
A Computational Logic-based System

for Specification and Verification

of Agent Interaction

Marco Alberti

2

Acknowledgements

I wish to thank all the people who have supported me during the three years of

my Ph.D.

The first person that I would like to thank is Evelina Lamma, who was my

Artificial Intelligence teacher, my tesi di laurea advisor, and is now my Ph.D.

supervisor. I thank her for helping me continuously in all aspects of my work,

and for encouraging and guiding me in this experience.

Then, I would like to thank all my co-authors: besides Evelina, Paola Mello,

Anna Ciampolini, Michela Milano, Marco Gavanelli, Paolo Torroni, Federico

Chesani, Alessio Guerri, and Davide Daolio, for all that I learned from them

and for sharing enjoyable working time with me.

Most of my work during this Ph.D. was done in the context of the SOCS

(IST-2001-32530) European project. This was an occasion for me to meet and

work with many prominent people and talented researchers in the field of Com-

putational Logic, and to share with them a complex and rewarding experience:

thanks to all the SOCS people from the Universities of Ferrara, Bologna, Pisa,

and Cyprus, and from the Imperial College and the City University in London.

And I wish to thank all the many people who have shared some of their time

with me, in enjoyable and inspiring conversations.

This thesis would not have been possible without the collaboration of the

people involved in SOCS in Ferrara and Bologna. During the past three years

I worked in so close collaboration with them that it has been impossible for me

to isolate my contribution to the work while keeping the thesis reasonably self-

contained. As a consequence, part of the thesis describes joint work with other

people: with Marco Gavanelli, Evelina Lamma, Paola Mello and Paolo Torroni

for the formal SCIFF framework, with Marco Gavanelli for the implementation

3

4

of the SCIFF unification, with Marco Gavanelli, Alessio Guerri and Michela

Milano for the combinatorial auction protocols, with Anna Ciampolini for the

social ACL semantics, with Federico Chesani, Marco Gavanelli, Evelina Lamma,

Paola Mello and Paolo Torroni for the automatic proof of properties. Moreover,

I gave no significant contribution to the theoretical definition of the SCIFF and

g-SCIFF proof procedures (defined by Marco Gavanelli, Evelina Lamma, Paola

Mello and Paolo Torroni), and to the implementation of the Java side of the

SOCS-SI system, which is Federico Chesani’s work. I also wish to thank Tarin

Gamberini and Valentina Maraldi, who worked as M.Sc. students on SOCS-

related issues at the ENDIF in Ferrara, for their useful feedback on the SCIFF

framework.

My work has been supported financially by the European Commission within

the SOCS project (IST-2001-32530), part of the Global Computing Programme,

and by the Italian MIUR, within the COFIN 2003 project La Gestione e la ne-

goziazione automatica dei diritti sulle opere dell’ingegno digitali: aspetti giuridici

e informatici.

Abstract

Open agent societies are multiagent systems where no assumptions can be made

on the agents that join them. Therefore, when specifying and verifying of open

agent societies, it is necessary to abstract away from the internal architecture and

policies of the individual agents, and to adopt an external perspective, focusing

on the observable agent behaviour.

Such an external (or social) point of view was adopted in SCIFF, the social

framework developed in the SOCS (IST-2001-32530) project.

The SCIFF framework is based on Computational Logic, in an attempt to

bridge the gap between declarative specification an operational verification. In

particular, SCIFF exploits abduction, a concept used in hypothetical reasaoning,

which appears an appropriate paradigm to reason about open agent societies,

when the agent behaviour cannot be predicted or enforced, but only hypothesised.

SCIFF features a language, with an abductive declarative semantics, for the

specification of agent interaction; its operational counterpart, an abductive proof

procedure, can be used for verifying that the agent behaviour is compliant to

the specification. The SCIFF proof procedure has also been extended in order to

synthesize a compliant agent behaviour, rather than only checking the compliance

of a given behaviour; this extension, called g-SCIFF, can be used for verifying

protocol properties.

In this thesis, we describe the SCIFF framework, focusing on the implemen-

tation of the SCIFF proof procedure and on the specification and verification of

two aspects of agent interaction: the social semantics of Agent Communication

Languages, and Interaction Protocols.

5

6

Contents

1 Introduction 11

1.1 Specification and Verification of Open MAS 11

1.1.1 Multiagent Systems . 11

1.1.2 Open Agent Societies . 12

1.2 Abduction in SOCS . 15

1.3 Content of this thesis . 16

2 The SCIFF Social Framework 19

2.1 Preliminaries . 19

2.2 Syntax . 20

2.2.1 Representation of the agent behaviour 20

2.2.1.1 Events . 20

2.2.1.2 Expectations . 21

2.2.2 Social specifications . 23

2.2.2.1 Social Knowledge Base 23

2.2.2.2 Social Integrity Constraints 24

2.2.2.3 Social Specification 27

2.3 Declarative Semantics . 27

2.4 Related work . 30

3 The SCIFF proof procedure 33

3.1 Data Structures . 33

3.1.1 Initial Node and Success 34

3.2 Variables . 35

3.3 Transitions . 37

7

8 CONTENTS

3.3.1 IFF-like transitions . 38

3.3.2 Dynamically growing history 40

3.3.3 Fulfillment and Violation 42

3.3.4 Consistency . 44

3.3.5 CLP . 44

3.4 SCIFF properties . 45

3.4.1 Soundness of SCIFF . 46

3.4.2 Termination of SCIFF . 46

4 Constraint Handling Rules 47

4.1 Syntax and semantics . 47

4.2 The SICStus Prolog CHR library 48

5 SCIFF Implementation 51

5.1 Overview . 51

5.1.1 Technology . 51

5.1.2 Adapting the SCIFF execution to Prolog 53

5.2 Representation of an instance . 54

5.3 Data Structures . 54

5.3.1 Resolvent . 55

5.3.2 Constraint Store . 55

5.3.3 Proof sets: PSIC, HAP, PEND, FULF, VIOL 55

5.3.3.1 Partially Solved Integrity Constraints 56

5.3.3.2 History . 57

5.3.3.3 Pending Expectations 58

5.3.3.4 Fulfilled Expectations 59

5.3.3.5 Violated Expectations 59

5.4 Variables . 59

5.5 Transitions . 60

5.5.1 IFF-like Transitions. 60

5.5.2 Dynamically Growing History. 64

5.5.3 Fulfillment and violation. 65

5.5.4 Consistency . 68

CONTENTS 9

5.6 The SOCS-SI system . 69

5.7 Related work . 70

6 Applications 73

6.1 Social ACL Semantics . 73

6.1.1 Agent Communication Languages 73

6.1.1.1 Mentalistic semantics 74

6.1.1.2 Social semantics 75

6.1.2 Social ACL semantics with SCIFF 77

6.2 Definition of Protocols . 82

6.2.1 Formalisms for Agent Interaction Protocols 82

6.2.2 Conventions for describing interactions 84

6.2.3 Semi-open society . 85

6.2.4 FIPA Request Interaction Protocol 86

6.2.5 NetBill . 89

6.2.6 The Needham-Schroeder Public Key protocol 92

6.2.7 First Price Sealed Bid auction 99

6.2.8 Combinatorial auctions . 99

6.2.8.1 Basic Combinatorial Auction 101

6.2.8.2 Double combinatorial auction 103

6.2.8.3 Combinatorial auction with NetBill 104

7 SCIFF performance 107

7.1 SCIFF Complexity . 107

7.2 Experimental results . 109

7.2.1 The effect of the branching factor 109

7.2.2 The effect of the number of events 112

8 g-SCIFF 117

8.1 The g-SCIFF proof procedure . 117

8.1.1 Formal results . 119

8.2 g-SCIFF implementation . 120

10 CONTENTS

9 Using g-SCIFF 123

9.1 The g-SCIFF approach . 123

9.2 Case studies . 125

9.2.1 Verifying the NetBill protocol 125

9.2.2 Verifying the Needham-Schroeder Protocol 127

9.3 Related work. 129

10 Conclusions 131

10.1 Summary . 131

10.2 Future research . 132

Chapter 1

Introduction

In this chapter, we define the setting of our work, and we outline the content of

the thesis.

1.1 Specification and Verification of Open Mul-

tiagent Systems

1.1.1 Multiagent Systems

The research area of Multiagent Systems [Woo02], is aimed at modelling, design-

ing and implementing complex systems of interacting computational entities at a

high abstraction level. The high level of abstraction used in these models often

leads to viewing such systems as societies of agents.

The Multiagent Systems (also MAS, for short, in the following) research em-

ploys notions and methods borrowed from Distributed Systems, Artificial In-

telligence, Economics, Game Theory and Social Sciences, together with newly

developed ones.

The current status of the MAS field can be seen as the result of an evolution

of concepts and models developed since the late 1970s.

The need for modelling complex systems emerged in the field of Distributed

Problem Solving (DPS) where problems are addressed by coordinating several

computational entities. Notable examples of this approach are market mod-

els [Wel93, WW98], mainly applied to resource reallocation, and the Contract

11

12 CHAPTER 1. INTRODUCTION

Net model [IS00, Smi80], mainly applied to task distribution.

Dependence-based models [SCDC98, Sic01] focus on dependence between agents

(i.e., the capability of an agent to facilitate or prevent the achievement of another

agent’s goals).

A milestone in the modelling of MAS is the Belief, Desire, Intention (BDI)

model [RG92a], which, in many variations, is still commonly used nowadays.

BDI architectures use modal logic to represent agents as having a mental state,

composed of beliefs about the external world (including other agents’ mental

states), desires on goals to achieve and intentions on which actions to perform.

Organisational models [DMW02] focus more on the social aspect of the agent

interaction, using Deontic Logic [Wri51] to specify norms and their dependence

on roles. Institutions [EdlCS02, NS02] are entities that facilitate, oversee and

enforce commitments among agents.

Despite the considerable research effort put into MAS by academic and in-

dustrial entities, and several attempts of a standardisation (FIPA [FIP] being

the most notable), even the definition of agent is still an open issue. A common

perspective is the one found in [Woo02], which characterises an agent as an au-

tonomous (capable of acting independently in some environment) entity that is

reactive (able to respond to changes in the environment), pro-active (exhibiting

a goal-directed behaviour) and social (aware of the existence of other agents, and

able to fruitfully interact with them).

However, we will not discuss the essence of the individual agent any further,

for two reasons. First, it is beyond the scope of this thesis; second, in this

thesis we concentrate on a particular kind of multiagent systems which necessarily

abstracts away from the internals of the individual agents and focuses on the agent

externally observable behaviour and interactions: open multiagent systems.

1.1.2 Open Agent Societies

Openness in Agent Societies. In the MAS literature, the term openness has

been used with several meanings. In the following, we summarise two of the most

widely accepted definitions.

According to [Dav01], in an open (artificial) society “there are no restrictions

1.1. SPECIFICATION AND VERIFICATION OF OPEN MAS 13

for agents/processes to join/leave the society”. This means that it is possible for

any agent to enter the society simply by starting an interaction with a member

of it.

Another widely accepted definition of openness in agent societies is that given

in [APS02] (derived from [Hew91]) where an agent society is open if three prop-

erties hold:

1. the behaviour of members and their interactions are unpredictable (i.e., the

execution of the society is non-deterministic);

2. the internal architecture of each member is neither publicly known nor

observable (i.e., members may have heterogeneous architectures);

3. members of the society do not necessarily share common goals, desires or

intentions (i.e., each member may conflict with others when trying to reach

its own purposes).

While these two concepts of openness are in principle independent, it is reasonable

for a society that is open in one sense to be open in the other sense, too. If there

is no restriction for joining the society, then also unknown (or even malicious)

agents could join it; on the other hand, if unknown (or even malicious) agents are

eligible members of the society, then it would not be very useful to impose other

restrictions to joining the society.

In fact, in the following, we will consider agent societies that are open in both

senses.

Specification of Open Agent Societies. The openness of a society impacts

on what can be specified of it, and on what needs to be specified.

Since the internal architecture, internal state or policies of the members are

not, in general, accessible, it is not possible to give the specification of an open

society by constraining the internal state of the members, but it is only possible

to constrain their externally observable behaviour, i.e., their actions. A good

example of the difference is found in the two most common approaches to the

definition of the semantics for Agent Communication Languages (ACLs): the

mentalistic and the social (see Sect. 6.1) .

14 CHAPTER 1. INTRODUCTION

For the specification of agent interaction from an external perspective, we

propose the SCIFF social framework (see Ch. 2).

Verification of Open Agent Societies. In [GP02a, GP02b], F. Guerin and

J. Pitt propose a classification of properties that are relevant for e-commerce

systems, in particular with respect to properties of protocols and interaction.

Verification of properties is classified into three types, depending on the in-

formation available and whether the verification is done at design time or at run

time:

Type 1 : verify that an agent will always comply;

Type 2 : verify compliance by observation;

Type 3 : verify protocol properties.

Type 1 verification can be performed at design time. Given a representation

of the agent, by means of some proof technique (such as model checking [Mer01])

it proves that the agent will always exhibit the desired behaviour. Since we focus

on open agent societies, where the internals of the members are in general not

accessible, we do not consider Type 1 verification in this thesis.

Type 2 verification can be performed at runtime. It checks that the actual

agent behaviour being observed is compliant to some specification. It does not

require any knowledge about the agent internals, and is thus viable in open agent

societies. For this purpose, the SCIFF proof procedure has been defined (see Ch.

3) and implemented (see Ch. 5).

Type 3 verification can be performed at design time. It proves that some

property will hold in the society, provided that the agents follow the interaction

protocols (i.e., behave accordingly to the interaction specification). This kind

of verification is independent of the agent internals and is thus viable in agent

societies. For this purpose, we have developed the g-SCIFF proof procedure (see

Ch. 8).

1.2. ABDUCTION IN SOCS 15

1.2 Abductive Logic-based Specification and Ver-

ification in SOCS

Computational Logic is a cumulative term which denotes the applications of Logic

to Computer Science. As such, it is a huge research area, applied to virtually

all fields of computer science, ranging from the foundational aspects (such as

denotational semantics of programming languages) to the practical (such as the

verification of the behaviour of concrete systems by model checking).

However, in this thesis, by Computational Logic we will refer to the set of

models and techniques originating from the field of Logic Programming [Llo87],

and in particular Abductive Logic Programming [KKT93] and Constraint Logic

Programming [JM94].

The main practical advantage of the use of Logic Programming and its exten-

sions has been identified in its joining two aspects:

• a clear and simple declarative semantics, which makes programs easier to

understand and to reason about (also automatically);

• an operational counterpart (in the form of a proof procedure), which makes

the declarative specification directly executable.

This has also been the main motivation for choosing Computational Logic as

the paradigm for the specification and verification of open multiagent systems

in the context of the European SOCS project [SOC]: to bridge the gap between

declarative specification and operational verification, which, in the literature are

often kept separate.

In particular, Abductive Logic Programming, which is a powerful technique

for hypothetical reasoning, appeared as a natural choice for representing the

specification of open societies, where the behaviour of the individual agents cannot

be predicted or enforced, but only hypothesised. Constraint Logic Programming

let us express quantitative requirements on the agent behaviours (most notably,

time deadlines), exploiting the efficient computing machinery available from the

literature.

16 CHAPTER 1. INTRODUCTION

The result of the work done in the context of the SOCS project in the nodes

of Bologna and Ferrara is the SCIFF framework, which provides:

• a language equipped with an abductive declarative semantics, for the spec-

ification of agent interaction;

• a (theoretical) operational semantics for the language, in the form of an

abductive proof procedure;

• the implementation of the proof procedure based on SICStus Prolog [SIC03]

and CHR [Frü98]: such operational semantics has been used to achieve what

is referred to as type 2 verification in Sect. 1.1.2, i.e, on-the-fly verification;

• the integration of the proof procedure in SOCS-SI, a graphical, networked

system which has been integrated in multiagent systems;

• several examples and case studies of verification of well known agent inter-

action protocols;

• an extension of SCIFF which supports the synthesis of an agent behaviour

compliant to a specification, which can be used to verify protocol properties.

1.3 Content of this thesis

The main aim of this thesis is to report on the implementation of the SCIFF and

g-SCIFF proof procedures, and on the application of the SCIFF framework to

the specification and verification of agent interaction.

In Ch. 2, we describe the syntax and declarative semantics of the SCIFF

social framework.

The operational semantics of the framework, consisting of the SCIFF Abduc-

tive proof procedure, is described in Ch. 3.

The description of the implementation of SCIFF, in Ch. 5, follows a brief

introduction to the Constraint Handling Rules language, used for the implemen-

tation.

1.3. CONTENT OF THIS THESIS 17

In Ch. 6 we show several examples of social specifications by means of the

SCIFF framework, focusing on social semantics of agent communication lan-

guages and interaction protocols.

Ch. 8 presents g-SCIFF, the extension of SCIFF that can synthesise an agent

behaviour compliant to a specification. Ch. 9 shows how g-SCIFF can be used

to prove protocol properties (type 3 verification in Sect. 1.1.2), with some case

studies.

18 CHAPTER 1. INTRODUCTION

Chapter 2

The SCIFF Social Framework

In this chapter, we briefly describe the SCIFF abductive logic framework, de-

veloped in the SOCS project [SOC] for the specification of interaction in open

multiagent systems. We describe the syntax and the declarative semantics of the

language; the operational semantics is described in Ch. 3.

To illustrate the concepts, we take examples from the simple query ref social

specification.

A discussion of the motivations behind the language choices made for the

framework can be found in [AGL+04b, ACG+05b].

2.1 Preliminaries

In the remainder of the thesis, we assume a basic familiarity with the concepts,

results and conventions of Logic Programming. A good introduction is that pro-

vided by Lloyd [Llo87].

The words integer, variable, term, atom will be used in the following with

their usual meaning in Logic Programming [Llo87].

A restriction is an atom whose signature belongs to a set R of restriction

signatures.

An abductive logic program [KKT93] is a triple 〈P, Ab, IC〉 where:

• P is a (normal) logic program, that is, a set of clauses of the form A0 ←
A1, . . . , Am, not Am+1, . . . , not Am+n, where m,n ≥ 0, each Ai (i = 1, . . . , m+

n) is an atom, and all variables are implicitly universally quantified with

19

20 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

scope the entire clause. A0 is called the head and A1, . . . , Am, not Am+1, . . . ,

not Am+n is called the body of any such clause.

• Ab a set of abducible predicates, p, such that p is a predicate in the language

of P which does not occur in the head of any clause of P (without loss of

generality, see [KKT93]).

• IC is a set of integrity constraints, that is, a set of sentences in the language

of P .

Abducible predicates (or simply abducibles) are the predicates about which as-

sumptions (or abductions) can be made. These predicates carry all the incom-

pleteness of the domain, they can have a partial definition or no definition at all,

while all other predicates have a complete definition in the logic program.

Given an abductive logic program T = 〈P,Ab, IC〉 and a formula G, the goal

of abduction is to find a (possibly minimal) set of ground atoms ∆ (abductive

explanation) in predicates in Ab which, together with P , “entails” G, i.e., P∪∆ |=
G, and such that P ∪ ∆ “satisfies” IC, e.g. P ∪ ∆ |= IC (see [KKT93] for

other possible notions of integrity constraint “satisfaction”). Here, the notion of

“entailment” |= depends on the semantics associated with the logic program P

(there are many different choices for such semantics, as it is well-documented in

the Computational Logic literature).

2.2 Syntax

In this section, we define the syntax of the logic language used in the SCIFF

framework. The language is composed of entities for expressing:

• the actual and expected agent behaviour;

• a specification of the agent behaviour.

2.2.1 Representation of the agent behaviour

2.2.1.1 Events

Events are the abstraction used to represent the actual agent behaviour.

2.2. SYNTAX 21

Definition 2.2.1 An event is an atom whose

• functor is H;

• first argument is a ground term;

• second (optional) argument is an integer.

Intuitively, the first argument is meant to represent the description of the hap-

pened event, according to application-specific conventions, and the second argu-

ment is meant to represent the time at which the event has happened.

A negated event is an event with the unary prefix operator not applied to it.

As will be clear from the declarative semantics, this type of negation is negation

by failure.

We will usually call set of events a history, and often denote it with the symbol

HAP.

Example 2.2.2

H(tell(alice, bob, query ref(phone number), dialog id), 10) (2.2.1)

could represent the fact that alice asked bob his phone number with a query ref

message, in the context identified by dialog id, at time 10.

2.2.1.2 Expectations

Expectations are the abstraction used to represent the desired agent behaviour.

The choice of the term “expectation” is due to the fact that agents are au-

tonomous, and thus their behaviour cannot be enforced, but only expected, to be

compliant to a specification. For the formal meaning of expectations, see Sect.

2.3, or [AGL+03a].

Expectations are of two types:

• positive: representing some event that is expected to happen;

• negative: representing some event that is expected not to happen.

Definition 2.2.3 A positive expectation is an atom whose

22 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

• functor is E;

• first argument is a term;

• second (optional) argument is a variable or an integer.

A negated positive expectation is a positive expectation with the unary prefix

operator ¬ applied to it. As will be clear from Def. 2.3.2, the kind of negation

used here is explicit negation.

Example 2.2.4 The atom

E(tell(bob, alice, inform(phone number,Answer), dialog id),Ti) (2.2.2)

could represent an expectation for bob to inform alice that the value for the piece

of information identified by phone number is Answer, in the context identified by

dialog id, at time Ti.

Definition 2.2.5 A negative expectation is an atom whose

• functor is EN;

• first argument is a term;

• second (optional) argument is a variable or an integer.

A negated negative expectation is a negative expectation with the unary prefix

operator ¬ applied to it. As in the case of negated positive expectations, the

negation is explicit (see Def. 2.3.2).

Example 2.2.6 The atom

EN(tell(bob, alice, refuse(phone number), dialog id),Tr) (2.2.3)

could represent that bob is expected not to refuse to alice his phone number, in

the context identified by dialog id, at any time.

As the examples show, expectations can contain variables, as it might be desirable

to leave the expected agent behaviour not completely specified.

The syntax of events and expectations is definitions are summarised in Spec.

2.1. The definitions there contained are valid also in Specs. 2.2 and 2.4.

2.2. SYNTAX 23

Specification 2.1 Syntactical entities for events and expectations

Literal ::= [not]Atom

Event ::= H(GroundTerm[, Integer])

EventLiteral ::= [not]Event

PosExp ::= E(Term[,Variable | Integer])

NegExp ::= EN(Term[,Variable | Integer])

PosExpLiteral ::= [¬]PosExp

NegExpLiteral ::= [¬]NegExp

ExpLiteral ::= PosExpLiteral | NegExpLiteral

2.2.2 Social specifications

A social specification, i.e, a specification of the agent behaviour in the SCIFF

framework, is composed of two elements:

• A Social Knowledge Base;

• A set of Social Integrity Constraints.

2.2.2.1 Social Knowledge Base

The Social Knowledge Base is a logic program, extended in that the body of the

clauses can contain expectation literals.

Intuitively, the social knowledge base can be used to express declarative knowl-

edge about the agent society, ranging from simple information such as the value

of time parameters, to complex organisational knowledge such as that regarding

roles.

Specification 2.2 Syntax of the Social Knowledge Base

KBS ::= [Clause]?

Clause ::= Atom← Body

Body ::= ExtLiteral [∧ ExtLiteral]?

ExtLiteral ::= Literal | ExpLiteral | Restriction

24 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

The syntax of the Social Knowledge Base is given in Fig. 2.2.

Allowedness conditions The syntactic restrictions defined in the following

are motivated by the operational semantics of the framework (see Ch. 3), and

will be supposed to hold throughout the thesis.

Definition 2.2.7 A clause Head← Body is allowed if every variable that occurs

in a negative Literal of a definite predicate in Body, also occurs in at least one

positive Literal, or in a PosExpLiteral, or in Head.

Definition 2.2.8 A Clause is restriction allowed if the variables that are univer-

sally quantified with scope the body do not occur in Restrictions, and each variable

that occurs in a Restriction also occurs in at least one PosExp in the body.

Variable quantification and scope The quantification and scope of variables

is implicit. In each clause, the variables are quantified as follows:

• universally, if they occur only in negative expectations (and possibly re-

strictions), with scope the Body;

• otherwise universally, with scope the entire Clause.

Specification 2.3 Social Knowledge Base for the query ref social specification

qr deadline(10).

Example 2.2.9 Spec. 2.3 shows a simple example of a social knowledge base,

which defines the qr deadline/1 predicate by means of one fact.

2.2.2.2 Social Integrity Constraints

Social Integrity Constraints (also SICs, for short, in the following) are implications

that, operationally, are used as forward rules, as will be explained in Ch. 3.

2.2. SYNTAX 25

Specification 2.4 Syntax of the Social Integrity Constraints

ICS ::= [SIC]?

SIC ::= Body→ Head

Body ::= (EventLiteral | ExpLiteral) [∧ BodyLiteral]?

BodyLiteral ::= EventLiteral | ExpLiteral | Literal | Restriction

Head ::= HeadDisjunct [∨HeadDisjunct]? | false
HeadDisjunct ::= ExpLiteral [∧(ExpLiteral | Restriction)]?

Declaratively, their main use is to specify that is some set of events happens,

then one of several other sets of events is expected to happen, or not to happen.

The syntax of Social Integrity Constraints is given in Fig. 2.4.

Given a social integrity constraint Body→ Head, we will sometimes call Body

its condition, and Head its conclusion.

Allowedness conditions As in the case of the Social Knowledge Base syntax,

following syntactic restrictions are motivated by the operational semantics, and

will be supposed to hold throughout the thesis.

A variable cannot occur in a Social Integrity Constraint only in negative,

definite literals, but it must always appear in literals with predicates H, E, EN.

Definition 2.2.10 A Social Integrity Constraint Body → Head is quantifier al-

lowed if

• each variable that occurs in a PosExpLiteral in Head does not occur in Body,

except possibly in Events or in PosExpLiterals;

• each variable that occurs in a negative Literal in Body also occurs in at least

one Event or PosExpLiteral in Body.

Definition 2.2.11 A social integrity constraint is restriction allowed if

• all the variables that are universally quantified with scope Body do not occur

in Restrictions;

26 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

• the other variables (that occur only in Head, or both in Head and in the

Body) can occur in Restrictions. Each Restriction occurring in the social

integrity constraint should:

– either involve only variables that also occur in PosExpLiterals or Events,

– or involve one variable that also occurs in at least one NegExpLiteral,

and possibly other variables which only occur in Events.

Variable quantification and scope The rules of scope and quantification for

the variables in a social integrity constraint Body→ Head are as follows:

1. Each variable that occurs both in Body and in Head is quantified universally,

with scope the social integrity constraint.

2. Each variable that occurs only in Head must occur in at least one ExpLiteral,

and

• if it occurs in PosExpLiterals, it is quantified existentially and has as

scope the disjunct where it occurs;

• otherwise it is quantified universally.

3. Each variable that occurs only in Body is quantified with scope Body as

follows:

(a) universally, if it occurs only in negative EventLiterals, NegExpLiterals

or Restrictions;

(b) existentially, otherwise.

Example 2.2.12 Spec. 2.5 shows the SICs for the query ref social specification.

Intuitively, the first SIC means that if agent A sends to agent B a query ref

message, then B is expected to reply with either an inform or a refuse message

by TD time units later, where TD is defined in the Social Knowledge Base by the

qt deadline predicate (with the example in Spec. 2.3, the value of TD would be

10).

The second SIC means that, if an agent sends an inform message, then it is

expected not to send a refuse message at any time.

2.3. DECLARATIVE SEMANTICS 27

Specification 2.5 Integrity Constraints for the query ref social specification.

H(tell(A,B, query ref(Info),D),T) ∧
qr deadline(TD)

→ E(tell(B,A, inform(Info,Answer),D),T1) ∧
T1 < T + TD

∨ E(tell(B,A, refuse(Info),D),T1) ∧
T1 < T + TD

H(tell(A,B, inform(Info,Answer),D),Ti)

→ EN(tell(A,B, refuse(Info),D),Tr)

2.2.2.3 Social Specification

Given a Social Knowledge Base KBS and a set of ICS of Social Integrity Con-

straints, we call the pair 〈KBS, ICS〉 a Social Specification. We will often use the

symbol S to denote a social specification.

Definition 2.2.13 A social specification S = 〈KBS, ICS〉 is quantifier allowed

if all the social integrity constraints in ICS are quantifier allowed. S is restriction

allowed if all the clauses in KBS and all the social integrity constraints in ICS

are restriction allowed. S is allowed if it is quantifier allowed and restriction

allowed, and KBS is allowed.

2.3 Declarative Semantics

In the following, we briefly summarise the (abductive) declarative semantics of

the SCIFF framework, which is inspired by other abductive frameworks, but

introduces the concept of fulfillment, used to express a correspondence between

the expected and the actual agent behaviour.

A more detailed description of the semantics can be found in [AGL+03a].

Definition 2.3.1 Given a social specification S = 〈KBS, ICS〉 and a history HAP,

SHAP represents the pair 〈S,HAP〉, called the HAP-instance of S.

28 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

The following definition implements explicit negation [AB94] for expectation

atoms.

Definition 2.3.2 A set EXP of expectations is ¬-consistent if and only if for

each (ground) term p:

{E(p),¬E(p)} 6⊆ EXP and {EN(p),¬EN(p)} 6⊆ EXP. (2.3.1)

The following definition prevents the same event from being both expected to

happen and expected not to happen.

Definition 2.3.3 A set EXPof expectations is E-consistent if and only if for

each (ground) term p:

{E(p),EN(p)} 6⊆ EXP (2.3.2)

The following definition establishes a link between the actual and the expected

agent behaviour, by requiring positive expectations to be matched by events, and

negative expectations not to be matched by events.

Definition 2.3.4 Given a history HAP, a set EXP of expectations is HAP-

fulfilled if and only if

Comp(EXP ∪HAP) ∪ ICS ∪ CET 6|= false (2.3.3)

where Comp represents the completion of a theory [Kun87], and CET is Clark’s

equational theory [Cla78].

Otherwise, EXP is HAP-violated.

When HAP is apparent from the context, we will often omit mentioning it.

The following definition requires consistence of the set of expectations, with

respect to an instance of the social specification.

Definition 2.3.5 Given a social specification S = 〈KBS, ICS〉, and an instance

SHAP of S, a set EXP of expectations is SHAP-consistent if and only if

Comp(KBS ∪HAP ∪ EXP) ∪ CET |= ICS (2.3.4)

2.3. DECLARATIVE SEMANTICS 29

The following definition supports goal-directed social specifications: it requires

the instance of the specification to entail a goal, while being consistent with

respect to the previous definitions.

Definition 2.3.6 Given a social specification S = 〈KBS, ICS〉, and an instance

SHAP of S, a goal G is achieved in SHAP if there exists a ¬-consistent, E-

consistent, SHAP-consistent and HAP-fulfilled set EXP of expectations such that

Comp(KBS ∪ EXP) ∪ CET |= G (2.3.5)

In this case, we write SHAP ²EXP G and we say that HAP is compliant to S
with respect to G.

In the remainder of this thesis, when we simply say that a history HAP is

compliant to a social specification S, we will mean that HAP is compliant to S
with respect to the goal true. This will usually be the case when the specification

is used to express an interaction protocol, with no particular social goal. We will

often say that a history HAP violates a specification S to mean that HAP is

not compliant to S.

The following definitions identifies ill-defined social specifications, i.e., those

for which there is no compliant history, which are obviously undesirable from an

agent society designer viewpoint.

Definition 2.3.7 (Well-definedness w.r.t. a goal) Given a goal G, a social

specification S is well-defined with respect to G iff there exists at least one history

that is compliant to S w.r.t. G, i.e., iff:

∃HAP ∃EXPSHAP ²EXP G (2.3.6)

In the remainder of this thesis, when we simply say that a social specification S
is well defined, we will mean that S is well defined with respect to the goal true.

Example 2.3.8 The query ref social specification S = 〈KBS, ICS〉, where KBS

is defined in Spec. 2.2.9, and ICS is defined in Spec. 2.5, is well defined. For

instance, the history

{H(tell(alice, bob, query ref(phone number), dialog id), 10),

H(tell(bob, alice, inform(phone number, 5551234), dialog id), 12)}
(2.3.7)

is compliant to S.

30 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

A note on terminology

As will be shown in Sect. 6.2, one of the main uses of the SCIFF framework is

to define Interaction Protocols. For uniformity with the existing literature, we

will often use the expression “interaction protocol”, or simply “protocol” as a

substitute for “social specification”.

2.4 Related work

In this section, we compare the SCIFF framework with other frameworks, related

to it as far as objectives and methodologies.

Several researchers have studied the concepts of norms, commitments and so-

cial relations in the context of Multi-Agent Systems [CFS99]. Furthermore, a lot

of research has been devoted in proposing architectures for developing agents with

social awareness (see, for instance [CDJT99]). Our approach can be conceived as

complementary to these efforts, since instead of proposing a specific architecture

for designing computees, our work in mainly focused on the definition of a so-

ciety infrastructure based on Computational Logic for regulating and improving

robustness of interaction in an open environment, where the internal architecture

of the computees might be unknown.

Our work is very close, as far as the objectives and methodology, to the

work on computational societies presented and developed in the context of the

ALFEBIITE project [ALF99], and the work by Singh and co-authors [YS02]

where a social semantics is exemplified by using a commitment-based approach.

With these works we share the same view of an open society as that of [APS02].

However, our work is especially oriented to computational aspects, and it was

developed with the purpose of providing a computational framework that can be

directly used for automatic verification of properties such as compliance (see Ch.

3).

In [APS02], Artikis et al. present a theoretical framework for providing ex-

ecutable specifications of particular kinds of multi-agent systems, called open

computational societies, and present a formal framework for specifying, animat-

ing and reasoning about and verifying the properties of systems where the be-

2.4. RELATED WORK 31

haviour of the members and their interactions cannot be predicted in advance.

Three key components of computational systems are specified, namely the social

constraints, social roles and social states. The specifications of these concepts is

based on and motivated by the formal study of legal and social systems (a goal of

the ALFEBIITE [ALF99] project), and therefore operators of Deontic Logic are

used for expressing legal social behaviour of agents [Wri51, van03]. ALFEBIITE

has investigated the application of formal models of norm-governed activity to

the definition, management and regulation of interactions between info-habitants

in the information society. Their logical framework comprises a set of building

blocks (including doxastic, deontic and praxeologic notions) as well as composite

notions (including deontic right, power, trust, role and signalling acts). Intu-

itively, a correspondence can be established our expectation abducibles (positive

expectation E and negative expectation EN) and the operators of Deontic Logic

(obligationO and prohibition F). As suggested in [AGL+05], this correspondence

lets logical relations between Deontic Logic operators be expressed as abductive

integrity constraints. However, the semantics in the two cases are different: ab-

ductive for expectations, modal for deontic operators. Another notable difference

with [APS02] is that we do not explicitly represent the institutional power of the

members and the concept of valid action. Permitted are all social events that do

not determine a violation, i.e., in deontic terms, all events that are not explic-

itly forbidden are allowed. Differently, permission, when it needs to be explicitly

expressed, can be mapped to a negated negative expectation (¬EN).

32 CHAPTER 2. THE SCIFF SOCIAL FRAMEWORK

Chapter 3

The SCIFF proof procedure

The operational semantics of the SCIFF proof procedure is given by an abductive

proof procedure.

Since the language and declarative semantics of the SCIFF framework are

closely related with the IFF abductive framework by Fung and Kowalski [FK97],

the SCIFF proof procedure has been inspired by the IFF proof procedure. How-

ever, some modifications were necessary, due to the following differences between

the frameworks:

• SCIFF requires support for the dynamical happening of events, i.e., the

insertion of new facts in the knowledge base during the computation;

• SCIFF requires universally quantified variables in abducibles;

• SCIFF needs support for quantifier restrictions;

• SCIFF needs support for the concepts of fulfillment and violation (see Def.

2.3.4).

3.1 Data Structures

The SCIFF proof procedure is based on a rewriting system transforming one

node to another (or to others). In this way, starting from an initial node, the

proof tree is defined.

33

34 CHAPTER 3. THE SCIFF PROOF PROCEDURE

A node can be either the special node false, or defined by the following tuple

T ≡ 〈R, CS, PSIC,PEND,HAP,FULF,VIOL〉

where

• R is the resolvent: a conjunction, whose conjuncts can be atoms or disjunc-

tions of conjunctions of atoms

• CS is the constraint store

• PSIC is the set of partially solved integrity constraints

• PEND is the set of (pending) expectations

• HAP is the history of happened events, represented by a set of events, plus

a open/closed attribute

• FULF is a set of fulfilled expectations

• VIOL is a set of violated expectations

If one of the elements of the tuple is false, then the whole tuple is the special

node false, which cannot have successors.

3.1.1 Initial Node and Success

A derivation D is a sequence of nodes

T0 → T1 → · · · → Tn−1 → Tn.

Given a goal G and a set of social integrity constraints ICS, we build the first

node in the following way:

T0 ≡ 〈{G}, ∅, ICS, ∅, ∅, ∅, ∅〉

i.e., the resolvent R is initially the query (R0 = {G}) and the partially solved

integrity constraints PSIC is the set of integrity constraints (PSIC0 = ICS).

The other nodes Tj, j > 0, are obtained by applying the transitions that we

will define in the next section, until no further transition can be applied (we call

this last condition quiescence).

3.2. VARIABLES 35

Definition 3.1.1 Given an instance SHAPi of a social specification S = 〈KBS, ICS〉
and a set HAPf ⊇ HAPi there exists a successful derivation for a goal G iff the

proof tree with root node 〈{G}, ∅, ICS, ∅,HAPi, ∅, ∅〉 has at least one leaf node

〈∅, CS, PSIC,PEND,HAPf ,FULF, ∅〉

where CS is consistent, and PEND contains only negative literals ¬E and ¬EN.

In such a case, we write:

SHAPi `HAPf

PEND∪FULF G.

From a non-failure leaf node N , answers can be extracted in a very similar way

to the IFF proof procedure. Answers of the SCIFF proof procedure are called

expectation answers. To compute an expectation answer, first, a substitution σ′

is computed such that

• σ′ replaces all variables in N that are not universally quantified by a ground

term

• σ′ satisfies all the constraints in the store CSN .

If the constraint solver is (theory) complete [JMMS98] (i.e., for each set of con-

straints c, the solver always returns true or false, and never unknown), then there

will always exist a substitution σ′ for each non-failure leaf node N . Otherwise, if

the solver is incomplete, σ′ may not exist. The non-existence of σ′ is discovered

during the answer extraction phase. In such a case, the node N will be marked

as a failure node, and another success node can be selected (if there is one).

Definition 3.1.2 Let σ = σ′|vars(G) be the restriction of σ′ to the variables oc-

curring in the initial goal G. Let ∆ = (FULFN ∪ PENDN)σ′. The pair (∆, σ)

is the expectation answer obtained from the node N .

3.2 Variables

Quantification. Concerning variable quantification, SCIFF differs from IFF

in the following aspects:

36 CHAPTER 3. THE SCIFF PROOF PROCEDURE

• in IFF, all the variables that occur in the resolvent or in abduced literals are

existentially quantified, while the others (that occur only in implications)

are universally quantified; in SCIFF, variables that occur in the resolvent

or in abducibles can be universally quantified;

• in IFF, variables in an implication are existentially quantified if they also

occur in an abducible or in the resolvent, while in SCIFF variables in im-

plications can be universally quantified even if they do not occur elsewhere.

For these reasons, in the SCIFF proof procedure the quantification of variables

is explicit.

Scope. The scope of the variables differs depending on where they occur:

• if they occur in the resolvent or in abducibles, their scope is the whole tuple

representing the node (see Sect. 3.1);

• if they occur in an implication, their scope is the implication in which they

occur.

In the first case, we say that the variable is flagged. The flagging status of a

variable (i.e., its being flagged or not) influences how the term in which the

variable appears is copied (see Def. 3.2.1).

In the following, when we want to make explicit the fact that a variable X is

flagged (when it is not clear from the context), it will be indicated with X̂, while

if we want to highlight that it is not flagged, it will be indicated with X̌.

Quantifier restrictions. Variables can be associated with quantifier restric-

tions [Bür94]. Quantifier restrictions restrict the applicability of a quantifier.

The semantics of quantifier restrictions is different for the case of universally

quantified and existentially quantified variables, as follows:

∀X:c(X)p(X) ⇐⇒ ∀Xc(X)→ p(X)

∃X:c(X)p(X) ⇐⇒ ∃Xc(X) ∧ p(X)
(3.2.1)

For existentially quantified variables, quantifier restrictions have the same mean-

ing of constraints.

3.3. TRANSITIONS 37

Given a variable X, with QR(X) we will denote the quantifier restrictions on

X. If X is universally quantified, we restrict ourselves to quantifier restrictions

that are unary, meaning that they involve only X.

In the tuple, the quantifier restrictions on variables are recorded in the con-

straint store CS, and will be handled by the constraint solver.

Copy of a formula. When making a copy of a formula, we keep into account

the scope of the variables in it by means of their flagging status, as follows.

Definition 3.2.1 Given a formula F , we call copy of F a formula

F ′ = copy(F)

where the universally quantified variables and the non flagged variables are re-

named.

For example,

∃Ŷ ∀X̂′>50∀Ž′E(p(Ŷ)) ∧ EN(q(X̂ ′, Ŷ)) ∧ [EN(r(Ŷ , Ž ′))→ ∃Ǩ′E(p(Ǩ ′))]

is a copy of the formula:

∃Ŷ ∀X̂>50∀ŽE(p(Ŷ)) ∧ EN(q(X̂, Ŷ)) ∧ [EN(r(Ŷ , Ž))→ ∃ǨE(p(Ǩ))]

Notice that, by Definition 3.2.1, if F contains only flagged existentially quantified

variables, then copy(F) ≡ F .

3.3 Transitions

The transitions are based on the transitions of the IFF proof procedure, enlarged

with those of CLP [JM94], and with specific transitions accommodating the con-

cepts of fulfillment, dynamically growing history and consistency of the set of

expectations with respect to the given definitions (Defs. 2.3.2, 2.3.3 and 2.3.5).

38 CHAPTER 3. THE SCIFF PROOF PROCEDURE

3.3.1 IFF-like transitions

Unfolding Since the variables in the head of a clause in the KBS are all uni-

versally quantified with scope the entire clause, the unfolding step is basically the

same as in many abductive proof procedures. It is defined as follows.

Let Li be the selected literal in the resolvent Rk = L1, . . . , Lr. Let it (Li) be

a predicate defined in the KBS of the social specification. Unfolding generates a

child node for each of the definitions of Li; in each node, Li is replaced with its

definition.

Moreover, as in the IFF proof procedure, unfolding is also applied to a defined

atom in the body of an implication. In this case, only one child node is generated,

which contains a new implication for each definition of the atom.

Abduction Since the SCIFF proof procedure (differently from the IFF) keeps

the set of abducibles separate from the resolvent, a transition has been introduced

for abduction which, intuitively, moves an abducible from the resolvent to the set

of abduced atoms.

More precisely:

• if Rk = L1, . . . , Lr, and the selected literal Li is of type E, EN, ¬E, or

¬EN,

• then Rk+1 = L1, . . . , Li−1, Li+1, . . . , Lr and PENDk+1 ≡ PENDk ∪{Li}.

Propagation Let L1, . . . , Ln → H1 ∨ · · · ∨ Hj be an integrity constraint, be-

longing to the set PSIC, and let A be

• either an event belonging to HAPk (in which case A is an H event),

• or an expectation belonging to PENDk, FULFk or VIOLk,

Then, by Propagation, we perform the following steps:

• we make a copy of A, copy(A); the new atom is inserted in the same element

of the tuple where the original atom occurs.

• PSICk+1 = PSICk ∪ {A = L′i, L
′
1, . . . , L

′
i−1, L

′
i+1 . . . , L′n → H ′

1 ∨ · · · ∨H ′
j},

where L′1, . . . , L
′
n → H ′

1 ∨ · · · ∨H ′
j = copy(L1, . . . , Ln → H1 ∨ · · · ∨Hj)

3.3. TRANSITIONS 39

This transition does not have any effect on the constraint store, since case analysis

will take care of the equality in the body of the implication.

Splitting Given a node with

• Rk = L1, . . . , Li−1, (Li ∨ Li+1), Li+2, . . . , Lr

splitting produces two nodes, N1 and N2 such that in node N1

• R1
k+1 = L1, . . . , Li, Li+2 . . . , Lr

and in node N2

• R2
k+1 = L1, . . . , Li−1, , Li+1, . . . , Lr

In the SCIFF proof procedure, disjunctions may appear also in the constraint

store. In the following, we will assume that disjunctions are dealt with by the

constraint solver itself (e.g., by means of constructive disjunction [vSD93] or

cardinality operator [vD91]).

Case Analysis Given a node with an implication

PSICk = PSIC ′ ∪ {A = B, L1, . . . , Ln → H1 ∨ · · · ∨Hj}

the node is replaced by two identical nodes, except for the following.

In Node 1 we hypothesise that the equality A = B holds:

• PSIC1
k+1 = PSIC ′ ∪ {L1, . . . , Ln → H1 ∨ · · · ∨Hj}

• CS1
k+1 = CSk ∪ {A = B}

In Node 2, we hypothesise the opposite:

• PSIC2
k+1 = PSIC ′

• CS2
k+1 = CSk ∪ {A 6= B}

where 6= stands for the constraint of non-unification.

40 CHAPTER 3. THE SCIFF PROOF PROCEDURE

Factoring Factoring can be applied in a node Nk, in which:

• PENDk ∪ FULFk ∪VIOLk ⊇ {A1, A2}

where A1 and A2 are (abducible) atoms in which all the variables are existentially

quantified (and, of course, flagged). Factoring generates two children nodes, N1

and N2. In N1:

• CS1
k+1 = CSk ∪ {A1 = A2}

and in N2:

• CS1
k+1 = CSk ∪ {A1 6= A2}

Equivalence Rewriting The equivalence rewriting operations are delegated to

the constraint solver. Note that a constraint solver works on a constraint domain

which has an associated interpretation. In addition, the constraint solver should

handle the constraints among terms derived from the unification. Therefore, be-

side the specific constraint propagation on the constraint domain, we hypothesise

that the constraint solver is equipped with further inference rules for coping with

the unification.

Logical Equivalence The rule

“true→ A is equivalent to A”

of the IFF proof procedure is translated as follows. If PSICk = PSIC ′∪{true→
A}, we generate a new node such that:

• PSICk+1 = PSIC ′

• Rk+1 = Rk, A
′

where A′ is obtained from A by flagging all the variables that were not already

flagged.

3.3.2 Dynamically growing history

A set of transitions deals with a dynamically growing history HAP. The transi-

tions are used to reason upon the happening (or non-happening) of events.

3.3. TRANSITIONS 41

Closure The transition closure informs the proof procedure that no more events

will happen, i.e., the set HAP will not grow any more. It switches the open/closed

attribute of HAP to closed.

Transition Closure is only applicable when no other transition is applicable.

In other words, it is only applicable at the quiescence of the set of the other

transitions.

Given a state where:

• closed(HAPk) = false

in which no other transition is applicable, transition Closure produces two nodes

. Node N1 is the following:

• closed(HAPk) = true

and node N2 is identical to its father. In order to avoid infinite loops, transition

Closure cannot be again applied to the node N2 before a Happening transition

has been applied.

Happening of Events The happening of events is considered by a transition

Happening. This transition takes an event H(Event) from an external queue and

puts it in the history HAP; the transition Happening is applicable only if an

Event such that H(Event) 6∈ HAP is in the external queue.

Given a state in which

• closed(HAPk) = false

the transition Happening produces a single successor

HAPk+1 = HAPk ∪ {H(Event)}.

Otherwise, given a state in which

• closed(HAPk) = true

the transition Happening produces a single successor

false

(which means that happening is not possible with a closed history).

42 CHAPTER 3. THE SCIFF PROOF PROCEDURE

Non-happening The Non-happening transition that can be considered an ap-

plication of constructive negation. Constructive negation is a powerful inference

that is particularly well suited in CLP [Stu95].

Rule non-happening applies when the history is closed and a literal not H is

in the body of a PSIC.

Given a node where:

• PSICk = {not H(E1), L2, . . . , Ln → H1 ∨ · · · ∨Hm} ∪ PSIC ′

• closed(HAPk) = true

non-happening produces a new node.

Let E ′
1 be a renaming of E1 (i.e., all the variables in E1 are substituted with

fresh new variables). Let all the new variables in E ′
1 be universally quantified

and flagged. For each variable Xj ∈ vars(E1), let ren(Xj) be the corresponding,

renamed variable in vars(E ′
1). For all atoms H(E) ∈ HAPk that unify with

H(E ′
1), we impose the quantifier restrictions on the variables in E ′

1 given by the

following disjunction:

∧

H(E) ∈ HAPk

s.t.unifies(E, E ′
1)

 ∨

Xj∈vars(E1)

ren(Xj) 6= tj

where tj is the term in E corresponding to Xj in E1.

The child node, k + 1, is then defined by:

• PSICk+1 = {E1 = E ′
1, L2, . . . , Ln → H1 ∨ · · · ∨Hm} ∪ PSIC ′

3.3.3 Fulfillment and Violation

Violation EN Given a node N with the following situation:

• PENDk = PEND′ ∪ {EN(E1)}

• HAPk = HAP′ ∪ {H(E2)}

violation EN produces two nodes N1 and N2, where N1 is as follows:

3.3. TRANSITIONS 43

• VIOL1
k+1 = VIOLk ∪ {EN(E1)}

• CS1
k+1 = CSk ∪ {E1 = E2}

and N2 is as follows:

• VIOL2
k+1 = VIOLk

• CS2
k+1 = CSk ∪ {E1 6= E2}

Fulfillment E Starting from a node N as follows:

• PENDk = PEND′ ∪ {E(Event1)}

• HAPk = HAP′ ∪ {H(Event2)}

Fulfillment E builds two nodes, N1 and N2, that are identical to their father

except for the following.

In node N1 we hypothesise that the expectation and the happened event unify:

• PEND1
k+1 = PEND′

• FULF1
k+1 = FULFk ∪ {E(Event1)}

• CS1
k+1 = CSk ∪ {Event1 = Event2}

In node N2 we hypothesise that the two will not unify:

• PEND2
k+1 = PENDk

• FULF2
k+1 = FULFk

• CS2
k+1 = CSk ∪ {Event1 6= Event2}

Violation E Given a state where

• closed(HAPk) = true

• PENDk = PEND′ ∪ {E(Event1)}

transition Violation E creates a successor node in which

• VIOLk+1 = VIOLk ∪ {E(Event1)}.

• PENDk+1 = PEND′

44 CHAPTER 3. THE SCIFF PROOF PROCEDURE

Fulfillment EN Given a state

• closed(HAPk) = true

• PENDk = PEND′ ∪ {EN(Event1)} does not unify with Event1

transition Fulfillment EN creates a successor node in which

• FULFk+1 = FULFk ∪ {EN(Event1)}

• PENDk+1 = PEND′.

3.3.4 Consistency

E-Consistency In order to ensure E-consistency (see Def. 2.3.3) of the set of

expectations, we impose the following integrity constraint:

E(T) ∧ EN(T)→ false (3.3.1)

¬-Consistency In order to ensure ¬-consistency (see Def. 2.3.2) of the set of

expectations, we impose the following integrity constraints:

E(T) ∧ ¬E(T) → false

EN(T) ∧ ¬EN(T) → false
(3.3.2)

3.3.5 CLP

Here we suppose to have the same transitions as in CLP [JM94].

The constraint solver deals also with quantifier restrictions. If a quantifier

restriction (due to unification) gets all the variables existentially quantified, then

we replace it with the corresponding constraint. E.g., if in the tuple we have two

variables X̂ and Ŷ quantified as follows:

∃Ŷ , ∀X̂ 6=1,

and variable X̂ is unified with Ŷ , we obtain that ∃Ŷ , Ŷ 6= 1 (the quantifier

restriction X̂ 6= 1 becomes a constraint on the variable Ŷ).

3.4. SCIFF PROPERTIES 45

Constrain Given a node with

• Rk = L1, . . . , Lr

and the selected literal, Li is a constraint , constrain produces a node with

• Rk+1 = L1, . . . , Li−1, Li+1, . . . , Lr

• CSk+1 = CSk ∪ {Li}

Infer Given a node, the transition Infer modifies the constraint store by means

of a function infer(CS). This function is typical of the adopted constraint sort.

E.g., the function infer in a FD (Finite Domain) sort will typically compute

(generalised) arc-consistency.

• CSk+1 = infer(CSk)

Consistent Given a node, the transition Consistent will check the consistency

of the constraint store (by means of a solver of the domain) and will generate a

new node. The new node can either be a special node fail or a node identical to

its father.

If consistent(CSk) then

• Tk+1 = Tk

If ¬consistent(CSk) then

• Tk+1 = fail

3.4 SCIFF properties

In general, the soundness of a proof procedure is defined as follows: if there exists

a successful derivation from a set of formulae F1 to a set of formulae F2, then F2

is a logical consequence of F1. In symbols:

F1 ` F2 → F1 |= F2

46 CHAPTER 3. THE SCIFF PROOF PROCEDURE

Completeness is the reverse property: if a set of formulae F2 is a logical

consequence of a set of formulae F1, then there exists a successful derivation of

the proof from F1 to F2. In symbols:

F1 |= F2 → F1 ` F2

For SCIFF, at the time of writing, soundness has been proved, but complete-

ness has not.

Moreover, a termination result for SCIFF has been proved.

In the following, we only give the statements of the results. Proofs can be

found in [GLMT04] and [GLM05].

3.4.1 Soundness of SCIFF

Theorem 3.4.1 (Soundness of SCIFF) Given a society instance S
HAPf , if

SHAPi `HAPf

PEND∪FULF G

with expectation answer (PEND ∪ FULF, σ) then

SHAPf |=(PEND∪FULF)σ Gσ

3.4.2 Termination of SCIFF

Termination is proven, as for SLD resolution, for acyclic knowledge bases and

bounded goals and implications. For definitions of boundedness and acyclicity for

the society Knowledge Bases, the reader can refer to [Xan03].

Theorem 3.4.2 (Termination of SCIFF) Let G be a query to a society S =

〈KBS, ICS〉, where KBS, ICS and G are acyclic w.r.t. some level mapping, and

G and all implications in ICS are bounded w.r.t. the level-mapping. Then, every

SCIFF derivation for G for each instance of G is finite.

Chapter 4

Constraint Handling Rules

Constraint Handling Rules [Frü98] (CHR for brevity hereafter) are essentially a

committed-choice language consisting of guarded rules that rewrite constraints

in a store into simpler ones until they are solved. CHR define both simplification

(replacing constraints by simpler constraints while preserving logical equivalence)

and propagation (adding new, logically redundant but computationally useful,

constraints) over user-defined constraints.

The main intended use for CHR is to write constraint solvers, or to extend

existing ones. However, although ours is not a classic constraint programming

setting, the computational model of CHR presents features that make it a useful

tool for the implementation of the SCIFF proof-procedure, as will be explained

in Ch. 5.

In the following, we briefly introduce the CHR language. The interested reader

can refer to [Frü98] for a complete introduction.

4.1 Syntax and semantics

CHR rules are of three types: simplification, propagation, and simpagation.

Simplification CHRs. Simplification rules are of the form

H1, . . . , Hi ⇐⇒ G1, . . . , Gj|B1, . . . , Bk (4.1.1)

with i > 0, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . , Hi is a nonempty

sequence of CHR constraints, the guard G1, . . . , Gj is a sequence of built-in con-

47

48 CHAPTER 4. CONSTRAINT HANDLING RULES

straints, and the body B1, . . . , Bk is a sequence of built-in and CHR constraints.

Declaratively, a simplification rule is a logical equivalence, provided that the

guard is true. Operationally, when constraints H1, . . . , Hi in the head are in the

store and the guard G1, . . . , Gj is true, they are replaced by constraints B1, . . . , Bk

in the body.

Propagation CHRs. Propagation rules have the form

H1, . . . , Hi =⇒ G1, . . . , Gj|B1, . . . , Bk (4.1.2)

where the symbols have the same meaning and constraints of those in the sim-

plification rules (4.1.1).

Declaratively, a propagation rule is an implication, provided that the guard

is true. Operationally, when the constraints in the head are in the store, and the

guard is true, the constraints in the body are added to the store.

Simpagation CHRs. Simpagation rules have the form

H1, . . . , Hl\Hl+1, . . . , Hi ⇐⇒ G1, . . . , Gj|B1, . . . , Bk (4.1.3)

where l > 0 and the other symbols have the same meaning and constraints of

those of simplification CHRs (4.1.1).

Declaratively, the rule of Eq. (4.1.3) is equivalent to

H1, . . . , Hl, Hl+1, . . . , Hi ⇐⇒ G1, . . . , Gj|B1, . . . , Bk, H1, . . . , Hl (4.1.4)

Operationally, when the constraints in the head are in the store and the guard is

true, H1, . . . , Hl remain in the store, and Hl+1, . . . , Hi are replaced by B1, . . . , Bk.

4.2 The SICStus Prolog CHR library

The reference implementation of CHR is provided with SICStus Prolog [SIC03].

The SICStus CHR library offers implementation-specific operational features

which have been used in the SCIFF implementation. In particular, we have

made extensive use of the following (for more details, see the SICStus Manual

[SIC03]):

4.2. THE SICSTUS PROLOG CHR LIBRARY 49

• passive pragma: this directive lets the programmer declare a constraint as

passive in the head of a rule. In this way, no code will be generated for the

constraint. In practice, the rule will not be activated because of that con-

straint; in some cases, in this way efficiency is improved, but completeness

may be lost;

• remove constraint built-in predicate: this predicate non-declaratively re-

moves a constraint from the CHR store, given the internal constraint iden-

tifier.

50 CHAPTER 4. CONSTRAINT HANDLING RULES

Chapter 5

Implementation of the SCIFF

proof procedure

In this chapter, we describe the implementation of the SCIFF proof procedure

described in Ch. 3.

5.1 Overview of the implementation

5.1.1 Technology

In choosing the technology (programming languages, systems and techniques)

to be used, we had to take into account the requirements posed by the imple-

mentation of SCIFF, some common to other proof procedures, some peculiar to

SCIFF.

The choice of the Prolog programming language was motivated by the follow-

ing main reasons:

• While no quantitative results about the computational complexity of the

SCIFF proof procedure have been proved yet, a consideration of its be-

haviour with some sample specification suggests an high time complexity

of the exploration of the proof tree. In this perspective, the constant-factor

advantage that could be achieved by an imperative language such as C when

compared to Prolog is less significant.

51

52 CHAPTER 5. SCIFF IMPLEMENTATION

• Prolog supports dynamic data structures representing symbolic information

(which is required by SCIFF) in a simple and natural way.

• Thanks to its operational semantics (which could informally be described

as a depth-first exploration of a proof tree), Prolog is a natural candidate

for the implementation of a proof procedure.

• Many Prolog systems are extended to efficient Constraint Logic Program-

ming [JM94] systems, and offer constraint solving facilities which are needed

by SCIFF.

The most usual technique for implementing (abductive) proof procedures has

probably been meta-interpretation, which lets the programmer adjust the built-

in search strategy of Prolog to application-specific requirements in a compact

(if computationally expensive) way. However, the common understanding of ab-

ducible and constraints suggested by Kowalski et al. [KTW98] paved the way for

some authors to implement abduction in the Constraint Handling Rules (see Ch.

4 and [Frü98]) language [AC00, CD04, GLM+03], with advantages in execution

time with respect to meta-interpretation. Besides, a CHR-based implementation

offers, as a byproduct, the possibility of the seamless integration of a high-level

implementation of constraint solvers (see, for instance, [AL02] or [AGL+04a]),

which SCIFF needs to manage quantifier restrictions. Moreover, we had already

fruitfully used CHR for the implementation of previous of SCIFF-like verifica-

tion procedures [AGL+03b, ADG+04]. For these reasons, CHR was chosen as the

language for implementing the abduction-related parts of SCIFF.

One further SCIFF requirement is the possibility to represent the variable

quantification (see Sect. 3.2) and to adjust the behaviour of unification to keep

it into account. Attributed variables [Hol90] provide a good language abstraction

for this purpose.

Concerning the choice of the Prolog system, SICStus Prolog [SIC03] appeared

as the natural choice for the following reasons:

• it is a stable, fast, well documented and well supported Prolog system;

• it provides state-of-the-art CLP solvers: notably, on finite domains variables

(CLPFD) and boolean variables (CLPB);

5.1. OVERVIEW 53

• it provides the reference implementation of CHR;

• it supports attributed variables.

5.1.2 Adapting the SCIFF execution to Prolog

As the IFF proof-procedure [FK97], the SCIFF proof procedure specifies the proof

tree, leaving the search strategy to be defined at the implementation level. The

two most obvious possibilities are the depth-first and the breadth-first strategies.

The implementation described here is based on a depth-first strategy. This

choice enabled us to tailor the implementation upon the operational semantics of

Prolog: in particular, the resolvent of the proof is represented by the Prolog resol-

vent (see Sect. 5.3), and thus the Prolog stack is used directly for chronological

backtracking.

Depth-first exploration has its drawbacks: probably, the most notable is the

possibility of infinite loops in case of cyclic programs (the termination result for

SCIFF in Sect. 3.4.2 is relative to acyclic programs), although, considering the

applications of SCIFF it is also unfortunate to lose a complete representation of

the proof tree frontier that a breadth-first strategy would allow for. However,

we believe that the advantages in terms of execution time, memory management

and implementation simplicity granted by the depth-first strategy more than

compensate for the disadvantages.

Success and failure of the implementation map directly the corresponding

notions of SCIFF. In particular, the implementation returns success when a

state of goal achievement is found; instead, all the failure conditions, such as

inconsistency (both with respect to E-consistency and ¬-consistency, see Defs.

2.3.3 and 2.3.2), inconsistent constraint store and violation generate a failure,

and cause (chronological) backtracking.

54 CHAPTER 5. SCIFF IMPLEMENTATION

5.2 Representation of the Social Specification

instance.

The inputs to the SCIFF implementation are those defining an instance of the

social specification (see Ch. 2), i.e.:

• The Social Knowledge Base

• the set of SICs;

• the history HAP.

The Social Knowledge Base is contained in a text file with the syntax of Spec.

2.2. Internally, it is represented as part of the Prolog database, after having been

modified to support SCIFF features such as, for instance, variable quantification.

The set of SICs is also represented in the Prolog database. When the com-

putation starts, SICs are imposed as partially solved integrity constraints (see

Sect. 5.3.3).

The representation of the history is application specific. When using SCIFF

for offline verification, the history is part of the Prolog database; but events can

also be received from an external queue, when SCIFF is integrated in a multiagent

system (as described in Sect. 5.6).

5.3 Data Structures

Each state of the proof (as specified in Sect. 3.1) is represented by a tuple with

the following structure:

T ≡ 〈R, CS, PSIC,PEND,HAP,FULF,VIOL〉

The data structures are implemented by means of Prolog built-in structures and

the CHR constraint store. In the following, we describe the implementation of

each element of the tuple.

5.3. DATA STRUCTURES 55

Set CHR Constraint Atom Meaning

PSIC psic/2 psic(B,H) B → H ∈ PSIC

HAP h/2 h(D,T) H(D,T) ∈ HAP

PEND pending/1 pending(e(D,T)) E(D, T) ∈ PEND

FULF fulf/1 fulf(e(D,T)) E(D, T) ∈ FULF

VIOL viol/1 viol(e(D,T)) E(D, T) ∈ VIOL

Table 5.1: SCIFF sets and CHR constraints

5.3.1 Resolvent

The resolvent of the proof is implemented by the Prolog resolvent. This allows

us to exploit the Prolog stack for depth-first exploration of the tree of states.

At the beginning of the compuation, the resolvent is initialised with the goal;

in a success node, the resolvent is true.

5.3.2 Constraint Store

The constraint store of the proof1 is represented as the union of the CLP con-

straint stores. For the implementation of the proof, the CLPFD and CLPB

libraries of SICStus Prolog, a CHR-based solver on finite and infinite domains,

and an ad-hoc solver for reified unification have been used. However, in principle,

it should be possible to integrate with the proof any constraint solver available

for SICStus Prolog.

5.3.3 Proof sets: PSIC, HAP, PEND, FULF, VIOL

The sets PSIC, HAP, PEND, FULF, and VIOL are represented by means of

CHR constraints, by exploiting the set semantics that can be given to constraints,

as follows. To a set I a CHR constraint i is associated; the intended semantics

is that the constraint is imposed on an atom A (i(A) is in the CHR store) if and

only if A ∈ I.

1This constraint store, which contains CLP constraints over variables, should not be con-

fused with the CHR constraint store, which is used for the implementation of the other data

structures.

56 CHAPTER 5. SCIFF IMPLEMENTATION

The associations between sets and CHR constraints is shown in Tab. 5.1.

This representation makes the CHR-based implementation of many SCIFF

transitions straightforward. In fact, many of the SCIFF transitions can be ex-

pressed with the following pattern:

• if A1 ∈ I1, . . . , Ak ∈ Ik, Ak+1 ∈ Ik+1, . . . , An ∈ In

• then impose An+1 ∈ In+1, . . . , Am ∈ Im

• and remove A1 from I1, . . ., Ak from Ik

which maps directly to the following simpagation rule (where CHR constraints

have the aforementioned intended set semantics):

i1(A1), . . . , ik(Ak)

\
ik+1(Ak+1), . . . , in(An)

⇐⇒
in+1(An+1), . . . , im(Am)

(5.3.1)

Moreover, inserting an element in a set is as simple as imposing the corresponding

CHR constraint, which in SICStus Prolog amounts to calling it.

5.3.3.1 Partially Solved Integrity Constraints

Partially solved integrity constraints are formulae derived from social integrity

constraints by means of transitions such as propagation (see Sect. 5.5.1).

Each partially solved integrity constraint is represented by means of a psic/2

CHR constraint, which has as two arguments:

• the first argument is a list of lists representing the body of the partially

solved integrity constraint. Each sub-list contains terms of type:

1. H (events);

2. not H (negated events);

3. E (positive expectations);

5.3. DATA STRUCTURES 57

4. ¬E (negated positive expectations);

5. EN (negative expectations);

6. ¬EN (negated negative expectations);

7. constraints and defined predicates.

The reason for each sub-list to contain predicates of the same type is to

make the propagation (see Sect. 5.5.1) transition more efficient;

• the second argument is a list of lists representing the head of the partially

solved integrity constraint. Each sub-list represents one disjunct of the

head, and each element of each sub-list (a Prolog term which can represent

an expectation or a constraint) is a conjunct.

For instance, the following partially solved integrity constraint :

H(tell(A,B, query ref(Info),D),T) ∧
qr deadline(TD)

→ E(tell(B,A, inform(Info,Answer),D),T1) ∧
T1 < T + TD

∨ E(tell(B,A, refuse(Info),D),T1) ∧
T1 < T + TD

(5.3.2)

would be represented by the following CHR constraint (except, of course, for a

renaming of the variables, and where the CLP constraints are represented in the

notation of the SICStus Prolog CLPFD solver):

psic([[h(tell(A,B,query_ref(Info),D),T1)],[],[],[],[],[],

[qr_deadline(TD)]],

[[e(tell(B,A,inform(Info,Answer),D),T2),T2#<T1+TD],

[e(tell(B,A,refuse(Info),D),T3),T3#<T1+TD]])

5.3.3.2 History

Each event is represented by means of a h/2 CHR constraint, whose (ground)

arguments are the content and the time of the event. For instance, the event

H(tell(alice, bob, query ref(phone number), dialog id), 10) (5.3.3)

58 CHAPTER 5. SCIFF IMPLEMENTATION

would be represented as:

h(tell(alice,bob,query_ref(phone_number),dialog_id),10)

5.3.3.3 Pending Expectations

Expectations that are neither fulfilled nor violated (i.e., belonging the set PEND)

are represented by means of a pending/1 CHR constraint, whose content is a term

(with functor e for E expectations and en for EN expectations) representing the

pending expectations. The pending/1 constraint, obviously, does not apply to

¬E or ¬EN. For example, if the expectation

E(tell(bob, alice, inform(phone number,Answer), dialog id),Ti) (5.3.4)

were pending, a CHR constraint

pending(e(tell(bob,alice,inform(phone_number,Answer),dialog_id),Ti))

would be in the CHR store, except for a renaming of the variables. The reader

should note that the representation of CLP constraints on variable Ti, such as

Ti#<20, are represented in the CLP constraint store, rather than in the expecta-

tion itself.

Additionally, CHR constraints are used to represent all expectations, either

pending, fulfilled or violated: this is needed because transitions such as propaga-

tion apply to pending, fulfilled or violated expectations in the same way. These

constraints are e/2, en/2, note/2 or noten/2, for E, EN, ¬E or ¬EN expecta-

tions, respectively.

The two arguments of these CHR constraints are the content and the time of

the expectation.

For instance, in the case above mentioned, a CHR constraint

e(tell(bob,alice,inform(phone_number,Answer),dialog_id),Ti)

would be in the store.

5.4. VARIABLES 59

5.3.3.4 Fulfilled Expectations

Each fulfilled expectation is represented by a fulf/1 CHR constraint, whose

argument is a term representing the fulfilled expectation. For instance, if the

expectation

E(tell(bob, alice, inform(phone number, 5551235), dialog id), 12) (5.3.5)

were fulfilled, the CHR constraint

fulf(e(tell(bob,alice,inform(phone_number,5551234),dialog_id),12))

would be in the CHR store.

5.3.3.5 Violated Expectations

Each violated expectation is represented by a viol/1 CHR constraint, whose

argument is a term representing the violated expectation.

5.4 Variables

Variables are represented by means of attributed SICStus Prolog variables [Hol90,

SIC03]. Attributes are used to express the quantification of variables, to mark

flagged variables and to impose quantifier restrictions on universally quantified

variables.

Flagging, Quantification and Quantifier Restrictions. As explained in

Sect. 3.2, variables in the resolvent and in abduced atoms are flagged. The

flagging of a variable determines whether it is copied when a new copy of a

term in which the variable occurs is made: in particular, existentially quantified,

flagged variables are not copied.

The quantification of variables, combined with their flagging, is represented

by a quant/1 attribute, whose argument can assume one of the following values :

• exists, for existentially quantified, non-flagged variables;

• existsf, for existentially quantified, flagged variables;

60 CHAPTER 5. SCIFF IMPLEMENTATION

• forall, for universally quantified, non-flagged variables;

• forallf, for universally quantified, flagged variables.

Quantifier restrictions for universally quantified variables are expressed by means

of attribute restrictions/1, whose argument is the expression representing the

quantifier restriction.

Constraints for existentially quantified variables are implemented by means

of external CLP solvers: in particular, by the CLPFD solver of SICStus Prolog,

and by an ad hoc constraint solver implemented in CHR (an adaptation of the

domain solver distributed with the CHR library).

Unification. Unification between terms is implemented as reified unification by

means of a CHR constraint solver. The CHR constraint reif_unify(T1,T2,B)

means that the terms T1 and T2 unify if and only if B=1.

5.5 Transitions

The implementation of transitions has been designed so to exploit the built-

in Prolog and CHR mechanisms whenever possible, both for simplicity and for

efficiency.

This has been made possible by the choice of a depth-first strategy for the ex-

ploration of the proof tree, and by the representation of data structures described

in Sect. 5.3.

5.5.1 IFF-like Transitions.

Unfolding. As explained in Sect. 3.3.1, unfolding applies to defined literals

in the resolvent and to defined atoms in the body of social integrity constraints.

At the implementation level, we use two different mechanisms to handle the two

cases:

• unfolding for a defined literal in the resolvent is achieved by mere Prolog

resolution (i.e., by calling the literal);

5.5. TRANSITIONS 61

• unfolding for defined atoms in the body of ICs is achieved by replacing

the atom with its definition (by means of the Prolog clause/2 built-in

predicate).

Abduction. Abducible sets (PEND, FULF, VIOL, and their union) are rep-

resented as CHR constraints, as explained in Sect. 5.3.3.

When the selected literal of the resolvent is an abducible (i.e., a term of functor

e, en, note, noten), abduction can thus be obtained by:

1. Flagging the variables in the abducible (see Sect. 3.2);

2. Calling the abducible.

This is achieved by the following predicate:

abduce(Abducible):-

term_variables(Abducible,Variables),

flag_variables(Variables),

call(Abducible).

When the abducible is of type E or EN, it is also inserted into the PEND set

of pending expectations, by means of the following propagation CHRs:

pending_e @

e(Event,Time)

==>

pending(e(Event,Time)).

pending_en @

en(Event,Time)

==>

pending(en(Event,Time)).

Example 5.5.1 If the atom e(p(X),T) were selected in the resolvent, after ab-

duction and the application of the pending_e rule the CHR constraints

pending(e(p(X),T) and e(p(X),T) would be in the CHR store, and the variable

X and T would be flagged.

62 CHAPTER 5. SCIFF IMPLEMENTATION

Propagation. Propagation of events and expectations with partially solved

integrity constraints exploits the CHR-based representation of HAP, PEND

and PSIC explained in Sect. 5.3.3; in this way, propagation of a given kind of

atom can be achieved by means of one CHR rule. For instance, the following rule

implements propagation (and the subsequent case analysis) for H atoms:

propagation_h @

h(Event1,Time1),

psic([[h(Event2,Time2)|MoreH],NotH,E,NotE,En,NotEn,A],Head)

==>

fn_ok(Event1,Event2)

|

ccopy(p([[h(Event2,Time2)|MoreH],NotH,E,NotE,En,NotEn,A],

Head),

p([[h(Event2a,Time2a)|MoreHa],NotHa,Ea,NotEa,Ena,NotEna,Aa],

Heada)),

(reif_unify(p(Event1,Time1),p(Event2a,Time2a),1)->

psic([MoreHa,NotHa,Ea,NotEa,Ena,NotEna,Aa],Heada);

reif_unify(p(Event1,Time1),p(Event2a,Time2a),0)).

The predicate fn ok/2, called in the rule guard, recursively checks that two terms

are compatible as for functor and arity. For instance, fn ok(p(a,f(Y)),p(X,f(b)))

holds, fn ok(p(A,f(B)),p(A,g(B))) does not.

The rule is activated each time a new h/2 or psic/2 constraint is imposed

(i.e., each time a new element is put into HAP or PSIC).

The guard checks functor/arity compatibility between the event and the head

of the event sub-list in the body of the integrity constraint. If the guard succeeds,

a copy is made of the integrity constraint, and unification is attempted between

the event and the head of the event sublist of the body of the newly copied

integrity constraint. If the unification succeeds, the new integrity constraint

(without the head of the event sub-list of the body) is added to PSIC(i.e., the

psic/2 constraint is imposed on it); otherwise, the dis-unification constraint is

imposed.

5.5. TRANSITIONS 63

By only trying propagation when the event matches the head of the event sub-

list of the integrity constraint, we avoid duplicating the generated expectations.

The rules for propagation of E, EN, ¬E and ¬EN atoms are analogous.

Splitting. The depth-first strategy of the implementation allows for dealing

with disjunctions according to the following (very common in Prolog practice)

schema:

split([Disjunct|_]):-

call(Disjunct).

split([_|MoreDisjuncts]):-

split(MoreDisjuncts).

This schema is applied to disjunctions in the head of integrity constraints. Mul-

tiple clauses in predicate definitions in the social knowledge base replace the IFF

disjunctions in predicate definitions, and the Prolog resolution deals with them.

Disjunctions in the constraint store are handled by the constraint solver(s).

Case Analysis. Case analysis is not implemented as an independent transition,

but its implementation is integrated in the transitions that can lead to case an

analysis (namely propagation, fulfillment and violation).

Equivalence Rewriting. As specified in Sect. 3.3.1, equivalence rewriting is

delegated to the constraint solver(s).

Logical Equivalence. Logical equivalence replaces a partially solved integrity

constraint whose body is true with its head. This is implemented by the following

CHR rule:

logical_eq @

psic([[],[],[],[],[],[],[]],Head)

<=>

impose_head(Head).

64 CHAPTER 5. SCIFF IMPLEMENTATION

The rule is activated when a partially solved integrity constraints whose body

is empty is added to the CHR store: simply, the head of the partially solved

integrity constraint is imposed (which will usually involve splitting).

5.5.2 Dynamically Growing History.

Happening. Happening of events (i.e., insertion of a H atom in HAP, see Sect.

3.3.2) is achieved by imposing a h/2 CHR constraint, whose (ground) arguments

are the content and the time of the event.

For instance, the insertion into HAP of the following event

H(tell(alice, bob, query ref(phone number), dialog id), 10)

is achieved by imposing (calling) the following CHR constraint:

h(tell(alice,bob,query_ref(phone_number),dialog_id),10)

Closure. Closure of the history of the society is achieved by imposing a

close_history/0 CHR constraint. The presence of this constraint in the store

will be checked by other transitions such as fulfillment of EN expectations, or

propagation of not H atoms.

Propagation of not H atoms. The propagation of not H atoms is an ap-

plication of constructive negation (see Sect. 3.3.2), by means of the following

rule:

propagation_noth @

close_history,

psic([H,[NotH|MoreNotH],E,NotE,EN,NotEN,A],Head) # _psic

==>

true

&

Body=[H,[NotH|MoreNotH],E,NotE,EN,NotEN,A],

ccopy(p(Body,Head),p(Body1,Head1)),

propagate_noth(Body1,Body2)

5.5. TRANSITIONS 65

|

psic(Body2,Head1)

pragma

passive(_psic).

The rule is activated when the history is closed by the close history con-

straint. For each partially solved integrity constraint with noth atoms in its body,

a copy is made of the integrity constraint. A new version Body2 of the body Body1

is obtained by the propagate noth/2 predicate, which

1. collects all h/2 CHR constraints whose arguments may unify with those of

the noth atom;

2. imposes dis-unification between the arguments;

3. removes the noth atom from the body.

The partially solved integrity constraint with the new body is then inserted into

PSIC (i.e., the psic/2 constraint is imposed on it).

5.5.3 Fulfillment and violation.

E Fulfillment and EN Violation Fulfillment of E and violation of EN can

be detected while the history is still open. The following CHRs implements

fulfillment of E expectations:

fulfillment @

h(HEvent,HTime),

pending(e(EEvent,ETime)) # _pending

==>

fn_ok(HEvent,EEvent)

|

ccopy(p(EEvent,ETime),p(EEvent1,ETime1)),

case_analysis_fulfillment(HEvent,HTime,EEvent,ETime,

EEvent1,ETime1,_pending).

66 CHAPTER 5. SCIFF IMPLEMENTATION

The rule is applied when an event and a pending expectation whose content have

recursively the same functor and arity (this is checked by the fn/2 predicate in

the guard of the rule) are in the CHR store. In this case, a copy is made of the

expectation2 and the case_analysis_fulfillment/7 predicate is called.

case_analysis_fulfillment(HEvent,HTime,EEvent,ETime,

EEvent1,ETime1,_pending):-

remove_constraint(_pending),

reif_unify(p(HEvent,HTime),p(EEvent1,ETime1),1),

fulf(e(EEvent,ETime)).

case_analysis_fulfillment(HEvent,HTime,_,_,EEvent1,ETime1,_):-

reif_unify(p(HEvent,HTime),p(EEvent1,ETime1),0).

The arguments of this predicate represent, respectively, the content of the event,

the time of the event, the content of the expectation, the time of the expectation,

a copy of the content of the expectation, a copy of the time of the expectation, and

the internal constant representing the pending/1 constraint for the expectation.

Two nodes are created by case_analysis_fulfillment/7:

• one where unification is imposed between the expectation and the event,

the pending/1 constraint for the expectation is removed and fulf/1 CHR

constraint for the expectation is imposed (which means that the expectation

is moved from PEND to FULF, as explained in Sect. 5.3.3);

• one where non-unification between the expectation and the event is im-

posed.

Example 5.5.2 Let the following two CHR constraints be in the store:

h(tell(alice,bob,refuse(phone_number),dialog_id),13)

pending(e(tell(alice,bob,refuse(phone_number),dialog_id),T))

Then, by rule fulfillment, in one node the constraint T=13 would be imposed,

the CHR constraint

2As specified in [GLT+03]: this allows for universally quantified variables in EN expectations

to remain unbound.

5.5. TRANSITIONS 67

pending(e(tell(alice,bob,refuse(phone_number),dialog_id),T))

would be removed, and the CHR constraint

fulf(e(tell(alice,bob,refuse(phone_number),dialog_id),T))

would be imposed; in the other node, the CHR constraints would remain the same,

but the constraint T#\=13 would be imposed.

E Violation and EN Fulfillment. When the history of the society is closed

(by means of the closure transitions), all E expectations in PEND are moved

to VIOL, and all EN in PEND are moved to FULF. This is achieved by the

following two rules:

closure_e @

(close_history)

\

(pending(e(Event,Time)) # _pending)

<=>

viol(e(Event,Time))

pragma

passive(_pending).

closure_en @

(close_history)

\

(pending(en(Event,Time)) # _pending)

<=>

fulf(en(Event,Time))

pragma

passive(_pending).

In these two rules, the pending/1 constraint for the expectation is declared to

be passive: thus, the two rules are activated only when the close_history/0

constraint is imposed.

68 CHAPTER 5. SCIFF IMPLEMENTATION

5.5.4 Consistency

In Sect. 3.3.4, E-consistency and ¬-consistency are achieved by imposing ad-

ditional integrity constraints to the social specification. However, since such

integrity constraints would be applied many times during the computation, in

order to improve the performance we have preferred to implement E-consistency

and ¬-consistency by means of a specialised mechanism; precisely, by means of

three on-purpose CHR rules, as follows.

E-consistency. E-consistency is implemented by imposing non-unification on

the (Content,Time) pairs of E and EN expectations in the store:

e_consistency @

e(EEvent,ETime),

en(ENEvent,ENTime)

==>

reif_unify(p(EEvent,ETime),p(ENEvent,ENTime),0).

Example 5.5.3 Given the expectations e(a,T) and en(a,3), E-consistency would

impose reif_unify(p(a,T),p(a,3),0), which would propagate to the CLP con-

straint T 6= 3 (represented as T#\=3 in the CLPFD solver available for SICStus

Prolog).

¬-consistency. Analogously to E-Consistency, ¬-Consistency is implemented

by by imposing non-unification on the (Content,Time) pairs of E and ¬E (or EN

and ¬EN) expectations in the store:

not_consistency_e @

e(EEvent,ETime),

note(NotEEvent,NotETime)

==>

reif_unify(p(EEvent,ETime),p(NotEEvent,NotETime),0).

not_consistency_en @

en(EnEvent,EnTime),

5.6. THE SOCS-SI SYSTEM 69

noten(NotEnEvent,NotEnTime)

==>

reif_unify(p(EnEvent,EnTime),p(NotEnEvent,NotEnTime),0).

5.6 The SOCS-SI system

In order to use SCIFF for actual verification of interaction in multiagent sys-

tems, it has been integrated in SOCS-SI [ACG+04], a Java system equipped with

a Graphical User Interface and interfaces for observing agent interaction (i.e.,

collecting events) from difference sources.

Figure 5.1: The SOCS-SI architecture

The core of SOCS-SI is composed of three main modules (see Fig. 5.1), namely:

• Event Recorder : fetches events from different sources and stores them inside

the History Manager.

• History Manager : receives events from the Event Recorder and composes

them into a history.

• Social Compliance Verifier (SCV): fetches events from the History Manager

and passes them on to SCIFF in order to check the compliance of the history

70 CHAPTER 5. SCIFF IMPLEMENTATION

to the specification. It receives the expectations from SCIFF and visualises

them in the GUI.

All the modules, except SCIFF, are implemented in Java language. The SCIFF

implementation is interfaced to the SCV by means of the Jasper Java-Prolog

interface available in SICStus Prolog [SIC03].

The GUI lets the user select:

• the social specification (social knowledge base and social integrity con-

straints) to be used and the goal to be achieved;

• the source of the events to compose the history, which can be one of the

following:

– a networked source;

– a text file;

– the user prompt.

Among the supported networked sources, the first was the communication layer of

the PROSOCS [SKL+04] platform, an agent platform developed during the SOCS

project. However, SOCS-SI has also been integrated with the agent platform

JADE [JAD], the coordination platform TuCSoN [OZ99], and an email system.

The GUI (see Fig. 5.2) displays the results of the computation after each

event. In particular, it shows the expectation in a non-failure node, if there

exists one, or the result of failure. The computation nodes are arranged in a tree

structure, which can be viewed and recalled (possibly to understand the cause of

a failure in the computation).

5.7 Related work

Before SCIFF, other authors proposed the implementation of abduction in CHR,

thanks to the common understanding of abducibles and constraints proposed by

Kowalski et al. [KTW98].

Abdennadher and Christiansen [AC00] characterise abduction in the CHR∨

language, which extends CHR with disjunctions in the body of its rules. Chris-

tiansen and Dahl [CD04], who propose to exploit the CHR language to extend

5.7. RELATED WORK 71

Figure 5.2: A screenshot of SOCS-SI

72 CHAPTER 5. SCIFF IMPLEMENTATION

SICStus Prolog to support abduction more efficiently than with metainterpretation-

based solutions. The authors of both papers represent abducibles as CHR con-

straints, and they represent integrity constraints directly as CHR propagation

rules, using the built-in CHR matching mechanism. The same perspective is

adopted by Gavanelli et al. in the first implementation proposed in [GLM+03].

This technique has the advantage of exploiting directly the existent CHR im-

plementation based on Prolog. However, this technique does not seem viable

for the implementation of the SCIFF proof procedure, which also needs to han-

dle universally quantified variables and CLP constraints. For this reason, our

approach is more similar to the second proposed in [GLM+03], where integrity

constraints are implemented ad CLP constraints, rather than as rules.

Chapter 6

Applications

In this chapter, we show some examples of specifications of agent interaction in

open agent societies by means of the SCIFF framework. We demonstrate two

level of specification: the semantics of Agent Communication Languages, and

Interaction Protocols.

6.1 Social ACL Semantics

In this section, we show how the SCIFF framework can be used to give a social

semantics to Agent Communication Languages. Further discussion and examples

can be found in [ACG+03].

6.1.1 Agent Communication Languages

In most proposals for Multiagent Systems, knowledge exchange between agents

is achieved by communication in an Agent Communication Language (also ACL,

for short, in the following). An ACL provides language primitives (also called

communicative acts, utterances, and in certain contexts performatives, illocutions,

or dialogue moves) which agents can use to convey meaning to other agents,

according to some predefined semantics.

In most proposals, an ACL is defined by two languages:

• the communication language, represented by a set of communication per-

formatives, each corresponding to a different illocution;

73

74 CHAPTER 6. APPLICATIONS

• the content language which expresses the information to be transferred.

In recent years, much effort has been devoted to the definition of a standard ACL

(for instance, by the FIPA consortium [FIP01]); however, the definition of ACL

semantics is still an open issue.

Currently, in the international agent community, the most common approaches

for the definition of ACL semantics could be denoted by the terms mentalistic

[FLM97, FIP01] and social [Sin98]. In the following, we briefly illustrate the

differences between the two approaches.

6.1.1.1 Mentalistic semantics

The mentalistic semantics of an ACL is given by defining which mental states

lead to the utterance of a communicative act by the speaker agent, and which

are the effects of the communicative acts on the mental state of the hearer agent.

Obviously, such a semantics strictly constrains the internal architecture of agents

to support mental states.

For instance, FIPA ACL assumes a BDI (Belief, Desire, Intention) model for

the agents [RG92b], and relies on it for defining the semantics of communicative

acts in terms of Feasibility Preconditions (i.e., the conditions that have to be

satisfied for the communicative act to be planned) and Rational Effects (i.e., the

expected effect that the communicative act would have).

As an example, the definition of the FIPA ACL performative request is as

follows:

<Sender, REQUEST (Receiver,a)>

FP : FP(a)[Sender\Receiver]∧
BSenderAgent(Receiver, a)∧
BSender¬PGReceiverDone(a)

RE : Done(a)

where

• FP denotes the feasibility preconditions of the act;

• RE denotes the rational effect of the act;

6.1. SOCIAL ACL SEMANTICS 75

• FP(a)[Sender\Receiver] denotes the part of the FPs of a, which are mental

attitudes of the Sender;

• BSenderAgent(Receiver, a) means that Sender believes that Receiver can

perform a;

• BSender¬PGReceiver Done(a) means that Sender believes that Receiver does

not (yet) intend to perform a.

• Done(a) means that a has “just” taken place.

It is worth noticing that, according to this definition, the agent Sender should

not only be aware of its own mental state, but also have beliefs about the agent

Receiver’s mental state.

The mentalistic approach to the ACL semantics has been much criticized

mainly because its underlying assumptions regarding agents’ internals are not

realistic in open societies of heterogeneous agents. As Singh stated [Sin98], em-

phasizing mental agency leads to the supposition that agents should be primarily

understood in terms of mental concepts, such as beliefs and intentions: this ap-

proach supposes, in essence, that agents can read each other’s minds. Whenever

agents’ mental states are not accessible, which is reasonably the case if agents op-

erate in open and heterogeneous environments, it is impossible to verify semantic

compliance of communicative acts.

6.1.1.2 Social semantics

The social approach defines ACL semantics in terms of the effects of the com-

municative acts on the agent society as a whole. Following this approach, even

if the agents’ mental state cannot be accessed, it is possible to verify whether

communicating agents in a society comply to some social laws which regulate the

interactions.

Notable proposals for a social semantics are commitment-based [Sin00, FC02].

A social commitment is an obligation which binds an agent (usually the speaker

in a communicative act) to the society. So, each social commitment refers to a

content (i.e., the action, or the proposition to be made true), a debtor (i.e., the

76 CHAPTER 6. APPLICATIONS

agent engaged to make the content true) and a creditor (i.e., the agent relative

to which the commitment is made).

In particular, in Singh’s work [Sin00] three levels of semantics for each com-

munication performative are defined: the objective claim (that the subject of the

communication is true), the subjective claim (that the communication is sincere)

and the practical claim (that the speaker is justified in making the communica-

tion).

For instance, the semantics of the performative inform(s, h, p) (“s informs

h of p”) is:

• s is committed towards h that p holds (objective claim);

• s is committed towards h that s believes p (subjective claim);

• s is committed towards the society that he has reasons to believe p (practical

claim).

In this way, the mentalistic approach is adopted only at the subjective level, while

at the practical level a commitment towards the agent society is used.

The social approach is applied to the definition of ACL semantics in [FC02],

where an operational specification of an ACL is given in an object-oriented frame-

work by means of the commitment class. A commitment represents an obligation

for its debtor towards its creditor. A commitment is described by a finite state

automaton, whose states (which can take the values of empty, pre-commitment,

cancelled, conditional, active, fulfilled and violated) can change by application of

methods of the commitment class, or of rules triggered by external conditions.

Semantics of communicative acts is specified in terms of methods to be applied

to a commitment when a communicative act is issued.

Within this framework, for instance, the semantics of the assertive inform

performative is given as follows:

inform(Sender, Receiver, P) = make C(Sender, Receiver, P, true, CC)

where C(Sender,Receiver,P,true,CC) is a (conditional) commitment (with the

condition already true) made by Sender, to agent Receiver (the “creditor” of the

commitment) that P (the content) will be satisfied. The effect of this utterance

6.1. SOCIAL ACL SEMANTICS 77

will define a commitment initially in the transitory state CC, that will immediately

move (due to the true condition) in the state A. It might be later either fulfilled

(if P becomes true), or violated (if P becomes false).

6.1.2 Social ACL semantics with SCIFF

As the authors cited in Sect. 6.1.1.2, and for the same reasons, we believe that,

in open societies of possibly heterogeneous agents, a social semantics of commu-

nicative acts is more appropriate than a mentalistic one. This does not mean

that we oppose the definition of a mentalistic semantics: in fact, the mentalistic

semantics is probably the best way to implement the communication features of

agents which have a mental structure. However, in open societies, there is no

guarantee that agents will have a prescribed mental structure and will communi-

cate accordingly; thus an external perspective on ACL semantics is necessary, if

the semantics is to be verifiable.

A social semantics of communicative acts can be given in the SCIFF frame-

work in a way similar to the commitment-based, by establishing a correspondence

between commitments and expectations. The social integrity constraints can be

seen as forward rules which, given the occurrence of a communicative act (repre-

sented by an event), produce an expectation on the future behaviour of the agents

involved in the communication, which is related to the concept of commitment.

What follows should not be intended as a proposal for a set of communication

performatives (we believe that the set proposed by FIPA [FIP01], for instance,

is comprehensive and covers adequately the communication needs of agents), but

rather as a demonstration of how a given set of communication performatives can

be given a social semantics.

As an example, in the following we map into our framework some of the

linguistic primitives defined in [FC02].

In the following, unless otherwise specified, we will express the description of

an agent’s communicative act (the first argument of the H atom, see Def. 2.2.1)

as follows:

CommunicativeActId(Speaker,Recipient,Content,Context)

78 CHAPTER 6. APPLICATIONS

where Speaker is the speaker agent, Recipient is the intended recipient, Content is

the content of the message and Context is an identifier of the interaction context

between X and Y . In the case of dialogues, Context can be a dialogue identifier,

set by the agent who initiates the dialogue. A possible event is:

H(request(alice, bob, give(scooter), evening dialog), 21),

meaning the agent alice issued a request to agent bob to give a scooter, in the

context of evening dialog, at time 21.

Assertives: inform - Intuitively, an inform communicative act is used by an

agent to assert the truth of the content to another agent. In a commitment-based

setting like that of [FC02], this equates to the speaker agent to commit to the

truth of the content to the hearer agent.

In our framework, a possible definition of the semantics of inform is as follows:

H(inform(A,B, P,D), T)

→E(true(A,B, P))
(6.1.1)

where, with E(true(A, B, P)), we mean that A is responsible towards B with

respect to the truth of P ; in other words, if P is proved false, then A has violated

a commitment towards B.

We are aware that verifiability is an issue here: who is supposed to verify

the truth of P? According to our approach, built on the principle that it is

not acceptable to make assumptions about agents (and, therefore, about their

truthfulness) there should be a super partes entity in the society, equipped with a

knowledge base allowing it to decide the truth value of the content of a message.

If this is not the case, the only way is probably to associate no expectations to

an inform act, and let the hearer agent decide about the trustworthiness of the

speaker.

Commissives: promise and conditionalPromise - A promise, like an inform,

commits the speaker to the truth of the content, but for the former the speaker

is responsible for fulfilling it by means of a physical action.

H(promise(A, B, P,D), Tp)

→E(do(A,B, P,D), Td) ∧ Td ≤ Tp + τ
(6.1.2)

6.1. SOCIAL ACL SEMANTICS 79

where do is the action that should make P true. The restriction Td ≤ Tp + τ ,

where τ is some constant, expresses that the expectation will be fulfilled only if

the do event happens by the prescribed deadline Tp + τ .

The expectation in a conditionalPromise becomes effective only when an event

(which plays the role of a condition1 that is external to the dialogue and thus,

intuitively, is supposed not to be an action performed by the speaker) happens:

H(conditionalPromise(A,B, cond(P, Q), D), Tc)

∧H(Q, TQ)

→E(do(A,B, P, D), Td) ∧ Td ≤ max(Tc, TQ) + τ

(6.1.3)

where Q is a term describing an event and, as usual, H(Q, TQ) expresses that Q

happens at time TQ.

Example 6.1.1 Given the events

H(conditionalPromise(alice, bob, cond(give(umbrella), start raining), a dialog), 10)

and

H(start raining, 15)

and assuming τ = 10, the following expectation would be generated by SCIFF:

E(do(alice, bob, give(umbrella), a dialog), Td),

with the restriction Td ≤ 25, which could be fulfilled, for example, by the following

event:

H(do(alice, bob, give(umbrella), a dialog), 22).

Directives: request and conditionalRequest - A request does not, by itself,

generate any expectation. The hearer agent can either accept or reject the content

1In [FC02], the condition is expressed as a temporal proposition object. Temporal propo-

sitions express the truth value (true, false or undefined) of a statement (about some state of

affairs holding, or some action having been performed, or commitment having been created) in

a given time interval, with existential or universal temporal quantification. Thus, Fornara and

Colombetti’s framework can express a broader set of conditions than ours.

80 CHAPTER 6. APPLICATIONS

of the request, by the corresponding communicative acts. Only in case of an accept

the content of the request becomes expected:

H(request(A,B, P,D), Tr)

∧H(accept(B, A, P, D), Ta)

∧Tr < Ta

→E(do(B,A, P, D), Td) ∧ Td ≤ Ta + τ

(6.1.4)

where Tr < Ta means that the expectation will be raised only if the request

happens before the accept.

A conditionalRequest is different from a request in that its content becomes

the content of an expectation only once the hearer has accepted it and an event,

specified as a condition in the content of the conditionalRequest, has happened.

H(conditionalRequest(A,B, cond(P,Q), D), Tr)

∧H(accept(B, A, cond(P, Q), D), Ta)

∧Tr < Ta

∧H(Q, TQ)

→E(do(B, A, P,D), Td) ∧ Td ≤ max(Ta, TQ) + τ

(6.1.5)

There is no need to express the semantics of a reject by a SIC, because a rejected

request (or conditionalRequest) generates no expectations.

Example 6.1.2 Given the events

H(conditionalRequest(alice, bob, cond(give(umbrella), start raining), a dialog), 10),

H(accept(bob, alice, cond(give(umbrella), start raining), a dialog), 12),

and

H(start raining, 18)

and assuming τ = 10, the following expectation would be generated by SCIFF:

E(do(bob, alice, give(umbrella), a dialog), Td),

with the restriction Td ≤ 28, which could be fulfilled, for example, by the following

event:

H(do(bob, alice, give(umbrella), a dialog), 23).

6.1. SOCIAL ACL SEMANTICS 81

Proposals: propose - A propose is similar to a conditionalRequest, with the

difference that for the former the speaker is able by itself to fulfill the condition

by a do action.

As conditionalRequest, however, propose does not, by itself, generate any ex-

pectation. It is with accept that both the speaker and the hearer become commit-

ted to their respective expectations. We assume that the hearer and the speaker

can have different time limits for fulfilling the expectations on their behaviour.

H(propose(A,B, prop(PA, PB), D), Tp)

∧H(accept(B, A, prop(PA, PB), D), Ta)

∧Tp < Ta

→E(do(A,B, PA, D), TdA
) ∧ TdA

≤ Ta + τA

∧E(do(B, A, PB, D), TdB
) ∧ TdB

≤ Ta + τB

(6.1.6)

Example 6.1.3 Given the events

H(propose(alice, bob, prop(give(fight club), give(the game)), a dialog), 10)

and

H(accept(bob, alice, prop(give(fight club), give(the game)), a dialog), 13)

and assuming τA = τB = 10, the following expectations would be generated by

SCIFF:

E(do(alice, bob, give(fight club), a dialog), TdA
)

E(do(bob, alice, give(the game), a dialog), TdB
)

with the restrictions TdA
≤ 23 and TdB

≤ 23; the expectations could be fulfilled by

events as

H(do(alice, bob, give(fight club), a dialog), 18)

H(do(bob, alice, give(the game), a dialog), 19)

82 CHAPTER 6. APPLICATIONS

6.2 Definition of Agent Interaction Protocols

An Interaction Protocol specifies the “rules of encounter” governing a dialogue

between agents [RZ94, MPW02]. It specifies which agent is allowed to say what

in a given situation. It will usually allow for several alternative utterances in

every situation and the agent in question has to choose one according to its

private policy. From the individual agent perspective, protocols are practically

important because they may help to select the adequate answer to an incoming

utterance, thus reducing the complexity of this task for an agent ([EMST03b]).

In the following, we briefly review some of the formalisms used for specifying

Interaction Protocols and motivate the use of the SCIFF formalism for this pur-

pose. Then, we provide several examples of definitions of Interaction Protocols

in the SCIFF framework.

6.2.1 Formalisms for Agent Interaction Protocols

Until recently, the research on multiagent systems viewed Interaction Protocols

(or IPs, for short) as a practical matter as far as agent communication theory

was concerned, thus remaining disconnected from the large amount of existing

work on IPs [BHS93, Dem95]. It was indeed assumed that conversations structure

should emerge as a consequence of the semantics of individual messages.

This position has raised many critics, especially in the context of open systems,

and IPs are now considered as structures of theoretical importance when one tries

to model agent interactions.

So far, no formalism has been accepted as a standard for expressing IPs in

multiagent systems. In fact, the literature on IPs offers a number of different

formalisms, the most commonly used being Finite State Machines and AUML

Diagrams.

Finite State Machines (FSMs) are arguably the most adequate (and popular)

formalism to account for sequential interactions. The state of the automaton

describes the state of the conversation. Carefully designed FSMs have been im-

plemented in real application,s see for instance COOL [BF95]. However, because

it is necessary to specify all the local states of the interaction, it is clear that

6.2. DEFINITION OF PROTOCOLS 83

designers face a practical specification problem and consequently tend to over-

simplify the protocols.

AUML Protocol Diagrams rely on an extension of the classical UML formalism

specially dedicated to agents [BMO01]. Protocol diagrams introduce a number of

new features: most notably, concurrent messages are allowed, and the cardinality

of messages is not restricted to the one-to-one case. The notion of role is central:

protocol diagrams typically represents the lifelines of agents using defined roles,

and the steps in which the communicative acts are sent between these agents.

AUML supports partial or complete reuse of protocols. There is still ongoing

research trying to enhance the formalism with useful notions (e.g., synchronisa-

tion, exception handling, see [Hug02]). However, it should be kept in mind that

AUML remains a semi-formal specification.

In fact, in its 1999 specifications, FIPA [FIP] used a finite state machine rep-

resentation of its interaction protocols; but, as a consequence of the collaboration

between FIPA and OMG (Object Management Group), the 2001 specification

has adopted the new Agent UML standard [BMO01] and thus uses Protocol Di-

agrams to describe interaction (see, for instance, the specification of the FIPA

Request IP in Fig. 6.1).

Most of the times, however, protocol designers use the simplest formalism

which meet their requirement for a given application.

We believe that logic-based approaches can be fruitfully exploited for the

definition of IPs.

For instance, in [YS02], a variant of the event calculus [KS86] is applied to

commitment-based protocol specification. The semantics of messages (i.e., their

effect on commitments) is described by a set of operations whose semantics, in

turn, is described by predicates on events and fluents ; in addition, commitments

can evolve, independently of communicative acts, in relation to events and fluents

as prescribed by a set of postulates. This way of specifying protocols is more

flexible than traditional approaches specifying protocols as action sequences in

that it prescribes no initial and final states or transitions explicitly, but allows any

possible protocol to run with the only condition that, at the end of a protocol

run, no commitment must be pending; agents with reasoning capabilities can

84 CHAPTER 6. APPLICATIONS

themselves plan an execution path suitable for their purposes (which, in that

work, is implemented by an abductive event calculus planner).

Our motivations for adopting the SCIFF framework for defining IPs are the

same supporting commitments and committed-based semantics in [YS02]. The

idea is also in a way similar to that of conversation policies, defined as “general

constraints on the sequences of semantically coherent messages leading to a goal”

[GHB00], but with a more flexible approach.

In particular, we identify the main strengths of our approach in:

Flexibility Most of the formal approaches to model protocols require that each

state of the interaction be described. This can be practically tedious and

motivate designers to over-constrain protocols, affecting in turn the flex-

ibility of the interactions and the autonomy of the computees. Instead,

“participants must be constrained in their interactions only to the extent

necessary to carry out the given protocol and no more” [YS02].

Expressiveness - Sometimes, it can be necessary to include extra integrity con-

straints left implicit in semi-formal models, as shown in [EMST03a]. For

example, the explicit representation of the time parameter within the con-

straints allows to handle time deadlines and synchronisation easily.

Properties - Being based on Computational Logic, the SCIFF framework lends

itself well to studying and verifying properties of protocols.

Agent Autonomy - Our approach also guarantees autonomy, in that agents

are not constrained in their behaviour but they can act as they planned to

do. The outcome of their actions will depend, from a social perspective,

from the fact that they obey or not to the protocol definition.

6.2.2 Conventions for describing interactions

In the following protocol definitions, all events will be assumed to be communica-

tive actions. The Description of an event (the first argument of H atoms) will

have the following format:

6.2. DEFINITION OF PROTOCOLS 85

tell(Performer,Addressee,Content,Context),

where Performer is the agent performing the action, Addressee is the agent to-

wards which the action is addressed, Content is the content of the action and

Context is an identifier of the dialogue or interaction in which the action takes

place.

6.2.3 Semi-open society

According to [Dav01], societies can be classified into 4 groups, each characterised

by a different degree of openness. In the following, we give an example of how

our framework can model a semi-open society, i.e., a society that can be joined

by an agent by executing an entering protocol.

We suppose that a particular agent (indicated by the constant identifier

gatekeeper) is in charge of receiving joining requests, and requires, for agents

to enter, some form to be filled. In detail, a protocol run is as follows:

1. The candidate agent C sends a registration request to gatekeeper;

2. gatekeeper asks C to submit a registration form;

3. C submits the registration form;

4. gatekeeper either accepts or rejects the registration request.

The entering protocol is defined by the SICs in Spec. 6.1.

The first SIC imposes that gatekeeper reply to a registration request from an

agent C by asking C for a registration form. The second SIC imposes that, after

requesting the registration and having received the request for the registration

form, C send the registration form. The third SIC imposes that gatekeeper, once

received from C the requested registration form, reply to C by either accepting

or rejecting the registration request.

By means of the restriction on the time variable in all the generated expec-

tations, each message is imposed to follow the previous message by at most 10

time units.

86 CHAPTER 6. APPLICATIONS

Specification 6.1 Semi-open society: SICs for the entering phase.

H(tell(C, gatekeeper, ask(register),D),T)

→ E(tell(gatekeeper,C, ask(form),D),T1) ∧ T1 < T + 10

H(tell(C, gatekeeper, ask(register),D),T) ∧
H(tell(gatekeeper,C, ask(form),D),T1) ∧ T < T1

→ E(tell(C, gatekeeper, send(form,F),D),T2) ∧ T2 < T1 + 10

H(tell(gatekeeper,C, ask(form),D),T1) ∧
H(tell(C, gatekeeper, send(form,F),D),T2) ∧ T1 < T2

→ E(tell(gatekeeper,C, accept(register),D),T3) ∧ T3 < T2 + 10

∨ E(tell(gatekeeper,C, reject(register),D),T3) ∧ T3 < T2 + 10

Once the protocol has been completed, the agent is a “full member” of the

society. In this perspective, the presence in the history of an event of type:

H(tell(gatekeeper,C, accept(register),D),T)

represents the “full membership” of agent C in the society, and can be used

in SICs as a condition for generating expectations.

For instance, the SICs of the query ref protocol (see Spec. 2.5) can be modi-

fied, in order to take membership into account, as in Spec. 6.2.

In the new version, the events that represent the full membership of the agents

to the society appear in the body of all SICs. In this way, query ref messages

do not generate any expectation, unless both the sender and the receiver are full

members of the society, in the sense explained above.

It is apparent that this mechanism makes SICs bigger and less readable; how-

ever, it is quite easy to devise some kind of syntactic sugar to avoid the problem.

6.2.4 FIPA Request Interaction Protocol

The FIPA Request Interaction Protocol [FIP02], depicted in Fig. 6.1 allows one

agent to request another to perform some action. The normal protocol flow is

6.2. DEFINITION OF PROTOCOLS 87

Specification 6.2 Semi-open society: SICs for the query ref protocol with “full

membership” condition.

H(tell(A,B, query ref(Info),D),T) ∧
H(tell(gatekeeper,A, accept(register),D1),Ta) ∧ Ta < T ∧
H(tell(gatekeeper,B, accept(register),D1),Tb) ∧ Tb < T

→ E(tell(B,A, inform(Info,Answer),D),T1) ∧ T1 < T

∨ E(tell(B,A, refuse(Info),D),T1) ∧ T1 < T

H(tell(A,B, inform(Info,Answer),D),T) ∧
H(tell(gatekeeper,A, accept(register),D1),Ta) ∧ Ta < T ∧
H(tell(gatekeeper,B, accept(register),D1),Tb) ∧ Tb < T

→ EN(tell(A,B, refuse(Info),D),T1)

composed of the following steps:

1. The Initiator agent issues a request to a Participant agent to perform an

action P.

2. Participant can either

• refuse to perform P, in which case the protocol ends; or

• accept to perform P; in this case, after performing the action,

3. Participant will issue to Initiator one of the following:

• inform done(P), which simply tells Initiator that P has been per-

formed;

• inform result(P,R), which also contains, in R, some information about

the result of performing the action;

• failure(P), which reports a failure;

The SCIFF-based specification of the protocol is shown in Spec. 6.3 (the social

knowledge base is empty). The first SIC imposes to a Participant who has re-

ceived a request to perform an action, to reply with either accept or refuse. The

88 CHAPTER 6. APPLICATIONS

Specification 6.3 SICs for the FIPA Request interaction protocol.

H(tell(Initiator,Participant, request(P),D),T)

→ E(tell(Participant, Initiator, agree(P),D),T1) ∧ T < T1

∨ E(tell(Participant, Initiator, refuse(P),D),T1) ∧ T < T1

H(tell(Participant, Initiator, agree(P),D),T1)

→ EN(tell(Participant, Initiator, refuse(P),D),T2) ∧ T1 < T2

H(tell(Participant, Initiator, refuse(P),D),T1)

→ EN(tell(Participant, Initiator, agree(P),D),T2) ∧ T1 < T2

H(tell(Initiator,Participant, request(P),D),T) ∧
H(tell(Participant, Initiator, agree(P),D),T1) ∧ T < T1

→ E(tell(Participant, Initiator, failure(P),D),T2) ∧ T1 < T2

∨ E(tell(Participant, Initiator, inform done(P),D),T2) ∧ T1 < T2

∨ E(tell(Participant, Initiator, inform result(P,R),D),T2) ∧ T1 < T2

H(tell(Participant, Initiator, failure(P),D),T)

→ EN(tell(Participant, Initiator, inform done(P),D),T1) ∧ T < T1 ∧
EN(tell(Participant, Initiator, inform result(P,R),D),T2) ∧ T < T2

H(tell(Participant, Initiator, inform done(P),D),T)

→ EN(tell(Participant, Initiator, failure(P),D),T1) ∧ T < T1 ∧
EN(tell(Participant, Initiator, inform result(P,R),D),T2) ∧ T < T2

H(tell(Participant, Initiator, inform result(P,R),D),T)

→ EN(tell(Participant, Initiator, inform done(P),D),T1) ∧ T < T1 ∧
EN(tell(Participant, Initiator, failure(P),D),T2) ∧ T < T2

6.2. DEFINITION OF PROTOCOLS 89

Figure 6.1: FIPA Request Interaction Protocol (from [FIP02])

second and third SICs impose mutual exclusiveness between accept and refuse: if

Participant has accepted, it cannot refuse later, and vice-versa.

The fourth SIC imposes request and agree to be followed by one of inform done,

inform result, and failure. The last three SICs impose mutual exclusiveness

among the three.

It can be noted that, in this case, time deadlines have not been specified,

but restrictions on the time variables are used to imposed the temporal order of

events.

6.2.5 NetBill

NetBill (see [CTS95]) is a security and transaction protocol optimised for the sell-

ing and delivery of low-priced information goods, like software or journal articles.

The protocol rules transactions between two agents: merchant and customer. A

90 CHAPTER 6. APPLICATIONS

NetBill server is used to deal with financial issues such as those related to credit

card accounts of customer and merchant.

In the following, we focus on the type of the NetBill protocol designed for non

zero-priced goods, and do not consider the variants that deal with zero-priced

goods.

The typical protocol flow is composed of three phases:

1. price negotiation. The customer requests a quote for a good iden-

tified by PrId (priceRequest(PrId)), and the merchant replies with

(priceQuote(PrId,Quote)).

2. good delivery. The customer requests the good (goodRequest(PrId,Quote))

and the merchant delivers it in an encrypted format

(deliver(crypt(PrId,Key),Quote)).

3. payment. The customer issues an Electronic Payment Order

(EPO) to the merchant, for the amount agreed for the good

(payment(epo(C,crypt(PrId,K),Quote))); the merchant appends the de-

cryption key for the good to the EPO, signs the pair and forwards it

to the NetBill server (endorsedEPO(epo(C,crypt(PrId,K),Quote),M)); the

NetBill server deals with the actual money transfer and returns the re-

sult to the merchant (signedResult(C,PrID,Price,K)), who will, in her

turn, send a receipt for the good and the decryption key to the customer

(receipt(PrId,Price,K)).

The customer can withdraw from the transaction until she has issued the EPO

message; the merchant until she has issued the endorsedEPO message.

The NetBill protocol is implemented in the SCIFF framework by means of

SICs which, conceptually, are of two types:

• backward integrity constraints (Spec. 6.4), i.e., integrity constraints that

state that if some set of event happens, then some other set of event is

expected to have happened before.

For instance, the first backward integrity constraints imposes that, if M

has sent a priceQuote message to C, stating that M’s quote for the good

6.2. DEFINITION OF PROTOCOLS 91

Specification 6.4 NetBill protocol: backward SICs.

H(tell(M,C, priceQuote(PrId,Quote), Id),T)

→ E(tell(C,M, priceRequest(PrId), Id),T2) ∧ T2 < T

H(tell(C,M, goodRequest(PrId,Quote), Id),T)

→ E(tell(M,C, priceQuote(PrId,Quote), Id),Tpri) ∧ Tpri < T

H(tell(M,C, goodDelivery(crypt(PrId,K),Quote), Id),T)

→ E(tell(C,M, goodRequest(PrId,Quote), Id),Treq) ∧ Treq < T

H(tell(C,M, payment(C, crypt(PrId,K),Quote), Id),T)

→ E(tell(M,C, goodDelivery(crypt(PrId,K),Quote), Id),Tdel) ∧ Tdel < T

H(tell(netbill,M, signedResult(C,PrId,Quote,K), Id),Tsign) ∧ M 6= netbill

→ E(tell(M,netbill, endorsedEPO(epo(C,PrId,Quote),K,M), Id),T) ∧ T < Tsign

H(tell(M,C, receipt(PrId,Quote,K), Id),Ts)

→ E(tell(netbill,M, signedResult(C,PrId,Quote,K), Id),Tsign) ∧ Tsign < Ts

92 CHAPTER 6. APPLICATIONS

identified by PrId is Quote, in the interaction identified by Id, then C is

expected to have sent to M a priceRequest message for the same good, in

the same interaction, at an earlier time;

Specification 6.5 NetBill protocol: forward SICs.

H(tell(M,netbill, endorsedEPO(epo(C,PrId,Quote),K,M), Id),T)

→ E(tell(netbill,M, signedResult(C,PrId,Quote,K), Id),Tsign) ∧ T < Tsign

H(tell(netbill,M, signedResult(C,PrId,Quote,K), Id),Tsign)

→ E(tell(M,C, receipt(PrId,Quote,K), Id),Ts) ∧ Tsign < Ts

• forward integrity constraints (Spec. 6.5), i.e., constraints that state that if

some conjunction of event has happened, then some other set of event is

expected to happen in the future.

For instance, the first forward integrity constraint in Fig. 6.5 imposes that

an endorsedEPO message from M to the netbill server be followed by a

signedResult message, with the corresponding parameters.

We only impose forward constraints from the endorsedEPO message on-

wards, because both parties (merchant and customer) can withdraw from

the transaction at the previous steps.

6.2.6 The Needham-Schroeder Public Key protocol

Protocol description. The Needham-Schroeder protocol has been presented

in [NS78], where the authors discuss a way for ensuring the mutual exchange of a

secret (a pair of numbers, called nonces) between two peers over an insecure net-

work connection. The purpose of the protocol is to ensure mutual authentication

while maintaining secrecy. In other words, once agents A and B have successfully

completed a run of the protocol, A should believe his partner to be B if and only

if B believes his partner to be A.

The condition of insecure network connection can be stated as follows:

6.2. DEFINITION OF PROTOCOLS 93

1. when a peer sends a message to another peer, the sender has no way to

know if the message has been received or not;

2. when a peer receives a message, there is no way to be sure about the sender,

unless this information is somehow coded into the payload;

3. the content of a message could be compromised someway.

In support of the authentication procedure, agents rely on the well-known public

key encryption technology. By following the protocol, the two agents involved in

a communication session (conversation) challenge each other to make sure that

each one’s partner in the conversation is actually the holder of the private key

associated with his public key.

The protocol consists of seven steps, but, as other authors [DFFv04], we focus

on a simplified version of it, consisting of only three steps, which are the kernel of

the protocol. The simplification means that we assume that all the agents know

the public key of the other agents. The protocol flow can be represented as in

Spec. 6.6, where 〈M〉PK means that M is encrypted with public key PK.

Specification 6.6 The Needham-Schroeder protocol (simplified version)

(1) A→ B : 〈NA, A〉pub key(B)

(2) B → A : 〈NA, NB〉pub key(A)

(3) A→ B : 〈NB〉pub key(B)

By message (1), A challenges B to decrypt his nonce NA encrypted using B’s

public key. By message (2), B responds to A’s challenge, by attaching to NA a

new nonce NB, which he generated himself, and encrypting the whole set of two

nonces using A’s public key, thus challenging A to decrypt NB and prove to be

the holder of A’s private key. At this point of interaction, A believes that he is

speaking with B, since the latter proved to be able to decrypt the message (1)

and answering back the NA. Of course, this is reasonable under the assumption

that it is extremely improbable that an agent could guess the nonce NA. By

message (3), A responds to B’s challenge, giving a proof (the NB sent in message

94 CHAPTER 6. APPLICATIONS

(2)) of being A. In similar way to what happens after messages (1) and (2), B

believes his fellow is A upon receiving message (3).

As for the agents’ abilities, we refer to the Dolev-Yao model, which relies

on the perfect cryptography assumption (nothing can be learned on a plain text

from its encrypted version, without knowing the decryption key). In particular,

if we want to define the perfect cryptography assumption in terms of exchanged

messages, we say that an agent can:

• decrypt messages encrypted with his own public key;

• generate messages with nonces that (i) have never been generated by other

agents, or (ii) that he received in a message encrypted with his own public

key;

• forward messages.

Specification 6.7 Lowe’s attack on the Needham-Schroeder protocol

(1) A→ I : 〈NA, A〉pub key(I)

(2) I(A)→ B : 〈NA, A〉pub key(B)

(3) B → I(A) : 〈NA, NB〉pub key(A)

(4) I → A : 〈NA, NB〉pub key(A)

(5) A→ I : 〈NB〉pub key(I)

(6) I(A)→ B : 〈NB〉pub key(B)

Lowe’s attack on the protocol. Eighteen years after the publication of the

NSPK protocol, Lowe [Low96] proved it to be prone to security attack. Lowe’s

attack on the protocol is shown in Spec. 6.7, where a third agent I (standing

for intruder) manages to successfully authenticate himself as agent A with a

third agent B. Although the protocol is correctly followed, B believes he is

communicating with A, while instead he is communicating with I.

6.2. DEFINITION OF PROTOCOLS 95

The messages composing the attack belong to two different dialogues, A with

I and I with B. Each dialogue follows the protocol, but I exploits the information

of the first dialogue to deceive B in the second dialogue.

SCIFF-based specification of the protocol. The possible formats of the

events that represent the messages are the following:

• H(send(A,B, content(key(K), agent(A), nonce(NA))), T)

(agent A has sent to agent B its own identifier and a nonce, encrypted with

a key K, at time T)

• H(send(A,B, content(key(K), nonce(NA), nonce(NB))), T)

(agent A has sent to agent B two nonces, encrypted with a key K, at time

T)

• H(send(A,B, content(key(K), nonce(NA), empty(0))), T)

(agent A has sent to agent B a nonce, encrypted with a key K, at time T)

The SICs used for defining the protocol are of two types:

Specification 6.8 SICs for the NSPK protocol.

H(send(X,B, content(key(KB), agent(A),nonce(NA))),T1)

→ E(send(B,X, content(key(KA),nonce(NA),nonce(NB))),T2) ∧
NA 6= NB ∧ isPublicKey(A,KA) ∧ isNonce(NB) ∧
isMaxTime(TMax) ∧ T2 > T1 ∧ T2 < TMax

H(send(X,B, content(key(KB), agent(A),nonce(NA))),T1) ∧
H(send(B,X, content(key(KA),nonce(NA),nonce(NB))),T2) ∧ T2 > T1

→ E(send(X,B, content(key(KB),nonce(NB), empty(0))),T3) ∧
isMaxTime(TMax) ∧ T3 > T2 ∧ T3 < TMax

• A first group of SICs, depicted in Spec. 6.8, defines the protocol itself or,

more precisely, the simplified version of the protocol we are modelling. A

96 CHAPTER 6. APPLICATIONS

second group of SICs has been introduced to define the “contour” conditions

applied to the protocol.

The first SIC of Spec. 6.8 states that, whenever an agent B receives a

message from agent X, and this message contains the name of some agent

A (possibly the name of X himself), some nonce NA, encrypted with some

public key KB, then a message is expected to be sent at a later time (and

by some deadline TMax) from B to X, containing the original nonce NA and

a new nonce NB, encrypted with the public key of A.

The second SIC of Spec. 6.8 expresses that if two messages have been sent,

with the characteristics that: a) a first message has been sent at the instant

T1, from X to B, containing the name of some agent A and some nonce NA,

encrypted with some public key KB; and b) a second message has been sent

at a later instant T2, from B to X, containing the original nonce NA and a

new nonce NB, encrypted with the public key of A; then a third message is

expected to be sent from X to B, containing NB, and encrypted with the

public key of B.

• A second group of SICs is needed in order to impose the condition that

an agent is not able to guess another agent’s nonce, neither a private key

that he does not own. In Spec. 6.9 it is shown how this condition has been

translated. Intuitively, we can say that an agent X can send to another

agent Y a message containing a nonce NX which he does not initially know

only if one of the following two cases hold: either (i) X received NX from

another agent, encrypted in X’s own public key, or (ii) X received a message

containing NX and encrypted with a public key KY , in which case X can

forward exactly the same message, without operating any modification on

it.

The predicates used in the SICs are defined in the social knowledge base in Spec.

6.10.

6.2. DEFINITION OF PROTOCOLS 97

Specification 6.9 SICs to to express that an agent cannot guess a nonce in the

NSPK protocol.

H(send(X,Y, content(key(KY), agent(W),nonce(NX))),T1) ∧
X 6= Y ∧ notIsNonce(X,NX)

→ E(send(V,X, content(key(KX), agent(V),nonce(NX))),T0) ∧
X 6= V ∧ isNonce(V,NX) ∧ isPublicKey(X,KX) ∧
isAgent(V) ∧ T0 < T1 ∧ T0 > 0

H(send(X,Y, content(key(KY),nonce(NX),nonce(NY))),T1) ∧
X 6= Y ∧ notIsNonce(X,NX)

→ E(send(Z,X, content(key(KX), agent(V),nonce(NX))),T0) ∧
X 6= V ∧ Z 6= X ∧ isPublicKey(X,KX) ∧
isAgent(V) ∧ isAgent(Z) ∧ T0 < T1 ∧ T0 > 0

H(send(X,Y, content(key(KY),nonce(NX), empty(0))),T1) ∧
X 6= Y ∧ notIsNonce(X,NX)

→ E(send(Y,X, content(key(KX),nonce(NW),nonce(NX))),T0) ∧
isPublicKey(X,KX) ∧ isNonce(NW) ∧ NW 6= NX ∧
T0 < T1 ∧ T0 > 0

∨ E(send(Z,X, content(key(KX),nonce(NX), empty(0))),T0) ∧
isPublicKey(X,KX) ∧ X 6= Z ∧ Y 6= Z ∧
isAgent(Z) ∧ T0 < T1 ∧ T0 > 0

98 CHAPTER 6. APPLICATIONS

Specification 6.10 Social knowledge base for the NSPK protocol.

isPublicKey(PK) ← isPublicKey(,PK).

isPublicKey(i, ki).

isPublicKey(b, kb).

isPublicKey(a, ka).

isMaxTime(7).

isAgent(i).

isAgent(a).

isAgent(b).

isNonce(N) ← isNonce(,N).

isNonce(b,nb).

isNonce(i,ni).

isNonce(a,na).

6.2. DEFINITION OF PROTOCOLS 99

6.2.7 First Price Sealed Bid auction

The First Price Sealed Bid is a simple auction, where the bidders can make at

most one offer.

The protocol flow is as follows:

1. an Auctioneer agent opens the auction with an openauction message, in

which the Item being sold (or bought), the auction closing time TEnd and

the deadline TDeadline for winner declaration are specified;

2. the interested agents bid for Item with a Quote, by TEnd;

3. by TDeadline, each bid is declared by the auctioneer as winning or losing,

but not both.

The protocol regulating the “first price sealed bid” auction can be represented

by the SICs in Spec. 6.11.

The first SIC is a backward one, which checks that, for each bid, an openauction

for the correct Item and with correct time parameters have been issued. The

second SIC imposes that each bid, if preceded by a correspondent openauction,

receive either a win or a lose reply. The last two SICs impose mutual exclusiveness

between win and lose replies.

6.2.8 Combinatorial auctions

Combinatorial auctions are a type of auction where the auctioneer intends to

buy (or to sell) a set I of items, and bidders bid for subsets of I. Among the

several types of combinatorial auction, in the following, we focus on single unit,

reverse auctions, where the auctioneer is a customer which attempts to buy a set

of distinguishable items at the minimum cost.

Although combinatorial auctions are a powerful sale mechanism, in that they

let bidders bid for sets of items, possibly expressing complementarity or substi-

tutability among items [Nis00], their use in real world E-Commerce has been

prevented until recently by the NP-hard complexity of the Winner Determina-

tion Problem (WDP). However, the availability of efficient solvers has now made

combinatorial auctions viable.

100 CHAPTER 6. APPLICATIONS

Specification 6.11 SICs for the first price sealed bid auction protocol.

H(tell(B,A, bid(Item,Quote),AuctionId),TBid)

→ E(tell(A,B, openauction(Item,TEnd,TDeadline),AuctionId),TOpen) ∧
TOpen < TBid ∧ TBid ≤ TEnd ∧ TEnd < TDeadline

H(tell(A,B, openauction(Item,TEnd,TDeadline),AuctionId),TOpen) ∧
H(tell(B,A, bid(Item,Quote),AuctionId),TBid) ∧
TOpen < TBid ∧ TOpen ≤ TEnd ∧ TEnd < TDeadline

→ E(tell(A,B, answer(win, Item,Quote),AuctionId),TWin) ∧
TWin ≤ TDeadline ∧ TEnd < TWin

∨ E(tell(A,B, answer(lose, Item,Quote),AuctionId),TLose) ∧
TLose ≤ TDeadline ∧ TEnd < TLose

H(tell(A,B, answer(win, Item,Quote),AuctionId),TWin)

→ EN(tell(A,B, answer(lose, Item,Quote),AuctionId),TLose) ∧ TLose > TWin

H(tell(A,B, answer(lose, Item,Quote),AuctionId),TLose)

→ EN(tell(A,B, answer(win, Item,Quote),AuctionId),TWin) ∧ TWin > TLose

6.2. DEFINITION OF PROTOCOLS 101

In defining the versions of the protocols for combinatorial auctions, we focus

on the communicative aspects of the auctions, assuming that the WDP is solved

by a trusted, external entity .

6.2.8.1 Basic Combinatorial Auction

The protocol flow of the basic combinatorial auction is as follows:

1. the auctioneer agent opens the auction with an openauction message to

a set of potential bidders, specifying the Items object of the auction, the

time TEnd at which the auction will end, and the deadline TDeadline for

notification to bidders;

2. by TEnd, the interested agents bid for a subset of Items;

3. at TEnd, the auctioneer closes the auction with the closeauction message;

4. each bid receives either a win or a lose notification.

The SICs for the basic combinatorial auction protocol are shown in Spec. 6.12.

The first SIC is a backward one which requires a correct openauction to have

happened before each bid.

The second SIC prescribes that all incorrect bids (i.e., bids for items not

present in the auction) should be notified of losing. The correctness of a bid is

evaluated using the included/2 predicate, defined in the Social Knowledge Base

as in Spec. 6.13.

The third SIC requires for the auctioneer to close each opened auction with

a closeauction message.

The fourth SIC requires for the auctioneer to reply to each bid with a notifi-

cation of winning or losing. Differently from the case of the first price sealed bid

auction (see Spec. 6.11), in this case the alternative is expressed by representing

the answer with a variable (Answer) whose domain is the set [win,lose], rather

than with a disjunction.

The last two SICs express mutual exclusiveness between the win and lose

answers.

102 CHAPTER 6. APPLICATIONS

Specification 6.12 SICs for the basic combinatorial auction protocol.

H(tell(S,R, bid(ItemList,P),Anumber),Tbid)

→ E(tell(R,S, openauction(Items,Tend,Tdeadline),Anumber),Topen) ∧
Topen < Tbid ∧ Tbid ≤ Tend

H(tell(A,B, openauction(Items,Tend,Tdeadline),Anumber),Topen) ∧
H(tell(B,A, bid(Itembid,P),Anumber),Tbid) ∧
not included(Itembid, Items)

→ E(tell(A,B, answer(lose,Bidder, Itembids,P),Anumber),T)

H(tell(A,B, openauction(Items,Tend,Tdeadline),Anumber),Topen)

→ E(tell(A,B, closeauction,Anumber),Tend)

H(tell(B,A, bid(ItemList,P),Anumber),Tbid) ∧
H(tell(A,B, openauction(Items,Tend,Tdeadline),Anumber),Topen)

→ E(tell(A,B, answer(Answer,B, Itemlist,P),Anumber),Tanswer) ∧
Tanswer ≥ Tend ∧ Tanswer ≤ Tdeadline ∧ Answer :: [win, lose]

H(tell(A,B, answer(lose,B, Itemlist,P),Anumber),T1)

→ EN(tell(A,B, answer(win,B, Itemlist,P),Anumber),T2)

H(tell(A,B, answer(win,B, Itemlist,P),Anumber),T1)

→ EN(tell(A,B, answer(lose,B, Itemlist,P),Anumber),T2)

6.2. DEFINITION OF PROTOCOLS 103

Specification 6.13 Social knowledge base for the basic combinatorial auction

protocol.

included([],).

included(.(H,T),L) ← member(H,L),

included(T,L).

6.2.8.2 Double combinatorial auction

This protocol extends the previous basic combinatorial auction protocol to sup-

port those cases where, for instance, a bidder opens an auction for buying items

he needs for posting a more appealing bid. In this cases, conflicts between the

two auctions may arise.

Specification 6.14 Additional SICs for the double combinatorial auction.

H(tell(A,B, openauction(Items1,Tend1,Tdeadline1),A1),Topen1) ∧
H(tell(B,C, openauction(Items2,Tend2,Tdeadline2),A2),Topen2) ∧
intersect(Items1, Items2) ∧ Tdeadline2 ≥ Tend1

→ false

H(tell(B,A1, bid(ItemList1,P1),Anumber1),Tbid1) ∧
H(tell(B,A2, bid(ItemList2,P2),Anumber2),Tbid2) ∧
Anumber1 6= Anumber2 ∧ intersect(ItemList1, ItemList2)

→ false

The protocol still comprises the SICs shown in Spec. 6.12; two further SICs,

shown in Spec. 6.14, are used to prevent conflicts between two auctions.

The first SIC that if a first auction has been opened and one of the potential

bidders has opened another auctions referring to a set of items involved in the

first auction, then the second should be closed and winning bids decided before

the first closes.

The second SIC prevents a bidder from opening two distinct auctions for the

104 CHAPTER 6. APPLICATIONS

same items.

Specification 6.15 Social knowledge base for the double combinatorial auction

protocol.

included([],).

included(.(H,T),L) ← member(H,L),

included(T,L).

intersect(A,B) ← member(X,A),

member(X,B).

In both SICs, the presence of the same items in two auctions is checked by

means of the intersect/2 predicate defined in the social knowledge base as in Spec.

6.15.

6.2.8.3 Combinatorial auction with NetBill

This protocol extends the combinatorial auction protocol with a delivery and pay-

ment phase according to the NetBill protocol, already described in Sect. 6.2.5

(with minor differences in the format of messages). Of course, this is only appli-

cable to auctions regarding information goods (due to the necessity to deliver the

items in encrypted form).

The delivery and payment phase is specified by the additional SICs shown in

Specs. 6.16 (backward SICs) and 6.17 (forward SICs).

The delivery and payment phase is started, for winning bids, by the first

forward SIC in Spec. 6.17, which requires that a winning bidder deliver the

goods in encrypted form (since we are considering a reverse auction, the bidder

is the seller). After the delivery, the protocol flow proceeds as described in Sect.

6.2.5. Since neither the auctioneer nor the bidder can now withdraw from the

transaction, each pair of consecutive protocol steps is linked by a backward SIC

(in Spec. 6.16) and a forward one (in Spec. 6.17).

6.2. DEFINITION OF PROTOCOLS 105

Specification 6.16 Additional backward SICs for the combinatorial auction pro-

tocol with NetBill delivery phase.

H(tell(B,A, deliver(ItemList,Price),Anumber),T3)

→ E(tell(A,B, answer(win,B, ItemList,P),Anumber),T1) ∧ T1 < T3

H(tell(A,B, payment(ItemList,Price,EPOSign),Anumber),T4)

→ E(tell(B,A, deliver(ItemList,Price),Anumber),T3) ∧ T3 < T4

H(tell(B,netbill, endorsedEpo(ItemList,Price,A,EPOSign,Key),Anumber),T5)

→ E(tell(A,B, payment(ItemList,Price,EPOSign),Anumber),T4) ∧ T4 < T5

H(tell(netbill,B, signedResult(ItemList,Price,A,Result,Key),Anumber),T6)

→ E(tell(B,netbill, endorsedEpo(ItemList,Price,A,EPOSign,Key),Anumber),T5) ∧
T5 < T6

H(tell(B,A, signedResult(ItemList,Price,Result,Key),Anumber),T7)

→ E(tell(netbill,B, signedResult(ItemList,Price,A,Result,Key),Anumber),T6) ∧
T6 < T7

106 CHAPTER 6. APPLICATIONS

Specification 6.17 Additional forward SICs for the combinatorial auction pro-

tocol with NetBill delivery phase.

H(tell(B,A, bid(ItemList,P),Anumber),Tbid) ∧
H(tell(A,B, answer(win,B, ItemList,P),Anumber),T1) ∧ Tbid < T1

→ E(tell(B,A, deliver(ItemList,P),Anumber),T3) ∧ T3 > T1

H(tell(B,A, deliver(ItemList,Price),Anumber),T3)

→ E(tell(A,B, payment(ItemList,Price,EPOSign),Anumber),T4) ∧ T4 > T3

H(tell(A,B, payment(ItemList,Price,EPOSign),Anumber),T4)

→ E(tell(B,netbill, endorsedEpo(ItemList,Price,A,EPOSign,Key),Anumber),T5) ∧
T5 > T4

H(tell(B,netbill, endorsedEpo(ItemList,Price,A,EPOSign,Key),Anumber),T5)

→ E(tell(netbill,B, signedResult(ItemList,Price,A,Result,Key),Anumber),T6) ∧
T6 > T5

H(tell(netbill,B, signedResult(ItemList,Price,A,Result,Key),Anumber),T6)

→ E(tell(B,A, signedResult(ItemList,Price,Result,Key),Anumber),T7) ∧ T7 > T6

Chapter 7

SCIFF performance

No formal result have been proved about the computational complexity of SCIFF.

However, in this chapter, we first make some qualitative considerations on the

factors that contribute to the complexity, and then show the results of practical

tests.

7.1 Considerations on the SCIFF computational

complexity

The SCIFF proof procedure was designed to be used for on-the-fly compliance

check, while the interaction is taking place, as well as for a-posteriori check of

the interactions. The computation time becomes a critical issue in the case of

on-the-fly verification. In the latter case, SOCS-SI should behave like a real-time

tool, that acts as quickly as possible whenever the interaction between computees

evolves.

Memory requirements are also important in order to determine the (maxi-

mum) dimension of societies (in terms of participants and/or interactions) that

the implementation of SCIFF can support.

Each SCIFF computation produces a search tree whose depth and breadth

determine the total number of nodes, and thus the time needed to explore the

(whole) tree. As the proof tree is explored by SCIFF in a depth-first fashion, the

depth of the tree, together with the size of a single node, also impacts on space

107

108 CHAPTER 7. SCIFF PERFORMANCE

requirements. For both time and space, the worst case is when each branch leads

to violation, because in this case the whole tree is explored in search of a success

node.

In the following, we identify the features of social specifications that have

greater influence on the three factors above: namely, depth, breadth of the search

tree, and size of nodes.

Intuitively, the depth of the search tree depends on the total number of mes-

sages exchanged within a society. This parameter can be varied, and incremented

in particular, by (i) having the same computees repeat more times the same inter-

action, or (ii) increasing the number of computees participating a society, or (iii)

having “longer” interactions, where each compliant run is made up of different

messages, increasing in number.

The breadth of the search tree, instead, is influenced by both the number of

disjuncts in the head of social integrity constraints, and the alternative branches

arising in several of the SCIFF transitions (see Sect. 3.3).

For instance, in the Fulfillment transition, the fulfillment of an E expectation

leaves a choice open for non-unification between the expectation and the event

that would fulfill it. In many cases, avoiding this branching does not change

the behaviour of SCIFF with respect to fulfillment and violation : for instance,

when a positive expectation can be fulfilled by only one event, the non-unification

branch cannot be one of success. In such cases, cutting the non-unification branch

is safe, and saves a considerable amount of computation space and time. We call

such a SCIFF behaviour f-deterministic meaning that it behaves deterministically

on Fulfillment.

We let the user decide for which expectations SCIFF should adopt the f-

deterministic behaviour (or, in other words, which expectations will be f-deterministic),

by means of one or more fdet/1 directives, whose argument is a term T : all expec-

tations that are instances of T will be as f-deterministic. Of course, it is possible

to make all expectations f-deterministic by a directive such as fdet(e(X,T)).

For simplicity, we will refer to SCIFF with this directive as the f-deterministic

version of SCIFF; the f-non-deterministic version of SCIFF will denote SCIFF

with no fdet/1 directive.

7.2. EXPERIMENTAL RESULTS 109

7.2 Experimental results

In this section, we show some experimental results obtained applying SCIFF to

the verification of compliance to the combinatorial auction protocols described in

Sect. 6.2.8. While not being an exhaustive experimentation, the results show the

effect on the time complexity of SCIFF of the breadth and depth of the search

tree.

7.2.1 The effect of the branching factor

The branching factor of the proof tree obviously impacts heavily on the compu-

tational complexity of SCIFF. In order to show its effect, we have performed

some experiments on the combinatorial auction scenario (Sect. 6.2.8.1) varying

two parameters which contribute to determine the breadth of the proof tree:

1. SCIFF version (f-non-deterministic vs. f-deterministic, as defined in Sect.

7.1);

2. social specification (one version with a disjunction in the head of a SIC vs.

one version with no disjunctions, with alternative expressed by means of

variables with domain).

In particular, we measure the computation time for sequences of auctions with

different numbers of bidders in the two following implementations of the protocol:

1. f-non-deterministic SCIFF, protocol with disjunction (which we call the

first setup of SCIFF and protocol);

2. f-deterministic SCIFF, protocol with no disjunction (which we call the

second setup of SCIFF and protocol).

In both cases, the goal is true, and the SOKB is that reported in Spec. 6.13.

The SICs are those reported in Spec. 6.12, apart from the fourth one which,

in the first setup, is replaced by the one in Spec. 7.1.

The protocols have been run by varying the number N of bidders, in two

different cases.

110 CHAPTER 7. SCIFF PERFORMANCE

Specification 7.1 Replacement for the fourth SIC in Spec. 6.12.

H(tell(B,A, bid(ItemList,P),Anumber),Tbid) ∧
H(tell(A,B, openauction(Items,Tend,Tdeadline),Anumber),Topen)

→ E(tell(A,B, answer(win,B, Itemlist,P),Anumber),Tanswer) ∧
Tanswer > Tend ∧ Tanswer < Tdeadline

∨ E(tell(A,B, answer(lose,B, Itemlist,P),Anumber),Tanswer) ∧
Tanswer > Tend ∧ Tanswer < Tdeadline

• In each run of the first case:

1. the auctioneer sends an openauction message to each of the N bidders;

2. each of the N bidders places a bid;

3. the auctioneer issues a closeauction message to each of the N bidders;

4. the auctioneer notifies each of the N bidders with either a win or a

lose message,

thus resulting in 4N total messages exchanged.

• In each run of the second case, the last notification to one of the bidders

is missing, thus resulting in a violation of the protocol and 4N − 1 total

messages.

The experiments were run on a PC with a 2 GHz Pentium IV CPU, 512 MB of

RAM, Linux 2.4.18, glibc 2.2.5 and SICStus Prolog 3.10.1. Reported times are

in seconds.

In case of fulfillment (see Table 7.1), the first setup of SCIFF and protocol

seems to scale well with the number of bidders and, in fact, it achieves better

execution timing than the second. This is basically due to the fact that the chosen

setup of interactions directly leads to a successful SCIFF derivation, and only

one branch of the tree is explored.

In the case of violation (see Table 7.2), however, the first setup of SCIFF

and protocol explodes for a very small number of bidders. The experiment with

7.2. EXPERIMENTAL RESULTS 111

f-non-deterministic,disjunction f-deterministic,domain

Bidders Time(sec.) Bidders Time(sec.)

5 1 5 1

10 1 10 1

15 2 15 2

20 3 20 6

25 4 25 8

30 6 30 10

35 9 35 15

40 10 40 18

45 12 45 23

50 21 50 30

Table 7.1: Combinatorial Auction case 1: Fulfillment

f-non-deterministic,disjunction f-deterministic,domain

Bidders Time(sec.) Bidders Time(sec.)

3 7 3 0

4 55 4 0

5 ? 5 0

10 ? 10 1

15 ? 15 3

20 ? 20 4

25 ? 25 7

30 ? 30 10

35 ? 35 14

40 ? 40 17

45 ? 45 22

50 ? 50 26

Table 7.2: Combinatorial Auction case 2: Violation

112 CHAPTER 7. SCIFF PERFORMANCE

5 bidders was suspended since this did not reach the answer of violation after

several minutes of computing time; no experiments were performed with a higher

number of computees, which would have made things even worse. The second

setup, instead, scales very well also in case of violation. In this case, a CLP(FD)

solver, written in CHR, directly manages the two alternative values for variable

Answer.

The difference between the two setups of SCIFF and protocol becomes appar-

ent in the worst case (i.e., the case of violation) when the whole tree is explored.

With the first setup, the choice points left open in case of fulfillment and the

disjunctions in the head of the integrity constraint make the number of nodes in

the proof tree explode even for small number of bidders. With the second setup,

instead, the tree has only one branch, and is thus explored in a reasonable time

when the number of bidders increases.

7.2.2 The effect of the number of events

In this section, we report on the experimental results on compliance checking

for the three versions of the combinatorial auction scenario described in Sects.

6.2.8.1, 6.2.8.2, and 6.2.8.3.

The aim of these experiments is to evaluate the scalability of SCIFF with

respect to the number of exchanged events in an agent society.

For each protocol, we have performed two series of protocol runs, varying the

number of bidders: one compliant, one violating.

In all three cases, we have used the f-deterministic version of SCIFF.

The setting for the basic auction scenario is the same described in Sect. 7.2.1:

i.e., if N is the number of bidders, 4N is the number of messages exchanged in

the compliant run, and 4N − 1 is the number of messages exchanged in the non

compliant run.

The results for the compliant and non compliant runs are shown in Figs. 7.1

and 7.2, respectively.

In the experiments with the double auction protocols, one of the N bidders of

the original auction opens a second auction, to which N bidders participate. In

this way, the total number of messages is 8N for the compliant run, and 8N − 1

7.2. EXPERIMENTAL RESULTS 113

Figure 7.1: Proof performance on a basic auction (compliant)

Figure 7.2: Proof performance on a basic auction (non compliant)

114 CHAPTER 7. SCIFF PERFORMANCE

Figure 7.3: Proof performance on a double auction (compliant)

Figure 7.4: Proof performance on a double auction (non compliant)

7.2. EXPERIMENTAL RESULTS 115

for the non compliant run.

The results are shown in Figs. 7.3 and 7.4, respectively. To a roughly doubled

number of events with respect to the basic auction case, corresponds a roughly

doubled computing time.

Figure 7.5: Proof performance on an auction plus NetBill (compliant)

In the experiments with the combinatorial auction with NetBill delivery and

payment, only one of the N bidders is the winner, and thus the total number

of messages exchanged is 4N + 5 in the compliant case, and 4N + 4 in the non-

compliant case.

The results for the compliant and the non-compliant cases are shown in Figs.

7.5 and 7.6, respectively. As is expected, the results are very similar to those of

the basic combinatorial auction, as the number of events is almost the same.

The overall evaluation of these experiments suggests that if it is possible to

keep the branching of the proof tree limited, the performance of SCIFF scales

reasonably well with the number of events in the agent society, making SCIFF

applicable to practical cases.

116 CHAPTER 7. SCIFF PERFORMANCE

Figure 7.6: Proof performance on an auction plus NetBill (compliant)

Chapter 8

Extending SCIFF for automatic

proof of properties

In this chapter, we describe an extension of the SCIFF proof procedure, called

g-SCIFF, which is able to generate histories that are compliant to a protocol.

We describe both the definition and the implementation of the extension.

The intended use of g-SCIFF is the automatic proof of protocol properties,

as will be shown in Ch. 9.

8.1 The g-SCIFF proof procedure

The SCIFF proof procedure has been designed to take the history of the social

interaction as an input, to check if it is compliant to a given social specification.

One further step is to try to generate a compliant history, rather than just

checking if a given one is compliant. For instance, a protocol designer might

want to be sure that the protocol that he or she is designing actually has a

compliant history (or, in other words, is well-defined, see Def. 2.3.7); or finding

out a compliant history with some undesirable feature might lead the designer to

reconsider the definition of the protocol. More in general, an ability to generate

compliant history can be used to verify protocol properties, as will be shown in

Ch. 9.

It is apparent that most protocols, even very simple ones, can have an infinite

number of compliant histories. One can restrict himself to only finite universe

117

118 CHAPTER 8. G-SCIFF

situations: for example, one where the number of involved agents is finite, the set

of possible utterances is given, and the language is function-free. In such cases,

the number of compliant histories is finite, if big, and one can consider generating

all the compliant histories, possibly pruning the search space by means of some

efficient technique.

Another way (which we follow) is to let the events in the history contain

variables, that can possibly concisely express a number of different instantiations.

Thus, the generated atoms will have the same syntax as the happened events of

the SCIFF framework (see Sect. 2.2.1.1), but will not be required to be ground.

Variables in H atoms will be considered existentially quantified, as we search for

at least one compliant history violating the property.

Since H literals will be generated, it is quite natural to map them onto ab-

ducible literals. In fact, from a declarative viewpoint, such a choice is rather

harmless, as in all the formulas that define the declarative semantics, (in partic-

ular, Def. 2.3.5 and 2.3.6), the history (HAP) occurs on the left hand side of the

entailment symbol, just like the sets of the abducible atoms (EXP).

Operationally, it turns out that a proof procedure able to generate compliant

histories can be obtained by means of a simple modification to the SCIFF proof

procedure. We call the new proof procedure g-SCIFF (generative SCIFF).

In the operational semantics, the transition Happening (which inserts a new

event in the current history, see Sec. 3.3) is no longer needed (as this is not

on-the-fly verification), and it is replaced by the following transition.

Fulfiller. Given a node Nk in which

• PENDk = PEND′ ∪ {E(E, T)}

and transitions of fulfillment are not applicable, transition Fulfiller is applicable

and generates a node Nk+1 identical to Nk except:

• PENDk+1 = PEND′

• FULFk+1 = FULFk ∪ {E(E, T)}

• HAPk+1 = HAPk ∪ {H(E, T)}

8.1. THE G-SCIFF PROOF PROCEDURE 119

i.e., a new event is inserted in the history fulfilling the expectation.

We will use the symbol
g

` to indicate a derivation in g-SCIFF, as opposed to

one in SCIFF. The generative version, as the non generative one, takes as input

an initial history HAPi (that will be typically empty) and provides a possibly

extended history HAPf :

SHAPi

g

`
HAPf

EXP G

Note that we would have obtained a semantically equivalent result by imposing

the integrity constraint

E(X,T)→ H(X, T) (8.1.1)

In fact, the derivation tree for a single abduced atom E(p(A)), would have been

the following:

E(p(A))

(Propagation & Logical Equivalence)

E(p(A)), H(p(A))

(Fulfillment)

©©©©
HHHH

A = A,

E(p(A)) fulfilled

A 6= A

fail

Despite their semantical equivalence, transition Fulfiller is more efficient, as

it avoids generating the right failure branch.

8.1.1 Formal results

The formal properties of g-SCIFF are a consequence of those of SCIFF.

Theorem 8.1.1 (Soundness of g-SCIFF). Given a society instance SHAPf ,

if

SHAPi

g

`
HAPf

EXP G

with expectation answer (EXP, σ), then

SHAPf |=EXPσ Gσ

120 CHAPTER 8. G-SCIFF

The proof can be found in [ACG+05a].

Concerning termination, g-SCIFF guarantees termination if the society to-

gether with the SIC (8.1.1) is acyclic. However, it turns out that some of the

protocols that can be expressed through an acyclic social specification may be-

come cyclic when adding rule (8.1.1), and consequently the proof of termination

is no longer valid. In such a case, we can rely on the idea of iterative deep-

ening, as many other approaches do (one of them is bounded model checking).

For instance, in the context of verification of a security protocol against possible

attacks, if we implement iterative deepening we search for attacks of increasing

length. We first focus only on attacks of length 1, and if none exists, we look for

attacks of length 2, and so on. This method is, of course, unable to prove that a

protocol is secure, but it can prove that no attack exists up to any given length

n (provided that we have enough time). However, other protocols will retain the

acyclicity even with respect to the society knowledge base of (8.1.1), so in such

cases we have a greater expressive power than bounded methods.

8.2 g-SCIFF implementation

The implementation of g-SCIFF is very simply obtained from that of SCIFF, by

adding the following CHR simpagation rule:

fulfiller @

(close_history)

\

(pending(e(Event,Time)))

<=>

fulf(e(Event,Time)),

h(Event,Time).

Operationally, the rule will be fired after closure, and will generate an event for

each pending expectation.

However, this implementation conflicts with the implementation of not H by

means of constructive negation (see Sect. 5.5.2) . For this reason, the imple-

mentation of g-SCIFF here described can only be applied to social specification

8.2. G-SCIFF IMPLEMENTATION 121

where not H literals do not occur. Based on the case studies in Ch. 6, this does

not appear to be a strict limitation, as not H literals do not appear in any of

them.

122 CHAPTER 8. G-SCIFF

Chapter 9

Automatically proving properties

with g-SCIFF

In this chapter, we show how the g-SCIFF extension, described in Ch. 8, of the

SCIFF proof procedure can be applied to Type 3 verification (see Sect. 1.1.2),

i.e., verification of protocol properties. We first introduce our approach, and then

present two case studies.

9.1 The g-SCIFF approach

We aim at verifying protocol properties that can be expressed by formulae and,

in particular:

• existential properties, i.e, formulae that hold for at least one history com-

pliant to the protocol;

• universal properties, i.e., formulae that hold for all the histories compliant

to a protocol.

Formally, our definition of protocol properties is as follows.

In the following definitions, let a protocol S be defined by KBS and ICS, and

let S be well defined (see Def. 2.3.7) with respect to the goal true.

Definition 9.1.1 A formula f is an existential property of S iff:

∃HAP∃EXPSHAP |=EXP f (9.1.1)

123

124 CHAPTER 9. USING G-SCIFF

Definition 9.1.2 A formula f is a universal property of the protocol S iff:

∀HAP∀EXP(SHAP |=EXP true→ SHAP |=EXP f) (9.1.2)

In the definitions above SHAP |=EXP f has the meaning explained in Def.

2.3.6 (goal achievement).

The g-SCIFF proof procedure can be used for verifying both existential and

universal properties, as follows.

• An existential property f can be verified by:

1. expressing f as a SCIFF goal, and

2. running g-SCIFF. Two cases are possible:

– g-SCIFF returns failure: f is not an existential property of pro-

tocol P ;

– g-SCIFF returns success, with a history HAP: f is an existential

property of P , and HAP is an example instantiation of a history

that satisfies f .

• A universal property f can be verified by:

1. expressing ¬f as a SCIFF goal, and

2. running g-SCIFF. Two cases are possible:

– g-SCIFF returns failure: f is a universal property of protocol P ;

– g-SCIFF returns success, with a history HAP: f is not a universal

property of P , and HAP is an example history for which f does

not hold.

At the time of writing, our technique can be applied subject to the following

restrictions:

• The only properties that we can verify are

– existential properties that can be expressed as a SCIFF goal;

– universal properties whose negation can be expressed as a SCIFF goal.

9.2. CASE STUDIES 125

• Soundness of g-SCIFF has been proven, but completeness has not. Thus,

our approach is provably effective for proving existential properties and

refuting universal properties, but not yet for proving universal properties

and refuting existential properties.

9.2 Case studies

In this section, we exemplify the use of g-SCIFF for the verification of protocol

properties, focusing on two well known interaction protocols: the NetBill trans-

action protocol and the Needham-Schroeder security protocol, defined in Sect.

6.2.6.

9.2.1 Verifying the NetBill protocol

In this section, we show how a simple property of the NetBill protocol can be

expressed, and verified, with SCIFF.

We want to verify the following property: the merchant receives the payment

for a good G if and only if the customer receives the good G, as long as the

protocol is respected.

Since the SCIFF deals with (communicative) events and not with the states

of the agents, we need to express the properties in terms of happened events. To

this purpose, we can assume that merchant has received the payment once the

NetBill server has issued the signedResult message, and that the the customer has

received the good if she has received the encrypted good (with a deliver message)

and the encryption key (with a receipt message).

Thus, the property we want to verify can be expressed as

H(tell(netbill, M, signedResult(C, PrId, Quote, K), Id), T sign)

⇐⇒ H(tell(M, C, goodDelivery(crypt(PrId, K), Quote), Id), T)

∧H(tell(M, C, receipt(PrId, Quote, K), Id), T s)

(9.2.1)

126 CHAPTER 9. USING G-SCIFF

whose negation is

(¬H(tell(netbill, M, signedResult(C, PrId,Quote, K), Id), T sign)

∧H(tell(M,C, goodDelivery(crypt(PrId, K), Quote), Id), T)

∧H(tell(M,C, receipt(PrId,Quote, K), Id), T s))

∨
(H(tell(netbill,M, signedResult(C, PrId,Quote, K), Id), T sign)

∧¬H(tell(M,C, goodDelivery(crypt(PrId,K), Quote), Id), T)

∨
(H(tell(netbill,M, signedResult(C, PrId,Quote, K), Id), T sign)

∧¬H(tell(M,C, goodDelivery(crypt(PrId,K), Quote), Id), T))

(9.2.2)

In other words, an history that entails Eq. (9.2.2) is a counterexample of the

property that we want to prove. In order to search for such a history, we define

the g-SCIFF goal as follows:

g ←EN(tell(netbill, M, signedResult(C, PrId,Quote, K), Id), T sign),

E(tell(M,C, goodDelivery(crypt(PrId, K), Quote), Id), T),

E(tell(M,C, receipt(PrId,Quote, K), Id), T s)).

g ←E(tell(netbill,M, signedResult(C, PrId,Quote, K), Id), T sign),

EN(tell(M,C, goodDelivery(crypt(PrId,K), Quote), Id), T).

g ←E(tell(netbill,M, signedResult(C, PrId,Quote, K), Id), T sign),

EN(tell(M,C, goodDelivery(crypt(PrId,K), Quote), Id), T))

(9.2.3)

and run g-SCIFF, and the integrity constraints that define the NetBill protocol.

The result of the call is a failure. This suggests that there is no history

that entails the negation of the property while respecting the protocol, i.e., the

property is likely to hold if the protocol is respected. However, since g-SCIFF has

not been proven complete, the failure does not count as a proof of the property.

If we remove the second forward integrity constraints of Spec. 6.5 (which

imposes that a signedResult message be followed by a receipt message), then

the following history is generated:

9.2. CASE STUDIES 127

h(tell(_E,_F,priceRequest(_D),_C),_M),

h(tell(_F,_E,priceQuote(_D,_B),_C),_L),

h(tell(_E,_F,goodRequest(_D,_B),_C),_K),

h(tell(_F,_E,goodDelivery(crypt(_D,_A),_B),_C),_J),

h(tell(_E,_F,payment(_E,crypt(_D,_A),_B),_C),_I),

h(tell(_F,netbill,endorsedEPO(epo(_E,_D,_B),_A,_F),_C),_H),

h(tell(netbill,_F,signedResult(_E,_D,_B,_A),_C),_G),

_I<_H, _H<_G,

_L>_M, _K>_L, _I>_J, _J>_K,

The receipt event is missing, which would violate the integrity constraint that has

been removed. The generated history is compliant to the protocol while negating

the property and, thanks to the soundness of g-SCIFF, is a valid counterexample

of the property.

In this way, a protocol designer can make sure that an integrity constraint is

not redundant with respect to a desired property of the protocol.

9.2.2 Verifying the Needham-Schroeder Protocol

In the idea of the Needham-Schroeder protocol, an agent trusts the identity of the

agent with whom he is communicating by associating his name with his public

key and receiving back a nonce that he forged, encrypted in his own public key. If

we had to define the idea of an agent B ‘trusting’ that he is communicating with

A, we could do it by using a combination of messages in which an agents responds

to a challenge posed by another agent and successfully decrypts a nonce.

Definition 9.2.1 We say that B trusts that the agent X he is communicating

with is A,1 and we write trustB(X, A) once two messages have been exchanged at

times T1 and T2, T1 < T2, having the following sender, recipient, and content:

(T1) B → X : {NB, . . . }pub key(A)

(T2) X → B : {NB, . . . }pub key(B)

1We restrict ourselves to only one communication session, all the definitions will therefore

have as a scope the session.

128 CHAPTER 9. USING G-SCIFF

where NB is a nonce generated by B.

Note that B is unable to judge whether NA is a nonce actually generated by X

or not, therefore no condition is posed on the origin of such nonce.

Symmetrically, we can consider, from A’s viewpoint, messages (1) and (2)

as those that prove the identity of B. We therefore implement Def. 9.2.1 in

Def. 9.2.2, where messages are expressed using the notation of the SCIFF, namely

as events which are part of some “history” HAP. The content of messages will

be composed of three parts, the first showing the public key used to encrypt it,

the second and third containing agent names or nonces or nothing (in particular,

the last part may be empty).

Definition 9.2.2 Let A, B and X be agents, KA and KB respectively A’s and

B’s public key, NB a nonce produced by B, and let HAP1 and HAP2 be two sets

of events each composed of two elements, namely:

HAP1 = {
H(send(B, X, content(key(KA), agent(B), nonce(NB))), T1),

H(send(X, B, content(key(KB), nonce(NB), nonce(...))), T2)

}, and

HAP2 = {
H(send(B, X, content(key(KA), nonce(...), nonce(NB))), T1),

H(send(X, B, content(key(KB), nonce(NB), empty(0))), T2)

}.
Then, trustB(X, A) holds if and only if HAP1 ⊆ HAP or HAP2 ⊆ HAP.

The property that we want to disprove is Ptrust defined as trustB(X,A) →
X = A, i.e., if B trusts that he is communicating with A, then he is indeed

communicating with A. We obtain a problem which is symmetric in the variables

A, B, and X. In order to check if we have a solution we can ground Ptrust and

define its negation ¬Ptrust as a goal, g3, where we choose to assign to A, B, and

X the values a, b and i:

g3← isNonce(NA), NA 6= nb,

E(send(b, i, content(key(ka), nonce(NA), nonce(nb))), 3),

E(send(i, b, content(key(kb), nonce(nb), empty(0))), 6).

9.3. RELATED WORK. 129

Besides defining g3 for three specific agents, we also assign definite time points

(3 and 6) in order to improve the efficiency of the proof.

Running the g-SCIFF on g3 results in a compliant history:

h(send(a,i,content(key(ki),agent(a),nonce(na))),1),

h(send(i,b,content(key(kb),agent(a),nonce(na))),2),

h(send(b,i,content(key(ka),nonce(na),nonce(nb))),3),

h(send(i,a,content(key(ka),nonce(na),nonce(nb))),4),

h(send(a,i,content(key(ki),nonce(nb),empty(0))),5),

h(send(i,b,content(key(kb),nonce(nb),empty(0))),6).

which is indeed Lowe’s attack on the protocol. HAPgL represents a counterexam-

ple of the property Ptrust while being compliant to the protocol; which, thanks

to the soundness of g-SCIFF, proves that Ptrust is not a property of the protocol.

9.3 Related work.

In recent years the provability of properties for communication protocols has

received a lot of attention; this holds even more for security protocols. Various

techniques have been adopted for the task of automatic verification of properties.

One way to prove/disprove protocol properties, in the security domain, is

the cryptographic approach, used for proofs by hand [GMR89] or, more recently,

automatically [BP03]. Theorem provers, such as Isabelle/HOL [NPW02] have

also been applied to this task, together with tools for graphically representing

and defining the protocols [vOL02]. Another viewpoint is to embody a possible

intruder and plan for an attack [AM02].

Dixon et al. [DFFv04] specify security protocols in KL(n), a language for

representing the Temporal Logic of Knowledge. Raimondi and Lomuscio [RL04]

also use a temporal logic enriched with epistemic connectives for representing the

agents’ knowledge, but exploit efficient data structures (namely, Ordered Binary

Decision Diagrams) to improve the efficiency of the model checking algorithm.

Armando et al. [ACL04] compile a security program into a logic program

with choice lp-rules with answer set semantics. Among other approaches to

security protocol verification we cite those developed using hereditary Harrop

130 CHAPTER 9. USING G-SCIFF

formulas [Del01], process-algebraic languages [Pan02], model checking with pre-

configuration [KAB04], and proof theory [DE01].

Several other frameworks in the literature aim at verifying properties about

the behaviour of social agents at design time. Often, such frameworks define

structured hierarchies, roles, and deontic concepts such as norms and obligations

as first class entities. Notably, ISLANDER [EdlCS02] is a tool for the specifi-

cation and verification of interaction in complex social infrastructures, such as

electronic institutions. ISLANDER allows for the analysis of situations, called

scenes, and visualise liveness or safety properties in some specific settings. The

kind of verification involved is static and is used to help designing institutions.

Chapter 10

Conclusions

In this thesis, we have presented the SCIFF abductive framework for the speci-

fication and verification of interaction in open agent societies.

In this chapter, we summarise and discuss the results, and propose directions

for future research.

10.1 Summary

As far as expressiveness is concerned, we believe that the SCIFF framework

(described in Ch. 2) is satisfactory. In particular, as shown in Ch. 6, it is

able to express both a social semantics of Agent Communication Languages,

and commonly used Agent Interaction Protocols. The SCIFF framework lets

the agent society designer specify the agent interaction in a way that follows the

recent trends in the multiagent community, i.e., constraining the agent interaction

as little as necessary, so to support open agent societies, composed of autonomous

and heterogeneous agents.

The declarative framework has an operational counterpart: the SCIFF abduc-

tive proof procedure (recalled in Ch. 3), which can be used directly for verification

of specifications given in the declarative framework. The proof has been proved

sound and terminating.

The implementation of the SCIFF proof procedure, achieved using state-of-

the-art (constraint) logic programming technology and described in Ch. 5), makes

SCIFF an actually usable tool. In fact, it has already been integrated into a sys-

131

132 CHAPTER 10. CONCLUSIONS

tem which can be interfaced to existent multiagent platforms. The performance

of the proof, discussed in Ch. 7, while largely dependent on the specification be-

ing verified, has been found acceptable in the experiments performed on practical

cases.

An extension of the SCIFF proof procedure, called g-SCIFF, which is able to

generate compliant histories, rather than only checking for compliance of given

histories, can be used to verify protocol properties, and its implementation has

already been used for this purpose, as shown in Ch. 9. However, the lack of a

result of completeness for g-SCIFF limits, at the time of writing, its applicability

to real cases.

10.2 Future research

There are many possible developments to the work presented in this thesis.

As far as the formal framework is concerned, in its present state it is only able

to specify what the compliant agent behaviour should be, and to detect violations.

It would certainly be useful to extend it in order to enable it to also manage

violations; this could be done by imposing sanctions on agents that to not comply

to the specification. Such an extension, however raises theoretical questions: for

example, in our framework, it is not obvious to identify the “culprit” of a violation.

A promising ongoing research is the investigation of the link between the

SCIFF framework and Deontic Logic or, more in general, deontic notions; once

the relation has been established at the theoretical level, it would be possible to

exploit the SCIFF computational machinery for the verification of many norma-

tive multiagent systems, whose specification is based on deontic concepts.

In the perspective of practical applications, the SCIFF framework would also

greatly benefit from improvements of the performance of the SCIFF proof pro-

cedure. While improvements are certainly possible at the programming level, the

fact remains that the number of nodes of the theoretical SCIFF proof tree can

explode, depending on the social specification to be verified. In order to (partly)

alleviate this problem, the architecture of the SCIFF proof procedure could be

revised, so as to have not one single big proof tree, but a number of smaller trees

10.2. FUTURE RESEARCH 133

(intuitively, one tree for one partially solved integrity constraint).

Another possibility is to specialise the implementation to restricted version

of the language, which might also make it possible to prove more formal results,

such as completeness of the proof procedure.

134 CHAPTER 10. CONCLUSIONS

Bibliography

[AB94] Krzysztof R. Apt and Roland N. Bol. Logic programming and nega-

tion: A survey. Journal of Logic Programming, 19/20:9–71, 1994.

[AC00] Slim Abdennadher and Henning Christiansen. An experimental CLP

platform for integrity constraints and abduction. In H.L. Larsen,

J. Kacprzyk, S. Zadrozny, T. Andreasen, and H. Christiansen, edi-

tors, FQAS, Flexible Query Answering Systems, LNCS, pages 141–

152, Warsaw, Poland, October 25–28 2000. Springer-Verlag.

[ACG+03] M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello,

and P. Torroni. A social ACL semantics by deontic constraints.

In V. Mar̆́ık, J. Müller, and M. Pĕchouc̆ek, editors, Multi-Agent

Systems and Applications III. Proceedings of the 3rd International

Central and Eastern European Conference on Multi-Agent Systems,

CEEMAS 2003, volume 2691 of Lecture Notes in Artificial Intelli-

gence, pages 204–213, Prague, Czech Republic, June 16–18 2003.

Springer-Verlag.

[ACG+04] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,

Paola Mello, and Paolo Torroni. Compliance verification of agent

interaction: a logic-based tool. In Trappl [Tra04], pages 570–575.

Extended version to appear in a special issue of Applied Artificial

Intelligence, Taylor & Francis, 2005.

[ACG+05a] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,

Paola Mello, and Paolo Torroni. On the automatic verification of

135

136 BIBLIOGRAPHY

interaction protocols using g-SCIFF. Technical Report DEIS-LIA-

04-004, University of Bologna (Italy), 2005. LIA Series no. 72.

[ACG+05b] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,

Paola Mello, and Paolo Torroni. The SOCS computational logic

approach for the specification and verification of agent societies. In

Global Computing Workshop, Rovereto, Italy, March 2004, number

3267 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 2005.

To appear.

[ACL04] Alessandro Armando, Luca Compagna, and Yuliya Lierler. Auto-

matic compilation of protocol insecurity problems into logic program-

ming. In José Júlio Alferes and João Alexandre Leite, editors, Log-

ics in Artificial Intelligence, 9th European Conference, JELIA 2004,

Lisbon, Portugal, September 27-30, 2004, Proceedings, volume 3229

of Lecture Notes in Artificial Intelligence, pages 617–627. Springer-

Verlag, 2004.

[ADG+04] M. Alberti, D. Daolio, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-

roni. Specification and verification of agent interaction protocols in

a logic-based system. In Hisham M. Haddad, Andrea Omicini, and

Roger L. Wainwright, editors, Proceedings of the 19th Annual ACM

Symposium on Applied Computing (SAC 2004). Special Track on

Agents, Interactions, Mobility, and Systems (AIMS), pages 72–78,

Nicosia, Cyprus, March 14–17 2004. ACM Press.

[AGL+03a] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An

Abductive Interpretation for Open Societies. In A. Cappelli and

F. Turini, editors, AI*IA 2003: Advances in Artificial Intelligence,

Proceedings of the 8th Congress of the Italian Association for Arti-

ficial Intelligence, Pisa, volume 2829 of Lecture Notes in Artificial

Intelligence, pages 287–299. Springer-Verlag, September 23–26 2003.

[AGL+03b] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Spec-

ification and verification of agent interactions using social integrity

BIBLIOGRAPHY 137

constraints. Electronic Notes in Theoretical Computer Science, 85(2),

2003.

[AGL+04a] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello,

and Michela Milano. A chr-based implementation of known arc-

consistency. CoRR, cs.LO/0408056, 2004. To appear in Theory and

Practice of Logic Programming.

[AGL+04b] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and

Paolo Torroni. Modeling interactions using Social Integrity Con-

straints: A resource sharing case study. In João Alexandre Leite,

Andrea Omicini, Leon Sterling, and Paolo Torroni, editors, Declara-

tive Agent Languages and Technologies, volume 2990 of Lecture Notes

in Artificial Intelligence, pages 243–262. Springer-Verlag, May 2004.

First International Workshop, DALT 2003. Melbourne, Australia,

July 2003. Revised Selected and Invited Papers.

[AGL+05] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, Gio-

vanni Sartor, and Paolo Torroni. Mapping deontic operators to ab-

ductive expectations. In Proceedings of the AISB 2005 Convention,

First International Symposium on Normative Multiagent Systems

(NorMAS2005), April 2005. To appear.

[AL02] M. Alberti and E. Lamma. Synthesis of object models from partial

models: a csp perspective. In F. van Harmelen, editor, Proceedings of

the Fifteenth European Conference on Artificial Intelligence, Lyon,

France (ECAI 2002), volume 77 of Frontiers in Artificial Intelligence

and Applications, pages 116–120. IOS Press, July 2002.

[ALF99] ALFEBIITE: A Logical Framework for Ethical Behaviour between

Infohabitants in the Information Trading Economy of the universal

information ecosystem. IST-1999-10298, 1999. Home Page: http:

//www.iis.ee.ic.ac.uk/~alfebiite/ab-home.htm.

[AM02] Luigia Carlucci Aiello and Fabio Massacci. Planning attacks to se-

curity protocols: Case studies in logic programming. In Antonis C.

138 BIBLIOGRAPHY

Kakas and Fariba Sadri, editors, Computational Logic: Logic Pro-

gramming and Beyond, Essays in Honour of Robert A. Kowalski,

Part I, volume 2407 of Lecture Notes in Computer Science, pages

533–560. Springer-Verlag, 2002.

[APS02] A. Artikis, J. Pitt, and M. Sergot. Animated specifications of com-

putational societies. In C. Castelfranchi and W. Lewis Johnson,

editors, Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS-2002), Part

III, pages 1053–1061, Bologna, Italy, July 15–19 2002. ACM Press.

[BF95] M. Barbuceanu and M. S. Fox. Cool: A language for describing

coordination in multi-agent systems. In V. Lesser, editor, Proceedings

of the First Intl. Conference on Multi-Agent Systems, pages 17–25.

AAAI Press/The MIT Press, Menlo Park, CA, June 1995.

[BHS93] B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic, config-

urable, cooperation protocols for multi-agent systems. In Cristiano

Castelfranchi and Jean-Pierre Müller, editors, From Reaction to Cog-

nition, 5th European Workshop on Modelling Autonomous Agents in

a Multi-Agent World, MAAMAW’93, number 957 in Lecture Notes in

Computer Science, pages 157–171, Neuchatel, Switzerland, August

1993. Springer-Verlag.

[BMO01] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formal-

ism for specifying multiagent interaction. In P. Ciancarini and

M. Wooldridge, editors, Agent-Oriented Software Engineering, pages

91–103. Springer-Verlag, 2001.

[BP03] Michael Backes and Birgit Pfitzmann. A cryptographically sound se-

curity proof of the Needham-Schroeder-Lowe public-key protocol. In

Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FST TCS

2003: Foundations of Software Technology and Theoretical Com-

puter Science, 23rd Conference, Mumbai, India, December 15-17,

BIBLIOGRAPHY 139

2003, Proceedings, volume 2914 of Lecture Notes in Computer Sci-

ence, pages 1–12. Springer-Verlag, 2003.

[Bür94] H.J. Bürckert. A resolution principle for constrained logics. Artificial

Intelligence, 66:235–271, 1994.

[CD04] Henning Christiansen and Veronica Dahl. Assumptions and abduc-

tion in prolog. In Susana Muñoz-Hernández, José Manuel Gómez-

Perez, and Petra Hofstedt, editors, Workshop on Multiparadigm Con-

straint Programming Languages (MultiCPL’04), Saint-Malo, France,

September 2004. Workshop notes.

[CDJT99] C. Castelfranchi, F. Dignum, C.M. Jonker, and J. Treur. Delibera-

tive normative agents: Principles and architecture. In Nicholas R.

Jennings and Yves Lespérance, editors, Intelligent Agents VI, Agent

Theories, Architectures, and Languages, 6th International Work-

shop, ATAL ’99, Orlando, Florida, USA, Proceedings, number 1757

in Lecture Notes in Computer Science, pages 364–378. Springer-

Verlag, 1999.

[CFS99] R. Conte, R. Falcone, and G. Sartor. Special issue on agents and

norms. Artificial Intelligence and Law, 1(7), March 1999.

[Cla78] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker,

editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.

[CTS95] B. Cox, J.C. Tygar, and M. Sirbu. Netbill security and transaction

protocol. In Proceedings of the First USENIX Workshop on Elec-

tronic Commerce, New York, July 1995.

[Dav01] P. Davidsson. Categories of artificial societies. In A. Omicini,

P. Petta, and R. Tolksdorf, editors, Engineering Societies in the

Agents World II, volume 2203 of Lecture Notes in Artificial Intel-

ligence, pages 1–9. Springer-Verlag, December 2001. 2nd Interna-

tional Workshop (ESAW’01), Prague, Czech Republic, July 7, 2001,

Revised Papers.

140 BIBLIOGRAPHY

[DE01] Giorgio Delzanno and Sandro Etalle. Proof theory, transformations,

and logic programming for debugging security protocols. In A. Pet-

torossi, editor, Logic Based Program Synthesis and Transformation

: 11th International Workshop, (LOPSTR 2001). Selected papers.,

volume 2372 of Lecture Notes in Computer Science, pages 76–90,

Paphos, Cyprus, November 2001. Springer Verlag.

[Del01] Giorgio Delzanno. Specifying and debugging security protocols via

hereditary Harrop formulas and λProlog - a case-study -. In Herbert

Kuchen and Kazunori Ueda, editors, Functional and Logic Program-

ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan,

March 7-9, 2001, Proceedings, volume 2024 of Lecture Notes in Com-

puter Science, pages 123–137. Springer-Verlag, 2001.

[Dem95] Y. Demazeau. From interactions to collective behaviour in agent-

based systems. In European Conference on Cognitive Sciences, 1995.

[DFFv04] Claire Dixon, Mari-Carmen Fernández Gago, Michael Fisher, and

Wiebe van der Hoek. Using temporal logics of knowledge in the

formal verification of security protocols. In Procedings of the Eleventh

International Workshop on Temporal Representation and Reasoning

(TIME’04), 2004.

[DMW02] V. Dignum, J. J. Meyer, and H. Weigand. Towards an organizational

model for agent societies using contracts. In C. Castelfranchi and

W. Lewis Johnson, editors, Proceedings of the First International

Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS-2002), Part II, pages 694–695, Bologna, Italy, July 15–19

2002. ACM Press.

[EdlCS02] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic

institutions editor. In C. Castelfranchi and W. Lewis Johnson, edi-

tors, Proceedings of the First International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS-2002), Part III,

pages 1045–1052, Bologna, Italy, July 15–19 2002. ACM Press.

BIBLIOGRAPHY 141

[EMST03a] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Aspects of Pro-

tocol Conformance in InterAgent Dialogue. In J. S. Rosenschein,

T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Proceedings of

the Second International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-2003), pages 982–983, Melbourne,

Victoria, July 14–18 2003. ACM Press.

[EMST03b] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance

for logic-based agents. In G. Gottlob and T. Walsh, editors, Proceed-

ings of the Eighteenth International Joint Conference on Artificial

Intelligence, Acapulco, Mexico (IJCAI-03). Morgan Kaufmann Pub-

lishers, August 2003.

[FC02] N. Fornara and M. Colombetti. Operational specification of a

commitment-based agent communication language. In C. Castel-

franchi and W. Lewis Johnson, editors, Proceedings of the First In-

ternational Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2002), Part II, pages 535–542, Bologna, Italy,

July 15–19 2002. ACM Press.

[FIP] FIPA: Foundation for Intelligent Physical Agents. Home Page:

http://www.fipa.org/.

[FIP01] FIPA Communicative Act Library Specification, August 2001. Pub-

lished on August 10th, 2001, available for download from the FIPA

website, http://www.fipa.org.

[FIP02] FIPA Request Interaction Protocol Specification. Standard

SC00026H, Foundation for Intelligent Physical Agents, December

2002. Published on December 3, 2002, available for download from

the FIPA website.

[FK97] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abduc-

tive logic programming. Journal of Logic Programming, 33(2):151–

165, November 1997.

142 BIBLIOGRAPHY

[FLM97] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent commu-

nication language. In J. Bradshaw, editor, Software Agents. MIT

Press, Cambridge, MA, 1997.

[Frü98] T. Frühwirth. Theory and practice of constraint handling rules. Jour-

nal of Logic Programming, 37(1-3):95–138, October 1998.

[GHB00] M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation

policy? In F. Dignum and M. Greaves, editors, Issues in Agent

Communication, number 1916 in Lecture Notes in Computer Science,

pages 118–131. Springer-Verlag, 2000.

[GLM+03] Marco Gavanelli, Evelina Lamma, Paola Mello, Michela Milano, and

Paolo Torroni. Interpreting abduction in CLP. In Francesco Bucca-

furri, editor, APPIA-GULP-PRODE Joint Conference on Declara-

tive Programming, pages 25–35, Reggio Calabria, Italy, September 3–

5 2003. Università Mediterranea di Reggio Calabria.

[GLM05] Marco Gavanelli, Evelina Lamma, and Paola Mello. Proof of prop-

erties of the sciff proof-procedure. Technical Report CS-2005-01,

Dipartimento di Ingegneria, Universitá di Ferrara, 2005. Aval-

able at http://www.ing.unife.it/aree_ricerca/informazione/

cs/technical_reports/%CS-2005-01.pdf.

[GLMT04] Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo

Torroni. SCIFF: Full proof of soundness. Deliverable

IST32530/DIFERRARA/401/D/I/b1, SOCS Consortium, Jun 2004.

[GLT+03] M. Gavanelli, E. Lamma, P. Torroni, P. Mello, K. Stathis,

P. Moräıtis, A. C. Kakas, N. Demetriou, G. Terreni, P. Mancar-

ella, A. Bracciali, F. Toni, F. Sadri, and U. Endriss. Computational

model for computees and societies of computees. Technical report,

SOCS Consortium, 2003. Deliverable D8.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-

plexity of interactive proof systems. SIAM Journal on Computing,

18(1):186–207, 1989.

BIBLIOGRAPHY 143

[GP02a] F. Guerin and J. Pitt. Proving properties of open agent systems.

In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings

of the First International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-2002), Part II, pages 557–558,

Bologna, Italy, July 15–19 2002. ACM Press.

[GP02b] Frank Guerin and Jeremy Pitt. Guaranteeing properties for e-

commerce systems. In Julian A. Padget, Onn Shehory, David C.

Parkes, Norman M. Sadeh, and William E. Walsh, editors, Agent-

Mediated Electronic Commerce IV, Designing Mechanisms and Sys-

tems, AAMAS 2002 Workshop on Agent Mediated Electronic Com-

merce, Bologna, Italy, July 16, 2002, Revised Papers, pages 253–272.

Springer-Verlag, 2002.

[Hew91] C. Hewitt. Open information systems semantics for distributed ar-

tificial intelligence. Artificial Intelligence, 47(1-3):79–106, 1991.

[Hol90] C. Holzbaur. Specification of constraint based inference mechanism

through extended unification. Dissertation, Dept. of Medical Cyber-

netics & AI, University of Vienna, 1990.

[Hug02] M. Huget. Agent uml class diagrams revisited, 2002.

[IS00] M. Ito and J.S. Sichman. Dependence based coalitions and contract

net: A comparative analysis. In Pacific Rim International Confer-

ence on Artificial Intelligence, page 812, 2000.

[JAD] Java Agent DEvelopment framework. Home Page: http://sharon.

cselt.it/projects/jade/.

[JM94] J. Jaffar and M.J. Maher. Constraint logic programming: a survey.

Journal of Logic Programming, 19-20:503–582, 1994.

[JMMS98] J. Jaffar, M.J. Maher, K. Marriott, and P.J. Stuckey. The semantics

of constraint logic programs. Journal of Logic Programming, 37(1-

3):1–46, 1998.

144 BIBLIOGRAPHY

[KAB04] Kyoil Kim, Jacob A. Abraham, and Jayanta Bhadra. Model check-

ing of security protocols with pre-configuration. In Kijoon Chae and

Moti Yung, editors, Information Security Applications, 4th Inter-

national Workshop, WISA 2003, Jeju Island, Korea, August 25-27,

2003, Revised Papers, volume 2908 of Lecture Notes in Computer

Science, pages 1–15. Springer-Verlag, 2004.

[KKT93] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Pro-

gramming. Journal of Logic and Computation, 2(6):719–770, 1993.

[KS86] R. A. Kowalski and M. Sergot. A logic-based calculus of events. New

Generation Computing, 4(1):67–95, 1986.

[KTW98] R.A. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic

programs. Fundamenta Informaticae, 34:203–224, 1998.

[Kun87] K. Kunen. Negation in logic programming. In Journal of Logic

Programming, volume 4, pages 289–308, 1987.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,

2nd extended edition, 1987.

[Low96] G. Lowe. Breaking and fixing the Needham-Shroeder public-key pro-

tocol using CSP and FDR. In T. Margaria and B. Steffen, editors,

Tools and Algorithms for the Construction and Analysis of Systems:

Second International Workshop, TACAS’96, volume 1055 of Lecture

Notes in Artificial Intelligence, pages 147–166. Springer-Verlag, 1996.

[Mer01] S. Merz. Model checking: A tutorial overview. In F. Cassez, C. Jard,

B. Rozoy, and M.D.Ryan, editors, Modeling and Verification of Par-

allel Processes, number 2067 in Lecture Notes in Computer Science,

pages 3–38. Springer-Verlag, 2001.

[MPW02] P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent

argumentation protocols. In C. Castelfranchi and W. Lewis Johnson,

editors, Proceedings of the First International Joint Conference on

BIBLIOGRAPHY 145

Autonomous Agents and Multiagent Systems (AAMAS-2002), Part

I, pages 402–409, Bologna, Italy, July 15–19 2002. ACM Press.

[Nis00] Noam Nisan. Bidding and allocation in combinatorial auction. In

Proceedings of the International Conference on Electronic Commerce

(EC-00), pages 1–12, 2000.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-

abelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283

of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authenti-

cation in large networks of computers. Communications of the ACM,

21(12):993–999, December 1978.

[NS02] P. Noriega and C. Sierra. Institutions in perspective: An extended

abstract. In Sixth International Workshop CIA-2002 on Coopera-

tive Information Agents, volume 2446 of Lecture Notes in Artificial

Intelligence. Springer-Verlag, 2002.

[OZ99] Andrea Omicini and Franco Zambonelli. Coordination for Internet

application development. Autonomous Agents and Multi-Agent Sys-

tems, 2(3):251–269, September 1999. Special Issue: Coordination

Mechanisms for Web Agents.

[Pan02] Jun Pang. Analysis of a security protocol in µCRL. In Chris George

and Huaikou Miao, editors, Formal Methods and Software Engineer-

ing, 4th International Conference on Formal Engineering Methods,

ICFEM 2002 Shanghai, China, October 21-25, 2002, Proceedings,

volume 2495 of Lecture Notes in Computer Science, pages 396–400.

Springer-Verlag, 2002.

[RG92a] A. Rao and M. Georgeff. An abstract architecture for rational agents.

In C. Rich, W. Swartout, and B. Nebel, editors, Proceedings of the

International Workshop on Knowledge Representation, KR’92, pages

439–449, 1992.

146 BIBLIOGRAPHY

[RG92b] A. S. Rao and M. P. Georgeff. An abstract architecture for ratio-

nal agents. In Proceedings of the Third International Conference on

Principles of Knowledge Representation and Reasoning (KRR92),

Boston, MA, 1992.

[RL04] Franco Raimondi and Alessio Lomuscio. Verification of multiagent

systems via ordered binary decision diagrams: An algorithm and

its implementation. In N. Jennings, C. Sierra, L. Sonenberg, and

M. Tambe, editors, Proceedings of the Third International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS-

2004), pages 630–637, Columbia University, New York City, July

2004. ACM Press.

[RZ94] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing

Conventions for Automated Negotiation Among Computers. MIT

Press, Cambridge, MA, 1994.

[SCDC98] J.S. Sichman, R. Conte, Y. Demazeau, and C. Castelfranchi. A social

reasoning mechanism based on dependence networks. In M. Huhns

and M. Singh, editors, Readings in Agents, pages 416–420. Morgan

Kaufmann Publishers, 1998.

[Sic01] J.S. Sichman. A dependence-based model for social reasoning

in multi-agent systems. Technical Report BT/PCS/0108, Escola

Politécnica da Universidade de São Paulo, 2001.

[SIC03] SICStus prolog user manual, release 3.11.0, October 2003. http:

//www.sics.se/isl/sicstus/.

[Sin98] M. Singh. Agent communication language: rethinking the principles.

IEEE Computer, pages 40–47, December 1998.

[Sin00] M. P. Singh. A social semantics for agent communication languages.

In F. Dignum and M. Greaves, editors, Issues in Agent Communica-

tion, pages 31–45. Springer-Verlag, 2000.

BIBLIOGRAPHY 147

[SKL+04] Kostas Stathis, Antonis C. Kakas, Wenjin Lu, Neophytos Demetriou,

Ulle Endriss, and Andrea Bracciali. PROSOCS: a platform for pro-

gramming software agents in computational logic. In Trappl [Tra04],

pages 523–528. Extended version to appear in a special issue of Ap-

plied Artificial Intelligence, Taylor & Francis, 2005.

[Smi80] R.G. Smith. The contract net protocol: High level communication

and control in a distributed porblem solver. IEEE Transaction on

Computers, C-29(12):1104–1113, 1980.

[SOC] Societies Of ComputeeS (SOCS): a computational logic model for

the description, analysis and verification of global and open societies

of heterogeneous computees. IST-2001-32530. Home Page: http:

//lia.deis.unibo.it/Research/SOCS/.

[Stu95] P.J. Stuckey. Negation and constraint logic programming. Informa-

tion and Computation, 118(1):12–33, 1995.

[Tra04] Robert Trappl, editor. Proceedings of the 17th European Meeting on

Cybernetics and Systems Research, Vol. II, Symposium “From Agent

Theory to Agent Implementation” (AT2AI-4). Austrian Society for

Cybernetic Studies, Vienna, Austria, April 13-16 2004.

[van03] L. van der Torre. Contextual deontic logic: Normative agents, vi-

olations and independence. Annals of Mathematics and Artificial

Intelligence, 37(1):33–63, 2003.

[vD91] P. van Hentenryck and Y. Deville. The Cardinality Operator: A new

Logical Connective for Constraint Logic Programming. In K. Fu-

rukawa, editor, Logic Programming, Proceedings of the Eigth Inter-

national Conference, Paris, France, volume 2, pages 745–759, 1991.

[vOL02] David von Oheimb and Volkmar Lotz. Formal security analysis with

interacting state machines. In Dieter Gollmann, Günter Karjoth,

and Michael Waidner, editors, Computer Security - ESORICS 2002,

7th European Symposium on Research in Computer Security, Zurich,

148 BIBLIOGRAPHY

Switzerland, October 14-16, 2002, Proceedings, volume 2502 of Lec-

ture Notes in Computer Science, pages 212–229. Springer-Verlag,

2002.

[vSD93] P. van Hentenryck, V. Saraswat, and Y. Deville. Design, implemen-

tation, and evaluation of the constraint language cc(fd). Technical

Report CS-93-02, Department of Computer Sciences, Brown Univer-

sity, January 1993.

[Wel93] M. P. Wellman. A market-oriented programming environment and its

application to distributed multicommodity flow problems. Journal

of Artificial Intelligence Research, 1:1–23, 1993.

[Woo02] M. Wooldridge. Introduction to Multi-Agent Systems. John Wiley &

Sons, Ltd., 2002.

[Wri51] G.H. Wright. Deontic logic. Mind, 60:1–15, 1951.

[WW98] M. P. Wellman and P. R. Wurman. Market-aware agents for a mul-

tiagent world. Robotics and Autonomous Systems, 24:115–125, 1998.

[Xan03] I. Xanthakos. Semantic Integration of Information by Abduction.

PhD thesis, Imperial College London, 2003.

[YS02] P. Yolum and M.P. Singh. Flexible protocol specification and ex-

ecution: applying event calculus planning using commitments. In

C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of

the First International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-2002), Part II, pages 527–534,

Bologna, Italy, July 15–19 2002. ACM Press.

