Monomial Togliatti Systems of Cubics

Rosa M. Miró-Roig
Universitat de Barcelona
Ferrara, June 2015

Rosa M. Miró-Roig
Monomial Togliatti Systems of Cubics

CURVES OF MAXIMUM GENUS IN RANGE A AND STICK-FIGURES

EDOARDO BALLICO, GIORGIO BOLONDI, PHILIPPE ELLIA, AND ROSA MARIA MIRÒ-ROIG

Abstract

In this paper we show the existence of smooth connected space curves not contained in a surface of degree less than m, with genus maximal with respect to the degree, in half of the so-called range A. The main tool is a technique of deformation of stick-figures due to G. Fløystad.

0 . Introduction

A classical problem, which goes back to Halphen $[\mathrm{H}]$, is to determine, for given integers d and m, the maximal genus $G(d, m)$ of a smooth projective curve of degree d not contained in a surface of degree $<m$. This problem is actually very natural, and it is in fact one of the cornerstones of the numerical classification of space curves.

The problem of determining $G(d, m)$ depends on the size of d with respect to m. Following a long tradition, we distinguish four ranges:

Range \varnothing. If $d<\frac{m^{2}+4 m+6}{6}$, then every curve X of degree d satisfies $h^{0}\left(\mathbf{P}^{3}, \mathcal{I}_{X}(m-1)\right) \neq 0$.

Rance A. If $\frac{m^{2}+4 m+6}{<d<m^{2}+4 m+6}$, then $G(d . m)<G_{4}(d . m)$ where

Rosa M. Miró-Roig
Monomial Togliatti Systems of Cubics

Monomial Togliatti Systems of Cubics

Rosa M. Miró-Roig
Universitat de Barcelona

Ferrara, June 2015

Joint work with E. Mezzetti, G. Ottaviani Joint work with M. Michałek

- E. Mezzetti, R.M. Miró-Roig and G. Ottaviani. Laplace equations and the Weak Lefschetz Property, Canadian Journal of Mathematics, 65 (2013), 634-654.
- M. Michałek and R.M. Miró-Roig. Smooth monomial Togliatti systems of cubics, arXiv:1310.2529.

GOAL: To establish a close relationship between a priori two unrelated problems:
(1) The existence of homogeneous artinian ideals $I \subset k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ which fail the Weak Lefschetz Property;
(2) The existence of (smooth) projective varieties $X \subset \mathbb{P}^{n}$ satisfying at least one Laplace equation of order $s \geq 2$.

- An n-dimensional projective variety $X \subset \mathbb{P}^{N}$ satisfies δ independent Laplace equations of order s if its s-osculating space at a general point $p \in X$ has dimension $\binom{n+s}{s}-1-\delta$.
- A homogeneous artinian ideal $I \subset k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ has the Weak Lefschetz Property (WLP) if $\exists L \in k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ such that, for all integers j, the multiplication map

$$
\times L:\left(k\left[x_{0}, x_{1}, \cdots, x_{n}\right] / I\right)_{j} \rightarrow\left(k\left[x_{0}, x_{1}, \cdots, x_{n}\right] / I\right)_{j+1}
$$

has maximal rank, i.e. it is injective or surjective.

BRENNER-KAID's EXAMPLE vs TOGLIATTI's EXAMPLE

- Brenner-Kaid (2009): $\left(x^{3}, y^{3}, z^{3}, f(x, y, z)\right) \subset k[x, y, z]$ with $\operatorname{deg}(f)=3$ fails WLP iff $f \in\left(x^{3}, y^{3}, z^{3}, x y z\right)$. In addition, $\left(x^{3}, y^{3}, z^{3}, x y z\right)$ is the only monomial artinian ideal generated by 4 cubics that fails WLP.
- Togliatti (1929): The only non-trivial smooth surface $X \subset \mathbb{P}^{5}$ obtained by projecting the Veronese surface $V(2,3) \subset \mathbb{P}^{9}$ and satisfying a Laplace equation of order 2 is the image of \mathbb{P}^{2} via the linear system

$$
\left\langle x^{2} y, x y^{2}, x^{2} z, x z^{2}, y^{2} z, y z^{2}\right\rangle \subset\left|\mathcal{O}_{\mathbb{P}^{2}}(3)\right|
$$

Remark:

The linear system of cubics given by Brenner-Kaid's example $\left\langle x^{3}, y^{3}, z^{3}, x y z\right\rangle$ is apolar to the linear system of cubics $\left\langle x^{2} y, x y^{2}, x^{2} z, x z^{2}, y^{2} z, y z^{2}\right\rangle$ given in Togliatti's example.

Question:

Is there a relationship between artinian ideals $I \subset k\left[x_{0}, \cdots, x_{n}\right]$ generated by r forms of degree d that fails WLP and projections of the Veronese variety $V(n, d)$ satisfying at least a Laplace equation of order $d-1$?
$X \subset \mathbb{P}^{N}$ projective variety of $\operatorname{dim} n, p \in X$ a smooth point.
Choose affine coordinates around p and a local parametrization of X of the form $\phi\left(t_{1}, \ldots, t_{n}\right)$ where $p=\phi(0, \ldots, 0)$.
The tangent space to X at p is the k-vector space generated by the n partial derivatives of ϕ at p.

$$
\operatorname{dim} T_{p} X=n .
$$

We define the s-th osculating space $T_{p}^{(s)} X$ to be the span of all partial derivatives of ϕ of order $\leq s$.

$$
\operatorname{dim} T_{P}^{(s)} X \leq\binom{ n+s}{s}-1 .
$$

We say that X satisfies $\delta>0$ Laplace equations of order s if strict inequality holds for all smooth points p of X, and $\operatorname{dim} T_{p}^{(s)} X=\binom{n+s}{s}-1-\delta$ for general p.
We will also consider the projective sth osculating space $\mathbb{T}_{p}^{(s)} X$, embedded in \mathbb{P}^{N}.

Remarks.

(1) A non-degenerate curve $X \subset \mathbb{P}^{N}$ does not satisfy any Laplace equation.
(2) If $N<\binom{n+s}{s}-1$, then X satisfies at least one Laplace equation of order s.
(3) If $X \subset \mathbb{P}^{N}$ is a rational variety of dimension $n, \exists \mathbb{P}^{n} \rightarrow X$ a birational map given by $F_{0}, \cdots, F_{N} \in k\left[x_{0}, \cdots, x_{n}\right]_{d}$ and for a general point $p \in X$, the projective s-th osculating space $\mathbb{T}_{\rho}^{(s)} X$ of X at p is generated by the s-th partial derivates of $F_{0}, F_{1}, \cdots, F_{N}$ at p.

Problems:

(1) To classify all rational surfaces $X \subset \mathbb{P}^{N}, N \geq 5$, which satisfy at least a Laplace equation of order 2.
(2) To classify all rational surfaces $X \subset \mathbb{P}^{N}, N \geq\binom{ 2+s}{s}-1$, which satisfy at least a Laplace equation of order s.
(3) To classify all n-dimensional rational varieties $X \subset \mathbb{P}^{N}, N \geq$ $\binom{n+s}{s}-1$, which satisfy a Laplace equation of order s.

Macaulay-Matlis duality

- $V=k^{n+1}, R=\oplus_{i \geq 0} S y m^{i} V^{*} \cong k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$, $\mathcal{D}=\oplus_{i \geq 0}$ Sym $^{i} V \cong k\left[y_{0}, y_{1}, \cdots, y_{n}\right]$.
- There are products

$$
\begin{array}{ccc}
\text { Sym }^{i} V^{*} \otimes \text { Sym }^{i} V & \longrightarrow & \text { Sym }^{i-j} V \\
F \otimes D & \mapsto & F \cdot D
\end{array}
$$

making \mathcal{D} into a graded R-module. If $F\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in R$ and $D\left(y_{0}, y_{1}, \cdots, y_{n}\right) \in \mathcal{D}$, then

$$
F \cdot D=F\left(\partial / \partial y_{0}, \partial / \partial y_{1}, \cdots, \partial / \partial y_{n}\right) D .
$$

- If $I \subset R$ is a homogeneous ideal, we define the Macaulay's inverse system I^{-1} for I as

$$
I^{-1}:=\{D \in \mathcal{D}, F \cdot D=0 \text { for all } F \in I\} \subset \mathcal{D} .
$$

- If $M \subset \mathcal{D}$ is a graded R-submodule, then

$$
\operatorname{Ann}(M):=\{F \in R, F \cdot D=0 \text { for all } D \in M\} \subset R
$$

- The pairing $R_{i} \times \mathcal{D}_{i} \longrightarrow k \quad(F, D) \mapsto F \cdot D$ is exact; it is called the apolarity or Macaulay-Matlis duality action of R on \mathcal{D}. If $F \cdot D=0$ and $\operatorname{deg}(F)=\operatorname{deg}(D)$, then F and D are said to be apolar to each other.
- For any integer i, we have $h_{R / I}(i)=\operatorname{dim}_{k}(R / I)_{i}=\operatorname{dim}_{k}\left(I^{-1}\right)_{i}$.

Theorem

We have a bijective correspondence

$\{$ Homogeneous ideals $I \subset R\} \rightleftharpoons\{$ Graded $R-$ submodules of $\mathcal{D}\}$

Moreover, I^{-1} is a finitely generated R-module if and only if R / I is an artinian ring.

When considering only monomial ideals, we can simplify by regarding the inverse system in the same polynomial ring R, and in any degree, d, the inverse system l_{d}^{-1} is spanned by the monomials in R_{d} not in I_{d}.

Example

$$
\begin{aligned}
& \text { If } I=\left(x^{4}, y^{4}, z^{4}, x^{3} y, x^{3} z, x y^{3}, x z^{3}, y^{3} z, y z^{3}\right) \subset k[x, y, z] \text {, then } \\
& I^{-1}=\left(x^{2} y^{2}, x^{2} y z, x^{2} z^{2}, x y^{2} z, x y z^{2}, y^{2} z^{2}\right) .
\end{aligned}
$$

- Let / be an artinian ideal generated by r forms of degree d : $F_{1}, \cdots, F_{r} \in R=k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$. Let $I^{-1} \subset \mathcal{D}$ be its Macaulay inverse system. Associated to $\left(I^{-1}\right)_{d}$ there is a rational map

$$
\varphi_{(1-1) d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\binom{n d}{d}-r-1} .
$$

$\left.\overline{\operatorname{Im}\left(\varphi_{\left.(1-1)_{d}\right)}\right.} \subset \mathbb{P}^{\left({ }_{(}^{n+d} d\right.}\right)^{-r-1}$ is the projection of $V(n, d)$ from the linear system $\left\langle F_{1}, \cdots, F_{r}\right\rangle \subset\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$. Let us call it $X_{n,(l-1)_{d}}$.

- Associated to I_{d} there is a morphism

$$
\varphi_{I_{d}}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{r-1}
$$

$\varphi_{I_{d}}$ is regular because I is artinian. Its image $\operatorname{Im}\left(\varphi_{I_{d}}\right) \subset \mathbb{P}^{r-1}$ is the projection of the n-dimensional Veronese variety $V(n, d)$ from the linear system $\left\langle\left(I^{-1}\right)_{d}\right\rangle \subset\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$. Let us call it $X_{n, l_{d}}$.

- The varieties $X_{n, l_{d}}$ and $X_{n,\left(l^{-1}\right)_{d}}$ are called apolar.

Thm (M-MR-O) Let $I \subset R$ be an artinian ideal generated by r forms F_{1}, \ldots, F_{r} of degree $d, r \leq\binom{ n+d-1}{n-1}$. Then TFAE:
(1) The ideal $/$ fails the WLP in degree $d-1$,
(2) The homogeneous forms F_{1}, \ldots, F_{r} become k-linearly dependent on a general hyperplane H of \mathbb{P}^{n},
(3) The n-dimensional variety $X_{n,(l-1)_{d}}$ satisfies at least one Laplace equation of order $d-1$.

Remarks:

- The assumption $r \leq\binom{ n+d-1}{n-1}$ ensures that the Laplace equations obtained in (3) are not trivial. In the particular case $n=2$, this assumption gives $r \leq d+1$.
- For $n=2, d=3$ and $I=\left(x_{0}^{3}, x_{1}^{3}, x_{2}^{3}, x_{0} x_{1} x_{2}\right) \subset k\left[x_{0}, x_{1}, x_{2}\right]$, we recover Togliatti's example.

Definition: With notation as above, we will say that l^{-1} (or l) defines a Togliatti system if it satisfies the three equivalent conditions in the above Theorem.

EXAMPLE.

Let $d=2 q+1$ be an odd number and $n=2$. Let l_{1}, \ldots, l_{d} be general linear forms in $k[x, y, z]$. The ideal $\left(l_{1}^{d}, \ldots, l_{d}^{d}, l_{1} l_{2} \cdots l_{d}\right)$ is generated by $d+1$ forms of degree d and it fails the WLP in degree $d-1$ because $l_{1}^{d}, \ldots, l_{d}^{d}, l_{1} l_{2} \cdots I_{d}$ become dependent on a general line $L \subset \mathbb{P}^{2}$.

- For $d=3$ we recover Togliatti example.
- A similar construction in even degree produces ideals which do satisfy the WLP.

TORIC CASE

Proposition

Let $I \subset R:=k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ be an artinian monomial ideal. Then R / I has the WLP if and only if $x_{0}+x_{1}+\cdots+x_{n}$ is a Lefschetz element for R / I.
$\mathcal{L}_{n, d}:=\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ and $n_{d}:=\operatorname{dim}\left(\mathcal{L}_{n, d}\right)=\binom{n+d}{n}-1$.

Definition

- A linear subspace $\mathcal{L} \subset \mathcal{L}_{n, d}$ is called a monomial linear system if it can be generated by monomials.
- $\mathcal{L} \subset \mathcal{L}_{n, d}$ is called a monomial Togliatti's system if, in addition, its apolar system \mathcal{L}^{\prime} generates an artinian ideal which fails WLP in degree $d-1$, or equivalently, $X=\overline{\operatorname{Im}\left(\varphi_{\mathcal{L}}\right)}\left(\varphi_{\mathcal{L}}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\text {dim } \mathcal{L}}\right.$ the rational map associated to \mathcal{L}) satisfies a Laplace equation of order $d-1$.

Definition

- A linear subspace $\mathcal{L} \subset \mathcal{L}_{n, d}$ is called a monomial linear system if it can be generated by monomials.
- $\mathcal{L} \subset \mathcal{L}_{n, d}$ is called a monomial Togliatti's system if, in addition, its apolar system \mathcal{L}^{\prime} generates an artinian ideal which fails WLP in degree $d-1$, or equivalently, $X=\overline{\operatorname{Im}\left(\varphi_{\mathcal{L}}\right)}\left(\varphi_{\mathcal{L}}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\text {dim } \mathcal{L}}\right.$ the rational map associated to \mathcal{L}) satisfies a Laplace equation of order $d-1$.
- A monomial Togliatti's system $\mathcal{L} \subset \mathcal{L}_{n, d}$ is said to be smooth if, in addition, X is a smooth variety.
- A monomial Togliatti's system $\mathcal{L} \subset \mathcal{L}_{n, d}$ is said to be minimal if its apolar system \mathcal{L}^{\prime} is generated by monomials m_{1}, \cdots, m_{r} and there is no a proper subset $m_{i_{1}}, \cdots, m_{i_{r-1}}$ defining a monomial Togliatti system
- Togliatti: For $n=2$, the only smooth minimal monomial Togliatti system of cubics is $I=\left(x_{0}^{3}, x_{1}^{3}, x_{2}^{3}, x_{0} x_{1} x_{2}\right)$.

Theorem (Michałek - MR)

Let $I \subset R:=k\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ be a minimal smooth monomial Togliatti system of quadrics and $n \geq 3$. Then, there is a bipartition of $n+1: n+1=a_{1}+a_{2}$ with $n-1 \geq a_{1} \geq a_{2} \geq 2$, such that, up to permutation of the coordinates

$$
I=\left(x_{0}, \cdots, x_{a_{1}-1}\right)^{2}+\left(x_{a_{1}}, \cdots, x_{n}\right)^{2}
$$

GOAL:

To classify ALL smooth minimal monomial Togliatti systems of cubics $I \subset R:=k\left[x_{0}, x_{1}, \cdots, x_{n}\right], n \geq 2$.

ILARDI's CONJECTURE

Conjecture

The only smooth minimal monomial Togliatti system $\mathcal{L} \subset \mathcal{L}_{n, 3}$ of cubics of dimension $n(n+1)-1$ is

$$
\mathcal{L}=\left|\left\{x_{i}^{2} x_{j}\right\}_{0 \leq i \neq j \leq n}\right| \subset \mathcal{L}_{n, 3} .
$$

(1) $\mathcal{L}=\left|\left\{x_{i}^{2} x_{j}\right\}_{0 \leq i \neq j \leq n}\right| \subset \mathcal{L}_{n, 3}$ is a smooth minimal monomial Togliatti system of cubics of dimension $n(n+1)-1$.
(2) $\mathcal{M}:=\mid\left\{x_{0}^{2} x_{2}, x_{0} x_{2}^{2}, x_{0}^{2} x_{3}, x_{0} x_{3}^{2}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{3}, x_{1} x_{3}^{2}, x_{2}^{2} x_{3}\right.$, $\left.x_{2} x_{3}^{2}, x_{0} x_{1} x_{2}, x_{0} x_{1} x_{3}\right\} \mid \subset \mathcal{L}_{3,3}$ is a smooth minimal monomial Togliatti system of cubics of dimension 11 ($\mathrm{n}=3$).

Problem:

To classify all smooth minimal monomial Togliatti systems of cubics $I \subset R:=k\left[x_{0}, x_{1}, \cdots, x_{n}\right], n \geq 2$.

- $n=2$. The only smooth minimal monomial Togliatti system of cubics is $I=\left(a^{3}, b^{3}, c^{3}, a b c\right) \subset k[a, b, c]$.
- $n=3$.

Theorem

Let $I \subset k[a, b, c, d]$ be a smooth minimal monomial Togliatti system of cubics. Then, up to a permutation of the coordinates, I^{-1} is:
(1) $\left(a^{2} b, a^{2} c, a^{2} d, a b^{2}, a c^{2}, a d^{2}, b^{2} c, b^{2} d, b c^{2}, b d^{2}, c^{2} d, c d^{2}\right), X$ is of degree 23 , in \mathbb{P}^{11}, it is isomorphic to \mathbb{P}^{3} blown up in the 4 coordinate points; or
(2) (abc, abd, $\left.a^{2} c, a^{2} d, a c^{2}, a d^{2}, b^{2} c, b^{2} d, b c^{2}, b d^{2}, c^{2} d, c d^{2}\right), X$ is of degree 18 , in \mathbb{P}^{11}, it is isomorphic to \mathbb{P}^{3} blown up in the line $\{c=d=0\}$ and in the two points $(0,0,1,0)$ and $(0,0,0,1)$; or
(3) ($\left.a b c, a b d, a c d, b c d, a^{2} c, a c^{2}, a^{2} d, a d^{2}, b^{2} c, b c^{2}, b^{2} d, b d^{2}\right), X$ is of degree 13 , in \mathbb{P}^{11}, it is isomorphic to \mathbb{P}^{3} blown up in the two lines $\{a=b=0\}$ and $\{c=d=0\}$.

PROPOSITION (Mezzetti - MR - Ottaviani):

Consider a partition of $n+1: n+1=a_{1}+a_{2}+\cdots+a_{s}$ with $n-1 \geq a_{1} \geq a_{2} \geq \cdots \geq a_{s} \geq 1$ and the monomial ideal

$$
\begin{gathered}
I=\left(x_{0}, \cdots, x_{a_{1}-1}\right)^{3}+\cdots+\left(x_{n+1-a_{s}}, \cdots, x_{n}\right)^{3}+J \text { where } \\
J:=\left(x_{i} x_{j} x_{k} \mid 0 \leq i<j<k \leq n\right. \text { and } \\
\left.\forall 1 \leq \lambda \leq s \quad \#\left(\{i, j, k\} \cap\left\{\sum_{\alpha \leq \lambda-1} a_{\alpha}, \cdots, \sum_{\alpha \leq \lambda} a_{\alpha}-1\right\}\right) \leq 1\right) .
\end{gathered}
$$

I is a smooth minimal monomial Togliatti system of cubics.

REMARK: $\mu(I)=\binom{a_{1}+2}{3}+\cdots+\binom{a_{s}+2}{3}+\sum_{1 \leq i<j<h \leq s} a_{i} a_{j} a_{h}$.
In particular, if $a_{1}=a_{2}=\cdots=a_{n+1}=1$ or $a_{1}=n-1$ and $a_{2}=a_{3}=1$, they have dimension $n(n+1)-1$ and we have a family of counterexamples to llardi's conjecture.

CONJECTURE (Mezzetti - MR - Ottaviani):

Up to permutation of the coordinates, the above ideals are the only smooth minimal monomial Togliatti system of cubics.

THEOREM (Michałek - MR):

Let I (or its inverse system I^{-1}) be a minimal smooth monomial Togliatti system of cubics. Then, up to a permutation of the coordinates, the pair $\left(I, I^{-1}\right)$ is one of the ideals described in Proposition A. Moreover, $\left\lvert\, \| \leq\binom{ n+1}{3}+n+1\right.$ and if $|I|=\binom{n+1}{3}+n+1$ then it corresponds to one of the following partitions:

- $n+1=(n-1)+1+1$,
- $n+1=1+1+\cdots+1$,
- $4=2+2$.

OPEN PROBLEM:

To classify all smooth minimal monomial Togliatti systems $I \subset R:=k\left[x_{0}, x_{1}, \cdots, x_{n}\right], n \geq 2$, of forms of degree $d \geq 4$.

THEOREM (Mezzetti - MR):

Let $I \subset R:=k\left[x_{0}, x_{1}, \cdots, x_{n}\right], n \geq 2$, be a smooth minimal monomial Togliatti system of forms of degree $d \geq 4$. It holds

$$
2 n+1 \leq \mu(I) \leq\binom{ n+d-1}{n-1}
$$

- E. Mezzetti, R.M.Miró-Roig and G. Ottaviani. Laplace equations and the Weak Lefschetz Property. Canadian Journal of Mathematics, 65 (2013), 634654. http://dx.doi.org/10.4153/CJM-2012-033-x.
- E. Mezzetti and R.M.Miró-Roig. The minimal number of generators of a Togliatti system. Preprint arXiv:
- M. Michałek and R.M. Miró-Roig. Smooth monomial Togliatti systems of cubics. Preprint arXiv:1310.2529.

THANK YOU!

