miRNA activity: the role of AGO2

Irving Donadon Università degli Studi di Ferrara

30/11/2015

Three classes of small RNAs

Features	miRNA	siRNA	piRNA
Length	~22 nucleotides	~21 nucleotides	24–30 nucleotides
Processing enzymes	Drosha and Dicer	Dicer	Zucchini and unknown trimming enzymes
AGO subclades	AGO	AGO	PIWI
Mechanism of action	 Translational repression mRNA degradation 	RNA cleavage	 Transcriptional or post- transcriptional repression of transposons Multigenerational epigenetic phenomena in worms
Function	Regulation of protein-coding genes	 Regulation of protein-coding genes and transposons Antiviral defence 	 Pre-pachytene piRNA: transposon silencing Pachytene piRNA: unknown piRNA-like small RNA in soma: unknown

siRNA = small interfering RNA \rightarrow RNA interference (RNAi)

miRNA biogenesis

NUCLEUS

RNA-induced silencing complex (RISC)

<u>RISC</u> is a ribonucleoprotein complex that consists of a <u>small RNA guide strand</u> bound to an <u>Argonaute protein (AGO)</u>.

AGO proteins are ubiquitously expressed and associate with miRNAs or siRNAs.

There are four AGO subclade proteins in humans (AGO1-4). Only AGO2 can slice perfectly matched target mRNAs.

Either cleavage of the target or translation repression are depending on the degree of complementarity between guide and target strands.

Perfect complementarity -> cleavage (slicing).

imperfect targets -> repression of mRNA translation.

Argonaute 2 (AGO2)

AGOs adopt a bilobal architecture.

30/11/2015

5' phosphate binding pocket

RNase H catalytic site – a model for Slicer

The trajectory of the RNA directs the target strand into the RNase H-like catalytic site, placing the scissile phosphate, in close proximity to the putative catalytic site (T10 and T11 interacting with G10 and G11).

Structure of Bacillus halodurans

Mutations of either catalytic aspartic acid in AGO2 abolishes Slicer activity.

D

The **"seed" sequence** is sufficient for target recognition (**nucleotides 2-7** of miRNA).

These nucleotides expose the bases for a Watson-Crick interaction with the target strand.

The seed of guide miRNA is pre-arranged in an A-form helix conformation that facilitates efficient scanning of target mRNAs for complementary sequences.

<u>Cleaving</u> of target mRNAs between nucleotide <u>positions 10 and 11</u> (relative to the 5' end of the guide RNA).

30/11/2015

Miwi is a small RNA-guided RNase (slicer) that requires extensive complementarity for target cleavage in vitro. .

nature

M Reuter et al. Nature 000, 1-4 (2011) doi:10.1038/nature10672