La fosforilazione ossidativa nel mitocondrio

Mutations in mitochondrial disease

	subunit genes	MTND4[120] MTND2[121] MTND3[122] MTND4[123] MTND4L[124] MTND5[125] MTND6[126]	-	MTCYB[127]	MTCO2[129] MTCO3[130]	MTATP6[131] MTATP8[132]
bold = ge with mut	Nuclear structural subunit genes nes ations	NDUFS1[133] NDUFS2[134] NDUFS3[135] NDUFS4[136] NDUFS5 NDUFS6[137] NDUFS4[138] NDUFS8[139] NDUFA1[140] NDUFA2[141] NDUFA3 NDUFA5 NDUFA6 NDUFA7 NDUFA8 NDUFA9[142] NDUFA10[143] NDUFA11[21] NDUFA10[143] NDUFA11[21] NDUFA12[144] NDUFA13[145] NDUFAB1 NDUFV1[146] NDUFV2[147] NDUFV3 NDUFB1 NDUFB2 NDUFB3[148] NDUFB4 NDUFB5 NDUFB6 NDUFB7 NDUFB8 NDUFB9[149] NDUFB10 NDUFB11[150] NDUFC1 NDUFC2	SDHA[25] SDHB[151] SDHC SDHD[152]	UQCRB[153] UQCRC1 CYC1[156] UQCRC2[154] UQCRFS1 UQCRH UQCR4 UQCR10 UQCR11	COX4[157] COX5A COX5B COX6A[57] COX6B[158] COX6C COX7A COX7B[159] COX7C COX8[160]	ATP5A1[76] ATP5B ATP5C1 ATP5D ATP5E[161] ATP5F1 ATP5G1 ATP5G2 ATP5G3 ATP5H ATP5I ATP50 ATP5J ATP5J2 ATP5L ATP5L2
	Assembly factor and ancillary protein genes	NDUFAF1[162] NDUFAF2[163] NDUFAF3[164] NDUFAF4[165] NDUFAF5[166] NDUFAF6[167] NDUFAF7 FOXRED1[168] ACAD9[30] ECS/T NUBPL[168] TMEM126B[28, 37] TIMMDC1 C17orf89	SDHAF1[41] SDHAF2 SDHAF3 SDHAF4	BCS1L[49] LYRM7[169] UQCC1 UQCC2[170] UQCC3[171] TTC19[172] PTCD2	COA1 COA3[173] COA4 COA5[174] COA6[175] COA7 COX10[176] COX11 COX14[177] COX15[178] COX16 COX17 COX18 COX19 COX20[179] SCO1[180] SCO2[181] SURF1[182] PET117 LRPPRC[183] PET100[184] CEP89[185] TACO1[186] OXA1L APOPT1[187] NDUFA4[53] FASTKD2[188]	ATPAF1 ATPAF2[189] TMEM70[58]

Programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci

Lentiviral delivery of Cas9 and sgRNA provides efficient depletion of target genes

synthetic single-guide RNA (sgRNA) targeted to specific coding regions of genes

programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci

Lentiviral expression vector for Cas9 and sgRNA (lentiCRISPR)

ability to simultaneously deliver Cas9 and sgRNA through a single vector enables application to any cell type of interest

puro, puromycin selection marker; psi+, psi packaging signal; RRE, rev response element; cPPT, central polypurine tract; EFS, elongation factor-1α short promoter; P2A, 2A self-cleaving peptide; WPRE, posttranscriptional regulatory element

pooled lentiCRISPR library sgRNAs targeting exons of 18,080 genes in the human genome with an average coverage of 3 to 4 sgRNAs per gene GeCKO library design for genome-scale negative selection screening Design of sgRNA library for genome-scale knockout of coding sequences in human cells

pooled lentiCRISPR library sgRNAs targeting exons of 18,080 genes in the human genome with an average coverage of 3 to 4 sgRNAs per gene

Ophir Shalem et al. Science 2014;343:84-87

GeCKO library design and application for genome-scale negative selection screening

GeCKO library design and application for genome-scale negative selection screening

sgRNAs per gene

How to model Mitochondrial disease

Genome-scale Cas9-mediated knockout screen during states of mitochondrial dysfunction.

Mitochondrial disease was modeled with the addition of the complex III inhibitor antimycin (moderate disease) addition of antimycin and removal of pyruvate (severe disease).

MAAAS

Genome-scale Cas9-mediated knockout screen during states of mitochondrial dysfunction.

cells were infected with the genome-scale Cas9-mediated knockout library 3 conditions U untreated, M moderate disease, S severe disease Samples were taken at a pretreatment time point and after 3 weeks of selection Genome-scale Cas9-mediated knockout screen identifies VHL inhibition as protective during states of mitochondrial dysfunction.

enrichment of sgRNAs in severe disease S relative to pretreatment conditions U

Isha H. Jain et al. Science 2016;352:54-61

vhl KO activates the HIF response in zebrafish embryos and alleviates death caused by RC inhibition.

Chronic hypoxia extends life span and alleviates disease in a mouse model of Leigh syndrome (KO) whereas chronic hyperoxia exacerbates disease.

mouse model of Leigh syndrome(KO) Ndufs4 -/- NADH:ubiquinone oxidoreductase subunit S4

Isha H. Jain et al. Science 2016;352:54-61

Published by AAAS

Fig. 5 Chronic hypoxia extends life span and alleviates disease in a mouse model of Leigh syndrome (KO) whereas chronic hyperoxia exacerbates disease.

mouse model of Leigh syndrome (KO) Ndufs4 -/- NADH:ubiquinone oxidoreductase subunit S4

Isha H. Jain et al. Science 2016;352:54-61

Breathing 11% O2 in late-stage neurological disease reverses pathological inflammation in the brains of Ndufs4 KO mice.

KO mice breathing 21% O2 up to 55 d and then breathing 11% O2 to 160 d.

Michele Ferrari et al. PNAS 2017;114:E4241-E4250

The Function of VHL and pVHL Protein

- Helps to regulate and destroy the alpha subunit of hypoxia-inducible factor or HIF-1
- HIF-1 is a transcription factor that has a myriad of target genes
- Products are involved in angiogenesis, erythropoiesis, energy metabolism, glucose transport

Normal VHL Function

HIF transcription factor

von Hippel-Lindau (VHL)

Patients with a germline mutation in von Hippel-Lindau (VHL) develop renal cell cancers and hypervascular tumors of the brain, adrenal glands, and pancreas as well as erythrocytosis

These phenotypes are driven by aberrant expression of HIF2 α , which induces expression of genes involved in cell proliferation, angiogenesis, and red blood cell production

Inactivation of vhl in zebrafish (vhl–/–) led to constitutive activation of HIF2 α