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Summary

Introduction to targeted nucleases
RNA-guided nucleases: CRISPR/Cas9 System

Mechanisms of Double-Stranded DNA Break Repair and
their consequences on genome editing approaches

Cas9 applications

New tools:
 Catalytically inactive nucleases for gene regulation/visualization
* Base editors



What is a targeted nuclease?

Targeted Nuclease

* Enzyme that cleaves phosphodiester bonds
between monomers of nucleic acids

* Nuclease that recognize a specific DNA (or RNA)
sequence



Why are they so important?

* A nuclease that can recognize a specific DNA
sequence it’s an incredible tool to modify a
genome

* We can induce a double strand break (DSB)
at any genomic location (Knock Out, Knock
In, deletions, inversions and much more...)



Protein-based nucleases
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Meganucleases

* Endonucleases that can recognize and cut large DNA
sequences (from 12 to 40 base pairs)

* best known meganucleases proteins in the LAGLIDADG
family

 |-Scel (discovered in the mitochondria Saccharomyces
cerevisiae)

* |-Crel (from the chloroplasts of the green algae
Chlamydomonas)

 Two methods for creating custom meganucleases:

* Mutagenesis

 Combinatorial assembly (subunits from different enzymes can
be associated or fused)



Zinc-Fingers Nucleases

 Zinc finger motifs occur in several transcription
factors

* Each ZFN containing 3 to 5 zinc finger motifs that
recognize 3 base pair sequences and half of the
Fokl endonuclease complex.

* When a pair of ZFNs bind closely enough for their
Fokl domains to dimerize, they make a DSB.

* Engineering new pairs is complex




TALEN

* TALENs have 15-30 repeats of a 35 amino acid
transcription activator-like effector (TALE).

* A TALE recognizes one base pair determined by
which repeat variable di-residues (RVD) a TALE
contains.

* TALE + FOK | (nuclease) = TALEN

* Function as a dimer (similar to ZFNs) but with an
easier and more modular assembly

- . Functional Domain
DNA Binding Domain

Left TALEN

Right TALEN



CRISPR/Cas9: milestones

A Programmable Dual-RNA-Guided
DNA Endonuclease in Adaptive
Bacterial Immunity
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a Cas9 nuclease
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Multiplex Genome Engineering -
Using CRISPR/Cas Systems L f
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Gene editing

Komor, Cell, 2016
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CRISPR/Cas
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* CRISPR: clustered regulatory interspaced short palindromic repeats
* Cas: CRISPR associated protein



CRISPR/Cas
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* crRNA: CRISPR RNA
* tracrRNA: trans-activating crRNA



CRISPR/Cas
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* crRNA: CRISPR RNA
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CRISPR/Cas
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* crRNA: CRISPR RNA
* tracrRNA: trans-activating crRNA
* PAM: protospacer adjacent motif



CAS9 + guide RNA

PAM

Matching sequence
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gRNA target sequence . PAM

AGCTGGGATCAACTATAGCG CGG




Comparing nucleases

Protein-based CRISPR
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RNA-guided endonuclease(RGEN)

1.Protein and DNA interface is very 1.Watson-Crick base pairing is straight-
complex forward and predictable

2. Construction is relatively 2. Construction is fast, easy, and
expensive and complicated cheap

e.g. ZFN and Talen



CRISPR/Cas9 mechanism
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CRISPR/Cas classes
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Summary

* Cas9 is a RNA-guided nuclease discovered in
prokaryotes

e Cas9 can induce double-strand break in selected
locations (as long as there is a PAM sequence next
to the guide)

* [t's a fast/easy/relatively cheap system to edit
genomes



Nucleases cut DNA, but the cells repair

* Cell cycle stage and DNA sequence dictate how the
cut will be repaired

Non-Homologous
End Joining

Homology-directed
Repair

Slowest repair

Fastest repair

C II Molecular Cell 2012 47, 320-329DOI: (10.1016/j.molcel.2012.05.052)
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NHEJ is the prominent repair
mechanism of the cell. It is usually
associated with the introduction of
indel mutations at the cut site,
which may  cause  genomic
modifications.
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Precise insertion or modification

DR

HDR is active during late phase
S/early G2, which mediates a strand-
exchange process to repair DNA
damage accurately, based on the
availability of homologous DNA
sequences.



Questions

* Which DNA repair system would you use to
generate a Knock-out of protein X?

NHEJ: active most of the time, very efficient

* Which DNA repair system would you use to
generate a Knock-In ?

HDR: precise, low efficiency



CRISPR/Cas9: NHEJ
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CRISPR/Cas9: HDR
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Cas9-Geminin

* Fusion of Cas9 to the N-term of human Geminin converted
CAs9 into a substrate for the E3 ubiquitin ligase complex

APC/Cdh1.

* time specific expression with low levels in G1 but high
expression in S/G2/M -> Increase in HDR vs NHEJ

e APCCdM =
hGeminin (1-110)

late M/ G1 l Ubiquitination
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Gutschner et al., 2016, Cell Reports



Off-targets

e Cas9 can cut similar sequences in the genome
e DSB in unwanted locations can be detrimental for the cells
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How to minimize off-targets

 Limit Cas9 presence in the cell (delivery method)

* Use engineered Cas9

« eSpCas9 | v
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Rationally engineered Cas9 nucleases ) < -
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PAM-Distal




What can we do with a “dead”
Cas9?

Transcriptional repression via steric hindrance

a Cas9 nuclease b dCas9 (nuclease-null)

Gene editing Gene regulation

Antonia A, 2016
Nature Reviews | Molecular Cell Biology



dCas9 applicatlions
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Base Editors

* Genome editing most of the time looks like genome
mutilation.

e Cells don’t like DSB

e Cutting the DNA can be messy (genomic
rearrangement, off target...)
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Base Editors

e dCAS9 + APOBEC1 = first Base editor
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replication or DNA repair



Base Editors

* New fusion proteins available for A/T to G/C edit!

Programmable base editing of A-T to G-C
in genomic DNA without DNA cleavage

Nicole M. Gaudelli'*?, Alexis C. Komor"*?t, Holly A. Rees'**, Michael S. Packer?+, Ahmed H. Badran"%?,
David I. Bryson®?3t & David R. Liu"*?

* RNA base editors were developed
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Conclusions

* CRISPR/Cas9 is rapidly changing the way we study
genomes and what we can do with them

* It’s a versatile tool that can be adapted for
different genomic applications

* It shows promising results for therapeutic
applications

* It needs to be improved in terms of efficacy and
safety for therapeutic application in humans






