Date importanti

9 Marzo - Congresso telethon

RECUPERI:

- 17 Marzo (2 ore) Elettroforesi 2D.
- 24 Marzo (2 ore) Purificazioni proteiche.

ESCLUSI BIOLOGI LT

- 30 Marzo (3 ore) Fast Blot e Ab Fluorescenti.
- 31 Marzo (2 ore) Termine del WB con e rivelazione al Pharos.

Esercitazioni pratiche

Lab. Biotecnologie Dipartimento di Biochimica, 3° piano

Tecnologie Agro-Alimentari e biotrasformazioni industriali:

solamente il mercoledì mattina

OBBLIGATORIO

Appelli ufficiali del 2011

7 Aprile (solo triennale) Aula ex macello 26 Aprile (solo triennale) Aula ex macello 16 Giugno Aula D5 7 Luglio Aula D5 22 Settembre Aula ex macello

L'aula ex macello è in via Fossato di Mortara 74

Testi consigliati NO AI REGISTRATORI!

- Carlo De Marco e Chiara Cini Principi di metodologia Biochimica – PICCIN.
- Wilson K, Walker J Biochimica e Biologia Molecolare.
 Principi e tecniche Zanichelli.
- •Walker J The Protein protocols Handbook (2^a ed.).
- Berg JM, Tymoczko JL, Stryer L Biochimica (dalla 5^a ed. in poi).
- Wilson K, Goulding KH Biochimica Applicata (dalla 3^a ed. in poi).
- Selinsky BS Membrane Protein Protocols.
- Reed Ř, Holmes D, Weyers J, Jones A Metodologie di base per le scienze biomolecolari.

METODO SCIENTIFICO

Ricerca del PERCHE', con consapevolezza della fallibiltà delle ipotesi sperimentali.

INDAGINE BIOCHIMICA

- Valutazione conoscenze nel settore di indagine (letteratura).
- Formulazioni ipotesi sperimentali.
- Selezione del sistema biologico.
- Scelta della variabile da studiare.
- Progettazione ed esecuzione dell'esperimento.
- Replicazione dell'esperimento e calcolo della variabilità.
- Formulazione delle conclusioni e nuove ipotesi.

PRINCIPALI METODOLOGIE BIOCHIMICHE

- 1. TECNICHE CENTRIFUGATIVE
- 2. TECNICHE ENZIMATICHE
- 3. TECNICHE IMMUNOCHIMICHE
- 4. TECNICHE DI BIOLOGIA MOLECOLARE
- 5. TECNICHE CROMATOGRAFICHE
- 6. TECNICHE ELETTROFORETICHE
- 7. TECNICHE SPETTROSCOPICHE
- 8. TECNICHE RADIOISOTOPICHE
- 9. TECNICHE DI SPETTROSCOPIA DI MASSA
- 10. TECNICHE ELETTROCHIMICHE

UNITA' DI MISURA

Prefissi del Sistema Internazionale

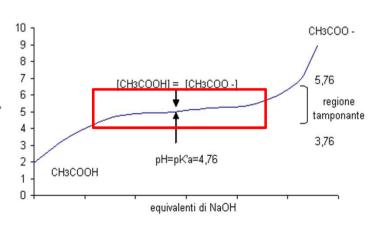
10 ⁿ	Prefisso	Simbolo	Nome	Equivalente decimale	
1024	<u>yotta</u>	У	Quadrilione	1 000 000 000 000 000 000 000 000	
10 ²¹	<u>zetta</u>	Z	Triliardo	1 000 000 000 000 000 000 000	
1018	exa	Е	Trilione	1 000 000 000 000 000 000	
10 ¹⁵	<u>peta</u>	Р	<u>Biliardo</u>	1 000 000 000 000 000	
1012	<u>tera</u>	T	<u>Bilione</u>	1 000 000 000 000	
109	giga	G	<u>Miliardo</u>	1 000 000 000	
106	mega	M	<u>Milione</u>	1 000 000	
103	kilo o chilo	k	<u>Mille</u>	1 000	
10 ²	<u>etto</u>	h	<u>Cento</u>	100	
101	deca	da	<u>Dieci</u>	10	
10-1	<u>deci</u>	d	Decimo	0,1	
10-2	<u>centi</u>	С	Centesimo	0,01	
10-3	<u>milli</u>	m	Millesimo	0,001	
10 ⁻⁶	<u>micro</u>	μ	Milionesimo	0,000 001	
10 ⁻⁹	nano	n	Miliardesimo	0,000 000 001	
10-12	pico	p	Bilionesimo	0,000 000 000 001	
10 ⁻¹⁵	<u>femto</u>	f	Biliardesimo	0,000 000 000 001	
10 ⁻¹⁸	<u>atto</u>	а	Trilionesimo	0,000 000 000 000 001	
10-21	<u>zepto</u>	Z	Triliardesimo	0,000 000 000 000 000 001	
10 ⁻²⁴	<u>yocto</u>	У	Quadrilionesimo	0,000 000 000 000 000 000 001	

TAMPONI

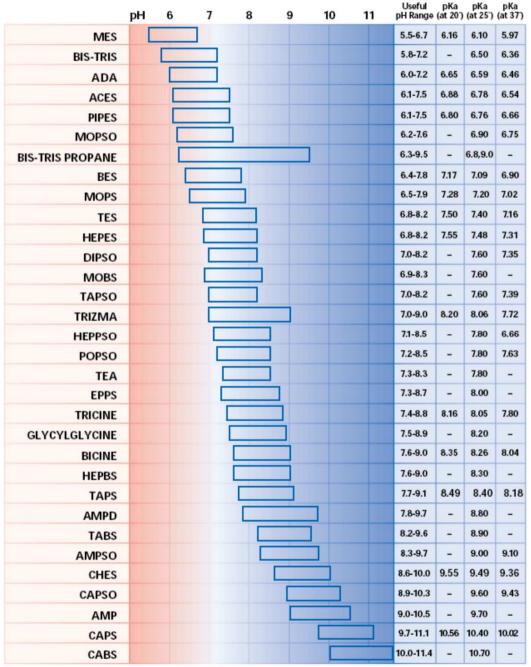
Singole cellule od organismi complessi resistono generalmente a grandi variazioni di pH dell' ambiente esterno.

Al contrario, forte sensibilità dei processi endocellulari al pH proprietà finemente regolata (generalmente mantenuto vicino alla neutralità) mediante sistemi tampone.

SELEZIONE DEI TAMPONI


Utilizzare un tampone con pK_a vicina al pH richiesto.

- Henderson-Hasselbalch -


$$pH = pK_a + log \frac{[A-]}{[AH]}$$

Esprime la variazione dello stato di ionizzazione di un elettrolita debole in funzione del pH.

Oltre l'intervallo di pH = pKa±1 la capacità tamponante è scarsa.

SELEZIONE DEL TAMPONE SULLA BASE DELLA pKa

SELEZIONE DEI TAMPONI

Assicurarsi che il tampone non causi precipitazioni indesiderate (citrati e fosfati).

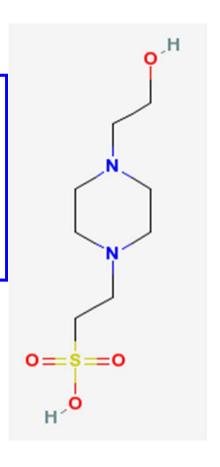
Per certi enzimi il fosfato di alcuni tamponi è substrato, attivatore o inibitore.

Il tris 2-idrossimetil-amminometano cloridrato o **TRIS** (рка = 8.06 a 20 ℃, range рн: 7.0-9.2) è spesso **tossico** in sistemi biologici, per la sua solubilità in lipidi.

GOOD'S BUFFERS

Sono 12 tamponi descritti da Norman Good (1966), basati su **molecole zwitterioniche**, portate al pH di "lavoro" con un acido forte o una base forte.

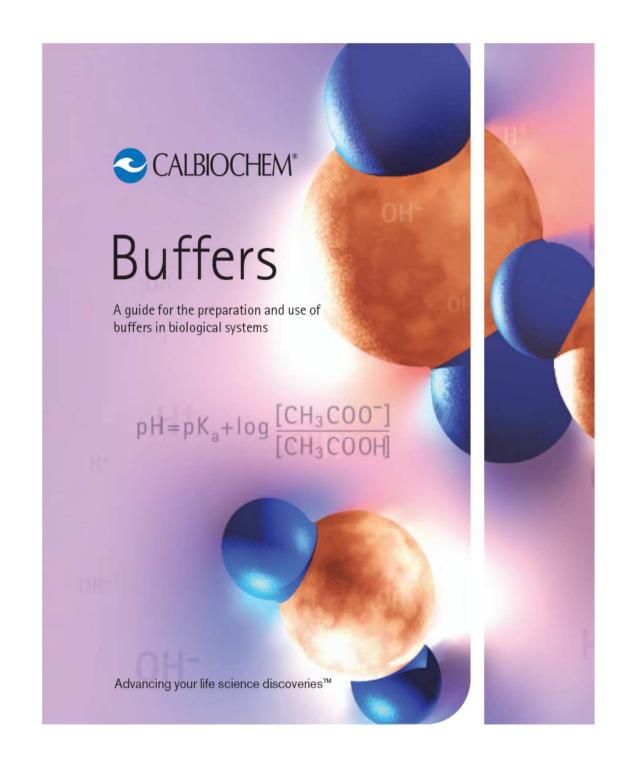
- Scelti per aver PK_a fra 6 e 8.
- Bassa solubilità in solventi non polari.
- Chimicamente stabili.
- Non attraversano le membrane cellulari.
- Non assorbono nell'UV-visibile.


Buffer	pK _a at 20°C	$\Delta p K_a / ^{\circ} C$
<u>MES</u>	6.15	-0.011
ADA	6.6	-0.011
<u>PIPES</u>	6.8	-0.0085
ACES	6.9	-0.020
Cholamine chloride	7.1	-0.027
BES	7.15	-0.016
TES	7.5	-0.020
<u>HEPES</u>	7.55	-0.014
Acetamidoglycine	7.7	-
<u>Tricine</u>	8.15	-0.021
Glycinamide	8.2	-0.029
Bicine	8.35	-0.018

HEPES

N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid

Normalmente neutralizzato con NaOH


- pK_a at 25°C of **7.55** (7.31 at 37°C)
- a second pK_a at pH 3 is not of interest
- usable buffering range of 6.8 to 8.2
- molecular weight 238.3
- HEPES contains tertiary amines, which are reactive under certain conditions. Chemical formula: C₈H₁₈N₂O₄S

Fototossico: produzione di perossido di idrogeno se esposto a luce solare (riproducibilità a rischio!).

Preparazione di un tampone

- pesare
- H₂O (~ l'80%)
- miscelare
- pH
- portare a volume

FORZA IONICA

$$\mu = \frac{1}{2} \Sigma cz^2$$

c = concentrazione specie ionica

z = carica dello ione

L'unità di misura di µ è la molarità.

Calcolo della forza ionica di 2 soluzioni:

- 1) 0.5 M KCI
- 2) $0.2 \text{ M NaCl} + 0.5 \text{ M Na}_2 \text{SO}_4$

FORZA IONICA

$$\mu = \frac{1}{2} \Sigma cz^2$$

c = concentrazione specie ionica

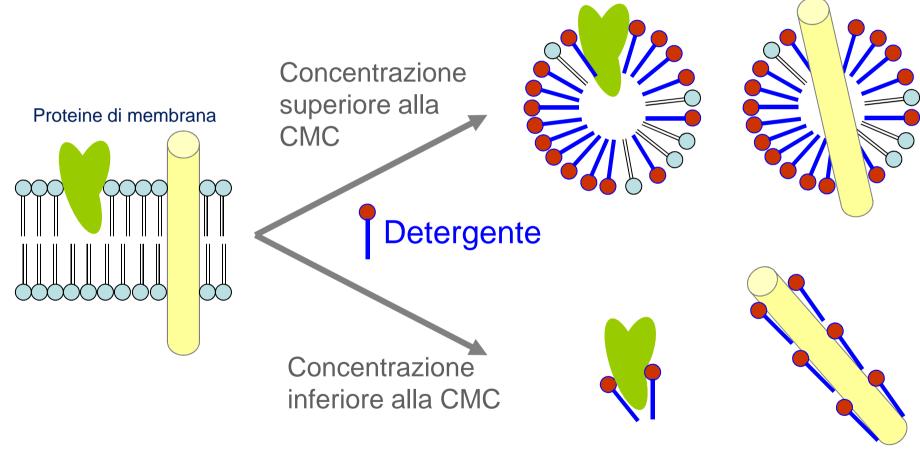
z = carica dello ione

Risultati:

DETERGENTI

I detergenti sono molecole ANFIPATICHE, contengono cioè sia gruppi polari (idrofili), sia apolari (idrofobici, lipofili).

Alcuni sono naturali, la > parte di sintesi (dal 1836).


Proteine transmembrana, se isolate dalle membrane, espongon regioni idrofobiche, causando aggregazione.

I detergenti possono solubilizzare tali proteine avendo affinità per i gruppi idrofobici/idrofilici presenti in esse.

CONCENTRAZIONE MICELLARE CRITICA (CMC)

Basse [Detergente] = in H_2O come molecola isolata. Alte [Detergente] = forma micelle.

La CMC è caratteristica di ogni detergente; dipende dalla propria struttura chimica.

TIPI DI DETERGENTI

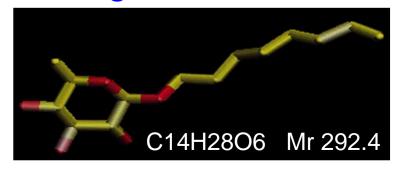
NON IONICI: gruppo idrofilo non carico (alchiloamidi, esteri del glucosio e del saccarosio, alchilaminossidi, derivati etossilati).

ANIONICI: gruppo idrofilo carico - (alchilsolfati, alcoilsarcoinati, alchilsemisolfuccinati, condensati tra acidi grassi ed aminoacidi).

CATIONICI: gruppo idrofilo carico + (sali quaternari di ammonio, sali di piridinio quaternario, sali di isochinolinio quaternario).

ANFOTERI: contengono sia un gruppo carico - positivamente sia uno carico + (imidazoline e le betaine). Comportamento diverso a seconda del pH.

DETERGENTINon ionici:

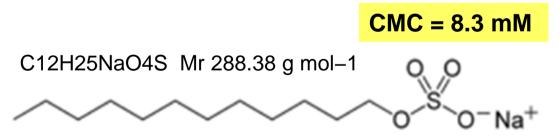

Triton X-100 (estrazione DNA)

 $CMC = \sim 0.2 \text{ mM}$

Tween 20 (studi di interazione e funzione)

CMC = 0.06 mM

Octilglucoside (elettroforesi 2D)



DETERGENTI

I detergenti ionici, a causa della propria carica, distruggono legami ionici e ponti idrogeno, portando anche alla completa denaturazione una proteina.

Anionici:

Sodio dodecil solfato (SDS) o sodio laurilsolfato (SLS)

Usato in prodotti, come dentifricio, shampoo, schiuma da barba e saponi liquidi.

La **polvere di SDS** è molto volatile, irritante per occhi, cute e vie respiratorie. Contatti ripetuti o prolungati posson causar dermatiti. Alla combustione, forma gas tossici.

DETERGENTI Cationici:

Medio/Alto potere disinfettante, per la capacità di agire sulla membrana esterna dei batteri gram -

Cloruro di benzalconio: miscela di cloruri di alchil-benzil-dimetilammonio (largamente presente in colliri e colluttori)

$$R = -C_8H_{17} \dots -C_{18}H_{37}$$

Trovano scarsa o nessuna applicazione nei comuni laboratori di biochimica e biologia molecolare.

DETERMINAZIONE DELLA QUANTITA' DI PROTEINE

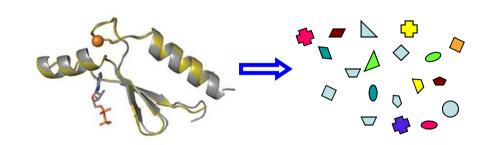
Vi sono numerosi metodi.

Alcuni forniscono valori relativi, altri assoluti; in tal caso lo standard esterno più comune è la BSA.

Metodi colorimetrici

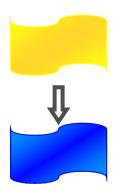
Vs

Determinazione spettrofotometrica diretta


DETERMINAZIONE DELLA QUANTITA' DI PROTEINE

COLORAZIONI

Svantaggio: il campione non si può recuperare.


Metodo di Lowry

Idrolisi del campione con
 2M NaOH a 100℃.

Tamb + CuSO₄ (riduzione).

- Aggiunta del reattivo di Folin, giallo (sali di Na+ degli acidi fosforico, molibdico e tungstico).
- Viraggio al colore blu; dopo 30-60' lettura assorbimento a 660 nm.

Metodo di Lowry

Difetti:

- 1) tempo di incubazione critico per la riproducibilità;
- 2) proteine ricche in **Tyr** sembreranno + presenti;
- 3) poco sensibile; 10000 ng di proteina;
- 4) soggetto a interferenze.

Meccanismo d'azione

Formation of a complex between Cu2+ and protein amide (peptide) bonds in an alkaline solution causing a reduction of copper to Cu+

Cu2+ + protein —> [Cu2+-protein complex]

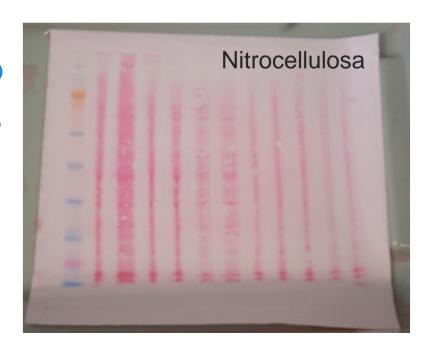
Cu2+ + (polar amino acids, Trp, Tyr)red —> Cu+ + (amino acids)ox

Cu+ and radical groups of **tyrosine**, tryptophan and cysteine reduce a **yellow** phosphomolybdate-phosphotungstate complex (**Folin reagent**: Na2MoO4 + Na2WoO4 + H3PO4) to a **deep blue color**

 $Cu+ + (F-C)ox \longrightarrow Cu2+ + (F-C)red$ (F-C) = phospho-Mo-Tungstate acid

COLORAZIONI

Ponceau S

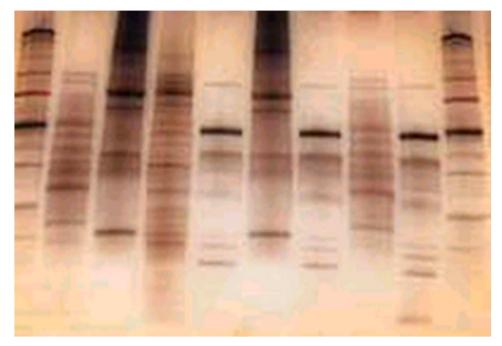

Si lega ai gruppi basici degli aa. Produce un vivido color **rosso**.

$$N=N$$
 $N=N$
 $N=N$
 $N=N$
 $N=N$

Colorazione semplice, reversibile, molto rapida ed economica. Frequente uso su nitrocellulosa.

Sensibilità superiore al metodo Lowry, fino a 50 ng di proteina.

Pochi secondi di incubazione, poi rimozione con tampone o H₂O distillata.



Colorazione argentica

Sensibilità 1 - 0.5 ng di proteina.

Presenza nel colorante di **ioni Ag**⁺ che reagiscono in presenza di formaldeide con i gruppi **-SH** delle proteine. Si forma Ag metallico ben visibile.

- Costoso
- Risposta non lineare.

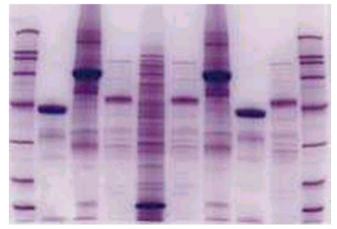
Gel di PAA

COLORAZIONI

Blue Coomassie

Sensibilità 50-200 ng di proteina. Usato tipicamente su gel.

- Colorante anionico + H₂O + acido acetico e metanolo.
- Per decolorare H₂O + etanolo.


Pregi: facilità, rapidità, stabilità.

Difetti: metodo condizionato dalla presenza di residui basici.

Decolorazione

PROBLEMA: E LE PROTEINE IN SOLUZIONE?

COLORAZIONI

METODO BRADFORD (1976)

Si legame basa sul coomassie G-250 alle proteine.

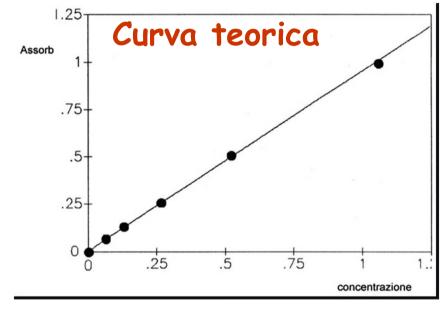
Proteine con catene laterali basiche

Utilizzabile su micropiastra e solo su peptidi superiori a 3 kDa.

Coomassie G-250

Veloce, facile e sensibile.

Compatibile con moltissimi sali, buffers, chelanti...tranne alcuni detergenti.

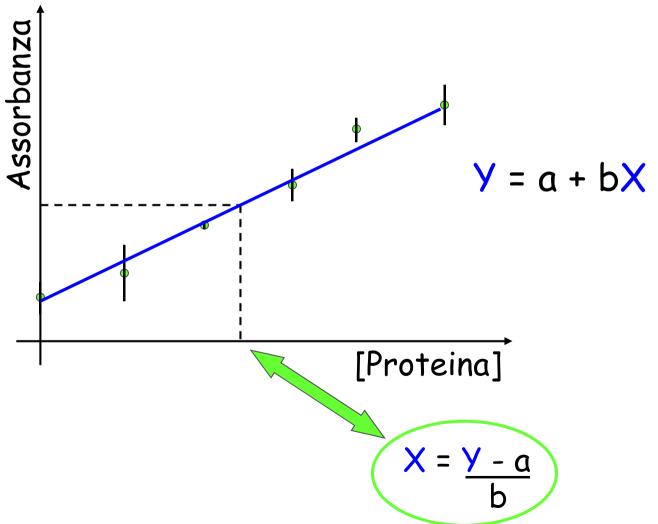

A_{may}: 465 nm → 595 nm

Protein-Dye Complex

CURVA DI TARATURA

Occorrono numerosi punti di misurazione, almeno 4-5 e misure ripetute in doppio o triplo.

La sensibilità è massima al picco di estinzione del cromoforo.



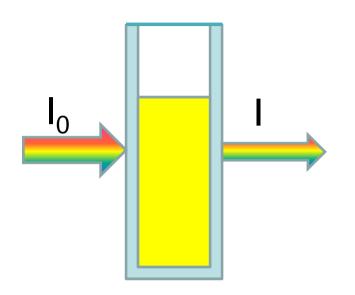
Il "bianco" deve contenere tutti i reagenti, tranne la sostanza da determinare.

Non si deve estrapolare la curva oltre il valore più alto determinato.

DETERMINAZIONE DELLA QUANTITA' DI PROTEINE

Curva di taratura (standard curve) di BSA: albumina da siero bovino

SPETTROFOTOMETRIA DI ASSORBIMENTO


La spettrofotometria è il processo che determina la quantità di luce assorbita da composti disciolti in soluzione.

Ogni molecola ha precisi livelli energetici associati alla propria natura e legami chimici, perciò assorbirà la luce di λ (E) specifiche, fornendo spettri di assorbimento unici.

$$\lambda = c/n$$
ע

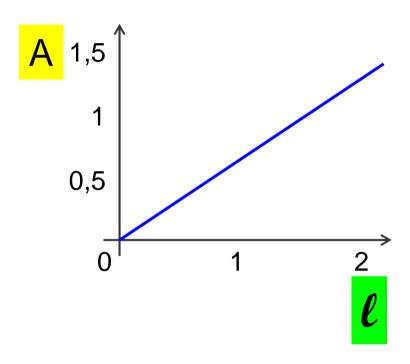
Tramite essa è possibile uno studio qualitativo e quantitativo.

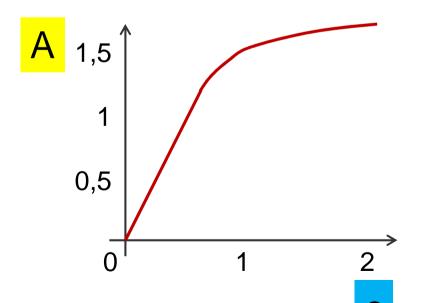
L'ASSORBIMENTO DI UNA SOLUZIONE

Trasmittanza (T) =
$$\frac{I}{I_0}$$

Frazione di luce incidente trasmessa dalla soluzione.

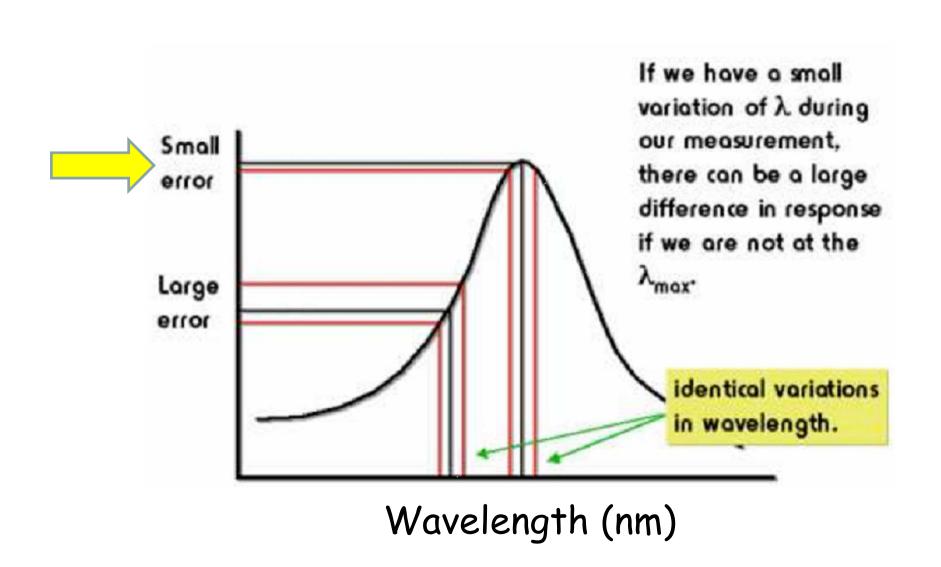
Assorbanza (A) = -
$$\log T = \log \frac{I_0}{I}$$


L'assorbimento di radiazioni elettromagnetiche è descritto dalla legge (sperimentale) di Lambert-Beer:

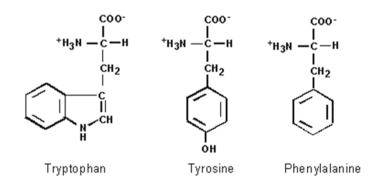

$$A = \varepsilon I C$$

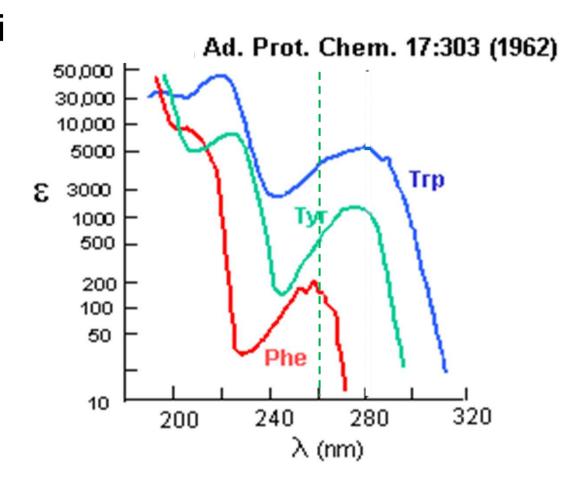
La radiazione assorbita dipende dalla **concentrazione** delle molecole che assorbono e dal cammino ottico nel quale avviene l'assorbimento.

L'ASSORBIMENTO IN SPETTROFOTOMETRIA


Se si riporta l'assorbanza in funzione della lunghezza del cammino ottico:

La risposta dell'assorbanza in funzione della concentrazione è lineare solo entro un determinato intervallo di valori.


SCELTA DEL PICCO DI ASSORBIMENTO PER LA LETTURA SPETTROFOTOMETRICA



DETERMINAZIONE DELLA QUANTITA' DI PROTEINE

Alcuni residui aromatici assorbono nel vicino UV (275-280 nm)

Misura solamente le proteine totali

I residui assorbono differentemente e possono esser presenti in quantità diverse da proteina a proteina.

PROBLEMI NELLA QUANTIFICAZIONE SPETTROFOTOMETRICA DI PROTEINE

- Dipendenza dai residui di W, Y ed F.
- Possibile interferenza da parte di corpuscoli e solventi organici, eliminabile misurando l'assorbimento a 320 nm.
- Possibile interferenza da parte di acidi nucleici, eliminabile misurando il loro assorbimento a **260 nm**.

Protein (mg/mL) =
$$1,55 A_{280} - 0,76 A_{260}$$

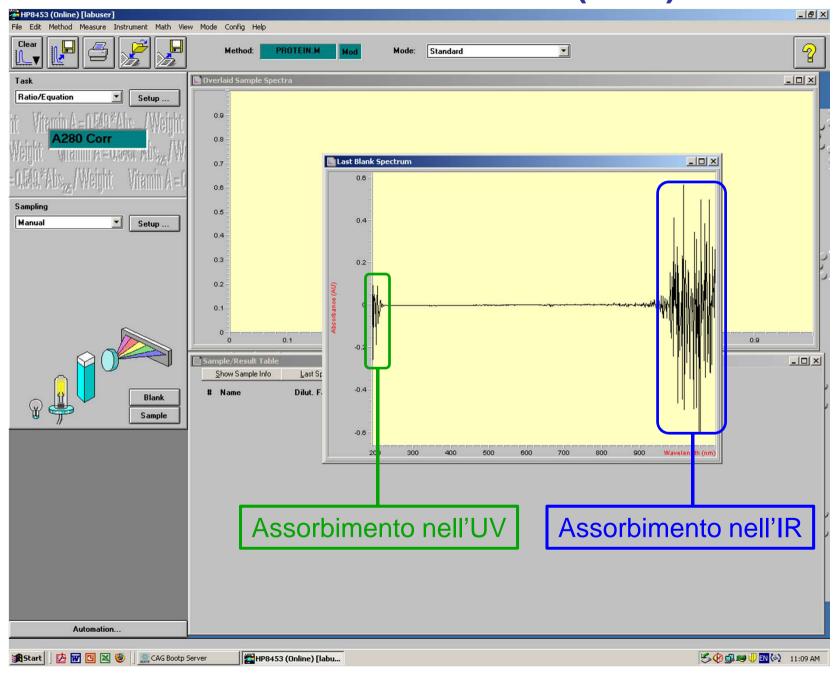
Eq. di Stoscheck (1990)

Nel dosaggio di acidi nucleici, possibile interferenza dovuta a carboidrati, fenoli, composti aromatici... eliminabile con lettura a 230 nm.

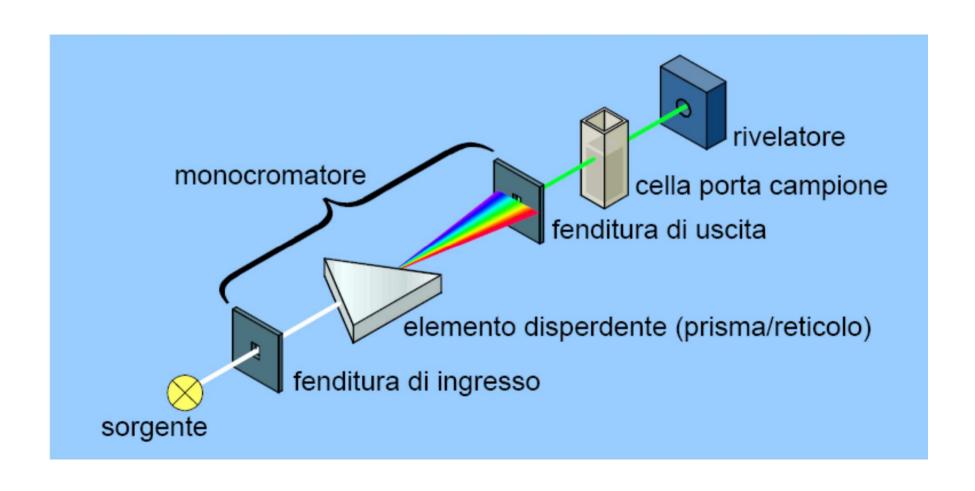
SCELTA DEL SOLVENTE

Un solvente dovrebbe:

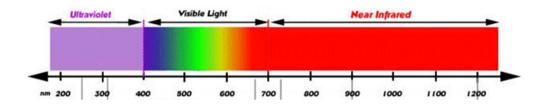
sciogliere tutti i composti presenti nel campione,



- trasparente a tutte le λ,
- non infiammabile e non tossico.


L'acqua distillata si avvicina a questa condizione, ma è inadatta a composti organici apolari.

La > parte dei solventi mostra una regione nell'UV, sotto la quale assorbono troppo per consentire misure sul campione (λ critica).


LETTURA DEL BIANCO (HBS)

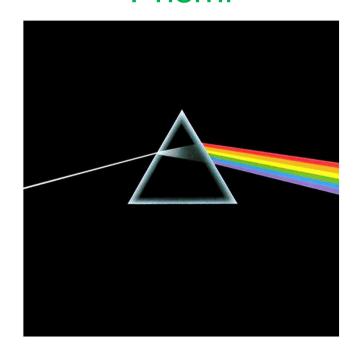
SPETTROFOTOMETRI A SINGOLO RAGGIO

SORGENTE

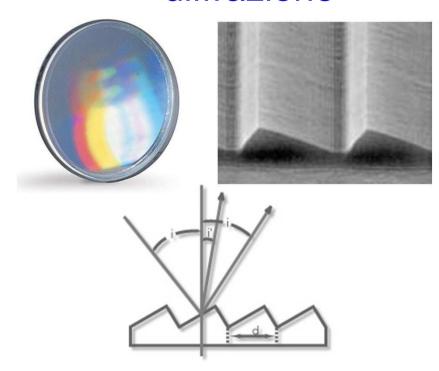
La sorgente luminosa è costituita da una lampada a:

 deuterio per la zona dell'UV emissione: ≈ 160-375 nm

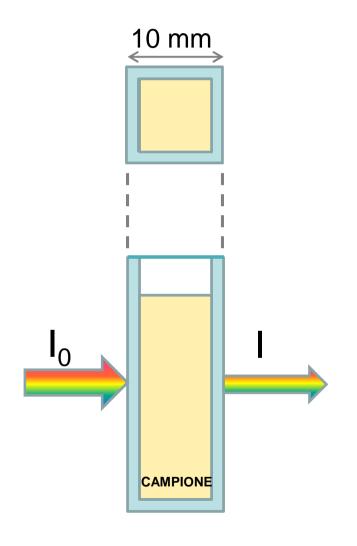
- tungsteno per la regione visibile emissione: ≈ 350-2500 nm

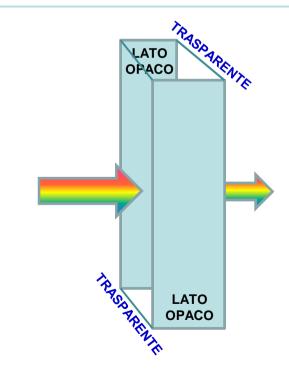

xenon per entrambe le zone emissione: ≈ 190-1100 nm

MONOCROMATORE

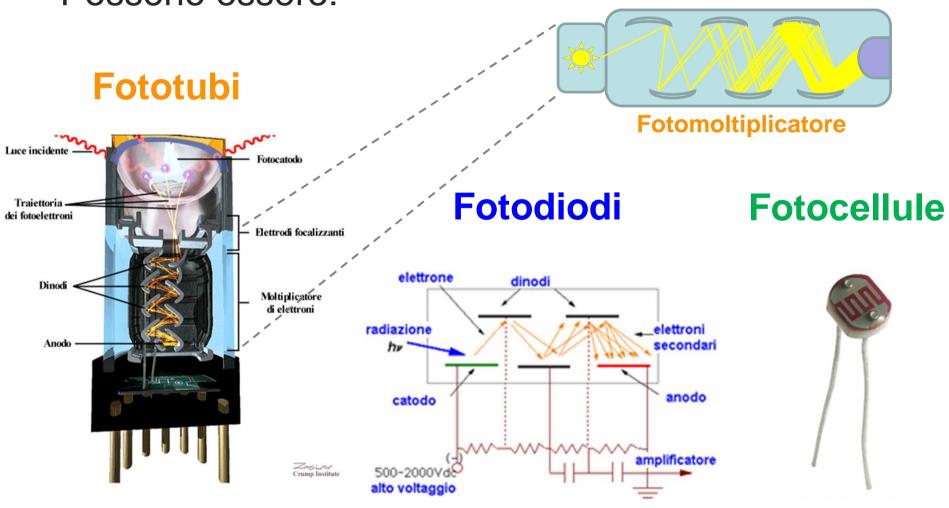

Il monocromatore scinde la luce nelle sue lunghezze d'onda costituenti. La λ d'interesse verrà selezionata da una fenditura successiva.

Reticoli di:

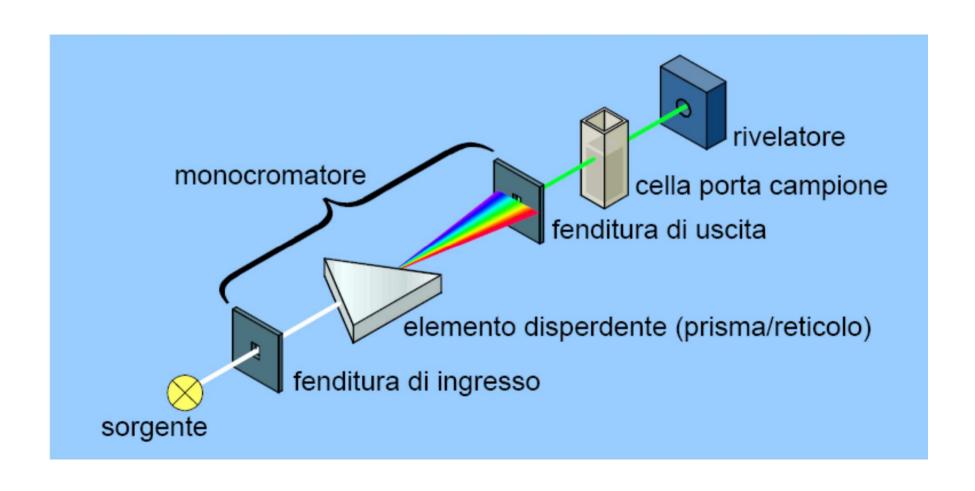

Prismi


- trasmissione
- riflessione
- diffrazione

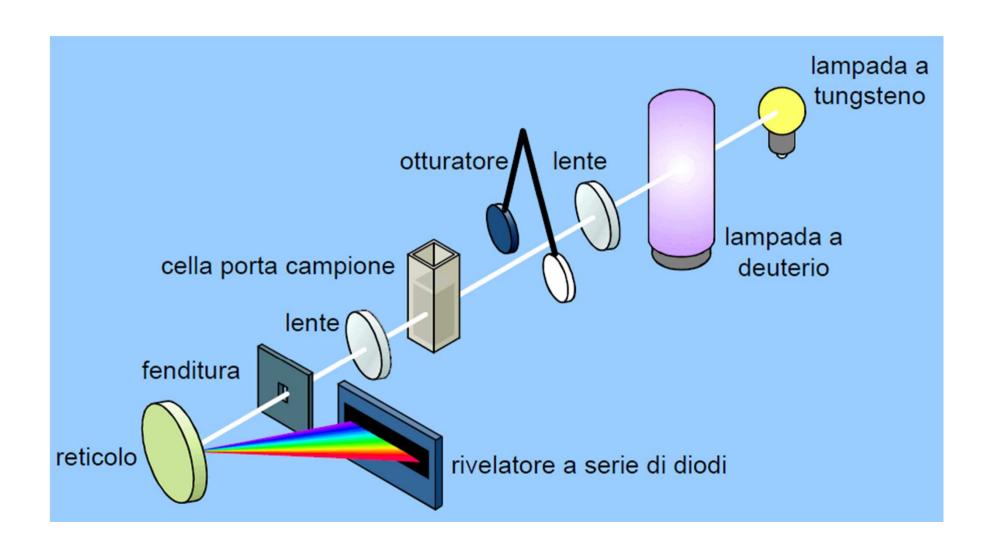
CELLA O CUVETTA

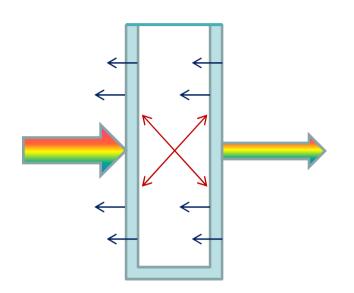


TRASPARENZA Quarzo 165-2600 nm Std. silice 220-2500 nm Vetro 360-1000 nm Polistirene 360-800 nm Metacrilato 320-800 nm



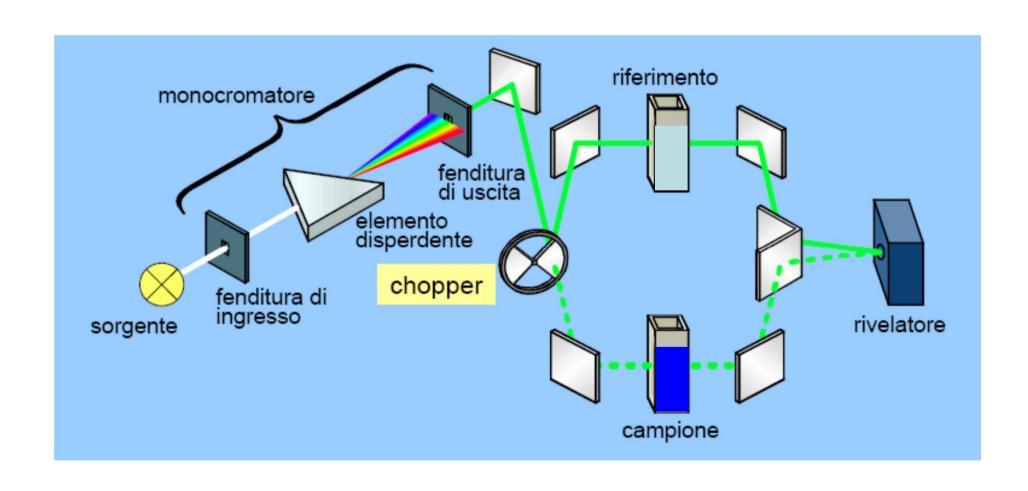
RIVELATORE


Converte l'intensità luminosa in un segnale elettrico. Possono essere:

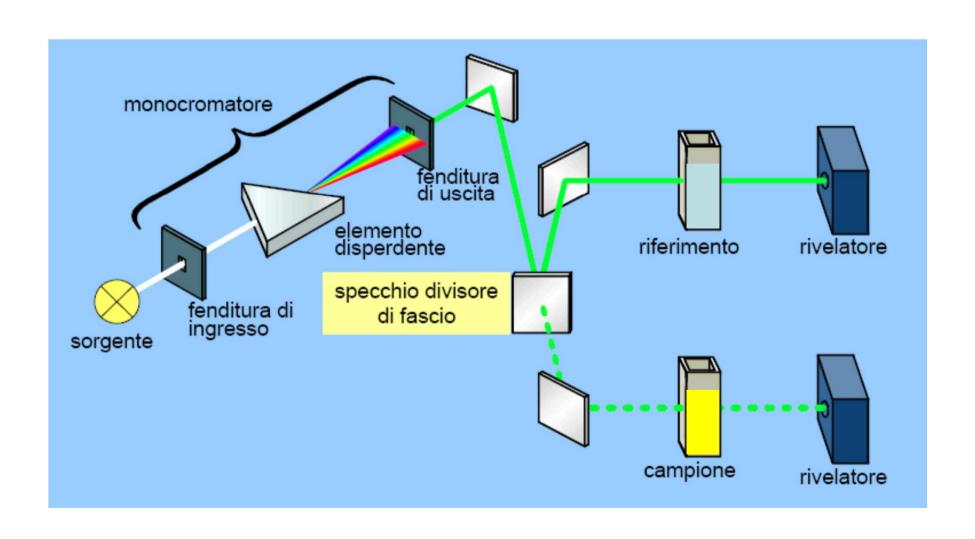

SPETTROFOTOMETRI A SINGOLO RAGGIO

SPETTROFOTOMETRI A SINGOLO RAGGIO A SERIE DI DIODI

SPETTROFOTOMETRI A DOPPIO RAGGIO

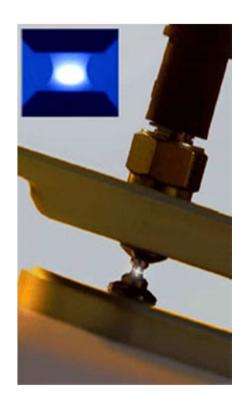


Alle due interfacce aria/parete che a quelle parete/soluzione si verifica riflessione.


L'attenuazione del fascio è notevole e può esser anche causata da grosse molecole presenti in soluzione.

Per considerare tali effetti la potenza del raggio trasmesso dalla soluzione campione è può essere confrontata con quella del fascio trasmesso da una cella identica contenente solo solvente

SPETTROFOTOMETRI A DOPPIO RAGGIO NEL TEMPO


SPETTROFOTOMETRI A DOPPIO RAGGIO NELLO SPAZIO

NANODROP

XNanoDrop

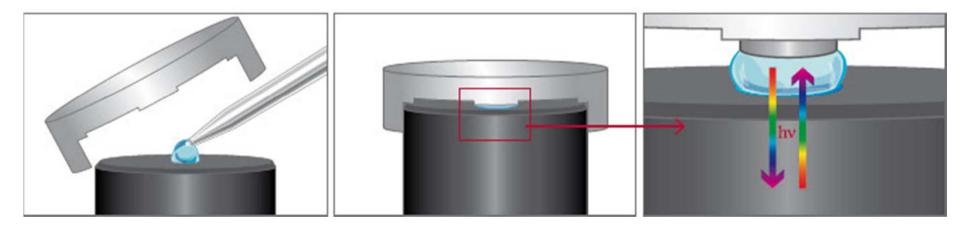
Utilizzo di microlitri di campione (da 1 a 1,5 µL), senza costose cuvette.

Analisi in 30 secondi, perché senza la necessità di diluire i campioni.

NANODROP

Utilizzabile anche su micropiastre per analisi multiple di 8 campioni (versione 8000).

96 campioni in 6 minuti!


NANOPHOTOMETER

NANOPHOTOMETER Funzionamento e caratteristiche

SAMPLE COMPRESSION TECHNOLOGY™

DETECTION RANGE: 2 ng/ µl to 18,750 ng/µl (DNA)

NANOPHOTOMETER Fasi manuali

Caricamento

Chiusura

Lettura e pulizia

