VHL inhibition as protective during states of mitochondrial dysfunction

La fosforilazione ossidativa nel mitocondrio

Mutations in mitochondrial disease

OXPHOS Component	Complex I	Complex II	Complex III	Complex IV	Complex V
mtDNA structural subunit genes	MTND1[120] MTND2[121] MTND3[122] MTND4[123] MTND4L[124] MTND5[125] MTND6[126]	-	MTCYB[127]	MTCO2[128] MTCO2[129] MTCO3[130]	MTATP6[131] MTATP8[132]
Nuclear structural subunit genes	NDUFS1[133] NDUFS2[134] NDUFS3[135] NDUFS4[136] NDUFS5 NDUFS6[137] NDUFS7[138] NDUFS8[139] NDUFA1[140] NDUFA2[141] NDUFA3 NDUFA5 NDUFA6 NDUFA7 NDUFA8 NDUFA9[142] NDUFA10[143] NDUFA11[21] NDUFA10[143] NDUFA13[145] NDUFA12[144] NDUFA13[145] NDUFA81 NDUFV1[146] NDUFV2[147] NDUFV3 NDUFB1 NDUFB2 NDUFB3[148] NDUFB4 NDUFB5 NDUFB6 NDUFB7 NDUFB8 NDUFB9[149] NDUFB10 NDUFB11[150] NDUFC1 NDUFC2	SDHA[25] SDHB[151] SDHC SDHD[152]	UQCRB[153] UQCRC1 CYC1[156] UQCRC2[154] UQCRFS1 UQCRH UQCRH UQCR10 UQCR11	COX4[157] COX5A COX5B COX6A[57] COX6B[158] COX6C COX7A COX7B[159] COX7C COX8[160]	ATP5A1[76] ATP5B ATP5C1 ATP5D ATP5E[161] ATP5G1 ATP5G2 ATP5G3 ATP5H ATP5J ATP5J ATP5J ATP5J ATP5J2 ATP5L ATP5L2
Assembly factor and ancillary protein genes	NDUFAF1[162] NDUFAF2[163] NDUFAF3[164] NDUFAF4[165] NDUFAF5[166] NDUFAF6[167] NDUFAF7 FOXRED1[168] ACAD9[30] ECSIT NUBPL[168] TMEM126B[28,37] TIMMDC1 C17orf89	SDHAF1[41] SDHAF2 SDHAF3 SDHAF4	BCS1L[49] LYRM7[169] UQCC1 UQCC2[170] UQCC3[171] TTC19[172] PTCD2	COA1 COA3[173] COA4 COA5[174] COA6[175] COA7 COX10[176] COX11 COX14[177] COX15[178] COX16 COX17 COX18 COX19 COX20[179] SCO1[180] SCO2[181] SURF1[182] PET117 LRPPRC[183] PET100[184] CEP89[185] TACO1[186] OXA1L APOPT1[187] NDUFA4[53] FASTKD2[188]	ATPAF1 ATPAF2[189] TMEM70[58]

Programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci

Doudna et al., 2014

Fig. 1 Lentiviral delivery of Cas9 and sgRNA provides efficient depletion of target genes.(A) Lentiviral expression vector for Cas9 and sgRNA (lentiCRISPR). puro, puromycin selection marker; psi+, psi packaging signal; RRE, rev response element; cPPT, central polypurine tract; EFS, elongation factor-1α short promoter; P2A, 2A self-cleaving peptide; WPRE, posttranscriptional regulatory element.

synthetic single-guide RNA (sgRNA) (10), which when targeted to coding regions of genes

ability to simultaneously deliver Cas9 and sgRNA through a single vector enables application to any cell type of interest programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci

Ophir Shalem et al. Science 2014;343:84-87

Fig. 1 Lentiviral delivery of Cas9 and sgRNA provides efficient depletion of target genes.(A) Lentiviral expression vector for Cas9 and sgRNA (lentiCRISPR). puro, puromycin selection marker; psi+, psi packaging signal; RRE, rev response element; cPPT, central polypurine tract; EFS, elongation factor-1α short promoter; P2A, 2A self-cleaving peptide; WPRE, posttranscriptional regulatory element.

human embryonic kidney (HEK) 293T cell line containing a single

GeCKO library design for genome-scale negative selection screening Design of sgRNA library for genome-scale knockout of coding sequences in human cells

Fig. 2 GeCKO library design and application for genome-scale negative selection screening.(A) Design of sgRNA library for genome-scale knockout of coding sequences in human cells (see supplementary text).

Genome-scale Cas9-mediated knockout screen during states of mitochondrial dysfunction.

В

Fig. 1 Genome-scale Cas9-mediated knockout screen identifies VHL inhibition as protective during states of mitochondrial dysfunction.

Science

vhl KO activates the HIF response in zebrafish embryos and alleviates death caused by RC inhibition.

Fig. 2 Genetic or small-molecule activation of the HIF response is protective against multiple forms of RC inhibition, in multiple cell types.

Fig. 3 FG-4592 causes normoxic stabilization of HIF1α and rewires energy metabolism.

HIF1a Immunoblot

± Respiratory chain RC inhibition with antimycin or oligomycin
± FG-4592 under normoxia (21% O2) or hypoxia (1% O2)
RC inhibition prevents HIF1α stabilization during hypoxia
FG-4592 administration overcomes this paradox and stabilizes HIF1α even during normoxia.

FG-4592 treatment activates the HIF response in zebrafish embryos and alleviates death caused by Respiratoty Chain inhibition.

Exposure to FG-4592 rescues antimycin-induced zebrafish embryonic death.

RC inhibition by 2.5 nM antimycin in 4 days post fertilization (dpf) embryos results in significant death within the first 24 hours of treatment.

Coexposure of antimycin with FG-4592 (2.5μ M) doubles embryo survival, whereas FG-4592 alone has no impact

Published by AAAS

FG-4592 treatment activates the HIF response in zebrafish embryos and alleviates death caused by Respiratoty Chain inhibition.

