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Abstract. Cancer screening is a method of preventing cancer by early detecting
and treating abnormalities. One of the most critical screening phase is invitation
planning since screening resources are limited and there are many people to in-
vite. For this reason, smart resource allocation approaches are needed.
In the paper, we propose and compare two solutions for smart invitation plan
definition, one based on greedy approaches and one based on Constraint Pro-
gramming techniques that enable the definition of the optimal invitation plan.

1 Introduction

Cancer screening is a process finalized to the prevention of the illness from its starting
phases. Early diagnosis of tumors is fundamental, because atimely intervention makes
the healing easier and reduces the risk of death. In fact, uterus cancer, breast cancer and
many other tumors are preventable and fully curable if they are early diagnosed.

We focused on cervical cancer screening, that enables the identification of tumors in
the cervix. To reduce the mortality related to this kind of tumor it is necessary to ensure
periodically pap-test screening [2] for the entire female population with age between
25 and 64 years.

The screening process is managed by the screening center manager and consists of
several phases. First of all, the involved patients (composing the so-calledtarget popu-
lation) are identified, by excluding, e.g., people that have already a cancer and residents
in other areas. Given the target population, the next step isto create an invitation plan for
the screening examination. This plan should be coherent with the time availability of the
centers in which the screening examinations are performed.Once this planning phase
is finished, invitations are sent by mail to the target population, and usually patients are
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visited at the screening center in the scheduled time slots.The screening process then
proceeds in different ways, depending on the result of the screening examination.

Among all these phases, the most complex one, from an organizational point of
view, is the invitation planning since the number of patients is typically high and the
pap-test center resources (time and personnel) are limited. For this reason, we need
smart resource allocation approaches, exploiting optimization technology.

Baker and Atherill [1] study, by means of simulations of queue theory, the order of
patients to be invited. The order is then optimized by means of a sort of hill climbing
algorithm; the objective is to minimize the dissatisfaction of the patients (modelled as
a function of the waiting time), and the server idle time. Other authors [3, 5] use a
weighted sum of the patients average waiting time and serveridle time. In [1], authors
analyzed datasets of pap-test invitations in order to identify probabilistic models of
patient attendance and appointment rebooking.

In this paper, we describe the research activity carried on within an industrial project
of the Emilia Romagna region of Italy for handling the invitations of cervix cancer
screening in the Bologna district. In particular, we explain how invitation plans are cur-
rently generated and we propose two solutions to improve theefficiency of the process.
The first is based on greedy algorithms: we show two algorithms and the corresponding
results. The second is based on Constraint Programming techniques that provide the
optimal invitation plan.

Performance evaluations have been conducted on exact and heuristic solutions by
means of simulations on different scenarios involving different groups of women and
different pap-test center resources.

2 Pap-test invitation management

The definition of the pap-test invitation plan is a very complex task since it involves
many women and consequently requires a lot of resources. Involved information in-
clude: pap-test center resources, last pap-test examination date, screening history of
each woman in the target population, women addresses.

Pap-test center resources are represented by time periods offered each day for the
execution of the examinations. These time periods can change each month so each
center regularly communicates its monthly agenda to the screening center manager.
Usually the time assigned for each pap-test execution is 10 minutes. For this reason,
given a pap-test invitation at timeT , the next one can be scheduled at timeT plus
10 minutes. Moreover, given the pap-test duration, the number of patients that can be
invited a dayD in a pap-test center is the number of 10 minute slots contained in its
available time period.

The last pap-test examination date is important because thenext expected pap-test
should be performed three years after the last one.

The screening history of a woman is the collection of all the events happened during
her screening process (e.g., received/refused invitations, pap-test results). Depending on
these events, the woman is classified into three main priority levels: High Priority (HP),
Normal Priority (NP) and Low Priority (LP). A woman is classified as High Prior-
ity when during her screening history a high risk event has occurred (e.g., if a tumor
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was found and treated in the last two years). Normal Priorityis associated to women
that have accepted the last pap-test invitation and resultswere normal. Low priority is
assigned to women who have not accepted the last pap-test invitation. The screening
protocol prescribes to track such women and retry the pap-test invitation several times.
Statistics show that LP women have very low probability of accepting an invitation:
typically less than 30% of the invited women show up. For thisreason, overbooking
is a common practice: in our instance, the examination duration is reduced down to 3
minutes for LP patients. The assigned priority is one of the most important parameters
for the definition of the pap-test invitation plan because usually a fixed percentage of
the time-periods available in the pap-test centers is allocated for each priority level.

During the round, centers might be early or late on calls. In the first case, the center
can be excluded from the invitation plan. In the second case,overbooking is performed.

The address of a woman is important because she should be invited in the nearest
pap-test center in order to increase the probability of showing up.

Given the information described above, the definition of themonthly invitation plan
is made in several steps. The screening center manager receives from the pap-test cen-
ter the availability agenda for the next month expressed in minutes. A list of women to
invite is identified by filtering the target population by choosing among the target popu-
lation only those women whose invitation expires before a certain deadline. The overall
time availability is subdivided in slots of 10 minutes each.A percentage of slots is then
assigned to each priority level (default percentages are: 50% for High priority, 30 for
Normal priority and 20 for Low priority). The manager tries heuristically to match the
availability of the resources and the number of patients:

– If the number of slots is much higher than the number of patients to invite, the
manager moves the invitation expiration deadline to include as many patients as
possible without anticipating too much their invitations.

– If the number of slots is not enough, the manager decides if itis necessary to per-
form overbooking on some priority classes or postpone some invitations to the next
month with a time tolerance.

If a reasonable solution could not be obtained despite the heuristic fixes, the manager
contacts the pap-test centers asking for additional time availability.

3 Greedy approach

The invitation planning activity, shown in the previous section, relies heavily on trial-
and-error, is very error prone, and does not guarantee optimality (or even near-to opti-
mality). Its only chances of success stand in the manager’s experience.

We developed two greedy algorithms to support the screeningcenter manager in the
definition of the pap-test invitation: Priority-Date and Weighted.

The Priority-Date greedy algorithm schedules the women considering two aspects: the
expected invitation date and the priority.

Women in the target population are divided into three different lists depending on
their priority. Women in the same priority list are then ordered w.r.t. their expected date.
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In each day, available slots are subdivided in three groups according to a percentage
associated to each priority level (as described in Section 2). Each group represents the
maximum number of slots that can be used for each priority level.

For each priority list, women are extracted from the top of the list and assigned to
slots reserved for the corresponding priority. If for some priority the allotted time slots
in a month exceed the number of patients of the same priority,the remaining slots are
assigned to women of lower priorities.

The Weighted greedy algorithm tries to balance the two aforementioned criteria in or-
der to limit the introduced delays and to give importance to high priority classes. In
fact, Priority-Date tends to provide extreme solutions, inwhich high priority classes are
scheduled too eagerly, and low priority patients can be given significant delay.

We give to each patient a weight that depends on her associated delay and priority:

W = delay(Patient) · p(Patient)

wheredelay(Patient) is a function that returns the delay of thePatient invitation with
respect to the expected examination date andp(Patient) is a coefficient associated to
the priority level ofPatient (the highest the coefficient, the highest the importance
given to the delay). Moreover, as in the Priority-Date algorithm, the user can state that
in each day some slots are reserved for patients of a specific priority.

The patients are then ordered according to their weights. Given the ordered list,
the algorithm starts the assignment from the first day of the month and associates to a
slot reserved for a particular priority level the patient ofthe corresponding priority with
the highest weight. The slots non assigned for this prioritylevel are associated to the
women with the highest objective function values independently from their priorities.

3.1 Experiments on greedy algorithms

In order to test the proposed algorithms and highlight theirpros and cons, we set up a
simulation with very difficult conditions (more women to invite than the available time).
The instance spans over 5 months, and involves 2400 women with expected invitation
dates randomly generated with uniform distribution. Out ofthe 2400 women, 1150
were given low priority, 950 normal and 300 high. The pap-test center has a daily time
availability of 50 minutes (5 pap-test examinations of 10 minutes or 16 if we consider
overbooking with 3 minutes for each examination), 7 days a week.

As shown in Table 1, the Priority-Date algorithm, configuredwith default parame-
ters (50% of time for high priority, 30% for normal priority and 20% for low priority),
gives too much importance to the high priority women introducing significant delays
for the low priority women (up to 75 days of delay). The introduction of an objective
function in the weighted greedy algorithm represents an evolution of the Priority-Date
one, capable of reducing the delays for low priority women (up to 52) as shown in Table
1. It also introduces, for each day, a better allocation of the available slots by balancing
priorities and delays in the objective function.

The problem of this greedy algorithm is that it cannot identify an optimal invitation
plan as it only discovers local optima. Consider for instance a day in which low priority
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Table 1.Max number of delay/anticipation days

Algorithm Priority Max AnticipationMax Delay
Priority-Date HP 22 1
Weighted HP 0 16
Priority-Date NP 5 9
Weighted NP 0 16
Priority-Date LP 0 75
Weighted LP 2 52

patients are subject to overbooking, and a free slot of 10 minutes. We can accommodate
either 1 high priority woman with a time delay of one day or 3 low priority women with
a time delay of one day each. If we have assigned to the high, normal and low priority
levels respectively a weight of 10, 7 and 4 in the objective function. The algorithm
orders patients according to their weight: first the high priority woman whose weight is
(10 ·1 = 10), then the three low priority patients whose weight is4 ·1 = 4 each. Indeed,
even if the delay of low priority women rises up to two days they are still ordered after
the high priority woman. The weighted algorithm then selects the first patient in the list,
assigns the slot of 10 minutes to the high priority woman, thus delaying the three low
priority women of one day. This solution costs10 + 4 · 2 + 4 · 2 + 4 · 2 = 34.

Looking globally to our list, we observe that the one generated is not the optimal
solution as reserving the 10 minutes slot for inviting the 3 low priority women and
delaying the high priority invitation of one day has a lower cost10 ·2+4+4+4 = 32.

For this reason we used artificial intelligence techniques and Constraint Program-
ming for identifying the optimal invitation plan (the plan that has the lowest sum of all
the woman objective function values). This approach is described in details in Section 4.

4 Constraint Programming

The greedy algorithms presented in Section 3 provide reasonable solutions in a very
short time. The generated appointment schedules were submitted to the final users, that
deemed them acceptable. However, due to the combinatorial nature of the problem, a
greedy algorithm in general does not provide the optimal solution, and it never proves
optimality.

We decided to experiment with optimization algorithms, in order to find the opti-
mal solution, and to compare the quality of the solutions given by optimal and greedy
algorithms. The aim was to evaluate the viability of an Artificial Intelligence module,
exploiting a complete algorithm, in the appointment scheduling application.

Constraint Programming (CP) languages are devoted explicitly to the solution of
hard combinatorial problems. Initially born as a rib of Logic Programming, CP was
then extended also to the object-oriented paradigm. ModernCP languages contain li-
braries and solvers for different domains. Popular instances are CP(FD), in which the
unknowns range on Finite Domains, and CP(R), in which variables range on the set of
real numbers. The corresponding solvers are based on tree search enriched with prop-
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agation algorithms reaching Arc-Consistency (and its generalizations) for the FD do-
main, and on (Integer) Linear Programming for the domain of the reals.

We first experimented the viability of a CP(FD) model, but it did not provide op-
timal solutions in reasonable time. We then applied a CP(R) solution, exploiting an
integer linear programming model, that opens the way to efficient solvers based on
linear programming enriched with a branch and bound strategy.

4.1 CP(R) Model

At a first sight, one could think to associate a decision variable ADi, representing the
appointment date, to each patient. Unluckily, the number ofpatients could be large, and
many of them share same category and expected date, so the search space can contain
an exponential number of symmetric solutions obtained by permuting patients with
same features, that gives a well known combinatorial explosion of the search space [4].
Symmetric solutions can be pruned by adding the constraintsADi ≤ ADj whenever
i ≤ j. However, the number of variables is still very large. Therefore, we decided to
classify the patients into groups, each group being identified by a expected date and a
category, and associate a variable to each group.

Suppose we haveng groups andnd days. For each group of patientsg, and for each
possible invitation dayid, we define a positive decision variableIg,id ≥ 0, representing
the number of patients from groupg invited in dayid.

For each decision variable there is acost associated to such assignment. For the
group of patientsg the cost depends on the category and on the introduced delay with
respect to the expected dayed(g). Categories with higher priorities will contribute with
a higher cost than low-priority categories. The cost depends on the delay through a
nonlinear function. If the invitation date coincides with the expected date, the cost is
zero; the same holds if the invitation date is before the expected date, provided that
the anticipation is limited: there exists a parameterα defining the maximal number of
days a patient can be called in advance. The protocol required delays not to be higher
than 40 days; we defined a parameterδ (that defaults to 40). Delays superior toδ or
patients called more thanα days before their expected date contribute to the total with
a very high costM . A delay between 0 andδ contributes with a cost proportional to the
number of days of delay, multiplied to the priority coefficient p(g) of the groupg. The
objective function is then:

min

ng
∑

g=1

nd
∑

id=1

Ig,idcost(g, id − ed(g))

were the cost is defined as

cost(g, d) =







0 if α ≤ d ≤ 0
p(g) · d if 0 < d ≤ δ

M if d < α ∨ d > δ

The constraints (1) impose that the total capacity of the dayis not exceeded.capacity

is the total number of minutes available for visits in a givenday;duration is the dura-
tion of a visit, and it depends on the category and on the day (which enables the user to
define detailed policies for overbooking, varying the visitdurations).
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∑ng

g=1 Ig,id duration(g, id) ≤ capacity(id) ∀id ∈ 1..nd (1)

Note that an instance could be infeasible if the number of days is not enough to
accommodate all patients; in such a case a constraint solverdoes not provide a solution,
but simply returns failure. To provide the manager a reasonable answer also in this case,
we avoid infeasibility by introducing an additional day with unlimited capacity and with
a high costM to accommodate all patients.

Each patient should be invited exactly once, stated as constraint (2), where|g| is the
number of patients belonging to the groupg.

∑nd

id=1 Ig,id = |g| ∀g ∈ 1..ng (2)

Finally, the percentage of time devoted to visiting patients of each category should
be respected. Actually, in order to fully exploit the power of the optimizer, the problem
should not be too constrained (otherwise, if there are no freedom degrees, the optimal
solution boils down to the same solution given by a greedy algorithm). We decided to
guide the optimization process toward the specifications ofthe final user as follows.
We ask the user to impose a capacity per day per group of patients, CapPerc(c, id).
We check whether the total allotted time for each category isenough for visiting all the
patients in that category. If the allotted time is enough, weimpose that in each day the
number of patients of categoryc is at most the one specified by the user (3). Otherwise
(if the total time is not enough for that category), for each day we impose that the
number of patients of categoryc is at least the one prescribed by the user (4).

∀id ∈ 1..nd,∀c ∈ 1..nc s.t.
∑nd

id′=1 CapPerc(c, id′) <
∑nd

id′′=1 duration(c, id′′) =⇒
∑ngc(c)

g=1 Ig,idduration(g, id) ≥ CapPerc(c, id)

(3)

∀id ∈ 1..nd,∀c ∈ 1..nc s.t.
∑nd

id′=1 CapPerc(c, id′) >
∑nd

id′′=1 duration(c, id′′) =⇒
∑ngc(c)

g=1 Ig,idduration(g, id) ≤ CapPerc(c, id)

(4)

The model consisting of the objective function, constraints (1), (2), (3), (4) and
the integrality constraint for each variableIg,id is solved through branch and bound
exploiting a linear relaxation for bound computation. The branch and bound algorithm
solves the problem to optimality and proves the solution is optimal.

5 Experiments

We selected a series of experiments to compare the quality and the runtime of the greedy
algorithms with respect to the use of the CP(R) solver. In the experiments, we used an
instance with 204 patients to be scheduled in a period of one month, with random ex-
pected day. The patients are divided into three categories:28 patients HP, 74 NP and
104 LP. The visiting time is 10 minutes without overbooking,while it is reduced to 3
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minutes in case of overbooking (only for LP patients). The availability of the screen-
ing centre is 50 minutes per day, which is not enough to visit all the patients without
overbooking, thus some of the patients have to be be moved to the following month.

In Figure 1 we show the distribution of the difference between expected day and
invitation day for each of the categories for the weighted greedy algorithm detailed in
Section 3. In abscissa we represent the difference expectedday - invitation day, i.e.,
negative numbers represents anticipation with respect to the optimal invitation date,
while positive numbers represent delay. In ordinate, we have the number of patients (for
each category) that has such an anticipation/delay. The algorithm gives high priority to
high risk patients, which are anticipated, with respect to their ideal date, up to 20 days.
Correspondingly, delays are introduced for lower prioritypatients. This shows that there
is room for improvement: intuitively, some of the early patients could be swapped with
patients that are delayed.

Fig. 1.Distribution of the patients: weighted greedy algorithm

Figure 2 shows the distribution in the optimal solution. Both anticipations and de-
lays are drastically reduced: no patient is anticipated more than 4 days or delayed more
than 9 days. The values of objective function in the two situations synthesize the same
information visually presented in the graph: the greedy solution has cost 2037, while
the optimal cost is almost an order of magnitude better: 325.

The same can be said in the case with overbooking, as shown in Figures 3 and 4.
The corresponding costs are 558 for the greedy solution and 153 for the optimal one.

We used ILOG CPLEX 9.0 as solver; it was able to find the optimalsolution in a
very small time on an Intel Celeron CPU 2.4 GHz, 512MB RAM computer. In order to
test the scalability of the algorithm, we experimented witha higher number of patients,
up to 20,000. The algorithm scales very well: all the instances were solvable within one
minute, which is by far acceptable for an algorithm that is run once every month. The
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Fig. 2.Distribution of the patients: optimal solution

scalability can be easily explained: the unknowns in our models do not depend directly
on the number of patients, which can be large, but the number of groups, that cannot
grow beyond the number of possible days multiplied by the number of categories.

6 Conclusions

In the paper we have proposed greedy and exact algorithms forthe invitation plan gen-
eration for cancer screening.

Invitation plans, generated during experiments performedwith different patient and
resource configurations, were submitted to the final users, that deemed them acceptable,
in any case better than the current hand-generated plans.

Clearly, the choice between a greedy and an optimal algorithm should take into
account issues related to scalability, efficiency and solution quality. Small instances (up
to hundreds of patients to be scheduled in a month time horizon) can be effectively
solved via the exact approach proposed in this paper. When thetime horizon raises up
to several months we can either face the overall instance with a greedy approach or
we can decompose it by dividing the time horizon in monthly slices and solve each
sub-instance with the exact algorithm.

AcknowledgmentsThis work has been partially funded by the SPRING (Screening
PRotocol INtelligent Government) project, partially financed by Emilia-Romagna Re-
gion (Italy) under (PRRIITT 3.1.A), and by the MIUR PRIN project n. 2005-015491.
We would like to thank Dr. Natalina Collina of the Sanitary Agency of Bologna for her
contribution on the description of the screening process management. We also thank
Evelina Lamma and Paola Mello for their useful suggestions.



10

Fig. 3.Distribution of the patients: weighted greedy algorithm with overbooking

Fig. 4. Distribution of the patients: optimal solution with overbooking
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