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Abstract. Logic Programming is a programming paradigm widely used for teaching Artificial Intelligence in university courses.

Prolog, probably the most popular Logic Programming language, is based on inferences similar to theorem provers, and learning

it is propaedeutical for understanding formal specification languages.

However, after a first phase in which students learn how specifications can be translated into executable code, a second phase

is necessary for engineering the resulting program. In this second phase, having a clear picture of the execution model is crucial.

In this paper, SLDNF-Draw, a program that visualizes the SLDNF operational semantics of Prolog, is presented. SLDNF-

Draw produces trees in LATEX, the popular typesetting system, so that the generated trees have very high typographic quality and

can be embedded in printed documents (e.g., course handouts) as well as in animated presentations.

SLDNF Draw is completely written in Prolog, as a meta-interpreter, and does not rely on external imperative languages for

the visualization.
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1. Introduction

Logic programming languages are one of the most

successful examples of declarative languages; they

have a formal declarative semantics, as well as sound

and complete corresponding operational semantics.

They have a notable number of practical applications,

are widely used in Artificial Intelligence, and are of-

ten used in university courses as a valid tool to support

learning of AI techniques [12].

In fact, many applications in AI represent the knowl-

edge of the system in logics, and tree-search is widely

used to find a solution. Logic programming languages

provide efficient tree-search algorithms, and have

transparent backtracking mechanisms. The most pop-

ular logic programming language is probably Prolog.

1A preliminary version of this article was presented informally in

[14]
*Corresponding author. E-mail: name.surname@unife.it.

In Prolog the user is not required to adopt the prede-

fined search method, nor to blindly accept the other en-

gineered choices adopted by the language developers:

Logic Programming lets the user easily redefine the in-

terpreter by means of meta-interpretation. Practical ap-

plications range from solving combinatorial problems

(for instance, Constraint Logic Programming is one of

Logic Programming ribs and is effectively used by var-

ious companies, like British Airways, Cisco Systems,

Airfrance, just to name a few) to formal verification of

security protocols [3,4,5,10].

However, learning Logic Programming requires a

change in the approach to programming: while in im-

perative programming the focus is on algorithms (Al-

gorithms + Data Structures = Programs [28]), in logic

programming the control is intrinsically embedded in

the language, and the programmer has only to formally

state the logics of the program (Algorithm = Logic +

Control [18]). Thus, algorithms become less important

(at least at a first view), while giving correct speci-

1724-8035/17/$27.50 © 2017 – IOS Press and the authors. All rights reserved
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fications becomes crucial. This is exactly the goal of

rapid prototyping: make specification and implemen-

tation (almost) coincide.

At a second view, however, the program must of-

ten be engineered, and be written taking into account

the underlying algorithm adopted by the resolution en-

gine, in order to avoid infinite loops, or frustrating in-

efficiencies. The reason is that Prolog is not a theo-

rem prover. A theorem prover must find a solution (if it

exists) at all costs, while Prolog is a Turing-complete

programming language that should let the user define

efficient programs. For example, Prolog skips the inef-

ficient breadth-first search strategy, and prefers an in-

complete but fast depth-first search strategy.

The story is not new: students have to face and learn

the engineering art of choosing the right trade-off, and

exploit the available tools at their full capabilities.

The problem in teaching logic programming to en-

gineering students is that they often adopt an imper-

ative viewpoint; they are usually very skilled in writ-

ing programs in C, or C++, or Java. Thus, they of-

ten start imagining the operational behavior when they

write a program, without thinking very much about

the logic behind it. They become quite skilled in opti-

mizing logic programs, before fully understanding the

logic programming style itself.

For instance, typically students think that the clause

should be uniquely identified, and not simply non-

deterministically selected. Thus they often ask the

teacher if there is a language statement, or instruc-

tion, that the programmer should use to identify the in-

tended clause. The answer is twofold. In a first phase,

the professor should convince the students that such a

syntactic item is not necessary for a correct specifica-

tion of the program. In a second phase, the available

syntactic tools (like mode declarations, indexing, and

even the cut) can be described, in order to improve the

efficiency.

The learning process can be seen composed of two

steps:

– learning to program in logics, forgetting about al-

gorithms

– figuring out the algorithm that has been devel-

oped, and improving it.

Hermenegildo [21] has a similar viewpoint, and sug-

gested to use in the first step a logic language with

a complete search strategy, and to introduce standard

Prolog, with its efficiency issues, in a second phase.

Learning, in both of the two phases, relies on a

good understanding of the operational semantics. The

usual operational semantics in Prolog is SLDNF-

resolution [7], i.e., SLD (Selected Literal Definite

clause) resolution together with Negation as Failure.

In SLD resolution every state in the computation is a

node of a tree; the tree will be typically explored by

depth-first search with backtracking. It is important,

for students, to visualise such trees, understand which

clauses will be selected, which will be cut. The Prolog

tracer could be used, but its use is indeed limited for

learning purposes.

Teachers need to show examples of SLDNF trees

in handouts, written material and presentations. How-

ever, drawing SLDNF trees with usual word proces-

sors or presentation software is a long and tedious op-

eration, beside being highly error-prone. Current tools

that show SLD trees usually assume that the user in-

teracts directly with the tool, that can scroll large win-

dows back and forth to compare different parts of a

tree. This makes such tools difficult to use for develop-

ing handouts for the students, and they are difficult to

use inside presentations, in particular with animations

that show incrementally how the tree is explored. Of

course, the teacher can use such tools giving a sort of

demo, but the generated trees are not meant to fit well

inside written documents and presentations. Also, the

language is usually a restricted subset of Prolog. Of-

ten there is no treatment of negation, of the cut, or of

Prolog built-in predicates.

This paper describes a tool that a visualization of

SLDNF trees in files that can be easily included into

written documents and presentations. The tool, called

SLDNF Draw, produces in output a LATEX file contain-

ing the commands to visualize an SLDNF tree. LATEX is

a high quality typographic system that is widely used,

in particular in the academia, to produce both written

documents apt for printing, and presentations that can

be projected in the class. Recent LATEX packages allow

the user to prepare high quality presentations, includ-

ing graphics and animations. SLDNF Draw produces

LATEX files containing trees that have high typographic

quality (in vectorial graphics) and with animations that

show interactively the exploration of the SLDNF tree

by a Prolog interpreter.

The rest of the paper is organized as follows. First

the specifications and features of SLDNF Draw are

given in Section 2. Some Prolog exercises that have

been proposed to students and visualized through

SLDNF Draw are in Section 3. Related work is de-

scribed (Section 4). Conclusions and possible direc-

tions for future work follow.
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2. SLDNF Draw

SLDNF Draw [13] is a program that visualises

SLDNF trees given a knowledge base and a goal.

The devised architecture is depicted in Figure 1. Af-

ter loading SLDNF Draw, the user consults a logic pro-

gram and provides a query. A file tree.tex is cre-

ated, containing the LATEX code necessary to visualize

the tree corresponding to the provided Goal. The file

tree.tex can then be included into other LATEX doc-

uments, such as articles, handouts, posters or presenta-

tions, that can then be printed or projected in the class-

room.

In the following, we define the structure and require-

ments taken into consideration in the development of

SLDNF Draw.

2.1. Open source meta-interpretation

SLDNF Draw is a visualization software entirely

written in Prolog. It is a meta-interpreter, i.e., a Pro-

log interpreter written in Prolog. The simplest Pro-

log meta-interpreter consists only of just three lines of

code [9]:

vanilla(true).

vanilla((A,B)):-

vanilla(A), vanilla(B).

vanilla(H):-

clause(H,Body), vanilla(Body).

Executing vanilla(G), where G is a Prolog goal, pro-

duces the same replies that a Prolog interpreter would

provide. Such simple meta-interpreter is almost use-

less as it is, since it barely executes a Prolog program

introducing some overhead. Its usefulness stands in the

fact that it follows strictly the steps that a Prolog inter-

preter executes, and it is can be easily extended to pro-

vide further features. SLDNF Draw extends the vanilla

meta-interpreter and saves the necessary information

to visualize the SLDNF tree onto a file.

A sketch of the core structure of SLDNF Draw is

shown in Listing 1. The interpreter in Listing 1 as-

sumes that the output is passed to some software for

visualization of graphs, such as GraphViz [11]. Predi-

cates save_node and save_edge save on a file the

instructions to add a node or an edge to a graph. For

example, executing draw(a) on the program shown in

the left of Figure 2 would provide the graph in the right

of the same Figure. Of course, this is not a complete

SLDNF tree (it does not show binding, failed nodes,

Listing 1: Sketch of meta-interpreter that saves an SLD

tree

draw(true):- save_node(’true’).

draw((A,Rest)):-

save_node( (A,Rest) ),

clause(A,Body),

append(Body,Rest,NewNode),

save_edge( A, NewNode),

draw(Body).

draw(A):-

save_node( A ),

clause(A,Body),

save_edge( A, Body),

draw(Body).

negation, etc.), so the interpreter has to be extended to

accommodate further features.

SLDNF Draw is completely written in Prolog, thus

no knowledge of imperative or object-oriented lan-

guages is required neither to use it, nor to understand

and modify its code. This is an important feature for a

software that aims at fostering the knowledge of logic

programming; also, it provides an interesting example

of Prolog program to be proposed to students.

It was developed for ECLiPSe [22], but it could be

ported to other Prolog dialects and implementations.

2.1.1. Full Prolog Syntax

Prolog is sometimes defined as SLD Resolution plus

Negation as Failure. Actually, Prolog is a full program-

ming language with built-ins that can handle math-

ematics (the is predicate, relational operators, etc.),

meta-predicates for aggregates (findall, setof,

etc.), and various extra-logic predicates (like var, ==,

copy_term, etc.). All these constructs are part of the

ISO Prolog and of most Prolog dialects, and are used in

almost every non trivial application. For these reasons,

SLDNF Draw has been developed to handle built-in

predicates and to be easily extensible for other, future

predicates.

2.1.2. Cut

One of the difficult concepts for students to un-

derstand is the cut symbol (written “!”). This extra-

logic predicate operationally removes some branches

of the SLDNF tree. Of course, cuts should be used

as rarely as possible. The trend is to exclude the cut

from new logic programming languages (even very ef-

ficient ones, like Mercury [23]), and to prefer operators
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SLDNF Draw

User’s logic program

Prolog environment

tree.tex

LATEX

kb.pl

document.pdfdocument.tex

User’s goal

LATEX

presentation.tex

presentation.pdf

Fig. 1. Architecture

a :- b, c.

a :- c.

c :- d.

d.

a

b, c c

d

true

Fig. 2. A simple Prolog program and a corresponding SLD tree plot-

ted with GraphViz

having a similar operational semantics but a more un-

derstandable behaviour (like, for example, the ->/3

meta-predicate).

However, the cut is still part of ISO Prolog and

of almost all Prolog implementations. The cut is still

widely used in Prolog programming, so understanding

it is important in order to understand software written

by others, and can be also useful to engineer and pro-

file the execution of a program.

For these reasons, it is important that students un-

derstand the operational semantics of cut, and visualise

the nodes that will be explored and the ones that will

be not.

2.2. Output

In order to be useful, the output format should be

easy to visualize, and to zoom in case of large trees. It

is desirable for the output format to be understandable

and easy to convert to other graphic formats.

LATEX was the chosen output format: it contains

packets that visualize trees given the declarative repre-

sentation, and it is easily convertible to Postscript and

most vector formats, as well as to bitmap formats.

LATEX was originally conceived for printed docu-

ments, and it has high typographic quality. Today, it is

currently widely used also for presentations, through

packages that support colors and animations.

SLDNF Draw lets one create trees that can be an-

imated, to show incrementally the construction of the

tree (see for example Figure 3). The typographic qual-

ity is that of LATEX, and the generated trees can be eas-

ily included both in printed papers and animated pre-

sentations.

A number of customizations are available, as Prolog

or LATEX predicates/commands, and they can be used

to fine tune the appearance of the generated tree, in-

cluding fonts, colors, types of animations, width and

height of the tree.

3. Exercises

A set of exercises are prepared for the students.

Teachers provide the knowledge base (the Prolog pro-

gram) and ask the students to visualise the correspond-

ing SLDNF tree. Then, students are asked to comment

on the result: whether the program is correct, how to

correct it if it is not, suggest improvements if it could

be made more efficient, and so on. Some of the pro-

posed exercises are shown in the rest of this section.
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Activating animations
First example

Larger example
Example of transition

Dissolve

The transitions available in pdf can be used. E.g., add \transdissolve to the LATEX
file to have a dissolve effect. Some renderers (e.g. Acrobat Reader) show the effect
only in presentation mode. See the manual of the beamer class.

true

false

2<2

false

4<2

false

member1(X0,[]),
X0<2

X0/4
member1(X0,[4]),X0<2

X0/2
member1(X0,[2,4]),X0<2

smaller([2,4],2)

not(smaller([2,4],2))

false

true

2<4

false

4<4

false

member1(X0,[]),
X0<4

X0/4
member1(X0,[4]),X0<4

X0/2
member1(X0,[2,4]),X0<4

smaller([2,4],4)

not(smaller([2,4],4))

false

member1(M0,[]),
not(smaller([2,4],M0))

M0/4
member1(M0,[4]),not(smaller([2,4],M0))

M0/2
member1(M0,[2,4]),not(smaller([2,4],M0))

minimumlist(M0,[2,4])

SLDNF Draw User’s manual

Fig. 3. A presentation in which an SLDNF tree is shown through

animations, showing only part of the tree.

3.1. Reversibility

One of the first examples in many Prolog courses is

about the member predicate and Prolog reversibility.

In logic programming, the predicate of membership of

a list

member(X,[X|T]).

member(X,[H|T]):- member(X,T).

can be obviously used to check if an element belongs

to a list (Figure 4), but can also be used to generate as-

true

false

member(2,[])

member(2,[3])

member(2,[2,3])

member(2,[1,2,3])

Fig. 4. member for checking membership

signments (Figure 5) for a variable (useful, for exam-

ple, for implementing a generate-and-test pattern) or

even for generating the elements of a list, or using lists

as approximation of sets [20] (Figure 6).

3.2. Recursion and Last call optimisation

Most Prolog compilers are able to optimize tail-

recursive predicates, with the so called last call opti-

true

true

true

false

member(X0,[])

X0/3

member(X0,[3])

X0/2

member(X0,[2,3])

X0/1

member(X0,[1,2,3])

Fig. 5. member for instanciating a variable

true

true

true

false

member(1,[])

Z0/1

member(1,[Z0])

Y0/1

member(1,[Y0,Z0])

X0/1

member(1,[X0,Y0,Z0])

Fig. 6. member for building a list

mization. In this case, the SLD tree shows the differ-

ence between a naively written predicate, like the fol-

lowing, that computes the length of a list (Figure 7):

len([],0).

len([H|T],N):- len(T,M), N is M+1.

and its tail recursive version (Figure 8):

lent([],N,N).

lent([H|T],Ni,No) :- Nt is Ni+1,

lent(T,Nt,No).

The differences are evident, and it is easy to convince

students that the first implementation takes more mem-

ory by simply looking at the shapes of the trees: of

course, the resolvent must be kept in memory in or-

der to execute the program. Also, the resolvent shows

the typical evolution of the stack in a recursive call:

first all the activations are pushed in the stack, then

the end condition is reached and the activation records

are popped out; so the tree has a diamond-like shape

(Figure 7). The tail-recursive implementation, instead,

needs a constant number of activation records, so the

length of the resolvent is almost constant.
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true

N0/3

N0 is 2+1

M0/2

M0 is 1+1,N0 is M0+1

M1/1

M1 is 0+1,M0 is M1+1,N0 is M0+1

M2/0

len([],M2),M1 is M2+1,M0 is M1+1,N0 is M0+1

len([3],M1),M0 is M1+1,N0 is M0+1

len([2,3],M0),N0 is M0+1

len([1,2,3],N0)

Fig. 7. Length of a list.

true

N0/3

lent([],3,N0)

Nt2/3

Nt2 is 2+1,lent([],Nt2,N0)

lent([3],2,N0)

Nt1/2

Nt1 is 1+1,lent([3],Nt1,N0)

lent([2,3],1,N0)

Nt0/1

Nt0 is 0+1,lent([2,3],Nt0,N0)

lent([1,2,3],0,N0)

Fig. 8. Length of a list: tail recursive implementation

3.3. Cut

The cut is always difficult to understand fully, and

even expert Prolog programmers can make mistakes.

One of the proposed exercises gives this definition of

the minimum of two numbers:

minw(A,B,A) :- A < B, !.

minw(A,B,B).

true

!

1<2,! (cut)
X0/1

minw(1,2,X0)

true

minw(1,2,2)

Fig. 9. Two invocations of the minimum predicate with cut give dif-

ferent (unsound) results

Such a definition seems perfectly reasonable at a first

sight: the minimum is A if A < B and it is B other-

wise. However, the SLD tree shows very clearly that

the answers can be unsound: in Figure 9, the first tree

shows how the answer to the question “what is the

minimum between 1 and 2” is computed: there exists

only one computed answer, which is 1. In the second

tree of Figure 9, instead, the question is “is 2 the mini-

mum between 1 and 2?”, and the answer, surprisingly,

is yes.

When facing this program, students are able to find

a correct implementation of the minw predicate. Some

of them think that the problem stands in the fact that

the second clause has a wrong meaning, thus the so-

lution should give a correct meaning to each of the

clauses taken by themselves. In this way, the imple-

mentation is correct even without cut, and propose this

solution:

minw(A,B,A) :- A < B.

minw(A,B,B) :- A >= B.

Others have a more imperative viewpoint, and suggest

that the problem is in the first clause: the unification

of the result with the output variable (that provides the

minimum) is done too early, before the test A < B is

evaluated. Remembering the if instruction of imper-

ative languages, they propose to postpone the unifica-

tion of the result and the output variable after the test

has been executed:

minw(A,B,M) :- A < B,!, M=A.

minw(A,B,B).

Both ideas are correct; students should be encour-

aged to propose alternative solutions, and select their

preferred one, knowing the pros and cons of the vari-

ous implementations. Figure 10 shows the SLD tree of

the correct version.

3.4. Negation

In some cases the specifications of the program co-

incide exactly with the definition given in mathemat-
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true
X0/1

1=X0

!,1=X0

1<2,!,1=X0 (cut)

minw(1,2,X0)

false

1=2

!,1=2

1<2,!,1=2 (cut)

minw(1,2,2)

Fig. 10. The SLD trees of the correct version of the minimum pred-

icate

ics. Consider, for example, the minimum of a list. The

definition proposed to students in mathematics courses

is the following: an element is the minimum of a set

if it belongs to the set and there is no such element

belonging to the set which is smaller.

min(S) = M ⇐⇒ M ∈ S ∧ ¬(∃X ∈ S,X < M).

The specifications are already executable:

minimumlist(M,L) :- member(M,L),

not(smaller(L,M)).

smaller(L,M):- member(X,L), X<M.

If the specifications are correct, the program is al-

ready correct; logics supports rapid prototyping. On

the other hand, the execution model can be inefficient,

as can be seen from the SLDNF tree (Fig. 11).

Vast parts of the tree are evidently repeated, so one

may think to optimise it by cutting some branches.

Since the minimum value is unique, one can stop the

search as soon as the minimum is found. Students are

usually very keen in understanding which branches can

be cut, and where the cut can be put in order not to

change the semantics of the program (Figure 12).

As a second step, if the efficiency requirements are

tight, it can be implemented with tail recursion, but this

typically means figuring out an algorithm, not simply

implementing specifications (Figure 13).

minimumlistt([],M,M).

minimumlistt([H|T],Mi,Mo):- H<Mi,!,

minimumlistt(T,H,Mo).

minimumlistt([H|T],Mi,Mo):- H>=Mi,

minimumlistt(T,Mi,Mo).

Another option would be to use tabling, a feature

available in many Prolog languages, which, however,

does not rely on the classical SLDNF resolution but on

the extension called SLG resolution [6]. As the name

implies, SLDNF Draw does not currently deal with

SLG resolution, although it would be an interesting ex-

tension.

3.5. Occur-check

Integer numbers can be defined in the very same

way the students are taught in mathematics courses,

i.e., from Peano axioms: an integer number is either

zero (0) or a successor (s) of an integer number. Ba-

sic operations can be defined easily; for example the

rules for the sum can be encoded with two clauses, the

first saying that X + 0 = X and the second declar-

ing that s(A) + B = s(C) whenever it is known that

A+B = C:

sum(0,X,X).

sum(s(A),B,s(C)):- sum(A,B,C).

Given such a definition, simple equations can be

solved, as conjunction of goals. For example,

{

X + Y = 3
Y + 1 =X

is written as the goal sum(X,Y,s(s(s(0)))),

sum(Y,s(0),X), and the Prolog interpreter cor-

rectly provides X = s(s(0)) and Y = s(0).
However, the interpreter can give wrong results if

the occur-check is turned off, as the following example

shows (Figure 14):

{

1 + Y =X
0 +X = Y

Seeing this example, students have different view-

points: either they think that the result is infinite, or

they think that the result is wrong (as a number can-

not be equal to its successor). It is worth to let students

discuss in brainstorming sessions or in small groups if

the provided result is correct. Finally, the professor ex-

plains the occur-check: the interpreter can check that

all the generated data structures will be acyclic before

performing unification. Of course, this has a cost, so

the user is warned. The occur-check can be switched

on, and a correct result is provided (Figure 15).

SLDNF Draw is a meta-interpreter that reuses the

same implementation of unification of Prolog, so it is

enough to switch on the occur-check in the host in-

terpreter to have SLDNF Draw produce SLDNF trees

with the occur-check. Other extensions of the unifi-
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true

false

2<2

false

4<2

false

member(X0,[]),X0<2

X0/4

member(X0,[4]),X0<2

X0/2

member(X0,[2,4]),X0<2

smaller([2,4],2)

not(smaller([2,4],2))

false

true

2<4

false

4<4

false

member(X0,[]),X0<4

X0/4

member(X0,[4]),X0<4

X0/2

member(X0,[2,4]),X0<4

smaller([2,4],4)

not(smaller([2,4],4))

false

member(M0,[]),

not(smaller([2,4],M0))

M0/4

member(M0,[4]),not(smaller([2,4],M0))

M0/2

member(M0,[2,4]),not(smaller([2,4],M0))

minimumlist(M0,[2,4])

Fig. 11. Minimum of a list: implementation based on the definition.

cation algorithm are immediately utilized by SLDNF

Draw; for example, many Prolog systems let one cus-

tomize the unification algorithm through attributed

variables [16].

3.6. Arrays

Although Prolog programs are often based on lists,

Prolog also has arrays, that can be extremely useful

when engineering and optimising programs. In fact, all

Prolog data structures are based on terms, that are built

with a functor and a sequence of terms that are acces-

sible in constant time. Thus, a term like a(X,Y, Z)
can be seen as an array containing three variables.

An array can be generated with the built-in predicate

functor/3 ; for example the previous array is gener-

ated with the goal functor(A, a, 3). The elements of

the array can then be accessed through unification:

for example, to access the second element the unifi-

cation A = a(_,K, _) can be used. However, arrays

should also let the user access the n-th element for any

computed n, not just for numbers predefined at com-

pile time. For this reason, Prolog contains the built-in

arg/3 predicate, that can be used to access the single

elements in constant time, as shown in the following

example:

initarr(A,N,N).

initarr(A,I,N):-

I<N,

arg(I,A,I),

J is I+1,

initarr(A,J,N).

The code is quite self-explanatory: the predicate cre-

ates an array containing the natural numbers from 1 to

N − 1. Note how the SLDNF tree in Figure 16 shows

the array being filled with values: the variables occur-

ring in the term a(X0, X1, X2) in initarr are as-

signed the numbers from 1 to 3.

4. Related work

Other tools are available on the web for drawing

SLD trees; some of them are reviewed in the following.

PrettyProlog [24] is an interpreter for Prolog written

in Java, born for didactic use, supporting list manage-

ment, cut, negation as failure and meta-programming.
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true

!

false

2<2

false

4<2

false

member(X0,[]),X0<2

X0/4

member(X0,[4]),X0<2

X0/2

member(X0,[2,4]),X0<2

smaller([2,4],2)

not(smaller([2,4],2)),! (cut)

M0/2

member(M0,[2,4]),not(smaller([2,4],M0)),!

minimumlist(M0,[2,4])

Fig. 12. Minimum of a list: implementation based on the definition,

cutting redundant branches.

It has a GUI showing the stack of the interpreter

and the SLD tree. The version published in [24] does

not support built-in predicates, such as the is pred-

icate; on the other hand it is interactive and shows

the evolution of the SLDNF tree step by step. Pret-

tyProlog was later evolved into PrettyCLP [25]; Pret-

tyCLP visualises the execution of a CLP program, in-

cluding the constraint propagation (that can be either

arc-consistency or path-consistency) and the labeling

phases.

SLD Draw [15] draws on-screen the SLD tree of a

goal. The source code is not provided; it does not han-

dle negation, although it can show the cut. However,

a good understanding of negation is fundamental in

logic programming, so using a standard representation

of negation in SLDNF trees is important for students.

Moreover, having available the source code is useful in

order to understand how the program works.

CI Space [8] is a set of tools for learning compu-

tational intelligence. Among others, it contains a Java

applet for drawing SLD trees. It has a limited support

for negation and no support for built-ins.

false

4<2,!,

minimumlistt([],4,M0)

true

M0/2

minimumlistt([],2,M0)

4>=2,

minimumlistt([],2,M0)

minimumlistt([4],2,M0)

!,minimumlistt([4],2,M0)

2<10,!,minimumlistt([4],2,M0) (cut)

minimumlistt([2,4],10,M0)

Fig. 13. Minimum of a list: tail recursive version.

true

Y0/s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(. . . )))))))))))))))

sum(0,s(Y0),Y0)

C0/Y0,

sum(0,Y0,C0),sum(0,s(C0),Y0)

X0/s(C0),

sum(s(0),Y0,X0),sum(0,X0,Y0)

Fig. 14. Equation solution without occurs check.

false

sum(0,s(Y0),Y0)

C0/Y0,

sum(0,Y0,C0),sum(0,s(C0),Y0)

X0/s(C0),

sum(s(0),Y0,X0),sum(0,X0,Y0)

Fig. 15. Equation solution with occurs check.

Prolog Visualizer [19] shows the execution of a Pro-

log program incrementally. It shows the phases of se-

lection of a clause, unification, and returned binding.

It also shows the corresponding SLD tree. However, it

does handle numbers, the built-in predicates (for ex-

ample, the ones for dealing with arithmetics), the cut,

nor negation.

Showing the behaviour of the full Prolog language

is important. As noted by Ducassé [21], especially for
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true

false

4<4,arg(4,a(1,2,3),4),
J3 is 4+1,initarr(a(1,2,3),J3,4)

initarr(a(1,2,3),4,4)

J2/4

J2 is 3+1,initarr(a(1,2,3),J2,4)

X2/3

arg(3,a(1,2,X2),3),J2 is 3+1,initarr(a(1,2,X2),J2,4)

3<4,arg(3,a(1,2,X2),3),J2 is 3+1,initarr(a(1,2,X2),J2,4)

initarr(a(1,2,X2),3,4)

J1/3

J1 is 2+1,initarr(a(1,2,X2),J1,4)

X1/2

arg(2,a(1,X1 ,X2),2),J1 is 2+1,initarr(a(1,X1 ,X2),J1,4)

2<4,arg(2,a(1,X1,X2),2),J1 is 2+1,initarr(a(1,X1 ,X2),J1,4)

initarr(a(1,X1 ,X2),2,4)

J0/2

J0 is 1+1,initarr(a(1,X1 ,X2),J0,4)

X0/1

arg(1,a(X0 ,X1,X2),1),J0 is 1+1,initarr(a(X0 ,X1,X2),J0,4)

1<4,arg(1,a(X0 ,X1,X2),1),J0 is 1+1,initarr(a(X0 ,X1 ,X2),J0,4)

initarr(a(X0 ,X1,X2),1,4)

A0/a(X0 ,X1,X2)

functor(A0 ,a,3),initarr(A0 ,1,4)

Fig. 16. Example with arrays

students who are not seeking academic careers, Prolog

is viewed as a toy language (too small and too sim-

ple) and is not appreciated as as a real programming

language. So, focusing only on SLD resolution with

Negation as Failure without considering the built-ins

could be too restrictive. Built-ins are important to show

the full capabilities of Prolog. In particular, engineer-

ing students should know the built-ins that can improve

efficiency: e.g., handling arithmetics is a must, and ar-

rays are very useful. A didactic program should show

how these built-in predicates behave, and how they in-

teract with the other predicates. Stated otherwise, a vi-

sualisation program should show the trees for a full

Prolog syntax, not just limit itself to SLD resolution.

Concerning the visualization of logic programming

execution, some important work has been done in the

context of Constraint Handling Rules (CHR). Abden-

nadher and Saft [1] developed VisualCHR, a visu-

alization tool to show the propagation of CHR con-

straints. VisualCHR is written in Java, and relies on

a Java implementation of the CHR engine; the CHR

compiler had to be modified in order to accommodate

the visualization. In order to extend VisualCHR also

for CHR implementations developed on top or Pro-

log, Abdennadher and Sharaf [2] propose a source-

to-source transformation that avoids the modification

of the CHR compiler. SLDNF Draw does not need a

source-to-source transformation because it relies on a

meta-interpreter. Differently from imperative and ob-

ject oriented languages, writing a Prolog interpreter in

Prolog is extremely easy, and consists of only three

lines of Prolog code. Such a simple interpreter can then

be modified to support the visualization of the execu-

tion as a tree.

Finally, although they do not show SLD trees, many

Prolog systems have visual interfaces for debugging,

that are useful also for learning the mechanisms used

by a Prolog interpreter. A very appealing one is in-

cluded in SWI Prolog [27], with a particularly nice

graph representation of the call stack.

5. Conclusion

This work presented SLDNF Draw, a program that

draws the operational semantics of Prolog. It is devel-

oped as a meta-interpreter, and it is available for the

students to look at its source code. It can be freely

downloaded from [13]

It has been used in university courses for teaching

logic programming and, in particular, the features of

Prolog. SLDNF Draw handles the full syntax of Pro-

log, it is not restricted to SLD resolution, but can han-

dle negation, cut, built-in predicates (like arithmetic or

aggregation predicates), which are necessary in real-

life applications.

The output of SLDNF Draw is a tree in LATEX, a

widely used typing system for elegant visualization of

documents and equations. Since it uses LATEX as out-

put format, SLDNF Draw is able to draw the SLDNF

tree in a handsome and clear format suitable for em-

bedding it into papers, posters, etc. Nonetheless, the

LATEX output can be also included in presentations, as

well as converted into vectorial and bitmap formats for

the web.
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SLDNF Draw is implemented as a Prolog meta-

interpreter, which makes it available for a wide variety

of platforms and operative systems. The first versions

of SLDNF Draw use only ISO-Prolog features, and

thus can run on any Prolog supporting the ISO stan-

dard. The last versions use some features specific of

ECLiPSe Prolog [22] for the representation of the vari-

able bindings, but earlier versions (with less features)

are still available for download on the web page [13].

In our experience, students find the program use-

ful to understand the operational semantics of Prolog:

they use it for making experiments, for understanding

which implementations are more efficient, and for vi-

sualising the Prolog execution.

Possible future extensions include extending the

software to show also SLG trees (or forests) [6], since

SLG resolution can be considered as an extension of

SLDNF resolution, and include constraint propagation

and branch-and-bound (in order to visualise Constraint

Logic Programming [17] derivations). A further exten-

sion could be to integrate SLDNF Draw into a web ap-

plication, for example in a front-end for Prolog such as

SWISH [26].
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