# Activation and specificity of Thrombin

Giulia Pavani

### **The Blood Coagulation Response:**



# Summary

- Regulation of a Serine Protease: Thrombin
  - Zymogen → Enzyme → Substrate Specificity
- Staphylocoagulase
  - Bacteria know how a protease works (much more than we do...)
- Diagnostic applications
  - Imaging of Staphylococcus vegetations in the hearth

### MECCANISMO ATTIVAZIONE

Prothrombin is activated to thrombin by two proteolytic cleavages



# Thrombin is synthesized as a Zymogen: Prothrombin

### Zymogen:

A proenzyme or inactive enzyme. It requires a biochemical change to reveal the active site for it to become an active enzyme.

Zymogens lack the structural attributes required for formation of the enzyme-substrate complex.



### **Serine Proteases: Conversion Pathway**

- Cleavage between  $Arg^{15}$ -Ile<sup>16</sup>  $\rightarrow$  Exposure of new N-terminus
- New N-terminus (IVGG) forms salt bridge with Asp<sup>194</sup>
- N-terminal insertion leads to a conformational change in the "activation domain"



Courtesy of W. Bode, Max Planck Institute of Biochemistry

### SPECIFICITA SUBSTRATO

#### determinanti di specificità di proteasi



# Trypsin and Thrombin have similar structures

#### Trypsin

 Cleaves peptides on the Cterm of Lys and Arg amino acid residues

#### Thrombin

 Cleaves peptides at Arg (Pro, Arg, Ser/Ala/Gly/Thr, not acidic, Arg)





Exosite-driven substrate specificity and function in coagulation 55

| Enzyme             | Substrate <sup>†</sup> | P <sub>4</sub> | P <sub>3</sub> | P <sub>2</sub> | $P_1$ | $\downarrow$ | $P_{1'}$ | $P_{2'}$ | P <sub>3'</sub> | P <sub>4'</sub> |
|--------------------|------------------------|----------------|----------------|----------------|-------|--------------|----------|----------|-----------------|-----------------|
| Xa/Va              | II                     | Ι              | Е              | G              | R     |              | Т        | А        | Т               | S               |
|                    | $II_{(15-16)}$         | Ι              | D              | G              | R     |              | Ι        | V        | E               | G               |
| VIIa/TF, IXa/VIIIa | $X_{(15-16)}$          | N              | L              | Т              | R     |              | Ι        | V        | G               | G               |
| VIIa/TF, XIa       | IX                     | K              | L              | Т              | R     |              | Α        | E        | А               | V               |
| × 1 × 10           | $IX_{(15-16)}$         | D              | F              | Т              | R     |              | V        | V        | G               | G               |
| VIIa/TF, Xa        | VII(15-16)             | Р              | Q              | G              | R     |              | Ι        | V        | G               | G               |
| IIa/TM             | $PC_{(15-16)}$         | V              | D              | Р              | R     |              | L        | Ι        | D               | G               |

 Table 1 Sites of cleavage in the human vitamin K-dependent zymogens\*

\*Sequences flanking cleavage sites relevant to the activation of the vitamin K-dependent zymogens are presented along with the relevant enzymes that catalyze these reactions. The site of bond cleavage is denoted by the arrow. †The site, in each substrate, at which cleavage is required to produce the serine proteinase is indicated as (15–16) corresponding to the homologous residue numbers in chymotrypsin gen [70].





### Oligopeptidyl Substrate



### Protein Substrate



# Thrombin cleavage of the plasma protein fibrinogen



# **Thrombin X-ray structure**



# **Thrombin X-ray structure**



# Exosite binding determines substrate specificity

- Thrombin targets are restricted due to specific interactions between the protein substrate and residues outside the catalytic cleft termed Exosite
- Extended interactions at exosites drive substrate affinity and contribute to substrate specificity.



# Thrombin cleaves different substrates

### • Thrombin cleaves after Arg residues

Cleavage Sites for Natural Thrombin Substrates

|                |     |     |     | +   |                 |                 |                 |
|----------------|-----|-----|-----|-----|-----------------|-----------------|-----------------|
|                |     |     |     |     |                 |                 |                 |
|                | P4  | P3  | P2  | P1  | P1 <sup>′</sup> | P2 <sup>′</sup> | P3 <sup>′</sup> |
| Fibrinogen (A) | Gly | Gly | Val | Arg | Gly             | Pro             | Arg             |
| Fibrinogen (B) | Phe | Ser | Ala | Arg | Gly             | His             | Arg             |
| FV (709)       | Leu | Gly | Ile | Arg | Ser             | Phe             | Arg             |
| FV (1018)      | Leu | Ser | Pro | Arg | Thr             | Phe             | His             |
| FV (1545)      | Trp | Tyr | Leu | Arg | Ser             | Asn             | Asn             |
| FVIII (372)    | Ile | Gln | Ile | Arg | Ser             | Val             | Ala             |
| FVIII (740)    | Ile | Glu | Pro | Arg | Ser             | Phe             | Ser             |
| FVIII (1689)   | Gln | Ser | Pro | Arg | Ser             | Phe             | Gln             |
| FXIII          | Gly | Val | Pro | Arg | Gly             | Val             | Asn             |
| PAR1           | Leu | Asp | Pro | Arg | Ser             | Phe             | Leu             |
| PAR4           | Pro | Ala | Pro | Arg | Gly             | Tyr             | Pro             |
| FXI            | Ile | Lys | Pro | Arg | Ile             | Val             | Gly             |
| PC             | Val | Asp | Pro | Arg | Leu             | Ile             | Asp             |
| ΓAFI           | Val | Ser | Pro | Arg | Ala             | Ser             | Ala             |
| AT             | Ile | Ala | Gly | Arg | Ser             | Leu             | Asn             |
|                |     |     |     |     |                 |                 |                 |

# Exosites are good targets to inhibit specific



 Winjee S Met al. RNA 2009;15:2105-211

be briefly stated as follows: The staphylococcus pyogenes aureus has a specific influence in causing coagulation of the blood. Bouillon cultures of the staphylococcus were much more potent than any one of the other organisms. The

- Certain strains of *Staphylococcus Aureus* trigger coagulation (1903)
- Isolation of a bacterial agent that specifically activates thrombin: Staphylocoagulase (1970)
- SC does not cleave thrombin, No cleavage between Arg<sup>15</sup>lle<sup>16</sup>

*How is that possible???* 

### MECCANISMO ATTIVAZIONE BATTERICA

# Staphylocoagulase (SC) X ray-structure

In 2003 crystal structure of (Pre2)Thrombinbound Staphylocoagulase was published (Friedrich, et al. *Nature*, 2003)



### Non-Proteolytic Activation of Prothrombin by Staphylocoagulase support for the "Molecular Sexuality" Hypothesis



### Non-Proteolytic Activation of Prothrombin by Staphylocoagulase support for the "Molecular Sexuality" Hypothesis



The observed insertion of the SC N-terminus into the lle<sup>16</sup> cleft of prethrombin 2, which triggers the activating conformational change, provided the first unambiguous structural evidence for the **Molecular Sexuality** mechanism of non-proteolytic zymogen activation.





# S. Aureus causes Endocarditis

- Severe infection of the heart valves
- More than 50% of patients dies within days or weeks despite treatment
- Difficult diagnosis
  - new heart murmur, fever and the detection of circulating bacteria in blood cultures
- Coagulase-positive S. aureus causes 40–50% of neonatal endocarditis and 30–40% of endocarditis in adults

# Acute bacterial endocarditis is characterized by vegetations on heart valves consisting of bacteria, platelets and fibrin



S. Aureus

Infective endocarditis is an infection of the heart chambers or valves



- Growth and fortification of the vegetation by SC-induced fibrin deposition protects the bacteria in the vegetation from clearance by leukocytes and macrophages
- Heart valves are not easily accessible to the immune system

### medicine

### *In vivo* detection of *Staphylococcus aureus* endocarditis by targeting pathogen-specific prothrombin activation

Peter Panizzi<sup>1,2,9</sup>, Matthias Nahrendorf<sup>1,9</sup>, Jose-Luiz Figueiredo<sup>1</sup>, Jennifer Panizzi<sup>3</sup>, Brett Marinelli<sup>1</sup>, Yoshiko Iwamoto<sup>1</sup>, Edmund Keliher<sup>1</sup>, Ashoka A Maddur<sup>4</sup>, Peter Waterman<sup>1</sup>, Heather K Kroh<sup>4</sup>, Florian Leuschner<sup>1</sup>, Elena Aikawa<sup>1</sup>, Filip K Swirski<sup>1</sup>, Mikael J Pittet<sup>1</sup>, Tilman M Hackeng<sup>5</sup>, Pablo Fuentes-Prior<sup>6</sup>, Olaf Schneewind<sup>7</sup>, Paul E Bock<sup>4</sup> & Ralph Weissleder<sup>1,8</sup>

### SC Prothrombin as a probe for S. Aureus

- SC binds prothrombin with high affinity and activates it through a conformation change
- SC-Prothrombin complex clots fibrinogen but is impervious to physiologic thrombin inhibitors.
- SC-Prothrombin is present in the vegetation
- Labeled Prothrombin can be used as a probe to detect bacterial vegetation in the heart







# Fluorescent prothrombin co-localise with SC positive bacteria



# Conclusion

- Zymogen activation requires conformational changes and maturation of the active site. This can be achieved even in the absence of canonical proteolysis.
- Exosite-Substrate interactions determine enzyme specificity.
- AF680ProT detects S.Aureus in vivo and can be used as a diagnostic tool to determine site, bacterial load and activity of the infection.

#### Thrombus formation following penetrating injury.





# Bibliography

- Adams, T. E. (2006). Thrombin-Cofactor Interactions: Structural Insights Into Regulatory Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8), 1738–1745. doi:10.1161/01.ATV.0000228844.65168.d1
- Friedrich, R., Panizzi, P., Fuentes-Prior, P., Richter, K., Verhamme, I., Anderson, P. J., et al. (2003). Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature, 425(6957), 535–539. doi:10.1038/nature01962
- Panizzi, P., Nahrendorf, M., Figueiredo, J.-L., Panizzi, J., Marinelli, B., Iwamoto, Y., et al. (2011). In vivo detection of Staphylococcus aureus endocarditis by targeting pathogenspecific prothrombin activation. Nature Medicine, 1–6. doi:10.1038/nm.2423

# Visualisation of *S. Aureus* in vivo using Near Infrared Imaging

#### **The PROBE**

AF680- Prothrombin

#### The DETECTOR

Fluorescence molecular tomography

- Computer Tomography



