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Migration remains one of the great mysteries of
animal life. Small migratory birds rely on refuel-
ling stopovers after crossing ecological barriers
such as deserts or seas. Previous studies have
suggested that fuel reserves may determine stop-
over duration but this hypothesis could not be
tested because of methodological limitations.
Here, we provide evidence that subcutaneous fat
stores determine stopover duration by measuring
the permanence of migratory garden warblers
(Sylvia borin) on a small Mediterranean island
during spring migration with telemetry methods.
Garden warblers with large amounts of fat stores
departed the island significantly sooner than lean
birds. All except one fat bird left the island on the
same evening after capture, with a mean total
stopover estimate of 8.8 hours. In contrast, the
mean estimated total stopover duration of
lean birds was 41.3 hours. To our knowledge,
this is the first study that measures the true mini-
mum stopover duration of a songbird during
migration.

Keywords: migration; garden warbler; stopover;
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1. INTRODUCTION
Many species of birds migrate each year and cross
deserts or seas where food is not available. Migration
across such ecological barriers relies on refuelling at
stopover sites. The duration of a stopover is influenced
by environmental factors including availability of food
and weather conditions, and by endogenous pro-
grammes (reviewed in Gwinner & Helm 2003;
Jenni & Schaub 2003). At the individual level, it has
been suggested that subcutaneous fat deposits are the
main physiological determinant of stopover duration
(e.g. Bairlein 1985; Biebach 1985; Biebach et al.
1986; Cherry 1982; Gannes 2002; Moore & Kerlinger
1987, but see Kuenzi et al. 1991; Lyons & Haig 1995).
Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsbl.2009.1028 or via http://rsbl.royalsocietypublishing.org.
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This idea has never been tested properly, because
actual departure from stopover sites in relation to fat
stores has never been measured. Previous estimates
from capture–recapture studies did not take into
account the fact that lean birds are more active
during the day when they search for food and hence
are more likely to be recaptured than fat birds which
feed less (Lindström & Alerstam 1992; Salewski &
Schaub 2007). Indeed, such differences in the diurnal
activity of fat and lean birds during stopover are known
to occur (Bairlein 1985; Yong & Moore 1993; Titov
1999; Fusani et al. 2009). If this differential mobility
is incorporated into capture–recapture studies and
the entire stopover duration is estimated instead of
minimum stopover, subcutaneous body fat does not
appear to influence the stopover duration (Salewski &
Schaub 2007).

To overcome the shortcomings of indirect estimates
of stopover duration, we studied the influence of sub-
cutaneous fat stores on stopover duration, at the
same time minimizing variation in environmental par-
ameters. In a quasi-experimental approach, we
monitored radio-tagged lean and fat garden warblers
(Sylvia borin) on a stopover site during consecutive
days with constant optimal weather conditions.
Because fat and lean birds were tagged at the same
time, we were able to control for environmental vari-
ables, as any change in the latter would have equally
affected the two groups.

2. MATERIAL AND METHODS
The study was conducted on Ventotene (Italy), an approximately
1.5 km2 island (figure 1) in the Tyrrhenian Sea (408470 N, 138240 E),
which is visited by songbirds during migration. A ringing station
has been active on the island since 1988. We caught garden war-
blers on 10 May (n ¼ 18) and 11 May 2009 (n ¼ 2), two
consecutive days with constant weather conditions, which did not
change until all birds had left the island (table 1). In fact, 8–13
May was the main period of broad-front garden warbler migration
along the Pontinian islands (including Ventotene) in 2009.

Following the European ringing standards described in Bairlein
(1995), we scored their subcutaneous fat on a 0–8 scale, the size
of the pectoral muscles on a 0–3 scale, and measured body mass,
tarsus and the third primary. We selected 10 lean (fat scores of 0
or 1, muscle scores 1 or 2) and 10 fat (fat scores 3 or 4, muscle
scores 2 or 3) garden warblers and glued a Holohil LB-2 or
LB-2N transmitter (battery life two weeks, weight 0.37 g) on their
backs (skin glue, Sauer GmbH, Lobbach, Germany). The transmit-
ters represented 1.9–2.7% of the body mass of the birds (lean
birds range: 13.9–16.4 g; fat birds range: 15.4–19.1 g). We alter-
nated tagging of fat and lean birds, so that capture time of day did
not differ between lean and fat birds (Mann–Whitney U-test: U ¼
29.5, p ¼ 0.12). Birds were released after attaching the transmitter,
and their presence on the island monitored during day and night
on a 2 h basis for the first 48 h, on a 4 h basis until the last animal
had left, and a 9–12 h basis for five more days. Telemetry was con-
ducted with one stationary receiver located at a tower and a mobile
receiver at six other locations around the island (see figure 1 and
the electronic supplementary material). In total, we conducted 923
scans to measure the absence or presence of radio-tagged individuals
and unambiguously determined the presence of birds remaining on
the island or their absence after departure to resume migration.
Two garden warblers (one lean and one fat) lost their transmitters
(continuous constant signal from a constant direction) and were
excluded from the dataset. The signals of 14 birds were recorded
during all scans, the signals of three birds were missed during one
scan each, and the signal of one bird was missed during three sub-
sequent scans, but then the signals of all these birds were
detectable again until departure. Each frequency was checked
for at least 72 h after the signal had disappeared, to exclude the
possibility that the bird was only temporarily not detectable.

Weather data were obtained from Ponza, a neighbouring island
40 km northeast of Ventotene (table 1).

Statistical analyses were conducted with SYSTAT 12 and MARK

(White & Burnham 1999). Telemetry data were analysed with the
This journal is q 2010 The Royal Society
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Figure 1. Map of Ventotene with main roads in black, red dots indicate one stationary (tower) and six mobile telemetry
locations, the inlay shows Italy with a black arrow indicating the location of Ventotene (scale bar, 200 m).

Table 1. Weather data from Ponza (40 km NE of Ventotene) and number of tagged and leaving birds (2 birds that lost their

transmitters were excluded; period during which all birds left the island in italic; abbreviations: ENE, east northeast; ESE,
east southeast; NE, northeast; NNE, north northeast; SSE, south southeast).

date

temp.

range
(8C)

humidity
(%)

air pressure
range (hPa)

wind
(20.00)

wind speed

(20.00 h;
km h21)

clouds
(20.00 h)

no. of birds
tagged

no. of
birds left

10.05.2009 16–19 29–76 1020–1021 ENE 3.7 no clouds 17 8
11.05.2009 16–20 41–87 1019–1020 NE 16.7 no clouds 1 4
12.05.2009 17–21 30–71 1019–1020 ESE 5.6 no clouds 0 1
13.05.2009 17–20 45–79 1017–1020 SSE 7.4 no clouds 0 3
14.05.2009 18–23 41–67 1010–1016 no 0 no clouds 0 2
15.05.2009 17–21 77–91 1005–1010 ESE 27.8 scattered 0 0
16.05.2009 20–22 56–80 1005–1012 SSE 18.5 cloudy 0 0
17.05.2009 20–24 47–95 1014–1016 NNE 18.5 cloudy 0 0
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‘nest success model’ for radio-telemetric data implemented in
MARK. Use of the nest success model was justified because of the
high detection probability of radio-tagged birds (only six misses,
see above). We (i) constructed a full model with survival probability
depending on fat class, time (i.e. survival probability changes
between different re-sightings) and the interaction between these
two factors (w[fat class * time]). We compared this full model with
all other possible reduced models that considered (ii) only variation
in survival probability over time independent of fat class (w[time]),
(iii) only variation in fat class independent on time (w[fat class]),
and (iv) a model constant survival model independent of fat class
and time (w[.]). The best model was selected according to the cor-
rected Akaike information criterion (AICc) implemented in MARK,
and the model fit was tested against the fit of the next best model
using the likelihood ratio test implemented in MARK. Because our
data were left-truncated, i.e. we did not know how long each bird
had already been present on the island before capture, we estimated
total stopover duration using the life expectancy formula S ¼ 21/
ln(w) as suggested by Efford (2005; see also the electronic sup-
plementary material for the calculations and the conversion of S
into hours). Data are presented as means+95% CI.
Biol. Lett. (2010)
3. RESULTS
The body mass of fat birds (mean+95% CI: 17.3+
1.06 g) was significantly higher than the body mass
of lean birds (15.3+0.66 g; t-test: t13.4 ¼ 3.723, p ¼
0.002); however, this difference was entirely due to
subcutaneous fat deposits, as structural body size,
measured either as the length of the tarsus (fat birds:
20.3+0.52 mm; lean birds: 20.1+0.23 mm) or the
third outermost primary wing feather (fat birds:
62.2+1.74 mm; lean birds: 62.9+2.33 mm) did
not differ between the two groups (tarsus: t11.1 ¼
0.937, p ¼ 0.368; third primary: t14.8 ¼ 20.573, p ¼
0.575).

We then went on to test whether stopover duration
differed between fat and lean birds. The nest success
survival model including only fat class as an explana-
tory factor best explained the variation in the data

http://rsbl.royalsocietypublishing.org/


Table 2. Comparison of nest survival models. The model including only fat class as predictive factor (w[fat class]) best
explained the variation in the data and had a significant better fit (x2¼5.86, p , 0.016) than the next best model in which
survival was constant, i.e. independent of fat class and time (w[.]; w ¼ survival probability).

model AICc delta AICc AICc weight model likelihood parameters deviance

w[fat class] 122.461 0 0.871 1.000 2 118.405
w[.] 126.278 3.82 0.129 0.148 1 124.260
w[time] 160.136 37.37 0 0 34 79.130
w[fat class * time] 229.035 106.57 0 0 60 62.410
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Figure 2. (a) Survival probability plot (mean w+95% CI) of lean (blue) and fat (red) garden warblers. (b) Time histogram
indicating the time of day (GMT þ 1 h) at which individual garden warblers were observed for the last time on the island.
All except one bird left the island during the night.
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and had a significantly better fit than the next best
model with constant survival probability for all birds
regardless of fat class and sampling interval (table 2;
figure 2a). Thus, fat class best predicted stopover dur-
ation with fat birds having a lower mean stopover
survival probability (w ¼ 0.833; 95% CI: 0.710–
0.911) than lean birds (w ¼ 0.945; 0.898–0.971).
Mean stopover time as estimated from the life expect-
ancy formula (Efford 2005) was 8.8 h (3.9–19.3 h) for
fat birds and 41.3 h (16.5–106.7 h) for lean birds. The
result of the complex survival analysis was confirmed
by a simple Mann–Whitney U-test, indicating that
minimum stopover duration was significantly shorter
in fat than in lean birds (U ¼ 7.5, p , 0.004).

All except one bird departed from the island after
sunset (figure 2b), suggesting that—although garden
warblers may reach stop-over sites at any time when
flying across the open Mediterranean Sea (Grattarola
et al. 1999)—they resume migration at night.
4. DISCUSSION
We conclude that fat stores predict stopover duration
in migratory garden warblers. Because weather con-
ditions were optimal for migration for the entire
period of the study, any difference in stopover time
between birds was likely to be due to internal factors
only. Hence, although capture–recapture studies did
not take into account the different mobility of fat and
Biol. Lett. (2010)
lean birds (Salewski & Schaub 2007) and due to
right-censoring had a very low precision with respect
to when individual birds really left stopover sites,
they were right in concluding that stopover duration
is determined mainly by fat stores (Cherry 1982;
Bairlein 1985; Biebach 1985; Biebach et al. 1986;
Moore & Kerlinger 1987; Gannes 2002).

We do not know exactly how long birds may already
have stayed on the island before we caught and
equipped them with a radiotransmitter. Thus, fat
birds could have already spent more time on the
island than lean birds. Because garden warblers and
other passerines arrive at Ventotene with rather vari-
able fat scores ranging from 0 to 5 (Pilastro & Spina
1997; Grattarola et al. 1999; W. Goymann, F. Spina
& L. Fusani 2006–2009, personal observations) this
is unlikely to be the case. Our data and those of
Grattarola et al. (1999) suggest that garden warblers
arriving with reasonable fat scores continue northward
migration the following night, whereas birds with
depleted fat stores need to stay and refuel before con-
tinuation of their journey. The life expectancy formula
to calculate total stopover duration is most appropriate
for populations with constant w (Efford 2005).
Because a survival model with constant w was superior
in explaining the variance in the data compared with
models that assume variation of w over time, we are
confident that our life expectancy calculations result-
ing in different total stopover duration estimates for
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fat and lean birds provide a reasonable estimate of
garden warblers’ stopover behaviour at Ventotene.

Besides providing direct evidence that garden war-
blers leave stopover sites after sunset (for other
migrants see Bolshakov & Chernetsov (2004) and
Wikelski et al. (2003)), our study with free-living
birds supports more than 200 years of studies starting
with Naumann (1795–1817) which used Zugunruhe
as a measure of migratory disposition in caged birds:
fat reserves predict stopover duration (present study)
as they do for Zugunruhe (Fusani et al. 2009).

All experimental procedures were authorized by the Regione
Lazio with respect to Italian laws.
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