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Introduzione

I modelli variazionali per la segmentazione, introdotti alla fine degli anni ’80
da D. Mumford, J. Shah, A. Blake e A. Zisserman, hanno permesso di ambi-
entare alcuni problemi di cruciale importanza come la segmentazione di segnali
e immagini, il riconoscimento automatico o lo studio delle fratture dei materiali,
in ambito puramente matematico. Lo studio di questi modelli ha permesso di
sviluppare tecniche variazionali per la soluzione dei problemi cosiddetti a dis-
continuità libera.
Per la formulazione variazionale della segmentazione di immagini proposta da
D. Mumford e J. Shah si parte da una funzione g : Ω → [0, 1] rappresentante
l’immagine in tonalità di grigio da segmentare e si vuole che il risultato del pro-
cesso di segmentazione fornisca una funzione u che sia la versione regolarizzata
di g ed un insieme K ⊂ RN rappresentante i bordi degli oggetti distinguibili
nell’immagine g.
L’idea è quella di trovare tali oggetti in seguito ad un processo di minimizzazione
del funzionale

MS(u,K) =

∫
Ω\K
|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αHN−1(K ∩ Ω)

fra tutti i possibli K ⊂ Ω chiusi e u ∈ C1(Ω \ K). I parametri α, µ > 0 sono
inseriti al fine di regolare le caratteristiche del minimizzante ottenuto.
Grazie al processo di minimizzazione il termine

∫
Ω
|u− g|2 costringe u ad essere

vicina al dato g da segmentare, mentre il termine contenente |∇u|2 fa s̀ı che
essa sia il più regolare possible sull’insieme Ω \ K, ignorando le discontinuità
meno rilevanti e costringendo la formazione di discontinuità solo sull’insieme
K. Il termine HN−1(K ∩Ω) penalizza la formazione di insiemi di discontinuità
troppo grandi. L’insieme K rappresenta il bordo degli oggetti presenti in g.
Questi problemi di minimo sono caratterizzati dal fatto che la competizione per
la minimizzazione avviene contemporaneamente su energie di volume ed energie
di superficie, in particolare tali energie sono definite su supporti che costituiscono
a loro volta un’incognita del problema. La terminologia a discontinuità libera
si riferisce al fatto che l’insieme di discontinuità di u è sconosciuto a priori.
Poichè tale formulazione si rivela troppo forte per poter applicare i risultati
classici del calcolo delle variazioni, al fine di dimostrare l’esistenza dei minimi
è necessario un rilassamento del funzionale che porta il problema nello spazio
delle funzioni speciali a variazione limitata SBV (Ω), giungendo al funzionale

F (u) :=

∫
Ω

|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αHN−1(Su ∩ Ω).
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con u ∈ SBV (Ω) ed Su l’insieme dei salti di u. A causa del termine HN−1(Su∩
Ω) il funzionale non è differenziabile quindi il problema del calcolo effettivo di
minimi non può essere risolto direttamente con i classici metodi basati sulla
discesa del gradiente.
Viene proposta nel 1990 da L. Ambrosio e V. M. Tortorelli una approssimazione
in Γ-convergenza del funzionale con funzionali ellittici definiti su opportuni spazi
di Sobolev, per i quali è possible applicare i metodi numerici classici per la
minimizzazione. Le proprietà della Γ-convergenza garantiscono inoltre che tali
minimi convergono ad un minimo del funzionale F .
Modelli del primo ordine come quello di Mumford e Shah hanno alcuni difetti.
Anzitutto, alcune caratteristiche delle immagini come le pieghe (discontinuità
del gradiente) non vengono percepite, inoltre il termine gradiente induce il
fenomeno della cosiddetta sovrasegmentazione dei gradienti ripidi, ovvero tratti
di funzione con gradiente molto ripido vengono approssimati con funzioni a
scalino, con conseguente perdita di definizione. Un’altra caratteristica del mod-
ello è quella di condurre ad insiemi di discontinutà formati da unioni di archi
C1 con giunzioni al più tri-ramificate, ed in tal caso tali giunzioni formano 3
angoli di 2/3π di ampiezza ciascuno.
Per ovviare a tali difetti viene proposto da A. Blake e A. Zisserman un mod-
ello variazionale del secondo ordine. La formulazione debole nello spazio delle
funzioni speciali a variazione limitata generalizzate GSBV 2(Ω)

F (u) =

∫
Ω

|∇2u|2 + µ(u− g)2 dx+ αHN−1(Su) + βHN−1(S∇u \ Su)

permette di provare l’esistenza di minimi, inoltre in dimesione 2 è possible di-
mostrare che tali minimi rappresentano (attraverso una semplice identificazione)
minimi per la formulazione forte.
Ancora una volta è necessaria una approssimazione in Γ-convergenza con fun-
zionali regolari per poter calcolare i minimi del funzionale. Tale approssimazione
viene fatta nel 2001 da L. Ambrosio, L. Faina e R. March, i quali, adattando
opportunamente le tecniche sviluppate per dimostrare la Γ-convergenza nel caso
del MS, propongono come approssimanti i funzionali ellittici

Fε(u, s, z) =

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2 dx

+ µ

∫
Ω

(u− g)2 dx

definiti su opportuni spazi di Sobolev. α, β, µ sono paramtri positivi, ξε, oε sono
infitesimi per ε.

Questa tesi si propone principalmente due scopi. Inizialmente si vuole illus-
trare in maniera il più esaustiva e ricca di dettagli possibile la dimostrazione
per la Γ-convergenza nel caso del funzionale di Mumford e Shah (vedi Capitolo
2). Successivamente, dopo aver illustrato i risultati della Γ-convergenza nel caso
del funzionale di Blake e Zisserman (vedi Capitolo 3), si vuole proporre un algo-
ritmo per la computazione numerica dei minimi di quest’ultimo attraverso una
opportuna discretizzazione dei funzionali Fε (vedi Capitolo 4).
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Introduction

Variational models for segmentation, proposed by D. Mumford, J. Shah, A.
Blake and A. Zisserman, allowed for a mathematical formulation of several sig-
nificant problems such as signal segmentation, automatic recognition and ma-
terial fractures analysis. Research on these models led to the development of
variational methods for the so-called free discontinuity problems.
In the variational formulation for image segmentation proposed by Mumford
and Shah, function g : Ω → [0, 1] is the grayscale representation of the given
image and the results of the segmentation process are a function u and a set
K ⊂ RN . The former is a regularized version of g and the latter represents the
edges of the distinguishable objects in g.
The basic idea is to identify these objects by minimizing the functional

MS(u,K) =

∫
Ω\K
|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αHN−1(K ∩ Ω)

among any closed set K ⊂ Ω and any function u ∈ C1(Ω \ K). Parameters
α, µ > 0 are introduced in order to properly adjust the characteristics of the
minimizers.
In the minimization process, the term

∫
Ω
|u − g|2 forces u to be close to the

datum g. On the other hand, the term containing |∇u|2 preserves the smooth-
ness of the solution u on set Ω \K, by neglecting small discontinuities so that
only discontinuities on K are allowed and their size is controlled by the term
HN−1(K ∩ Ω). The set K represents the edges of objects in g.
In these optimization problems, both bulk and surface energies are minimized
simultaneously and their supports are also undefined, being unknowns of the
problem theirself. Consequently, the discontinuity set of u is not known a pri-
ori, thus leading to the expression free discontinuities problems.
However, classical results of Calculus of Variations cannot be applied in this
framework, since the formulation turns out to be too strong. A relaxation of
the functional is necessary in order to prove the existence of minima and the
problem is then moved to the space of bounded variation functions SBV (Ω),
leading to the functional

F (u) :=

∫
Ω

|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αHN−1(Su ∩ Ω).

where u ∈ SBV (Ω) and Su is the jump set of u. Because of the term HN−1(Su∩
Ω), the functional is not differentiable, hence classical gradient descent methods
cannot be directly applied for computing the minima.
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In 1990, L. Ambrosio and V. M. Tortorelli proposed a Γ-convergence approxi-
mation of the functional, realized with elliptical functionals defined on proper
Sobolev spaces that can be minimized by applying classical numerical methods.
Moreover, properties of the Γ-convergence ensure that the minima obtained con-
verge to a minimum of the functional F itself.
First-order models, such as Mumford and Shah model, have some drawbacks.
Firstly, some features of the image, such as creases (gradient discontinuities),
are not sensed. Secondly, the gradient term leads to the so-called steep gradient
oversegmentation, that is regions with very steep gradient are approximated by
step functions, thus decreasing the definition of the image. In addition, the
model leads to discontinuity sets composed of unions of C1 arcs with at most
3-points junctions (in this case arcs are 2/3π wide).
In order to overcome these limitations, A. Blake and A. Zisserman proposed a
second-order variational model. The weak formulation in the space of general-
ized special bounded variation functions GSBV (Ω)

F (u) =

∫
Ω

|∇2u|2 + µ(u− g)2 dx+ αHN−1(Su) + βHN−1(S∇u \ Su)

allows the proof of minima existence. In the 2-dimensional case, a corrispon-
dence with minima for the strong formulation can also be proved by operating
a simple identification.
Again, a Γ-convergence approximation is necessary in order to compute the
minima. L. Ambrosio, L. Faina e R. March realized such approximation in
2000, again using elliptical functionals and properly adapting the techniques
developed for the MS case:

Fε(u, s, z) =

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2 dx

+ µ

∫
Ω

(u− g)2 dx

defined on proper Sobolev spaces. α, β, µ are positive parameters, ξε, oε are in-
finitesimals as ε tends to 0.

In this thesis we propose to achieve two main goals. First, we want to
present an exhaustive and detailed version of the Γ-convergence proof for the
Mumford and Shah case (see Chapter 2). Then, after having stated the neces-
sary Γ-convergence results for the Blake-Zisserman functional (see Chapter 3),
we propose an algorithm for the numerical minimization of this functional by
performing a proper discretization of the functionals Fε (see Chapter 4).
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Chapter 1

Elements

This Chapter is entirely devoted to the presentation of the most important top-
ics to know when dealing with minimum problems in spaces of functions.
First a brief introduction to the Direct Methods of the Calculus of Variation is
presented. Then the notion of Γ-convergence is given and some of its properties
related to the minimum problems are investigated.
The Geometric Measure Theory Section contains some fundamental results that
are very useful to develope both the theory of SBV functions, which are de-
scribed in the last Section of this Chapter, and the Γ-convergence demonstra-
tions, showed in the following two chapters.

1.1 Direct Methods of the Calculus of Varia-
tions

Let X be a separable metric space endowed with a convergence defined by
sequences, and let F : X → [0,+∞] be a funtional F 6≡ +∞, the aim of calculus
of variations is to find solutions for the problem

min{F (u) : u ∈ X}. (1.1)

Because of its non-negativity, F is bounded from below and there exists inf{F (u) :
u ∈ X}, so we have the existence of a sequence uj ⊂ X such that

lim
j
F (uj) = inf{F (u) : u ∈ X}.

The key idea is to find a solution of the problem (1.1) following the limit (in
some sense) of the sequence uj ; we want to characterize some conditions on F
and X that allow to control the limit behaviour of the sequence, and this has to
be a general approach not depending on the choice of the minimizing sequence.
One way could be to require that in X every minimizing sequence (in general
every bounded sequence) lies in a sequentially compact set K ⊂ X so that we
can extract a subsequence ujk ⊂ uj converging to some u ∈ K.
This compactness requirement can be directly made on the functional F by
asking it to be sequentially coercive, that is, for all sequences uh such that
suph F (uh) < +∞ there exists a converging subsequence.
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Anyway, once we have a subsequence ujk converging to some u ∈ X, it becomes
the best candidate to be a minimizer of F on X. The only thing that remains
to check is the limit behaviour of F when ujk tends to u; more precisely we
require that

F (u) = lim
j
F (uj) = inf{F (u) : u ∈ X}. (1.2)

Trivially the inequality inf{F (u) : u ∈ X} ≤ F (u) holds, the other one has to
be formulated as a property of F for the solvability of the problem. A functional
F is said to be lower semicontinuous at u ∈ X if for any uh converging at u

F (u) ≤ lim inf
h

F (uh).

Given a functional F : X → [0,+∞] not necessarly lower semicontinuous there
is always a way to obtain a lower semicontinuous one from it.

Definition 1.1.1 Let F : X → [0,+∞] be a functional F 6≡ +∞ and Y ⊂ X a
subset. The lower semicontinuous envelope of F at u ∈ X on Y is defined by

F (u) := inf{lim inf
j

F (uj) : uj → u uj ∈ Y }.

It is clearly lower semicontinuous on Y , it is also called the relaxation of the
functional F on the set Y .

Requiring F to be lover semicontinuous on X, together with other compactness
properties, leads to the existence of solutions for the problem (1.1) by following
the behaviour of minimizing sequences.

1.2 Γ-convergence in minimum problems

Γ-convergence is a convergence defined on families of functionals and it has some
fine properties strictly related to minimum problems. Its definition can be de-
rived by following an approach similar to the one seen in the direct methods.
The aim is to find a solution for the problem (1.1), even when F lacks of some
regularity properties, by approximating it with a family depending on a param-
eter of more regular (or more easily computable) problems of the type

αj := inf{Fj(u) : u ∈ X}. (1.3)

Let us consider an asimptotically minimizing sequence for the family Fj , that
is, a sequence (uj)j such that

lim
j

[Fj(uj)− αj ] = 0,

we want to characterize some properties ensuring the existence of a minimum
following this sequence of minimizers.
In order to find a converging subsequence we require compactness properties
on the space X by asking that any minimizing sequence admits converging
subsequences, or on the family Fj by asking it to be equi-coercive.
The limit u reached up to subsequences becomes the best candidate for the
solution of the problem, the definition of Γ-convergence of the family Fj to the
functional F is precisely built to ensure u to be a solution of (1.1).
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We are going to define two properties that control the limit behaviour of the
values of Fj(uj) approaching this limit. The first one is a lower bound and it is
formulated similarly to the semicontinuity:

Definition 1.2.1 (liminf inequality) The family Fj satisfies the liminf in-
equality if for every v ∈ X the inequality

F (v) ≤ lim inf
j

Fj(vj)

holds for every sequence vj ⊂ X such that vj → v.

The second one is an upper bound.

Definition 1.2.2 (limsup inequality) The family Fj satisfies the limsup in-
equality if for every v ∈ X there is a sequence vj ⊂ X such that vj → v and

lim sup
j

Fj(vj) ≤ F (v).

Such a sequence is called a recovery sequence.

We observe that, together with the liminf inequality

F (u) ≤ lim inf
j

Fj(vj) ≤ lim sup
j

Fj(vj) ≤ F (u), (1.4)

the recovery sequence actually realize a limit.

Definition 1.2.3 If the liminf and limsup inequalities are verified we say that
the family Fj Γ-converges to F and we write

Γ-lim
j

Fj = F ;

the functional F is called the Γ-limit of Fj.

1.2.1 Properties of Γ-convergence

To better understand the behaviour of Γ-convergence we first observe an impor-
tant fact. Not always the Γ-limit of a constant sequence exists, and if it exists
it has to be lower semiconinuous.

Remark 1.2.4 If the constant sequence Fj := F admits some Γ-limit F∞, then
it is exactly the relaxation of F , that is F = F∞. In particular, this limit equals
F if and only if F is lower semicontinuous.

Proof: We consider F the relaxation of F on the whole X. Let u ∈ X, beause
of the liminf inequality we have F∞(u) ≤ lim infj F (uj) for every uj → u, so by
the inf properties is F∞(u) ≤ F (u).
Now let vj a recovery sequence, then

F (u) ≥ F∞(u) ≥ lim sup
j

F (vj) ≥ lim inf
j

F (vj) ≥ F (u)

hence F∞(u) = F (u).
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The verification of the Γ-convergence leads to some crucial facts concerning
the framework of minimum problems. Let Fj be a family of functionals Γ-
convergent to F . If uj ⊂ X is an asymptotically minimizing sequence, by the
limsup inequality we have

lim sup
j

inf{Fj(v) : v ∈ X} ≤ F (u)

for every u ∈ X, hence

lim sup
j

inf{Fj(u) : u ∈ X} ≤ inf{F (u) : u ∈ X}

≤ F (u) ≤ lim inf
j

Fj(uj) ≤ lim inf
j

inf{Fj(u) : u ∈ X}.

This leads not only to the existence of solutions of the problem

min{F (u) : u ∈ X}

but also to the existence of some solution u ∈ X such that

F (u) = lim
j

inf{Fj(u) : u ∈ X}.

So, this solution can be viewed as a limit of the minimum problems which
approximtate it. Moreover in general, every minimizing sequences (up to a sub-
sequence) converge to a minimizer of F on X.

An equivalent definition of Γ-limit is possible as an equivalence of well-
defined Γ-lim inf and Γ-lim sup .

Definition 1.2.5 Let Fj be a sequence of functionals, we define the following
quantities

Γ-lim inf
j

Fj(u) := inf{lim inf
j

Fj(uj) : uj → u}

Γ-lim sup
j

Fj(u) := inf{lim sup
j

Fj(uj) : uj → u}

for every u ∈ X.

Corollary 1.2.6 The Γ-lim inf functional is lower semicontinuous.

Remark 1.2.7 A sequence of functionals Fj is Γ-converging (to some limit
F∞) if and only if Γ-lim inf j Fj = Γ-lim sup j Fj(= F∞).

Proof: (⇒) Fix u ∈ X. By the liminf inequality we have F∞(u) ≤ lim infj Fj(uj)
for every uj → u, it follows that

F∞(u) ≤ Γ-lim inf
j

Fj(u) ≤ Γ-lim sup
j

Fj(u).

On the other hand, if vj is a recovery sequence, by the definition of Γ-lim sup
and the limsup inequality, we get

Γ-lim sup
j

Fj(u) ≤ lim sup
j

Fj(vj) ≤ F∞(u).
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(⇐) Fix u ∈ X and let Γ-lim inf Fj = Γ-lim sup Fj = F∞. Trivially for every
uj → u we have

F∞(u) = inf{lim inf
j

F (vj) : vj → u} ≤ lim inf
j

Fj(uj),

that is, the liminf inequality is verified. Moreover, by the inf properties, for
every h ≥ 1 we know there exists a sequence (vhj )j converging to u as j → +∞
such that

lim sup
j

Fj(u
h
j ) ≤ F∞(u) +

1

h
(1.5)

then the diagonal sequence vj := ujj is a recovery sequence; also the limsup
inequlity is verified.

Corollary 1.2.8 If the Γ-limit exists, then it is unique.

Often the limsup inequality in the Γ-convergence is replaced by the condition
(1.5) because it can result more convenient in some calculations.

The last property of Γ-convergence that we present is its stability under
continuous perturbations (with respect to the convergence considered on the
space X).

Remark 1.2.9 Let Fj : X → [0,+∞] be Γ-convergent to F∞ and let G : X →
[0,+∞] be a continuous functional, then

Γ-lim
j

[Fj +G] = F∞ +G

that is, Γ-convergence is stable under additive continuous perturbations.

Proof: Fix u ∈ X and a sequence uj → u, then by the liminf inequality and
the continuity of G we have

[F∞ +G](u) ≤ lim inf
j

Fj(uj) + lim
j
G(uj) = lim inf

j
[Fj +G](uj).

As in (1.4) any recovery sequence does realize a limit, hence

lim sup
j

[Fj +G](vj) = lim
j
Fj(vj) + lim

j
G(vj) = F∞(u) +G(u) = [F∞ +G](u)

so we are done.

1.3 Geometric measure theory

Starting with an outer measure on Ω we see how to obtain a measure by re-
stricting it to the σ-algebra of the open set of Ω. Then a very useful measure
on RN , the Hausdorff measure, is defined, and some Theorems of the Calculus
(Coarea formula) are stated for the Lipschitz functions.
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1.3.1 Basics of the measure theory

Let µ∗ be an outer measure on a set Ω. Given a subset A ⊂ Ω such that for
every T ⊂ Ω

µ∗(A) = µ∗(A ∩ T ) + µ∗(A \ T )

holds, we say that A is µ∗-measureable and we write A ∈M(µ∗). The family of
the µ∗-measureable sets is a σ-algebra and the map

µ := µ|M(µ∗) : M(µ∗) −→ [0,+∞]

is a measure.
Given a topological space (Ω, τ) we consider the σ-algebra generated by the
open sets of τ , we denote it as B(Ω) = σ(τ). It is called the Borel σ-algebra on
Ω, and every A ⊂ B(Ω) is called a Borel set.
An outer measure µ∗ is called a Borel measure if B(Ω) ⊂M(µ∗). Generally the
inclusion is strict, given a x0 ∈ Ω then the measure δx0

, is such that M(δx0
) =

P(Ω), but for instance in the usual topology is P(Ω) 6≡ B(Ω).
Given a set M ⊂ Ω and an outer measure µ∗ we denote by µ∗ M the restriction
to M of µ∗, that is, the map obtained by setting

µ∗ M(A) = µ∗(A ∩M) ∀A ⊂ Ω.

If Ω a Borel set then µ : B(Ω)→ [0,+∞] is a Borel measure.

Lemma 1.3.1 (Caratheodory criterion) Let (Ω, dist ) be a metric space and
µ a measure such that dist (A,B) > 0 =⇒ µ(A ∩ B) = µ(A) + µ(B). Then
B(Ω) ⊂M(µ).

1.3.2 Hausdorff measure

We introduce the definition and some important properties of the Hs Hausdorff
measure on RN . This notion of measure doesn’t depend on N , and it allow us
to characterize s-dimentional objects in RN .

Definition 1.3.2 (Hausdorff measure) Let A ⊂ RN , 0 ≤ s < +∞ e 0 <
δ ≤ +∞, we define the following measures:

(i) Hsδ(A) := inf


+∞∑
j=1

α(s)

[
diam (Cj)

2

]s
: A ⊂

+∞⋃
j=1

Cj , diam (Cj) < δ

 .

(ii) Hs(A) := sup
δ>0
Hsδ(A) = lim

δ→0
Hsδ(A).

Remark 1.3.3 The constant α(s) is defined in such a way that, for any N ∈ N,
the HN measure of an N -dimensional compact hypersurface coincides with its
classical area. It is defined as

α(s) :=
π
s
2

Γ( s2 + 1)
,

where Γ(s) :=
∫ +∞

0
e−xxs−1 dx for every real number 0 < s < +∞, is the

well-known gamma function. It is possible to prove that

LN (Br(x)) = α(N)rN

for every ball Br(x) ⊂ RN of center x and radius r > 0.

12



By the Caratheodory criterion it is possible to show that Hs is Borel regular.
Some fundamental properties of the Hausdorff measure are presented in the
following.

Proposition 1.3.4 Let A ⊂ RN be a set.

(i) s > N ⇒ Hs(A) = 0

(ii) s < N ⇒ Hs(A) = +∞ ∀A open

(iii) s = N ⇒ Hs(A) = LN (A)

(iv) Let 0 ≤ s ≤ N such that 0 < Hs(A) < +∞ then

• for every t < s we have Ht(A) = +∞
• for every r > s we have Hr(A) = 0.

Definition 1.3.5 (Hausdorff dimension) Let A ⊂ RN , the real number

dimH(A) := inf
{

0 ≤ s < +∞ : Hs(A) = 0
}

= sup
{

0 ≤ s < +∞ : Hs(A) = +∞
}

is called the Hausdorff dimension of A.

A typical example of a set with non-integer Hausdorff dimension is the Cantor
third middle set C which has dimH(C) = log 2/ log 3.

A set M ⊂ RN is said to be HK rettificable if there exists a family Mj ⊂ RN
with Mj ∈ C1 and HK(Mj) < +∞ such that

HK
M \⋃

j

Mj

 = 0.

The assumption Mj ∈ C1 means that Mj is locally the graph of a C1 function,
that is

Mj = fj(Ej) fj : Ej ⊂ RK → RN fj ∈ C1(Ej).

Hence M is HK rettificabile if and only if there exists a family fj : Ej ⊂ RK →
RN with fj ∈ C1(Ej) such that

HK
M \⋃

j

fj(Ej)

 = 0.

1.3.3 Lipschitz functions, Coarea formula

The well-known results of the Calculus for Lebesgue measure can be general-
ized to the Hausdorff measure. The C1 functions of the Calculus are replaced
with functions for which the graph is an Hausdorff-rectifiable set, the Lipschitz
functions.

13



Definition 1.3.6 A function f : RK → RN is called a Lipschitz function if
there exists a positive constant C such that

|f(x)− f(y)| ≤ C|x− y| ∀x 6= y.

If f is Lipschitz we refer to the number

L = Lip (f) := sup
x6=y

|f(x)− f(y)|
|x− y|

as the Lipschitz constant of f and we say that f is L-Lipschitz.

Let f : RK → RN be a Lipschitz function then we have

HK(f(A)) ≤ [ Lip (f)]KHK(A)

for every HK-measurable set. In particular, HK(A) = 0 implies Hk(f(A)) = 0.

Let f : E ⊂ RK → R be an L-Lipschitz functions, then there always exists
an L-Lipschitz function f̃ : RK → R such that f̃ |E = f . Both of these are
suitable:

f̃(y) := inf
x∈E
{f(x) + Ldist (x, y)}

f̃(y) := inf
x∈E
{f(x)− Ldist (x, y)}.

Coarea formula

In the sequel we always consider K ≤ N . For every linear map L : RN → RK
we define the Jacobian of L as

JL(x) :=
√

det (L ◦ LT ).

Let f : RN → RK be a Lipschitz function, by Rademacher Theorem it is
differentiable LN -a.e., we denote with ∇f(x) the gradient matrix of f (a K×N
matrix), which can be regarded as a linear map from RN to RK . We denote by
Jf(x) the Jacobian of ∇f(x).

Theorem 1.3.7 (Coarea formula) Let K ≤ N and f : RN → RK a Lips-
chitz function, then, for every y ∈ RK and every HN -measurable set A ⊂ RN ,
the set f−1(y) ∩A is HN−K-measurable, and∫

A

Jf(x) dHN (x) =

∫
RK
HN−K(f−1(y) ∩A) dHK(y)

holds. Moreover, if K = N and f is one-to-one we have
∫
A
Jf(x) dHN (x) =

HN (f(A)).

Corollary 1.3.8 (Fleming-Rishel coarea formula) Let f : RN → R a Lip-
schitz function, then,∫

RN
|∇f(x)| dHN =

∫ +∞

−
HN−1({f = t}) dt

holds.
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Proof: Jf(x) = |∇f(x)|.

Proposition 1.3.9 (Change of variables) Let K ≤ N and f : RN → RK ,
g : RN → R Lipschitz functions; then∫

RN
g(x)Jf(x) dHN =

∫
RK

[∫
f−1(y)

g(z) dHN−K(z)

]
dHN (y)

holds.

1.3.4 Total variation of a measure

Let µ be a measure, the total variation of µ over the set Ω is the number
(possibly +∞)

|µ|(Ω) = sup

{∑
i

|µ(Bi)| : Ω =
⋃
i

Bi

}
.

When Ω is a topolgical space and µ ∈ M(Ω,RN ), the space of vector-valued
measures on Ω, it results

|µ|(Ω) = sup

{∫
Ω

ϕdµ : ϕ ∈ C(Ω,RN ), ‖ϕ‖∞ ≤ 1

}
(1.6)

Definition 1.3.10 Let Mf (Ω,RN ) the space of the vector-valued measures on
Ω such that |µ|(Ω) < +∞.

Theorem 1.3.11 (Radon-Nikodym) Let µ ∈ Mf (Ω,RN ) and λ ∈ M(Ω)
with λ ≥ 0 and σ-finite. Then there exist two measures µa and µs such that
µ = µa + µs and satisfying

• µa is absolutely continuous with respect to λ, λ� µa, that is

λ(B) = 0⇒ |µa|(B) = 0

• λ and µs are mutually singular, λ ⊥ µs, that is

∃E such that λ(E) = 0 |µs|(Ω \ E) = 0

Moreover, there exists f ∈ L1(Ω, λ,RN ) such that

µa = fλ

and we have

|µ|(Ω) =

∫
Ω

|f |dλ+ |µs|(Ω).

The function f ∈ L1(Ω, λ,RN ) such that µa = fλ is denoted by

f =:
dµ

dλ

and it is the density of µ with respect to λ. This notation comes from the
Besicovitch Theorem, which states that λ-a.e. x ∈ Ω the following limit

f(x) = lim
r→0

µa(Br(x))

λ(Br(x))
= lim
r→0

µ(Br(x))

λ(Br(x))
=:

dµ

dλ
(x)

exists and is finite.
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1.3.5 Other important results

We recall here some very useful results for the demonstration of the Γ conver-
gence.

Theorem 1.3.12 Given λ and µh a family of positive bounded measures on an
open set Ω such that

(i) λ(A) ≤ lim infh µh(A) ∀A ⊂ Ω open

(ii) lim suph µh(Ω) ≤ λ(Ω).

Then the family µh weakly* converge to λ, that is

lim
h→+∞

∫
Ω

f dµh =

∫
Ω

f dλ ∀f ∈ Cc(Ω),

and in particular µh(B)→ λ(B) for every λ-measurable set such that λ(∂B) =
0.

Lemma 1.3.13 Let µ : B(Ω) → [0,+∞] be a σ-finite measure, and let fh ⊂
L1(Ω) a family of non-negative functions. Then∫

Ω

sup
h
fh(x) dµ(x)

= sup

{
n∑
i=1

∫
Ai

fi(x) dµ(x) : Ai ⊂ Ω open, Ah ∩Ak = ∅ ∀h 6= k, n ∈ N

}
.

1.4 Functions of bounded variation

Let u ∈ W 1,p(Ω) with 1 < p < +∞ then u ∈ Lp(Ω) and ∇u ∈ Lp(Ω;RN ),
moreover

‖∇u‖p = sup

{∫
Ω

∇u · ϕdx : ϕ ∈ Lp
′
‖ϕ‖p′ ≤ 1

}
.

Since C1
c is dense in Lp

′
by divergence theorem we get

‖∇u‖p = sup

{∫
Ω

udivϕdx : ϕ ∈ C1
c ‖ϕ‖p′ ≤ 1

}
.

Let ∇u ∈ Lp(Ω;RN ) then this sup is finite, hence the linear functional

Tu(ϕ) =

∫
Ω

udivϕdx ϕ ∈ C1
c

is continuous, that is |Tu(ϕ)| ≤ C‖ϕ‖p′ . By Hahn-Banach Theorem it can be

extended to a continuous linear functional Tu : Lp
′ → R. Since 1 < p < +∞

the dual space of Lp
′

is Lp, then the functional Tu is identified as an element of
Lp.

Remark 1.4.1 Let p = 1. The clousure of C1
c (Ω,RN ) with respect to the

norm ‖.‖∞ is exactly C0(Ω,RN ) = {ϕ ∈ C(Ω̄,RN ) : ϕ|∂Ω = 0}. Then Tu ∈
C0(Ω,RN ), and by Riesz Theorem this space can be identified with the space
Mf (Ω,RN ).
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EXAMPLE: Let us consider u = χE such that ∂E ∈ C1 and HN−1(∂E ∩ Ω) <
+∞. By Gauss-Green formulas we have∫

Ω

udivϕdx =

∫
∂E∩Ω

ϕ · νE dHN−1 = Tu(ϕ)

so Tu is represented by the measure µ := νEx(∂E ∩ Ω).

Definition 1.4.2 An u ∈ L1(Ω) is said to be a bounded variation function if

|Du|(Ω) := sup

{∫
Ω

udivϕdx : ϕ ∈ C1
c (Ω,RN ) ‖ϕ‖∞ ≤ 1

}
< +∞.

In this case we write u ∈ BV (Ω).

We observe that, by (1.6), the gradient of a function u ∈ BV (Ω) is a finite
total variation measure.

Definition 1.4.3 Let E ⊂ Ω be a set such that χE ∈ BV (Ω), then we say that
E has a finite perimeter, and we write E ∈ FP (Ω). We denote the perimeter
of E in Ω as

p(E,Ω) := |DχE |(Ω).

Proposition 1.4.4 (Characterization of BV (Ω)) Let u ∈ L1(Ω) then the
following statements are equivalent

(i) u ∈ BV (Ω)

(ii) ∃µ ∈Mf (Ω,RN ) such that∫
Ω

udivϕdx = −
∫

Ω

ϕdµ ∀ϕ ∈ C1
c (Ω,RN ),

moreover |Du|(Ω) = |µ|(Ω).

(iii) ∃(uj)j ⊂ C∞(Ω) such that

uj
L1

−→ u sup
j

∫
Ω

|∇uj | <∞

moreover

|Du|(Ω) = inf

{
lim inf

j

∫
Ω

|∇fj | : fj ⊂ C∞(Ω) fj
var−→ u

}
Definition 1.4.5 Given a family of functions uj ⊂ L1(Ω,RN ), we say that they
converge in variation to a u, and we write

uj
var−→ u

if both the following conditions are verified

(i) uj
L1

−→ u

(ii) |Duj |(Ω)
∗
⇀ |Du|(Ω).
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SKETCH OF THE PROOF OF 1.4.4: we see that |Du|(Ω) is lower semi-
continuous with respect the L1(Ω) convergence, in fact, if fj → u then the
functional u 7→

∫
Ω
udivϕ is continuous for every ϕ ∈ C1

c (Ω,RN ). Then |Du|(Ω)
is lower semicontinuous as an upper bound of lower continuous functionals.
Let us consider ρ ∈ L1(RN ) a classical convolution kernel, so ρ ≥ 0 with
spt ρ ⊂ B1(0) and

∫
RN ρ = 1. We want to prove that convergence in varia-

tion by the uε functions obtained by the mollification ρε(x) := ε−Nρ(x/ε).
Let

uε(x) := u ∗ ρε(x) =

∫
u(y)ρε(x− y) dy

then we have

∇xuε(x) = u ∗ ∇xρε(x) =

∫
u(y)∇xρε(x− y) dy

= −
∫
u(y)∇yρε(x− y) dy =

∫
ρε(x− y) dDu(y).

By integrating we obtain∫
Ω

|∇uε| dx =

∫
Ω

∣∣∣∣∫ ρε(x− y) dDu(y)

∣∣∣∣ dx ≤ ∫
Ω

∫
ρε(x− y) d|Du|(y) dx

=

∫ ∫
Ω

ρε(x− y) dx d|Du|(y) ≤
∫

Ω

1 d|Du|(y) = |Du|(Ω)

hence, by taking the superior limit and taking into account the semicontinuity
we have

|Du|(Ω) ≤ lim inf
ε→0

∫
Ω

|∇uε| dx ≤ lim sup
ε→0

∫
Ω

|∇uε| dx ≤ |Du|(Ω)

and we are done.

The finite perimeter sets are strictly related to the BV (Ω) functions. This
relationship becomes from the following theorem.

Proposition 1.4.6 (Coarea formula for BV (Ω)) Let u ∈ BV (Ω). For ev-
ery t ∈ R we define the set Eut := {x ∈ Ω : u(x) > t}. Then for a.e. t ∈ R the
set Eut has finite perimeter in Ω, moreover

|Du|(B) =

∫
R
|DχEut |(B) dt.

We recall, by defintion |DχEut |(B) = p(Eut ,Ω).

Proof: Without loss of generality u ≥ 0. Let x ∈ Ω. Since the functions
χ[0,u(x)](t) and χEut (x), up to a null-measure set, equals, we have

u(x) =

∫ u(x)

0

dt =

∫
R
χ[0,u(x)](t) dt =

∫
R
χEut (x) dt.

Fixed a ϕ ∈ C1
c (Ω,RN ) with ‖ϕ‖∞ ≤ 1, thanks to the hypotesis u ∈ BV (Ω)∫

Ω

udivϕ(x) dx =

∫
Ω

divϕ(x)

[∫
R
χEut (x) dt

]
dx

=

∫
Ω

[∫
R
χEut (x) divϕ(x) dt

]
dx < +∞.
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By Fubini-Tonelli Theorem∫
Ω

udivϕ(x) dx =

∫
Ω

[∫
R
χEut (x) divϕ(x) dx

]
dt

so

|Du|(Ω) = sup
ϕ∈C1

c (Ω)
‖ϕ‖∞≤1

∫
Ω

[∫
R
χEut (x) divϕ(x) dx

]
dt

=

∫
R

 sup
ϕ∈C1

c (Ω)
‖ϕ‖∞≤1

∫
Ω

χEut (x) divϕ(x) dx

 dt < +∞

again, by Fubini-Tonelli

|DχEut |(Ω) = sup
ϕ∈C1

c (Ω)
‖ϕ‖∞≤1

∫
Ω

χEut (x) divϕ(x) dx <∞ a.e. t ∈ R

Easily we can prove the result for every B ∈ B(Ω).

For a finite perimeter set E ⊂ Ω there exists a notion of set boundary FE
such that |DχE | = HN−1xFE. In order to define it we need the following density
definitions.

Definition 1.4.7 Given an x ∈ RN we define the

(i) upper density of E at x

Θ∗(E, x) := lim sup
r↘0

|E ∩Br(x)|
|Br(x)|

(ii) lower density of E at x

Θ∗(E, x) := lim inf
r↘0

|E ∩Br(x)|
|Br(x)|

When Θ∗(E, x) = Θ∗(E, x) we denote the common value as Θ(E, x), it is called
the density of E at x. Let E(a) be the set of the points such that

E(a) := {x ∈ RN : Θ(E, x) = a}.

Definition 1.4.8 Given a set E ⊂ RN we define ∂∗E := RN \ (E(0) ∪ E(1)).

Let E ∈ FP (Ω), then DχE � |DχE | hence by Radon-Nykodym Theorem
1.3.11 there exists νE ∈ L1(Ω, |DχE |) such that DχE = νE |DχE |. Besicovitch
Theorem implies that

νE(x) = lim
r↘0

DχE(Br(x))

|DχE |(Br(x))
|DχE | qo x ∈ Ω.
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Definition 1.4.9 The reduced boundary of a set E ⊂ RN is the set

FE :=

{
x ∈ spt |DχE | : ∃ lim

r↘0

DχE(Br(x))

|DχE |(Br(x))
:= νE(x), νE(x) = 1

}
.

It is possible to prove that, if E ∈ FP (RN ) then FE is an HN−1 rectifiable
set, moreover νE is the classical versor of ∂E. Since it is also possible to show
that

|DχE | = HN−1xFE HN−1(∂∗E \ FE) = 0

then we have that
|DχE | = HN−1x∂∗E.

1.4.1 Decomposition of the measure |Du|(Ω)

Summarizing, we have seen that

• u ∈ C1 ⇒ Du = ∇uLn

• u = χE ∂E ∈ C∞ ⇒ Du = νEHN−1x∂E

• u = χE ∈ BV ⇒ Du = νEHN−1x∂∗E

There exist a BV (Ω) funtion for wich the measure |Du|(Ω) is made only by the
singular part. This is the case of the Cantor-Lebesgue function f . Let C the
Cantor third middle set, then f is constant on the set [0, 1] \ C and f ′ = 0 a.e.
in [0, 1]. Clearly

Df = Dsf

where the measure Ds is concentrated only on the set C.

Definition 1.4.10 Let u ∈ L1(Ω) and x ∈ Ω, we define

(i) the upper approximate limit of u at x as

u∨(x) := inf{t ∈ R : Θ({u > t}, x) = 0}

(ii) the lower approximate limit of u at x as

u∧(x) := sup{t ∈ R : Θ({u > t}, x) = 1}

When u∨(x) = u∧(x) we denote the common value as ũ(x) and we say that u
is approximately continuous at x.

Definition 1.4.11 Let u ∈ L1(Ω) we define the jump set of u as

Su := {x ∈ Ω : u∧(x) < u∨(x)}.

Let us consider u ∈ BV (Ω), by Radon-Nikodym Theorem we can consider
Dau� LN and Dsu ⊥ LN such that

Du = Dau+Dsu

then we split the singular part by restricting to the jump set Su

Dsu = DsuxSu +Dsu (Ω \ Su).
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We denote every component of this decomposition as Dju := Dsu Su, called
the jump part of |Du|(Ω), and Dcu := Dsu (Ω \Su), called the Cantor part of
|Du|(Ω). Tipically the Cantor part is concentrated on Cantor-like sets.
We have the following decomposition:

Du = Dau+Dju+Dcu.

Proposition 1.4.12 Let B ⊂ Ω such that HN−1(B) < +∞ then |Dcu| = 0.

Proposition 1.4.13 Let u ∈ BV (Ω) then the jump part of the |Du|(Ω) can be
decomposed as

Dju = (u∧ − u∨)νuHN−1xSu

Finally we have for every u ∈ BV (Ω) the following decomposition:

Du = Dau+Dsu =

= Dau+Dju+Dcu =

= Dau+ (u∧ − u∨)νuHN−1xSu +Dcu =

= ϕLN + (u∧ − u∨)νuHN−1xSu +Dcu

where ϕ ∈ L1(Ω,RN ) equals the approximate gradient of u at x, that is

lim
r↘0

1

ωNrN

∫
Br(x)

|u(y)− u(x)− ϕ(x) · (y − x)|
|y − x|

dy = 0.

Our aim now is to investigate some properties of the jump set of a bounded
variation function.

Definition 1.4.14 Let u ∈ L1(Ω). A point x ∈ Ω is said to be an approximate
discontinuity point (a Lebesgue point) if ∃zx ∈ R such that

lim
r↘0

1

ωNrN

∫
Br(x)

|u(y)− zx| dy.

In this case we have

zx = lim
r↘0

1

ωNrN

∫
Br(x)

u(y) dy.

Remark 1.4.15 When u ∈ L∞(Ω) this notion of discontinuity is equivalent to
the one given before, that is zx = ũ(x).

Definition 1.4.16 Let u ∈ L1(Ω). A point x ∈ Ω is a jump discontinuity point
if ∃a, b ∈ R e ν ∈ SN−1 such that

lim
r↘0

1

|B+
r (x, ν)|

∫
B+
r (x,ν)

|u(y)− a| dy = lim
r↘0

1

|B−r (x, ν)|

∫
B−r (x,ν)

|u(y)− b| dy = 0

where B±r (x, ν) := {y ∈ Br(x) : ±y · ν ≥ 0}.
Up to a change of sign of the type (a, b, ν) − (b, a,−ν), the values a, b, ν are
univocally determined, so we can define

u+(x) := a u−(x) := b.
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Definition 1.4.17 Let u ∈ L1(Ω) we define the jump discontinuity set of u as

Ju := {x ∈ Ω : u+(x) 6= u−(x)}.

Let u ∈ BV (Ω), it is possible to prove that Ju is an HN−1 rectifiable set, hence
the normal versor νu is well defined. Moreover HN−1(Su \ Ju) = 0.
If u ∈ L∞(Ω) then

u+(x) = u∨(x) u−(x) = u∧(x)

hence, we can write without ambiguity

Dju = (u+ − u−)νuHN−1xJu.

1.4.2 SBV (Ω) functions, compactness theorems

Proposition 1.4.18 Let u ∈ BV (Ω) and ϕ : R → R an L-Lipschitz function.
Then ϕ(u) ∈ BV (Ω).

Remark 1.4.19 A BV (Ω) function is not necessarly differentiable a.e.

Definition 1.4.20 We define the measure Ddu := Dau+Dcu. It follows that

Du = Dju+Ddu

Proposition 1.4.21 Let u ∈ BV (Ω) and ϕ ∈ C1
b (R). Then ϕ(u) ∈ BV (Ω),

moreover

Dϕ(u) = ϕ′(ũ)∇uLN + (ϕ(u+)− ϕ(u−))νuHN−1xJu + ϕ′(ũ)Dcu.

Definition 1.4.22 Given a function u ∈ BV (Ω), then u is a special function
of bounded variation, u ∈ SBV (Ω), if and only if the Cantor part of |Du|(Ω) is
|Dcu| = 0.

Proposition 1.4.23 Let u ∈ SBV (Ω) and ϕ ∈ C1
b (R). Then ϕ(u) ∈ SBV (Ω),

moreover we have

|Dϕ(u)− ϕ′(u)∇uLN | ≤ |ϕ(u+)− ϕ(u−)|νuHN−1xJu.

In order to prove compactness results for SBV (Ω) we want to exploit the
known properties of L1. It is possible to show that

Proposition 1.4.24 Let |Ω| < +∞. The space BV (Ω), endowed with the norm

‖u‖BV := ‖u‖L1 + |Du|(Ω)

is compactly embedded in L1(Ω). So we have

(i) a continuous embedding, ∃C > 0 such that ‖u‖L1 ≤ C‖u‖BV holds ∀u ∈
BV (Ω).

(ii) for every sequence uj ⊂ BV (Ω) with ‖u‖BV (Ω) ≤M there exists ujk ⊂ uj
converging in L1(Ω) to an L1(Ω) function.
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Let p > 1. A family of functions G ⊂ Lp(Ω) is pre-compact if it is equi-
bounded, that is ‖u‖Lp ≤M for every u ∈ G.
But in the particular case p = 1 this is not true. In order to ensure compactness
another hypotesis is needed, this is the equi-summability of the family, that is

∀ε > 0 ∃δ > 0 : A ⊂ Ω, |A| < δ ⇒
∫
A

|g| dx <∞ ∀g ∈ G.

This is also equivalent to the following condition

∃M > 0, ∃ϕ : (0,+∞)→ [0,+∞], lim
t→+∞

ϕ(t)

t
= +∞ :

∫
Ω

ϕ(g) dx ≤M ∀g ∈ G.

Definition 1.4.25 Given a function ψ : (0,+∞)→ [0,+∞] such that limt→+∞
ψ(t)
t =

+∞ we define the set

X(ψ) := {φ ∈ C1
b (R) : |φ(t)− φ(s)| ≤ ψ(|t− s|)}.

Proposition 1.4.26 Let u ∈ SBV (Ω), then

sup
φ∈X(ψ)

|Dφ(u)− φ′(u)∇uLN |(Ω) ≤
∫
Ju∩Ω

ψ(|u+ − u−|)νuHN−1.

Proof: Let us consider φ ∈ X(ψ) and u ∈ SBV (Ω). Then

|Dφ(u)− φ′(u)∇uLN |(Ω) ≤
∫
Ju∩Ω

|φ(u+)− φ(u−)|νuHN−1 ≤

≤
∫
Ju∩Ω

ψ(|u+ − u−|)νuHN−1

By taking the upper limit we get the desired inequality.

Conversely, we have the following result.

Proposition 1.4.27 Let u ∈ BV (Ω) and λ ∈Mf (Ω,RN ) such that |λ|(Su) = 0
and

sup
φ∈X(ψ)

|Dφ(u)− φ′(ũ)λ|(Ω) ≤
∫
Ju∩Ω

ψ(|u+ − u−|)νuHN−1 < +∞.

Then λ = Ddu = ∇uLN +Dcu.

Corollary 1.4.28 (SBV (Ω) characterization) u ∈ SBV (Ω) if and only if
∃g ∈ L1(Ω,RN ) such that

sup
φ∈X(ψ)

|Dφ(u)− φ′(ũ)gLN |(Ω) ≤
∫
Ju∩Ω

ψ(|u+ − u−|)νuHN−1 < +∞.

Proof: [Proposition 1.4.27] Let us define the measure µ := Ddu−λ, then clearly
|µ|(Su) = 0, moreover µ and (φ(u+)−φ(u−))νuHN−1xSu are mutually singular.
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Hence we have

sup
φ∈X(ψ)

∫
Ω

|φ′(ũ)| d|µ| = sup
φ∈X(ψ)

|φ′(ũ)Ddu− φ′(ũ)λ|(Ω) ≤

≤ sup
φ∈X(ψ)

|Dφ(u)− φ′(ũ)λ|(Ω) ≤

≤
∫
Ju∩Ω

ψ(|u+ − u−|)νuHN−1 ≤M.

Since |φ′| can arbitrarly grow we must have |µ| ≡ 0, that is |Ddu−λ| ≡ 0, hence
Ddu ≡ λ.

Theorem 1.4.29 (Closure in SBV (Ω)) Let (uh)h ⊂ SBV (Ω) be a sequence
converging

uh
L1(Ω)−−−−→ u ∈ L1(Ω)

and assume there exist two functions ϕ : (0,+∞)→ [0,+∞] and θ : [0,+∞)→
[0,+∞] with limt→+∞

ϕ(t)
t = +∞ e limt→0

θ(t)
t = +∞ such that

sup
h≥1

∫
Ω

ϕ(|∇uh|) dx+

∫
Suh

θ(|u+ − u−|) dHN−1 < +∞.

Then u ∈ SBV (Ω).

Proof: We have (|∇uh|)h ⊂ L1(Ω,RN ) equi-summable. Moreover it is equi-
bounded, in fact there exists a ∈ R such that ϕ(t) ≥ t + a for every t ∈ R
hence ∫

Ω

ϕ(|∇uh|) dx ≥
∫

Ω

|∇uh| dx+ a|Ω|,

by taking the sup we obtain ‖∇uh‖L1 ≤M1. Hence (|∇uh|)h is pre-compact in
L1(Ω,RN ), so there exists g ∈ L1(Ω,RN ) such that (up to subsequences)

∇uh
L1(Ω,RN )−−−−−−→ g.

We want to show that, if φ ∈ X(θ) then

φ′(uh)∇uh
ωL1(Ω,RN )−−−−−−−→ φ′(u)g.

Given f ∈ Cc(Ω,RN ) we have∫
Ω

φ′(uh)f∇uh dx =

∫
Ω

(φ′(uh)− φ′(u))f∇uh dx+

∫
Ω

φ′(u)f∇uh dx.

When h→∞ the second term converges to
∫

Ω
φ′(u)fg dx (thanks to the bound-

ness of φ′), while the first term converges to 0, in fact f has compact support.
The gradients ∇uh are equi-summables, and φ′(uh) converges to φ′(u) in mea-
sure.

On the other hand, uh
var→ u in fact uh

L1(Ω)−−−−→ u, so the equi-bounded measures
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Duh weakly* converges to Du. This implies φ(uh)
var→ φ(u), hence, in particular

Dφ(uh)
∗
⇀ Dφ(u). The weak limit of these measures is

νh := Dφ(uh)− φ(uh)∇uhLN
∗
⇀ Dφ(u)− φ′(u)gLN := ν.

For every φ ∈ X(θ) we have

|Dφ(uh)− φ′(uh)∇uhLN | ≤ |φ(u+
h )− φ(u−h )|HN−1xJuh ≤

≤ θ(|u+
h − u

−
h |)H

N−1xJuh := µh.

Thanks to the hypoteses the measures µh are equi-bounded by a constant that
depends only on θ, so (up to subsequences) there exists a subsequence that
converges to a measure µ. This implies also the equi-boundness of the family
|νh|, which also converge to a measure σ. We have that σ ≤ µ.
Thanks to the semicontinuity of the total variation we have in particular

νh
∗
⇀ ν

|νh|
∗
⇀ σ

}
⇒ |ν| ≤ σ

hence |ν| ≤ µ ≤M2. More explicitely

|Dφ(u)− φ′(u)∇gLN | ≤ µ ≤M2.

By taking the supremum

sup
φ∈X(θ)

|Dφ(u)− φ′(u)∇gLN |(Ω) < +∞

Thanks to the Proposition 1.4.27 we obtain Ddu = gLN . This implies u ∈
SBV (Ω).

Corollary 1.4.30 g = ∇u.

Remark 1.4.31 Let us also suppose that

• ϕ convex, then we have lower semicontinuity, with respect the L1(Ω) con-
vergence, of the functional∫

Ω

ϕ(|∇u|) dx ≤ lim inf
h

∫
Ω

ϕ(|∇uh|) dx

• θ concave, then we have lower semicontinuity with respect the L1(Ω) con-
vergence, of the functional∫

Su

θ(|u+ − u−|) dHN−1 ≤ lim inf
h

∫
Suh

θ(|u+
h − u

−
h |) dH

N−1.

Theorem 1.4.32 (Compactness in SBV (Ω)) Let uh ⊂ SBV (Ω) such that

M := sup
h
‖uh‖∞ < +∞
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and ϕ, θ as in the closure theorem:

sup
h≥1

∫
Ω

ϕ(|∇uh|) dx+

∫
Suh

θ(|u+ − u−|) dHN−1 <∞.

Then there exists a subsequence uhk such that

uhk
var−−→ u ∈ SBV (Ω).

Proof: Since suph ‖uh‖∞ < +∞ the uh are equibounded in L1(Ω). The
properties of θ ensure the existence of b ∈ R such that θ(t) ≥ bt in [0, 2M); on
the other hand, for ϕ, we know there exist a ∈ R such that ϕ(t) ≥ t + a for
every t ∈ R. Since the jumps of u don’t exceed 2M we have

|Duh|(Ω) =

∫
Ω

|∇uh| dx+

∫
Suh

|u+ − u−| dHN−1 ≤

≤
∫

Ω

ϕ(|∇uh|) dx− a|Ω|+
1

b

∫
Suh

θ(|u+ − u−|) dHN−1

hence
sup
h
|Duh|(Ω) <∞.

Since ‖uh‖BV = ‖uh‖L1 + |Duh|(Ω) we easily get that uh is equi-bounded in
BV (Ω). By the embedding results of the Proposition 1.4.24 we know there
exists a subsequence such that

uhk
L1(Ω)−−−−→ u ∈ L1(Ω).

Thanks to the closure theorem we are done.

1.4.3 Regularity properties

Slicing Theorem

A very useful result concerning the one-dimensional sections of a SBV (Ω) func-
tion is presented here. It will be of great importance in the demonstration of
the liminf inequality of the Γ-convergence theorems.

Given Ω ⊂ RN and ν ∈ SN−1 we define

• πν := ν⊥

• Ωxν := {t ∈ R : x+ tν ∈ Ω} ∀x ∈ πν

• Ων := {x ∈ πν : Ωxν 6= ∅}

• uxν(t) := u(x+ tν) ∀x ∈ Ων ∀t ∈ Ωxν .

Theorem 1.4.33 (Slicing) Let u ∈ L∞(Ω) be a function such that

(i) uxν ∈ SBV (Ωxν) for HN−1 − a.e.x ∈ Ων
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and

(ii)

∫
Ων

[∫
Ωxν

|∇uxν | dt+H0(Suxν )

]
dHN−1(x) < +∞

for any choise of ν ∈ SN−1. Then u ∈ SBV (Ω) and HN−1(Su) < +∞. Con-
versely, let u ∈ SBV (Ω) ∩ L∞(Ω) such that HN−1(Su) < +∞, then the condi-
tions (i) and (ii) are satisfied for every ν ∈ SN−1. We also have

(iii) 〈∇u(x+ tν), ν〉 = ∇uxν(t) a.e. t ∈ Ωxν

for HN−1-a.e. x ∈ Ων , and there exists a Borel function νu : Su → SN−1

depending only on Su such that

(iv)

∫
Su

|〈νu, ν〉| dHN−1 =

∫
Ων

H0(Su) dHN−1(x).

Another important result is the following, which gives some conditions to
make a Sobolev function an SBV (Ω) function.

Theorem 1.4.34 Let Ω ⊂ RN be an open and bounded set, and K ⊂ RN such
that HN−1(K ∩ Ω) < +∞. Then

u ∈W 1,1(Ω \K) ∩ L∞(Ω) =⇒ u ∈ SBV (Ω) and HN−1(Su \K) = 0.

Minkowski content of Su

For every set A ⊂ RN and ρ > 0 we denote the open tubular neighbourhood of
A with radius ρ the set

(A)ρ := {x ∈ RN : dist (x,A) < ρ} ⊂ RN .

We define the Minkowski (N − 1)-dimensional lower and upper content of the
set A, respectively, as

M∗(A) := lim inf
ρ↘0

HN ((A)ρ)

2ρ
M∗(A) := lim sup

ρ↘0

HN ((A)ρ)

2ρ
. (1.7)

Not always these quantities coincide; when it happens, the common value is
called the Minkowski content of the set A and it is denoted by

M(A) := lim
ρ↘0

HN ((A)ρ)

2ρ
. (1.8)

Federer showed (H. FEDERER: Geometric Measure Theory, Section 3.2.39) that
for any compact subset A of a C1 hypersurface the Minkowski content exists,
moreover M(A) = HN−1(A).

Lemma 1.4.35 Let u ∈ BV (Ω). Then the set Su is HN−1-rectifiable. So, it
can be covered up to at most a set of HN−1 measure zero, by C1 hypersurfaces.

Corollary 1.4.36 By inner approximation it is possible to show that

HN−1(B) ≤M∗(B)

holds for any Borel set B ⊂ Su.
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1.4.4 GSBV (Ω) functions

When dealing with functions for which the Hessian operator (also in approxi-
mate sense) is deifned, some conditions on the gradient must be required.

Definition 1.4.37 A function u belongs to GSBV (Ω) if and only if −n∨u∧n ∈
SBVloc(Ω) for every n ∈ N.

Given a function u ∈ GSBV (Ω) its jump set exists and it is defined by

Su :=

+∞⋃
n=1

S−n∨u∧n

moreover it is a countably (N −1)-rectifiable set. Also an approximate gradient
can be defined, in particular we have that ∇u exists a.e. and it is represented
by

∇u = ∇(−n ∨ u ∧ n) a.e. on {|u| ≤ n}.

Definition 1.4.38 We define the space of generalized functions of bounded
variation for which the gradient is also in GSBV (Ω)

GSBV 2(Ω) :=
{
u ∈ GSBV (Ω) : ∇u ∈ [GSBV (Ω)]N

}
.

The following compactness result is foundamental in the proof of Γ-convergence
of the Blake-Zisserman functional.

Theorem 1.4.39 Let uh ⊂ GSBV 2(Ω) be a sequence such that

‖uh‖L2(Ω), HN−1(Suh ∪ S∇u),

∫
Ω

|∇2u|2 dx

are uniformly bounded. Then there exist a subsequence uhk and u ∈ GSBV 2(Ω)∩
L2(Ω) such that

• uhk → u strongly in L1(Ω),

• ∇uhk → ∇u a.e. in Ω

• ∇2uhk → ∇2u weakly in L2(Ω,MN×N ).
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Chapter 2

The Mumford-Shah model

In the variational approach to the signal segmentation problem proposed by
Mumford and Shah in [5] we are given Ω ⊂ RN a bounded open set and g ∈
L∞(Ω). In the case of images N=2 and Ω is a rectangle, and a function g : Ω→
[0, 1] representing the grey levels of a picture. The aim is to find a pair (u,K)
where K ⊂ Ω is a closed set representing the countours reconstucted from the
discontinuities of g and u a smooth representation of g outside K.
One can find such a pair by minimizing the energy functional

MS(u,K) =

∫
Ω\K
|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αHN−1(K ∩ Ω) (2.1)

among all possible pairs (u,K) with K ⊂ Ω closed and u ∈ C1(Ω \K), where
HN−1 is the Hausdorff (N − 1)-dimensional measure and α, µ > 0 are positive
parameters.
Due to the process of minimization we obtain that the term involving g (the
image to be segmented) forces u to be close to g according to the parameter µ
which rules the closeness, the term involving |∇u|2 forces u to be as smooth as
possible over the set Ω\K in order to cancel the discontinuities due to noise and
small irregularities, while the term αHN−1(K ∩ Ω) penalizes large sets K and
the parameter α controls the level of the penalization. The interesting feature of
the functional is that, due to the presence of the term HN−1(K ∩ Ω) whenever
g has sharp discontinuities (as it is likely to happen on the edges of the objects
in the picture) it is more convenient to insert a contour instead of having a big
gradient of u.
The minimization of the Mumford-Shah functional (and the Blake-Zisserman
one, see Chapter 3) is an example of a large class of variational problems called
“free discontinuity problems”. This terminology refers to the fact that the
corresponding functionals are characterized by a competition between volume
energies, concentrated onN -dimensional sets, and surface energies, concentrated
on (N − 1)-dimensional sets, whose supports are not fixed a priori. Indeed, as
in the case of the two functionals above, the sets where the lower dimensional
energy concentrate are the most relevant unknown of the problem.
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2.1 Weak formulation of the problem

In order to study the existence of solutions for the problem

min{MS(u,K) : u ∈ C1(Ω \K) K ⊂ Ω closed} (2.2)

by meanings of classical direct methods of the Calculus of Variations, since the
space C1(Ω \K) has no good compactness properties, it’s necessary to consider
a weaker class of functions which gives some semicontinuity and coerciveness
properties to the functional.

Remark 2.1.1 The problem (2.2) is equivalent to the following

min{MS(u,K) : u ∈W 1,2
loc (Ω \K) K ⊂ Ω closed}. (2.3)

Proof: Since C1(Ω \K) ⊂W 1,2
loc (Ω \K) if (2.3) has no solutions neither (2.2)

has. Let (u,K) be a solution of (2.3) then by meanings of null first variation of
the functional u is weak solution of the equation

∆u = α(u− g)

obtained with additive perturbations u + εϕ, where ϕ ∈ C1
0 (Ω \K), as ε → 0.

By well known regularity properties for the solutions of elliptic equations u ∈
L∞loc(Ω \ K) and u ∈ W 2,p

loc (Ω \ K) for all p < +∞. By Sobolev embedding
theorems u ∈ C1,α(Ω \K) for any α < 1.
If (2.2) has no solutions neither (2.3) has, in fact, by absurd, if (u,K) is a solu-
tion for (2.3) then by the same argument above we get u ∈ C1(Ω \K) then the
strong problem admits one competitor.

Now we want to test some lower semicontinuity and compactness properties
of the weaker functional. Let (uh,Kh) be a minimizing sequence of MS, we
would like to show that, up to a subsequence, it converges in a suitable sense to
an admissible pair (u,K) and that

MS(u,K) ≤ lim inf
h
MS(uh,Kh).

There is no loss of generality if we consider Tuh instead of any uh, where Tuh
is obtained from uh by truncation at ±‖g‖∞, in fact still there holds

MS(Tuh,Kh) ≤MS(uh,Kh).

On the other hand, we know by Blaschke Theorem that the family of nonempty
sets in Ω is a compact metric space endowed with the Hausdorff distance

δ(K1,K2) := inf{r > 0 : (K1)r ⊂ K2, (K2)r ⊂ K1}.

We that this notion of distance induces the convergence of Kuratowsky on com-
pact sets; then we can assume, possibly up to subsequences, Kh → K. For
any ball B ⊂ (Ω \K) there exists h0 such that for any h > h0 is B ∩Kh 6= ∅
hence for any A ⊂⊂ (Ω \ K) is uh ∈ W 1,2(A) for h large enough. Thanks to
the boundeness of (uh)h, by compactness results in Sobolev spaces they weakly
converge to some u ∈W 1,2

loc (Ω \K).
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Problems occours when we consider the piece of the functional involving HN−1

because in general the map

K → HN−1(K)

is not lower semicontinuous with respect to the convergence induced by the
Hausdorff distance. For a simple counterexample we fix N = 2 and we consider
K := [0, 1] × {0} and Kh := {(k/h, 0) : k = 0, . . . , h}; easily Kh → K and
H1(K) = 1, but H1(Kh) = 0 for every h.

To overcome the failure of the direct methods De Giorgi has proposed a
weaker formulation in SBV (Ω) of the Mumford-Shah problem. The key idea
is to deal with a simpler object, just depending on the function u, and then
to recover the set of contours K by taking the discontinuity set Su. Then we
consider the functional

H(u) :=

 F (u) u ∈ L∞(Ω) ∩ SBV (Ω)

+∞ u ∈ L∞(Ω) \ SBV (Ω)
(2.4)

where

F (u) :=

∫
Ω

|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αHN−1(Su ∩ Ω).

A remark is needed: actually, the natural domain of the functional H is L2(Ω)
and the convergence of this space is the one we are going to consider along
the whole Section. Anyway, we will see in Section 2.1.1 that, for purpose of
minimization the requirement of u ∈ L∞(Ω) is not restrictive, so we consider
the functional H restricted to L∞(Ω) right from here.
Lower semicontinuity and compactness results (in the L2(Ω) convergence) of
Ambrosio (see Section 1.4) show that this functional is lower semicontinuous
and it always admits minima (see Section 2.1.1). Another important result, due
to Carriero, De Giorgi and Leaci (see [9]), is that every minimum of H belongs
to the class of piecewise C1 functions, that is

PC1(Ω) :=
{
u ∈ L∞(Ω) : u ∈ C1(Ω \ Su) HN−1((Su \ Su) ∩ Ω) = 0

}
. (2.5)

The property HN−1((Su \ Su) ∩ Ω) = 0 is a set regularity property of the
minima of H. It is proved using a local density property which is satisfyied by
the minima of H, expressed in the following.

Proposition 2.1.2 There exist three constants θ, γ, r0 > 0 depending only on
N,α, µ and ‖g‖∞ such that if u ∈ SBV (Ω) is a minimizer for H, given x ∈ Su
such that Br(x) ⊂ Ω and r < r0, then

θrN−1 ≤ HN−1(Su ∩Br(x)) ≤ γrN−1

holds.

The study of H can be done by viewing it as a relaxation of the functional
F (u) on the class of PC1(Ω) functions. In fact, the relaxation of F , which is
given for every u ∈ L∞(Ω) by

F (u) := inf

{
lim inf

j
F (uj) : uj ⊂ PC1(Ω) uj → u in L2(Ω)

}
,

equals H.
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Proposition 2.1.3 We have the integral representation of F , in the sense that
F = H.

Proof: H is lower semicontinuous, hence for every u ∈ L∞(Ω) and uj → u
the inequality H(u) ≤ lim infj H(uj) holds, in particular H(u) ≤ F (u).
Let u be such that H(u) < +∞ (otherwise there is nothing to prove) then
u ∈ SBV (Ω) ∩ L∞(Ω). Consider uj minimizers of the family of minimum
problems

Hu
j (v) :=


∫

Ω

|∇v|2 dx+ j

∫
Ω

(v − u)2 dx+HN−1(Sv ∩ Ω) L∞(Ω) ∩ SBV (Ω)

+∞ L∞(Ω) \ SBV (Ω)

then uj ⊂ PC1(Ω), trivially uj → u in L2(Ω), and by the minimality we have

F (uj)−
∫

Ω

(uj − g)2 =

∫
Ω

|∇uj |2 dx+HN−1(Suj ∩ Ω)

≤
∫

Ω

|∇uj |2 dx+ j

∫
Ω

(uj − u)2 +HN−1(Suj ∩ Ω)

≤
∫

Ω

|∇u|2 dx+ j

∫
Ω

(u− u)2 +HN−1(Su ∩ Ω)

= H(u)−
∫

Ω

(u− g)2.

It follows that

F (u) ≤ lim inf
j

F (uj) ≤ lim inf
j

[
H(u) +

∫
Ω

(uj − g)2 −
∫

Ω

(u− g)2

]
= H(u)

hence H(u) = F (u).

The set regularity requirement in (2.5) is necessary to ensure u ∈ SBV (Ω).
Why SBV (Ω) and not BV (Ω)?
For the purpose of image segmentation, in order to have non trivial solutions
we can see that the space BV (Ω) is too large. Given any function g ∈ L2(Ω),
one can construct a sequence uh ⊂ BV (Ω) converging to g such that for any h
the derivative of uh is made up only by the Cantor part. Therefore the infimum
of H on BV (Ω) is trivially zero and the set K is empty.

Finally we see the equivalence for the strong problem and the weaker one.

Proposition 2.1.4 (Equivalence strong/weak formulation) If g ∈ L∞(Ω)
then to solve the minimum problem (3.2) is equivalent to solve the (2.2) one.

Proof: Given a pair (u,K) competitor for the problem (2.2), we have u ∈
W 1,1(Ω \K) ∩ L∞(Ω \K) and K ⊂ Ω closed. Thanks to the Theorem 1.4.34
is actually u ∈ SBV (Ω) and HN−1(Su \ K) = 0 so the pair (u,K) is also a
competitor for the problem (3.2), thus

minH(u) ≤ infMS(u,K).
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To show that the opposite inequality holds is not trivial. Does a pair (u, Su) with
u ∈ SBV (Ω) give also a competitor for the problem (2.2)? It’s not obviously
due to the fact that in general the set Su of a SBV (Ω) can be not regular or
even dense in Ω. Luckily certain pathological behaviours of BV functions cannot
occur when dealing with minimizers of H. As said above

HN−1((Su \ Su) ∩ Ω) = 0;

since u ∈ SBV (Ω) we have |Dsu|(Ω \Su) = 0, it follows that u ∈W 1,1(Ω \Su).
Then u ∈W 1,2(Ω \ Su) and H(u) =MS(u, Su).

2.1.1 Existence of minimizers

Simply applying compactness and lower semicontinuity results presented in the
previous chapter we immediately get the existence of minimizers for the relaxed
functional.

Proposition 2.1.5 (Existence of minimizers) If g ∈ L∞(Ω) then H(u) al-
ways admits minima in the class of SBV (Ω) functions; moreover, and for min-
ima we have u ∈ L∞(Ω).

Proof: Because of its non-negativity the functional is bounded from below,
let a = infu∈SBV (Ω) F (u) and uh ⊂ SBV (Ω) be a minimizing sequence, that is

H(uh) ≤ a+
1

h
.

Since g ∈ L∞(Ω) there is no loss of generality if we consider uh ⊂ L∞(Ω)
equi-bounded. Let M := ‖g‖∞, if we replace every uh with its truncaded
uMh := −M ∨ u ∧M we get

• SuMh ⊂ Suh

•
∫

Ω
|∇uMh | dx ≤

∫
Ω
|∇uh| dx

•
∫

Ω
(uMh − g)2 dx ≤

∫
Ω

(uh − g)2 dx

so we easily obtain H(uMh ) ≤ H(uh) for every h. A simple estimate leads to the
equiboundeness of the functional over the sequence

a+ 1 ≥ H(uh) =

=

∫
Ω

|∇uh|2 dx+ α

∫
Ω

|uh − g|2 dx+ µHN−1(Su) ≥

≥
∫

Ω

|∇uh|2 dx+ µHN−1(Su) =

=

∫
Ω

ϕ(|∇uh|) dx+

∫
Su

θ(|u+ − u−|) dHN−1

where ϕ(t) := t2 e θ(t) := µ. By the compactness Theorem 1.4.32 we know that
there exist a subsequence

uhk −→ u ∈ SBV (Ω) in L1(Ω)
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and since ‖uh‖∞ ≤M the convergence is also in L2(Ω) in fact we have∫
Ω

|uh − u|2 dx ≤ 2M

∫
Ω

|uh − u| dx.

The function ϕ is convex, θ is concave, thanks to the semicontinuity of the
L2(Ω) norm we have that every term of the functional is lower semicontinuous
(and in particular

∫
Ω
|uh − g| is continuous) hence

a = lim
h→+∞

a+
1

h

≥ lim inf
h

H(uh)

= lim inf
h

[∫
Ω

|∇uh|2 dx+ α

∫
Ω

|uh − g|2 dx+ µHN−1(Suh)

]
≥
∫

Ω

|∇u|2 dx+ α

∫
Ω

|u− g|2 dx+ µHN−1(Su)

= H(u) ≥ a.

and H(u) = a is a minimum.

2.2 Approximation by elliptic functionals via Γ-
convergence

In this section we will show a way proposed by L. Ambrosio and V. M. Tor-
torelli in [3] to solve the problem of finding effective algorithms for computing
minimizers of the Mumford-Shah functional (3.2) in SBV (Ω), by meanings of
Γ-convergence.
The matter is, because of the term HN−1(Su), the functional is not differen-
tiable, so the classical methods based on the gradient descent fails. Ambrosio
and Tortorelli have proved the existence of a family of elliptic (and so differen-
tiable) functionals Γ-converging to the functional H.
The key idea is to introduce an extra function variable s as a substitute of the
set variable Su and to give a family of functionals Fε(u, s) such that, if (uε, sε)
minimizes Fε, then (possibly up to subsequences) uε is closer and closer to a
minimizer u of H and sε is different from 1 only in a small neighbourhood of
Su which shrinks as ε→ 0.
So we need to redefine the functional H introducing the formal variable s, let
us consider the functional F defined by

F(u, s) :=

 F (u) (u, s) ∈ X(Ω)× Y (Ω)

+∞ otherwise in Z(Ω)
(2.6)

where

F (u) :=

∫
Ω

|∇u|2 dx+ αHN−1(Su ∩ Ω) + µ

∫
Ω

(u− g)2 dx

and
Z(Ω) := L∞(Ω)×  L∞(Ω; [0, 1])
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X(Ω) := L∞(Ω) ∩ SBV (Ω)

Y (Ω) := {s ∈ L∞(Ω) : s ≡ 1}.

We want to prove a Γ-convergence result by using the following family of elliptic
functionals

Fε(u, s) :=

 Fε(u, s) (u, s) ∈ D(Ω)

+∞ otherwise in Z(Ω)
(2.7)

where

Fε(u, s) :=

∫
Ω

(s2 + oε)|∇u|2 dx+ αG(s) + µ

∫
Ω

(u− g)2 dx

G(s) :=

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx. (2.8)

and
D(Ω) :=

{
(u, s) ∈ Z(Ω) : u ∈W 1,2

loc (Ω), s ∈W 1,2(Ω)
}
.

The term (2.8), the so called Ambrosio-Tortorelli component of the functional,
resembles the first known example (due to Modica-Mortola) of a sequence of
quadratic elliptic functionals converging to an area-like functional.
We are going to prove the following Γ-convergence’s result.

Theorem 2.2.1 If oε is a non-negative infinitesimal faster than ε then

F = Γ-lim
ε
Fε.

Moreover, if (uε, sε) minimizes Fε then it is compact in [L2(Ω)]2 and any of its
limit point, as ε→ 0, corresponds to a pair (u, 1) with u minimizer of F .

Some remarks. First we observe that the infinitesimal oε ensures the C1 regu-
larity of the minimizers of Fε in fact, even when s is 0 the term |∇u| cannot
expode. Another fact is that, thanks to the stability under continuous perturba-
tions of Γ-convergence, the term µ

∫
Ω

(u− g)2 dx can be replaced with any other
additive perturbation which is continuous with respect to the L2(Ω) topology.
In the following Sections of this Chapter we present the three fundamental steps
for the proof of Γ-convergence: the liminf and limsup inequalities, compactness
results for sequences of minimizers.

2.2.1 The liminf inequality

In this section we will see how to obtain a lower bound in the sense of Γ-
convergence for the behaviour of the family Fε. For the sake of simplicity we
define

F−(u, s) := inf
{

lim inf
ε
Fε(uε, sε) : (uε, sε)→ (u, s) in [L2(Ω)]2

}
(2.9)

moreover, we can remove the term
∫
|u− g|2 in the functionals along the whole

section because of its continuity in the L2(Ω) topology and thanks to the su-
peraddtivity of the liminf.
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Theorem 2.2.2 (liminf inequality) Given a pair (u, s) ∈ Z(Ω) then the in-
equality

F(u, s) ≤ F−(u, s) (2.10)

holds, and whenever F−(u, s) < +∞ then u ∈ X(Ω) and s ≡ 1 almost every-
where.

Proof: There is no loss of generality by assuming α = 1. First we observe
that if s 6≡ 1 then both sides of inequality are trivially equal to +∞, so we can
assume s ≡ 1 almost everywhere. The key idea in the proof of the theorem
is to test the inequality separately near regular points for the function u and
near jump points. So a localization of the functional is needed, we introduce
the following notation (with the obvious meanings)

F(u, s;A) Fε(u, s;A) F−(u, s;A)

whenever A is an open set in RN .
First we show a result in the one-dimensional case, then a generalization in
dimension N ≥ 1 is proved by a slicing argument. To avoid confusion and to
emphasize we are in dimension N = 1, we use a different notation introducing
the functionals

G(u, s; I) Gε(u, s; I) G−(u, s; I).

Let Ixr ⊂ R be the open interval with center x ∈ R and radius r > 0. The
key result of this section is presented in the following Lemma, which gives the
required estimates in the one dimensional case.

Lemma 2.2.3 Let Ω ⊂ R be an open set and x ∈ Ω. If u ∈ L∞(Ixr ) with η > 0
such that Ixη ⊂ Ω, then

(i) whenever u /∈W 1,2(Ixη/2), we have

1 ≤ inf
{

lim inf
ε

Gε(uε, sε; I
x
η ) : (uε, sε)→ (u, 1)

}
(ii) otherwise, if u ∈W 1,2(Ixη ), we have∫ x+η

x−η
|u′|2 dt ≤ inf

{
lim inf

ε
Gε(uε, sε; I

x
η ) : (uε, sε)→ (u, 1)

}
Observe that, in the case α 6= 1, in (i) there is α instead of 1.

proof of 2.2.3: Let (uε, sε) ⊂ D(Ω) such that (uε, sε)→ (u, 1). We can assume
lim infεGε(uε, sε; I

x
η ) < +∞ (otherwise there is nothing to prove). There exists

a subsequence (uεσ , sεσ ) such that

lim
σ
Gεσ (uεσ , sεσ ; Ixη ) = lim inf

ε
Gε(uε, sε; I

x
η ) < +∞

so there is no loss of generality in assuming

lim
ε
Gε(uε, sε; I

x
η ) = lim

ε

[∫
Ixη

(s2 + oε)|∇uε|2 dx

+

∫
Ixη

ε|∇sε|2 +
1

4ε
(sε − 1)2 dx

]
< +∞. (2.11)
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(i) Let us consider the case u /∈ W 1,2(Ixη/2). Trivially by (2.11) we have

limεGε(uε, sε; I
x
η/2) finite. We observe that if

lim
ε

inf
Ix
η/2

sε > 0,

then uε → u in W 1,2(Ixη/2) and by closure u ∈ W 1,2(Ixη/2), absurd. So, we have
that

lim
ε

inf
Ix
η/2

sε = 0.

Again by (2.11) we also have 1/(4ε)(sε − 1)2 bounded in L1(Ixη ), hence it is
possible to find three sequences y′ε, xε, y

′′
ε with

x− η

2
< xε < x+

η

2

x− η < y′ε < xε < y′′ε < x+ η

such that
lim
ε
sε(y

′
ε) = lim

ε
sε(y

′′
ε ) = 1, lim

ε
sε(xε) = 0.

Simply by applying the inequality a2 + b2 ≥ 2ab we obtain

Gε(uε, sε; I
x
η ) ≥

∫
Ix
η/2

ε|∇sε|2 +
1

4ε
|sε − 1|2 dx

≥
∫
Ix
η/2

|sε − 1||∇sε| dx

≥
∫ xε

y′ε

|sε − 1||∇sε| dx+

∫ y′′ε

xε

|sε − 1||∇sε| dx

=

∫ xε

y′ε

|sε − 1||∇sε| dx+

∫ y′′ε

xε

|1− sε||∇sε| dx

≥
∫ xε

y′ε

(sε − 1)∇sε dx+

∫ y′′ε

xε

(1− sε)∇sε dx

=

∫ sε(xε)

sε(y′ε)

(t− 1) dt+

∫ sε(xε)

sε(y′′ε )

(t− 1) dt (2.12)

and passing to the liminf as ε→ 0 we obtain the desired inequality.
(ii) Now let u ∈ W 1,2(Ixη/2). The condition (2.11) easily implies sε → 1 almost
everywhere, but it is not enough to uniformly control neither sε nor the ∇sε
in any Lp(Ixη ). This does not allow the direct application of a semicontinuity
argument.
By using Coarea formula Ambrosio and Tortorelli have proved a result (see [2])
which gives, under suitable hypotesis, an uniform bound over compact sets.

Lemma 2.2.4 Let I ⊂ R an open interval. For evey δ > 0 and every sequence
wh ⊂ C1(I) such that wh → 0 almost everywhere in I and

∫
I
|∇wh| ≤M , there

exists a finite set J ⊂ I such that

lim sup
h

(
max
K
|wh|

)
< δ

for every compact set K ⊂ I \ J . It follows that maxK |wh| < δ holds up to a
finite number of indices h.
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We define wε := (sε − 1)2, by density we can assume wε ⊂ C1(Ixη ), moreover
the inequality a2 + b2 ≥ 2ab easily implies

∫
Ixη
|∇wh| ≤ M . Then there exists

a finite set J ⊂ Ixη such that for every δ > 0, possibly up to a finite number of
indices, maxK |sε − 1|2 < δ, hence

min
K

sε ≥ 1−
√
δ

for every compact set K ⊂ Ixη . Then we have

lim inf
ε

∫
Ixη

s2
ε |∇uε|2 dx ≥ lim inf

ε

∫
K

s2
ε |∇uε|2 dx ≥ (1−

√
δ)2 lim inf

ε

∫
K

|∇uε|2 dx

≥ (1−
√
δ)2 lim inf

ε

∫
K\∂K

|∇uε|2 dx ≥ (1−
√
δ)2

∫
K\∂K

|∇u|2 dx

and the thesis follows by letting K ↑ Ixη and δ ↓ 0, in fact since u ∈ W 1,2(Ixη )
and K ⊂ Ixη compact, then

∫
∂K
|∇u|2 dx = 0. �

By using the superadditivity of the infimum as a set function (see (2.20) for
a similar procedure) this result can be easily generalized for every open bounded
set I ⊂ R.

Remark 2.2.5 The important consequence of this result is that, fixed an in-
terval I ⊂ R and a function u defined on it, the existence of (uε, sε) → (u, 1)
such that the lower limit Gε(uε, sε; I) is finite, yields the existence of a finite set
J ⊂ I such that u is absolutely continuous on I \ J . In particular u is actually
in SBV (I) and

G(u, 1; I) ≤ G−(u, 1; I) (2.13)

holds.

Now let N > 1, we consider u ∈ L∞(Ω) such that F−(u, 1; Ω) < +∞ and an
open set A ⊂ Ω: then there exists a sequence (uδ, sδ)→ (u, 1) such that

lim
δ→0
Fδ(uδ, sδ;A) = F−(u, 1;A) < +∞.

We recall the notation used in Theorem 1.4.33. Fixed ν ∈ SN−1, by integrating
on Aν and applying the Fatou Lemma we have∫
Aν

lim inf
δ

Gδ(u
ν
δx, s

ν
δx;Aνx) dHN−1(x)

≤ lim inf
δ

∫
Aν

Gδ(u
ν
δx, s

ν
δx;Aνx) dHN−1(x)

= lim inf
δ

∫
Aν

[∫
Aνx

(sνδx + oδ)|∇uνδx|2 + δ|∇sνδx|2 +
1

4δ
(sνδx − 1)2 dt

]
dHN−1(x)

(2.14)

≤ lim inf
δ

∫
A

(sδ + oδ)|∇uδ|2 + δ|∇sδ|2 +
1

4δ
(sδ − 1)2 dy (2.15)

= lim inf
δ
Fδ(uδ, sδ;A)

≤ F−(u, 1;A). (2.16)
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The inequality between (2.14) and (2.15) is justified by Fubini’s Theorem and
the following estimate (let v play the role of uδ and sδ)

∫
Aν

[∫
Aνx

|∇vνx|2 dt

]
dHN−1(x) =

∫
Aν

[∫
Aνx

|∂tv(x+ tν)|2 dt

]
dHN−1(x)

=

∫
A

|∂νv|2 dy =

∫
A

|〈∇v, ν〉| dy ≤
∫
A

|∇v|2 dy.

Since the estimate (2.16) implies in particular

lim inf
δ

Gδ(u
ν
δx, s

ν
δx;Aνx) < +∞ HN−1-a.e. x ∈ Aν ,

also the infimum is finite over all the sequences converging to (uνx, 1)

G−(uνx, 1;Aνx) < +∞ HN−1-a.e. x ∈ Aν .

Then, since it is easy to check that uνδx → uνx for HN−1-a.e. x ∈ Aν , by Lemma
2.2.3 we have uνx ∈ SBV (Aνx) ∩ L∞(Aνx) and∫

Aνx

|∇uνx|2 dt+H0(Suνx ∩A
ν
x) = G(uνx, 1;Aνx) ≤ G−(uνx, 1;Aνx). (2.17)

Thanks to (iii) of the Theorem 1.4.33 (in dimension 1 the hypoteses are verified),
by integrating (2.17) on Aν and using (2.16), we get∫

A

|〈∇u, ν〉|2 dy +

∫
Su∩A

|〈νu, ν〉| dHN−1 (2.18)

=

∫
Aν

[∫
Aνx

|∇uνx|2 dt+H0(Suνx ∩A
ν
x)

]
dHN−1(x)

≤
∫
Aν

G−(uνx, 1;Aνx) dHN−1(x)

≤
∫
Aν

lim inf
δ

Gδ(u
ν
δx, s

ν
δx;Aνx) dHN−1(x)

≤ F−(u, 1;A). (2.19)

Using the arbitrariness of ν and A and the slicing Theorem 1.4.33 we get u ∈
SBV (Ω) ∩ L∞(Ω) because almost every slice is essentially bounded.
Let us consider D ⊂ SN−1 a dense subset, we define the functions and the
measure

fν := |〈ν, νu〉|χSu µ := HN−1 (Su).

Since supv∈D fν = χSu , by Lemma 1.3.13 we get

HN−1(Su) =

∫
Ω

sup
v∈D
|〈ν, νu〉|χSu dµ =

sup

{
+∞∑
i=0

∫
Su∩Ai

|〈νi, νu〉| dHN−1 : Ω =

+∞⋃
i=0

Ai, Ai pairwise disjoint, νi ∈ SN−1

}
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This implies that the quantity F(u, 1; Ω) is the least upper bound in the lattice of
measures of the family (2.18) as ν varies in SN−1, hence by using the inequality
(2.19) and the superadditivity of F− as a set function we get

F(u, 1; Ω) =

∫
Ω

|∇u|2 dy +HN−1(Su ∩ Ω)

= sup

{
+∞∑
i=0

∫
Ai

|〈∇u, νi〉|2 dy +

∫
Su∩Ai

|〈νu, νi〉| dHN−1 :

Ω =

+∞⋃
i=0

Ai, Ai pairwise disjoint, νi ∈ SN−1

}

≤ sup

{
+∞∑
i=0

F−(u, 1;Ai) : Ω =

+∞⋃
i=0

Ai

}

≤ sup

{
F−

(
u, 1;

+∞⋃
i=0

Ai

)
: Ω =

+∞⋃
i=0

Ai

}
= F−(u, 1; Ω). (2.20)

and the proof is complete.

2.2.2 The limsup inequality

The limsup inequality is proved by first assuming that Su satisfyies the regularity
property that its Minkowski content equals its Hausdorff measure.
Then, using the fact that every minimizer of the MS has the property of the
Minkowsky content, we apply a diagonal argument on sequences of minimizers
of a suitable family of minimum problems involving MS functionals.

Theorem 2.2.6 (limsup inequality) For every (u, s) ∈ Z(Ω) there exists a
sequence (uε, sε) ⊂ D(Ω) converging to (u, s) in [L2(Ω)]2 such that

lim sup
ε→0

Fε(uε, sε) ≤ F(u, s).

Proof: When the right hand side of the inequality equals +∞ there is nothing
to prove, so we can assume u ∈ X(Ω), s ≡ 1 and HN−1(Su) < +∞. The
variable function s would be the characteristic function of the set Su, so we
expect a right behaviour of (uε, sε) when we choose uε ≡ u and sε ≡ 1 outside
a small neighbour of Su, which shrinks as ε→ 0.
STEP 1: We are going to prove the existence of the recovery sequence first in
the case when u satisfies an additional regularity condition of the jump set. We
assume that M∗(Su ∩ Ω) ≤ HN−1(Su ∩ Ω), in such a way that (see Corollary
1.4.36) we get

lim
ρ↘0

HN (Su ∩ Ω)

2ρ
= HN−1(Su ∩ Ω) =: L. (2.21)

We are looking for some infinitesimals aε, bε, ηε suitable for the construction of
the functions

uε :=

{
u Ω \ (Su)bε
Sobolev elsewhere

sε :=

 0 (Su)bε
1− ηε Ω \ (Su)bε+aε
Sobolev elsewhere
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Without loss of generality we can assume α = µ = 1, now it’s posible to write
the explicit form of the functionals Fε on the functions defined above.

Fε(uε, sε) =

∫
Ω

(s2
ε + oε)|∇uε|2 +

∫
Ω

ε|∇sε|2 +
1

4ε
(sε − 1)2 +

∫
Ω

(uε − g)2

=

∫
Ω\(Su)bε+aε

(s2
ε + oε)|∇u|2 +

∫
Ω∩(Su)bε+aε

oε|∇uε|2

+

∫
(Su)bε+aε\(Su)bε

ε|∇sε|2 +
1

4ε
(sε − 1)2 +

∫
Ω∩(Su)bε

1

4ε

+

∫
Ω∩(Su)bε+aε

1

4ε
η2
ε +

∫
Ω

(uε − g)2.

If we set

Aε(sε) :=

∫
(Su)bε+aε\(Su)bε

ε|∇sε|2 +
1

4ε
(sε − 1)2

this becomes

Fε(uε, sε) =

∫
Ω\(Su)bε+aε

(s2
ε + oε)|∇u|2 +

∫
Ω∩(Su)bε+aε

oε|∇uε|2 +Aε(sε)

+
1

4ε
HN (Ω ∩ (Su)bε) +

1

4ε
η2
εHN (Ω ∩ (Su)bε+aε) +

∫
Ω

(uε − g)2.

We easily see that only with the hypotesis on aε, bε, ηε to be infinitesimals we
get ∫

Ω\(Su)bε+aε

(s2
ε + oε)|∇u|2 −→

∫
Ω

|∇u|2∫
Ω

(uε − g)2 −→
∫

Ω

(u− g)2

as ε→ 0. Our aim is to prove that the upper bound of Aε(sε) doesn’t exceed L
while the other terms are infinitesimals.
If bε is an infinitesimal faster than ε we have

lim
ε→0

1

4ε
HN (Ω ∩ (Su)bε) = lim

ε→0

bε
2ε

HN (Ω ∩ (Su)bε)

2bε
= 0,

moreover, we can build the function uε, in the open tubular neighbourood with
radius bε, such that |∇uε| ≤ |c/2bε|, so if bε is also an infinitesimal intermediate
between ε and oε (for example

√
εoε) we have

lim
ε→0

∫
Ω∩(Su)bε+aε

oε|∇uε|2 ≤ lim
ε→0

c2

2

oε
bε

HN (Ω ∩ (Su)bε)

2bε
= 0.

For the last term we see that

lim
ε→0

η2
ε

4ε
HN (Ω ∩ (Su)bε+aε) = lim

ε→0

[
η2
εaε
2ε

+
η2
ε

2ε

√
εoε

]
HN (Ω ∩ (Su)bε+aε)

2(bε + aε)
= 0

if ηε is an infinitesimal faster than
√
ε. In order to have the estimate

lim sup
ε→0

Aε(sε) ≤ L
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we first observe that we can restrict our choice of sε among the functions which
are constants over the points having the same distance from Su, this leads also
to a reduction in 1-dimension of the problem. Let τ : Ω → [0,+∞) : y 7→
dist (y, Su), then we assume sε to be of the form sε(y) := σε(τ(y)) for some
σε : [0,+∞)→ [0, 1].
Taking into account that τ is Lipshitz and |∇τ | = 1 a.e., hence by Coarea
Formula (Proposition 1.3.9) with f = τ and g = ε|∇sε|2 + (sε − 1)2/4ε and the
chain rule for the composition with Lipshitz functions, we have

Aε(sε) =

∫
(Su)bε+aε\(Su)bε

[
ε|∇sε|2 +

1

4ε
(sε − 1)2

]
· |∇τ | dHN (y)

=

∫
(Su)bε+aε\(Su)bε

[
ε|∇sε|2 +

1

4ε
(sε − 1)2

]
· 1 dHN (y)

=

∫ bε+aε

bε

[∫
τ−1{t}

ε|σ′ε[τ(z)]|2|∇τ(z)|2 +
1

4ε
[σε(τ(z))− 1]2 dHN−1(z)

]
dt

=

∫ bε+aε

bε

[∫
τ−1{t}

ε|σ′ε[τ(z)]|2 +
1

4ε
[σε(τ(z))− 1]2 dHN−1(z)

]
dt.

The last integrand does depend only on t in fact z ∈ τ−1{t} if and only if
τ(z) = t so that

Aε(sε) =

∫ bε+aε

bε

[∫
τ−1{t}

ε|σ′ε(t)|2 +
1

4ε
[σε(t)− 1]2 dHN−1(z)

]
dt

=

∫ bε+aε

bε

ε|σ′ε(t)|2 +
1

4ε
[σε(t)− 1]2

[∫
τ−1{t}

dHN−1(z)

]
dt

=

∫ bε+aε

bε

(
ε|σ′ε(t)|2 +

1

4ε
[σε(t)− 1]2

)
HN−1({x ∈ Ω : τ(x) = t}) dt.

The inequalities (2.12), which are sufficient to give a lower bound of the func-
tional, are based on the estimate a2 + b2 ≥ 2ab. Since a recovery sequence ac-
tually realize a limit, we are interested in a function sε such that a2 + b2 = 2ab,
that is, a = b. So let σε be a solution of the Cauchy problem

(Pε)

{
σ′ =

1− σ
2ε

; σ(bε) = 0

}
,

then we can compute explicitly σε(t) = 1 − e
bε−t
2ε . By construction aε must be

such that σε(bε + aε) = 1− ηε, hence aε = −2ε log ηε, we choose ηε such that aε
is infinitesimal.
Consider the function

h(t) := HN ({x ∈ Ω : τ(x) < t})

which is differentiable, with

h′(t) := HN−1({x ∈ Ω : τ(x) = t}).
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With an integration by parts we obtain

Aε(sε) =
1

2ε

∫ bε+aε

bε

[1− σε(t)]2 dt

=
1

2ε

∫ bε+aε

bε

e
bε−t
ε h′(t) dt

=
1

2ε

{
e
−aε
ε h(bε + aε)− h(bε) +

1

ε

∫ bε+aε

bε

e
bε−t
ε h(t) dt

}

=
η2
ε

2ε
h(bε + aε)−

h(bε)

2ε
+

1

2ε2

∫ bε+aε

bε

e
bε−t
ε h(t) dt

=
1

2ε2

∫ bε+aε

bε

e
bε−t
ε h(t) dt+ o(ε)

in fact in the same way as just done we get

lim
ε→0

h(bε)

2ε
= lim
ε→0

HN ((Su)bε ∩ Ω)

2bε

bε
ε

= 0

and

lim
ε→0

η2
ε

2ε
h(bε + aε) = lim

ε→0

η2
ε

2ε
HN (Ω ∩ (Su)bε+aε) = 0.

From the hypotesis (2.21) we know that there exists a sequence δε decreasing
to zero such that h(t)/2t ≤ L + δε for all t ∈ (0, bε + aε), then again with an
integration by parts

lim sup
ε→0

Aε(sε) = lim sup
ε→0

1

2ε2

∫ bε+aε

bε

e
bε−t
ε

h(t)

2t
2t dt

≤ lim sup
ε→0

L+ δε
ε2

∫ bε+aε

bε

t e
bε−t
ε dt

= lim sup
ε→0

L+ δε
ε2

{
−ε
[
e−

aε
ε (bε + aε)− bε

]
+ ε

∫ bε+aε

bε

e
bε−t
ε dt

}

= lim sup
ε→0

L+ δε
ε

∫ bε+aε

bε

e
bε−t
ε dt+ o(ε)

= lim sup
ε→0

L+ δε
ε

[
−ε(e−

aε
ε − 1)

]
= lim sup

ε→0
(L+ δε) = L.

STEP 2: By regularity properties of local density for minimizers of the Mumford-
Shah (see Theorem 2.1.2) it is possible to prove the following Theorem.

Theorem 2.2.7 Let u ∈ X(Ω) be a minimizer of the functional F with g ∈
L∞(Ω) then

lim
ρ↘0

HN ((K)ρ ∩ Ω)

2ρ
= HN−1(K ∩ Ω).

for every compact set K ⊂ (Su ∩ Ω).
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So, by solving some minimum problem involving the MS functional we get so-
lutions for which the regularity condition (2.21) is satisfied, the idea is then to
use these solutions to approximate u.
Now let u ∈ X(Ω) such that F(u, 1) < +∞. It is possible to extend u in a
bounded domain Ω′ ⊃⊃ Ω in such a way that∫

Ω′
|∇u|2 +HN−1(Su ∩ Ω′) < +∞ (2.22)

HN−1(Su ∩ ∂Ω) = 0. (2.23)

This can be done if Ω is a Lipshitz domain satisfying the following reflection
condition:
there is a neighbourood U of ∂Ω and a map ϕ : U ∩ Ω → U \ Ω Lipschitz
continuous with its inverse, such that limy→x ϕ(y) = x for any x ∈ ∂Ω.
The extention is made by setting u(y) := u(ϕ−1(y)) for every y ∈ U \ Ω.
We recall that the reflection condition is fulfilled by every C2 domain and by
hypercubes of RN .
We consider the sequence uε of minimizers for the family of problems∫

Ω′
|∇v|2 +HN−1(Sv ∩ Ω′) +

1

ε

∫
Ω′

(v − u)2 (Pε)

then because of the last term we have uε → u in  L2(Ω), moreover, since (Suε ∩
Ω) ⊂ (Suε ∩ Ω′) Theorem 2.2.7 implies

lim sup
ρ↘0

HN ((Suε)ρ ∩ Ω)

2ρ
≤ lim
ρ↘0

HN ((Suε ∩ Ω)ρ ∩ Ω)

2ρ

= HN−1(Suε ∩ Ω) = HN−1(Suε ∩ Ω).

For every BV (Ω) function the Hausdorff measure of Su is less or equal than its
lower Minkowski content (see Corollary 1.4.36), hence

lim
ρ↘0

HN ((Suε)ρ ∩ Ω)

2ρ
= HN−1(Suε ∩ Ω).

Applying the results proved in the Step 1 we know that there exists, for every
ε, a sequence (uσεε , s

σε
ε ) ∈ D(Ω) converging to (uε, 1) in [ L2(Ω)]2 such that

lim sup
σε→0

Fσε(uσεε , sσεε ) ≤ F(uε, 1).

Moreover, by the liminf inequality, we have

lim
σε→0

Fσε(uσεε , sσεε ) = F(uε, 1).

Let us define the following finite positive measures

µε(B) :=

∫
Ω

|∇uε|2 dx+HN−1(Suε ∩B)

µ(B) :=

∫
Ω

|∇u|2 dx+HN−1(Su ∩B);
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because of the minimality of uε we easily get

lim sup
ε→0

µε(Ω
′) ≤ µ(Ω′)

on the other hand, by the semicontinuity of F , we also have

µ(A) ≤ lim inf
ε→0

µε(A) ∀A ⊂ Ω′ open.

By Theorem 1.3.12 the measures µε weakly* converge to µ, moreover, by the
condition (2.23) which gives exactly that µ(∂Ω) = 0, we get µε(Ω)→ µ(Ω), that
is

F(uε, 1) −→ F(u, 1). (2.24)

Finally we take the diagonal subsequence (uεε, s
e
ε)ε ⊂ (uσεε , s

σε
ε )ε,σε ; clearly we

have that (uεε, s
e
ε)→ (u, 1) and thanks to (2.24) we obtain

lim sup
ε→0

Fε(uεε, sεε) ≤ lim sup
ε→0

lim sup
σε→0

Fσε(uσεε , sσεε )

= lim sup
ε→0

F(uε, 1) = F(u, 1)

the requested estimate.

2.2.3 Compactness of sequences of minimizers

By well-known results of semicontinuity and compactness in Sobolev spaces and
by regularity theory of the weak Laplace equation it is not difficult to prove the
existence of minimizers for the functional Fε in D(Ω). Let (uε, sε) be a sequence
of minimizer for the family Fε, then we have

1

4ε

∫
Ω

(1− sε)2 ≤ Fε(uε, sε) = minFε ≤ Fε(1, 1)

= µ

∫
Ω

(1− g)2 ≤ µ|Ω|+ µ

∫
Ω

g2 < +∞

hence sε → 1 in L2(Ω), and in particular, possibly up to subsequences, the
convergence is also almost everywhere. We want to use this fact to prove also
the convergence of uε, this can be done by a suitable change of variables.
First we observe that by the minimality of (uε, sε) it is not a restriction to assume
‖uε‖∞ ≤ ‖g‖∞. In fact, by considering the truncation Tuε := −‖g‖∞∨uε∧‖g‖∞
it results Fε(Tuε, sε) ≤ Fε(uε, sε).
Now we apply the well-known estimate 2ab ≤ a2 +b2 to the Ambrosio-Tortorelli
functional with a =

√
ε|∇sε| and b = 1/(2

√
ε)|∇sε||1− sε| obtaining

|∇sε||1− sε| ≤ ε|∇sε|2 +
1

4ε
(1− sε)2. (2.25)

The function (1− sε)∇sε, up to the constant 2, is exactly the gradient of (2sε−
s2
ε), we define vε := (2sε − s2

ε)uε to obtain the following estimate

|∇vε| = |uε∇(2sε − s2
ε) + (2sε − s2

ε)∇uε|
≤ 2|uε||∇sε||1− sε|+ |2− sε||sε||∇uε|

≤ c1
[
ε|∇sε|+

1

4ε
(1− sε)2

]
+ c2 + s2

ε |∇uε|2. (2.26)
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Hence, by integrating on Ω we see that there exist two constants k1, k2 > 0
depending only on ‖g‖∞ and |Ω| such that∫

Ω

|∇vε| ≤ k1 + k2Fε(uε, sε)

so, by compactness proerties of BV (Ω) functions, possibly up to subsequences,
is vε → v ∈ L∞(Ω) and the convergence is almost everywhere. Easily this
implies uε → v almost everywhere, and by boundedness, this convergence is
also in L2(Ω).
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Chapter 3

The Blake-Zisserman model

The model proposed by Mumford-Shah for image segmentation has some draw-
backs. The first and more easily observable is that, as a first order model, it is
unable to detect crease discontinuities (discontinuities of the gradient), which
are actually of a great relevance, for example, in surface reconstruction prob-
lems from image data; another fact is that it yelds to the phenomenon of the
over-segmentation of steep gradients, where steep grandient surfaces are approx-
imated by step functions (see e.g. kawhol).
Another relevant defect emerges from regularity studies of the set Su. The
minimiization of the MS functional yelds to an areas-competition between the
regions of smoothness of u and so, this turns out, to the point of view of the
edges, to a minimal connection problem of points in the plane. Hence we have
that the jump set of u is made up by at most a countable union of C1 arcs with
finite length. Every end-point of each arc may be of three types: a crack tip
(ending point with no others arcs joined), a double junction or a triple junction.
In the last case the three arcs form three congruent angles of 2/3π.
Some questions are still open. For example Mumford and Shah conjectured that
the 3rd-points don’t accumulate, some results are found in this direction but we
are far from an exaustive treatment of the subject. Another problem, too far
to be solved, is to know the asimptothic behaviour of u near the end-points of
the crack tips.

To overcome these defects of the first order model, Blake and Zisserman
introduced a second order functional (see [6]) which can be written as

BZ(u,K0,K1) :=

∫
Ω\(K0∪K1)

|∇2u|2 + µ(u− g)2 dx

+ αHN−1(K0 ∩ Ω) + βHN−1((K1 \K0) ∩ Ω) (3.1)

where α, β, µ are positive parameters, Ω ⊂ RN an open set and g ∈ L∞(Ω). The
minimization takes place over the functions u ∈ C2(Ω\(K0∪K1)) approximately
continuous on Ω \K0, and K0,K1 unknown sets such that K0 ∪K1 is closed.
Here K0 represents the set of jump points and K1 \K0 the set of crease points
of u.
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3.1 Weak formulation of the problem

Again, in order to prove the existence of minimizers, a weak formulation of the
problem is needed. A suitable relaxation of BZ leads to the functional

H(u) :=

 F (u) u ∈ L2(Ω) ∩GSBV 2(Ω)

+∞ u ∈ L2(Ω) \GSBV 2(Ω)
(3.2)

where

F (u) :=

∫
Ω

|∇2u|2 + µ(u− g)2 dx+ αHN−1(Su) + βHN−1(S∇u \ Su)

=

∫
Ω

|∇2u|2 + µ(u− g)2 dx+ (α− β)HN−1(Su) + βHN−1(S∇u ∪ Su).

Carriero, Leaci and Tomarelli has been proved (see [7]) for any N ≥ 1 the
existence of minimizers for this functional when the condition

β ≤ α ≤ 2β, (3.3)

which ensures the semicontinuity of H with respect to the L1(Ω) convergence,
is satisfied. Moreover the same authors showed in [8] that, in the particular
case N = 2, any weak minimizer of H actually provides a triplet (u,K0,K1)
minimizer of BZ by taking a suitable representative of the function and the
closure of Su and S∇u.

3.2 Approximation by elliptic functionals via Γ-
convergence

The aim of this section is to present a generalization to the second order model
of the Ambrosio-Tortorelli approach to the approximation, due to Ambrosio,
Faina and March (see [4]).
In order to give a suitable family of elliptic functionals approximating the fuc-
tional H they introduced two extra variables as a sostitute of the set variables
Su and S∇u. Now, the control of the values of these variables is made by the
introduction of two Ambrosio-Tortorelli components in the functional.
Let us consider the functional F defined by

F(u, s, z) :=

 F (u) (u, s, z) ∈ X(Ω)× Y (Ω)× Y (Ω)

+∞ otherwise in Z(Ω)
(3.4)

where
Z(Ω) := L2(Ω)× L∞(Ω; [0, 1])× L∞(Ω; [0, 1]).

X(Ω) := L2(Ω) ∩GSBV 2(Ω)

Y (Ω) := {s ∈ L∞(Ω) : s ≡ 1}.
Γ-convergence results can be achieved by using the following family of elliptic
functionals

Fε(u, s, z) :=

 Fε(u, s, z) (u, s, z) ∈ D(Ω)

+∞ otherwise in Z(Ω)
(3.5)
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where the functional Fε is defined by

Fε(u, s, z) :=

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)G(s) + βG(z) + µ

∫
Ω

(u− g)2 dx (3.6)

with G as in (2.8) and oε, ξε infinitesimals, and

D(Ω) :=
{

(u, s, z) ∈ X(Ω) : u, s, z ∈W 1,2(Ω), z∇u ∈W 1,1(Ω;RN )
}

Some remarks about the choise of the domain D(Ω). If u ∈ D(Ω) then the
Hessian operator does exist a.e. in {z > 0} in fact it can berived from the
formula

∇(z∇u) = ∇z ⊗∇u+ z∇2u

and it can be extended to 0 in {z = 0}. Moreover, in this domain are ensured
the lower semicontinuity with respect the [L1(Ω)]3 convergence and the com-
pactness for the sublevels of the functionals Fε (see [4], pagg 1181-1182).

Γ-convergence results are proved with respect the L1(Ω) convergence; the
liminf inequality is proved in any space dimension N and it does not require any
additional remarks, while the limsup is proved by assuming u ∈ L∞(Ω), |∇u| ∈
L2(Ω) and Su, S∇u satisfying some regularity condition (content of Minkowski
properties) which are in general fulfilled in computer vision applications.

3.2.1 The liminf inequality

The liminf inequality cannot be obtained by means of the slicing tecnique and
consequent reduction to a one-dimensional problem used in the previous chap-
ter. Such a reduction yelds the operator norm of the Hessian matrix in the
Γ-limit instead of the euclidean norm.
The second derivatives are estimated by adapting a global tecnique proposed
by Ambrosio in [1] and relying on a compactness theorem (Theorem 1.4.39)in
the space GSBV 2(Ω) due to Carriero, Leaci and Tomarelli.
Conversely, the jump part of the functional is estimated by using a slicing ar-
gument, taking into account that the space GSBV (Ω) is a vector space under
suitable energy condition.

Theorem 3.2.1 (liminf inequality) Assume that oε > 0 and

lim
ε↘0

ξε
e

= +∞. (3.7)

Then, for every triple (u, s, z) ∈ Z(Ω) and every sequence (uε, sε, zε) ⊂ D(Ω)
converging

(uε, sε, zε) −→ (u, s, z) in [L1(Ω)]3

we have
F(u, s, z) ≤ lim inf

ε
Fε(uε, sε, zε).
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3.2.2 The limsup inequality

In order to adapt the constructive part of the Ambrosio-Tortorelli proof of the
previous chapter to this second order problem, a suitable estimate of the com-
ponent

∫
|∇u|2 deriving from the finiteness of F is proved.

Proposition 3.2.2 Let A,B ⊂ RN be open sets and r > 0 such that (A)2r ⊂⊂
B. Then ∫

A

|∇u|2 dx ≤ 16N

[
1

r2

∫
B

u2 dx+ 2r2

∫
B

|∇2u|2 dx
]

(3.8)

for every u ∈W 2,2
loc (B).

We observe that this estimate returns finite values when u ∈ L∞(Ω).
It is possible to prove the limsup inequality under the assumptions that u ∈
L∞(Ω), |∇u| ∈ L2(Ω) and that, for the sets Su, S∇u the HN−1 measure and the
Minkowski content coincide.

Theorem 3.2.3 (limsup inequality) Assume that oε > 0, ξε satisfies (3.7)
and ξεoε = o(ε). Then, for every triple (u, s, z) ∈ Z(Ω) such that u ∈ L∞(Ω),
|∇u| ∈ L2(Ω) and

M∗(Su) ≤ HN−1(Su) M∗(Su ∪ S∇u) ≤ HN−1(Su ∪ S∇u)

there exists a sequence (uε, sε, zε) ⊂ D(Ω) converging

(uε, sε, zε) −→ (u, s, z) in [L1(Ω)]3

such that
lim sup

ε
Fε(uε, sε, zε) ≤ F(u, s, z).

3.2.3 Compactness of sequences of minimizers

The assumptions made in the Theorem 3.2.1 on the infinitesimals oε, ξε are
sufficient to prove the equicoercivity for the family of functionals Fε.

Theorem 3.2.4 Let oε, ξε be as inTheorem 3.2.1 and consider a family (uε, sε, zε) ⊂
D(Ω) such that

sup
ε>0
Fε(uε, sε, zε) < +∞.

Then the family (uε, sε, zε) is relatively compact (admits some convergent sub-
sequences) in the [L1(Ω)]3 topology. Moreover, every limit point is of the form
(u, 1, 1) with u ∈ X(Ω).
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Chapter 4

Numerical implementation
of the Blake-Zisserman
model

We consider an application of the Blake-Zisserman model related to a 2D image.
Then N = 2 and Ω ⊂ R2 a rectangle. By the properties of Γ-convergence and
by the regularity results described in the previous Chapter, we know that, for ε
small enough, a minimizer of the functional

Fε(u, s, z) =

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2 dx

+ µ

∫
Ω

(u− g)2 dx (4.1)

is sufficiently close to a minimizer of the BZ. The elliptic functional Fε is
differentiable, furthermore we easily observe that it is quadratic with respect to
the single variables

Fε(., s, z) Fε(u, ., z) Fε(u, s, .). (4.2)

Hence, after a discretizazion of the energy, we will obtain three symmetrical
linear systems associated to the partial gradients in the variables u, s, z.

4.1 Discretization of the problem

We define the discrete representation of the rectangle Ω with a square lattice of
coordinates with step t > 0

Q :=
{

(it, jt) : i, j = 1, 2, . . . , n
}

for some n ∈ N which represents the number of the pixels of the image. For
notational simplicity, according to the representation of the matrices on the

51



most numerical computing environments, we consider the origin of the lattice
up-left. We denote the discrete representations of u, s, z at every point (it, jt)
as

uti,j := u(it, jt) sti,j := s(it, jt) zti,j := z(it, jt)

in such a way that the discrete variables

ut := (uti,j)i,j st := (sti,j)i,j zt := (zti,j)i,j

are representable as elements of the space of matrices Mn×n which takes values
in R. Clearly this identification doesn’t depend on t.
In order to simplify the exposition of the procedure in the sequel, we chose to
split the functional Fε in three pieces as follows

F 1
ε (u, s, z) :=

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

F 2
ε (s, z) := (α− β)

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2 dx

F 3
ε (u) := µ

∫
Ω

(u− g)2 dx.

so that we easily get Fε = F 1
ε + F 2

ε + F 3
ε . In order to approximate the differen-

tial operators appearing in the functional we use the following finite difference
formulas

∂xu
t
i,j :=

∂u

∂x
(it, jt) ∼=

1

t
(uti+1,j − uti,j)

∂yu
t
i,j :=

∂u

∂y
(it, jt) ∼=

1

t
(uti,j+1 − uti,j)

∂2
xu

t
i,j :=

∂2u

∂x2
(it, jt) ∼=

1

t2
(uti+1,j − 2uti,j + uti−1,j)

∂2
yu

t
i,j :=

∂2u

∂y2
(it, jt) ∼=

1

t2
(uti,j+1 − 2uti,j + uti,j−1)

∂2
xyu

t
i,j :=

∂2u

∂x∂y
(it, jt) ∼=

1

t2
(uti+1,j+1 − uti,j+1 − uti+1,j + uti,j)

in such a way, after some calculations, we obtain

|∇uti,j |2 := (∂xu
t
i,j)

2 + (∂yu
t
i,j)

2

=
1

t2

[
(uti+1,j)

2 + 2(uti,j)
2 + (uti,j+1)2 − 2uti+1,ju

t
i,j − 2uti,j+1u

t
i,j

]
|∇2uti,j |2 := (∂2

xu
t
i,j)

2 + 2(∂2
xyu

t
i,j)

2 + (∂2
yu

t
i,j)

2

=
1

t4

[
3(uti+1,j)

2 + 10(uti,j)
2 + (uti−1,j)

2 + 3(uti,j+1)2 + (uti,j−1)2

+ 2(uti+1,j+1)2 − 8uti,ju
t
i+1,j − 4uti−1,ju

t
i,j + 2uti+1,ju

t
i−1,j

+ 4uti,j+1u
t
i+1,j − 8uti,ju

t
i,j+1 + 2uti,j−1u

t
i,j+1 − 4uti,j−1u

t
i,j

− 4uti,j+1u
t
i+1,j+1 − 4uti+1,ju

t
i+1,j+1 + 4uti,ju

t
i+1,j+1

]
.
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Analogous formulas can be obtained for |∇si,j |2 and |∇zi,j |2. Now we can
compute the discrete energies related to F 1

ε , F
2
ε , F

3
ε , we obtain

F 1
ε,t(u

t,st, zt) :=∑
i,j

t2(zti,j)
2|∇2uti,j |2 + t2ξε[(s

t
i,j)

2 + oε]|∇uti,j |2

=
∑
i,j

1

t2
(zti,j)

2
[
3(uti+1,j)

2 + 10(uti,j)
2 + (uti−1,j)

2 + 3(uti,j+1)2

+ (uti,j+1)2 + 2(uti+1,j+1)2 − 8uti,ju
t
i+1,j − 4uti−1,ju

t
i,j + 2uti+1,ju

t
i−1,j

+ 4uti,j+1u
t
i+1,j − 8uti,ju

t
i,j+1 + 2uti,j−1u

t
i,j+1 − 4uti,j−1u

t
i,j − 4uti,j+1u

t
i+1,j+1

− 4uti+1,ju
t
i+1,j+1 + 4uti,ju

t
i+1,j+1

]
+ ξε

[
(sti,j)

2 + oε

]
·
[
(uti+1,j)

2 + 2(uti,j)
2 + (uti,j+1)2 − 2uti+1,ju

t
i,j − 2uti,j+1u

t
i,j

]

F 2
ε,t(s

t,zt) :=

(α− β)
∑
i,j

t2
[
ε|∇sti,j |2 +

1

4ε
(sti,j − 1)2

]

+ β
∑
i,j

t2
[
ε|∇zti,j |2 +

1

4ε
(zti,j − 1)2

]
=(α− β)

∑
i,j

ε
[
(sti+1,j)

2 + 2(sti,j)
2 + 2(sti,j+1)2 − 2sti+1,js

t
i,j − 2sti,j+1s

t
i,j

]
+
t2

4ε

[
(sti,j)

2 − sti,j + 1
]

+ β
∑
i,j

ε
[
(zti+1,j)

2 + 2(zti,j)
2 + 2(zti,j+1)2 − 2zti+1,jz

t
i,j − 2zti,j+1z

t
i,j

]
+
t2

4ε

[
(zti,j)

2 − zti,j + 1
]

F 3
ε,t(u

t) := µ
∑
i,j

t2(uti,j − gti,j)2 = µ
∑
i,j

t2
[
(uti,j)

2 − 2uti,jg
t
i,j + gti,j)

2
]
.

4.2 Minimization of the discrete energy

The computation of minimizers for the discrete energy Fε,t := F 1
ε,t + F 2

ε,t + F 3
ε,t

is not trivial. Global properties of the discrete energy Fε,t which ensure that
some iterative method applied to the system of non-linear equations

∇Fε,t(ut, st, zt) = 0 (4.3)

have some properties of convergence are difficult to find. The empirical approach
we are going to use is not new in the field of images segmentation. First we
recall that the energy functional to minimize is quadratic in its three groups of
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variables ut, st, zt, so the partial gradients in these three groups of variables will
be symmetric. We compute the explicit form of them by writing

∂Fε,t
∂uh,k

(ut, st, zt) = 0,
∂Fε,t
∂sh,k

(ut, st, zt) = 0,
∂Fε,t
∂zh,k

(ut, st, zt) = 0

in explicit form for every h, k ∈ {1, 2, . . . , n}. Fixed a pair (h, k), it appears in
some terms of the energy Fε,t, exactly when it coincides with the pairs (i, j −
1), (i − 1, j), (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1). By taking account of this,
after some calculations we obtain

•
∂F 1

ε,t

∂uh,k
(ut, st, zt) =

uth,k−2

{ 1

t2

[
2(zth,k−1)2

]}
+uth−1,k−1

{ 1

t2

[
4(zth−1,k−1)2

]}
+uth,k−1

{ 1

t2

[
− 4(zth,k)2 − 8(zth,k−1)2 − 4(zth−1,k−1)2

]
− ξε

[
2(sth,k−1)2 + 2oε

]}
+uth+1,k−1

{ 1

t2

[
4(zth,k−1)2

]}
+uth−2,k

{ 1

t2

[
2(zth−1,k)2

]}
+uth−1,k

{ 1

t2

[
− 4(zth,k)2 − 8(zth−1,k)2 − 4(zth−1,k−1)2

]
− ξε

[
2(sth−1,k)2 + 2oε

]}
+uth,k

{ 1

t2

[
2(zth+1,k)2 + 2(zth,k+1)2 + 20(zth,k)2 + 6(zth−1,k)2 + 6(zth,k−1)2 + 4(zth−1,k−1)2

]
+ ξε

[
4(sth,k)2 + 2(sth−1,k)2 + 2(sth,k−1)2 + 8oε

]}
+uth+1,k

{ 1

t2

[
− 4(zth+1,k)2 − 8(zth,k)2 − 4(zth,k−1)2

]
− ξε

[
2(sth,k)2 + 2oε

]}
+uth+2,k

{ 1

t2

[
2(zth+1,k)2

]}
+uth−1,k+1

{ 1

t2

[
4(zth−1,k)2

]}
+uth,k+1

{ 1

t2

[
− 4(zth,k+1)2 − 8(zth,k)2 − 4(zth−1,k)2

]
− ξε

[
2(sth,k)2 + 2oε

]}
+uth+1,k+1

{ 1

t2

[
4(zth,k)2

]}
+uth,k+2

{ 1

t2

[
2(zth,k+1)2

]}
•
∂F 2

ε,t

∂uh,k
(ut, st, zt) = 0

•
∂F 3

ε,t

∂uh,k
(ut, st, zt) = uth,k

{
2µt2

}
− 2µt2gh,k

•
∂F 1

ε,t

∂sh,k
(ut, st, zt) =

sth,k

{
2ξε

[
(uth+1,k)2 + 2(uth,k)2 + (uth,k+1)2 − 2uth+1,ku

t
h,k − 2uth,k+1u

t
h,k

]}
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•
∂F 2

ε,t

∂sh,k
(ut, st, zt) =

sth,k−1

{
− 2(α− β)ε

}
+ sth−1,k

{
− 2(α− β)ε

}
+ sth,k

{
(α− β)

[
8ε+

t2

4ε

]}
+sth+1,k

{
− 2(α− β)ε

}
+ sth,+1k

{
− 2(α− β)ε

}
− (α− β)

t2

4ε

•
∂F 3

ε,t

∂sh,k
(ut, st, zt) = 0

•
∂F 1

ε,t

∂zh,k
(ut, st, zt) =

zth,k

{ 2

t2

[
3(uth+1,k)2 + 10(uth,k)2 + (uth−1,k)2 + 3(uth,k+1)2 + (uth,k−1)2

+ 2(uth+1,k+1)2 − 8uth+1,ku
t
h,k − 4uth−1,ku

t
h,k + 2uth+1,ku

t
h−1,k

+ 4uth,k+1u
t
h+1,k − 8uth,k+1u

t
h,k − 2uth,k−1u

t
h,k+1 − 4uth,k−1u

t
h,k

− 4uth,k+1u
t
h+1,k+1 − 4uth+1,ku

t
h+1,k+1 + 4uth,ku

t
h+1,k+1

]}

•
∂F 2

ε,t

∂zh,k
(ut, st, zt) =

zth,k−1

{
− 2βε

}
+ zth−1,k

{
− 2βε

}
+ zth,k

{
β
[
8ε+

t2

4ε

]}
+ zth+1,k

{
− 2βε

}
+zth,+1k

{
− 2βε

}
− β t

2

4ε

•
∂F 3

ε,t

∂zh,k
(ut, st, zt) = 0

Fixed the values ut, st, zt ∈Mn×n we consider the functions

∇Fε,t(ut, st, zt) =: g1(ut) ∈Mn×n

∇Fε,t(ut, st, zt) =: g2(st) ∈Mn×n

∇Fε,t(ut, st, zt) =: g3(zt) ∈Mn×n

and we see that, after a vectorization of the variables, it is possible to rewrite
the problems

g1(ut) = 0 g2(st) = 0 g3(zt) = 0

as three square linear systems. We show the method only for g1(ut), the others
can be obtained for analogy. Let us consider the bijection from the space Q to
I := {1, 2, . . . , n2} given by

w : Q→ I : (h, k) 7→
(
k

t
− 1

)
n+

h

t
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w−1 : I → Q : i 7→ t
(

rem (i− 1, n) + 1, floor (i− 1, n) + 1
)

where rem (a, b) denotes the remainder after the division a/b and floor (a, b)
the quotient. With this identification we can consider without ambiguity the
matrix ut ∈Mn×n as a vector ut ∈ Rn2

.
Our aim is to find an algorithm which gives a square matrix At1 ∈Mn2×n2

and

a vector vt1 ∈ Rn2

such that

w(g1(ut)) = At1u
t − vt1,

that is, it turns the problem to solve the equations g1(ut) = 0 to the problem
of solve the linear sistem At1u

t = vt1.
Let us fix i a row index of the matrix At1, the scalar product between this row
and ut must returns the equation corresponding to

∂Fε,t
∂uh,k

(ut, st, zt)

with (h, k) = w−1(i). Hence at the element in the column j = w−1(h, k− 2) we
put

Ati(i, j) =
1

t2

[
2(zth,k−1)2

]
at the element in the column j = w−1(h− 1, k − 1) we put

Ati(i, j) =
1

t2

[
4(zth−1,k−1)2

]
and so on. The vector vt1 is trivially built by vt1(i) = 2µt2gh,k.

The coefficients matrices of these three systems have some good properties.
All of them are sparse and symmetrical with positive diagonal entries. At1 is
clearly 13-diagonal and At2, A

t
3 are 5-diagonal. Moreover At2 and At3 are diago-

nally dominant hence positive definite.

The iteration is carried on as follows: at step k, fixed the parameters stk, z
t
k ∈

Mn×n we implement a few steps of an algorithm for the solution of symmetrical
sytems to the

At1u
t − vt1 = 0.

We denote the returned iterate as utk+1. The next step is to implement 1 or 2
steps of an iterative method (for instance the Coniugate Gradient method) to
the symmetrical and positve definite system

At2s
t − vt2 = 0

with the parameters utk+1 and ztk. Denoted the returned iterate as stk+1, the
same procedure is applied to the system

At3z
t − vt3 = 0

with parameters utk+1 and stk+1. Every iteration procedure is triggered with an
initial datum which coincide to the last value of the unknown variable obtained
with the previous step. In practice we solve the non linear system by an inexact
block Gauss Seidel iterative method. At step k = 1 the inital values are chosen
as follows: for ut we choose exactly the image to be segmented gt, the initial
values of st and zt are set to the functions identically equal to 1.
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4.3 Examples of segmentation

We show here some results obtained with the iterative procedure described in
the previous Section. We denote with N the number of pixels of the image, the
mesh size is set to t = 1 for all images. Every image takes grey values into the
interval [0, 255].

4.3.1 Noise removal

The algorithm is applied to an image vt representing four squares with different
grey intensities. The image is soiled with an artificial random noise of 12%. The
size is N = 100, the parameters are set to α = 2, β = 1, µ = 0.01 and ε = 0.1.

Figure 4.1: Original image. Figure 4.2: Noised image: gt.

After only 18 iterations the obtained image is almost denoized. The Figure 4.3
represents the partial result, the comparison with the original image vt gives
max |ut − vt| = 1.0204. With further 5 iterations the image is totally denoized,
we have max |ut − vt| = 0.0027.

Figure 4.3: Partially denoised im-
age: ut.

Figure 4.4: Final segmented image
ut.
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Figure 4.5: Edge detecting function:
st.

Figure 4.6: Edge-crease detecting
functionl: zt.

The edge detecting function returned values which are very close to 0, the edge
points are all in a range of 0.0002. The values of the edge-crease detecting
function are all in a range of 0.0006, for both edges and creases points.

4.3.2 Crease-detecting

In the following image, which represent a truncated piramid, in addition to the
discontinuities of the grey level also discontinuities of the gradient appear. The
size is N = 300, the functional parameters are α = 2, β = 1, µ = 1 and ε = 0.1.

Figure 4.7: Original image: gt. Figure 4.8: 3D representation of gt.

The image is totally noise free, so the iteration procedure is not applied to the
function ut. This means that the parameter ut is always set equal to gt and the
solution of the system g1 is not implemented.
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Figure 4.9: Edge detecting function:
st.

Figure 4.10: Edge-crease detecting
functionl: zt.

The procedure consisted in 6 outer iterations with 2 inner iterations in g2 and
8 inner iterations in g3. The follwing two graphs represents the values of zt at
the rows 70 and 150 respectively. We see that the crease values are slightly less
accurate than the jump values.

Figure 4.11: Function zt at row 70. Figure 4.12: Function zt at row 150.

4.3.3 Digital surface models (DSM)

The following examples are based on two small portion of the Digital Surface
Models (DSM) of the Provincia Autonoma di Trento. In this case, the DSM
is a representation of the terrain surface created from elevation data. Eleva-
tion data are obtained from a LIDAR (LIght Detection And Ranging) sur-
vey of the surface. By means of the LIDAR technique, one can obtain the
distance from the instrument to a target illuminated with laser light. The
elevation of the target can be computed knowing the elevation of the instru-
ment. The data can be downloaded from the Portale Cartografico Trentino
http://www.territorio.provincia.tn.it.
The DSM used in the next examples have a regular spatial resolution of 1mt×
1mt, details on the LIDAR survey and on the model can be found at http://

www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/

lidar/23954.
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The first one is a particular of Palazzo delle Albere, TN, it is a regular grid of
N = 300. The important feature of this image is the presence of the roof of the
central building (Palazzo delle Albere). We want to dedect the roof’s creases.
The segmentation procedure is made with the following parameters: α = 2,
β = 1, µ = 1 and ε = 0.01.

Figure 4.13: Original Digital Sur-
face Model: gt.

Figure 4.14: Segmented Digital Sur-
face Model: ut.

The procedure consisted in 18 outer iterations, with 80 inner iterations in the
solution of the system g1, 25 in the system g2 and 80 in the system g3.
In order to simplify the analysis of the behaviour of the algorithm we changed
the colormap of the images.
Blue values are very close to 0, the deep red is 1.

Figure 4.15: Edge detecting func-
tion: st.

Figure 4.16: Edge-crease detecting
functionl: zt.

As we can see in the results of function zt, convergence in crease points is very
slow. This motived us to implement such a high number of inner iterations in
the system g3.
In Figure 4.26 we can see a particular of the roof in center of the Figure 4.16.
The extracted figure is a 50× 50 submatrix, in the Figure 4.27 are plotted the
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Figure 4.17: Particular of the roof. Figure 4.18: Column 25 values.

values of the function for all rows of the column 30, from the top to the bottom.
We can see that the accuracy in the crease detection is very difficult.

We show here some 3D representations of the experiment’s data. In figure
4.19 we can see the original DSM gt, in the Figures 4.20 and 4.21 are represented
the functions zt and 1− zt respectively.

Figure 4.19: 3D representation of the original function gt.
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Figure 4.20: 3D representation of the function zt.

Figure 4.21: 3D representation of the function 1− zt.
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The second one, bigger than the first, is a regular grid of N = 600. The
following parameters are used: α = 2, β = 1, µ = 0.1 and ε = 0.01. The
procedure consisted in 9 outer iterations, with 10 inner iterations in the solution
of the system g1, 25 in the system g2 and 50 in the system g3.

Figure 4.22: Original Digital Surface Model: gt.

Figure 4.23: Segmented Digital Surface Model: ut.
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Figure 4.24: Edge detecting function: st.

Figure 4.25: Edge-crease detecting functionl: zt.

64



Figure 4.26: Particular of the roof. Figure 4.27: Column 25 values.
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