

Phage Display

Phage Display

Model of FVIIa protease domain with A-183 + extension peptide X ?

A183, 15mer, EEWEVLCWTWETCER exosite interactions

Model of FVIIa protease domain with A-183 + extension peptide X?

A183, 15mer, EEWEVLCWTWETCER exosite interactions

A chimeric peptide with a high degree of specificity and potency

+ greater steric hindrance in the substrate binding cleft
+ higher affinity due to a more extensive binding surface

determinanti di specificità di proteasi

Exosite-driven substrate specificity and function in coagulation 55

Table T Sites of eleavage in the numan vitamin K-dependent Zymogens										
Enzyme	Substrate†	P ₄	P ₃	P ₂	P ₁	\downarrow	$P_{1'}$	$P_{2'}$	P _{3'}	P _{4'}
Xa/Va	II	Ι	Е	G	R		Т	А	Т	S
	II _(15–16)	Ι	D	G	R		Ι	V	E	G
VIIa/TF, IXa/VIIIa	$X_{(15-16)}$	Ν	L	Т	R		Ι	\mathbf{V}	G	G
VIIa/TF, XIa	IX	K	L	Т	R		A	E	Α	V
	IX(15-16)	D	F	Т	R		V	V	G	G
VIIa/TF, Xa	VII ₍₁₅₋₁₆₎	Р	Q	G	R		Ι	V	G	G
IIa/TM	$PC_{(15-16)}$	V	D	Р	R		L	Ι	D	G

 Table 1 Sites of cleavage in the human vitamin K-dependent zymogens*

*Sequences flanking cleavage sites relevant to the activation of the vitamin K-dependent zymogens are presented along with the relevant enzymes that catalyze these reactions. The site of bond cleavage is denoted by the arrow. †The site, in each substrate, at which cleavage is required to produce the serine proteinase is indicated as (15–16) corresponding to the homologous residue numbers in chymotrypsin gen [70].

Oligopeptidyl Substrate

Protein Substrate

. Libraries A–D designed to determine the length and sequence of the extension to reach into the active site

Inhibitors of Factor VIIa

a = S, N, K, R; b = N, K; c = L, Q

Peptide Inhibitors of Factor VIIa: Phage binding

Unbound phage were removed by repetitive washing with binding buffer (step 2).

FVIIa Cleavage conditions

Peptide Inhibitors of Factor VIIa: propagation of selected phages and new rounds (5)

Prolongation of TF-dependent clotting times

A-183X was a potent and complete inhibitor of FX activation maximal extent of inhibition of 99% with an IC50 of 230 pM (A-183, 74% with an IC50 of 1.5 nM) A-183X also had a maximal prolongation of the prothrombin time of 7.6- *versus* 1.9- fold for A-183, making it a more effective anticoagulant

Published in: Vanessa Baeriswyl; Sara Calzavarini; Christiane Gerschheimer; Philippe Diderich; Anne Angelillo-Scherrer; Christian Heinis; *J. Med. Chem.* **2013**, 56, 3742-3746.

А	4X4 library														
peptide:	sequence:								abundance:				ce:	K_{i} for FXIIa (µM):	
FXII301	А	С	D	A	R	Ρ	С	Ρ	Q	Т	Y	С	L	28	20.5 +/- 5.2
FXII302	Q	С	Ν	A	R	Ρ	С	Ρ	S	S	Y	С	R	2	4.7 +/- 1.5
FXII303	G	С	М	G	R	Ρ	С	Ρ	V	S	Y	С	F	2	5.0 +/- 1.3
FXII304 (1)	S	С	G	G	R	Ρ	С	Ρ	Ρ	A	Y	С	к	22	3.1 +/- 0.5
FXII305	G	С	L	G	R	Ρ	С	Ρ	М	Α	Y	С	S	13	5.0 +/- 1.5
FXII306	G	С	W	A	R	Ρ	С	Ρ	L	Α	L	С	Q	1	10.2 +/- 4.6
FXII307	G	С	A	A	R	Ρ	С	Ρ	L	T	Α	С	W	1	33.5 +/- 5.9
FXII308	G	С	н	G	R	Ρ	С	Ρ	L	Q	Y	С	к	1	11.2 +/- 4.4
FXII309	R	С	Y	Α	Ν	Ρ	С	Ρ	1	S	Y	С	R	1	
FXII310	S	С	S	G	R	R	С	Ρ	Ρ	S	Y	С	к	1	7.8 +/- 3.2
FXII311	v	С	V	Q	ĸ	F	С	W	R	G	W	С	P	4	> 75
FXII312	А	С	Q	Q	Q	F	С	W	R	G	w	С	Ρ	2	
FXII313	L	С	Е	Y	т	L	С	W	R	G	W	С	Ρ	2	
FXII314	н	С	R	Y	V	F	C	W	R	G	W	С	Ρ	2	
FXII315	Ν	С	۷	Ν	R	Y	С	W	R	G	W	С	S	1	

Development of peptide inhibitor of FXII. All indicated inhibitory constants (*K*i) are averages of at least three measurements. Standard deviations are indicated. Amino acid similarities are highlighted in Rasmol color code. (A)Peptide sequences isolated after three rounds of phage panning against β-FXIIa from peptide libraries

В]	peptide 1	100 惕 但
	Protease	<i>K</i> _i (μM)	Solution VIIa
	factor XIIa	3.1 +/- 0.5	So tractor vind
	tPA	> 120	
	uPA	> 120	- 1 11
	factor XIa	> 120	n h
	PK	> 120	residua
	thrombin	> 120	
	plasmin	8.3 +/- 2.2	$0.1 \ 1 \ 10 \ 10^2 \ 10^3$
	trypsin	> 120	[1] (µM)

Development of a peptide inhibitor of FXII.

Inhibitory activity of peptide 1 (clone FXII304) toward FXIIa and a panel of human proteases. Inhibition of plasmin by FXII inhibitors

Affinity maturation of peptide 1. A range of peptides with amino acid substitutions in the indicated positions were synthesized and tested and led to peptide 3 (clone FXII402) having a 3-fold improved Ki

А	p	eptide 3	
	Protease	<i>Κ</i> _i (μΜ)	S O factor XIIa
	factor XIIa	1.2+/-0.2	Since the second se
	tPA	> 120	± <u>5</u> 50 . ₫
	uPA	> 120	Ψ
	factor XIa	> 120	residual
	PK	> 120	
	thrombin	> 120	
	plasmin	> 120	0.1 1 10 10^2 10^3
	trypsin > 120		[3] (µM)

Inhibitory activity of peptide 3 toward FXIIa and a panel of human proteases

Coagulation times (aPTT- intrinsic FXII dependent, PT – extrinsic Tissue Factor dependent) and FXII activity in the presence of the engineered FXII inhibitor peptide **3**