ABERRANT mRNA SPLICING IN COAGULATION FACTOR DEFICIENCIES: FROM MOLECULAR MECHANISMS TO RNA-BASED THERAPEUTIC APPROACHES

er ertern frittet mittel

Dario Balestra University of Ferrara

mRNA SPLICING

Several sequence elements, both conserved and exon-specific, are required for proper definition of the exons.

Sequence elements define the proper assembly of the complex Spliceosome machinery

Key role of the U1snRNP in the earliest splicing step, and thus in exon definition

This complexity makes the spliceosome susceptible to derangements

80% of human genes undergo alternative splicing

Mutations affecting mRNA splicing are frequent cause of severe human genetic disease forms (>20-30%)

Molecular mechanisms of genetic disorders

Modulation of pre-mRNA splicing

Coagulation factor disorders as models

splicing mutations are relatively frequent in severe coagulation factor deficiencies

even tiny increase in activity of plasma proteins could significantly increase the coagulation efficiency and thus ameliorate the bleeding phenotype in patients

protein and activity levels of clotting factors can be evaluated by enzymatic assays (hardly feasible for most of the other human diseases).

What's the molecular mechanism of the IVS7+5G/A mutation?

Expression studies in eukaryotic cells: Minigene approach

Gene region of interest

IVS7 Minigene (ex.6-8)

Expression in mammalian cells and studies at the mRNA level

Pinotti et al, Blood 2008

The mutation induces exon skipping or 1° repeat inclusion

RT-PCR 6F-8R

Causing frameshift and premature termination of translation

Pinotti et al, Blood 2008

Fluorescent labeling of RT-PCR products

The mutation impairs but not abrogates splicing (0.3±0.1%), thus accounting for residual FVII levels in patients

Restore exon definition by compensatory U1 snRNA changes

Could this rescue FVII splicing impaired by the IVS7+5G/A?

The snU1+5A was able to partially rescue correct splicingand in a dose-dependent manner

The correctly spliced form corresponded to 15% of the aberrant forms

Pinotti et al, Blood 2008

Does the rescue of correct mRNA produce an increase in FVII protein expression?

Expression in Cos-7 cells and studies at the mRNA and protein levels

Coagulation Assays Prothrombin time (PT)

Human FVII deficient plasma supplemented with rFVII

Tissue factor Phospholipid, Calcium

.... to a level that would be, in vivo, well beyond the therapeutic threshold Modified U1snRNA are able to re-direct the spliceosome assembly and restore exon definition in cellular models

What about correction efficacy in vivo?

CREATION OF THE MOUSE MODEL OF HUMAN FVI DEFICIENCY CAUSED BY SPLICING MUTATION

ASSESSMENT OF THE U1+5A-MEDIATED RESCUE

HYDRODYNAMIC INJECTION STUDIES

pAAV2-hAAT-FVII+5A pAAV8-U1+5a

The expression of the FVII+5A variant did not resulted in appreciable plasma hFVII levels

n= 4 mice/group Molar ratio U1+5a/FVII+5A=1,5

U1+5a rescue of circulating hFVII protein levels

Compared to levels in mice injected with FVII wt plasmid, the correction obtained after injection of U1+5a was ~8,5 %

U1+5a-mediated rescue of hFVII expression in mouse liver

hFVII protein (HI)

U1+5a-mediated rescue of hFVII expression in mouse liver

hFVII protein (HI)

PROLONGED RESCUE BY ADENOASSOCIATED VIRAL VECTORS

STUDIES WITH ADENOASSOCIATED VIRAL VECTORS

AAV2-FVII+5A (vg/mouse)	AAV8-U1+5a (vg/mouse)
1.2*10 ¹²	1.2*10 ¹¹

U1+5a-mediated rescue of circulating hFVII levels was appreciable and prolonged

STUDIES WITH ADENOASSOCIATED VIRAL VECTORS

and the correction extent was dose-dependent

U1+5a-MEDIATED RESCUE IN MOUSE LIVER

LIMITATION OF THE MOUSE MODEL

LIMITATION OF THE MOUSE MODEL

IF TRUE, INCREASING THE SUBSTRATE WOULD RESULT IN INCREASED RESCUE

INCREASING THE DOSE OF THE hFVII SUBSTRATE RESULTED IN INCREASED RESCUE BY THE U1+5a

...therefore, rescue efficiency in patients, expressing the FVII mRNA in all hepatocytes, should be much more pronounced

CONCLUSION I

 Engineered U1snRNA are capable to re-direct the spliceosome assembly to the mutated exon-intron juntion and rescue mRNA processing and secretion of functional FVII;

 For the first time, we provide the «proof-of-principle» for the U1-mediated correction in vivo

HOWEVER

the approach implies one modified U1snRNA for each splicing mutation, thus limiting the potential applicability

• In vivo, a liver-toxicity has been observed with the highest doses.

This could be due to

Off-target effect

Hemophilia B model

F9 Exon 5 is poorly defined

Expression studies with hybrid F9 minigenes

Exon 5 is poorly defined

Is this due to the hybrid minigene features?

Exon 5 is poorly defined *in vivo*

The mutations, reducing exon 5 definition, are candidate to induce exon 5 skipping

All mutations induced exon 5 skipping

Rescue by U1snRNA targeting the FIX donor splice site

However, U1snRNA targeting 5'ss might not ensure enough sequence specificity

Exon – specific U1snNAs (ExSpeU1) targeting intronic sequences

F. Pagani ICGEB, Trieste

Rescue by Exon – specific U1snNAs

Exon-specific U1 rescued splicing to appreciable levels

Rescue by Exon – specific U1snNAs

Rescue of FIX biosynthesis and function:

The deleted variant, lacking EGF2, is secreted but inactive

The deleted variant, lacking EGF2, is secreted but inactive

The deleted variant, lacking EGF2, is secreted but inactive

A unique ExSpeU1 <u>completely</u> rescued FIX function in the presence of different mutations at either the donor or acceptor splice sites

REPLACEMENT GENE THERAPY

<u>ADVANTAGES</u>

- Maintainance of the gene regulation
- Correction in physiological tissues only
- Small size of the therapeutic expression cassette