Macromolecole della risposta alla pressione parziale di ossigeno (3)

In mammals, O2 sensing leads to chronic (days ...weeks) adaptation

Fig 1. The hypoxia-inducible factor (HIF) transcriptional cascade directly regulates genes with key functions in a broad range of processes. The complex binds in a sequence-specific manner to control elements in DNA, termed hypoxia-response elements, at target gene loci.

Quesiti

UBIQUITINA

VHL Function: the difference in Kd for hydroxylated versus non-hydroxylated CODD is $\sim 1,000$ -fold (33 nM versus 34 µM)

Cul2 recruits pVHL at its Nterminal region through an adaptor subunit constituted by a dimeric complex formed by Elongin B (EloB) and Elongin C (EloC)

Rbx1

flexibility

HIF2α

tive

Cullin-2

VHL-EloninginB-ElonginC

EloC

HIF-1 FloB

pVHL

Cullin RING E3 ubiquitin ligases catalyze the transfer of ubiquitin from the E2-conjugating enzyme to the target substrate

the E2 enzyme loaded with ubiquitin is recruited by the RING finger protein Rbx1

Quesiti

Regulation of prolyl hydroxylase domain (PHD) enzyme activity

INIBITORI FARMACOLOGICI DI PHD

activation of the HIF response by PHD inhibition

FG-4592 acts as competitive antagonists of 2-oxoglutarate, a cofactor that accepts one oxygen from molecular dioxygen to become succinate as the second oxygen forms trans-4-hydroxyproline

Effect of Roxadustat on neural retina apoptosis.

Quantification of active caspase 3-positive cells demonstrates statistically significant reduction in apoptosis in the inner nuclear layer of animals treated with Roxadustat (RXD) FG-4592

George Hoppe et al. PNAS 2016;113:E2516-E2525

Respiratoty Chain inhibition

Isha H. Jain et al. Science 2016;352:54-61

FG-4592 treatment activates the HIF response in zebrafish embryos and alleviates death caused by Respiratoty Chain inhibition.

Isha H. Jain et al. Science 2016;352:54-61

RC inhibition by 2.5 nM antimycin in 4 days post fertilization (dpf) embryos results in significant death within the first 24 hours of treatment

Coexposure of antimycin with FG-4592 (2.5 μ M) doubles embryo survival, whereas FG-4592 alone has no impact.

Exposure to FG-4592 rescues antimycin-induced zebrafish embryonic death.

HIF Metabolismo e Mitocondrio

HIF transcription factor effects

HIFa Control of Cell Metabolism

HIFa Control of Cell Metabolism

HIFa Control of Cell Metabolism

How to model Mitochondrial disease

Delivery of Cas9 and sgRNA provides efficient depletion of target genes

synthetic single-guide RNA (sgRNA) targeted to specific coding regions of genes

programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci

Ophir Shalem et al. Science 2014;343:84-87

Published by AAAS

Design of sgRNA library for genome-scale knockout of coding sequences in human cells

CRISPR library sgRNAs targeting exons of 18,080 genes in the human genome with an average coverage of 3 to 4 sgRNAs per gene

Ophir Shalem et al. Science 2014;343:84-87

genome-scale screening

Ophir Shalem et al. Science 2014;343:84-87

Genome-scale Cas9-mediated knockout screen during states of mitochondrial dysfunction.

Mitochondrial disease was modeled with the addition of the complex III inhibitor antimycin (moderate disease) addition of antimycin and **removal of pyruvate (severe disease S)**.

Genome-scale Cas9-mediated knockout screen during states of mitochondrial dysfunction.

cells were infected with the genome-scale Cas9-mediated knockout library 3 conditions U untreated, M moderate disease, S severe disease Samples were taken at a **pretreatment time point and after 3 weeks of <u>selection</u>**

genome-scale screening

enrichment of sgRNAs

Ophir Shalem et al. Science 2014;343:84-87

Genome-scale Cas9-mediated knockout screen identifies VHL inhibition as protective during states of mitochondrial dysfunction.

enrichment of sgRNAs in severe disease S relative to pretreatment conditions U

D

D			E	
Gene	sgRNA Ranks	Rank	ହି ¹⁸	VHL sgRNA
VHL	1, 2, 3, 12, 14	1	- 16	VHL sgRNA
RGS20	13, 145, 2266, 8296, 27675, 29239	2	5 14	
SIN3A	32, 242	3	0 12 -	VHL sgRNA
ESPNL	168, 199, 8244, 8519, 12532, 58512	4	ອີ 10 -	
EXOC3L4	47, 267, 6259, 7589	5	B aut (
DOCK7	177, 299, 4796, 10550, 18350, 23644	6	un e	VHL saRN/
NDUFS6	8, 403, 2876, 7677	7	o l	VHL sgRNA
CLSTN1	7, 412, 11644, 46491	8	<u>ш</u> 4	
CD101	139, 372, 14840, 30593, 57365, 61388	9	N2 2	
TRIO	277, 342, 1831, 23700, 37855	10	Ø 0 65,000	<u>с</u> с с

sgRNA Rank

vhl KO activates the HIF response in zebrafish embryos and alleviates death caused by RC inhibition.

Mutations in mitochondrial disease

	intermembrane space inner mitochondrial membrane mitochondrial matrix	H ⁺ H ⁺ NADH NAD+H	H ⁺ Q FADH ₂ F ₂ H ⁺	AD 2H ⁺	H^+ H^+ P^+ P^+	ADP ATP
	OXPHOS Component	Complex I	Complex II	Complex III	Complex IV	Complex V
bol wit	mtDNA structural subunit genes	MTND1[120] MTND2[121] MTND3[122] MTND4[123] MTND4L[124] MTND5[125] MTND6[126]	-	MTCYB[127]	MTCO1[128] MTCO2[129] MTCO3[130]	MTATP6[131] MTATP8[132]
	Nuclear structural subunit genes defined = genes th mutations	NDUFS1[133] NDUFS2[134] NDUFS3[135] NDUFS4[136] NDUFS5 NDUFS6[137] NDUFS7[138] NDUFS8[139] NDUFA1[140] NDUFA2[141] NDUFA3 NDUFA5 NDUFA6 NDUFA7 NDUFA8 NDUFA9[142] NDUFA10[143] NDUFA11[21] NDUFA12[144] NDUFA13[145] NDUFA12[144] NDUFA13[145] NDUFAB1 NDUFV1[146] NDUFV2[147] NDUFV3 NDUFB1 NDUFB2 NDUFB3[148] NDUFB4 NDUFB5 NDUFB6 NDUFB7 NDUFB8 NDUFB9[149] NDUFB10 NDUFB11[150] NDUFC1 NDUFC2	SDHA[25] SDHB[151] SDHC SDHD[152]	UQCRB[153] UQCRC1 CYC1[156] UQCRC2[154] UQCRFS1 UQCRH UQCRQ[155] UQCR10 UQCR11	COX4[157] COX5A COX5B COX6A[57] COX6B[158] COX6C COX7A COX7B[159] COX7C COX8[160]	ATP5A1[76] ATP5B ATP5C1 ATP5D ATP5E[161] ATP5F1 ATP5G1 ATP5G2 ATP5G3 ATP5H ATP5H ATP5J ATP5J ATP5J ATP5J2 ATP5L ATP5L2
	Assembly factor and ancillary protein genes	NDUFAF1[162] NDUFAF2[163] NDUFAF3[164] NDUFAF4[165] NDUFAF5[166] NDUFAF6[167] NDUFAF7 FOXRED1[168] ACAD9[30] ECSIT NUBPL[168] TMEM126B[28, 37] TIMMDC1 C17orf89	SDHAF1[41] SDHAF2 SDHAF3 SDHAF4	BCS1L[49] LYRM7[169] UQCC1 UQCC2[170] UQCC3[171] TTC19[172] PTCD2	COA1 COA3[173] COA4 COA5[174] COA6[175] COA7 COX10[176] COX11 COX14[177] COX15[178] COX16 COX17 COX18 COX19 COX20[179] SCO1[180] SCO2[181] SURF1[182] PET117 LRPPRC[183] PET100[184] CEP89[185] TACO1[186] OXA1L APOPT1[187] NDUFA4[53] FASTKD2[188]	ATPAF1 ATPAF2[189] TMEM70[58]

The Journal of Pathology2 NOV 2016 DOI: 10.1002/path.4801

Chronic hypoxia extends life span and alleviates disease in a mouse model of Leigh syndrome (KO).

Isha H. Jain et al. Science 2016;352:54-61

Published by AAAS

Fig. 5 Chronic hypoxia extends life span and alleviates disease in a mouse model of Leigh syndrome (KO) whereas chronic hyperoxia exacerbates disease.

KO (Hypoxia) - 50d

Isha H. Jain et al. Science 2016;352:54-61

Published by AAAS

Breathing 11% O2 in late-stage neurological disease **reverses** pathological inflammation in the brains of Ndufs4 KO mice.

KO mice breathing 21% O2 up to 55 d and then breathing 11% O2 to 160 d.

Iba-1 is up-regulated in microglia following nerve injury, central nervous system ischemia, and several other brain diseases

Genome-scale Cas9-mediated knockout screen and states of mitochondrial dysfunction.

enrichment of sgRNAs in severe disease S relative to pretreatment conditions U

D

Gene	sgRNA Ranks	Rank
VHL	1, 2, 3, 12, 14	1
RGS20	13, 145, 2266, 8296, 27675, 29239	2
SIN3A	32, 242	3
ESPNL	168, 199, 8244, 8519, 12532, 58512	4
EXOC3L4	47, 267, 6259, 7589	5
DOCK7	177, 299, 4796, 10550, 18350, 23644	6
NDUFS6	8, 403, 2876, 7677	7
CLSTN1	7, 412, 11644, 46491	8
CD101	139, 372, 14840, 30593, 57365, 61388	9
TRIO	277, 342, 1831, 23700, 37855	10

Ndufs6 NADH:ubiquinone oxidoreductase subunit S6

Genome-scale Cas9-mediated knockout screen and states of mitochondrial dysfunction.

enrichment of sgRNAs in severe disease S relative to pretreatment conditions U

Gene	sgRNA Ranks	Rank
VHL	1, 2, 3, 12, 14	1
RGS20	13, 145, 2266, 8296, 27675, 29239	2
SIN3A	32, 242	3
ESPNL	168, 199, 8244, 8519, 12532, 58512	4
EXOC3L4	47, 267, 6259, 7589	5
DOCK7	177, 299, 4796, 10550, 18350, 23644	6
NDUFS6	8, 403, 2876, 7677	7
CLSTN1	7, 412, 11644, 46491	8
CD101	139, 372, 14840, 30593, 57365, 61388	9
TRIO	277, 342, 1831, 23700, 37855	10

Sin3A= global transcription regulators platform for chromatin-modifying activities

Within 24 h of reoxygenation, the hypoxia-induced transcription returned to basal levels

the nucleosome structure was reassembled in the hypoxia-inducible form

Nucleosome reassembly required the transcriptional coregulator SIN3A