange patterns;

this document is called Web Service Description and is written in the XML based Web

Services Description Language (WSDL). The WSDL description defines only the service’s

interface, the semantics (meaning of information, usage conditions and consequences) are

outside the description document scope and must be defined by other means.

The main structure of a WSDL document is presented in Listing 2.4 while a complete

description can be found in its specification[12].

Listing 2.4: WSDL service description example
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<d e f i n i t i o n s targetNamespace=” ht tp : //www. example . ns”

xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”>
<types>

< !−− This s e c t i o n de f i n e s , us ing XML schema syntax , the
data types used by the de s c r ib ed s e r v i c e −−> . . .

</ types>
<message>

< !−− A message d e f i n e s the data e lements o f an opera t i on
and c on s i s t o f one or more message par t s −−> . . .

</message>
<portType>

< !−− A prtType d e s c r i b e s a web s e r v i c e s p e c i f y i n g which ope ra t i on s are a v a i l a b l e
and the messages used by those ope ra t i on s −−> . . .

</portType>
<binding>

< !−− A binding a s s o c i a t e message format and
t ranspor t p ro to co l d e t a i l s to a de f ined port−−> . . .

</ binding>
</ d e f i n i t i o n s>

Four type of operations can be defined in the portType elements: one-way, request-

response, solicit-response and notification each representing its respective interaction

model.

Web service’s messages are conveniently conveyed in a platform- and application-

independent way by using the SOAP protocol. This XML-based protocol is used to

encapsulate the message in a standardized way; the SOAP message structure is shown

in listing 2.5, for a complete SOAP description refer to its specification[13].

Listing 2.5: SOAP message structure
<?xml version=” 1 .0 ”?>
<soap:Envelope

xmlns:soap=” ht tp : //www.w3 . org /2001/12/ soap−enve lope ”

16 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

soap : encod ingSty l e=” ht tp : //www.w3 . org /2001/12/ soap−encoding ”>
<soap:Header>

. . .
</ soap:Header>
<soap:Body>

. . .
<soap :Fau l t>

. . .
</ soap :Fau l t>

</ soap:Body>
</ soap:Envelope>

In a SOAP message the mandatory soap:Envelope element encapsulates optional appli-

cation specific message information in its soap:Header element, the message itself in its

soap:Body element and fault related information like error code and description, if needed,

in the soap:Fault element.

Both SOAP and WSDL can be extended to include other functionality like WS-

Addressing for message delivery and correlation and PartnerLinks for service operation

roles specification in a business process.

Service Oriented Architecture

A SOA is a specific kind of distributed system which can be viewed as a mesh of collabo-

rating services each executing a well defined operation set which can be invoked over the

network in a standard and interoperable way. Key components of a SOA are:

� Exchanged messages;

� Requester and provider agents;

� Open and standardized transport protocols;

� Component description and access policies.

The focus on messages instead of actions in a SOA and their standardization brings

transparency in the architecture, a message intermediary like a firewall can easily inspect

transit messages and act appropriately in a predictable way while a human trusted inspec-

tor can examine the messages and find out the involved services and requested actions.

The WSA is indeed a SOA since its focused on services and exchanged messages,

based on shared, open standards and protocols and can be extended to provide means

for requester and provider identification and interaction policy. Figure 2.2 shows the

correlation between the technologies and standard involved in the WSA.

2.2. TECHNOLOGY 17

Descriptions (WSDL)

Messages

Processes (Discovery, Orchestration)

XML and XSD

Transport (http, smtp, ftp,)

SOAP

SOAP extensions
(security, reliability)

Figure 2.2: WSA related technologies

2.2.2 Services orchestration: BPEL

Web Services interactions can be described as an orchestration or as a choreography.

The scopes of the two models are different since orchestration encompasses all parties

and interactions in a global view of the system while choreography is focused on the

point of view of a particular service and the interactions are based on events outside that

service. Business Process Execution Language (BPEL) is an XML-based orchestration

language used to model a business process; such a model can be either abstract (describing

only the publicly observable behaviours) or executable (describing the detailed internal

behaviour) by processing engine. A BPEL document is an XML document with a root

process element qualified with the BPEL 1.0 namespace http://schemas.xmlsoap.org/ws/

2003/03/business-process/.

The BPEL process orchestrates Web Services provided by partners, the role of each

partner is specified by a partnerLink element in its WSDL service definition. The or-

chestration itself is a workflow built using various BPEL elements each providing specific

functionality like flow control (while, flow, sequence) service communication (receive, re-

ply, invoke), data variables (assign, variable), error control (throw, rethrow, fault handlers)

and more. An exhaustive description of those elements is outside the introductory scope

of this section and can be found in the BPEL specification[14]. The typical BPEL process

used by the processes defined in this work follows the general structure shown in Listing

18 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

2.6, where some of the main BPEL elements can be observed.

Listing 2.6: Sample BPEL document structure
<proce s s name=” . . . ”

targetNamespace=” . . . ”
xmlns=” ht tp : // schemas . xmlsoap . org /ws/2003/03/ bus ines s−proce s s /” . . .>

<partnerL inks>
<partnerLink name=” . . . ” . . . />

</ partnerL inks>

<va r i a b l e s>
<va r i ab l e name=” . . . ” . . . />

</ v a r i a b l e s>

<f au l tHand l e r s>
<catch faultName=” . . . ” . . . />

</ f au l tHand l e r s>

<sequence>
<r e c e i v e partnerLink=” . . . ” portType=” . . . ”

opera t i on=” . . . ” v a r i a b l e=” . . . ”/>
</ r e c e i v e>
<f low> . . . </ f low>
<r ep ly partnerLink=” . . . ” portType=” . . . ”

opera t i on=” . . . ” v a r i a b l e=” . . . ”/>
</ sequence>

</ proce s s>

The root process element defines the document as a BPEL process and contains all

the other building elements:

partnerLinks contains all the definitions of the services participating in the described

business process, these partners are named and assigned a role in the process;

variables contains the definitions of all the typed global variables identifiable by their

assigned names;

faultHandlers defines the fault handling mechanics and can contain many fault specific

catch elements and a general catchAll element. Other event handlers, catching non

fault events, can also be defined in the similar unlisted eventHandlers element;

sequence this final element defines the main process control sequence and can contain

any appropriate flow-control, assignment, service communication an like elements

which composes the process orchestration logic.

The final sequence element of the listed process starts with a blocking receive element

which puts the workflow in a message waiting state, when the specified message is received

it is assigned to the specified variable and the process execution continues into the flow

element3; when the flow is completed the reply element causes the response contained
3The flow element specifies a parallel execution of its contained activities and can also be replaced by

a sequence element to specify a sequential execution model.

2.3. THE INTECS TOOLBOX 19

in the specified variable to be sent back to the requester thus defining the process to be

synchronous; an asynchronous process is characterized by a final invoke element instead.

2.3 The Intecs TOOLBOX

Since the SSE system requires that all communications with service providers must be

encapsulated in SOAP messages, there must be an endpoint at each service provider to

receive the messages and correctly interpret them, this component (a SOAP interface) can

be developed with any SOAP enabled programming language as well as built from scratch

by the service provider. Intecs, partecipating in an ESA SSE development project, to facil-

itate the service provider in the Web Service development, has developed a JAVA servlet,

which can be run on the Apache Tomcat servlet engine, that provides such an endpoint for

the standard SSE operations: this servlet is called TOOLBOX. The TOOLBOX is built

entirely with open source component and is released under the GPL licence.

Using a web interface, the service provider can configure the TOOLBOX to provide

endpoints for his Web services, moreover, other utilities are provided by the TOOLBOX

for the service provided to use for services debugging and managing, along with an inte-

grated FTP server for data publishing. Figure 2.3 shows an overview of the TOOLBOX

components and its placement as the interface between the SSE system and the service

provider’s system in the SSE framework.

Linux or Windows NT OS

Java Virtual Machine

Apache Tomcat

SOAP
interface

SOAP
Backend

FTP server Web interface

Testing and monitoring tools

TOOLBOX

SSE
Portal

Service
Provider
Existing
System

Figure 2.3: An overview of the Intecs TOOLBOX

The SOAP backend component must be developed and integrated with the TOOLBOX

by the service provider as the actual connection between his existing system and the

TOOLBOX. This backend is not standardized and must be integrated with the TOOLBOX

20 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

using its scripting language.

The TOOLBOX scripting language is an XML based language interpreted and exe-

cuted by the TOOLBOX as a programming language. This scripting language provides

the most common programming language features (like flow control, variables, error han-

dling) and adds its own elements to aid the service provider with the service integration

(like XML manipulations, XPath expressions, and SSE based structures).

2.4 ESA interfaces

The SSE provides an open environment for Earth Observation and GIS services integration

and its ICD defines the external interfaces between the SSE Portal and remote services

hosted by the service providers[15].

the ICD provides an overview of the service integration process which can be resumed

into the following points:

� an XML schema of the service’s interface data model must be defined to provide a

formal definition of the data exchanged in every service operation invocation;

� For basic services only: Install and configure the toolbox with the proper integrating

mechanism. This step needs the development of the operational toolbox scripts and

an eventual “glue” layer to enable the toolbox to manage the legacy service;

� Become a service provider making the proper request from the user profile on the

SSE portal;

� For chained services only: Design and deploy the service workflow (implemented as

a BPEL process). This can be accomplished using the Oracle BPEL designer Eclipse

plugin to develop and the BPEL console provided on the SSE portal to deploy the

workflow;

� Meet the service registration requirements by producing the WSDL description of

the service and the stylesheet that defines how to present and process the input and

output service data;

� Register and test the service using the service provider interface provided by the

portal and once the service has passed all the desired operational tests it can be

enabled setting its status to “enable”.

2.4. ESA INTERFACES 21

The messages exchanged between SSE and the integrated services are treated as data

(constrained to the ICD rules) and transferred according to the SOAP over HTTP or

HTTPS protocol while the larger image data is transferred with File Transfer Protocol

(FTP).

2.4.1 SSE Operations

Four operations that the service provider can expose are defined and will be accessible from

the SSE portal pages and workflows once the service is published. The service operations

are:

Request for Quotation (RFQ) this operation is meant to provide the user with service

related data such as service availability, pricing or sample output data;

Order is the operation that allows sending an actual service order request; its interface

must handle all the required service inputs and output results, either embedded in

the messages or linked via FTP.

Search is the operation used to query image metadata from a remote catalogue matching

some search criteria.

Present is based on a single Search result and allows requesting different levels of detailed

information about the result from the corresponding catalogue.

None of the defined operations is mandatory for a given service but the invocation

order is well defined and, supposed the availability of all operations, a Search will always

come first and enables both the Present of one of its results or the Quotation request

for a subsequent service Order. Since there is no mandatory operation the sequence can

be reduced to a single Order request or to a catalogue consulting service providing only

Search and Present operations.

The integrated services can implement operations taking variable amounts of time

for completion thus two interaction modes are supported: synchronous and asynchronous

operations.

The synchronous mode is available for each aforementioned operation and is suitable

for operations taking a reasonably short amount of time to complete (approximately the

waiting time expected for a web browser request) and consists of a single request/response

message pair exchange while the asynchronous mode is available only for RFQ and Order

22 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

operations and in this mode no assumption is made for the expected completion time which

can be in the scale of days, weeks or longer; the latter model requires a caller callback

endpoint for the service to communicate the elaboration results when it completes thus

requiring two pairs of request/response messages, the first initiated by the SSE an the

second by the elaboration service. The two operation modes and the message naming

conventions are shown in Figure 2.4

SSE
Portal

processPresent

processSearch

processRFQ

processOrder

Remote
Service

(a) synchronous mode

SSE
Portal

returnRFQResult

sendOrder

returnOrderResult

Remote
Service

sendRFQ

(b) asynchronous mode

Figure 2.4: SSE Operation Modes

2.4.2 Interface specifications

The SSE ICD states which message elements must be used by the service interface and

provides recommendations for the relative payload types. A key feature of the message

types is their extensibility: all of the RFQ and Order related request message types have

in fact an extensible type for the service provider to add its service specific data types for

both input and output. The service schema must import the schemas defining the types

that it requires (some schemas, like the Geography Markup Language (GML) schema, are

already imported by other schemas and need not to be imported again). Table 2.1 shows

a list of the the available schemas and the relative files along with a brief description of

their purpose4.

The rest of this subsection describes the main elements in the SSE schema related to

the Order operation, for an exhaustive description of all the types defined by the schemas

presented in table 2.1 refer to the ICD[15].

The commonInput element is included in each request message and in the return

messages for asynchronous operations. This element contains the orderId used to trace

RFQ and Orders.

The statusInfo element is part of every response message and contains status infor-

4The schema files themselves are available in the ICD’s Annex A[15] as well as online at: http:

//services.eoportal.org/schemas/1.4/

2.4. ESA INTERFACES 23

Schema Files Purpose
SSE Schema mass.xsd or

sse common.xsd
Defines the types needed to support the SSE op-
erations. The message types are named by the
operation name and the InputMsg or OutputMsg
postfix

AOI Schema aoi.xsd Defines the types to support the Area Of Interest
(AOI) definition. This XML format is used on the
SSE portal by the AOI tool to export the area of
interest selected by the user (if needed)

Opengis
GML

Schemas

feature.xsd
geometry.xsd

xlinks.xsd

Defines GML types. It is imported by the AOI
schema to define geometric areas, coordinates and
box extents in a standard way

ESRIN EOLI
ICD

eoli.xsd Defines the types needed for the interface to the
catalogues (Search and Present operations)

ESRIN
Ordering

oi.xsd Defines the ESRIN Ordering types which are used
to obtain data from a catalogued data provider.
Those are information concerning user identifica-
tion, prices, payment and delivery method

GML Web
Map Viewer

Schema

serviceresult.xsd Defines the format to display service results on a
map

Regions
Definition
Schema

regions.xsd Defines the expected format to import regions def-
initions specified by the service provider during
the AOI configuration of a service. Those AOIs
will be proposed to the user during the service
order

Table 2.1: SSE message schemas

24 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

mation divided in its two contained elements: statusId containing a non negative integer

value representing the “exit code”5 of the requested operation and the optional statusMsg

which should contain a user readable message explaining the operation status.

The Order-related types for synchronous mode are shown in Fig.2.5[15] and in

Fig.2.6[15] for asynchronous mode; in these figures the thick border boxes highlights the

aforementioned extensible types.

The synchronous Order operation processOrder (Fig.2.5) allows the submission of an

order and the immediate reception of the relative results.

processOrder input message (see Fig.2.5(a)) contains the mandatory elements common-

Input and the extensible sendOrderInput. Optional elements relative to the specific order

are added by the SSE system if applicable; among those elements the last previous Search

and RFQ related inputs and outputs can be found. The output message (Fig.2.5(b)) con-

tains the extensible getOrderOutput with status information and optional result display

enabling information.

The asynchronous Order operation sendOrder (Fig.2.6) is used to submit an order

allowing the service provider to differ the response which, once ready, will be sent to a

specified callback endpoint.

Since this is the “two pair of messages” asynchronous mode of the Order operation the

send (Fig.2.6(a)) and return (Fig.2.6(b)) input messages are almost the same as the input

and output messages of the synchronous operation respectively. One noticeable difference

is the presence in the returnOrderResultInputMsg message of the commonInput element

which allows to trace this message back to its related sendOrder message. Both the send

and return outputs contain the single mandatory statusInfo element used to report the

status of the received message processing (e.g. accepted, rejected or faulted).

The presence of two different schema files for SSE schema (see table 2.1) is due to the

two approaches to service schema definition, enabling the type extension, available for a

service provider. These approaches are described below, the first imports the mass.xsl

schema while the second imports the sse common.xsd schema.

redefine this was the only approach available prior to ICD version 1.5. To define a

schema by this approach a service provider imports the needed schemas and extends

types using the redefine XML schema element. This approach enforces the expected

5The statusId codes are: 0 for success, 1-199 reserved by SSE and 200 and above for service specific
codes.

2.4. ESA INTERFACES 25

(a) Input message element (b) Output message element

Figure 2.5: SSE synchronous order mode types

26 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

(a) Send Input message element (b) Return Input message element

(c) Return Input message element (d) Return Output message element

Figure 2.6: SSE asynchronous order mode types

2.4. ESA INTERFACES 27

�

��

Portal Workflow

XML
Instance

HTML
RFQ
Input

XML
RFQ
Input

XML Msg
Msg

XML
RFQ

Output

HTML
RFQ

Output

RFQ
Workflow

Instance

XML Msg

Figure 2.7: Overview of XSLT transformations

structure and minimum required information of messages but forces the use of the

SSE schema namespace (mass).

import with this approach, introduced in ICD version 1.5 (and recommended for new

services based on this version), the service provider imports the needed schemas and

defines in its own namespace the types containing the extensible types and must

reference the mandatory elements from the SSE common schema.

2.4.3 Graphical interfaces

The SSE system provides a standard way to collect the services input data and displays

the output result information in a graphical environment (namely the user’s browser) by

means of the transformations defined in the service’s stylesheet; The stylesheet is also

used to generate the XML messages exchanged by the Portal and the Workflow manager

enabling the user to collect the input data from the input form and display the output

data to an output page. The aforementioned XSLT transformations, in the case of RFQ,

are shown in Fig. 2.7[15] as yellow arrows.

Since the transformations are defined by the service provider in its service schema the

graphical interface turns out to be fully customizable to the service provider needs. A

stylesheet template is provided in the ICD (considering the import approach to schema

definition) and can be conceptually divided into tree parts: a preamble containing the

namespace definitions and the required template imports, a dispatcher used to apply the

correct template based on the SSE system provided part parameter and the operation

specific templates definitions.

28 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

The preamble most noticeable remark is the definition of the sns namespace to the

service provider namespace which would be replaced by a fixed mass namespace in the

other schema definition approach.

Listing 2.7 shows an excerpt of the stylesheet corresponding to the dispatcher part

where the choose element is used to apply the suitable template for the current part

parameter value. The template names referred here must be provided by the service

provider in the third part of the stylesheet according to the operations implemented by

the service; the listing displays only two order related choices since the others have almost

the same structure. A complete list of the template which may be supplied by the service

provider along with the corresponding part parameter value is provided in table 2.2.

Listing 2.7: Stylesheet dispatcher section
<xsl:param name=”part ”/>

<xsl:template match=”/*”>
<xsl:choose>
< !−− [. . .] o ther cho i c e s omitted −−>
< !−− order opera t i on templates −−>
<xsl:when t e s t=”$part=’sendOrderInputHTML ’ ”>
<xsl:apply−templates s e l e c t=”mass:sendOrderInput ”/>
</xsl:when>
<xsl:when t e s t=”$part=’sendOrderInputXML ’ ”>
<sendOrderInputMsg
xmlns=” ht tp : //www. mycompanyname . com/ws/mynamespace”

: s n s=” ht tp : //www. mycompanyname . com/ws/mynamespace”
:mass=” ht tp : //www. esa . i n t /mass”
: a o i=” ht tp : //www. esa . i n t /xml/schemas/mass/ a o i f e a t u r e s ”
: o i=” ht tp : //www. esa . i n t / o i ”>

<xsl:apply−templates s e l e c t=”mass:sendOrderInput ” mode=”XML”/>
</sendOrderInputMsg>
</xsl:when>
< !−− [. . .] Other cho i c e s omitted −−>
</xsl:template>

There is one template call for each operation and mode thus the first shown template

call is for displaying the order input data collection form and the second for the trans-

formation of the collected data into the appropriate XML message. The corresponding

template definition templates are shown in Listing 2.8 and are to be completed by the

service provider.

Listing 2.8: Stylesheet service specific section
< !−− Template f o r the Order input in fo rmat ion us ing HTML format −−>
<xsl:template match=” sendOrderInput ”>
<s c r i p t language=” JavaScr ipt ” type=” text / j a v a s c r i p t ”>
// I n s e r t your Java s c r i p t code h e r e a f t e r in order to va l i d a t e input f i e l d s va lue s
// Cdata used to avoid Java Sc r i p t ope ra to r s problems (l i k e a<b)

<! [CDATA[
{/* r e turn true i f check ok e l s e f a l s e */}
f unc t i on checkMandatoryFields (form)
]]>

</ s c r i p t>
< !−−i n s e r t here HTML code to c o l l e c t Order s p e c i f i c input data −−>

</xsl:template>

2.4. ESA INTERFACES 29

< !−− Template f o r the order input in fo rmat ion us ing XML format −−>
<xsl:template match=” sendOrderInput ” mode=”XML”>
<mass:commonInput>

<mass :order Id>
<xsl:value−of s e l e c t=” order Id ”/>

</ mass :o rder Id>
</mass:commonInput>
<sendOrderInput xmlns=” ht tp : //www. mycompanyname . com/ws/mynamespace”>

< !−−only i f the AOI t o o l i s used and Order i s the f i r s t opera t i on −−>
<xsl:copy−of s e l e c t=”AOI/*”/>
< !−− i n s e r t XSLT statements to generate va l i d XML −−>

</ sendOrderInput>
</xsl:template>

The template definitions are responsible for building the appropriate service operations

interfaces thus the first template shown must produce a valid part of an HTML document

that will be merged into the SSE portal page for a service order operation while the second

must build a valid XML document according to the specific service schema. A complete

list of the templates definable by the service provider is contained in table 2.2.

part value Template name mode parameter
processPresentInputXML mass:sendPresentInput XML
getPresentOutputHTML mass:processPresentOutputMsg
sendSearchInputHTML mass:sendSearchInput
processSearchInputXML mass:sendSearchInput XML
getSearchOutputHTML mass:multiCataloguesSearchOutputMsg
sendRFQInputHTML mass:sendRFQInput
processRFQInputXML mass:sendRFQInput XML
sendRFQInputXML mass:sendRFQInput XML

getRFQOutputHTML mass:getRFQOutput
sendOrderInputHTML mass:sendOrderInput
sendOrderInputXML mass:sendOrderInput XML

processOrderInputXML mass:sendOrderInput XML
getOrderOutputHTML sns:getOrderOutput

mass:getMaxNbrOfItemsTemplate
mass:rfqOutputHeader

sns:rfqOutput

Table 2.2: Stylesheet part values and template names

Noticeable things about templates are:

� The SSE HTML form provides some fields usable by the stylesheet (an hidden orderId

field and the submit and reset buttons);

� A validation mechanism is provided by the checkMandatoryFields JavaScript (JS)

function, fully customizable by the service provider;

� Some predefined style classes are defined for the stylesheet text outputs (stylesheet-

Text, stylesheetBoldText, stylesheetHeader).

30 CHAPTER 2. TECHNOLOGY, STANDARDS AND TOOLS

Chapter 3

SOIL MAPPER integration

The SOIL MAPPER classification algorithm described in Section 1.3 has been imple-

mented by MEEO as an IDL program, compiled into binary form, executable by an

ENVI-IDL enabled machine. A dedicated Linux Fedora Core 6 system has been con-

figured with the required software to host this implementation (the legacy service). This

legacy service cannot be directly published onto the SSE Portal since it lacks of a SOAP

interface. The TOOLBOX has been installed and configured on the host system to build

the required SOAP interface to the service, the SOAP backend has been implemented by

means of Linux shell scrips linked to the TOOLBOX using its dedicated scripting language.

The classification service must be applied to both user provided images and EOLI

catalogued images. To meet this requirement, according to the SOA principles, only one

FTP based Web Service has been built and then it has been orchestrated into BPEL

workflows to provide EOLI catalogue support. Thus a user can use the FTP service alone

to process its own images or the chained service to perform a preliminary EOLI catalogue

search and then process an image selected from the catalogue. This chapter describes the

Web Service development process and its integration onto the SSE system.

3.1 System Overview

Figure 3.1 provides an overview of the complete integrated system: this figure shows all

the primary system components and each component is associated to its related XML-

based document types. The XML-based documents are the configuration or programming

logic for the components and have been developed in the integration project subject of

this thesis.

The central coordinating component for all services is the Process Manager (PM), an

Oracle BPEL execution engine, which keeps trace of all instances of each service’s operation

31

32 CHAPTER 3. SOIL MAPPER INTEGRATION

SSE
Portal

Process
Manager

TOOLBOX
Legacy
Service

XSL
WSDL

BPEL XSD
XML

IDL
SH

SSE system MEEO system

EOLI
catalogue

User

Image
repository

Figure 3.1: Overview of the integrated system

logic; even the most basic service interaction (i.e. a basic service order request and response

scheme) is in fact described by a BPEL process and managed by this coordinator. The

Process Manager uses BPEL documents (compiled into deployment suitcases) as its input

for the service coordination.

The SSE Portal is therefore the front end interface to the PM component which pro-

vides the user with all the interfaces to enable and ease his service access: graphical input

forms, graphical output result displaying and order tracing facilities. The graphical in-

terface for AOI selection is always like the same (although configurable by the service

provided) but each service will have its own input and output data, so the related graphi-

cal interfaces need to be customized to fit the specific service schema; this personalization

is done building a template for each operation step in the service XSL stylesheet. The

WSDL description of each service is also published by the SSE Portal for other service

workflows to link it in chained services.

The EOLI catalogue holds the metadata for its catalogued images. Image metadata

contains information about an image (geograpgic coverage area, acquisition time, ...) that

can be matched to search constraints in order to find images with the desired carachter-

istics. Data required for the Present operation (like image thumbnails) can also be found

within the catalogue data.

Formal SOAP interface definitions are provided for Search and Present catalogue op-

erations, allowing the orchestration of catalogue services into corresponding Search and

Present workflows which define the communication scheme among the EOLI catatlogue

and the SSE PM. The interface to the EOLI catalogue is called EOLI-XML and is defined

by its ICD document[16].

3.2. THE LEGACY SERVICE 33

Catalogued Images are stored in the Image repository identified by a collectionId value

which should be unique within a catalogue service. By using the metadata retrieved from

the catalogue, the service provider system can access the correct Image repository to

download the image to be processed.

The MEEO Service Provider system, for the purposes of this writing, consists of a

single host machine with the following two main components installed:

TOOLBOX this component is an installation of the Intecs TOOLBOX specifically con-

figured with the SM service schema and programmed to behave as the described

sysyem requires by means of its scripting language.

Legacy Service this component consists of the full ENVI-IDL installation required for

SM classifier execution, a launcher bash shell script (actually implementing the

SOAP backend interface between the TOOLBOX and the classifier) and the SM

binary program itself.

Communications among the system components are based on the following protocols:

HTTP is used to convey graphical service interfaces (implemented as web pages) to the

user by the SSE Portal.

FTP is used to transfer files from the Image repository to the MEEO system and to

transfer elaboration result to the user.

SOAP is used for all the other communications, with the exception of the TOOLBOX-

Legacy service link which is non standardized since it is implementation dependent.

The rest of this chapter details these components and their configuration.

3.2 The Legacy Service

The service to be exposed as a Web Service consists of two IDL programs, the first is the

radiometric calibration of the source image while the second is the two-step classificator

which also generates the output image. This section describes the service Input and

Output (I/O) model and the backend shell script, the SM architecture is described in

section 1.3.1 and details about the machine hosting the service can be found in appendix

A.

34 CHAPTER 3. SOIL MAPPER INTEGRATION

3.2.1 Service I/O

The SM system is designed to elaborate a source image to produce an output image con-

sisting in the original image with an additional layer holding the classification information,

thus primary inputs for SM are the source image location and the desired classification

level; the implementation has an input format identification routine and two possible out-

put image formats so the desired output format must also be specified as input. The

service output consists on the classified image.

Both the radiometric calibrator and the classifier are designed to work in the same

directory which contains the data to be processed, thus the calibration has no input

parameters and SM accepts on its command line the classification level and output format

parameters in the following form:

classification level is the first command line parameter and can contain one of the

following three values: 0 for Large set, 1 for Medium set and 2 for Small set of

categories, referred to as Full, Reduced and Limited number of classes in the following

sections1;

output format The output format is the second command line parameter and can have

value 0 for ENVI or 1 for GeoTiff output. format.

3.2.2 Backend script

An automation of the legacy service must: download the source image archive on the

service host, unzip the archived data, place data and IDL programs in the same directory

(working directory), launch the radiometric calibration program and, once it terminates,

launch the classificator with correct input parameters. This automation, needed for the

Web Service development, has been implemented by a Linux shell script; an overview of

the automation is presented in Figure 3.2.

In the overview figure dotted lines represent control paths (invocation of components

and directory manipulation), solid thick lines are the data path and solid thin lines are

parameters path.

The launcher script implements the backend required for the service to be used by the

TOOLBOX, namely, exposed as a Web Service. The archive download activity is deemed

1The SM classification level nomenclature has changed during the course of service integration. For
this reason the service described in this thesis and published on the SSE Portal uses a classification level
nomenclature differing from the one adopted by SM at the time of writing and described in section 1.3

3.2. THE LEGACY SERVICE 35

Launcher
Script

Data
extractor
(unzip)

Radiometric
calibrator

Two-step
calssificator

archived
image

source
image

calibrated
data

classified
image

workingDirectory

archiveName

elaborationType

outputFormat

archiveName

elaborationType

outputFormat

working directory

Figure 3.2: Overview of the SOAP backend shell script

to the TOOLBOX while an elaboration outcome detection mechanism is implemented

directly in the backend script which communicates the outcome to the TOOLBOX using

a text file named outcome, the presence of this file also indicates elaboration termination,

either it was successful or not. Listing 3.1 is the part of the script determining elaboration

outcome, the full launcher script is provided in Listing B.5.

Listing 3.1: Launcher script: elaboration outcome determination
#Proce s s ing outcome determinat ion

r e s u l t s =‘ l s | grep SpCl ‘
i f [−z ” $ r e s u l t s ”] ;
then

echo ” f a i l u r e ” > $tempath/outcome

else
echo ” suc c e s s ” > $tempath/outcome

f i
#$

All output files generated by SM contain the string “SpCl” in their name, outcome is

determined by the presence of at least one file containing that string in its name. This

part is executed after waiting for the last IDL batch to complete so either the file is found

(the elaboration completed successfully) or it is not present (something was wrong). In

both cases the log files generated by the IDL programs are moved to the results directory

and then handled by the TOOLBOX.

The working directory is set up by extracting into it the source image; the IDL binary

36 CHAPTER 3. SOIL MAPPER INTEGRATION

executables are not launched directly but each one is called by the respective IDL batch

script, the calibrator script is shown in Listing 3.2 and the classification script can be found

in Listing 3.3, these scripts are also copied into the working directory from a predefined

repository directory on the hosting machine. The working directory is deleted once the

elaboration results have been put into the results directory.

Listing 3.2: The IDL calibrator launcher
/ usr / l o c a l / bin / i d l <<!here
PREF SET, ’IDL PATH’ , ’ $programsPath:<IDL DEFAULT> ’ , /COMMIT
etm cal ib prom
exit

Listing 3.3: The IDL classificator launcher
/ usr / l o c a l / bin / i d l <<!here
PREF SET, ’IDL PATH’ , ’ $programsPath:<IDL DEFAULT> ’ , /COMMIT
etm spcl v77 prom , $1 , $2
exit

The developed script enables full automation of the service execution and has a formally

defined interface for its input parameters thus it can be integrated with the TOOLBOX to

act as the SOAP backend for the SM service. These parameters are also to be considered

for the service schema definition and a way to deduct or convert them from user input

must be implemented in the TOOLBOX operation scripts.

3.3 TOOLBOX scripting

The toolbox is configured to perform its interface role by means of a web interface and

the underlying logic is programmed using its XML-based scripting language; the service

schema is also needed for a correct message validation. This section describes the service

schema and the scripts developed for the SM integration.

3.3.1 Service schema

The service schema must define the service input and output interface types, the I/O

model described in section 3.2.1 needs to be adapted to the working logic of the Web

Service in order to build the schema.

The source file is not available on the service hosting machine so there must be a way

to retrieve it. The FTP part of the service name comes from the method chosen for image

retrieval: the source image location is given by means of a full FTP address in the form:

ftp://userName:passWord@ftpHost/pathToFile/fileName

3.3. TOOLBOX SCRIPTING 37

The full FTP address has been chosen as the service input because it is also the output

proposed for EO catalogue services as result for an image order with FTP pull retrieval

method[17]. Other input parameters are acquired as strings.

The service output needs to be accessible to the user who requested the elaboration, the

chosen publication method is a temporary FTP access through the TOOLBOX integrated

FTP server, thus access credentials (username and password), FTP address of the result

and expiration time for data retrieval must be provided to the user as service outputs.

The schema definition has been done using the redefine approach since the include

approach introduced by version 1.5 of the SSE ICD was not available at schema definition

time. Figure 3.3 is a graphical representation of the service I/O interface, the correspond-

ing schema can be found in appendix B, Listing B.1.

FTP
SOIL

MAPPER

elaborationType
outputFormat
inputFileLocation

userName
passWord
orderResultUrl
availabilityTime

Figure 3.3: Service Input and Output schema

3.3.2 Order scripts

SM handles only the asynchronous order operation. To define an asynchronous operation

within the TOOLBOX, three scripts must be developed. The TOOLBOX automatically

calls the appropriate script for each current elaboration depending on its state, the scopes

of these scripts are:

first script it is executed upon reception of a valid request message, this script is respon-

sible for gathering the needed resources and start the elaboration;

second script it is repeatedly executed with a predefined time interval between each

execution and is responsible for signaling the readiness of the resources needed to

build a service response. This script returs a boolean value;

third script it is executed once the second script signals the readiness of the needed

resources and is responsible for building the XML contents of the message that will

be sent to the SSE system in response for the corresponding request.

38 CHAPTER 3. SOIL MAPPER INTEGRATION

An overview of the overall logic implemented by the scripts developed for the FTP

SOIL MAPPER service order follows:

� Two variables (errorRaised and errorMsg) are used to notify execution status be-

tween the scripts, this is possible due to the persistence system implemented by the

TOOLBOX which ensures that the values of some kinds of variables (boolean and

string being among them) are persisted between the scripts during their execution.

� Some variables are used for script portability from Linux to windows systems (for

testing purposes), these variables define the working directories for the actual service

installation along with the appropriate slash character.

� The first script (ftpOrder1.xml) starts setting the elaboration status variables to “

success” values and the portability variables to its relative path values. The input

parameters are then extracted from the incoming request and the FTP address is

divided into its building parts which are placed into variables later used to download

the source image. A working directory for the order elaboration is then created

based on the orderId value and the source image downloaded into that directory

with fault control. If the download completes successfully the scripts starts the

image elaboration calling the launcher shell script and returns. This script is listed

in Listing B.2.

� The second script checks if an error has been raised or for elaboration completion,

if none of this conditions are true it returns false to be executed again after the

predefined time elapses, otherwise it returns true enabling execution of the third

script. This script is listed in Listing B.3.

� The third script checks for the presence of an error raised in the first script and,

if presents, builds an error message and sends it back to the SSE system. If there

is no raised error the content of the outcome file is examined. This file contains a

single word which can be either “ success” or ”failure” depending on the elaboration

outcome. If the elaboration succeeded an account with username equal to the orderId

and a 6 letters long random password, which will expire in three days, is created

on the TOOLBOX FTP server enabling the retrieval of the elaboration results, a

response message with the access information is then sent back to the SSE system.

If the elaboration failed no account is created and an appropriate error message is

3.4. BPEL PROCESSES 39

sent back to the SSE system. This script is listed in Listing B.4.

The service schema and the order scripts have been integrated to the Intecs TOOLBOX

using its web interface, the scripts configuration interface is shown in Figure 3.4.

Figure 3.4: Order configuration web interface

Figure 3.4 evidences the requirement of the three aforementioned scripts to correctly

configure the asynchronous order operation with a red box. The Polling rate parameter

is the amount of time elapsing between two executions of the second script.

3.4 BPEL processes

BPEL processes are used by the Process Manager not only to orchestrate several services

but also to manage each operation of even a single basic service. The user output, collected

by the interfaces described in section 3.5, is sent as input to the corresponding operation’s

workflow and the results are sent back to the SSE Portal for the visualization to the user.

As stated in section 3.3.2, the FTP version of SM service handles only the order

operation but EOLI catalogue operations (search and present) must also be supported by

the service while maintaining the user ability to request elaboration of images already in

his/her possession; to meet these needs the service is published twice: an EOLI enabled

version and a basic FTP version.

The basic service remains the same and the differences are in the operation manage-

ment (the BPEL workflows associated with them) and in the respective stylesheet of the

two versions. This section deals with the BPEL processes developed for the service’s

versions and the next is about the stylesheets.

40 CHAPTER 3. SOIL MAPPER INTEGRATION

The SSE service registration interface enables the selection of default workflows for

the service’s operations which can be used if the service to be registered is a basic service,

thus only the basic FTP version uses the default Order workflow while the EOLI enabled

version uses custom workflows developed using the templates provided by the SSE Portal

as their basis.

The defaultOrder workflow used by the basic FTP service sends the user input to the

MEEO toolbox and awaits for the service results.

3.4.1 Custom BPEL workflows

The SSE system provides a defaultEOLI workflow for services implementing their own

EOLI-XML compliant interface. This default workflow is not suitable for the SM service

since, for this thesis context project scope, the images have to be retrieved from the official

ESA catalogue. SSE provides a template BPEL process for each operation for the service

provider to use as the basis for customization.

The processSearchEOLI and processPresentEOLI template workflows have been mod-

ified to send the catalogue related requests to the ESA catalogue instead of the service

provider; to do these modifications the source BPEL process template has been edited

with the Oracle BPEL Designer2. The ESA catalogue service is included in the process as

a partner link by a modified versions of the WSDL descriptions provided as an annex to

document [17]. The default workflows performs the conversion between the SSE message

format and the EOLI format using XSLT transformations; the search workflow also makes

AOI format conversion and generates the GML string to display results location on the

SSE map. The workflows has then been built into a deployable suitcase and deployed on

the SSE system using its Oracle BPEL console.

The order workflow for the SM service has been built to chain the ESA catalogue (data

provider) with the basic FTP service. This workflow takes the selected result of the last

Search operation as input (along with classification level and output format); derives from

the Search result the archive name corresponding to the selected image and composes it

into a complete FTP address by adding predefined access credentials and the Internet

address of the repository hosting the archive. The composed FTP address is then used to

2Oracle BPEL Designer is a plugin for the Eclipse Integrated Development Environment (IDE) de-
veloped and distributed free of charge by Oracle, this plugin, however, at the time of writing has been
devolved to the Eclipse project and is no longer maintained by Oracle. The officially suggested tool for
BPEL editing is now the Oracle JDeveloper suite available on the oracle website (http://www.oracle.
com/technology/products/jdev/index.html).

3.5. SERVICE INTERFACES 41

invoke the basic FTP SOIL MAPPER service along with the other service inputs. Once

the basic service returns its result the workflow eventually sends it to the SSE Portal and

terminates.

3.5 Service interfaces

The service’s graphical interface for the user is defined in its XSL stylesheet, this stylesheet

also contains the transformations required to build the XML messages sent to the PM

component as workflow inputs and also to convert the information in the returned messages

into an user friendly form. Here follows the description of the stylesheets developed for

the two service versions: FTP SOIL MAPPER service which allows elaboration of image

already in the user’s possession (provided those are accessible using the FTP protocol)

and EOLI SOIL MAPPER SERVICE which integrates the EOLI catalogue allowing the

user to perform classification of images selected from this integrated catalogue.

3.5.1 FTP SOIL MAPPER service stylesheet

This basic service has been published on the SSE Portal to allow the processing of an

image accessible via an user specified FTP address. The only supported SSE operation is

Order therefore the interface for this service is a graphical front end (namely an HyperText

Markup Language (HTML) form) which allows the user to input the image address, the

desired classification level and output format.

Besides the input interface template, the stylesheet also provides the XML mode input

transformation and the result display enabling templates required by the SSE Portal (see

2.4.3). The service stylesheet is shown in Listing B.6 on page 65. The first template

processed by the SSE Portal is the input interface template: mass:sendOrderInput. This

template produces an HTML table which holds the input fields available to the user for

data entry along with a JavaScript function validating the specified FTP address to ensure

its completeness. Figure 3.5 shows the transformation result (highlighted by a thick red

block) embedded into the SSE order page.

Each input field generated by the first template has a name and that name is used in

the second template to retrieve the user input. The second template, called by the SSE

Portal when the user confirms the order, builds the XML message that will be sent by the

Portal to the PM component as the order workflow input. This template is named as the

previous one but has the mode=XML attribute; this emphasises template XML-related

42 CHAPTER 3. SOIL MAPPER INTEGRATION

Figure 3.5: Input interface transformation result

purpose. The template is shown in Listing 3.4.

Listing 3.4: The order input template with XML mode
<xsl:template match=”mass:sendOrderInput ” mode=”XML”>

<mass:commonInput>
<mass :order Id>

<xsl:value−of s e l e c t=” order Id ”/>
</ mass :o rder Id>

</mass:commonInput>
<mass:sendOrderInput>

<mass :e laborat ionType>
<xsl:value−of s e l e c t=” e laborat ionType ”/>

</ mass :e laborat ionType>
<mass:outputFormat>

<xsl:value−of s e l e c t=”outputFormat”/>
</mass:outputFormat>
<mass : inputF i l eLoca t i on>

<xsl:value−of s e l e c t=” inputFtpAddress ”/>
</ mass : inputF i l eLoca t i on>

</mass:sendOrderInput>
</xsl:template>

The output of this template is an XML document part which conforms to the

mass:sendOrderInputType(see Figure 2.5 on page 25) where every xsl:value-of element

has been replaced with the appropriate input field value. The template output will be

embedded into the outgoing message as child node of the default sendOrderInputMsg el-

ement. The mandatory orderId child of the common input is provided by the orderId

hidden input field provided by the SSE Portal.

When the service result is pushed back to the SSE system, the PM component sends

it back to the SSE Portal which processes it calling the third order related template:

mass:getOrderOutput. This template generates the HTML document part used to display

elaboration results to the user on the service results page. An example (for a successful

3.6. PUBLISHING AND TESTING 43

order) of the transformation result output, highlighted by a thick red border, is shown on

the service result page in Figure 3.6.

Figure 3.6: Output interface transformation result

The user can simply click on the result FTP address hyperlink to retrieve the elabo-

ration results. In case the elaboration failed the user is warned of the fault instead.

3.5.2 EOLI SOIL MAPPER service stylesheet

The stylesheet for the EOLI enabled version of the service works much like the one for

the FTP version: it provides additional templates for the Search and Present operations

related inputs and XML message generation. Since the FTP address of the source image

is provided by the EOLI catalogue, the order input interface template does not generate

the corresponding input field of the FTP service version, thus only classification level and

output format are requested to the user.

3.6 Publishing and testing

Both versions of the SM service have been published on the SSE Portal in testing mode

using the service registration page. These services will be turned on operating mode (i.e.

become accessible to the end users) after their delivery and setup on the ESA servers.

The basic FTP version of the SM service has been thoroughly tested using both the

TOOLBOX test center and the SSE Portal. The test center has proven to be a very

useful tool during service develpment. Its integrated push server allows testing locally

even asynchronous operations that require a response publication enpoint to be provided

by the caller. The push server provides not only this required endpoint, but also some

44 CHAPTER 3. SOIL MAPPER INTEGRATION

related monitoring facilities for incoming response messages tracing and their presentation

with a graphical interface.

During the test phase the FTP version has been tested with both local and remote

FTP servers. Stress tests have also been performed on the service, these tests revealed

a flaw probably lying in the TOOLBOX queue management system: when an error is

successfully catched in the first script the TOOLBOX sometimes does not proceed on

calling the second script and the service execution hangs. This does not allow the next

request to exit the queue for execution thus blocking the queue. When the above situation

occours even cancelling the pending elaboration, it doesn’t unblock the queue thus forcing

a restart of the service host. On the other hand, when there are no queued elaborations,

the fault is correctly catched and handled by the third script, allowing correct eleboration

termination. This is a major issue wich will hopefully be addressed in the upcoming new

version of the TOOLBOX.

The EOLI version of the service has been tested online using the SSE system directly

since its primary implementation resides in the BPEL workflows. Different search and

present requests have been made using the service interface obtaining correct results in

every case. For the image archive retreval an FPT repository has been built only for

testing purpose. Once the services will be delivered to ESA, the official repository, along

with its correct acces credentials, will be linked by changing the parameters hardcoded in

the order BPEL workflow.

Chapter 4

Conclusions and further work

4.1 Conclusions

The SSE system allows the integration of services provided by service providers and data

providers in an open environment which facilitates their collaboration; in the user’s per-

spective SSE provides a catalogue of EO related value adding services with a standardized

access interface (namely web pages) and facilities for service finding, access and order

tracking. SSE-related research and development started in year 2003, at the time of writ-

ing the SSE is in its operational phase and service providers are encouraged to integrate

their services in an effort to validate the system and contribute to the expansion of the

EO market. The integration into the SSE system of the SOIL MAPPER automated soil

classification system has been the subject of this thesis.

The SSE system has a formal interface specification at the service provider disposal

and supporting tools are available to facilitate service integration. Nevertheless a service

provider still needs good knowledge of the involved XML related standards. If a chained

service has to be integrated in the system the orchestration logic, defined using BPEL pro-

cesses, imposes also a good knowledge of the BPEL language and its related development

tools.

Chapter 3 describes the realization of the Web Service interface to the SM system

and the work done to integrate this service into the SSE system using the technologies

described in chapter 2.

The Web Service related to the SM system has been also used in the context of an

ESA system (the KEI project) aimed at developing an EO knowledge-driven information

mining technique. The integration of the SM service makes available to ESA its innovative

unsupervised Landsat classification functionality which can be used to build part of this

45

46 CHAPTER 4. CONCLUSIONS AND FURTHER WORK

knowledge-based system; the developed service, in fact, will be delivered to ESA for setup

onto a dedicated server configured like the machine described in this work. The service

will then be available to authorized users for research and non commercial purposes.

The SSE is still evolving and the schemas, tools and systems are continuously fine

tuned in order to solve any problems emerging during services integration, development

and utilization. The Intecs TOOLBOX is also validated by service providers utilization,

they contribute identifying operational problems or suggesting needed fixing to obtain a

reliable and stable tool which facilitates integration of many other services onto the SSE.

Integration onto the SSE system forces the service provider to entirely automate the

service providing system. This service automation along with the automated management

of the related operations can be an incentive to the service provider to apply the same

management principles and open technologies to its entire business management system,

further spreading the SOA model.

4.2 Further work

Some possible further work and research directions related to the SSE framework, sup-

porting tools and the SOIL MAPPER service are presented in this section.

TOOLBOX

The Intecs TOOLBOX is a service integration supporting component under continuous

development. By using this tool, the service provider doesn’t need to develop the Web Ser-

vice’s SOAP interface from the scratch in any programming language. On the other hand

its XML scripting language needs to be learned by the service provider and that language

has some drawbacks like some missing functionality with respect to usual programming

languages and its XML-inherited verbosity.

1. If more than one service has to be integrated by a service provider, some parts

of the TOOLBOX scripts may be reused to handle similar service logics. As an

example, the ftpGet scripting element cannot be used with a complete FTP address.

Since complete FTP address is the output form proposed in the OpenGIS catalogue

specification[17] its handling should be a builtin TOOLBOX feature. Nevertheless,

the part of the SM script which parses a full FTP address to use it in the ftpGet

element, is suitable for parameterized usage. At the time of writing the inclusion of

this part into another script is feasible only by literal inclusion which leads to script

4.2. FURTHER WORK 47

duplication and lesser maintainability. Hence the utility of a tool to include common

scripts for parameterized usage in a TOOLBOX installation, something like a “load

XML script library” configuration option might be useful.

2. Scripting features limitation can be overtaken by means of the Java method invo-

cation element. This element enables the service provider to develop its own Java

classes, deploy them within the TOOLBOX and then invoke these classes methods

inside a script. This is the key feature to full TOOLBOX extensibility since it allows

seamless inclusion of arbitrary complex Java programs in the service. This feature is

only available for Java classes thus a service provider with good Java knowledge can

take full advantage of this feature with minimal effort. On the other hand, support-

ing only Java classes, this feature is likely to be ignored by service provider having

development infrastructure based on other programming languages.

3. The major TOOLBOX issue evidenced in section 3.6 is a critical reliability prob-

lem since it can cause the denial of service on the service provider system. This

queuing-related problem should be fixed as soon as possible in the TOOLBOX im-

plementation or it must be worked around by the implementation of a customized

queuing system by the service provider.

Graphical interfaces and stylesheets

To provide graphical interfaces and XML-messaging handling to his service’s operations,

the service provider needs to build the service stylesheet, thus XSL, HTML and JavaScript

knowledge is required for service integration. The SSE framework can ease the service in-

tegration by providing a graphical interface editor for service interfaces enabling service

providers to design basic service front ends without the need for the aforementioned knowl-

edge. Moreover, by service schema examination, the editor could automatically build such

basic service interface. A service provider needing a more advanced interface can always

design the general layout and then directly edit the service stylesheet.

SOIL MAPPER

The integrated SM service described in this writing will be delivered to ESA for non

commercial utilization in its research activities while a commercial version of this service

will also be integrated onto the SSE system and maintained directly by MEEO. To be

published as a commercial service, SM needs at least the following additions:

48 CHAPTER 4. CONCLUSIONS AND FURTHER WORK

� development of a Web Service interface for an accounting system to manage elabo-

ration payments and credit available to the user;

� linking of the accounting interface into the service workflow;

� implementation of the RFQ operation in case of non fixed elaboration costs;

� development of an authorization workflow if the service access has to be restricted.

Appendix A

Server Setup

This chapter describes the hardware configuration and details the software setup of the

service hosting machine.

A.1 Hardware

This section contains a brief hardware description of the server hosting the SM service.

The server, named “eoservice”, has an Asus P5B motherboard equipped with a dual

core CPU “Intel Core2 6600” working at 2,4GHz clock and 2 DDR2 1 GB DRAM mod-

ules for a total of 2 GB RAM memory. Storage devices are managed by the on board

JMicron SATA controller and consist of 2 WDC SATA hard drives of 320 GB capacity

each; the mirror raid configuration ensures a total fault tolerant storage capacity of 320

GB. Graphical processing is supplied by an ATI Radeon X1600 Accelerated Graphic Card

while networking devices are the (unused) on board RTL8111 Gigabit controller and an

additional RTL8139 PCI Ethernet controller.

A.2 Software

This section describes the installation and configuration steps of the software components

needed to make the hardware machine into a web service providing host.

A.2.1 Software components setup

Operating System

First of all an operating system (OS) is needed to manage the hardware ad run the other

applications. Three Linux distributions were tested for fitness on the server:

49

50 APPENDIX A. SERVER SETUP

Debian 3.1 (sarge) distribution was the first choice but resulted not installable on the

server due to a lack of kernel support for the on board JMicron controller.

Ubuntu 6.10 (edgy) is the second distribution tested. It has proven to have be the

best hardware compatibility with the server but caused problems with the Intecs

TOOLBOX.

Fedora Core 6 (FC6) is the third and last distribution tested and chosen for produc-

tion. A compatibility issue with the on board RTL8111 controller has led to the

need for the additional RTL8139 PCI card.

Since the chosen distribution is FC6 here follows the setup description for this distri-

bution only: The FC6 installation begins with a standard setup DVD from which base

system, gnome and KDE desktop managers where chosen to support the optional graphi-

cal tools for simplified server management; additional packages include the Samba network

file server and the GNU Java runtime.

The following sections describe more in detail the setup of the other software applica-

tions needed on the FC6 OS: the Sun’s Java Software Development Kit (JDK), the Apache

Tomcat servlet container1 and the Intecs web services TOOLBOX.

SUN Java JDK

The Java platform JDK version 1.5 is needed to run Tomcat 5.5 which is in turn a manda-

tory requirement for the Intecs TOOLBOX; Since the distributed Sun JDK rpm is not

compatible with FC6, installation of the sun JDK is made with a bit complex procedure

described here as a series of steps aimed to use the alternatives package and the supported

JPackage.org project for a clean and elegant installation[18].

1. Acquire root privileges either by logging in as root or by the su command.

2. Get the 1.5.0_09 JDK from Sun download archive 2 choosing Linux RPM in self-

extracting file (jdk-1_5_0_09-linux-i586-rpm.bin) and saving it to the current

directory.

3. Check the availability of wget on the system installing it if it’s not present:

1Apache Tomcat is an open source servlet container used in the official Reference Implementation
of Java server side technologies. A servlet is a Web-based Java application running server side. More
information on these topics can be found on the Tomcat website: http://tomcat.apache.org/.

2sun java archive: http://java.sun.com/products/archive/j2se/5.0_09/index.html

A.2. SOFTWARE 51

yum i n s t a l l wget

4. Download the keys for the JPackage repository
rpm −−import http :// jpackage . org / jpackage . asc

and install the repository information for the yum tool while saving (pushd) the

current working directory where the self extracting file will be downloaded
pushd / e tc /yum. repos . d
wget http :// jpackage . org / jpackage . repo

5. The Jpackage .repo file defaults to jpackage-general repository enabled, however, ac-

cording to [18] it is better to disable it by editing the /etc/yum.repos.d/jpackage.repo

file and changing line(s) enabled=1 to enabled=0 avoiding unwanted updates with-

out notice. JPackage repository can be always enabled in yum by adding the –

enablerepo=jpackage-generic and –enablerepo=jpackage-generic-nonfree options to

the command line.

6. Make also sure that the packages to manipulate RPMs are installed
yum i n s t a l l fedora−rpmdevtools
yum i n s t a l l rpm−bu i ld

7. Next we need a complete GNU JDK installation to let the alternatives package

configure both the java runtime and compiler tools so list the GNU Java compiler(gcj)

available but not installed package and install them
yum l i s t a v a i l a b l e ’* gc j *
yum i n s t a l l l i s t edPackage1 l i s t edPackage2 . . .

8. Next execute the downloaded shell script from Sun to install the JDK
popd
chmod 755 jdk−1 5 0 09−l inux−i586−rpm . bin
. / jdk−1 5 0 09−l inux−i586−rpm . bin

9. Now, with the JDK installed (although not correctly for FC6) it is time to install the

SUN JDK compatibility RPM from the JPackage.org to create all the needed links

in /etc/alternatives, /usr/lib/jvm and /usr/java/jdk1.5.0_09 where FC6 expects

them for the JDK to work correctly:
yum −−enab lerepo=jpackage−gener i c−nonf ree i n s t a l l java −1.5.0− sun−compat

10. At this point the SUN JDK should be the default on the system (this can be checked

by java −version) and changed using the alternative package:

52 APPENDIX A. SERVER SETUP

a l t e r n a t i v e s −−c on f i g java

As a final note on this procedure the correct way to remove a JDK installed with this

procedure is:
yum era s e java −1.5.0− sun−compat
rpm −e jdk −1.5 .0 09−f c s

As the last step in order to have system wide Java environment variables settings put

the following text in the file ”/etc/profile.d/java.sh:

Listing A.1: Java environment configuration
JAVA HOME=”/usr / l i b /jvm/ java ”
CLASSPATH=${JAVA HOME}/ l i b / t o o l s . j a r : . /

export JAVA HOME CLASSPATH

Tomcat and TOOLBOX

Once the Sun JDK is installed as described in A.2.1 installing Tomcat and the Intecs

TOOLBOX is straightforward:

1. Acquire root privileges either by logging in as root or by the su command.

2. Download the TOOLBOX installer from Intecs3 (at the time of writing i downloaded

the TOOLBOX v5.0:TOOLBOX-install-linux-5.0.jar).

3. Launch the installer:
java − j a r TOOLBOX−i n s t a l l −l inux −5.0 . j a r

and follow the automated procedure choosing the full TOOLBOX installation and

a new Tomcat installation in the /usr/share directory.

ENVI and IDL

In order to execute the soil mapper implementation on this server the setup of ENVI and

IDL is needed. The setup launcher is common to both the setup CD and assuming we have

the cdrom device linked to /dev/cdrom and a mounting directory called /media/cdrom

the shell commands to mount the CD and launch the setup process are:

Listing A.2: Cd mount and setup launch
mount −o rw −t i so9660 /dev/cdrom /media/cdrom
/bin / sh /med i a /cdrom/ x i n s t a l l . sh

3Intecs Toolbox download site: http://mass.pisa.intecs.it/download/download.jsp

A.2. SOFTWARE 53

The first step is to setup IDL from the installation CD so insert the IDL setup CD and

execute the scripts in Listing A.2. Follow the on screen instructions and enable the options

as shown in Figure A.1.

Figure A.1: IDL setup configuration

Complete the IDL setup by creating the proposed links in /usr/local/bin then perform

the same operations with the ENVI setup CD, the ENVI options to enable are shown in

Figure A.2. Once the ENVI setup process has been completed a valid licence has to be

Figure A.2: ENVI setup configuration

provided for the SM binary file to be correctly executed. For this installation, a network

licence provided by the MEEO server has been used.

A.2.2 Final system configuration

The final configuration consist in Tomcat boot time startup and administrative Tomcat

and TOOLBOX user account configuration.

Tomcat boot time startup

Here follows the script i wrote for the Tomcat boot time startup:

54 APPENDIX A. SERVER SETUP

Listing A.3: tomcat service startup script
#!/bin /bash
#
Tomcat 5 .5 s e r v i c e s ta r tup s c r i p t
#
chkcon f i g : 345 99 10
de s c r i p t i o n : Tomcat 5 .5 s e r v i c e s ta r tup s c r i p t
#

#
Source func t i on l i b r a r y .
. / e t c / i n i t . d/ f unc t i on s
#
#
RETVAL=$?
TOMCATHOME=”/usr / share /apache−tomcat −5.5.17”
#
case ”$1” in
s t a r t)

i f [−f $TOMCATHOME/bin / s ta r tup . sh] ; then
echo $” S ta r t i ng Tomcat”

bash $TOMCATHOME/bin / s ta r tup . sh
f i

; ;
s top)

i f [−f $TOMCATHOME/bin /shutdown . sh] ; then
echo $”Stopping Tomcat”

bash $TOMCATHOME/bin /shutdown . sh
f i

; ;
r e s t a r t)

$0 stop
s l e ep 5
$0 s t a r t

; ;
s t a tu s)

echo ”Sorry , no s t a tu s in fo rmat ion provided f o r t h i s s e r v i c e ”
; ;
*)

echo $”Usage : $0 { s t a r t | stop | r e s t a r t }”
e x i t 1

; ;
e sac
#
ex i t $RETVAL

The above script must be placed in /etc/init.d/tomcat. In order for the system to execute

the script at boot time register it with:
chkcon f i g −−add tomcat

Account settings

To set a Tomcat user account with admin and manager rights overwrite the tomcat-

users.xml file located in the conf subdirectory of the Tomcat installation with the following

contents (replacing the asterisks with a strong password):

Listing A.4: tomcat users
<?xml ve r s i on = ’1.0 ’ encoding=’utf −8’?>
<tomcat−users>

<r o l e rolename=”manager”/>
<r o l e rolename=”admin”/>

A.2. SOFTWARE 55

<user username=”tomadm” password=”*******” r o l e s=”admin , manager”/>
</tomcat−users>

To change the default TOOLBOX administrative account edit the file ./webapps/

TOOLBOX/WEB-INF/xml/adminUserx.xml relative to the tomcat installation directory and replace

the default username and password (admin/admin) with the liked username (TOOLBOX

in this case) and a strong password. The server base configuration is now complete.

56 APPENDIX A. SERVER SETUP

Appendix B

Listings

This appendix contains listings related to the work discussed in this thesis wich are too

long for inclusion in other chapters.

B.1 Service schema

Listing B.1: The soilMapper.xsd schema file
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<xsd:schema attr ibuteFormDefault=” unqua l i f i e d ” elementFormDefault=” q u a l i f i e d ”

targetNamespace=” ht tp : //www. esa . i n t /mass” version=” 1 .0 ”
xmlns=” ht tp : //www. esa . i n t /mass”
xmlns :ao i=” ht tp : //www. esa . i n t /xml/schemas/mass/ a o i f e a t u r e s ”
xmlns:mass=” ht tp : //www. esa . i n t /mass”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>

<x s d : r e d e f i n e schemaLocation=” ht tp : // s e r v i c e s . e opo r ta l . org /schemas /1 .4/ mass . xsd”>
<xsd:complexType name=”OrderInputType”>

<xsd:complexContent>
<xsd : ex t en s i on base=”mass:OrderInputType”>

<xsd : sequence>
<xsd :e lement name=” elaborat ionType ” type=” x s d : s t r i n g ”/>
<xsd :e lement name=”outputFormat” type=” x s d : s t r i n g ”/>
<xsd :e lement name=” inputF i l eLoca t i on ” type=” x s d : s t r i n g ”/>

</ xsd : sequence>
</ x sd : ex t en s i on>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name=”OrderOutputType”>

<xsd:complexContent>
<xsd : ex t en s i on base=”mass:OrderOutputType”>

<xsd : sequence>
<xsd :e lement name=”userName” type=” xsd : token ”/>
<xsd :e lement name=”passWord” type=” xsd : token ”/>
<xsd :e lement name=”orderResultURL” type=” x s d : s t r i n g ”/>
<xsd :e lement minOccurs=”0” name=” ava i l ab i l i t yT ime ” type=” x s d : s t r i n g ”/>

</ xsd : sequence>
</ x sd : ex t en s i on>

</xsd:complexContent>
</xsd:complexType>

</ x s d : r e d e f i n e>
</xsd:schema>

B.2 TOOLBOX scripts

This section lists the three scripts used on the SM TOOLBOX installation.

B.2.1 First toolbox script: ftpOrder1.xml

Listing B.2: The first order script file: ftpOrder1.xml
<?xml version=” 1 .0 ” encoding=”UTF−8”?>

57

58 APPENDIX B. LISTINGS

< !−−
Document : ftpOrder1 .xml
Created on : 31 gennaio 2007 , 14 .51
Author : a lan
De s c r i p t i on :

This i s the f i r s t too lbox s c r i p t f o t the f tp order .
I t r e t r i e v e s the source f i l e by f tp as s p e c i f i e d in the reques t
and s t a r t s the requested e l abo ra t i on .
The u r l must be in the form:

p ro to : // user :pass@host /pathToFile

The pro toco l i s always cons ide red to be f tp r e g a r d l e s s o f i t s ac tua l value

e r ro rRa i s ed boolean va r i ab l e and
errorMessage s t r i n g are used to s i g n a l a catched execut ion e r r o r

to the other s c r i p t s so these must be i n i t i a l l y s e t to f a l s e and ” suc c e s s ”
−−>

<sequence xmlns=’ h t tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt ’
xmlns :x s i=’ h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance ’
xs i : s chemaLocat ion=’ h t tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt

f i l e : /F: /meeo/SoilMapper / too lboxSc r i p t i ng / s r c /tbx−s c r i p t i n g . xsd ’>

< !−− VARIABLES FOR ERROR HANDLING BETWEEN SCRIPTS −−>
<s e tVar i ab l e name=” er ro rRa i s ed ”>

< l i t e r a l type=”boolean ” value=” f a l s e ”/>
</ s e tVar i ab l e>
<s e tVar i ab l e name=” errorMessage ”>

<s t r i n g>Success</ s t r i n g>
</ s e tVar i ab l e>

< !−− VARIABLES FOR LINUX AND WINDOWS PORTABILITY −−>
<s e tVar i ab l e name=” s l a sh ”>

< !−− <s t r i n g>\</ s t r i n g> −−>
<s t r i n g>/</ s t r i n g>

</ s e tVar i ab l e>
<s e tVar i ab l e name=” l o gd i r ”>

< !−− <s t r i n g>e : \TBX LOG</ s t r i n g> −−>
<s t r i n g>/var / log / too lbox</ s t r i n g>

</ s e tVar i ab l e>
<s e tVar i ab l e name=”workdir ”>

< !−− <s t r i n g>e : \SMWORK</ s t r i n g> −−>
<s t r i n g>/ usr / share / toolboxFtp</ s t r i n g>

</ s e tVar i ab l e>
<s e tVar i ab l e name=”launchCommand”>

< !−− <s t r i n g> . . .</ s t r i n g> −−>
<s t r i n g>/ e o s e r v i c e / so i lmapper / s c r i p t s / so i lmapper . sh</ s t r i n g>

</ s e tVar i ab l e>

<s e tVar i ab l e name=” sourceUr l ”>
<xPath xmlns:mass=” ht tp : //www. esa . i n t /mass”>

<xmlRequest/>
<s t r i n g>mass:sendOrderInputMsg/mass:sendOrderInput / mass : inputF i l eLocat i on</ s t r i n g>

</xPath>
</ s e tVar i ab l e>

< !−− FTP ACCESS DATA EXTRACTION begin
the f tp data from the s i n g l e va r i ab l e sourceUr l
in the form user :pass@host /parhToFile
are ext rac ted to the r e s p e c t i v e 4 v a r i a b l e s :
srcFtpUser , srcFtpPass , srcFtpHost , srcFtpPor , srcFtpPath

an add i t i ona l v a r i ab l e srcFileName i s provided conta in ing
only the f i l ename−−>

<setText new=” true ”>
<va r i ab l e name=” sourceUr l ”/>

</ setText>

< i f>
<search abso lute=” true ”>

<s t r i n g> : //</ s t r i n g>
</ search>
<sequence>

< !−− Protoco l s p e c i f i c a t i o n handl ing −−>
<gotoL ineStar t />
<mark name=” protoStar t ”/>
<f i e ldMove abso lute=” true ” greedy=” true ” po s i t i o n=”end” s epa ra to r s=” : ”/>
<mark name=”protoEnd”/>
<s e tVar i ab l e name=” pro toco l ”>

<ex t ra c t s t a r t=” protoStar t ” end=”protoEnd”/>
</ s e tVar i ab l e>
<f i e ldMove greedy=” true ” s epa ra to r s=”/”/>
<mark name=” s r cS t a r t ”/>
<gotoLineEnd/>
<mark name=”srcEnd”/>
<s e tVar i ab l e name=” sourceUr l ”>

<ex t ra c t s t a r t=” s r cS t a r t ” end=”srcEnd”/>
</ s e tVar i ab l e>
<l og l e v e l=”DEBUG”>

<s t r ingCat>
<va r i ab l e name=” pro toco l ”/>
<s t r i n g> − </ s t r i n g>

B.2. TOOLBOX SCRIPTS 59

<va r i ab l e name=” sourceUr l ”/>
</ st r ingCat>

</ log>
</ sequence>

</ i f>

< !−− acc e s s parameters ex t r a c t i on −−>
<setText new=” true ”>

<va r i ab l e name=” sourceUr l ”/>
</ setText>
<f i e ldMove abso lute=” true ” s epa ra to r s=” : ” po s i t i o n=” s t a r t ”/>
<mark name=” f i e l dU s e r S t a r t ”/>
<f i e ldMove s epa ra to r s=” : ” po s i t i o n=”end”>

< l i t e r a l va lue=”0”/>
</ f ie ldMove>
<mark name=” f ie ldUserEnd ”/>
<s e tVar i ab l e name=” srcFtpUser ”>

<ex t ra c t s t a r t=” f i e l dU s e r S t a r t ” end=” f ie ldUserEnd ”/>
</ s e tVar i ab l e>

<f i e ldMove abso lute=” true ” s epa ra to r s=” : ”>
< l i t e r a l va lue=”2”/>

</ f ie ldMove>
<mark name=” f i e ldPas swordSta r t ”/>
<f i e ldMove abso lute=” f a l s e ” s epa ra to r s=”:@” po s i t i o n=”end”>

< l i t e r a l va lue=”0”/>
</ f ie ldMove>
<mark name=” fie ldPasswordEnd”/>
<s e tVar i ab l e name=” srcFtpPass ”>

<ex t ra c t s t a r t=” f i e ldPas swordSta r t ” end=” fie ldPasswordEnd”/>
</ s e tVar i ab l e>

<f i e ldMove abso lute=” f a l s e ” s epa ra to r s=”@”/>
<mark name=” f i e l dHo s t S t a r t ”/>
<f i e ldMove abso lute=” f a l s e ” s epa ra to r s=”/” po s i t i o n=”end”>

< l i t e r a l va lue=”0”/>
</ f ie ldMove>
<mark name=” f ie ldHostEnd ”/>
<s e tVar i ab l e name=” srcFtpHost ”>

<ex t ra c t s t a r t=” f i e l dHo s t S t a r t ” end=” f ie ldHostEnd ”/>
</ s e tVar i ab l e>

<f i e ldMove abso lute=” true ” s epa ra to r s=”/”>
< l i t e r a l va lue=”2”/>

</ f ie ldMove>
<mark name=” f i e l dPa thS t a r t ”/>
<f i e ldMove abso lute=” f a l s e ” s epa ra to r s=”@” po s i t i o n=”end”>

< l i t e r a l va lue=”0”/>
</ f ie ldMove>
<mark name=” fie ldPathEnd”/>
<s e tVar i ab l e name=”srcFtpPath”>

<ex t ra c t s t a r t=” f i e l dPa thS ta r t ” end=” fie ldPathEnd”/>
</ s e tVar i ab l e>

<s e tVar i ab l e name=” srcFtpPort ”>
<s t r i n g>21</ s t r i n g>

</ s e tVar i ab l e>

< !−− Cecking i f a nonstandard port has been s p e c i f i e d
(the hostname should conta in a :) −−>

<setText new=” true ”>
<va r i ab l e name=” srcFtpHost ”/>

</ setText>
< i f>

<search abso lute=” true ”>
<s t r i n g> :</ s t r i n g>

</ search>
<sequence>

<f i e ldMove abso lute=” true ” s epa ra to r s=” : ”/>
<mark name=” hostF ie ldS ”/>
<f i e ldMove s epa ra to r s=” : ” po s i t i o n=”end”>

< l i t e r a l va lue=”0”/>
</ f ie ldMove>
<mark name=”hostFie ldE ”/>
<s e tVar i ab l e name=” srcFtpHost ”>

<ex t ra c t s t a r t=” hostF ie ldS ” end=”hostFie ldE ”/>
</ s e tVar i ab l e>

<f i e ldMove abso lute=” true ” s epa ra to r s=” : ”>
< l i t e r a l va lue=”2”/>

</ f ie ldMove>
<mark name=” portF ie ldS ”/>
<gotoLineEnd/>
<mark name=”portFie ldE ”/>
<s e tVar i ab l e name=” srcFtpPort ”>

<ex t ra c t s t a r t=” portF ie ldS ” end=”portFie ldE ”/>
</ s e tVar i ab l e>

</ sequence>
</ i f>

< !−− Filename Extract ion −−>
<s e tVar i ab l e name=” srcFileName”>

<va r i ab l e name=”srcFtpPath”/>

60 APPENDIX B. LISTINGS

</ s e tVar i ab l e>
<s e tVar i ab l e name=”bars ”>

< l i t e r a l va lue=”1”/>
</ s e tVar i ab l e>
<setText new=” true ”>

<va r i ab l e name=”srcFtpPath”/>
</ setText>
<whi le>

<search>
<s t r i n g>/</ s t r i n g>
<va r i ab l e name=”bars ”/>

</ search>
<i nc>

<va r i ab l e name=”bars ”/>
</ inc>

</whi le>
< i f>

<not>
<eq>

< l i t e r a l va lue=”1”/>
<va r i ab l e name=”bars ”/>

</eq>
</not>
<sequence>

<gotoLineEnd/>
<mark name=”fnameE”/>

<f i e ldMove abso lute=” true ” s epa ra to r s=”/” >
<va r i ab l e name=”bars ”/>

</ f ie ldMove>
<mark name=”fnameS”/>
<s e tVar i ab l e name=” srcFileName”>

<ex t ra c t s t a r t=”fnameS” end=”fnameE”/>
</ s e tVar i ab l e>

</ sequence>
</ i f>

<l og l e v e l=”DEBUG”>
<s t r ingCat>

<s t r i n g>Ftp acc e s s data : User : </ s t r i n g>
<va r i ab l e name=” srcFtpUser ”/>
<s t r i n g> − Pass : </ s t r i n g>
<va r i ab l e name=” srcFtpPass ”/>
<s t r i n g> − Host : </ s t r i n g>
<va r i ab l e name=” srcFtpHost ”/>
<s t r i n g> − Port : </ s t r i n g>
<va r i ab l e name=” srcFtpPort ”/>
<s t r i n g> − Fi l ePath : </ s t r i n g>
<va r i ab l e name=”srcFtpPath”/>
<s t r i n g> − FileName: </ s t r i n g>
<va r i ab l e name=” srcFileName”/>

</ st r ingCat>
</ log>
< !−− FTP ACCESS DATA EXTRACTION end −−>

< !−− Elaborat ion parameters ex t r a c t i on BEGIN −−>
<s e tVar i ab l e name=”paramElabType”>

<xPath xmlns:mass=” ht tp : //www. esa . i n t /mass”>
<xmlRequest/>
<s t r i n g>mass:sendOrderInputMsg/mass:sendOrderInput /mass :e laborat ionType</ s t r i n g>

</xPath>
</ s e tVar i ab l e>
<s e tVar i ab l e name=”paramOutFormat”>

<xPath xmlns:mass=” ht tp : //www. esa . i n t /mass”>
<xmlRequest/>
<s t r i n g>mass:sendOrderInputMsg/mass:sendOrderInput /mass:outputFormat</ s t r i n g>

</xPath>
</ s e tVar i ab l e>
< !−− Elaborat ion parameters ex t r a c t i on END −−>

<s e tVar i ab l e name=”orderWorkDir”>
<s t r ingCat>

<va r i ab l e name=”workdir ”/>
<va r i ab l e name=” s l a sh ”/>
<order Id />

</ st r ingCat>
</ s e tVar i ab l e>
<mkdir>

<va r i ab l e name=”orderWorkDir”/>
</mkdir>
<s e tVar i ab l e name=” l o c a l S r c F i l e ”>

<s t r ingCat>
<va r i ab l e name=”orderWorkDir”/>
<va r i ab l e name=” s l a sh ”/>
<va r i ab l e name=” srcFileName”/>

</ s t r ingCat>
</ s e tVar i ab l e>

< !−− FTP IMAGE RETRIEVAL begin −−>
<t ry>

<ftpGet t r a n s f e r=”binary ”>
<host>

<va r i ab l e name=” srcFtpHost ”/>
</ host>

B.2. TOOLBOX SCRIPTS 61

<port>
<a t o i><va r i ab l e name=” srcFtpPort ”/></ a t o i>

</ port>
<user>

<va r i ab l e name=” srcFtpUser ”/>
</ user>
<password>

<va r i ab l e name=” srcFtpPass ”/>
</password>
<remotePath>

<va r i ab l e name=”srcFtpPath”/>
</remotePath>
<l oca lPath>

<va r i ab l e name=” l o c a l S r c F i l e ”/>
</ loca lPath>

</ ftpGet>
< i f E r r o r errorMessageName=”FtpGetError”>

<sequence>
<l og l e v e l=”ERROR”>

<s t r i n g>FTP get Error catched</ s t r i n g>
</ log>
<s e tVar i ab l e name=” er ro rRa i s ed ”>

< l i t e r a l type=”boolean ” value=” true ”/>
</ s e tVar i ab l e>
<s e tVar i ab l e name=” errorMessage ”>

<s t r i n g>
Ftp image r e t r i e v a l f a i l e d .
P lease check the f tp download a v a i l a b i l i t y
o f the source image and
the c o r r e c t n e s s o f the provided data .

</ s t r i n g>
</ s e tVar i ab l e>

</ sequence>
</ i f E r r o r>

</ try>
< !−− FTP IMAGE RETRIEVAL end −−>

< !−− ELABORATION LAUNCHER −−>
< i f>

<not>
<va r i ab l e name=” er ro rRa i s ed ”/>

</not>
<sequence>

<s e tVar i ab l e name=”cmdString”>
<s t r ingCat>

<va r i ab l e name=”launchCommand”/>
<s t r i n g> </ s t r i n g>
<va r i ab l e name=”orderWorkDir”/>
<s t r i n g> </ s t r i n g>
<va r i ab l e name=” srcFileName”/>
<s t r i n g> </ s t r i n g>
<va r i ab l e name=”paramElabType”/>
<s t r i n g> </ s t r i n g>
<va r i ab l e name=”paramOutFormat”/>

</ st r ingCat>
</ s e tVar i ab l e>
<l og l e v e l=”DEBUG”>

<s t r ingCat>
<s t r i n g>Exec command: </ s t r i n g>
<va r i ab l e name=”cmdString”/>

</ st r ingCat>
</ log>
<command asynchronous=” true ”>

<va r i ab l e name=”cmdString”/>
</command>

</ sequence>
<l og l e v e l=”INFO”>

<s t r i n g>Error catched in f i r s t s c r i p t , e l abo ra t i on not s t a r t ed</ s t r i n g>
</ log>

</ i f>

</ sequence>

B.2.2 Second toolbox script: ftpOrder2.xml

Listing B.3: The second order script file: ftpOrder2.xml
<?xml version=” 1 .0 ” encoding=”UTF−8”?>

< !−−
Document : ftpOrder2 .xml .xml
Created on : 2 f ebb ra i o 2007 , 16 .36
Author : a lan
De s c r i p t i on :

This i s the second too lbox s c r i p t which checks
f o r response r e ad in e s s

−−>

<sequence xmlns=’ h t tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt ’
xmlns :x s i=’ h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance ’
xs i : s chemaLocat ion=’ h t tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt

62 APPENDIX B. LISTINGS

f i l e : /F: /meeo/SoilMapper / too lboxSc r i p t i ng / s r c /tbx−s c r i p t i n g . xsd ’>

< i f>
<va r i ab l e name=” er ro rRa i s ed ”/>
< l i t e r a l xmlns=” ht tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt ”

type=”boolean ” value=” true ”/>
<sequence>

< i f>
< f i l e E x i s t s>

<s t r ingCat>
<va r i ab l e name=”orderWorkDir”/>
<va r i ab l e name=” s l a sh ”/>
<s t r i n g>outcome</ s t r i n g>

</ s t r ingCat>
</ f i l e E x i s t s>

< l i t e r a l xmlns=” ht tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt ”
type=”boolean ” value=” true ”/>

< l i t e r a l xmlns=” ht tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt ”
type=”boolean ” value=” f a l s e ”/>

</ i f>
</ sequence>

</ i f>
</ sequence>

B.2.3 Third toolbox script: ftpOrder3.xml

Listing B.4: The third order script file: ftpOrder3.xml
<?xml version=” 1 .0 ” encoding=”UTF−8”?>

< !−−
Document : ftpOrder3 .xml
Created on : 31 gennaio 2007 , 14 .30
Author : a lan
De s c r i p t i on :

This i s the th i rd too lbox s c r i p t wich bu i l d s the response f o r the s s e po r t a l
and con f i gu r e s the f tp account ing f o r r e s u l t s r e t r i e v a l .

−−>

<sequence
xmlns=’ h t tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt ’
xmlns :x s i=’ h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance ’
xs i : s chemaLocat ion=’ h t tp : // p i sa . i n t e c s . i t /mass/ too lbox / xmlScr ipt
f i l e : /F: /meeo/SoilMapper / too lboxSc r i p t i ng / s r c /tbx−s c r i p t i n g . xsd ’>

< !−− Checking i f an e r r o r has occoured (e r ro rRa i s ed) −−>
< i f>

<va r i ab l e name=” er ro rRa i s ed ”/>
<sequence> < !−− Build ERROR response −−>

<s e tVar i ab l e name=”ResultURL”>
<s t r ingCat>

<va r i ab l e name=” srcFtpHost ”/>
<s t r i n g> :</ s t r i n g>
<va r i ab l e name=” srcFtpPort ”/>
<s t r i n g>/</ s t r i n g>
<va r i ab l e name=”srcFtpPath”/>

</ s t r ingCat>
</ s e tVar i ab l e>

<xmlGetResponse>
<xml a t t r i b u t eP r e f i x=”x” textTag=” eva luate ”>

<mass:getOrderOutput xmlns:mass=” ht tp : //www. esa . i n t /mass”>
<mass : s t a tu s In f o>

<mass : s ta tus Id>300</ mass : s ta tus Id>
<mass:statusMsg><eva luate name=” errorMessage ”/></mass:statusMsg>

</ mas s : s t a tu s In f o>
<mass:userName><eva luate name=” srcFtpUser ”/></mass:userName>
<mass:passWord><eva luate name=” srcFtpPass ”/></mass:passWord>
<mass:orderResultURL>

<eva luate name=”ResultURL”/>
</mass:orderResultURL>
<mass : ava i l ab i l i t yT ime>NA</ mas s : ava i l ab i l i t yT ime>

</mass:getOrderOutput>
</xml>

</xmlGetResponse>
</ sequence>
<sequence> < !−− checking e l abo ra t i on outcome −−>

<setText new=” true ”>
<l o adF i l e>

<s t r ingCat>
<va r i ab l e name=”orderWorkDir”/>
<va r i ab l e name=” s l a sh ”/>
<s t r i n g>outcome</ s t r i n g>

</ s t r ingCat>
</ l o adF i l e>

</ setText>
< i f>

<search>
<s t r i n g>suc c e s s</ s t r i n g>

</ search>
<sequence> < !−− Normal terminat ion (suc c e s s) : r e t r i e v e data response −−>

<s e tVar i ab l e name=”ResultURL”>

B.3. LAUNCHER SHELL SCRIPT 63

<s t r ingCat>
<s t r i n g> f t p : //87 . 23 . 139 . 78</ s t r i n g>

</ s t r ingCat>
</ s e tVar i ab l e>
<s e tVar i ab l e name=” resFtpUser ”>

<order Id />
</ s e tVar i ab l e>
<s e tVar i ab l e name=” resFtpPass ”>

<randomString length=”6”/>
</ s e tVar i ab l e>
<s e tVar i ab l e name=”availTime”>

<s t r i n g>3 days</ s t r i n g>
</ s e tVar i ab l e>

<ftpAccount durat ion=”3d”>
<user>

<va r i ab l e name=” resFtpUser ”/>
</ user>
<password>

<va r i ab l e name=” resFtpPass ”/>
</password>
<rootDir>

<va r i ab l e name=”orderWorkDir”/>
</ rootDir>

</ ftpAccount>

< !−− WORKDIR CLEANUP −−>
< f i l e D e l e t e>

<s t r ingCat>
<va r i ab l e name=”orderWorkDir”/>
<va r i ab l e name=” s l a sh ”/>
<s t r i n g>outcome</ s t r i n g>

</ s t r ingCat>
</ f i l e D e l e t e>
< f i l e D e l e t e>

<s t r ingCat>
<va r i ab l e name=”orderWorkDir”/>
<va r i ab l e name=” s l a sh ”/>
<s t r i n g>l og . out</ s t r i n g>

</ s t r ingCat>
</ f i l e D e l e t e>
< f i l e D e l e t e>

<s t r ingCat>
<va r i ab l e name=”orderWorkDir”/>
<va r i ab l e name=” s l a sh ”/>
<s t r i n g>l og . e r r</ s t r i n g>

</ s t r ingCat>
</ f i l e D e l e t e>

< !−− XML RESPONSE CONSTRUCTION −−>
<xmlGetResponse>

<xml a t t r i b u t eP r e f i x=”x” textTag=” eva luate ”>
<mass:getOrderOutput xmlns:mass=” ht tp : //www. esa . i n t /mass”>

<mass : s t a tu s In f o>
<mass : s ta tus Id>0</ mass : s ta tus Id>
<mass:statusMsg>Suc c e s s f u l</mass:statusMsg>

</ mas s : s t a tu s In f o>
<mass:userName><eva luate name=” resFtpUser ”/></mass:userName>
<mass:passWord><eva luate name=” resFtpPass ”/></mass:passWord>
<mass:orderResultURL><eva luate name=”ResultURL”/></mass:orderResultURL>
<mass : ava i l ab i l i t yT ime><eva luate name=”availTime”/></ mas s : ava i l ab i l i t yT ime>

</mass:getOrderOutput>
</xml>

</xmlGetResponse>
</ sequence>
<sequence> < !−− Elaborat ion Fa i l e d : r epo r t i ng e r r o r −−>

<xmlGetResponse>
<xml a t t r i b u t eP r e f i x=”x” textTag=” eva luate ”>

<mass:getOrderOutput xmlns:mass=” ht tp : //www. esa . i n t /mass”>
<mass : s t a tu s In f o>

<mass : s ta tus Id>500</ mass : s ta tus Id>
<mass:statusMsg>Image p roc e s s i ng f a i l e d</mass:statusMsg>

</ mas s : s t a tu s In f o>
<mass:userName>NA</mass:userName>
<mass:passWord>NA</mass:passWord>
<mass:orderResultURL>NA</mass:orderResultURL>
<mass : ava i l ab i l i t yT ime>NA</ mas s : ava i l ab i l i t yT ime>

</mass:getOrderOutput>
</xml>

</xmlGetResponse>
</ sequence>

</ i f>
</ sequence>

</ i f>
</ sequence>

B.3 Launcher shell script

64 APPENDIX B. LISTINGS

Listing B.5: The service launcher shell script
#Radiometric Ca l i b ra t i on and
#Spec t ra l Catego r i za t i on Sc r i p t
#MEEO S . n . c .
#Vers ion 2 .2
#Date : jan . 23 2007
#
Path to execut ion s c r i p t s
scr ip tPath=”/ e o s e r v i c e / so i lmapper / s c r i p t s ”
sc r ip tPath=”/ e o s e r v i c e / so i lmapper / s c r i p t s ”
export programsPath=”/ e o s e r v i c e / so i lmapper /programs”
#
#Input Data Parameters Cons istency Check
i f [$# −ne 4]
then
echo ”Error : I n c o r r e c t format ”

echo ”Usage : $0 workdir f i l ename c l a s s i f i c a t i o n mod e output format ”
echo ”workdir i s the r e l a t i v e working d i r e c t o r y f o r the e l abo ra t i on ”
echo ” f i l ename i s the source image zipped f i l e ”
echo ” c l a s s i f i c a t i o n mod e al lowed va lues are Full , Reduced , Limited ”
echo ” output format al lowed va lues are ENVI , GeoTIFF”
exit 1

f i

#f l a g 1=”$3”
#f l a g 2=”$4”
i f [”$3” != ” Ful l ”] && [”$3” != ”Reduced”] && [”$3” != ”Limited ”]
then
echo ”Error : bad ’ number o f c l a s s e s ’ ”

echo ”Usage : C l a s s i f i c a t i o n Mode va lues permitted : Full , Reduced , Limited ”
exit 1

f i
i f [”$3” == ” Ful l ”]
then

f l a g 1=”0”
f i
i f [”$3” == ”Reduced”]
then

f l a g 1=”1”
f i
i f [”$3” == ”Limited ”]
then

f l a g 1=”2”
f i

i f [”$4” != ”ENVI”] && [”$4” != ”GeoTIFF”]
then
echo ”Error : bad ’ image format ’ f l a g ”

echo ” Usage : Outout format va lues permitted : ENVI , GeoTIFF”
exit 1

f i
i f [”$4” == ”ENVI”]
then

f l a g 2=”0”
f i
i f [”$4” == ”GeoTIFF”]
then

f l a g 2=”1”
f i

echo $ f l a g1 $ f l a g2

#Working Direc tory De f i n i t i o n
cd $1
tempath=‘pwd‘
l7dirname=‘echo $2 | cut −d . −f 1 ‘ #removing the f i l ename extens ion
mkdir $ l7dirname
cp $2 $ l7dirname
cd $ l7dirname
unzip $2
cd SCENE1

#**

please , check the d i r e c t o r y
#**

cp /usr / l o c a l / temp soi l mapper / sm scr env i 1 prom ./
cp $ sc r iptPath / sm scr env i 1 prom . sh . /

cp / usr / l o c a l / temp soi l mapper / sm scr env i 2 prom ./
cp $ sc r iptPath / sm scr env i 2 prom . sh . /

#
#***

#Radiometric Ca l i b ra t i on Appl i cat ion
/bin /sh sm scr env i 1 prom . sh

#
#Spec t ra l Catego r i za t i on

/bin /sh sm scr env i 2 prom . sh $ f l a g1 $ f l a g2 1> l og . out 2> l og . e r r
#
#Proces s ing outcome determinat ion

r e s u l t s =‘ l s | grep SpCl ‘
i f [−z ” $ r e s u l t s ”] ;
then

echo ” f a i l u r e ” > $tempath/outcome

B.4. FTP SERVICE STYLESHEET 65

else
echo ” suc c e s s ” > $tempath/outcome

f i

#Working Direc tory Clean−up
mv *SpCl* $tempath
mv * . out $tempath
mv * . e r r $tempath
cd $tempath
rm −Rf $ l7dirname
rm −f * . tfw

B.4 FTP Service Stylesheet

Listing B.6: The FTP based service’s stylesheet
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<xsl :stylesheet version=” 1 .0 ” xmlns:mass=” ht tp : //www. esa . i n t /mass”

xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”
xmlns :o i=” ht tp : //www. esa . i n t / o i ”
xmlns :ao i=” ht tp : //www. esa . i n t /xml/schemas/mass/ a o i f e a t u r e s ”
xm ln s : e o l i=” ht tp : // earth . esa . i n t /XML/ e o l i ”
xmlns:gml=” ht tp : //www. opengi s . net /gml” >
< !−− Import statements −−>
<xsl:import hr e f=” . / mass . x s l ”/>
<xsl:import hr e f=” . / massCatalogue . x s l ”/>
< !−− Apply the template f o r the root element from MASS standard template −−>
<xsl:template match=”/”>

<xsl:apply−imports/>
</xsl:template>
< !−− Templates used to d i sp l ay Search input in format ion us ing HTML format −−>
<xsl:template match=”mass :sendSearchInput ”/>
< !−− Templates used to generate Search input in format ion us ing XML format −−>
<xsl:template match=”mass :sendSearchInput ” mode=”XML”/>

<xsl:template match=”mass:getOrderOutput ” mode=”XML”/>

<xsl:template match=”mass:sendOrderInput ”>
<s c r i p t language=” JavaScr ipt ” type=” text / j a v a s c r i p t ”>

f unc t i on checkMandatoryFields (form)
{
// complete FTP address v a l i d a t i on
var va l i d a t o r = new RegExp

(”ˆ f t p : //[\\w@.−]+ : [\\w−]+@[\\w−]+\\ . [\\w.−]+(: \\d+)?/[\\w−%\/.]+$” , ” i ”) ;
i f (! v a l i d a t o r . t e s t (form [” inputFtpAddress ”] . va lue))
{
a l e r t (”The FTP address provided i s not co r r ec t , p l e a s e check . ”) ;
r e turn f a l s e ;
}
re turn true ;
}

</ s c r i p t>
<t ab l e width=”500” he ight=”250” border=”0”>

<tbody>
<t r><td>
</ td></ t r>
<t r>

<td va l i gn=”bottom” a l i gn=” l e f t ” CLASS=” sty l e sheetBo ldText ”>
I n s e r t the complete FTP address o f the image to be proces sed

</ td>
</ t r>
<t r>

<td a l i gn=” cente r ” CLASS=” s ty l e shee tText ”>
<input name=” inputFtpAddress ” s i z e=”60” type=” text ”
value=” f t p : // user :pass@host . name:portNumber/pathToFile / f i leName . ext ”/>

</ td>
</ t r>
<t r>

<td va l i gn=”top” a l i gn=” l e f t ” CLASS=” s ty l e shee tText ”>
Note: The u r l must be in the complete form conta in ing a l l the data needed
f o r the c o r r e c t image r e t r i e v a l by our s e r v i c e (f o r example:
f t p : // user :password@server . net :2121 / Images/ ImageToProcess . z ip)

The port number i s op t i ona l and , i f not s p e c i f i e d w i l l d e f au l t to 21 .

</ td>
</ t r>
<t r><td>
</ td></ t r>
<t r>

<td va l i gn=”bottom” a l i gn=” l e f t ” CLASS=” sty l e sheetBo ldText ”>
Choose e l abo ra t i on Type

</ td>
</ t r>
<t r>

<td va l i gn=”top” a l i gn=” l e f t ” he ight=”30” CLASS=” s ty l e shee tText ”>
<s e l e c t name=” elaborat ionType ”>

<opt ion value=” Ful l ” s e l e c t e d=”1”>Ful l number o f c l a s s e s (72)</ opt ion>
<opt ion value=”Reduced”>Reduced number o f c l a s s e s (38)</ opt ion>
<opt ion value=”Limited ”>Limited number o f c l a s s e s (15)</ opt ion>

</ s e l e c t>
</ td>

</ t r>

66 APPENDIX B. LISTINGS

<t r><td>
</ td></ t r>
<t r>

<td va l i gn=”bottom” a l i gn=” l e f t ” CLASS=” sty l e sheetBo ldText ”>
Choose output image format

</ td>
</ t r>
<t r>

<td va l i gn=”top” a l i gn=” l e f t ” he ight=”30” CLASS=” s ty l e shee tText ”>
<s e l e c t name=”outputFormat”>

<opt ion value=”ENVI”>ENVI data format</ opt ion>
<opt ion value=”GeoTIFF” s e l e c t e d=”1”>GeoTif f data format</ opt ion>

</ s e l e c t>
</ td>

</ t r>
</tbody>

</ tab l e>
</xsl:template>

< !−− Template f o r the order input in format ion us ing XML as output format −−>
<xsl:template match=”mass:sendOrderInput ” mode=”XML”>

<mass:commonInput>
<mass :order Id>

<xsl:value−of s e l e c t=” order Id ”/>
</ mass :order Id>

</mass:commonInput>
<mass:sendOrderInput>

<mass :e laborat ionType>
<xsl:value−of s e l e c t=” elaborat ionType ”/>

</mass :e laborat ionType>
<mass:outputFormat>

<xsl:value−of s e l e c t=”outputFormat”/>
</mass:outputFormat>
<mass : inputF i l eLocat i on>

<xsl:value−of s e l e c t=” inputFtpAddress ”/>
</ mass : inputF i l eLocat i on>

</mass:sendOrderInput>
</xsl:template>

< !−− Template f o r the order output in format ion us ing HTML as output format −−>
<xsl:template match=”mass:getOrderOutput”>

<t ab l e width=”640”>
<x s l : i f t e s t=” mas s : s t a tu s In f o /mass:statusMsg ”>

<t r>
<td he ight=”30” c l a s s=” sty l e sheetBo ldText ”>

Result Status
</ td>
<td c l a s s=” sty l e sheetBo ldText ”>

<xsl:value−of s e l e c t=” mas s : s t a tu s In f o /mass:statusMsg ”/>
</ td>

</ t r>
</ x s l : i f>

<xsl:choose>
<xsl:when t e s t=” mas s : s t a tu s In f o / mass : s ta tus Id = 0”>
<t r>

<td he ight=”20” c l a s s=” sty l e sheetBo ldText ”>
Result i s a v a i l a b l e at

</ td>
<td c l a s s=” s ty l e shee tText ”>

<a ta rg e t=” blank ”><xsl :attr ibute name=” hre f ”> f t p : //
<xsl:value−of s e l e c t=”mass:userName”/> :
<xsl:value−of s e l e c t=”mass:passWord”/>@
<xsl:value−of s e l e c t=” subs t r ing−a f t e r (mass:orderResultURL , ’ / / ’) ”/>
</xsl :attr ibute> f t p : //<xsl:value−of s e l e c t=”mass:userName”/> :
<xsl:value−of s e l e c t=”mass:passWord”/>@
<xsl:value−of s e l e c t=” subs t r ing−a f t e r (mass:orderResultURL , ’ / / ’) ”/>

</ td>
</ t r>
<t r>

<td c l a s s=” sty l e sheetBo ldText ”>
Ava i l a b i l i t y per iod

</ td>
<td c l a s s=” s ty l e shee tText ”>

<xsl:value−of s e l e c t=” mas s : ava i l ab i l i t yT ime ”/>
</ td>
</ t r>

</xsl:when>

<xsl:otherwise>
<t r>

<td c l a s s=” sty l e sheetBo ldText ”>
Addit iona l e r r o r i n f o rmat i on :

</ td>
<td c l a s s=” s ty l e shee tText ”>

<xsl : text> </xsl : text>
</ td>

</ t r>
<t r>

<td c l a s s=” sty l e sheetBo ldText ”>
Username

</ td>
<td c l a s s=” s ty l e shee tText ”>

<xsl:value−of s e l e c t=”mass:userName”/>

B.5. FTP SERVICE WSDL DESCRIPTION 67

</ td>
</ t r>
<t r>

<td c l a s s=” sty l e sheetBo ldText ”>
Password

</ td>
<td c l a s s=” s ty l e shee tText ”>

<xsl:value−of s e l e c t=”mass:passWord”/>
</ td>

</ t r>
<t r>

<td c l a s s=” sty l e sheetBo ldText ”>
Related URL

</ td>
<td c l a s s=” s ty l e shee tText ”>

<xsl:value−of s e l e c t=”mass:orderResultURL”/>
</ td>

</ t r>
</xsl:otherwise>

</xsl:choose>
</ tab l e>

</xsl:template>
</xsl :stylesheet>

B.5 FTP service WSDL description

Listing B.7: The FTP based service’s WSDL description
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<d e f i n i t i o n s targetNamespace=” ht tp : //www. esa . i n t /mass”

xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”
xmlns : fo=” ht tp : //www.w3 . org /1999/XSL/Format”
xmlns:mass=” ht tp : //www. esa . i n t /mass”
xmlns:plnk=” ht tp : // schemas . xmlsoap . org /ws/2003/05/ partner−l i n k /”
xmlns : tns=” ht tp : //www. esa . i n t /mass”
xmlns:wsa=” ht tp : // schemas . xmlsoap . org /ws/2003/03/ addre s s ing ”
xmlns:wsdlsoap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”>
<types>

<schema attr ibuteFormDefault=” q u a l i f i e d ”
elementFormDefault=” q u a l i f i e d ”
targetNamespace=” ht tp : // schemas . xmlsoap . org /wsdl /”
xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”>

<import namespace=” ht tp : //www. esa . i n t /mass”
schemaLocation=” ht tp : //87 . 23 . 139 . 78 :8080 /TOOLBOX/WSDL/SoilMapper / soi lMapper . xsd”/>

<import namespace=” ht tp : // schemas . xmlsoap . org /ws/2003/03/ addre s s ing ”
schemaLocation=” ht tp : // schemas . xmlsoap . org /ws/2003/03/ addre s s ing ”/>

</schema>
</ types>
<message name=”StartHeader ”>

<part element=”wsa:MessageID” name=”MessageID”/>
<part element=”wsa:ReplyTo” name=”ReplyTo”/>

</message>
<message name=”ContinueHeader”>

<part element=”wsa:RelatesTo ” name=”RelatesTo”/>
</message>
<message name=” sendOrderInput ”>

<part element=” tns:sendOrderInputMsg ” name=”parameters ”/>
</message>
<message name=”sendOrderOutput”>

<part element=”tns:sendOrderOutputMsg” name=”parameters ”/>
</message>
<message name=” returnOrderResult Input ”>

<part element=” tns : returnOrderResult InputMsg ” name=”parameters ”/>
</message>
<message name=” returnOrderResultOutput ”>

<part element=” tns:returnOrderResultOutputMsg ” name=”parameters ”/>
</message>
<portType name=”SoilMapper ”>

<operat ion name=”sendOrder”>
<input message=” tns : sendOrderInput ” name=” sendOrderInput ”/>
<output message=” tns:sendOrderOutput ” name=”sendOrderOutput”/>

</ operat ion>
</portType>
<portType name=”Soi lMapperCal lback ”>

<operat ion name=” returnOrderResult ”>
<input message=” tns : r e turnOrderResu l t Input ” name=” returnOrderResult Input ”/>
<output message=” tns : returnOrderResultOutput ” name=” returnOrderResultOutput ”/>

</ operat ion>
</portType>
<binding name=”SoilMapperSoapBinding” type=” tns :So i lMapper ”>

<wsdl soap :b ind ing s t y l e=”document” t ranspor t=” ht tp : // schemas . xmlsoap . org / soap/http ”/>
<operat ion name=”sendOrder”>

<wsd l soap :opera t i on soapAction=”sendOrder”/>
<input>

<wsdlsoap:header message=” tns :S tar tHeader ” part=”MessageID” use=” l i t e r a l ”/>
<wsdlsoap:body use=” l i t e r a l ”/>

</ input>
<output>

<wsdlsoap:body use=” l i t e r a l ”/>
</output>

68 APPENDIX B. LISTINGS

</ operat ion>
</ binding>
<binding name=”SoilMapperCallbackSoapBinding ” type=” tns :So i lMapperCal lback ”>

<wsdl soap :b ind ing s t y l e=”document” t ranspor t=” ht tp : // schemas . xmlsoap . org / soap/http ”/>
<operat ion name=” returnOrderResult ”>

<wsd l soap :ope ra t i on soapAction=” returnOrderResult ”/>
<input>

<wsdlsoap:header message=” tns:ContinueHeader ” part=”RelatesTo” use=” l i t e r a l ”/>
<wsdlsoap:body use=” l i t e r a l ”/>

</ input>
<output>

<wsdlsoap:body use=” l i t e r a l ”/>
</output>

</ operat ion>
</ binding>
<s e r v i c e name=”SoilMapper ”>

<port binding=” tns:Soi lMapperSoapBinding ” name=”SoilMapper ”>
<wsd l soap :addres s l o c a t i o n=” ht tp : //87 . 23 . 139 . 78 :8080 /TOOLBOX/ s e r v i c e s /SoilMapper ”/>

</ port>
</ s e r v i c e>
<s e r v i c e name=”Soi lMapperCal lback ”>

<port binding=” tns :Soi lMapperCal lbackSoapBinding ” name=”Soi lMapperCal lback ”>
<wsd l soap :addres s l o c a t i o n=” ht tp : // openur i . org ”/>

</ port>
</ s e r v i c e>
<plnk:partnerLinkType name=”SoilMapper ”>

<p l n k : r o l e name=” Soi lMapperServ iceProv ider ”>
<plnk:portType name=” tns :So i lMapper ”/>

</ p l n k : r o l e>
<p l n k : r o l e name=”Soi lMapperServ iceRequester ”>

<plnk:portType name=” tns :So i lMapperCal lback ”/>
</ p l n k : r o l e>

</ plnk:partnerLinkType>
</ d e f i n i t i o n s>

Bibliography

[1] Mihai Datcu, Klaus Seidel, Oscar Guerra, and Manfred Schroeder. KIM Knowledge

Driven Information Mining in Remote Sensing Image Archives. Project executive

summary, ESA, Nov 2002. downloaded from http://earth.esa.int/rtd/Documents/KIM_

Executive_Summary.doc on Dec-18-2006.

[2] International Institute for Geo-Information Science and Earth Observation. ITC’s

database of Satellites and Sensors. Website. consulted on Feb-21-2007 from http:

//www.itc.nl/research/products/sensordb/searchsat.aspx searching “landsat”.

[3] Marco Folegani, Simone Mantovani, and Stefano Natali. SOIL MAPPER System

and Products Description, Jan 2007. downloaded from http://www.meeo.it/docs/SOIL_

MAPPER_report.pdf on Jan-28-2007.

[4] A. Baraldi, V. Puzzolo, P. Blonda, L. Bruzzone, and C. Tarantino. Automatic spectral

rule-based preliminary mapping of calibrated landsat tm and etm+ images. IEEE

Trans. Geosci. And Remote Sensing, 44(9):2563–2586, Sep 2006.

[5] José Achache. A new perspective for earth observation. ESA bullettin, 116:22–33,

Nov 2003.

[6] Yves Coene and Claire Bawin. Service Support Environment Architecture, Model

and Standards, Dec 2004. downloaded from http://earth.esa.int/rtd/Documents/SSE_

Whitepaper_2.pdf on Dec-18-2006.

[7] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.

Extensible Markup Language (XML) 1.0. W3C, fourth edition, Aug 2006. W3C

Recommendation, Available online at http://www.w3.org/TR/2006/REC-xml-20060816/.

[8] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML

Schema Part 1: Structures. W3C, second edition, Oct 2004. W3C Recommendation,

Available online at http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

69

70 BIBLIOGRAPHY

[9] W3C. The Extensible Stylesheet Language Family (XSL). Website. available online

at http://www.w3.org/Style/XSL/.

[10] James Clark and Steve DeRose. XML Path Language (XPath) 1.0. W3C,

Nov 1999. W3C Recommendation, Available online at http://www.w3.org/TR/1999/

REC-xpath-19991116.

[11] W3C. Web Services Architecture. Website, Feb 2004. available online at http://www.

w3.org/Style/XSL/.

[12] W3C. Web Services Description Language (WSDL) 1.1. Website. available at http:

//www.w3.org/TR/2001/NOTE-wsdl-20010315.

[13] W3C. SOAP Specifications. Website. available online at http://www.w3.org/TR/soap/.

[14] Tony Andrews et al. Business Process Execution Language for Web Services version

1.1. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, May 2003. OASIS stan-

dard, Available online at http://www-128.ibm.com/developerworks/library/specification/

ws-bpel/.

[15] SSE Team. Service Support Environment Interface Control Document. SpaceBel, Sep

2006. Issue 1.5, unpublished draft for service providers. Issue 1.4 available online at

http://services.eoportal.org/massRef/documentation/icd.pdf, Dec-18-2006.

[16] M. C. Terzi P. Nencioni, S. Gianfranceschi. Earthnet Online XML Font End. ESA, In-

tecs et al., Apr 2006. Issue 2.4, available online at http://earth.esa.int/rtd/Documents/

EOLI-XML-ICD.pdf.

[17] Jolyon Martin. OpenGIS® Catalogue Services - Minimal Profile for EO products us-

ing WSDL and SOAP. ESA, OpenGis et al., 0.1.0 draft edition, Jun 2005. downloaded

from http://earth.esa.int/XML/eoli/ on Jan-19-2007.

[18] Jan K. Labanowski. Sun Java Development Kit on FC6. Computational Chemistry

List ltd., 2007. downloaded from http://ccl.net/cca/software/SOURCES/JAVA/JSDK-1.5/

index6.shtml on Jan-08-2007.

Acronyms

AOI Area Of Interest

BPEL Business Process Execution Language

CEOS Committee on Earth Observation Satellites

EO Earth Observation

EOLI Earthnet OnLine Interactive

ESA European Space Agency

ETM Enhanced Thematic Mapper

FTP File Transfer Protocol

GML Geography Markup Language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ICD Interface Control Document

IDE Integrated Development Environment

IIM Image Information Mining

JS JavaScript

KEI KIM Extension and Installation

KIM Knowledge based Information Mining

MEEO Meteorological and Environmental Earth Observation

71

72 ACRONYMS

NASA National Aeronautics and Space Administration

PM Process Manager

RS Remote Sensing

RTD Research and Technology Development

SM SOIL MAPPER

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSE Service Support Environment

TM Thematic Mapper

USGS United States Geological Survey

W3C Word Wide Web Consortium

WS XML Web Service

WSA Web Service Architecture

WSDL Web Services Description Language

XML EXtensible Markup Language

XPath XML Path Language

XSD XML Schema Definition

XSL EXtensible Stylesheet Language

XSLT XSL Transformations

Acknowledgements

I wish to thank all the people who made the realization of this thesis possible: my supervi-

sor Mirco Andreotti and Eleonora Luppi for their precious advices; Stefano Natali, Marco

Folegani and Simone Mantovani (the MEEO staff), for all their support and for introduc-

ing me in the international context of Earth Observation-related projects; Carlos Ferreo

for the kind support on the EOLI interfacing and all the people involved in developing

and supporting the SSE system.

Ringrazio Ermi, per la dolcezza del suo sorriso, capace di illuminare anche i momenti

più cupi, e per tutto il suo amore; la ringrazio inoltre per le sue dolci ed immancabili russate

sul secondo tempo dei film d’azione (ho le prove) e per la sua tendenza ad aggiungere un

grado di incertezza nei disegni dell’universo con i suoi piccoli disastri, seguiti da un candido

“Vedi, con me non ci si annoia mai.”: è vero!

Un ringraziamento speciale a mia madre “la Ross”, per il suo immancabile affetto, ed

a tutta la mia famiglia.

Ringrazio Bibi e Lilla, le gatte più coccolone del pianeta, che stavolta hanno fatto a

turno per acciambellarsi sui libri di testo o sulla tastiera del PC, introducendo nei miei

scritti innumerevoli serie di caratteri casuali, ad annunciare l’obbligo di una pausa coccole;

se avessero un centesimo per ogni loro fusa ora sarebbero milionarie.

Ringrazio Bicio ed Elena, Toli, Denis, Davide, Valerio, Mirko (in giro per il mondo),

Busso e tutti quelli che per brevità non menziono per la loro sincera amicizia.

Ringrazio i miei compagni di corso di Laurea specialistica per il tempo trascorso as-

sieme, per gli innumerevoli “scambi culturali”, e per le nostre cene di “specialisticafe”;

ringrazio in particolare: Mattia, Neryo, il Coss, Mario, Valerio, Marika ed Alfredo.

73

