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Recent advances in understanding the molecular mechanism

of mRNA 30 end cleavage and polyadenylation have uncovered

an unanticipated involvement of this process in the regulation

of the transcriptional apparatus on its chromatin template. Thus,

newly defined factors associated with mRNA 30 end formation

are also connected with initiation of transcription, suggesting

a close collaboration between the initiation and termination

phases of transcription. Furthermore several of these factors are

involved in setting up appropriate chromatin structure to

facilitate efficient transcriptional elongation and termination.
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Abbreviations

CFIA cleavage factor IA

CFIm cleavage factor I

CFIIm cleavage factor II

CPF cleavage and polyadenylation factor

CPSF cleavage and polyadenylation specificity factor

CstF cleavage stimulation factor

CTD C-terminal domain

DSE downstream sequence element

PAP poly(A) polymerase

Pol II RNA polymerase II

Introduction
Since the discovery that transcripts synthesised by RNA

polymerase II (Pol II) must be extensively processed

before they can function as a translatable message, great

advances have been made in determining the detailed

biochemistry of these different mRNA processing reac-

tions. However, the realisation that mRNA processing

occurs as the transcript is being synthesised from its gene

template has resulted in a reanalysis of how transcription

can affect the efficiency and specificity of mRNA proces-

sing. The reverse is also true: transcription itself can be

affected by mRNA processing. While mRNA capping

and, in particular, splicing have captured much recent

interest, the process of mRNA 30 end formation is also

being extensively studied. This latter subject area is the

focus of this review. I start by providing an update on the

complexity of the biochemistry of polyadenylation, dis-

cussing in particular the new insights from yeast systems.

I then turn to how polyadenylation is coupled to tran-

scription via the increasing number of factors found to be

shared between these two processes. Finally, I discuss

how productive transcriptional elongation on chromatin

may switch to transcriptional termination at the end of the

gene, marked by the polyadenylation process itself.

As well as the connections of mRNA 30 end processing

and transcription described in this review, it is also

becoming clear that downstream events are similarly

connected. The review by Vinciguerra and Stutz in this

issue describes how efficient mRNA 30 end formation is

required for successful release of transcripts from tran-

scription sites and the subsequent export of mRNA from

the nucleus to the cytoplasm.

The biochemistry of cleavage and
polyadenylation
Our understanding of the biochemistry of polyadenyla-

tion is now at a relatively advanced stage. In mammals

five separate proteins come together to mediate, first,

cleavage of the nascent mRNA 30 end and, second,

coupled polyadenylation: poly(A) polymerase (PAP),

cleavage and polyadenylation specificity factor (CPSF),

cleavage stimulation factor (CstF), cleavage factors I and

II (CFIm and CFIIm); see Figure 1. The subunit com-

position of the two key multimeric mammalian factors

CPSF and CstF is well known, as are their contacts to

the bipartite AAUAAA and the GU-rich downstream

sequence element (DSE) of the poly(A) signal [1,2].

Homologous factors in S. cerevisiae are also partially char-

acterised and have been shown to interact with complex

sequence elements that constitute the poly(A) signal in

yeast (Figure 1). Two multimeric factors called cleavage

factor IA (CFIA) and cleavage and polyadenylation factor

(CPF) have been purified and shown to share subunits

with mammalian CstF and CPSF, respectively [3]. How-

ever, both these factors possess additional subunits,

which has led to a re-evaluation of the subunit structures

of the mammalian proteins. CFIA has four subunits, two

of which (Rna14p and Rna15p) are clear counterparts

to CstF77 and CstF64, respectively. However, the other

CFIA factors, Pcf11p and Clp1p, do not have counterparts

in CstF but are found in the less-well-characterised

mammalian factor CFIIm [4]. CPF has at least 15 asso-

ciated polypeptides, including clear homologues to all

four CPSF subunits and PAP (Pap1p in S. cerevisiae).
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Indeed, CPF-associated Fip1p, which was originally

identified through its interaction with Pap1p, appears

to be a fifth, hitherto undiscovered component of mam-

malian CPSF. Here it may act to tether PAP to CPSF in

the initial cleavage stage of polyadenylation. PAP is thus

ready to add the poly(A) tail to freshly generated mRNA

30 ends [5]. The CPF-associated factor Pti1p has been

noted to display significant homology to Rna15p and may

also exist as a variant component of CFIA [6]. A signif-

icant part of the unexplained complexity of CPF may be

that another class of transcripts generated by Pol II,

snRNAs and snoRNAs also make use of CFIA and

CPF to generate mature 30 termini [7,8�]. Whether these

small Pol II transcripts have a dedicated 30 end formation

apparatus or whether they essentially share the mRNA 30

end factors remains to be established. However, the CPF-

associated factors Pti1p, Ref2p, Swd2p and Ssu72p have

all been implicated in snRNA and snoRNA 30 end for-

mation and may exist as part of a CPF sub-complex

[9–11]. Some of the additional subunits in CPF are also

thought to be associated with connecting functions

between mRNA 30 end processing and transcription, as

discussed below.

A biochemical embarrassment in the above analyses is

that the molecular nature of the endoribonuclease activity

Figure 1
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Diagram comparing the subunit composition of mammalian and yeast cleavage and polyadenylation factors and their points of contact with the

poly(A) signal. Homologous factors between mammals and yeast are colour coded. Factors that do not have known matches between mammals and

yeast are shown in white. For CPSF, 160, 100, 73 and 30 kDa subunits correspond to Yhh1p, Ydh1p, Ysh1p and Yth1p respectively. For CstF, 77
and 64 kDa subunits correspond to Rna14p and Rna15p respectively. The positions of conserved poly(A) signal elements are indicated by white

rectangles; in mammals cleavage occurs at a partially conserved CA sequence motif; in S. cerevisiae, EE, PE, UUE and DUE denote efficiency,

proximal, upstream-U-rich and downstream-U-rich elements, respectively. Cleavage site denoted by black arrow. See [2,3] for more detail.

Diagram generously provided by Professor Walter Keller, University of Basel, Switzerland.
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that generates the mRNA 30 end is still unknown. How-

ever, a recent study points to the CPSF73 subunit as a

likely candidate, as it possesses a potential nuclease

domain that is predicted to be Zn2þ-specific [12�]. The

cleavage activity of the whole complex has now been

shown to require Zn2þ and, furthermore, specific amino

acids in this conserved domain in the S. cerevisiae homol-

ogue, Ysh1p, are particularly sensitive to mutation [13��].
CFIm, a dimeric protein, has recently been implicated as

a regulator of poly(A) site selection [14]. Although it is

an obligatory component of the cleavage/polyadenylation

apparatus, it may also act to selectively block inappro-

priate poly(A) site use. In this respect it may be func-

tionally equivalent (although not homologous) to CFIB in

S. cerevisiae, which is likewise required to prevent inap-

propriate polyadenylation at sites on the mRNA upstream

of the authentic mRNA 30 end [15].

Interconnections between mRNA 3( end
processing factors and RNA polymerase II
Forming the 30 end of a transcript generated by Pol II is a

multi-step process. The mRNA 30 ends must be gener-

ated by coupled cleavage and polyadenylation, and in

addition the Pol II elongation complex must be halted

and the Pol II enzyme terminated to allow recycling back

to productive transcriptional initiation at the promoter. A

detailed account of the mechanism of Pol II termination

was previously presented [16�]. Early studies showed that

the poly(A) signal on the transcript is also in effect a

termination signal for Pol II, since its mutation leads both

to loss of mRNA (through defective polyadenylation) and

to the continued nascent transcription of the 30 flanking

regions of genes (through defective termination) [17,18].

Indeed failure to terminate transcription through loss of

poly(A) signals may cause transcription read-through into

downstream genes which then results in their inactivation

by transcriptional interference, as access of Pol II initia-

tion complexes to the promoter of the downstream gene is

blocked [19]. With the advent of biochemical and genetic

evidence for multiple cleavage/polyadenylation factors, it

became a straightforward matter to determine which of

these factors also acted as termination factors. In the case

of cleavage/polyadenylation factors in S. cerevisiae, mutant

strains defective in the expression of either CFIA or CPF

subunits were obtained and these were tested for defects

in Pol II termination by transcription run-on analysis.

From these initial studies, components of CFIA were

found to be required for Pol II termination whereas CPF

components were not [20]. However, more recently, at

least one major CPF component, Yhh1p, which is the

homologue of mammalian CPSF160, was shown to be

required for Pol II termination [21��]. Much insight was

provided by the discovery of the C-terminal domain

(CTD) of the largest subunit of Pol II, which is positioned

outside the overall globular Pol II 3D structure but just

below the RNA exit channel; it is an unstructured domain

comprising multiple heptad repeats (52 in mammals and

26 in S. cerevisiae). A key feature of these heptad repeats is

the presence of two critical serine residues (ser5 and ser2),

which are subjected to phosphorylation by specific cyclin-

associated kinases, called in mammals Cdk7/cyclinH for

ser5 (part of TFIIH, Kin28p/Ccl1p in S. cerevisiae) and

Cdk9/cyclinT for ser2 (also known as PTEFb, CTDK1 in

S. cerevisiae). Ser5 phosphorylation is an early event in

the transcription cycle, promoting promoter release, the

formation of a Pol II elongation complex and mRNA

capping. By contrast, ser2 phosphorylation subsequently

promotes efficient elongation and ultimately termination

[16�,22,23]. Several CTD phosphatases have also been

identified, including Fcp1p [24], SCP1 [25] and Ssu72p

[26], that may play a direct role in Pol II elongation/

termination or the subsequent recycling of terminated Pol

II back to initiation by promoting CTD dephosphoryla-

tion. Fcp1p and SCP1 appear to be specific for ser2 and

ser5 phospho-CTD, respectively. In the case of Ssu72p

its presence in CPF as well as its role in transcription

initiation is likely to relate to its CTD-phosphatase

activity (see below and Figure 2).

Initially, deletion of the Pol II CTD in mammalian cells

was shown to have a detrimental effect on all three major

mRNA processing activities (capping, splicing and poly-

adenylation) [27]. Furthermore, phospho-CTD interacts

with components of all these RNA processing mechan-

isms and directly activates the reactions [3,16�,23]. Direct

contact between yeast cleavage/poly(A) factors and CTD

has now been demonstrated both biochemically and gen-

etically. First, CFIA specifically interacts with phospho-

CTD through contacts between Pcf11p and Rna14p

subunits [28]. Subsequently, both CPF components

(Yhh1p and Ydh1p) were shown to interact with phos-

pho-CTD [21��,29]. It is noteworthy that some domains

of these cleavage/poly(A) factors are devoted to termina-

tion and/or phospho-CTD binding whereas others are

specific to poly(A) signal binding. Thus, Rna15p and its

S. pombe counterpart ctf1 contain a C-terminal domain

(separate from the RNA binding region) which when

deleted causes a loss of termination, but not of polyade-

nylation [30]. Furthermore, Yhh1p directly binds phospho-

CTD via a domain that is separate from its RNA-binding

region. This latter interaction means that one polypeptide

spans both Pol II CTD and the poly(A) signal of the

nascent transcript, as it appears from the RNA exit

channel [21��]. Pcf11p has a specific CTD-binding

domain in which mutations block termination but not

mRNA 30 end cleavage [31]. This domain is shared with a

family of proteins including Nrd1p, which is a known

termination factor for snoRNA and snRNA genes in yeast

[28,32]. Pcf11p has also been shown to preferentially bind

ser2 phospho-CTD, consistent with CFIA playing a role

in the termination phase of transcription [33]. New results

confirm this role by describing the effect of inactivating

the ser2 kinase in yeast by gene knockout (Ctk1p of

CTDK1) [34�] or in Drosophila by drug inactivation of

274 Nucleus and gene expression

Current Opinion in Cell Biology 2004, 16:272–278 www.sciencedirect.com



PTEFb [35�]. Interestingly, both studies found that the

inactivation has little effect on elongation, but does cause

a substantial reduction in the level or fidelity of mRNA

30 formation. Also, in the yeast studies, loss of cleavage/

polyadenylation factor recruitment to the end of genes

was observed [34�]. From these data it is apparent that the

act of cleavage of the nascent RNA does not elicit ter-

mination. Instead, complex molecular interactions must

occur between the CTD-associated-cleavage/poly(A) fac-

tors and the poly(A) signal on the nascent transcript that

somehow initiate the termination mechanism. Presum-

ably this comes about through conformational changes to

this complex as it ‘gets its teeth’ into the poly(A) signal.

The C-terminal domain of Rna15p does not directly

contact the Pol II CTD but instead interacts with specific

transcription factors [3]. One such factor is Sub1p or PC4

(in mammals) [36]. PC4 was originally associated with

promoter co-activator function [37] and was subsequently

found to interact with TFIIB [38]. As Sub1p appears to

have an anti-termination activity at the 30 end of genes

[36], it is apparent that PC4 has dual roles in initiation and

termination. The CPF-associated factor Ssu72p also has

functions in transcription initiation and mRNA 30 end

formation, making similar contacts to those of PC4.

Indeed these two polypeptides appear to compete for

binding both to TFIIB and to Pta1p, a component of CPF

[39,40��]. Ssu72p is directly required for mRNA 30 end

cleavage [40��] and may have a role in Pol II termination

[41], especially for snRNA and snoRNA genes [10]. An

early connection between general transcription initiation

factors and mRNA 30 end formation was made when

CPSF was demonstrated to be a component of some

active TFIID preparations. TFIID-associated CPSF is

transferred from the initiation complex to the elongation

complex following transcriptional activation [42].

Two other transcription factors, Mbp1p and Fkh1p, are

also now known to have a role in transcriptional termina-

tion. Both have specific but different roles in cell cycle

regulation, with Mbp1p required for G1–S phase gene

activation and Fkh1p for G2–M phase gene activation.

Mbp1p was originally implicated in Pol II termination

through its interaction with the Rna15p/Ctf1 CTD bind-

ing domain [30]. By contrast, Fkh1p was shown to bind to

chromatin within the coding region of a range of genes;

these genes are different to those it regulates in the cell

cycle. Yeast strains deleted for FKH1 show multiple

elongation defects including loss of both ser5 and ser2

CTD phosphorylation as well as uncontrolled elongation

past the normal termination region of the genes tested

[43�]. Fkh1p is thought to be part of a protein complex

involved in a checkpoint process in early elongation

(Figure 2). This is proposed to constrain the elongating

polymerase, allowing time for modification of Pol II (by

CTD ser5 phosphorylation), histone tail methylation (H3

lysine 4) and co-transcriptional capping to occur. Inacti-

vation of Fkh1p results in rampant, uncontrolled tran-

scription throughout and beyond the normal 30 terminus

of the gene [43�].

Transcriptional termination in the context of
a dynamic chromatin template
In all eukaryotes, the Pol II transcription template is

nucleosomal in nature. Consequently, much effort has

been put into gaining a molecular understanding of how

Figure 2
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nucleosomes contribute to transcriptional regulation

[44,45]. Although the need to expose gene promoters

from their chromatin covers is a well-studied phenom-

enon, it is also now apparent that nucleosomal structure

plays a key regulatory role in both transcriptional elonga-

tion and termination [46]. Nucleosomes can either

be covalently modified, particularly on their exposed

H3 and H4 amino termini (so called histone tails), or

can be repositioned by complex chromatin-remodelling

enzymes. Although acetylation of histone tails has long

been correlated with promoter activation, it appears that

methylation of these same tails may have greater rele-

vance to elongation and termination. H3 lysine 4 methy-

lation mediated by the multi-subunit Set1p methylase

(also known as COMPASS) is a marker for early elonga-

tion, correlating with ser5 phosphorylation of the Pol II

CTD [47]. Intriguingly, one of the unaccounted-for CPF

subunits Swd2p is also a component of Set1p, again

making a molecular contact between the beginning and

end of the gene [48]. By contrast, H3 lysine 36 is methyl-

ated by Set2p, which appears to be a nucleosomal mark

for late elongation and termination and which correlates

with CTD ser2 phosphorylation. Both Set1p and Set2p

are thought to associate with the elongating Pol II com-

plex (Figure 2) [46,49].

Of particular relevance to a consideration of mRNA 30 end

formation, it was recently discovered that the chromatin-

remodelling enzyme Chd1p is required for termination of

at least some genes in yeast [50��]. Chd1p appears to

define a specific nucleosome structure in the termination

region of the genes tested and this process occurs before

gene activation. Therefore evidence exists for a prede-

fined chromatin transcription unit with both the promoter

and terminator region set up before transcription com-

mences. However, Chd1p is also involved in the elonga-

tion process as it is known to interact with elongation

factors and may directly bind to methylated nucleosomes

through a specific region of the protein called the chro-

modomain [46,51]. One of these interacting elongation

factors is FACT, a protein that realigns nucleosomes

following passage of the elongating Pol II complex across

the gene [52�]. Significantly, lack of either FACT (or of

its yeast counterpart, Spt16/Pob3) or of another related

elongation factor, Spt6, causes inaccurate transcriptional

initiation [53,54]. This is presumably because the failure

to put nucleosomes back in place after passage of the Pol

II elongation complex means that internal gene sequence

is exposed to predatory initiation factors, which are

otherwise restricted to only the authentic (remodelled)

promoter. The exact molecular role(s) of Chd1p in elon-

gation and termination remains to be established. How-

ever, further complexity in the relationship between

chromatin and transcription elongation is revealed by

analysis of a second class of chromatin-remodelling

enzyme called ISW [55]. Isw1a and Isw2 may both have

negative roles in promoter regulation by setting up repres-

sive chromatin structures. By contrast, Isw1b performs a

positive role in transcriptional elongation and termina-

tion. Indeed, mutational inactivation of the central ISWI

ATPase subunit causes loss of controlled elongation and

subsequent lack of Pol II termination just as observed

with strains defective in Fkh1p expression. Furthermore,

both proteins interact to control both Set1p/2p nucleoso-

mal modification and ser5/2 CTD phosphorylation [56��].
A picture emerges of tight interconnections between the

factors and processes controlling all stages of elongation:

promoter escape, early elongation checkpoint, continued

elongation and termination (Figure 2). The fact that

promoter and poly(A) factors show up at either end of

a gene and that events in early elongation impact on later

termination suggests that a plethora of molecular connec-

tions may be available to regulate transcription at the

elongation and termination stages.

Conclusions
The biological processes of mRNA 30 end formation and

concomitant Pol II termination continue to provide a

fascinating window into the complexities of eukaryotic

gene expression. Why is the basic cleavage/polyadenyla-

tion process so complex, involving scores of factors? We

now see that this complexity is in part necessitated by

the fact that all gene expression mechanisms are inter-

connected; checks thus are continually made to ensure

that mRNA is appropriately processed and that genes are

expressed accurately and efficiently. This necessitates

a high level of cross-control that in turn requires many

additional regulatory functions. As described here, these

factors are arranged in a spectrum from the basic mRNA

processing apparatus to those that connect with the

elongating polymerase and therefore must also impact

on the chromatin architecture of the gene. Indeed it is

arguable that setting up an active promoter represents

only a part of gene regulation in many biological situa-

tions. Transcriptional elongation/termination and its

coupling to mRNA processing may also prove to be major

targets for gene regulation.
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