Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica

Corso di Laurea in Farmacia - anno acc. 2012/2013 docente: Giulia Giantesio, gntgli@unife.it

Esercizi 5: Limiti, asintoti, studio parziale del grafico di una funzione e derivate

Limiti notevoli

Calcolare i seguenti limiti.

Esercizio 1.
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{x}$$

Soluzione. 1

Esercizio 2.
$$\lim_{x\to 0^+} \frac{\sin x^3}{x^4}$$

Soluzione. $+\infty$

Esercizio 3.
$$\lim_{x\to 0^+} \frac{\sin\sqrt{x}}{3\sqrt{x}}$$

Soluzione.
$$\frac{1}{3}$$

Esercizio 4.
$$\lim_{x\to 0} \frac{\sin^2 x}{x}$$

 ${\it Soluzione}.~0$

Esercizio 5.
$$\lim_{x\to 0^-} \frac{\sin x}{x^4}$$

Soluzione.
$$-\infty$$

Esercizio 6.
$$\lim_{x\to 0} \left(\frac{\sin 6x}{3x} - x^2\right)$$

Soluzione. 2

Esercizio 7.
$$\lim_{x\to 0} \frac{3x+5\sin x}{4x+7\sin x}$$

Soluzione.
$$\frac{8}{11}$$

Esercizio 8.
$$\lim_{x \to \infty} \left(\frac{x-1}{x}\right)^{6x}$$

Soluzione. e^{-6}

Esercizio 9.
$$\lim_{x\to\infty} \left(1 + \frac{1}{x+2}\right)^x$$
 porre $t = x+2$

 ${\it Soluzione.}\ e$

Esercizio 10.
$$\lim_{x\to\infty} \left(1 - \frac{4}{x+3}\right)^{x+2}$$

Soluzione. e^{-4}

Esercizio 11.
$$\lim_{x\to\infty} \left(1 + \frac{1}{x-5}\right)^{3x}$$

Soluzione. e^3

Esercizio 12.
$$\lim_{x\to 0} \frac{\ln(1-7x)}{x}$$

Solutione. -7

Esercizio 13.
$$\lim_{x\to+\infty} \frac{\ln^2(x+1)}{\sqrt{x+2}}$$

Soluzione. 0

Esercizio 14.
$$\lim_{x \to +\infty} \frac{e^x}{\sqrt[3]{x^4 + 3}}$$

Soluzione. $+\infty$

Limiti

Calcolare i seguenti limiti.

Esercizio 15.
$$\lim_{x\to+\infty}\frac{e^x+1}{e^x}$$

Solutione. 1

Esercizio 16.
$$\lim_{x \to 2^+} \left(\frac{1}{3}\right)^{\frac{1}{2-x}}$$

Soluzione. $+\infty$

Esercizio 17.
$$\lim_{x\to 0} \ln \frac{1-x^2}{1+x^2}$$

Soluzione. 0

Esercizio 18.
$$\lim_{x \to +\infty} \ln \frac{1+x^2}{x^2-1}$$

Soluzione. 0

Esercizio 19.
$$\lim_{x \to -\infty} \ln \frac{1+x^2}{x^2-1}$$

Soluzione. 0

Esercizio 20.
$$\lim_{x\to 0} \frac{\sin(2x)}{x\cos x}$$

Soluzione. 2

Esercizio 21.
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$$

Soluzione. $\frac{1}{2}$

Esercizio 22.
$$\lim_{x\to +\infty} \frac{3e^x - 5}{1 + 4e^x}$$

Soluzione. $\frac{3}{4}$

Esercizio 23.
$$\lim_{x \to -\infty} \frac{3e^x - 5}{1 + 4e^x}$$

Solutione. -5

Esercizio 24.
$$\lim_{x \to 1^{-}} \left(\frac{1}{2}\right)^{\frac{1-3x}{1-x}}$$

Soluzione. $+\infty$

Esercizio 25.
$$\lim_{x \to 1^+} \left(\frac{1}{2}\right)^{\frac{1-3x}{1-x}}$$

Soluzione. 0

Esercizio 26.
$$\lim_{x\to 2} \frac{2x^2 - x - 6}{x - 2}$$

Soluzione. 7

Esercizio 27.
$$\lim_{x \to +\infty} \frac{\ln x^2}{e^x}$$

Soluzione. 0

Esercizio 28.
$$\lim_{x \to +\infty} \frac{3e^4 + x}{e^x}$$

 ${\it Soluzione.}\ 0$

Esercizio 29.
$$\lim_{x \to +\infty} \frac{2^{3x-1}}{x^3+7}$$

Soluzione. $+\infty$

Studio parziale del grafico di una funzione

Determinare il dominio, le eventuali intersezioni con gli assi, il segno, le eventuali simmetrie particolari e gli eventuali asintoti delle seguenti funzioni (gli asintoti delle funzioni sono specificati nelle varie soluzioni).

Esercizio 1.
$$y = \frac{x}{x^2 - 4}$$

Soluzione. x = -2, x = 2 asintoti verticali; y = 0 asintoto orizzontale.

Esercizio 2.
$$y = \frac{3x^2 + 7}{x^2 - 5x + 6}$$

Soluzione. x = 2, x = 3 asintoti verticali; y = 3 asintoto orizzontale.

Esercizio 3.
$$y = \frac{x^2 - 4x}{1 - x}$$

Soluzione. x = 1 asintoto verticale; y = -x + 3 asintoto obliquo

Esercizio 4.
$$y = \frac{x^2 - 5x + 4}{x - 5}$$

Soluzione. x = 5 asintoto verticale; y = x asintoto obliquo.

Esercizio 5.
$$y = \frac{2x^2 - 2x + 3}{x + 2}$$

Soluzione. x = -2 asintoto verticale; y = 2x - 6 asintoto obliquo

Esercizio 6.
$$y = \frac{4x^2 - 8x - 5}{3x + 6}$$

Soluzione. x = -2 asintoto verticale; $y = \frac{4}{3}x - \frac{16}{3}$ asintoto obliquo.

Esercizio 7. $y = x \cdot e^{-x}$

Soluzione. y = 0 asintoto orizzontale per $x \to +\infty$.

Esercizio 8.
$$y = e^{\frac{x+1}{2x-2}}$$

Soluzione. x = 1 asintoto verticale destro; $y = \sqrt{e}$ asintoto orizzontale.

Esercizio 9.
$$y = x - \sqrt{x^2 - 2x}$$

Soluzione. y=1 asintoto orizzontale per $x\to +\infty;\,y=2\,x-1$ asintoto obliquo per $x\to -\infty.$

Esercizio 10.
$$y = 2x - \sqrt{x^2 - 4}$$

Soluzione. y=x asintoto obliquo per $x\to +\infty; \ y=3\,x$ asintoto obliquo per $x\to -\infty.$

Determinare il dominio, le eventuali intersezioni con gli assi, il segno, le eventuali simmetrie particolari e gli eventuali asintoti delle seguenti funzioni (senza soluzioni).

Esercizio 11.
$$y = \frac{x-1}{\sqrt{x^2 + x - 2}}$$

Esercizio 12.
$$y = \frac{e^x - 1}{e^x + 1}$$

Esercizio 13.
$$y = \ln \frac{x-1}{x^2+4}$$

Esercizio 14.
$$y = \ln \frac{x-1}{x^2-4}$$

Esercizio 15.
$$y = \sqrt{x^2 - 6x}$$

Esercizio 16.
$$y = \sqrt[3]{x^2 - 6x}$$

Esercizio 17.
$$y = 2^{\frac{x-3}{x+2}}$$

Esercizio 18.
$$y = \left(\frac{1}{3}\right)^{\frac{x+2}{x-8}}$$

Esercizio 19.
$$y = \frac{1 + \ln x}{\ln x}$$

Esercizio 20.
$$y = \frac{\ln x}{2^x - 4}$$

Esercizio 21.
$$y = \frac{x+5}{\ln x}$$

Esercizio 22.
$$y = \frac{e^x}{x^2 - 4x + 3}$$

Derivate (sfruttando la definizione)

Calcolare il rapporto incrementale delle seguenti funzioni nel punto x_0 e nell'incremento h segnato a fianco di ciascuna.

Esercizio 1.
$$y = 2x - x^3$$
 $(x_0 = 1, h = 1)$

Soluzione.
$$-5$$

Esercizio 2.
$$y = \frac{2x-1}{x+1}$$
 $(x_0 = 0, h = 1)$

Soluzione.
$$\frac{3}{2}$$

Esercizio 3.
$$y = e^{2x-1}$$
 $(x_0 = \frac{1}{2}, h = \frac{1}{4})$

Soluzione.
$$4(\sqrt{e}-1)$$

Esercizio 4.
$$y = 3 + \sqrt{x-3} \ (x_0 = 3, h = 1)$$

Soluzione. 1

Applicando la definizione di derivata, calcolare la derivata delle seguenti funzioni nel punto x_0 segnato a fianco di ciascuna.

Esercizio 5.
$$y = x^2 + 1 \ (x_0 = 0)$$

Soluzione. 0

Esercizio 6.
$$y = \sqrt{x}$$
 $(x_0 = 4)$

Soluzione.
$$\frac{1}{4}$$

Esercizio 7.
$$y = e^{2x} + 1 \ (x_0 = 0)$$

Esercizio 8.
$$y = \frac{2x-3}{x}$$
 $(x_0 = 1)$

Soluzione. 3