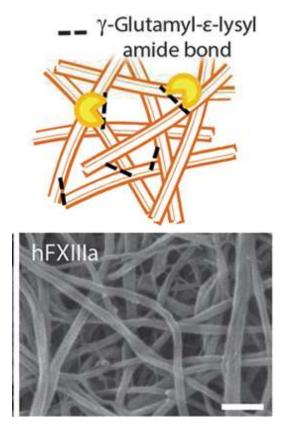
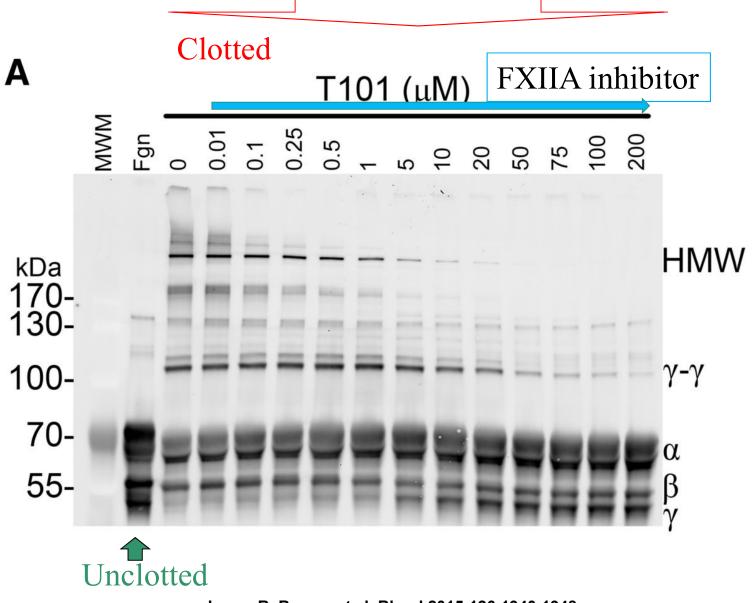

Parte finale coagulazione

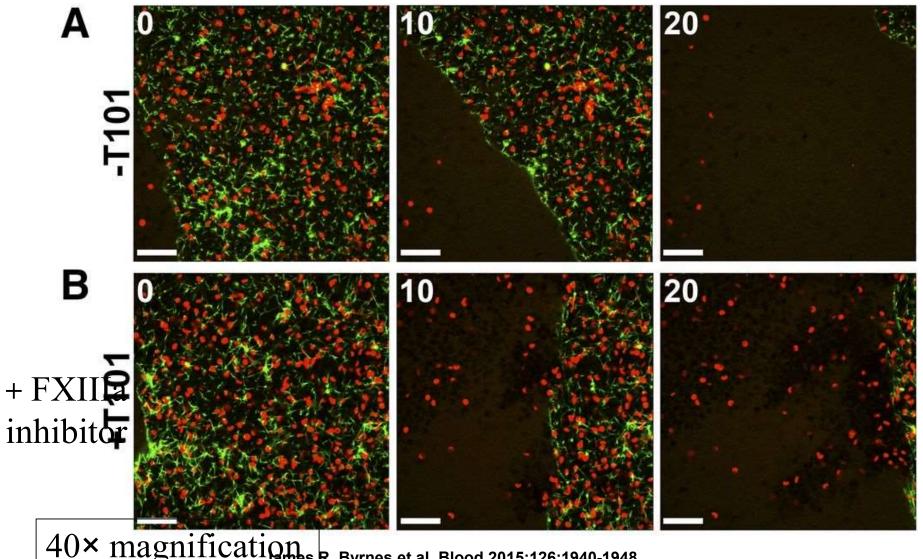
Parte finale coagulazione




PBS

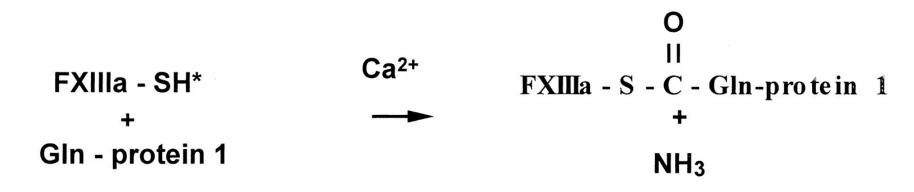
.

Factor XIIIa cross-linking


RBC retention is reduced at concentrations of T101 that inhibit α -chain crosslinking.

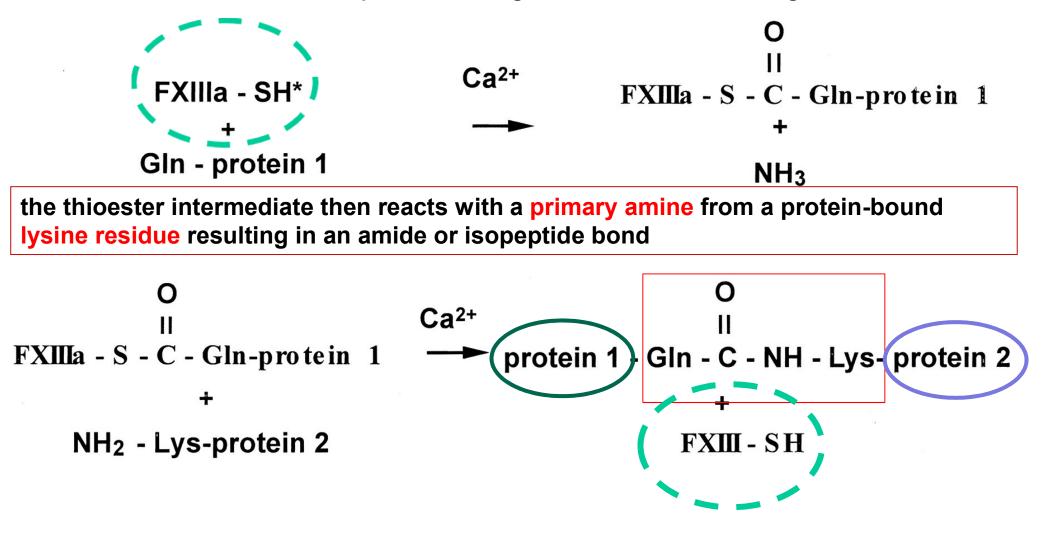
James R. Byrnes et al. Blood 2015;126:1940-1948

Clot formation and contraction in whole blood RED octadecyl- rhodamine -labeled RBCs. GREEN -labeled fibrinogen,. Clot contraction _{Times} (in seconds)



40× magnification R. Byrnes et al. Blood 2015;126:1940-1948 FXIIIa activity mantains RBCs within the clot during clot contraction.

Cross-linking reaction catalyzed by activated factor XIII. Activated factor XIII


first forms a thioester bond with a selected protein-bound glutamine residue, releasing ammonia.

Robert A. S. Ariëns et al. Blood 2002;100:743-754

Cross-linking reaction catalyzed by activated factor XIII.Activated factor XIII first forms a thioester bond with a selected protein-bound glutamine residue, releasing ammonia, and ...

Robert A. S. Ariëns et al. Blood 2002;100:743-754

Table 1.

Factor XIII substrates

Substrate	Cross-linking site		
Fibrin(ogen) y- chain52-54	Gln398, Gln399, and Lys406		
Fibrin(ogen) α- chain58-62	Gln221, Gln237, Gln328, Gln366, and 15 potential lysines from Lys208 to Lys606		
α2-Antiplasmin67-69	GIn2		
TAFI ¹⁵⁰	Gln2, Gln5, Gln292		
PAI-2151 152			
Fibronectin72 73	Gln3		
Collagen72 80			
Von Willebrand factor153 154			
Vitronectin155 156	Gln93		
Thrombospondin ¹⁵⁷			
Factor V158 159			
Actin160 161			

Table 1			
Factor XIII substrates			
Substrate		Substances with which it is cross-linked	Known or potential function
	Fibrin(ogen) y- chain52-54	Itself and α-chain	Clot stabilization
	Fibrin(ogen) α- chain58-62	Itself and γ-chain	Clot stabilization
	α2-Antiplasmin67-69	Lys303 fibrin α-chain	Resistance to fibrinolysis
	TAFI ¹⁵⁰	Fibrin, itself	Resistance to fibrinolysis
	PAI-2151 152	Lys148, Lys230, Lys413 fibrin α-chain	Resistance to fibrinolysis
	Fibronectin72 73	Itself, fibrin, collagen	Migration of cells into the clot; wound healing
	Collagen72 80	Fibronectin, fibrin	Stabilization of extracellular matrix
	Von Willebrand factor153 154	Fibrin, collagen	Platelet adhesion to the clot
	Vitronectin155 156		_
	Thrombospondin ¹⁵⁷	Fibrin	
	Factor V158 159	Fibrin, platelets	Increased thrombin generation at the clot surface
	Actin160 161	Fibrin	Clot retraction, stabilization of the platelet cvtoskeleton

Coagulation factorXIIIa (FXIIIa) catalyzes cross-linking of Gln and Lys residues from many substrates during coagulation

? Identificare «tutti» i substrati del FXIIIa

A proteomic strategy based on a combination of

chromatographic separation

FXIIIa-specific labeling

High performance mass spectrometry.

Preparation of Plasma Samples

The plasma fraction was isolated after centrifugation at 950 rpm for 15 min.

EDTA was added to the plasma sample to a final concentration of 5 mM. Anticoagulant

The plasma was centrifuged at 13200 rpm and filtered through a 0.45- μm filter

Preparation of Plasma Samples

The plasma was centrifuged at 13200 rpm and filtered through a 0.45- μm filter

Filtered applied to a column containing the albumin-binding domain of protein G.

Cromatografia Affinita

Streptococcal protein G is a cell surface receptor protein with a multiple domain structure containing tandem repeats of serum albumin-binding domains

The albumin depleted flow through was collected and dialyzed against 40 mM Tris-HCl, 5 mM EDTA, pH 7.4 (buffer A),

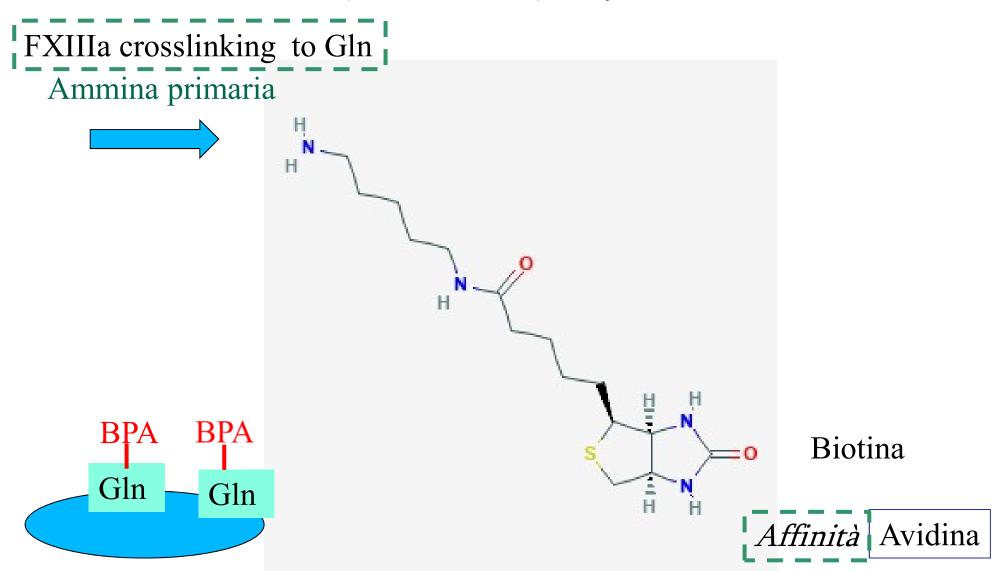
Preparation of PROTEIN Plasma Samples 2

Applied to a 5-ml HiTrapQ column (GE Healthcare)

A strong anion exchange chromatography column for high-resolution, small-scale protein purification

The column was eluted using a linear gradient of NaCl flow rate of 2.5 ml/min.

Eluting fractions were monitored at 280 nm and pooled (five pools).

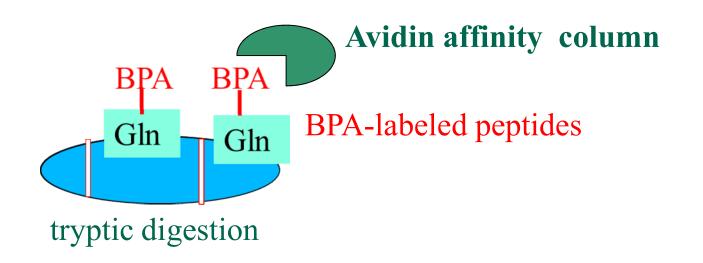

Preparation of PROTEIN Plasma Samples 3

Eluting fractions were monitored at 280 nm and pooled (five pools).

All pools were dialyzed into 20 mM Tris-HCI, 137 mM NaCI, pH 7.4, and concentrated using either Centriprep **centrifugal filters** (Millipore) or Amicon Ultra centrifugal filters (Millipore) (molecular weight **cutoff**, **10 kDa**).

By **SDS-PAGE**, the filtrate did not contain any proteins.

BPA (5-Biotinamido)PentylAmine

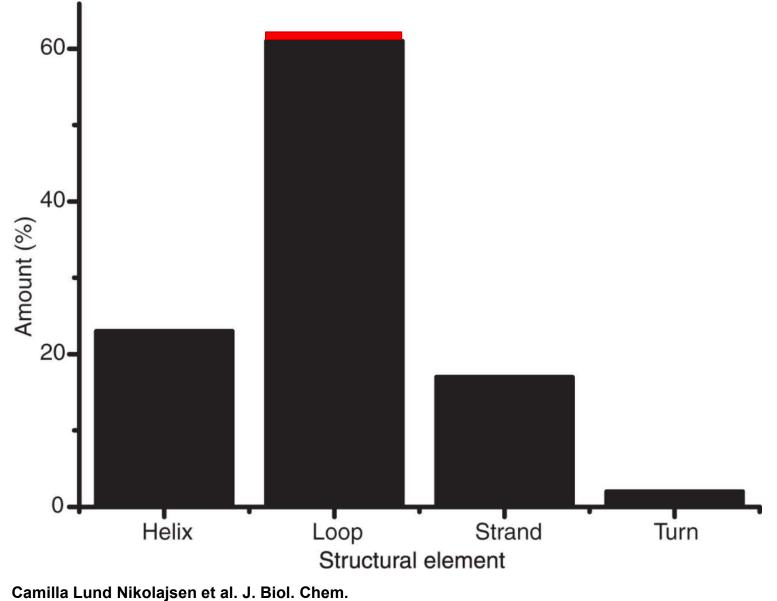

MARCATURA ENZIMATICA (FXIII) PROTEINE PLASMATICHE

MARCATURA ENZIMATICA (FXIII) PROTEINE PLASMATICHE

0. 3 mg of protein from each of the five HiTrapQ pools was incubated with FXIIIa in the presences of BPA (5-Biotinamido)PentylAmine) for 30, 60, and 180 min

Following tryptic digestion BPA-labeled peptides were obtained

Avidin affinity column - BPA-labeled peptides were eluted using 100 mM glycine, pH 2.8



Identified by LC-MS/MS Spettrometria massa.

PDB e UniProt database = identificazione peptidi e e proteine

Secondary structure localization of reactive Gln residues (n=389)

IBC

2014;289:6526-6534

IDENTIFICAZIONE PEPTIDI

Identified by LC-MS/MS Spettrometria massa.

The identified substrates are listed according to the total number of spectral counts.

The number of spectral counts was used to evaluate the **level** of BPA incorporation **over time**

U for up-regulated or D for down-regulated. No regulation is indicated by N

	Accession number		Sites	Spectral counts			Clot ID	
				30 min	60 min	180 min		
1	P02671	Fibrinogen α-chain	8	U	N	N	×	-
2	P01023	α ₂ -Macroglobulin	15	U	U	N	×	1
3	P00488	Coagulation factor XIII A chain	8	U	U	N	×	
4	P00747	Plasminogen	20	U	U	N	×	1
5	P00734	Prothrombin	11	U	υ	N	×	1
6	P19823	Inter-α-trypsin inhibitor heavy chain H2	16	U	U	N	×	
7	P06727	Apolipoprotein A-IV	18	U	υ	U	×	Ĩ
8	P01024	Complement C3	27	U	U	N	×	-
9	P02787	Serotransferrin	10	U	U	U	×	
10	POCOL5	Complement C4-B	19	U	U	N		[
11	P19827	Inter-α-trypsin inhibitor heavy chain H1	11	U	Ν	N	×	
12	P10909	Clusterin	5	U	U	U	×	I,
13	P02679	Fibrinogen y-chain	5	U	N	N	×	-
14	P08697	α ₂ -Antiplasmin	11	U	υ	U	×	1
15	P07360	Complement component	7	U	U	N		ſ

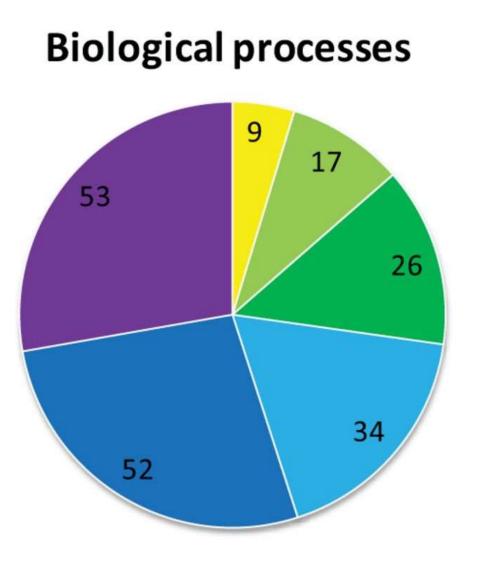
Sites = number of reactive Gln residue

Clot ID indicates that the substrate was cross-linked to the plasma clot.

U for up-regulated/D for down-regulated. No regulation is indicated by N if the change is less than 30%.

Verifica presenza peptidi nel coagulo

The plasma fraction was recalcified and allowed to clot for 2h at37°C.


To remove non covalently bound proteins, the clot was washed three times 1) 20mM Tris-HCl, 2 M NaCl, 2) 6 M guanidine HCl and 3) water.

The sample was boiled in 0.1% SDS and separated by SDS-PAGE.

Covalently cross-linked proteins were retained in the stacking gel and could be collected after.

The sample was digested with trypsin for16h at 37°C.

The tryptic peptides were collected and micropurified, and were analyzed by mass spectrometry/ion chromatography

- Extracellular matrix organization
- Cell adhesion
- Proteolysis
- Others
- Response to wounding

Immune system process

Camilla Lund Nikolajsen et al. J. Biol. Chem. 2014;289:6526-6534

JBC