Rank 2 aCM bundles on del Pezzo varieties (of dimension at least three)

Gianfranco Casnati

Dipartimento di Scienze Matematiche - Politecnico di Torino

Dedicated to Philippe on the occasion of his 60th birthday Ferrara, June 15–18, 2015

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

- _____, D. Faenzi, F. Malaspina: Rank two aCM bundles on del Pezzo threefolds with Picard number 3. Preprint, arXiv:1306.6008 [math.AG], to appear in J. Algebra.
- _____, D. Faenzi, F. Malaspina: Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section. In preparation.
- On rank two bundles without intermediate cohomology. In preparation.
- M. Filip: Rank two aCM bundles on the del Pezzo threefold of degree 7. In preparation.

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

- All the schemes are defined over the field of complex number C.
- If X and Y are schemes and $X \subseteq Y$ is closed, then $\mathcal{J}_{X|Y}$ denotes the ideal sheaf.
- \mathbb{P}^N is the projective *N*-space over \mathbb{C} .
- A variety X is a smooth, closed, irreducible subscheme of \mathbb{P}^N not contained in any hyperplane. In this case we set $\mathcal{O}_X(1) := \mathcal{O}_{\mathbb{P}^N}(1) \otimes \mathcal{O}_X$.
- If \mathcal{F} is a coherent sheaf on a variety X, then we denote by $H^i(X,\mathcal{F})$ the i^{th} cohomology group of \mathcal{F} and by $h^i(X,\mathcal{F})$ its dimension over \mathbb{C} . Moreover $H^i_*(X,\mathcal{F}) := \bigoplus_{t \in \mathbb{Z}} H^i(X,\mathcal{F}(t))$.
- A vector bundle is a locally free sheaf of finite rank.
- A line bundle is an invertible sheaf.

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- 4 Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

Theorem (A.Grothendieck)

Every vector bundle \mathcal{F} on \mathbb{P}^1 is decomposable, i.e. splits as the direct sum of line bundles.

Theorem (Horrocks)

Let \mathcal{F} be a vector bundle on \mathbb{P}^N . Then \mathcal{F} is decomposable i.e. splits as the direct sum of line bundles, if and only if it has no intermediate cohomology, i.e.

$$H^i_*(\mathbb{P}^N,\mathcal{F})=0, \qquad 1\leq i\leq N-1.$$

Definition

A variety $F \subseteq \mathbb{P}^N$ is aCM if $H^i_*(\mathbb{P}^N, \mathcal{J}_{F|\mathbb{P}^N}) = 0$, $1 \le i \le \dim(F)$. A vector bundle \mathcal{F} on an aCM variety F is aCM if $H^i_*(\mathbb{P}^N, \mathcal{F}) = 0$, $1 \le i \le \dim(F) - 1$.

The aCM property is invariant up to twist by $\mathcal{O}_F(t)$. Thus we restrict to initialized \mathcal{F} , i.e. such that $h^0(F,\mathcal{F}(-1))=0$ and $h^0(F,\mathcal{F})\neq 0$. E.g.

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

Let Q be a smooth quadric. Besides \mathcal{O}_Q , there exist exactly two (if $n \geq 2$ is even), one (if $n \geq 3$ is odd) initialized, non–isomorphic, aCM bundles which do not split in the direct sum of vector bundles of lower rank.

The vector bundles above are called spinor bundles and have rank $2^{[(n-1)/2]}$.

Theorem (A. Knörrer, Inv. Math. 88 (1987))

A vector bundle \mathcal{F} on a smooth quadric Q splits as the direct sum of twisted spinor bundles and line bundles, if and only if it is aCM.

Theorem (G. Ottaviani, Ann. Mat. Pura Appl. 155 (1989))

A vector bundle $\mathcal F$ on a smooth quadric Q splits as the direct sum of bundles $\mathcal O_Q(\alpha)$, if and only if both $\mathcal F$ and $\mathcal F\otimes\mathcal S$ are aCM for the spinor bundles $\mathcal S$ on Q.

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

The zero locus $(s)_0$ of a non–zero section s of a vector bundle \mathcal{F} of rank 2 on F is either empty or it has codimension at most 2.

Let D be the codimension 1 part of $(s)_0$ (if any). Then there exists a section of $\mathcal{F}(-D)$ vanishing on the (possibly empty) codimension 2 part C of $(s)_0$.

The corresponding Koszul complex yields the exact sequence

$$0 \longrightarrow \mathcal{O}_F \longrightarrow \mathcal{F}(-D) \longrightarrow \mathcal{J}_{C|F}(c_1(\mathcal{F})-2D) \longrightarrow 0.$$

Moreover $deg(C) = deg(c_2(\mathcal{F}(-D))) = deg(c_2(\mathcal{F}) - c_1(\mathcal{F})D + D^2).$

The Hartshorne–Serre correspondence allows us to reverse the above result.

One can hope to study \mathcal{F} by dealing with C and conversely.

This is possible only if something can be said on the vanishing of the cohomology of $\mathcal{F}(-D)$.

E.g., if Pic(F) is generated by $\mathcal{O}_F(1)$, then D=0, because \mathcal{F} is initialized. If this is the case

$$\omega_C \cong \omega_X \otimes \mathcal{O}_C(c_1).$$

Theorem (C. Madonna, Rend. Sem. Mat. Torino 56 (1998))

Let $F \subseteq \mathbb{P}^N$ be a smooth aCM variety with $\dim(F) \geq 2$ with $\operatorname{Pic}(F) \cong \mathbb{Z}\mathcal{O}_F(1)$. Assume that $\omega_F = \mathcal{O}_F(\alpha)$ and set $\gamma(F) := \alpha + \dim(F)$. If \mathcal{F} is an indecomposable, initialized, aCM bundle of rank 2 on F with $c_1(\mathcal{F}) = \mathcal{O}_F(c_1)$, then

$$1-\gamma(F)\leq c_1\leq 1+\gamma(F).$$

If Pic(F) is not principal, the description is difficult: e.g., see the papers 1 and 2.

Easy facts

- If $c_1 = 1 \gamma(F)$ (resp. $2 \gamma(F)$), then C is a linear space (resp. a quadric) of dimension $\dim(F) 2$.
- If C ⊆ F is a linear space (resp. a quadric) of dimension dim(F) 2, then there exists an initialized aCM bundle F of rank 2 with c₁ = 1 − γ(F) (resp. 2 − γ(F)) with a section vanishing exactly along C.
- $c_1 = 1 + \gamma(F)$ if and only if \mathcal{F} is an Ulrich bundle, i.e. it has a linear resolution as sheaf on \mathbb{P}^N . In this case a general section of \mathcal{F} vanishes on a smooth, irreducible, linearly normal scheme of pure codimension 2 not contained in a hyperplane of \mathbb{P}^N .

Known fact

• If $F \subseteq \mathbb{P}^N$ is a smooth quadric, then $\gamma(F) = 0$. Only $c_1 = 1$ is admissible. If N = 4, 5 (resp. $N \ge 6$) such a value is attained by the spinor bundle (resp. is not attained).

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- 4 Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

If $F \subseteq \mathbb{P}^4$ is a smooth hypersurface with $\deg(F) \le 5$, then $\gamma(F) \ge 0$ and there exist indecomposable, aCM bundle of rank 2 on F: indeed each such an F contains a line. Other examples are given in G. Madonna, Rev. Mat. Complut. 13 (2000) and G. Chiantini–G. Madonna, Matematiche, 55 (2000).

If $F \subseteq \mathbb{P}^4$ is a general (hence smooth) hypersurface with $\deg(F) = 6$, then there are no indecomposable, aCM bundle of rank 2 on F (see L. Chiantini–C. Madonna, Internat. J. Math., 15 (2004)). When $\deg(F) \geq 5$ indecomposable, aCM bundle of rank 2 on F satisfy $H^i(F, \mathcal{F} \otimes \mathcal{F}^\vee) = 0$, i = 1, 2 (see K. Mohan Kumar–A.P. Rao–G.V. Ravindra, Comment. Math. Helvetici, 82 (2007)).

If $F \subseteq \mathbb{P}^N$, $N \ge 6$, is a smooth hypersurface, then there are no indecomposable, aCM bundle of rank 2 on F (see A. Beauville, Michigan Math. J., 48 (2000) and H. Kleppe, J. Algebra, 53 (1978)).

If $F \subseteq \mathbb{P}^5$ is a general hypersurface, then there are no indecomposable, aCM bundle of rank 2 on F (see K. Mohan Kumar–A.P. Rao–G.V. Ravindra, Comment. Math. Helvetici, 82 (2007)).

If $F \subseteq \mathbb{P}^N$ is a variety with $\dim(F) \ge 4$ which is the complete intersection of general hypersurfaces of sufficiently high degrees, then there are no indecomposable, aCM bundle of rank 2 on F (see J Biswas–G.V. Ravindra, Math. Z., 265 (2010)).

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

Let $F \subseteq \mathbb{P}^N$ be a del Pezzo n-fold, i.e. a smooth n-fold with $\omega_F \cong \mathcal{O}_F(1-n)$ with $n \geq 2$.

Notice that each general hyperplane section H of F is still del Pezzo (of dimension n-1).

We have $3 \le d := \deg(F) \le 9$ and N = d + n - 2.

In what follows \mathcal{F} will denote an indecomposable, initialized, aCM bundle on F of rank 2. It is easy to check that $\mathcal{F} \otimes \mathcal{O}_H$ is an initialized aCM bundle on H of rank 2 not isomorphic to $\mathcal{O}_H(a) \oplus \mathcal{O}_H(b)$

If n = 2 we have the following.

- The blow up of \mathbb{P}^2 at 9-d general points, $3 \le d \le 9$, embedded in \mathbb{P}^d via the system of cubics through such points.
- The 2–tuple embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ into \mathbb{P}^8 .

If $n \ge 3$, then $d \ne 9$ and we have the following.

- If d = 3, then F is a smooth cubic hypersurface: $Pic(F) \cong \mathbb{Z}\mathcal{O}_F(1)$.
- If d = 4, then F is a smooth complete intersection of two quadric hypersurfaces: $Pic(F) \cong \mathbb{Z}\mathcal{O}_F(1)$.
- If d = 5, then F is a general linear sections of the grassmannian of lines in \mathbb{P}^4 , thus $n \leq 6$: $\text{Pic}(F) \cong \mathbb{Z}\mathcal{O}_F(1)$.
- If d=6, then F is either the image of the Segre embedding $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subseteq \mathbb{P}^7$, or $\mathbb{P}^2 \times \mathbb{P}^2 \subseteq \mathbb{P}^8$, or a general hyperplane section of the latter, thus $n \leq 4$: in the first case $\mathrm{Pic}(F)$ is $\mathbb{Z}^{\oplus 3}$, in the second and third $\mathbb{Z}^{\oplus 2}$.
- If d = 7, then F is the blow up of \mathbb{P}^3 at a point p embedded in \mathbb{P}^8 via the quadrics through p, thus n = 3: $Pic(F) \cong \mathbb{Z}^{\oplus 2}$.
- If d = 8, then F the 2-uple embedding of \mathbb{P}^3 in \mathbb{P}^8 , thus n = 3: $Pic(F) \cong \mathbb{Z}\mathcal{O}_{\mathbb{P}^3}(2)$.

Remark

Recall the following facts.

- If $c_1 = 0$ (resp. 1), then C is a linear space (resp. a quadric) of dimension n 2.
- If $c_1 = 2$, then a general section of $\mathcal F$ vanishes on a smooth, irreducible, linearly normal scheme C of pure codimension 2 with $\omega_C \cong \mathcal O_C(2+1-n)$. In particular:
 - if n = 3, then C is an elliptic normal curve;
 - ▶ if $n \ge 4$, then C is a del Pezzo (n-2)–fold;

in both the cases deg(C) = d + 2.

• If $C \subseteq F$ is a linear space (resp. a quadric, an ellptic normal curve, if n = 3, or a del Pezzo variety, if $n \ge 4$) of dimension n - 2, then there exists an initialized aCM bundle \mathcal{F} of rank 2 with $c_1 = 0$ (resp. 1, 2) with a section vanishing exactly along C.

3 < d < 5

In this case $Pic(F) \cong \mathbb{Z}\mathcal{O}_F(1)$, hence $0 \le c_1 \le 2$. If n = 3 the three cases $c_1 = 0, 1, 2$ actually occur, because each such a threefold contains lines, conic and elliptic normal curves of degree d + 2 (see E. Arrondo–L. Costa, Comm. Algebra 28 (2000)).

d = 3

Due to the aforementioned results for hypersurfaces:

- if n ≥ 5, there are no indecomposable, initialized, aCM bundle of rank 2;
- if n = 4, the general cubic does not carry indecomposable, initialized, aCM bundles of rank 2;
- if n = 4, there are cubics endowed with indecomposable, initialized, aCM bundles of rank 2 with $c_1 = 0, 1$.

d = 5

- The restriction to F of the tautological bundle is an indecomposable, initialized, aCM bundles of rank 2 with c₁ = 1 for each n;
- if n = 4, there are indecomposable, initialized, aCM bundle on F of rank 2 with c₁ = 0, because F contains planes;
- if n = 5, there are no indecomposable, initialized, aCM bundle on
 F of rank 2 with c₁ = 0, because the existence of a linear space of
 dimension 3 inside F forces F to be singular;
- If n = 4, 5, the problem of the existence of indecomposable, initialized, aCM bundle on F of rank 2 with $c_1 = 2$ is open;
- if n = 6, there are no indecomposable, initialized, aCM bundle on F of rank 2 with c_1 either 0 or 2, because there are neither \mathbb{P}^4 nor del Pezzo fourfolds of degree 7 inside F.

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

d = 6

Pic(F) is not principal, thus we do not have an immediate restriction on $c_1(F)$.

The classification of indecomposable, initialized, aCM bundles \mathcal{F} of rank 2 on F is as follows (see 1 and 2).

• If $F \cong \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, then \mathcal{F} exists if and only if $c_1(\mathcal{F}) \in \mathbb{Z}^{\oplus 3}$ is, up to permutations:

$$(0,0,0), (0,0,1), (1,2,2), (2,2,2), (1,2,3).$$

• If $F \cong \mathbb{P}^2 \times \mathbb{P}^2$ or its general hyperplane section, then \mathcal{F} exists if and only if $c_1(\mathcal{F}) \in \mathbb{Z}^{\oplus 2}$ is, up to permutations:

d = 7

Again Pic(F) is not principal: the same methods used in the case d = 7 can be applied in this case (see M. Filip, in preparation).

d = 8

Pic(F) is principal, hence $0 \le c_1 \le 2$. Notice that F does not contain curves of odd degree, thus only the two cases $c_1 = 1, 2$ are allowed. In the first case $\det(\mathcal{F}) \cong \mathcal{O}_F(1) \cong \mathcal{O}_{\mathbb{P}^3}(2)$, in the second $\det(\mathcal{F}) \cong \mathcal{O}_F(2) \cong \mathcal{O}_{\mathbb{P}^3}(4)$.

Only the second case occurs. $\mathcal{F}\otimes\mathcal{O}_{\mathbb{P}^3}(-1)$ is the null–correlation bundle (see 3).

- References and notation
 - References
 - Notation
- Classical results
 - An overview on aCM bundles
 - aCM bundles on smooth quadrics
- Recent results
 - Rank 2 aCM bundles and codimension 2 subvarieties
 - Rank 2 aCM bundles on complete intersections
- Results for del Pezzo n-olds
 - del Pezzo cubics and quintics
 - del Pezzo varieties of degree 6, 7, 8
 - del Pezzo quartics

Lemma

Let $F \subseteq \mathbb{P}^N$ be a complete intersection with $n \ge 2r + 1 \ge 3$. If $C \subseteq F$ is a complete intersection of dimension n - r contained in a linear space of dimension N - r - 1, then F is singular at some point of C.

F is the complete intersection of two quadrics. Due to the Remark and Lemma:

- if n ≥ 7, there are no indecomposable, initialized, aCM bundle on F of rank 2;
- if n = 5, 6, the only possible indecomposable, initialized, aCM bundle on F of rank 2 must have $c_1 = 2$;
- if n = 4, there are indecomposable, initialized, aCM bundle on F of rank 2 with c₁ = 0, because F contains 64 planes (e.g. see M. Reid, PhD thesis).

Let n = 4. F is the complete intersection of a smooth quadric Q with a quadric Q' of rank 6. The equation Q' is the pfaffian of a antisymmetric matrix M of linear forms. Restricting M to Q, we obtain

$$\varphi \colon \mathcal{O}_{Q}(-1)^{\oplus 4} \rightarrowtail \mathcal{O}_{Q}^{\oplus 4}.$$

It is easy to check (see, 3) that

$$\mathcal{F} := \mathsf{coker}(\varphi)$$

is an initialized, aCM bundle of rank 2 on $F = Q \cap Q'$ with $c_1 = 1$. \mathcal{F} is indecomposable, because $h^0(F, \mathcal{F}) = 4$.

Conversely each indecomposable, initialized, aCM bundle of rank 2 on ${\it F}$ arises in the above way.

Recall that there are exactly 7 quadrics of rank 6 in the ideal of F.

Let n = 4. Take the spinor bundle S on a smooth quadric Q through F. rk(S) = 4, $\wedge^2 S^{\vee}$ is globally generated. Thus there is

$$\varphi \colon \mathcal{S} \rightarrowtail \mathcal{S}^{\vee}$$

antisymmetric. $c_1(S) = -2$, thus

$$\mathcal{F} := \mathsf{coker}(\varphi)$$

is supported on a smooth quadric section F of Q (see 3). \mathcal{F} is an indecomposable, initialized, aCM bundle of rank 2 on F with $c_1 = 2$.

We do not know if there is such a bundle on each del Pezzo 4–fold of degree 4.

Let n=5,6. Indecomposable, initialized bundles of rank 2 on F with $c_2=2$ correspond to del Pezzo threefolds and fourfolds E of degree 6. The ideal of E is generated by 9 quadratic polynomials f_1,\ldots,f_9 . Thus the two generators f_1 and f_2 of the ideal of F satisfy

$$f_i = \sum_{h=1}^9 a_i^h q_h.$$

In 3, using CoCoA and the above expressions for f_1 and f_2 , we prove the following.

- If $E \cong \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ one checks that the discriminant of the pencil of quadrics generated by f_1 and f_2 is a square. This implies that F would be singular (see M. Reid, PhD thesis).
- If $E \cong \mathbb{P}^2 \times \mathbb{P}^2$ or its hyperplane section, then the jacobian criterion for the equations of F again implies that F would be singular.