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Splicing process overview
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Tissue-specific Proteins
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Splicing and transcription
Classical view of
pre-mRNA processing
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Splicing and transcription
Classical view of
pre-mRNA processing

Cotranscriptional

pre-mRNA processing
(splicing takes place, or is committed to occur,
before the nascent RNA is released)
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Transcription and splicing:

How can RNA Pol Il affect splicing outcome?

Different recruitment
of splicing factors
(recruitment coupling)
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several splicing factors
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RNA Structure:

Sites not accessible:
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RNA Structure:
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Elongation rate:

- type of promoter 3’ss 3’ss

- nucleosome position
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Elongation rate:

- type of promoter 3’ss 3’ss

- nucleosome position
- histone modification 4-
High elongation rate/ \ Low elongation rate
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Exon skipping Exon inclusion

Slowing of RNA Pol Il increases the window of time an upstream weak exon
can recruit the splicing machinery before the splicing sites of a stronger downstream exon
emerge from the polymerase complex, favouring exon inclusion



Tissue-specific Proteins

Sequence context Development stage

N "4

Splicing

s

Chromatin

Histone modification

Nucleosome position




Histone modifications: major regulators of alternative splicing

Chromatin structure and transcription
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Histone modifications: major regulators of alternative splicing

Chromatin structure and transcription
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Histone modifications: major regulators of alternative splicing

Exons are marked by increased nucleosome occupancy, distinct histone modifications
and elevated DNA methylation relative to introns.

Nucleosome position:

Nucleosome: stretch of ~147bp of DNA wrapped
around an octamer of histone proteins

Core of B Histone Molecules

Nucleosome

Average size of mammalian exons: 145bp
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Nucleosomes behave as barrier that slowing down the elongation rate of Pol I
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Histone modifications: major regulators of alternative splicing

Exons are marked by increased nucleosome occupancy, distinct histone modifications
and elevated DNA methylation relative to introns.

Nucleosome position: Histone modifications:

constitutive intron alternative

Nucleosome: stretch of ~147bp of DNA wrapped exon exon

around an octamer of histone proteins ~
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Histone modifications: major regulators of alternative splicing

Histone modifications are not randomly distribuited among genome:

a
Kinetic regulation
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Adapter function: the “Histone code”

(a) Linear “code”
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CBP: chromatin-binding protein; SF: splicing factor.

(b)

(c)

Combinatorial histone marks

Combinatorial histone marks and readers
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Current Opinion in Genetics & Development

(a) Histone marks may act linearly with increasing levels of a single histone mark recruiting increasing levels of a
chromatin-adaptor protein complex leading to increased usage of a given site. Competing levels of different histone
marks modulate the recruitment of competing chromatin-adaptor complexes determining the final splicing

(b)

()

outcome

Histone modifications may act in combination by favoring (left) or inhibiting (right) the recruitment of a single

chromatin-splicing complex

Multiple histone marks may recruit in combination multiple chromatin-adaptor complexes that will favor or inhibit

exon inclusion.



The role of chromatin in alternative splicing:

(a)

Elongation rate
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Chromatin structure

(e) Chromatin-adaptor complex
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Current Cpinion in Genetics & Development

(a) RNAP Il elongation rate affects recruitment of the splicing machinery. Fast elongation
favors inclusion of a downstream exon with strong splice sites.

(b) A change in chromatin conformation, such as localized heterochromatinization (blue ovals
and higher density of nucleosomes ), slows down RNAP Il which favors recruitment of
splicing factors (yellow oval) to the weaker exon (blue rectangle), inducing exon inclusion.

(c) Histone modifications (small red circles) can directly recruit splicing factors via a
chromatin-adaptor system (red ovals) which consists of a chromatin-binding protein that
reads the histone marks and modulates recruitment of the splicing factor to the pre-
mRNA (red rectangle ).



Integrated model:
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Alternative splicing patterns are determined
by a combination of parameters including cis
-acting RNA regulatory elements and RNA
secondary structures (highlighted in orange)
together with transcriptional and chromatin
properties (highlighted in blue) that
modulate the recruitment of splicing factors
to the pre-mRNA.
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modulate the recruitment of splicing factors
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The combination of histone
modifications along a gene
establishes and maintains
tissue-specific transcription
patterns (left panel), as well
as heritable tissue-specific
alternative splicing patterns
(right panel)




Histone Deacetylase Activity Modulates Alternative
Splicing
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Cells treated with potent HDAC inhibitor — sodium butyrate (NaB)
The splicing of 681 genes (out 17771) was altered.

Focus on fibronectin FN1 gene. MaBl + =

= el V=~
FN1 FN1
= Exon 25 (EDB) &= Exon 33 (EDA)

It is known that SRp40 and PTB are important for exon 25 (EDB) inclusion
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Cells treated with potent HDAC inhibitor — sodium butyrate (NaB)
The splicing of 681 genes (out 17771) was altered.

Focus on fibronectin FN1 gene. MaBl + - MNaB

= el V=~
FN1 FN1
= Exon 25 (EDB) &= Exon 33 (EDA)

It is known that SRp40 and PTB are important for exon 25 (EDB) inclusion

Wich is the relationship between HDAC inhibition and EDB splicing??

Does the HDAC inhibition affect expression of splicing regulators (SR protein)?
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Analysis of chromatin marks along FN1 gene
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Analysis of chromatin marks along FN1 gene
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Analysis of chromatin marks along FN1 gene
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Pol 1l processivity and HDAC inhibition:
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HDAC inhibition and SRp40,PTB and snRNP association with the EDB exon:

A SRp40-GFP B PTB c SmB/B’/D (snRNP)
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Reduced SRp40 association with the EDB exon



HDAC inhibition and SRp40,PTB and snRNP association with the EDB exon:

A SRp40-GFP B PTB C SmB/B'/D (snRNP)
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Reduced SRp40 association with the EDB exon
Conclusion:
increase of Pol Il dynamics in the vicinity of the alternative EDB exon correlates with

reduced co-transcriptional recruitment of SRp40 supporting the model of kinetic coupling
between transcription and splicing

co-transcriptional recruitment of splicing Link between global changes
factor is modulated by histone modifications in chromatin structure and local changes
and Pol Il processivity, which provides a link within specific genes.

between chromatin modifications,
transcription and splicing






