Gene Targeting is a Precise
Recombination Event

Definition: Gene targeting is the replacement of
genomic DNA with exogenous DNA by homologous
recombination.

Commonly Used For Experimental Purposes in
certain cell types (yeast, murine embryonic stem

In addition to its usefulness for mammalian somatic cell
genetics, it could also be an ideal way to treat ge  netic
diseases.



Two Components for
DSB-Induced Homologous
Recombination

. Repair Substrate: Fragment of DNA that serves as

template for repair of DSB by homologous
recombination.

. Nuclease: Enzyme to create DSB in target gene.



Endogenous Genes Do Not
have Recognition Sites for
Homing Endonucleases

1. Modify Ho Endonucleases to Recognize
new target sites.



Molecular mechanisms for new therapeutic approaches

Gene Editing (Correction/Insertion):

Zinc Finger Nuclease
TALE Nuclease

CRISPR/Cas9
Without nuclease




Endogenous Genes Do Not
have Recognition Sites for
Homing Endonucleases

Use Zinc Finger Nucleases



Zinc
finger
proteins

DHA binding

praotein families
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Interazione in tandem con il DNA



Interazione aminoacidi / basi del DNA

1 |
5 3

[ A I
3 4 5
Cross-

strand ""*{---



Interazione aminoacidi / basi del DNA

il o 5 IF4
RN ﬁ@%@
TI'E AT

A 12354 114 3508 172388
BEDETR RSDHTT RESDEKHR




ZF Uno strumento versatile

ZFA

Zinc Finger Activators

ZFN

Zinc Finger Nucleases

Targeted activation of specific genes

Targeted chromosomal cleavage
and mutagenesis (7, 79, 80)

Turn-on transcription (27-29, 31)

Correction of a genetic defect by
stimulating homologous
recombination (8,9, 11)

ZFPs

Custom-designed Zinc Finger Proteins

ZFM
Zinc Finger Methylases

ZFR

Zinc Finger Repressors

Targeted repression of specific genes

Gene silencing by targeted promoter
methylation

Turn-off transcription (33-35)

Turn-off gene expression (36, 37)




Zinc Finger Nuclease ZFN

Dimerization of Fokl domains is required for its
DNA binding-dependent endonuclease activity



Zinc Finger Nucleases as Potential Reagents to
Create Double-Strand Breaks in Normal Genes

MNucleotide spacer
between ZFN binding sites

C terminus

ZFN binding site

FokI nuclease
domain (Fn)

FokI nuclease
domain (Fn)

|
ZFHN binding site

& terminus

Amino acid
Finger1 Finger2 Finger 3 linker
| ZFN finger domain |
|
ZFN full site

Initially developed by labs of Srinivasan Chandrase  garan (Johns Hopkins)
and Dana Carroll (Univ. Utah)



Table 1 Potential applications of zinc finger nucleases
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zinc finger protein (ZFP) engineering

 Two approaches were originally used for zinc
finger protein (ZFP) engineering

expand the DNA recognition code and create zinc

fingers that bind desired base triplets

e 1 a combinatorial approach using libraries of
zinc fingers displayed on the surface of
filamentous phage that were selected against
target DNA sequences

e 2 arational design approach that used
databases to predict rules for amino acid—base
Interactions.



Empiric Design of
Zinc Finger
Nucleases

(assembly
approach)

From Liu et al. (2002)
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Highly efficient endogenous human gene
correction using designed zinc-finger
nucleases

Fyodor D. Urnov', Jeffrey C. Miller’, Ya-Li Lee', Christian M. Beausejour’, Jeremy M. Rock’, Sheldon Augustus’,
Andrew C. Jamieson', Matthew H. Porteus”, Philip D. Gregory' & Michael C. Holmes'



Targeted gene knockout In
mammalian cells by using
engineered zinc-finger nucleases



Schema of DSB-Induced Gene Conversion

Undamaged DNA (Allele S)

DSB Created (spontaneous

or induced, e.g. by ZFN )

Strand Invasion into Undamaged

Homologous DNA (Allele A)

In gene targeting exogenous DNA serves as

homologous DNA donor.

Repairing of original strands of DNA. Gaps

filled by DNA polymerase and nicks sealed

by DNA ligase.

Conversion of Blue Allele("S"”) into Red

Allele (“A") in region of DSB



Homology-directed ZFN-driven homology-
repair: directed repair:

X-ray-induced DSB ZFN-induced DSB

Sister chromatid ? Donor DNA (plasmid)
-
-



Gene Targeting with Zinc Finger
Nucleases to GFP

Fn“ > GFPZF2

5’ acC atC ttC ttc aag Gac Gac Ggc aac stop-Sce site tac
3 tgGtaG aaG  aag ttc Cgc Ctg Ccqg ttc

GFPZF1 \/Fn
Fingerl Finger2 Finger3

GFPZFN-1 QSSHLTR TRGNLVR QSGNLAR
(9gt) (gat) (gaa)

GFPZFN-2 DRSHLTR DRSNLTR DRSNLTR
(9gc) (gac) (gac)



Gene Targeting with Zinc
Finger Nucleases to GFP
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Cells carrying a mutated GFP reporter were transiently transfected
with a donor plasmid carrying a fragment of wild-type GFP (left
column), orthe donor plasmid and the ZFNs (right column).

Donor only Donor + ZFNs

Brightfield Brightfield
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design zinc finger nucleases to
stimulate gene targeting in a gene
that causes human disease

Sangamo Biosciences (Richmond, CA)
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Human Interleukin-2 Receptor
Common Gamma Chain Deficiency
(IL2RG)

Part of Receptor Complex for IL-2, IL-4, IL-7, IL -9, IL-15, IL-21. ..

On X-chromosome

Mutations in which are the most common cause of S  CID (severe combined
immunodeficiency)

-25% of mutations lie in Exon 5.

Selective Advantage for corrected cells.

Treatment
-Bone Marrow Transplantation
. Allogeneic (sibling)
: Haploidentical (parent)
-Gene Therapy
. Alain Fischer trial in France
. Ooops, leukemia.



IL2Rg gene and its mutations
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ZFN Gene Correction
at the IL2RG gene

S'CTACACGTTTCGTGTTCGGAGCCGCTTTAACCC TGCTC 3’
3 GATGTGCAAAGCACAACTCGGCGAFRFGGGTGAGACACCTTCACGAG ¥
IL2ZRG ZFN-L

GFP Gene Targeting Reporter for IL2RG ZFNs

S GFP IL2RG site | Sce site 3’ GFP

T

Target site of GFP ZFNs




Stimulation of Gene Targeting Using ZFNs
for the IL2RG Gene
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IL2RG ZFN-R ZFNs



Selection/optimization of ZNF
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Selection/optimization of ZNF
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Selection/optimization of ZNF
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GFP Positive Cells per
Million Transfected Cells

5000

Optimization of IL2RG ZFN-L
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GFP Positive Cells per
Million Transfected Cells

Optimization of cyc ZFN-R

4420

2943 2940
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Experimental Design to
Detect Targeting at
Endogenous IL2RG Locus

. Transfect K562 cells with IL2RG ZFNs with
repair substrate that contains BsrBlI
polymorphism.

. Isolate and expand individual clones
individual clones

. Harvest genomic DNA from individual clones.

. Analyze genomic DNA for BsrBl
polymorphism.
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Cray 4 : Transfection
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Targeted gene addition into a specified location
In the human genome using designed zinc
finger nucleases Moehle PNAS 2007

A precisely placed double-strand break induced by e ngineered zinc finger
nucleases (ZFNs) can stimulate integration of long DNA stretches into a
predetermined genomic location, resulting in high-e fficiency site-specific
gene addition.

Using an extrachromosomal DNA donor carrying a 12-b p tag, a 900-bp ORF, or
a 1.5-kb promoter-transcription unit flanked by loc us-specific homology
arms, we find targeted integration frequencies of 1 5%, 6%, and 5%,
respectively, within 72 h of treatment, and  with no selection for the desired
event.

The integration event occurs in a homology-directed manner and leads to the
accurate reconstruction of the donor specified geno type at the endogenous
chromosomal locus, and hence presumably results fro m synthesis-
dependent strand anneallng repair of the break usin g the donor DNA as a
template.

This site-specific gene addition occurs with no mea surable increase in the rate
of random integration. Remarkably, we also find tha  t ZFNs can drive the
addition of an 8-kb sequence into an endogenous loc us at a frequency of
6%, also in the absence of any selection.

Surprising versatility of the specialized polymerase machinery involved in
double-strand break repair

Powerful approach to mammalian cell engineering
Possibility of ZFN-driven gene addition therapy for human genetic disease.



Experimental outline and a schematic
of the process whereby a ZFN-
induced DSB is repaired by using an
extrachromosomal donor as a
template

A Day 1:Introduce ZFNs and Donor

P
L

1ZFN-induced DSB
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Culture cells 72 hrs in normal medium
without selective agent

v

PCR-based measurements of ZFN-driven
tag integration frequency into the IL2R
locus
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BDNA: neg. ZFNs donor 2oni>:
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15%

08w

PCR products were digested with Stul

Day 4: Harvest DNA; analyze tag frequency

—_—— —Aﬁ S[u]Tag _—— —_— -




Selettivita e tossicita



the inter-domain linker as a major
determinant of target site selectivity.
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oF Daa .H..HEG Ve
0 Qaa .H..H QLV. .
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4L 4aa .H. .HLGGS QLV . .
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the last conserved histidine in the third zinc-finger (F3)



the inter-domain linker as a major
determinant of target site selectivity.
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Mol Ther. 2009;17(1):104-11



Continuous Expression of ZFNs causes Cytotoxicity

293T cells co-transfected with pEGFP and ZFN expression vectors
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Binding specificity of ZF
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“target site composition” and
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Targeting albumin supports production of therapeuti

c levels of FVIII and functional

correction of hemophilia A phenotype.
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Sharma et al.
Blood 2015



/ZFN vectors and Indels at ZFN target
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albumin gene (intron 1) targeting strategy

Saline

AAVE-ZFN

Parental b W S S _— — -

Cleaved > . -

%Indels 16 12 14 17 14 0

Cel | nuclease assay from liver DNA measuring ZFN-induced indels within
albumin intron 1.
Lanes represent individual mice at day 7 after AAV8-ZFN treatment.

Rajiv Sharma et al. Blood 2015;126:1777-1784 f Ty

©2015 by American Society of Hematology



Targeting albumin supports production of therapeuti c levels of FVIII and functional
correction of hemophilia A phenotype.

Albumin genomic locus

1. ZFN cleavage

2. Donor targeting via

Targeted albumin locus

NHEJ 1
OR

HOR _{~

Q2

— ”
e— partial cDNA (e.g. hF9, hF8)

Intron 1

3. mRNA “fusion transcript”
generated through splicing

mRNA

S N N
N .
¢ L Hormokogy
! partial cDNA (e.g. hF9, hF8) Exon 2 l—
/S

Alb Exon 1 partial cDNA (e.g. hF9, hF8)

Sharma et al.
Blood 2015



Targeting albumin supports production of therapeuti c levels of FVIII and functional correction
of hemophilia A phenotype.

Rajiv Sharma et al. Blood 2015;126:1777-1784
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Targeting albumin supports production of therapeuti c levels of FVIII and functional correction
of hemophilia A phenotype.

Rajiv Sharma et al. Blood 2015;126:1777-1784
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11 weeks after AAV administration
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TRIAL CLINICI

Company Transgene Vector
Sangamo Codon optimized FIX AAV6/Zinc-finger— Study has US Food and Drug Administration approval
Bioscience mediated targeted
(SB-FIX) integration into the

albumin locus in
hepatocytes




5.

Future Directions

Design ZFNs to other target genes.

Develop efficient method to make specific
ZFNs that recognize a broad range of
sequences.

Refine ZFNs for use in primary cells, including
stem cells.

Assess possible induction of genomic
rearrangements by ZFNs.

I. Eliminate
Develop as a therapeutic tool.



