von Willebrand factor: a hemostatic protein

Cécile Denis

INSERM U770 Le Kremlin-Bicêtre, France

Comprendre le monde, construire l'avenir®

University of Ferrara October 19th, 2012

Presentation schedule

- Basic notions about hemostasis
- ✓ Von Willebrand factor: introduction
- ✓ Von Willebrand disease
- Animal models of von Willebrand disease
- The use of hydrodynamic injection to generate new murine models

Presentation schedule

Basic notions about hemostasis

✓ Von Willebrand factor: introduction

✓ Von Willebrand disease

Animal models of von Willebrand disease

The use of hydrodynamic injection to generate new murine models

The major goal of the hemostatic system is to keep the blood in its fluid state in the vascular compartment, while preventing excessive blood loss following vessel injury

Four important steps can be distinguished:

1- Vasoconstriction of the damaged vessel reducing locally the blood flow and limiting the blood loss

The major goal of the hemostatic system is to keep the blood in its fluid state in the vascular compartment, while preventing excessive blood loss following vessel injury

Four important steps can be distinguished:

2- Primary hemostasis initiated by platelet adhesion to exposed subendothelial components and leading to platelet plug formation

The major goal of the hemostatic system is to keep the blood in its fluid state in the vascular compartment, while preventing excessive blood loss following vessel injury

Four important steps can be distinguished:

3- Secondary hemostasis (or blood coagulation) achieving consolidation of the platelet plug by the formation of a fibrin network

The major goal of the hemostatic system is to keep the blood in its fluid state in the vascular compartment, while preventing excessive blood loss following vessel injury

Four important steps can be distinguished:

4- Fibrinolysis inducing elimination of the clot during tissue reparation

The major goal of the hemostatic system is to keep the blood in its fluid state in the vascular compartment, while preventing excessive blood loss following vessel injury

The hemostatic response must be quick, localized and carefully regulated. This process interconnects a series of physiological events involving vessels, blood cells, coagulation factors, coagulation inhibitors and fibrinolytic system.

Hemostasis and von Willebrand factor

Presentation schedule

Basic notions about hemostasis

Von Willebrand factor: introduction

- ✓ Von Willebrand disease
- Animal models of von Willebrand disease
- The use of hydrodynamic injection to generate new murine models

Life-cycle of von Willebrand factor (VWF)

Life-cycle of VWF

VWF biosynthesis

Endothelial cells and megakaryocytes

Multimeric structure of VWF

Life-cycle of VWF

Storage and secretion of VWF

 \checkmark Constitutive secretion: plasma (5 à 10 $\mu g/mL)$ and subendothelium

 \checkmark Regulated secretion: Platelet α granules and Weibel-Palade bodies of endothelial cells

Anti-VWF-TRITC

- \checkmark Rod shaped granules measuring 100 nm in width and 1-5 μm in length
- ✓ Presence of very high molecular weight multimers of VWF
- ✓ VWF is required for Weibel-Palade body formation
- ✓ Contain other proteins: P-selectin, angiopoietin-2, osteoprotegerin, IL-8
- ✓ Exocytosis: thrombin, shear stress, histamin, PMA, ...

Life-cycle of VWF

Regulation of VWF multimer size (1)

ADAMTS13: <u>A D</u>isintegrin <u>And Metalloprotease with ThromboSpondin type 1</u> Repeats, member 13.

Regulation of VWF multimer size (2)

VWF as an ADAMTS13 substrate

- VWF circulating in plasma: NO
- VWF bound to endothelial cells: YES
- VWF bound to platelets in a thrombus: YES

Importance of ADAMTS13-mediated VWF cleavage

Importance of ADAMTS13-mediated VWF cleavage

Normal subject

Deficient ADAMTS13 activity

Life-cycle of VWF

VWF role in platelet adhesion to the subendothelium at high shear rate

Pictures taken by light microscopy of human platelets adhering to subendothelium from rabbit aorta (*Tschopp et al, J Lab Clin Med 1974, 83, 296-300*)

Platelet adhesion and aggregation at high shear rates

(Jackson SP and Schoenwaelder SM, 2003)

Interaction VWF-Factor VIII (FVIII)

Reduced survival of FVIII in the absence of VWF

VWF functional domains

Regulation of VWF function

There are many regulators of VWF function. One of them is related to its conformation

Globular conformation (inactive)

Circulating VWF

- A1 domain is inaccessible for platelet binding
- ADAMTS13 cleavage site in the A2 domain is unavailable

Stretched conformation (active)

VWF immobilized on a surface or submitted to high shear stress

- A1 domain is accessible for platelet binding
- ADAMTS13 cleavage site in the A2 domain is available

Life-cycle of VWF

Clearance of VWF

✓ VWF and the FVIII/VWF complex are targeted to liver and spleen macrophages

- ✓ VWF clearance is strongly influenced by its glycosylation profile
- Endocytosis receptor(s) are only partially identified

Presentation schedule

- Basic notions about hemostasis
- Von Willebrand factor: introduction
- ✓ Von Willebrand disease (VWD)
- Animal models of von Willebrand disease
- The use of hydrodynamic injection to generate new murine models

Classification of VWD

Genetic bleeding disorder

TYPE 1 (50-75% of cases)

 \checkmark Partial quantitative defects, accounting for 70% of the cases

- ✓ Limited bleeding symptoms, normal activity of residual VWF
- Dominant transmission

TYPE 3 or severe (≤ 5% of cases)

 \checkmark Complete deficiency in VWF and strong reduction in FVIII

 Combined defects in primary hemostasis and coagulation leading to severe bleeding symptoms

✓ Recessive transmission

TYPE 2 (20-45% of cases)

✓ Qualitative defects

 \checkmark Four main subtypes (2A, 2B, 2M et 2N) according to the multimeric profile and affected function

✓ Dominant or recessive transmission

VWD Type 2

Abnormal VWF interaction with its ligands

VWD: Epidemiology

✓ Prevalence in the general population
 ≈ 1 p. 100
 (Rodeguiero et al, Blood 1987)

- ✓ Prevalence of symptomatic subjects
 ≈ 1 p. 10 000
 (Joint WHO/ISTH Meeting, London 1998)
- ✓ Prevalence of severe form
 ≈ 0.5 to 5 p. 1 000 000

In France (65 millions inhabitants): 7000 to 8000 symptomatic patients 50 to 100 patients with VWD type 3

Globally, there is a overrepresentation of women and of individuals with blood group O

Hemorrhagic symptoms in VWD

Symptoms	VWD (n=264)	NORMAL (n=500)
Epistaxis	62.5%	4.6%
Menorrhagia	60.0%	25.3%
Bleeding following tooth extraction	51.5%	4.8%
Gum bleeding	34.8%	7.4%
Post-surgical bleeding	28.0%	1.4%

Sylwer et al, Acta Paediatr Scand, 1973

Presentation schedule

- ✓ Basic notions about hemostasis
- ✓ Von Willebrand factor: introduction
- ✓ Von Willebrand disease

Animal models of von Willebrand disease

The use of hydrodynamic injection to generate new murine models

Animal models of VWD

Murine model of VWD

VWF +/+ VWF -/-

- Spontaneous hemorrhage at the abdominal level in 10% of the mutant neonates
- Prolonged bleeding time

VWF -/- mice represent a good model of human severe VWD

(Denis et al, PNAS, 1998, 95: 9524-9529)

In vivo tests of VWF function

Bleeding time: Tail clip assay

- Mouse anesthetized
- Cut 3 mm of the tail extremity with a scalpel
- Immerse tail in 37°C saline
- Measure time to 1st arrest of bleeding
- Stop after 10 min if no spontaneous stop

<u>Thrombosis model: FeCl₃-induced</u> <u>injury in mesenteric vessels</u>

- Mouse anesthetized
- Inject rhodamine 6G IV to label platelets
- Exteriorize mesenteric vessels
- Put mouse under microscope
- Place filter paper saturated with with 7.5% FeCl₃ on vessels for 5 min to induce vessel injury
- Measure time to vessel occlusion

Athenon and Born, 1972

Presentation schedule

- ✓ Basic notions about hemostasis
- ✓ Von Willebrand factor: introduction
- ✓ Von Willebrand disease
- Animal models of von Willebrand disease
- The use of hydrodynamic injection to generate new murine models

Aim of the study

To develop murine models to study VWF structure-function relationships

in vivo

VWF-deficient mice

Hydrodynamic injection

Hydrodynamic injection (1)

In vivo transfection allowing transient expression of a transgene by the liver

A rapid injection of a large volume of plasmid DNA via the tail vein of mice

- Injection volume: 10% of the bodyweight
 - (i.e 2ml for a 20g mouse)
- ✤ Injection time: ~ 5 sec

Hydrodynamic injection (2)

Mechanism

- Exceeding the cardiac output
- Development of high pressure
- Back flow of the solution towards organs connected to the vena cava
- > The liver absorbs most of the injected solution
- > 10-40% of hepatocytes are transfected

Zhang et al, Human Gene Therapy, 1999, 10:1735; Liu et al, Gene Therapy, 1999, 6:1258

Hydrodynamic injection toxicity?

- ✓ Very little, if any, deaths following injection
- Animal growth is not affected in the days following hydrodynamic injection
- Concentration of ions (Na+,K+, CI-), total protein concentration, albumin and bilirubin concentrations are not affected
- Concentration of liver specific enzymes such as alkaline phosphatase and aspartate aminotransferase (AST) remains unchanged
- Concentration of alanine aminotransferase (ALT) is increased 4-20 fold at 1 day post-injection but goes down to baseline within 3 days
- Liver necrosis is apparent in 50% of the mice at 1 day post-injection and affects between 5-10% of hepatocytes
- ✓ Platelet counts drop by 30% at 1 day post-injection

Expression in liver hepatocytes

✓ Injection of 50 µg murine von Willebrand factor (VWF) cDNA in a VWF-/- mouse

✓ Liver isolation 24H after injection

VWF expression is switched from endothelial cells in wild-type mice to hepatocytes in VWF knockout mice injected with mVWF cDNA

VWF expression levels following hydrodynamic injection

- → Injection of 1-100µg of murine VWF cDNA in VWF-/- mice
- → Blood collection 24h after injection
- → ELISA assay to measure VWF plasma levels

Kinetic of expression of VWF after hydrodynamic injection

- → Injection of 50µg murine VWF cDNA in VWF-/- mice
- → Blood collection at different time points after injection

VWF mutants expressed in vivo

Analysis of VWF carrying mutations in its main binding sites

Marx et al, ATVB, 2008, 28, 419

Marx et al, Blood, 2008, 112, 1704

Summary analysis of mutants

Collagen and GPIIbIIIa binding mutants

- Delayed vessel occlusion
- Complete correction of bleeding time

VWF interactions with collagens type I and III and with GPIIbIIIa are more important in the pathological thrombotic process than in the physiological process of hemostasis

Interesting targets for anti-thrombotic therapy

Anti-thrombotic potential of mAbs to VWF

Can human VWF be modified to bind murine GPIb?

- Mutagenesis of single residues potentially involved in the interaction between human VWF and murine GPIb or substitution of larger murine sequences into the A1 domain of human VWF
- ✓ Hydrodynamic injection of the Vwf cDNA variants to VWF -/- mice
- ✓ One day later bleeding time test

In vivo function of VWF chimeras (bleeding time)

Only a chimera containing the entire murine A1 domain was able to correct the bleeding phenotype of VWF -/- mice

Functionality of huVWF/mu-A1 chimera in FeCl₃induced thrombosis model

Hu-VWF/mu-A1 chimera was able to restore thrombus formation in VWF KO mice

Recognition of huVWF/mu-A1 chimera by mAbs to human VWF

Antibodies efficacy in a thrombosis model

- ✓ Hydrodynamic injection of hu-VWF/mu-A1 cDNA to VWF KO mice
- \checkmark 4 days later: IV injection of 100 µg of mAbs 9, 203, 505 or control isotype
- ✓ Platelets labeling by retro-orbital injection of rhodamine 6G
- ✓ Induction of vascular injury in mesenteric vessels by application of FeCl₃

Results Mabs efficacy in a thrombosis model

Antibody	Number of mice reaching venous occlusion	Number of mice reaching arterial occlusion
Control isotype	8 out of 8 tested	8 out of 8 tested
mAb 203 (anti VWF-collagen)	5 out of 8 tested	1 out of 8 tested
mAb 505 (anti VWF-collagen)	4 out of 8 tested	3 out of 8 tested
mAb 9 (anti VWF-GPIIbIIIa)	6 out of 8 tested	3 out of 8 tested

Effect of the mAbs anti VWF was stronger on thrombus formation in arteries than in veins when used preventively

Thrombus growth in arteries of mice pre-treated with anti-VWF mAbs

Summary antibodies study

- A model has been developed allowing to test therapeutic agents targeting human VWF in mouse
- All the antibodies tested inhibiting the interactions of VWF with fibrillar collagen and platelet GPIIbIIIa were able to prevent thrombus formation in mesenteric arteries without affecting the bleeding phenotype of the treated animal.
- Effect of the anti VWF mAbs was stronger on thrombus formation in arteries than in veins.
- Inhibition of the VWF-collagen and VWF-GPIIbIIIa axes is a promising strategy that deserves further investigations (other thrombosis models, other inhibiting agents...).

Type 2B VWD

 \checkmark Characterized by increased VWF-GPIb α binding due to "gain of function" mutations

- ✓ Leads to fluctuating thrombocytopenia and loss of high molecular weight VWF multimers
- ✓ Different mutations lead to variable phenotype

Federici et al, Blood, 2009, 113, 526

Generation of new models of VWD Comparison of two type 2B mutations: R1306Q and V1316M on thrombocytopenia

Blood. 2010;115(23):4870-4877

Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B

*Julie Rayes,¹ *Martine J. Hollestelle,² Paulette Legendre,¹ Isabelle Marx,¹ Philip G. de Groot,² Olivier D. Christophe,¹ Peter J. Lenting,¹ and Cécile V. Denis¹

Comparison of two type 2B mutations: R1306Q and V1316M: Effect on VWF multimer profile

Loss of high molecular weight multimers is associated with type 2B mutations in about 50% of the mice

 The loss of high molecular weight multimers is more pronounced with V1316M mutation

Comparison of two type 2B mutations: R1306Q and V1316M: Effect on platelet aggregates

3 days post-injection

7 days post-injection

Type 2B mice resemble the human phenotype: Impaired hemostasis

ADAMTS13 deficiency worsens type 2B phenotype

Summary murine models of VWD

- Hydrodynamic injection of mutant VWF allows reproduction of human VWD phenotypes
- The technique is sensitive enough to reproduce phenotype subtleties associated with the expression of different mutations
- Quick method to assess causative effect of mutations in the expression of the disease