Funzioni di Epo e molecole terapeutiche

Ruolo dell'Epo nell'eritropoiesi

EpoR è espresso sulla superficie delle cellule eritroidi (massima espressione sulle CFU-E, diminuita sugli stadi più differenziati)

Epo agisce "salvando" dall' apoptosi le cellule progenitrici eritroidi, e stimolandone la maturazione Epo controls erythrocyte production by preventing apoptosis through activation of Janus kinase 2 (JAK2) and Stat5, which induce expression of the antiapoptotic Bcl2 family member Bcl-xl.

Epo/Bcl-xl-dependent survival is both necessary and sufficient for terminal erythroid differentiation.

Consequently, in mouse models, absence of Epo or its receptor, the Epo effector, Stat5, or the Epo/Stat5 target, Bcl-xl, results in apoptosis of erythrocyte progenitors and anemia.

Epo

down-modulates adhesion factors

Chemokine receptor-4 (*Cxcr4*) *Integrin* alpha-4 (*Itga4*) mediates binding to vascular cell adhesion molecule 1 (VCAM-1), fibronectin, and paxillin

up-modulates

growth differentiation factor-3 (*Gdf3*), oncostatin-M (*OncoM*) – acts via JAK- Stat- heterodimeric receptor 19 and affects cell growth, differentiation,

Podocalyxin like-1 (PODXL)?

Model for Epo regulation of erythroid progenitor cell adhesion and migration within stromal niche

PODXL is a sulphated sialomucin, antiadhesive

Epo

down-modulates adhesion factors

Chemokine receptor-4 (*Cxcr4*) *Integrin* alpha-4 (*Itga4*) mediates binding to vascular cell adhesion molecule 1 (VCAM-1), fibronectin, and paxillin

up-modulates

Podocalyxin like-1 (*PODXL*)

Mucins

The amino- and carboxy-terminal regions are very lightly glycosylated, but rich in cys. The cys residues participate in establishing disulfide linkages within and among mucin monomers.

A central region formed of multiple tandem repeats of 10 to 80 residue sequences in which up to half of the aa Ser Thr. This area becomes saturated **with hundreds of O-linked oligosaccharides**.

Sialomucin - acid mucopolysaccharide containing sialic acid

Stati Patologici legati all'eritropoietina

Anemia

Inadeguata produzione endogena (es. patologia renale)

Carenza di globuli rossi

Anemia

Trattamento dell'anemia Epo ricombinante (rHuEPO)

Produzione su larga scala di Epo umana ricombinante

rHuEPO

34000 Da

Aprodotta in cellule mammarie in cui è stato introdotto il gene dell'Epo

Novel Erythropoiesis Stimulating Protein (NESP)

NESP (darbepoetin):

38500 Da

Somministrazione meno frequente

Epo contains **one** O-linked and **three** N-linked carbohydrate chains, each having 2–4 branches that often end in a negatively charged sialic acid.

These carbohydrate chains are not required for receptor binding in vitro or stimulation of growth of EpoR-expressing cultured cells but are required for the in vivo bioactivity

Heterogeneous branching of Epo N-linked carbohydrates results in Epo isoforms with different sialic acid contents up to a maximum of 14.

<u>residues are mutated to provide for 2 additional N-</u> <u>linked glycosylation sites</u> Epo isoforms with higher sialic acid content have a lower affinity for EpoR but a longer serum half-life and are more effective for stimulating the production of red blood cells in vivo.

How Epo is cleared from the circulation and degraded?

Cells were preincubated at 37 °C for 5 min with endocytosis inhibitors (0.1% sodium azide and 10 μ g/ml cytochalasin B) then 125I-labeled ligand was added. Cells were collected and rapidly separated from the medium after the indicated then cell-associated radioactivity was measured. The

Gross A W , Lodish H F J. Biol. Chem. 2006;281:2024-2032

cultures of Ba/F3 parental (circles) or Ba/F3-huEpoR (squares) cells were initiated with excess IL-3 and 0.2 nm 125I-Epo (A) or 0.2 nm 125I-NESP (B)

Gross A W , Lodish H F J. Biol. Chem. 2006;281:2024-2032

Degradation and endocytosis of Epo and NESP by Ba/F3-huEpoR cells.

cultures of Ba/F3 parental (circles) or Ba/F3-huEpoR (squares) cells were initiated with excess IL-3 and 0.2 nm 125I-Epo (A) or 0.2 nm 125I-NESP (B)after the third day in culture, proteins precipitated by trichloroacetic acid from the media of the cultures shown in A and B were separated by SDS-PAGE and analyzed by autoradiography. The type of cells cultured with each sample is indicated at the top of each lane. The position of intact Epo and NESP proteins **aresindicated hypareses indicates** the size in kDa and position of prestained molecular weight markers.

Epo-Epo" -a peptide-linked head-to-tail dimer

Diagram of cDNA encoding the Epo-Epo fusion protein.

Sytkowski A J et al. J. Biol. Chem. 1999;274:24773-24778

jbc

©1999 by American Society for Biochemistry and Molecular Biology

Western blot of purified recombinant Epo (lane 1) and the supernatant of COS1 cells transfected with Epo-Epo cDNA (lane 2).

Sytkowski A J et al. J. Biol. Chem. 1999;274:24773-24778

In vivo efficacy of Epo-Epo compared with that of conventional Epo.

jbc

Sytkowski A J et al. J. Biol. Chem. 1999;274:24773-24778

Pharmacokinetics of Epo (A) and Epo-Epo (B) in mice.

Sytkowski A J et al. J. Biol. Chem. 1999;274:24773-24778

"Hormone mimicry"

Una piccola molecola può "mimare" la funzione di un grande ORMONE POLIPEPTIDICO

Wrighton et al, Science 1996

Sintesi di piccoli peptidi (20 aa) che si legano al recettore dell'Epo e lo attivano Immano" l'effetto biologico dell'Epo

EMP1

Eritropoietina

EMP1 (EPO mimetic peptides (EMPs)

Beptide di 20 aa (2 kDa): GGTYSCHFGPLTWVCKPQGG

Struttura: 2 corti ß-foglietti uniti da un ponte disolfuro

Sintesi: ottenuto da una libreria di peptidi random prodotti in sistema fagico (phage display); selezionato mediante saggi di legame alla porzione extracellulare di EpoR

Complesso EpoR-EMP1

EMP1 dimerizza per legarsi a EpoR

Struttura dimerica molto forte, stabilizzata da 4 legami idrogeno

Ogni monomero di EMP1 interagisce sia con l'altro monomero che con EpoR

Erythropoietin-Epo Receptor complex

Complesso EpoR-EMP1

EMP1 stimola l'eritropoiesi attraverso la stessa via di trasduzione del segnale indotta da Epo

Western blot (anticorpo anti-fosfoTyr)

Cellule stimolate con EMP1 e con Epo presentano lo stesso pattern di fosforilazione

Wrighton et al., Science 1996, 273:458-463

CNTO 530 activates known EPO signal transduction pathways

"Hormone mimicry"

EMP1 è la dimostrazione che una molecola di 20 aa può mimare la funzione di un ormone

Stimolando la stessa via di trasduzione del segnale (JAK, STAT...)

Senza avere nessuna omologia di sequenza o struttura con l'ormone

A potent erythropoietin-mimicking human antibody

ABT007 stimulates in vitro erythropoiesis

The antibody interacts through a novel binding site

F93 and F205 of EPOR, highlighted in purple, are key residues involved in binding EPO and are not involved in Fab binding.

Comparison of the Fab-EPOR complex with the EPO-activated EPOR

A model of activation based on a conformation induced onto EPOR by ABT007 in a 2:1 ratio that is different from that caused by EPO.

Ab12 scFv CDR VH and VL yeast libraries

	H2-1-1 H2-1-2 H2-1-3	YIY IYY YYS	
	H2-4-1 H2-4-2	SGS	
	H2-2-1	GST	
	H2-2-2	STN	
	H2-2-3	INY	
	H2-5-1	N I N VND	H3-1-1 ERL
	H2-3-2 H2-3-1	INP	H3-1-2 RLG
	H2-3-1	PSI	H3-3-1 LGI
H1-1-1 SYY	H2-3-3	SIK	H3-3-2 GIG
H1-1-2 YY	W H2-3-4	LKS	H3-2-1 IGD
<u>H1-1-3</u>	WS AZ V		H3-2-2 GDY
н	1	H2	H3
SYY	WS	YIYYSGSTNYNPSLKS	ERLGIGDY
L1-1-1 R	AS		
L1-1-1 R/ L1-1-2	AS ASQ		
L1-1-1 R. L1-1-2 L1-1-3	AS ASQ SQG		L3-1-1 LQH
L1-1-1 RJ L1-1-2 L1-1-3 L1-3-1	AS ASQ SQG QGI		L3-1-1 LQH L3-1-2 QHN
L1-1-1 R L1-1-2 L1-1-3 L1-3-1 L1-3-2	AS ASQ SQG QGI GIR	L2-1-1 AAS	L3-1-1 LQH L3-1-2 QHN L3-3-1 HNT
L1-1-1 R L1-1-2 L1-1-3 L1-3-1 L1-3-2 L1-2-1	AS ASQ SQG QGI GIR IRN	L2-1-1 AAS L2-1-2 ASS	L3-1-1 LQH L3-1-2 QHN L3-3-1 HNT L3-3-2 NTY
L1-1-1 R L1-1-2 L1-1-3 L1-3-1 L1-3-2 L1-2-1 L1-2-2	AS ASQ SQG QGI GIR IRN RND	L2-1-1 AAS L2-1-2 ASS L2-1-3 SSL	L3-1-1 LQH L3-1-2 QHN L3-3-1 HNT L3-3-2 NTY L3-2-1 TYP
L1-1-1 R L1-1-2 L1-1-3 L1-3-1 L1-3-2 L1-2-1 L1-2-2 L1-2-3 L1-2-3	AS ASQ SQG QGI GIR IRN RND NDL	L2-1-1 AAS L2-1-2 ASS L2-1-3 SSL L2-1-4 SLQ	L3-1-1 LQH L3-1-2 QHN L3-3-1 HNT L3-3-2 NTY L3-2-1 TYP L3-2-2 YPP
L1-1-1 R L1-1-2 L1-1-3 L1-3-1 L1-3-2 L1-2-1 L1-2-2 L1-2-3 L1-2-4	AS ASQ SQG QGI GIR IRN RND NDL DLC	L2-1-1 AAS L2-1-2 ASS L2-1-3 SSL L2-1-4 SLQ G L2-1-5 LQS	L3-1-1 LQH L3-1-2 QHN L3-3-1 HNT L3-3-2 NTY L3-2-1 TYP L3-2-2 YPP L3-2-3 PPT
L1-1-1 R L1-1-2 L1-1-3 L1-3-1 L1-3-2 L1-2-1 L1-2-2 L1-2-3 L1-2-4	AS ASQ SQG QGI GIR IRN RND NDL DLC L1	L2-1-1 AAS L2-1-2 ASS L2-1-3 SSL L2-1-4 SLQ G L2-1-5 LQS L2-1-5 LQS	L3-1-1 LQH L3-1-2 QHN L3-3-1 HNT L3-3-2 NTY L3-2-1 TYP L3-2-2 YPP L3-2-3 PPT L3-2-3 L3

Ab12 CDR H2 variants

EPO-dependent cell proliferation activity of Ab12 variants

COAGULATION CASCADE Tenase Complex

Humanized asymmetric antibody mimicking FVIIIa function

potential to help overcome some of the clinical challenges faced in haemophilia

EPO's tissue-protective actions have been shown to be mediated by a tissueprotective receptor complex consisting of the EPO receptor and the β commonreceptor (CD131) subunit that is also used by GM-CSF, IL-3, and IL-5. Slide EPO1

helix B-surface peptide (HBSP)

This peptide is composed of 11 amino acids (QEQLERALNSS) derived from the aqueous face of helix B of EPO and exhibits tissue-protective activities

Structure of EPO indicating tissue protective domains and sequences.

Effect of HBSP on TNF- α -induced cardiomyocyte apoptosis.

HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis

Figure 3. The predicted binding modes of TM6008 (A) and TM6089 (B) in PHD2.

PHD produces trans-4-hydroxyproline in the presence of Fe(II)

Learn and Live

Figure 2. Inhibition of PHD activity.

Copyright © American Heart Association

Figure 4. Stimulation of angiogenesis in the mouse

Nangaku M et al. Arterioscler Thromb Vasc Biol 2007;27:2548-2554

Copyright © American Heart Association

Prosegue nel file PHD