REGOLAZIONE DELLA TRASCRIZIONE
DA TRASPOSONI NEL GENOMA



Transcriptional disruption by the L1 retrotranspgoso

iImplications for mammalian transcriptomes.
Nature. 2004 429:268-7/4 Han JS
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Figure 5 Bloinformatic analyzis of L1 contant in ganaz. a, Averaga L1 contant of genomic
locd of sats of highly (Dlack bars) and poarty @rey bars) expressad ganas (32 Mathods).
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RNA analysis
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Decrease in expression depends on L1 length



Figure 3 Decrease in L1 expression is dependent on length. a, The left panel depicts the
structures of deletion constructs. Hollow regions represent deleted sequences. B, BbvCl;
E, EcoRl; A, Aflll; Ac, Acll; S, Spel. The right panel shows a total RNA analysis of HeLa
transfections. Lanes: M, mock; lacZ, pGFPstoplacZ; ORF2, pGFPstopORF2. Open and
black arrows show the expected positions of GFPstopORF2 and GFPstoplacZ,
respectively. b, The adenosine base composition of the sense strand, in 50-nucleotide
windows, was plotted for each position in L1.2 with MacVector 6.5.3 (Oxford Molecular).
c, The top panel shows the structures of GFPstopORF1, GFPstop40RF1 and
GFPstop5SUTR. The 40RF1 repeat is about 4,500 nucleotides long and the 5" UTR repeat
s about 4,000 nucleotides long. The bottom panel shows a total RNA analysis of HelLa
transfections. Open, black and grey arrows show the expected positions of
GFPstop40RF1, GFPstop5UTR and GFPstopORF1, respectively.
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Figure 6 Models for L1-mediatad modulation of gane expression/structure. a, Effacts on
transcription. Brown dots represant transcriptional complexas, which could be slowed,
pausad or dissociatad from the templates on encountering significant amounts of L1
gaquenca. b, Effacts on mRNA and protein structure. Left, hypothetical gene with three
exons. Middle, intronic sense L1 insertions can produce a minor amount of prematuraly
polyadenylated mRNA, potentially gving rise to a truncated protein with additional,
previously untransiated amino acids at the C terminus (white sagment). Right, intronic
antisense L1 insertions can produce a major amount of prematuraly polyadenyiatad
mRBNA,



Transcriptional disruption by the L1 retrotranspgoso

iImplications for mammalian transcriptomes.
Nature. 2004 429:268-7/4 Han JS

Inserting L1 sequences on a transcsighificantly decreases RNA
expressiorand therefore protein expression

The poor L1 expression is primarily duenadequate transcriptional
elongation.

Because L1 is an abundant and broadly distributed mobile element,
the inhibition of transcriptional elongation by L1 might profoundly
affect expression of endogenous human genes

We propose a model in which L1 affects gene expression genome-
wide by acting as anolecular rheostatf target genes. Bioinformatic
data are consistent with the hypothesis that L1 can serse
evolutionary fin-tunerof the human transcripton



A highly active synthetic mammalian retrotransposon
Han JS Nature. 429:314
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Overview of gene synthesis.
Oligonucleotides encoding each
fragment were mixed and
subsequently used as template
amplification.

products were cloned and
ligated together with unique
restriction sites (labelled A to J)
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Figure 2 Retrotransposition of synthetic mL1. a, The retrotransposition assay. The L1
element contains an intron-interrupted neo reporter in the 3" untranslated region with its
own promoter and polyadenylation signal. Only when neo is transcribed from the L1
promoter, spliced, reverse transcribed and integrated into the genome does a cell become
G418-resistant*. Blue lines represent probes for RNA analysis (Fig. 4). SD, splice donor:
SA, splice acceptor. b, Retrotransposition was assayed in HelLa cells (N = 3). pTN201
contains only wild-type native mouse L1 sequence, and pTN203 contains wild-type native
mouse L1 sequence with a D709Y reverse transcriptase point mutation® The a e
absolute number of colonies for pTN201 was 440 events per 10° transfected ceﬁ
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A highly active synthetic mammalian retrotransposon
Han JS Nature. 429:314

Transcription through L1 open reading frames is inefficient owing to an
elongation defect

This elongation defect probably controls L1 transposition frequency in
mammalian cells.

We report bypassing this transcriptional defecsythesizing the

open reading frames of L1 from synthetic oligonucleotides, altering
24% of the nucleic acid sequenethout changing the amino acid
sequence.

When the synthetic open reading frames were substituted for the wild-
type open reading frames in an established retrotransposition assay,
transposition levels increased more than 200-fold

These synthetic retrotransposons are also the most highly active L1
elements known so far and have potentialrastical tools for
manipulating mammalian genomes



EVOLUZIONE RECENTE DEI TRASPOSONI



SVA

SINE-VNTR-AIlu (SVA) elements are nonautonomous,
hominid-specific non-LTR retrotransposons

composite mobile elements.

They represent the evolutionanfpungest, currently active
family of human non-LTR retrotransposons
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Rationale of the SVA trans-mobilization assay.
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Rationale of the SVA trans-mobilization assay.
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Diagnostic PCR to test for correct splicing of the intron from the mneol indicator cassette.
PCR to test for correct splicing of the intron from the mneol ti@sse
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Raiz J et al. Nucl. Acids Res. 2011;nar.gkr863
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L1 ORF1p is required for trans-mobilization of SVA
reporter elements.
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The nucleotide profile of SVAE de novo insertion sites resembles the consensus target
sequence of pre-existing human-non-LTR retrotransposons.

de novo SVAg
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POCHISSIMI ELEMENTI L1 SONO ATTIVI

It Is estimated, on the basis of full-length L1 elements with
preserved open reading frames and activity in in vitro
retrotransposition assays, that there are 50 to 120 currently active
L1 repeats in the human genome, of whickmall number are

highly active -“hot-L1s”



Circos diagram mapping the distribution throughout the human genome of inseftions
specific L1 elements



