

An oxygen-regulated switch in the protein synthesis machinery

Inhibition of translation during **aCute** hypoxia is mediated by eIF2α phosphorilation

mouse embryo fibroblasts (MEFs)

nichelli editore S.p.A. Copyright © 2005

Prolonged Hypoxia inhibits mRNA translation

• The initial step of protein synthesis is the binding of the eukaryotic translation initiation factor 4E (eIF4E) to the 7-methylguanosine (m7-GpppG) 5' cap of messenger RNAs

•

2

•

Low oxygen tension (hypoxia) represses cap-mediated translation by sequestering eIF4E.

eIF4E relocalizes during hypoxia

The shuttling protein 4E-T is a known regulator of eIF4E localization and is capable of binding and transporting it to the cell nucleus Correlation with the gradual dephosphorylation of 4E-T

4E-BP1 an inactive complex shows induction after hypoxia

Acute hypoxia causes transient elF2a phosphorylation due to PERK activation as a part of the UPR. This results in inhibition of the rate of translation initiation. Following prolonged hypoxic conditions, activation of 4E-BP and 4E-T causes disruption of elF4F, which inhibits the recruitment of mRNA to polysomes.

Acute hypoxia causes transient elF2a phosphorylation due to PERK activation as a part of the UPR. This results in inhibition of the rate of translation initiation.

Following prolonged hypoxic conditions, activation of 4E-BP and 4E-T causes disruption of eIF4F, which inhibits the recruitment of mRNA to polysomes.

Both molecular mechanisms affect specific mRNAs to varying degrees, resulting in differential gene expression.

 A fundamental question in biology is as to how proteins are synthesized in periods of oxygen scarcity and eIF4E inhibition

EGFR levels increase!! in hypoxic cells

human renal proximal tubular epithelial cells

An oxygen-regulated switch from eIF4E- to eIF4E2dependent protein synthesis.

An oxygen-regulated switch from eIF4E- to eIF4E2dependent protein synthesis.

eIF4E and eIF4E2 polysome association in normoxia and hypoxia

hypoxia stimulates the switch from the cap-bindingeIF4E to to eIF4E2 homologue

dependent from the oxygen-regulated hypoxia-inducible factor 2a (HIF-2alpha)

EGFR levels in hypoxic cells do not increase when HIF-2 alpha is inhibited

human renal proximal tubular epithelial cells

Acute hypoxia causes transient elF2a phosphorylation due to PERK activation as a part of the UPR. This results in inhibition of the rate of translation initiation.

Following prolonged hypoxic conditions, activation of 4E-BP and 4E-T causes disruption of eIF4F, which inhibits the recruitment of mRNA to polysomes.

hypoxia stimulates the switch from the cap-bindingeIF4E to to eIF4E2 homologue dependent from the oxygen-regulated hypoxia-inducible factor 2a (HIF-2alpha) 3

Meccanismo molecolare di HIF 2 alpha nella sintesi proteica

 an oxygen-regulated translation initiation complex that mediates selective capdependent protein synthesis

RNA-binding protein RBM4 recruits HIF-2alpha in hypoxia

Co-immunoprecipitation of HIF-2a

Co-immunoprecipitation of HIF-2a with RBM4 in hypoxia (right)

WCL, whole cell lysate

RNA-binding protein RBM4 oxygen-regulated hypoxia-inducible factor 2a (HIF-2a) HIF-2a–RBM4 recruits the m7-GTP cap by means of an interaction with eIF4E2

Capture assays using m7-GTP beads in hypoxic cell lysates

depleted in eIF4E2

GTP, proteins dislodged from the beads by GTP; m7GTP, proteins bound to m7-GTP beads after GTP wash

hypoxia stimulates the formation of a complex that includes the oxygen-regulated hypoxia-inducible factor 2a (HIF-2a), the RNA-binding protein RBM4 and the capbinding eIF4E2 • Determinanti per la selezione di specifici messaggeri tradotti nella ipossia

RBM4 recruits HIF-2alpha to specific regions of 3'UTR for hypoxic translation

RNA immunoprecipitation of HIF-2a and RBM4 IN, input; nt, nucleotides; RN, RNase-treated

RBM4 recruits HIF-2alpha to specific regions of 3'UTR for hypoxic translation

RNA immunoprecipitation of HIF-2a and RBM4 IN, input; nt, nucleotides; RN, RNase-treated

Identification of sequences defining an RNA hypoxia response element (rHRE) in the 3' UTR

4861

AAA

AAA

Expression of a luciferase reporter containing CGG AAA mutations near the RBM4 binding site, or in a control upstream region (uCGG).

Complesso Quaternario: mRNA (rHRE), Fattore alternativo che riconosce il Cap (eiF4E2), Fattore secondo che risponde all'ipossia (hif2alpha) e proteina che lega RNA RBM4

Polysomal distribution of specific mRNA in hypoxic cells

the HIF-2a–RBM4–eIF4E2 complex captures the 5' cap and targets mRNAs to polysomes for active translation

Silencing of eIF4E2 in hypoxic cells

the HIF-2a–RBM4–eIF4E2 complex DOES NOT targets mRNAs to polysomes for active translation

 An RNA hypoxia response element (rHRE) t recruits the complex that includes the oxygen-regulated hypoxiainducible factor 2a (HIF-2a), the RNA-binding protein RBM4 and the cap-binding eIF4E2 to several mRNAs,

including that encoding the epidermal growth factor receptor EGFR

Once assembled at the rHRE, the HIF-2a–RBM4–eIF4E2 complex captures the 5' cap and targets mRNAs to polysomes for active translation, thereby evading hypoxia-induced repression of protein synthesis

cells have evolved a program by which oxygen tension switches the basic translation initiation machinery

EGFR

Polysome distribution of EGFR mRNA in normoxic and hypoxic cells

HIF-2 α associates with a region of the EGFR mRNA 3'UTR

EGFR levels in hypoxic cells

Complesso Quaternario: mRNA (rHRE di EGFR), Fattore alternativo che riconosce il Cap (eiF4E2), Fattore secondo che risponde all'ipossia (hif2alpha) e proteina che lega RNA RBM4

