Nonsense-Mediated Decay – Molecular Bases

Quality control mechanisms ensure fidelity to mRNA biogenesis

The life cycle of mRNA

The relative amount of a mRNA is regulated by a balance between properly synthesized (thus exported and translated) and degraded transcripts

Quality control mechanisms ensure fidelity to mRNA biogenesis

Quality control mechanisms ensure fidelity to mRNA biogenesis

Premature Stop Codon (PTC)-containing mRNA

1. Recognition of the stop codon as a PTC

2. Tagging of PTC-containing mRNA

3. Degradation and/or isolation of the tagged mRNA

The road to degradation

Premature Stop Codon (PTC)-containing mRNA

1. Recognition of the stop codon as a PTC

2. Tagging of PTC-containing mRNA

3. Degradation and/or isolation of the tagged mRNA

The Exon-Junction Complex (EJC) as a splicing hallmark

Multi-protein complexes deposed during splicing at <u>20-24 nucleotides</u> upstream of each exon-exon junction

Experimental data indicate that **elF4AIII**

Represents a scaffold for other proteins such as those involved in mRNA transport

	OIE4AIII	123		
ore		1,2,0	pre-mRNA	
ō	Magon	1, 2, 3		
ä	Y14	1, 2, 3		
-	MLN51	1, 2, 3		
	UAP56	1, 2	intermediates	
	REF	0, 1, 2		
tors		2		
fac	p15	2	nuclear	
Ba		1.2	Spliced MRINA	

EJCs as splicing markers and scaffolds for protein effectors

(EJCs are multi-protein complexes deposed during splicing at 20-24 nucleotides upstream of each EJ)

EJCs are *cis*-acting key components \rightarrow NMD is splicing-dependent

Protein effectors involved in Nonsense-Mediated Decay are conserved

Organism	30	0	Marc		
	Yeast (Saccharomyces cerevisiae)	Nematodes (<i>Caenorhabditis</i> elegans)	Fruitfly (<i>Drosophila</i> melanogaster)	Mammals (<i>Mus musculus</i>)	Plant (<i>Arabidopsis</i> thaliana)
Effectors	Upf1 Upf2 Upf3	SMG-2(UPF1) SMG-3(UPF2) SMG-4(UPF3) SMG-1 SMG-5 SMG-6 SMG-7	UPF1 UPF2 UPF3 SMG1 SMG5 SMG6	UPF1(RENT1) UPF2 UPF3a/b SMG1 SMG5 SMG6 SMG7	UPF1(IBA1) UPF2 UPF3 nd nd nd nd

NMD effectors are *trans*-acting proteins able to recognize and bind EJCs (*cis*-acting signals)

Protein effectors involved in Nonsense-Mediated Decay are conserved

hUpf proteins in HeLa cells - immunocytochemical staining

Lykke-Andersen et al., Cell, 2000

SMG7 SMG5 b SMG6

Proteins containing a 14-3-3-like domain for binding to phosphorylated residues

eIF4AIIII (part of the EJC core) is required for NMD in mammalian cells

Experimental model: HeLa cells transfected with two different minigene constructs and RNAi technique followed by Northern blot analysis

Result: Depletion of either hUpf1 or eIF4AIII stabilizes PTC+ mRNA to a similar extent

 \rightarrow NMD is splicing-dependent

Quality control mechanisms ensure fidelity to mRNA biogenesis

eIF4E binds the 5'cap <u>before</u> the steady-state translation of mRNA

Evidence for a <u>Pioneer Round of mRNA Translation</u>: mRNAs Subject to Nonsense-Mediated Decay in Mammalian Cells Are Bound by CBP80 and CBP20

Yasuhito Ishigaki,² Xiaojie Li, Guillaume Serin, and Lynne E. Maquat¹

The EMBO Journal Vol. 21 No. 13 pp. 3536–3545, 2002

The exon junction complex is detected on CBP80bound but not elF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling

Fabrice Lejeune, Yasuhito Ishigaki¹, Xiaojie Li and Lynne E.Maquat²

The <u>PIONEER ROUND</u> of translation – Normal Stop Codon

Normal Termination Codon

Ribosome scanning of the mRNA in a first round of translation

Displacement of EJCs from mRNA

The exon junction complex is detected on CBP80bound but not elF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling

Experimental model: Nuclear (N) and Cytoplasmic (C) CBP80 co-immunoprecipitation and western blotting analysis with antibodies specific for other complexed proteins

CBP80 but not eIF4E co-immunoprecipitates with EJC components

The exon junction complex is detected on CBP80bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling

The <u>PIONEER ROUND</u> of translation – <u>Premature</u> Stop Codon

The <u>PIONEER ROUND</u> of translation – <u>Premature</u> Stop Codon

When the distance between a stop codon and the downstream exon-exon junction is more than 55 nt \rightarrow stop codon = PTC

Interplay between EJCs and ribosomes \rightarrow NMD is translation-dependent

The relative position of a PTC influences the efficiency of NMD

Experimental model:

Minigenes containing PTCs at different positions, transfected in cells displaying normal (+) or suppressed (-) translation and Northern blot analysis with a specific exon 3 probe

Target protein

Results:

- i) Translation suppression decreases the NMD \rightarrow NMD is translation-dependen
- ii) NMD efficiency is influenced by PTC position

The relative position of a PTC influences the efficiency of NMD

Experimental model:

Minigenes containing PTCs at different positions, transfected in cells displaying normal (+) or suppressed (-) translation and Northern blot analysis with a specific exon 3 probe

Target protein

Results:

- i) Translation suppression decreases the NMD \rightarrow NMD is translation-dependen
- ii) NMD efficiency is influenced by PTC position

The relative position of a PTC influences the efficiency of NMD

Experimental model:

Minigenes containing PTCs at different positions, transfected in cells displaying normal (+) or suppressed (-) translation and Northern blot analysis with a specific exon 3 probe

7

100

6

100

96

control

Target protein 8

100

Results:

- Translation suppression decreases the i) NMD \rightarrow NMD is translation-dependen
- NMD efficiency is influenced by PTC position ii)

Premature Stop Codon (PTC)-containing mRNA

1. Recognition of the stop codon as a PTC

- EJCs
- Protein effectors (UPF3, UPF2, UPF1)
- Splicing-dependent
- Translation-dependent
- Influenced by position of PTCs

Binding of a novel <u>SMG-1–Upf1–eRF1–eRF3</u> complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay

Isao Kashima, Akio Yamashita, Natsuko Izumi, Naoyuki Kataoka, Ryo Morishita, Shinichi Hoshino, Mutsuhito Ohno, Gideon Dreyfuss and Shigeo Ohno

Genes & Dev. 2006 20: 355-367

Mammals (Mus musculus)

UPF1(RENT1) UPF2 UPF3a/b SMG1 SMG5 SMG6 SMG7

Upf1 is recruited within the so-called SURF complex

The road to degradation

Premature Stop Codon (PTC)-containing mRNA

1. Recognition of the stop codon as a PTC

2. Tagging of PTC-containing mRNA

3. Degradation and/or isolation of the tagged mRNA

Upf1 is recruited within the so-called SURF complex

mRNA is comitted to decay after phosphorylation of UPF1 by SMG1

UPF1 is regulated by phosphorylation/dephosphorylation cycles

Recruitment of SMG6 and/or SMG5-SMG7 via the phosphate tags on UPF1

Recycling of UPF1 and
other effector proteins involved in NMD

The road to degradation

Premature Stop Codon (PTC)-containing mRNA

1. Recognition of the stop codon as a PTC

2. Tagging of PTC-containing mRNA

3. Degradation and/or isolation of the tagged mRNA

Degradation of the tagged mRNA comitted to NMD

Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay

Isao Kashima, Akio Yamashita, Natsuko Izumi, Naoyuki Kataoka, Ryo Morishita, Shinichi Hoshino, Mutsuhito Ohno, Gideon Dreyfuss and Shigeo Ohno

Genes & Dev. 2006 20: 355-367

Experimental model: Lysates of HeLa cells transfected with siRNAs and western blotting analysis on phospho-UPF1 levels after silencing

Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay

Isao Kashima, Akio Yamashita, Natsuko Izumi, Naoyuki Kataoka, Ryo Morishita, Shinichi Hoshino, Mutsuhito Ohno, Gideon Dreyfuss and Shigeo Ohno

Genes & Dev. 2006 20: 355-367

Experimental model: Lysates of HeLa cells transfected with siRNAs and western blotting analysis on phospho-UPF1 levels after silencing

Result: SMG-1-mediated phosphorylation of UPF1 requires UPF2, UPF3, and Y14

The road to degradation

Premature Stop Codon (PTC)-containing mRNA

1. Recognition of the stop codon as a PTC

2. Tagging of PTC-containing mRNA

3. Degradation and/or isolation of the tagged mRNA

mRNA Processing bodies (P-bodies) contain enzymes involved in mRNA degradation

mRNA Processing bodies (P-bodies) contain enzymes involved in mRNA degradation

Also known as mRNA-decay foci, DCP bodies or GW bodies

Specialized cytoplasmic regions enriched with degrading enzymes such as XRN1, DCP1, DCP2 e Lsm1-7

The image shows the co-localisation of the mRNA decapping protein DCP1 with the <u>GW182</u> antigen, <u>a P-body marker</u> in multicellular organisms.

Involved in <u>storage</u>, <u>repression</u> or <u>degradation</u> of mRNAs

 \rightarrow mRNAs in P-bodies can move back to the cytoplasmic pool

eIF-4E

P-bodies (mRNA-processing bodies)

Premature Stop Codon (PTC)-containing mRNA

- 1. Recognition of the stop codon as a PTC EJCs and effector proteins (Upf and SMG family)
- 2. Tagging of PTC-containing mRNA **Phosphorylation of the Upf1 effector protein**
- 3. Degradation and/or isolation of the tagged mRNA
 - a) SMG6- and/or SMG5/SMG7-mediated degradation
 - b) Isolation and degradation in P-bodies

