L'analisi di mutazioni di RET in Endocrinologia

Maria Chiara Zatelli

Sezione di Endocrinologia Dipartimento di Scienze Biomediche e Terapie Avanzate Università degli Studi di Ferrara Direttore: Prof. Ettore degli Uberti

RET (REarranged during Transfection) protooncogene

Long arm of chromosome 10 (10q11.2)

susceptibility gene for

- familial medullary thyroid cancer (FMTC)
- pheochromocytoma
- parathyroid hyperplasia/adenomas

multiple endocrine neoplasia type 2 (MEN 2)

RET dimerizes

associates with GFR -1

forms the GDNF receptor (glial cell line-derived neurotrophic factor recepor, GDNF R)

In the absence of GDNF, RET and GFR-1 do not dimerize

Nature Reviews | Neuroscience

EFE 2009

In the presence of GDNF the receptor complex is activated

autofosforilation

signal transduction pathway activation

Machens et al. 2009 J Intern Med 266: 114

100111 100111

RET is expressed in several normal tissues

1023.2 10425 1022.3 10425 1022.3 10425 1022.3 10425 1022.3 10425 1022.1 10425 1022.1 10425 1021.1 10425 1021.1 10425 1021.2 1045 1021.2 100

RET is expressed in several normal and neoplastic tissues

thyroid C cells +

RET mutations

constitutive supraphysiological activation of the RET receptor tyrosine kinase

cell hyperstimulation

adrenal medullary cells

parathyroid chief cells

'Gain-of-function' mutations

transmembrane domain codon 649 Least high transforming ability

RET protein monomers are kept in close proximity to each other through noncovalent receptor-receptor interactions

'Gain-of-function' mutations

cysteine-rich extracellular domains codons 515, 609, 611, 618, 620, 630, 634

High transforming ability

ligand-independent dimerization and crossphosphorylation of mutant RET receptor proteins

> loss of a cysteine residue irrespective of the amino acid substituting for cysteine

addition of one more cysteine residue in codons 533, 606 or 631

Machens et al. 2009 J Intern Med 266: 114

'Gain-of-function' mutations

intracellular tyrosine kinase domain codons 768, 790, 791, 804 and 891

facilitate the access of ATP to its binding site

intracellular catalytic core codon 918 Very high transforming ability

EFE 2009

Machens et al. 2009 J Intern Med 266: 114

RET mutations in Endocrinology C. Codon 918 Mutation Α. Normal GDNF GDNF $GFR\alpha -1$ GFRα -Cell - Membrane------ Membrane ---Cell RET RET E768D P Y1015 Y1062 L790F Y791F V804L/I PLC-y JNK JNK S891A p38MAPK p38MAPK M918 Substrate Y952 **Activated Dimer Activated Monomer** Mutations in the intracellular kinase domain cause <u>RET autophosphorylation</u>, independently of dimerization and of the ligand EFE 2009

GENOTYPE-PHENOTYPE CORRELATION

MEN2A: MTC, hyperparathyroidism, pheochromocytoma

(100% penetrance)

MEN2B: MTC, pheochromocytoma, muco-cutaneous neuromas

(98% penetrance)

FMTC: MTC

	Table 3	6-4. Germline Mutations of the	RET Proto-oncogene in Multiple	e Endocrine Neoplasia Type	e 2*
Affected Codon	Exon	Amino Acid Change Normal→Mutant	Nucleotide Change Normal→Mutant	Clinical Syndrome	Percentage of All MEN2 Mutations
609	10	Cys→Arg C →Tr	TGC→CGC	MEN2A/FMTC	0-1
611	10	Cys → T yr Cys → T yr Cys → T rp	TGC→TAC TGC→TGG	MEN2A/FMTC FMTC	2–3
618	10	Cys→Gly Cys→Ser Cys→Gly Cys→Arg	TGC→GGC TGC→AGC ⁺ TGC→GGC TGC→CGC	MEN2A/FMTC	3-5
		Cys→Phe Cys→Ser Cys→Tyr	TGC→TTC TGC→TCC TGC→TAC		
620	10	Cys→End Cys→Arg Cys→Tyr Cys→Phe	TGC→TTGA TGC→TAC ¹¹ TGC→TTC	MEN2A/FMTC	6-8
630 634	==	Cys→Ser Cys→Gly Cys→Phe Cys→Ser	TGC→TCC TGC→TTC TGC→AGC	FMTC MEN2A ¹	<0.1 80-90
		Cys→Gly Cys→Arg Cys→Tyr Cys→Phe Cys→Ser	TGC→GGC TGC→CGC TGC→TAC TGC→TTC TGC→TCC		
768 790 804	21 21 21 2 1	Cys→Trp Glu→Asp Leu→Phe Tyr→Phe Val→Met	TGC→TGG GAG→GAC TTG→TTT TAT→TTT GTG→ATG GTG→ATG	FMTC MEN2A/FMTC FMTC FMTC	0-1 <0.1 <0.1 0-1
883 891 918	15 15 16	Val→Leu Ala→Phe Ser→Ala Met→Thr	G1G→11G GCT→TTT TCG→GCG ATG→ACG	MEN2B FMTC MEN2B	- 0-1 10-20

Table 1 Pr	revalence of RI	ET germline mut	ations in Continental	Europe based	on 356 RET fami	lies ^a	
Risk	Mutated	Germany	France [51, 65],	Italy [66],	Poland [67],	Czech Republic	Total,
category	codon	[64], n (%)	n (%)	n (%)	n (%)	[68], n (%)	n (%)
++++	918	21 (15)	3 (3)	5 (7)	2 (7)	3 (14)	34 (9.6)
++++	883	0	0	1 (1)	0	0	1 (0.3)
+++	634	57 (40)	46 (47)	23 (33)	9 (33)	11 (50)	146 (41.0)
++(+)	630	1 (1)	0	3 (4)	0	0	4 (1.1)
+	631	1 (1)	0	0	0	0	1 (0.3)
++	620	10 (7)	12 (12)	4 (6)	4 (15)	0	30 (8.4)
++	618	7 (5)	6 (6)	7 (10)	2 (7)	0	22 (6.2)
++	611	2 (1)	1 (1)	1(1)	0	1 (5)	5 (1.4)
++	609	1 (1)	1 (1)	1(1)	3 (11)	1 (5)	7 (2.0)
+	533	0	0	0	0	0	0
+	768	2 (1)	2 (2)	3 (4)	0	1 (5)	8 (2.2)
+	790	17 (12)	4 (4)	1 (1)	0	0	22 (6.2)
+	791	10 (7)	0	0	5 (19)	2 (9)	17 (4.8)
+	804	9 (6)	15 (15)	14 (20)	1 (4)	3 (14)	42 (11.8)
+	891	3 (2)	7 (7)	6 (9)	1 (4)	0	17 (4.8)
Total	Any	141	97	69	27	22	356

^aConsidering series with a minimum of 20 RET families only.

Machens et al. 2009 J Intern Med 266: 114

Fig. 2 Genotype-phenotype correlations according to known germline mutations

TED CODONS	EXONS	PHENOTYPE
533	8	FMTC
603	10	FMTC
609		FMTC/MEN 24
611		FMTC/MEN 24
618		FMTC/MEN 24
620		FMTC/MEN 24
630	11	FMTC
632/633/634		MEN 2A
634		MEN 2A
640		MEN 2A
641		MEN 2A
648		MEN 2A

768	13	FMTC
781 790/791		FMTC FMTC
120/121		TMIC
804	14	FMTC
844		FMTC
883	15	FMTC/MEN 2B
891		FMTC
904		FMTC/MEN 2B
912	16	MEN 2B
918		MEN 2B
922		MEN 2B
Part		

EFE 2009

Elisei et al. J Clin Endocrinol Metab 2007, 92(12):4725-4729

DNA-based screening

Following the discovery of RET mutations in the germline of patients with MEN type 2, DNA-based analysis of the RET proto-oncogene was rapidly integrated into the routine clinical armamentarium.

Machens et al. 2009 J Intern Med 266: 114

Cost-effective identification of affected family members

Gilchrist et al. Clin Genet 2004; 66: 349–53

legal and ethical importance indicating the need for prophylactic thyroidectomy

gold standard of care

Rosenthal et al Thyroid 2005; 15: 140-5

Different forms of medullary thyroid cancer

Elisei R 2008 Best Pract Res Clin Endocrinol Metab 22: 941–953

Hereditary MTC

Germline RET mutations

- 95% of MEN2A kindreds
 Hirshprung disease
 Lichen amyloidosis
- → 88% of FMTC kindreds

→ >95% of MEN 2B kindreds (codon 918)

Prospective family screening

Elisei et al. 2007 J Clin Endocrinol Metab 92:4725-9

Castellone et al. 2008 Endocrinol Metab Clin North Am 37:363-74, viii

Hereditary MTC

6-75% of "sporadic" MTC carry a germline RET mutation

Elisei et al. 2007 J Clin Endocrinol Metab 92:4725-9

Wohllk et al. 1996 J Clin Endocrinol Metab 81: 3740-3745

RET genetic testing should be encouraged in all newly diagnosed MTC patients

The National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology 2009

biochemical screening for MEN2

hyperparathyroidims

pheochromocytoma

Genetic screening in proband and in first degree relatives is fundamental

High likelihood of developing MTC during lifespan

consider prophylactic thyroidectomy

follow up

How is genetic analysis perfomed?

- 1. Patient referral for MTC or family history of MTC
- 2. History evaluate family history
- 3. Clinical examination
- 4. Informed consent signature
- 5. Blood withdrawal (no fasting needed)
- 6. Sample sent to the Lab

Electropherogram analysis by a Technicial by the Physicial in charge

> Comparison with the normal sequence → any SNP?

Risk level	Risk	RET genotype (mutation in codon)
3	Highest	883, 918, 922
2	High	634, 630, 609, 611, 618, 620
1	Least high	768, 790, 791, 804, 891

Brandi et al. 2001 J Clin Endocrinol Metab 86: 5658–71

mutation site is one of the most important determining factors of risk and age-related penetrance of a specific RET mutation

Moore et al. 2008 Pediatr Surg Int 24:521–530

Sporadic MTC

40-50% of sporadic MTC display somatic RET mutations

Romei et al. 1996 J Clin Endocrinol Metab 81:1619–1622 Schilling et al. 2001 Int J Cancer 95:62–66 Zedenius et al. 1995 J Clin Endocrinol Metab 80:3088–3090 Zedenius et al. 1998 Cancer Detect Prev 22:544–548

Somatic RET mutations correlate with • presence of lymph node metastases at

- diagnosis • worse outcome
- disease persistence after surgery
- lower survival rate

bad prognostic factor

Elisei et al. 2008 J Clin Endocrinol Metab 93:682-7

Amino acid substitution	Nucleotide substitution	Reference
A876V	2627C>T	Uchino et al 1999
A883F	2647_2648GC>TT	Elisei et 2007
A919V	c.2756C>T	Uchino et al 1998
C630R	c.1888T>C	Bugalho et al 1997
C634A	c.?	Romei et al 1996
C634R	c.?	Elisei et 2007
C634T	c.?	Romei et al 1996
C634W	c.1902C>G	Elisei et 2007
C634Y	c.?	Elisei et 2007
D631_L633>E	c.1893_1898de1CGAGCT	Musholt et al 1997
D631G	c.1892A>G	Shirahama et al 199
D898_E901de1	c.2694_2705del12	Uchino et al 1999
E632_A640>VRP	c.1895_1918>TGCGGC	Marsh et 1998
E632_C634>L	c.1895_1900delAGCTGT	Kimura et al 1995
E632_L633del	c.1894_1899de1GAGCTG	Ceccherini et al 1997
E768D	c.2304G>C	Cho et al 2005
E884 K	c.2650G>A	Uchino et al 1999
E901 K	c.2701G>A	Uchino et al 1999
E921 K	c.2761G>A	Dvoráková et al 200
F612_C620del	c.1834_1860de127	Kalinin et al 1998
G592_G607 del	c.1774_1821de148	Ceccherini et al 1997
G748C	c.2242G>T	Uchino et al 1999
G911D	c.2732G>A	Dvoráková et al 200
M918T	c.2753T>C	Dvoráková et al 200
P766S	c.2296C>T	Bugalho et al 1997
R908K	c.2723G>A	Uchino et al 1999
V591I	c.1771G>A	Dvoráková et al 200
V778V	c.2334C>T	Uchino et al 1998

SURGERY

total thyroidectomy with dissection of ipsilateral and central neck compartments

? contralateral dissection ?

Sporadic MTC

Hereditary MTC

Asymptomatic RET mutation carriers before MTC occurrence

4

undetectable CT levels in > 95% of cases

Kouvaraki et al. Thyroid 2005 15: 531–544

SURGERY		Hereditary MTC		
	Risk level	Risk	Surgery within	
codon 918	3	Highest	within the first 6 months of life	
codons 609, 611, 618, 620, 630, 634	2	High	before 5 years of age	
codons 768, 790, 791, 804 and 891	1	Least high	between 5 and 10 years of age	

Falchetti et al. 2008 Best Pract Res Clin Rheumatol 22:149-63

aggressive neck dissection should be performed with lateral lymph node involvement

Medullary Thyroid Cancer: Management Guidelines of the American Thyroid Association

¹Treat hyperparathyroidism with 4 gland resection and autograft to heterotopic site, or subtotal parathyroidectomy. Consider cryopreservation. PHEO preoperative screening should begin by age 8 years for MEN 2B and mutated *RET* codons 634 and 630; otherwise by age 20 years for other *RET* mutations.

²Neck US to include the superior mediastinum and central and lateral neck compartments.

³Insufficient data to recommend routine prophylactic level VI compartment dissection.

⁴Parathyroid glands resected or devascularized should be autografted in the neck in *RET*-negative, MEN 2B, and FMTC patients, while MEN 2A glands should be auto graphed to a heterotopic site.

FIG. 1. Initial diagnosis and therapy of pre-clinical disease.

¹Treat hyperparathyroidism with 4 gland resection and autograft to heterotopic site, or subtotal parathyroidectomy. Consider cryopreservation. ²Ideally performed with genetics counseling and completed preoperatively.

³PHEO preoperative screening should begin by age 8 years for MEN 2B and mutated RET codons 634 and 630; and by age 20 years for other RET mutations.

⁴Parathyroid glands resected or devascularized should be autografted in the neck in *RET*-negative, MEN 2B, and FMTC patients, while MEN 2A glands should be autografted to a heterotopic site.

⁵Consider external beam radiation of TNM stage T4 disease to prevent recurrent local disease.

FNA, fine-needle aspiration biopsy.

FIG. 2. Initial diagnosis and therapy of clinically apparent disease.

TYROSINE KINASE INHIBITORS

Compound	Generic name	Structure	Targets ^a	Reference	
ZD6474 (AstraZeneca, Wilmington, DE)	Vandetanib	Anilinoquinazoline	RET (130 nmol/l) VEGFR2 (40 nmol/l) VEGFR3 (110 nmol/l) EGFR (500 nmol/l)	Herbst <i>et al</i> . ³⁹	
BAY 43-9006 (Bayer Pharmaceuticals, Leverkusen, Germany)	Sorafenib	Bis-aryl-urea	RET (47 nmol/l) VEGFR1 (26 nmol/l) VEGFR2 (90 nmol/l) VEGFR3 (20 nmol/l) PDGFRβ (57 nmol/l) FLT3 (33 nmol/l) KIT (68 nmol/l) FGFR1 (580 nmol/l) BRAF (6 nmol/l) BRAF (25 nmol/l) p38 MAPK (38 nmol/l)	Wilhelm <i>et al</i> . ⁴⁴	
AMG 706 (Amgen, Thousand Oaks, CA)	Motesanib	Nicotinamide	RET (59nmol/l) VEGFR1 (2nmol/l) VEGFR2 (3nmol/l) VEGFR3 (6nmol/l) PDGFRβ (84 nmol/l) FLT3 (33 nmol/l) KIT (8 nmol/l)	Polverino <i>et al</i> . ⁴⁷	
SU011248 (Pfizer, New York, NY)	Sunitinib	Indolin-2-one	RET (100 nmol/l) VEGFR2 (4 nmol/l) PDGFRβ (39 nmol/l) FLT3 (8–14 nmol/l) KIT (1–10 nmol/l) FGFR1 (880 nmol/l) CSF1R (50–100 nmol/l)	Chow and Eckhardt ⁴⁸	EFE 2009

TYROSINE KINASE INHIBITORS

phase II trials

- prolonged disease stabilization
- clinical benefits in 50% of the patients
- partial tumor responses in only few patients
- no improvement in survival so far

Sherman J Clin Endocrin Metab published online March 3, 2009

targeting RET is not sufficient to treat all MTC tumors

Schlumberger et al. Nat Clin Pract Endocrinol Metab. 2008;4:22-32

- Most MTC cases are cured by initial surgery when performed at an early stage
- Disease can persist or recur and metastasis can occur, with potentially serious effects on quality of life and mortality

- New drugs that rely on knowledge of molecular oncology in MTC are available and are needed for patients with metastatic MTC
- Well-designed clinical trials should help in selecting the most active compounds

RET mutation analysis is a fundamental step in the diagnostic work-up in medullary thyroid carcinoma patients

Nuove acquisizioni sulla patogenesi dei tumori tiroidei

Riesco-Eizaguirre et al. Clin Transl Oncol 2007, 9:686-693

EFE 2009

10(212 10(213) 10(213) 10(213) 10(223) 10(23)

Average prevalence of mutations in thyroid cancer

Tumor type	Prevalence (%)	Tumor type	Prevalence (%)
Papillary carcinoma		Medullary carcinoma	
BRAF	45	Familial forms of RET	>95
RET/PTC	20	Sporadic RET 50	
RAS	10	Poorly differentiated carcinoma	
TRK	<5	RAS	35
Follicular carcinoma		β-Catenin (CTNNB1)	20
RAS	45	TP53	20
PAX8-PPARg	35	BRAF	15
PIK3CA	<10	Anaplastic carcinoma	
PTEN	<10	TP53	70
		β-Catenin (CTNNB1)	65
		RAS	55
		BRAF	20
	EFE 2009		

MAPK signaling pathway

Alterations can occur at different levels in thyroid cancer

Nikiforov Y. Modern Pathology 2008, 21: S37–S43

RET/PTC rearrangement

intact RET TK domain binding to SHC RAS-RAF-MAPK activation

RET → cell membrane receptor tyrosine kinase activated by chromosomal rearrangement RET 3' portion fused to various unrelated genes 5' portion RET/PTC1 = RET + H4 RET/PTC3 = RET + NCOA4

PAPILLARY CARCINOMA

RET/PTC1 and RET/PTC3 paracentric inversions

- ✓ 20% of PTC, mainly classical histology
- ✓ younger age
- ✓ radiation exposure
- ✓ ↑ lymph node metastases
- ✓ lower stage (micro)
- found in adenomas and benign lesions

Nikiforova et al. Exp Rev Mol Diagn 2008, 8: 83

RET/PTC rearrangement

transforms thyroid cells in culture

Santoro et al. Cell Growth Differ 1993;4:77-84

gives rise to thyroid carcinomas in transgenic mice

Jhiang et al. Endocrinology 1996;137:375–378 Santoro et al. Oncogene 1996;12:1821–1826 Powell et al. Cancer Res 1998;58:5523–5528

requires a functional BRAF signaling Melillo et al. J Clin Invest 2005;115:1068–1081

inhibits thyroid-specific gene expression

increases cell proliferation

Mitsutake et al. Cancer Res 2005;65: 2465–2473

RET/PTC rearrangement

Found in 62% of HT

Sheils OM et al. Int J Surg Pathol 2000 ,8:185–189 Wirtschafter A et al. Laryngoscope 1997, 107:95–100 Rhoden KJ et al. J Clin Endocrinol Metab 2006, 91: 2414–2423

occult neoplasm ?

Bias!

technical limitations high false positive results lack of reproducibility

RAS mutations

H-RAS, K-RAS, N-RAS
highly related G-proteins located at the inner surface of the cell membrane
mediate intracellular signal transduction from cell membrane receptors

many human neoplasms display point mutations

mutant protein

permanently in active conformation constitutively activates signaling pathways

PAPILLARY CARCINOMA

NRAS, HRAS or KRAS point mutations
15-20% of PTC, mainly follicular variant
16-20% of PTC, mainly follicular variant

✓ also found in benign lesions

Nikiforova et al. Exp Rev Mol Diagn 2008, 8: 83

PAPILLARY CARCINOMA

RAS mutations

- → TSH-independent growth
- → TSH-dependent apoptosis
- → de-differentiation
- +→ DNA damage

Riesco-Eizaguirre et al. Endocrine-Related Cancer 2007, 14:957

genomic instability

BRAF V600E point mutation

[K601E and V599Ins]

✓ 45-80% of PTC, mainly tall cell and classic hystology

 $\checkmark \uparrow$ extrathyroidal invasion

✓ higher stage

 ✓ ↑ recurrence (with reduced I up-take) Lupi et al. J Clin Endocrinol Metab. 2007;92:4085
 ✓ ↑ de-differentiation

resticted to PTC

Nikiforova et al. Exp Rev Mol Diagn 2008, 8: 83 EFI

BRAF mutation screening

to evaluate surgical aggressiveness of neck dissection

to reduce PTC recurrence rate and avoid increase in complications

to plan aggressiveness of medical management

Xing M Endocr Rev 2007,28:742

High accuracy of BRAF mutation detection for PTC on FNAB specimens

Xing M Endocr Relat Cancer 2005,12:245

cytologically diagnosed PTC

preoperative BRAF mutation test on FNAB?

Section of Endocrinology University of Ferrara

diagnostic FNAB from October 2007 to December 2008

suspicious for malignancy according to AACE/AME guidelines

Gharib et al. Endocr Pract 2006 12 63-102.

Solid isoechoic nodules shaded margins ± microcalcifications

374 pz (262 ♀; 112 ♂) age 50.7 ± 0.7 (14-88)

469 FNAs -

└──→ Pathology

Biomolecular

analysis

EFE 2009

Zatelli MC et al. Eur J Endocrinol. 2009 Sep;161(3):467-73

FNAB cytological analysis

benign
 follicular lesions

 follicular lesions of undetermined significance
 follicular neoplasm/suspicious for follicular neoplasm

 suspicious for malignancy
 malignant
 non diagnostic

guidelines of National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference

Baloch et al. Diagn Cytopathol 2008 36 425-437

BRAF V600E mutation analysis in nodule samples according to cytological category

samples	BRAF+	BRAF-
308	6	302
29	0	29
60	1	59
22	10	12
49	31	18
1	0	1
469	48	421
	samples 308 29 60 22 22 49 1 1 469	samplesBRAF+3086200290600122210499311046948

Statistical evaluation

	PPV	NPV	sensitivity	specificity	accuracy			
Cytology	92,1%	95,9%	77,3%	98,8%	95,4%			
V600E <i>BRAF</i> mutation analysis	100,0%	93,7%	64,0%	100,0%	94,4%			
Both	92,9%	97,5%	86,7%	98,8%	96,9%			
	McNemar test (with Yates correction) P < 0.01							
	-73	EFE 2009						

BRAF V600E mutation analysis

associated to FNAB cytology significantly increases

PTC diagnostic accuracy of cytology in thyroid FNAB

of clinically and US suspicious nodules

may be added to pre-surgical risk evaluation of PTCs

Fusion between PAX8 gene and PRAR γ

Kroll et al. Science 2000;289:1357–1360

aberrant PPARy protein overexpression

cell transformation

inhibition of normal PPAR γ function

Gregory Powell et al. Oncogene 2004;23:3634–3641

deregulation of PAX8 function

Reddi et al. Endocrinology 2007;148:932-935

activation of known PPAR target genes

Giordano et al. Clin Cancer Res 2006;12:1983–1993

FOLLICULAR CARCINOMA

PPARy/PAX8 rearrangement

t(2;3) (q13;p25)

✓ 45% of FTC

- ✓ younger age
- ✓ small tumor size

✓ ↑ vascular invasion

Also found in follicular adenomas and in Hurtle cell carcinomas

Nikiforova et al. Exp Rev Mol Diagn 2008, 8: 83

FOLLICULAR CARCINOMA

NRAS and HRAS mutations

- ✓ 30% FA and 45% of FTC
- ✓ large tumor size
- ✓ ↑ distant metastases
- ✓ ↑de-differentiation and poor prognosis

Not specific !

Nikiforova et al. Exp Rev Mol Diagn 2008, 8: 83

THYROID CANCER PATHOGENESIS FOLLICULAR CARCINOMA NRAS and HRAS mutations Follicular carcinoma Follicular adenoma Improved diagnostic accuracy in samples prophylactic surgery? with negative or insufficient cytology Nikiforova et al. Mod Pathol 2004, 17 (suppl. 1):77A EFE 2009

FOLLICULAR CARCINOMA

PI3K/Akt pathway alterations

PIK3CA mutations: 23% ATC and 8% FTC PTEN LOH: 7% FA and 27% of FTC

Lack of large studies

Nikiforova et al. Exp Rev Mol Diagn 2008, 8: 83

ANAPLASTIC CARCINOMA

p53 inactivating point mutations

✓ highly prevalent in ATC and PDC

Ito et al. 1992 Cancer Res 52:1369–1371 Fagin et al. 1993 J Clin Invest 91:179–184

✓ are not directly tumorigenic

cooperation with other oncogenes is necessary for malignancy

✓ loss of differentiated phenotype

Battista et al. 1995 Oncogene 11:2029–2037

ANAPLASTIC CARCINOMA

Mutations in anaplastic thyroid carcinomas

				Catenin ^a .				
References	Ras	BRAF	ТР53	beta 1	РІКЗСА	Axin	APC	PTEN
Fagin et al. (1993)			5/6					
Donghi et al. (1993)			5/7					
Zou et al. (1993)			1/5					
Zedenius et al. (1996)			1/4					
Garcia-Rostan et al. (1999)				19/31				
Garcia-Rostan et al. (2003)	15/29							
Fukushima et al. (2003)	2/7	0/7						
Namba et al. (2003)		2/6						
Nikiforova et al. (2003)		3/29						
Soares et al. (2004)		6/17						
Begum et al. (2004)		8/16						
Kurihara et al. (2004)				1/22		18/22	2/22	
Quiros et al. (2005)	1/8	5/8						
Garcia-Rostan et al. (2005)					16/70			
Takano et al. (2007a)		4/20						
Mitsiades et al. (2007)		1/7						
Hou et al. (2007) and Liu et al. (2008)	4/50	14/49			6/50			8/48
Santarpia et al. (2008)	2/36	9/36			5/36			2/36
Costa et al. (2008)	13/36	9/36						
Total (%)	37/166	61/231	12/22	20/53	27/156	18/22	2/22	10/84
	(22%)	(26%)	(55%)	(38%)	(17%)	(82%)	(9%)	(12%)

Smallridge et al Endocrine-Related Cancer 2009,16:17–44

10111 101123 101123

ANAPLASTIC CARCINOMA

Cytogenetic analyses in patients with anaplastic thyroid cancer

	Patients	Cell lines				
References	(<i>n</i>)	(<i>n</i>)	Gains	Losses	Both	Chromosomes
Jenkins <i>et al.</i> (1990)	2	-				Complex clonal karyotype; loss of eight (both); x; y -2, -4, -8, -9, +11, -13, +14, -14, +15, -17, -19, -20, -21, -22, -x, -y
Hemmer et al. (1999)	13	-	10/13	3/13	2/13	+7p (31%);+8q (23%);+9q (23%)
Wilkens et al. (2000)	9	2				Gains in 14 chromosomes; losses in eight chromosomes; most common: 5p amplified; 8p, 8q gains or losses
Kitamura <i>et al.</i> (2000)	21					Allelic losses 16/21; Losses: 1q (40%); 9p (58%) ; 11p (33%); 11q (33%); 17p (44%); 17q (43%); 19p (36%); 22q (38%)
Wreesmann <i>et al.</i> (2002)	15	-				Early Gains: 5, 8, 19; losses: 8, 22; intermediate: gains: 1, 6, 9, 17, 20; losses: 1, 2, 6, 13 late: gains: 3p, 11q; losses: 5q
Miura <i>et al.</i> (2003)	10	1	5/10	2/10		Gains: 1, 4, 5, 6, 7, 10, 14, 16, 19, 20, 21, x; losses: 3p; 9q
Rodrigues et al. (2004)	7	-				Gains in all chromosomes; losses less common; high amplification in: 3p, 5p, 6p, 9p, 12p, 14q, 18p
Rodrigues et al. (2007)	-	3				Amplifications: 3q24; 5p; 7p; 7q; 12p; 14q; 20
Lee et al. (2007)	-	8				Frequent: gains: 8q; 11q; 19; 20q; losses: 4q; amplification: 8q
Lee <i>et al.</i> (2008)	27					Gains: 1q21; 6p22-p21; 7q11.22-11.23; 11q13; 12q13; 16p11.2; 17q21; 19p13; 19q13. 1-q13.2; 20q11.2; 20q13.12; 22q11.21; 22q.13.1 Losses: 4q12-q13.1; 4q28.3; 13q21.2-q21.31

EFE 2009

101111

Microarray analysis

gene expression radiation signatures

DNA repair pathway

susceptibility to develop radiation-induced cancer

Detours et al. Curr Opin Endocrinol Diabetes Obes 15:440-445

Receptor tyrosine kinase inhibitors in clinical trials in thyroid cancer

Name	Other names	Tyrosine kinase targets (only those $IC_{50}\!<$ I μM)	Clinical development
Imatinib mesylate	Gleevec, glivec,	ABL, KIT, PDGFR	Approved for
(Novartis)	STI571		CML, GIST
Gefitinib	ZD1839, iressa	EGFR	Approved in some
(AstraZeneca)			countries for NSCLC
Axitinib	AG-013736	VEGFR-1, -2, -3, PDGFR, KIT	Investigational
(Pfizer)			
Vandetanib	Zactima,	EGFR, RET, VEGFR-2, -3	Investigational
(AstraZeneca)	ZD6474		
Sunitinib (Pfizer)	Sutent,	VEGFR-2, PDGFR, KIT, FLT3,	Approved for metastatic
	SU11248	RET, FGFR-1, CSF-1R	renal carcinoma and
			imatinib-resistant GIST
Sorafenib	Nexavar,	RAF, BRAF, P38, VEGFR-1, -2, -3,	Approved for metastatic
(Bayer)	BAY 43-9006	PDGFR, FLT3, RET, KIT, FGFR-I	renal carcinoma
Motesanib	AMG 706	VEGFR-1, -2, -3, KIT, RET,	Investigational
diphosphate		PDGFR, FLT3	
(Amgen)			
XL184 (Exelixis)	-	RET, VEGFR-2, MET	Investigational
Pazopanib	GW-786034	VEGFR-1, -2, -3, PDGFR,	Investigational
(GlaxoSmithKline)		KIT, FGFR-I	

ABL, Abelson murine leukaemia viral (v-abl) oncogene homologue; PDGFR, platelet-derived growth factor receptor; KIT, stem-cell factor receptor; EGFR, epidermal growth factor receptor; VEGFR, vascular endothelial growth factor receptor; FLT3, fms-related tyrosine kinase; RET, rearranged during transfection; FGFR, fibroblast growth factor receptor; MET, hepatocyte growth factor receptor; CSF-IR, colonystimulating factor receptor.

**CML = chronic myelogenous leukaemia, GIST = gastro intestinal stromal tumours; NSCLC = non small cell lung carcinoma.

Castellone et al, Best Pract Res Clin Endocrinol Metab 2008, 22: 1023–1038

In conclusion

- much has been discovered concerning thyroid cancer pathogenesis
- preclinical studies help in characterizing the activity of new drugs and to validate their targets
- patients enrolled in clinical studies need to be genotyped for the compound target

New opportunities to design clinical trials based upon tumor molecular profiling and preclinical studies of potentially synergistic combinatorial novel therapies

Endocrine Molecular Lab

Sezione di Endocrinologia Università degli Studi di Ferrara Ambulatorio Malattie Rare Ambulatorio Carcinomi Tiroidei

D.ssa Maria Chiara Zatelli Laboratorio di Fisiopatologia Endocrina Sezione di Endocrinologia Tel: 0532 455859 - 237272 Fax: 0532 236514 E-mail: ztlmch@unife.it

AHNYOUL

Ambrosio Maria Rosaria Bondanelli Marta Buratto Mattia Calabrò Veronica Carli Anna Rita Filieri Carlo Franceschetti Paola Gentilin Erica Leoni Stefania Lunardon Silvia Malaspina Alessandra Margutti Angelo Minoia Mariella Molè Daniela Rossi Roberta Tagliati Federico Trasforini Giorgio Zatelli Maria Chiara

Ettore degli Uberti

