1   2   3   4  
Solving Decision Theory Problems with Probabilistic Answer Set Programming
Azzolini, D.; Bellodi, E.; Kiesel, R.; Riguzzi, F.     details >>
THEORY AND PRACTICE OF LOGIC PROGRAMMING
Vol. -, No. 1, pp: 1-31, Anno: 2025

Symbolic Parameter Learning in Probabilistic Answer Set Programming
Azzolini, D; Gentili, E; Riguzzi, F     details >>
THEORY AND PRACTICE OF LOGIC PROGRAMMING
Vol. 24, No. 1, pp: 698-715, Anno: 2025

Fast Inference for Probabilistic Answer Set Programs Via the Residual Program
Azzolini, D.; Riguzzi, F.     details >>
THEORY AND PRACTICE OF LOGIC PROGRAMMING
Vol. 24, No. 1, pp: 682-697, Anno: 2025

A semantics for probabilistic hybrid knowledge bases with function symbols
Alberti, M.; Lamma, E.; Riguzzi, F.; Zese, R.     details >>
ARTIFICIAL INTELLIGENCE
Vol. 346, No. 1, pp: 1-28, Anno: 2025

Machine Learning Approaches for the Prediction of Gas Turbine Transients
NGUEMBANG FADJA, Arnaud; Cota, Giuseppe; Bertasi, Francesco; Riguzzi, Fabrizio; Losi, Enzo; Manservigi, Lucrezia; Venturini, Mauro; Bechini, Giovanni     details >>
JOURNAL OF COMPUTER SCIENCE
Vol. 20, No. 5, pp: 495-510, Anno: 2024

Probabilistic Answer Set Programming with Discrete and Continuous Random Variables
Azzolini, D.; Riguzzi, F.     details >>
THEORY AND PRACTICE OF LOGIC PROGRAMMING
Vol. -, No. 1, pp: 1-32, Anno: 2024

Quantum algorithms for weighted constrained sampling and weighted model counting
Riguzzi, F.     details >>
QUANTUM MACHINE INTELLIGENCE
Vol. 6, No. 2, pp: 73-1-73-24, Anno: 2024

Integration between constrained optimization and deep networks: a survey
Bizzarri, Alice; Fraccaroli, Michele; Lamma, Evelina; Riguzzi, Fabrizio     details >>
FRONTIERS IN ARTIFICIAL INTELLIGENCE
Vol. 7, No. 1, pp: 1414707-1-1414707-13, Anno: 2024

Lifted inference for statistical statements in probabilistic answer set programming
Azzolini, D.; Riguzzi, F.     details >>
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING
Vol. 163, No. 1, pp: 109040-1-109040-17, Anno: 2023

Rapid Assessment of COVID-19 Mortality Risk with GASS Classifiers
Greco, Salvatore; Salatiello, Alessandro; Fabbri, Nicolò; Riguzzi, Fabrizio; Locorotondo, Emanuele; Spaggiari, Riccardo; DE GIORGI, Alfredo; Passaro, Angelina     details >>
BIOMEDICINES
Vol. 11, No. 3, pp: 831-1-831-18, Anno: 2023

Symbolic DNN-Tuner
Fraccaroli, M.; Lamma, E.; Riguzzi, F.     details >>
MACHINE LEARNING
Vol. 111, No. 2, pp: 625-650, Anno: 2022

Probabilistic Logic Models for the Lightning Network
Azzolini, D.; Riguzzi, F.     details >>
CRYPTOGRAPHY
Vol. 6, No. 2, pp: 29-1-29-21, Anno: 2022

Prediction of Gas Turbine Trip: A Novel Methodology Based on Random Forest Models
Losi, Enzo; Venturini, Mauro; Manservigi, Lucrezia; Ceschini Giuseppe, Fabio; Bechini, Giovanni; Cota, Giuseppe; Riguzzi, Fabrizio     details >>
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER
Vol. 144, No. 3, pp: 031025-1-031025-13, Anno: 2022

A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas
Rocchi, A.; Chiozzi, A.; Nale, M.; Nikolic, Z.; Riguzzi, F.; Mantovan, L.; Gilli, A.; Benvenuti, E.     details >>
APPLIED SCIENCES
Vol. 12, No. 2, pp: 583-1-583-17, Anno: 2022

Symbolic DNN-Tuner: A Python and ProbLog-based system for optimizing Deep Neural Networks hyperparameters
Fraccaroli, M.; Lamma, E.; Riguzzi, F.     details >>
SOFTWAREX
Vol. 17, No. 1, pp: 100957-1-100957-7, Anno: 2022

Abduction with probabilistic logic programming under the distribution semantics
Azzolini, D.; Bellodi, E.; Ferilli, S.; Riguzzi, F.; Zese, R.     details >>
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING
Vol. 142, No. 1, pp: 41-63, Anno: 2022

A semantics for Hybrid Probabilistic Logic programs with function symbols
Azzolini, D.; Riguzzi, F.; Lamma, E.     details >>
ARTIFICIAL INTELLIGENCE
Vol. 294, No. 1, pp: 103452-1-103452-23, Anno: 2021

Probabilistic inductive constraint logic
Riguzzi, Fabrizio; Bellodi, Elena; Zese, Riccardo; Alberti, Marco; Lamma, Evelina     details >>
MACHINE LEARNING
Vol. 110, No. 4, pp: 723-754, Anno: 2021

Identification of natural selection in genomic data with deep convolutional neural network
Nguembang Fadja, A.; Riguzzi, F.; Bertorelle, G.; Trucchi, E.     details >>
BIODATA MINING
Vol. 14, No. 1, pp: 51-1-51-18, Anno: 2021

Nonground Abductive Logic Programming with Probabilistic Integrity Constraints
Bellodi, E.; Gavanelli, M.; Zese, R.; Lamma, E.; Riguzzi, F.     details >>
THEORY AND PRACTICE OF LOGIC PROGRAMMING
Vol. 21, No. 5, pp: 557-574, Anno: 2021

1   2   3   4