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Chapter 1

Modules

1.1 Homomorphisms and Quotients

Definition 1.1. Let R be a ring. A left R-module is a pair (M,%uy) where
(M+,0) is an abelian group and

pw="uy  Rx M — M

18 a map such that, setting
a-z=p((ax)),
the following properties are satisfied :
Mia-(z+y)=a-z+a-y;
M2 (a+b)-x=a-x+b-x;
M3 (a-gb)r=a-(b-x);
My 1g-xz=x

for every a,b € R and every x,y € M.
In this case we will say that M is a left R-module. The notation g M will be used
to mean that M is a left R-module.

Definition 1.2. Let R be a ring and let R°P denote the opposite ring of R. A right
R-module is a left R°?-module i.e. it is a pair (M, ') where (M+,0) is an abelian
group and

W=pl  Rx M — M

18 a map such that, setting

MI"a-(x4+y)=a-x+a-y;
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M2 (a+b)-z=a-x+b-x;
M3 (a g b)-x=0a-(b-x);

M} 1gp-x==x

for every a,b € R and every x,y € M.
In this case we will say that M is a right R-module. The notation My will be used
to mean that M is a right R-module.
Note that

a'Ropb:b‘Ra

so that M3’ rewrites as
(a-gpb)-x=(b-pra)-z=0b-(a-x)

For this reason, if M is a right R-module, one usually writes x - a instead of a - x,
for every a € R, x € M. With this notation the conditions M1°), M2’), M3’), M4’)
may be rephrased as follows:

M1” (z+y)-a=x-a+y-a;
M2” x-(a+b)=z-a+z-b;
M3” x-(a-gb)=(x-a)-b;
M7 x-1gp = .

The abelian group M is called the underlying additive group of the left (
resp. right) R-module M.
Given x,y € M we will write x — y instead of x + (—y).

Remark 1.3. If R is a commutative ring, then every left R-module s, in a natural
way, a right R-module, and conversely.
In fact, let M be a left R-module, given a,b € R, x € M, we have

a-(b-zx)=(a-gb)x=(b-ga)x=>-(a-x).
In the same way, if M is a right R-module, given a,b € R, x € M, we have:
(x-a)-b=x(a-gb)=x-(b-ra)=(x-b)-a.

Therefore, when R is a commutative ring, we will, in general, simply say that M s
an R-module.

Examples 1.4.
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Let G be an abelian group with additive notation. G becomes, in a natural
way, a Z- module by defining, for everyn € Z and x € G,

n-r=ne

where nx denotes the nth power of x in the additive notation.

Let A be a ring, R be a subring of A. A becomes a left (resp. right) R-module
by setting, for everyr € R, a € A, ra ( resp. ar) to be the product of the
element r € R C A with the element a € A ( resp. of the element a € A with
the element r € R C A) in the ring A.

In particular the rings R, R[X], R[[X]] may be considered as left (resp. right)
R-modules.

If D is a commutative domain, Q (D) is a D-module.

More generally, let f : R — A be a ring homomorphism. Any left A-module
(M, A,uM) inherits the structure of a left R-module by setting

Brng ((r,2)) = s ((F (), 2)) for everyr € R and x € M

1.€.
r-x=f(r) -z for everyr € A and x € M.

This module is often denoted by f. (M) and called the R-module obtained by
restriction of the ring of scalars from A to R.

If R is a division ring and M is a left (resp. right) R-module we say that M

is a left (resp. right) vector space over R. If R is a field, we simply say that
M is a vector space over R.

Proposition 1.6. Let R be a ring, M a left R-module.
Then, for every a,b € R and for every x,y € M we have :

1.

2

3.

S

a0y =0,

Ogp -2 =0,
(—a)-z=—-a-z=a-(—x);(—a) - (—x)=a-x;
a-(r—y)=a-x—a-y;
(a—b)-z=a-z—b-x.

n(a-z)=(na)-x=a-(nx) for everyn € Z,a € R,z € M.
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Proof. 1) Let us start from : a-0y; = a (0ps + 0p7) = a-0pr+a-0py. Adding — (a - Opy)
to both sides we find : 0p = a - 0.

2) First we look at the obvious : Og -z = (0g + Ogr) x = Og - = + O - . Adding
— (x - Og) to both sides we find : 0p;y = Og - .

3) From (—a) z + ax = ((—a) + a)x = Og - & = 0)y we obtain that (—a)z = —ax.
In a similar way it follows from

ar+a(—z) =a(x+ (—z)) =a -0y =0y
that a (—x) = —az. Moreover : (—a) (—z) = —(a(—2)) = —(—(az)) = ax.
4) We calculate:
ol —y) = al + (~9)) = az + a(—y) = az + (~(ay)) = az — ay.
5) We calculate:
(a—b)z = (a+(=b)x =ar + (=b) v = ax + (—bzr) = ax — bx.
6) It is easily proved by Induction. O

1.7. Let M be an abelian group and let A = End(M) denote the ring of endomor-
phisms of M. Then M becomes a left A-module by setting

frx=f(x) every f € A and x € M.

In fact,note that

(frag)e=(fog)e=(fog)(x)=f(g9(x))=[(g-x) forevery f,g€ A andx € M.

Now let ¢ : R — End(M) be a ring morphism. Then, in view of Example 3 in
2, we can consider the left R-module @, (M) i.e. M becomes a left R-module by
setting

r-m = (r)(m) for allr € R and for all m € M.

Conversely let M be a left R-module and let End(M) denote the ring of endomor-
phisms of the abelian group underlying the R-module structure of M. For every

r € R consider the map
t,: M — M
m = r-m’

Clearly t,. € End(M) and the map

v: R — End(M)
ro = i

1 a ring morphism. In this way we get:

Theorem 1.8. Let R be a ring and let M be an abelian group. The ring morphisms
¢ : R — End(M) correspond bijectively to the left R-module structures on M.
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Proof. Using notation as above, given a ring morphisms ¢ : R — End(M) we have:

P(r)(m) =r-m = o(r)(m).
Conversely, if M is a left R-module we have: r-m = ¢(r)(m).0 O

To get an analogous result for right R-modules we have to consider the ring
End(M)° which has the same addition as End(M) but where multiplication is
defined by

f-g9=gof

Rephrasing the foregoing theorem we obtain :

Theorem 1.9. Let R be a ring and let M be an abelian group. The ring morphisms
¢ : R — End(M) correspond bijectively to the right R-module structures on M.

Definitions 1.10. Let R be a ring and let M be a left R-module. A subset N of M
is said to be an R-submodule ( or simply submodule) of M if :

1. N 1is a subgroup of M;
2. a € R and x € N implies that a - x € N, for every a € R and x € N.

We write N <g M to mean that N is a submodule of M.
We denote by L(rM) the set of all the submodules of RM . Given a subset X of M
we set L(rM, X) = L(zgM)NL(M, X).

Remark 1.11. If N is a submodule of a left module M, then N is itself an R-

module with respect to
f: RxN — N
(a,z) +— a-x

where a - x is the product of a and x in M.
Examples 1.12.
1. Let R be a ring. Then the submodules of gR are exactly the left ideals of R.
2. Let R be a ring. For everyn € N we let
I, = {f € R[X] | deg(f) <n}
I,, is a subgroup of R[X]| as, given f,g € R[X]

deg(f) + deg(—g) < max(deg (f),deg(g))

I,, is not an ideal of R[X| (why? ), but it is a submodule of R[X] considered
as a left module on R. In fact, for everyr € R, f € R[X] we have deg (rf) <

deg (f)-



1.1. HOMOMORPHISMS AND QUOTIENTS 9

Proposition 1.13. Let R be a ring and let M be a R-left module. A subset N of
M is a submodule of M if and only if :

1. N #+o;
2. for every x,y € N we have that x +y € N;

3. for everya € R, x € N we have that a-x € N.

Proof. Let N be a subset of M such that 1), 2) and 3) are verified. For every z,y € N
we have that
r—y=z+(-1)y

and hence x —y € N. Therefore N is a subgroup and, by 3), also a submodule of
M
The converse is trivial. [J O

Definitions 1.14. Let M, M’ be left modules over the ring R. A map f: M — M’
is called a ( left) R-module homomorphism if :

1. f is a group homomorphism, that is if, for every x,y € M we have
flety)=[f(@)+ f(y);
2. for every r € R and for every x € M we have
flrx)=r-f(x)
If f: M — M’ is an R-module homomorphism we say that:

- f is an ingective homomorphism if the map f is injective ;
- f 1s a surjective homomorphism if the map f is surjective ;

- f is an tsomorphism if the map f is bijective.

We will say that M and M' are isomorphic and we will write M = M’ if
there exists an isomorphism f : M — M'. Observe that, in this case, the
inverse map of f, f~1: M’ — M s also a module isomorphism ( the proof is
left as an ezercise).

1.15. The definitions of submodule of a right R-module and of right R-module
homomorphism are similar to those given in 10 and T4.

If R is a division ring, the submodules of a left (resp. right) R-module are called
subspaces of M and the R-module homomorphisms are also called vector spaces
homomorphisms or linear maps.
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Example 1.16. Let R be a ring. Given an element a € R the map

o R — R

r = r-pa

s a left R-module homomorphism from rR into gR. Observe that, if a # 1, then
lba S Mot a Ting homomorphism.

1.2 Quotient Module and Isomorphism Theorems

Theorem 1.17 (Correspondence Theorem for Submodules).
Let R be a ring and let f : M — M’ be a left R-module homomorphism. Then

1. ZfL SR M; f(L) SR MI;

2. 4f L' <g M', f< (L") < M.
Hence, in particular :
Im (f) = £ (M) g M and Ker (f) = = ({0a}) <g M.
The assignment L — f (L) defines a partially ordered set homomorphism

¢ L(rM,Ker (f)) = L (rIm (f))
whose inverse,
¢~ L (rIm (f)) = £ (rM,Ker (f))

is defined by ' (L") = f= (L).
In particular the submodules of Im (f) are exactly those the form f (L) where L is
a submodule of M containing Ker (f).

Proof. Exercise. [ O

Theorem 1.18. Let R be a ring, let M be a left R-module and let N be a submodule
of M. We define a left R-module structure on the abelian group M/N by setting,
for every r € R and for every x € M,

r-(x+N)=(r-xz)+N.

Moreover, with respect to this structure, the canonical projection py : M — M /N
becomes a surjective R-module homomorphism.
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Proof. We have first to show that (1) is well defined, that is, given any r € R, x, 2’ €
M such that x+N = 2'+ N (ie. x—2’ € N), we have that (r-z)+N =9r-2/+ N
(ie.r-x—r-2' €N).

But x — 2’ € N implies that -z —r -2’ =r - (x —2’) € N as N is a submodule of
M.

Let now a,b € R, z,y € R. We have:

a-[(z+N)+@w+N)]=a-[(x+y)+N|=(a-(x+y)+N=(a-z+a-y)+N =
=(a-z+N)+(a-y+N)=a-(x+N)+a-(y+ N);

(a+b)-(z+N)=((a+b)-2)+ N=(a-x+b-x)+ N
=(a-z+N)+0b-z+N)=a-(x+N)+b-(z+ N);

(@-b)(x+N)=((a-gb)x)+N=(a-(b-z))+N=a-(b-x+N)=a-(b-(x+N));
lg-(x+N)=(1gr-2)+ N=x+ N.

Finally:
pn(a-z)=a-z+N=a-(x+ N)=a py(x).

]

Definition 1.19. Let M be a left module over a ring R and let N be a submodule
of M. The left R-module ( defined in Theorem ITI8) having the quotient group

M/N for its underlying abelian group is called the quotient module ( or a factor
module) of M modulo N and is denoted by r(M/N) or simply by M/N.

Theorem 1.20 (Fundamental Theorem for Quotient Modules). Let R be a ring
and let f: M — M’ be a left R-module homomorphism. If N is a submodule of M
contained in Ker (f), then there exists an R-module homomorphism f : M/N — M’
such that the diagram

commutes, i.e. f = fopy.
Moreover:

1. f is unique with respect to this property;

2. Im (f) = Im(f) and Ker(f) = Ker(f)/N;

3. f is injective < N = Ker (f).

Proof. In view of the Fundamental Theorem for the Quotient Group there exists a
group homomorphism f : M/N — M’ such that f = f o py. Moreover: 1) such a
group homomorphism is unique; 2) Im (f) = Im(f), Ker(f) = Ker (f) /N; 3) f is
injective & N = Ker (f).

Hence we only haveto prove that, for every x € M and r € R:

fr(x+N))=7r-f(x+ N).
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It is now an easy calculation to arrive at:

fr(z+N)) = f(ra+N) = f(pn(rz)) = f(ra) =rf(z) =rf(px(2)) = r(z+N).

U [l

Corollary 1.21 (First Isomorphism Theorem for Modules).
Let R be a ring and f : M — M’ be a left R-module homomorphism. Then the
assignment

x+ Ker (f) — f(x)

defines an isomorphism of left R-modules
f i M/Ker(f) — Im (f)

In particular, if f is surjective, then f s an tsomorphism and
M/Ker (f) = M.

Theorem 1.22 (Second Isomorphism Theorem for Modules). Let L and N be sub-
modules of a module M over a ring R. Then LNN and L+ N are submodules of M

and the assignment © + (LN N) — x + N defines an R-module isomorphism from
L/(LNN) into L+ N/N. Therefore:

L/(LAN)= L+ N/N

Proof. We know that L N N is a subgroup of M. Let r € R, z € LN N. Then
rz € L and rz € N, as L and N are submodules of M. Therefore r-z € LN N.
We know that L + N is a subgroup of M. Let r € R, 2 € L + N. Then there exist
x € L and y € N such that z = x + y. Obviously rz € L and ry € N, and hence
r-z=r-r+r-yc L+ N.

In view of the Second Isomorphism Theorem for Groups, the assignment x + (L N
N) +— x + N defines a group isomorphism

¢:L/(LNN)— L+ N/N.
Let r € R, x € L, then we calculate:
or(z+(LNN))=¢(re+(LNN))=rx+ N=r(zx+ N)=ro(x+ (LNN)).

Therefore ¢ is a left R-module isomorphism. [] O

Theorem 1.23. Let R be a ring, f: M — M’ be a left R-module homomorphism.
For every submodule N of M containing Ker (f) the assignment x + N — f (z) +
f(N) defines an isomorphism fn : M/N — Im (f) /f(N) . Therefore

M/N =TIm(f)/f(N).
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Proof. We know that the assignment x + N + f (z) + f () defines a group iso-
morphism ¢ = fy : M/N — Im (f) /N. Let r € R, x € N. We have :

(r(z + N)) = d(rz + N) = f(rz) + f(N) = (rf(x)) + [ (N)
=7 (f(@)+ f(N))=r¢(x+N)

Therefore v is a left R-module isomorphism. [ O]

Corollary 1.24 (Third Isomorphism Theorem for Modules). Let L and N be sub-
modules of a module M over a ring R and assume that L C N

Then the assignment x + N — (z + L)+ N/L. defines a left R-module isomorphism
from M/L into M/L/N/L. Therefore

M/N = M/L/N/L.

Proof. Apply Theorem 23 to pr, : M — M /L, recalling that p;, (N) = N/L. H

1.3 Product and Direct Sum of a Family of Mod-
ules

1.25. Let I and A be nonempty sets. At places, in mathematical literature, a map
f I — Ais called a family of elements of A indexed by I and we write

f = (ai)ier or f = (a;) where a; = f(i) for every i € I .

In this context the elements of I are called indexes and, for every ¢ € I, a; is called
the i-th element of the family.
The use of this terminology and notation is traditionally reserved for particular situ-
ations. As we do not think that this is the right place to deal with this argument, we
will simply use the above terminology and notation, whenever it will be convenient.
In any case the reader should carefully note the difference between the family
(@i)ier , which is a map from I to A, and the set {a; | i € I}, which is the image of
the previous map.
In fact, it may happen that a; = a; for two distinct indexes ¢,j € I. It may even
happen that the set {a; | i € I} consists of only one element! In this case the family
(a;)ier s also called constant (in fact, it is a constant map!).
Let (a;)ier be a family of elements of A indexed by I, (b;),.; a family of elements of
B indexed by J. Observe that these families are equal if and only if = J, A = B
and a; = b; for every i € I.
A family of elements of A indexed by N is called a sequence of elements of A.
A family of elements of A indexed by the set {1, 2, ..., n} is usually called an n-
tuple of elements of A. In this case we write (ay, ..., a,) instead of (a;);c; and
a;, with 1 <7 < n, is called the i-th element (or i-th coordinate) of the n- tuple.
Note that, by the above considerations, two n- tuples of elements of A, (a4, ..., a,)
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and (a}, ..., al) coincides if and only if a; = a} for every i € {1, ..., n}.

We often consider families of sets, i.e. families (X;), ., such that X is a set, for every

v e .

If (X;),c; is a family of sets, we define its union, denoted by U[X,-, and we read it
1€

“union of the X/ s, ¢ ranging in /7, as the union of the set of sets {X; | i € I}. Thus:

UXi ={z |z € X, forsome i € I} = {x | Fi € I suchthat z € X;} .
iel
Analogously we define the intersection of this family, denoted by [)X;, and we
iel
read it “intersection of the X! s, i ranging in 7, as the intersection of the set of sets
{X;|iel}. Thus:

ﬂXi:{x | z € X; forevery i € I} .

el

If I ={1,2,...,n} we use the notations |JX; or X; U...U X, instead of |JX;
i=1 i€l

and the notations () X; or X; N...N X, instead of [ X;.

i=1 iel
Let (X;),c; be a family of sets. We say that the sets of this family are pairwise
disjoint if, given 7,j € I, from i # j it follows that X; N X; = @. In this case,

obviously we have X, = @.

iel
We remark here that to give a family of sets usually one just gives the set I of
indexes and, for every ¢« € I, a set X;. In fact, the codomain of the family itself,

thought of as being a map, is understood to be clear from the context.

Definition 1.26. Let (A;),.; be a family of nonempty sets. The Cartesian prod-

uct of such a family is the set, denoted by [] As, to be read “Cartesian product of
i€l
the A;’s, i ranging in 1”7 given by

HAi:{f:I%UAi | f(i) € A; for every Z'GI}.

i€l el

According to 24, with the same notations, we write:

HAi = {(ai)iel | a; € A; for every i € I}.

iel
If for every i € I, A; = A then the set | A; is usually denoted by AT and we have:

iel
Al ={f: 1= A}.
IfI1={1,2,..., n} we write Ay x ... x A, or We have
Ay x ... x Ay ={(ay1, ag, ..., a,) | a; € A; for every i =1, ..., n}.

If Ay =Ay=...= A, = A we write A" instead of A1 X ... X A,.
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1.27. Let (G;),c; be a family of groups. We can state, without using the Axiom of
Choice, that [[ G; # @. In fact, let 1; be the identity element of G;. The map

icl
i€l
defined by letting f (i) = 1; for all i € I, i.e. f = (1g,);c;, is an element of ] G;.

iel
Now we can define a group structure on [] G, as follows.
icl
We define an inner composition law on [[ G; by letting, for all i € I and for every

iel
T = (%‘)iep Y = (Yi)ier € l_IIGi
ic

(xy)i = T3Y;-

Proposition 1.28. Let (G;)icr be a family of groups. Then, using the - composition
law defined in [Z1, [] Gi is a group whose identity element is (1;),c; -

iel
Definition 1.29. Let (G;)ier be a family of groups. In the notations of Proposition

23, the group (I] Gi,-, (1),c;) s called the direct product of the family of
i€l
groups (G;)ie; and will be simply denoted by [[G;. If I = {1,2,..,n} we write
icl

G1 x Gy X ... X Gy, instead of [ G;. If G; = G for all i, then we also write GI and
i€l
G"if I ={1,2,..,n}.

1.30. Let (G;)ier be a family of groups. Consider, for all j € I, the map =, :

[I Gi = G; defined by setting 7;((z;)ier) = x; for all (2;),.;. 7; is called the j-th
el
canonical projection.

Lemma 1.31. Let (4;),c; be a family of nonempty sets and let x € [[ A;. Then
i€l

r = (mi())ier

Therefore if x,y € [ A, we have

il
r=y s m(x)=m(y) for everyiec I.

Proof. Let x = (2;),c; € ][] Gi. For every j € I we have z; = m; (), and hence
iel

r = (7i(x))ier
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Theorem 1.32. (Universal Property of the Direct Product of a family

of Groups) Let (G;)icr be a family of groups. Then, for all j € I, the canonical

projection w; : [[ G; — G, is an epimorphism of groups. Moreover, for any group
iel

G and any family (fi),c; of homomorphisms f; : G — G, there ewists a unique

homomorphism f : G — ] G; such that m; o f = f; for all i € I. This homomor-
i€l

phism is called the diagonal homomorphism of the family (f;),., of group

homomorphism and will be denoted by A((f;)icr)-

Proof. Let j € 1.

The map 7; : [[ Gy — Gj is surjective. In fact let z; € G;. Consider the element
icl -
g = (9i);e; € TIGi defined by g; = 1¢, for all i € I\ {j} and g; = ;. Then
iel
m;i(9) = 95 = ;.
The map 7; is a homomorphism. Let 2 = (2;),c;, ¥ = (¥i)ier € [[ G- Then
icl

mi(zy) = mi((xivi)ier) = z5y; = 7; (2) 7;(y).

Let now (f;),c; be a family of homomorphisms, f; : G — G;. We define a map
f: G — I] G; by setting f(g9) = (fi(9));e; for all g € G.

el
f is a homomorphism. Let g, h € G, then:

f(gh) = (fi(gh))iel = (fi(g)fi(h))icr =
= (fi(9))ier (fi (h))ie] = f(g)f(h).

Given j € I , mjo f = f;. In fact, for all g € G,we have :
(w0 f)(g) = m;((f(9))ier) = f;(g)-

Let now let f': G — ][] G; be another homomorphism such that m; o f' = f; for all
i€l

1€ .
Then by Lemma =31,
f'(g) = (mi(f'(9)))ier = (w0 [')(9))ier = (fi(9))ier = f(g)
forall g e G. O m

1.33. Let (G;)ier be a family of groups, in additive notation. Given an element

r = (2:),c; € [] Gi, we set
i€l

Supp (x) ={i €I |x; #0g,}.

Supp (x) is called the support of x. Let F' be the subset of [[ G; consisting of
iel
all the elements with finite support. Obviously the identity element 0 = (Og,);er of
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[ G; has finite support ( it is the only element with empty support); moreover, if
i€l

& = (2;);c; and y = (y;)iesr have finite support also their difference x—y = (x;—vi)ier-
In fact

Supp(z —y) C Supp (x) U Supp(y).
Therefore F' is a subgroup of [[ G; .

il
Definitions 1.34. Let (G;)icr be a family of abelian groups. The subgroup of 1] G
il
consisting of all the elements with finite support is called direct sum of the family
of groups (G;)icr and is denoted by @ G;.

iel
If, for alli € I, G; = G, then the direct sum of the family of groups (G;)ier is also
denoted by G,

Remark 1.35. If I is finite, then

[T - o

icl icl

1.36. Let (G;)ier be a family of abelian groups. Fix a j € I and let
g5t Gj — @Gz
i€l
be the map defined by setting for all a € G
<5j(a)>i = a if ¢ :]
(ej(a))i = Og, ifi#]

In other words, ¢; (a) has all its components zero but the j-th, which is a.
The map ¢; is easily verified to be a monomorphism: it is called the j-th canonical
injection.

Notations 1.37. For alli,j € I we denote by 0, ; : G; — G; the costant map equal
to Og,. Moreover we denote by 6, ; : G; — G; the map defined by setting

5i,j == IdG, ZfZ :j
0ij = 05 ifi#]

Lemma 1.38. Let (G;)ier be a family of abelian groups. Then, for every i,j € I
we have
mi (€j(a)) = 05 (a).

Proof. Let i = j. Then, for all a € G;, we have 7;(g;(a)) = (¢;(a)); = :
Let i # j. Then, for all a € G, we have 7;(¢(a)) = (¢j(a)); =0g, =0, (a). O
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Exercise 1.39. Let (G;)icr be a family of abelian groups. Prove that £; = A (8i),¢;-

Lemma 1.40. Let (G;)ier be a family of abelian groups and let x € @ G;. Then

iel
T = g g ( E e (

1€Supp(x) el

Proof. Let j € I. Then, in view of Lemma =38, we have

s Z e (z) | = Z m; (& (i ( Z d;;mi (x) = m; (x) for every j € I

1€Supp(x) 1€ Supp(x) i€Supp(x)
and hence, by Lemma =31, we conclude. O

Theorem 1.41. (Universal Property of the Direct Sum of a family of
Groups) Let (G;)icr be a family of abelian groups. For all abelian groups G and
family of homomorphisms (fi),c; . fi : Gi = G there exists a unique homomorphism

f@G—>G

such that foe; = f; for all i € I. Such a homomorphism will be called the codiag-
onal homomorphism of the homomorphisms family (f;) and will be denoted

by V (fi)ser -
Proof. Define

el

@G -G

by setting

= Z fi(x;)  forall = (x;),; € @ G;.

iel iel
Observe that this makes sense, in fact x; # 0 only for finitely many i’s.
Let © = (2i),c;» ¥ = (¥i)ier € @ Gi. Then

el
fa+y) => fillz+y)) =D filwi+y) = > (fi (@) + filw:)):
i€l el el

Since G is commutative, we have that

faty)=> filz)+> fily)=f(@)+ )
el el
so that f is a homomorphism. Let j € I, a € G;. Then

(foey)(a) = (filg; ()) = f;(a)

el
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hence foe; = f; forall j € 1.
Let now [ : @ G; — G be another homomorphism such that f' oe; = f; for all

el Ifx e EEIGi then
el
flo) = (Z €47 (:1:)) =Y fami(x) =Y fimi(z) =Y femi(x) =
i€l el el el
=f (Z EiT; (x)) FEE f ()
el
Therefore f = f'. [ m

1.42. Let R be a ring and let (M;);c; be a family of left R-modules. We define on
the abelian group [[ M; a multiplication by the elements of R by setting, for every
iel
re R, x=(1;);c; €[] M,
iel

rT = (1), -

Theorem 1.43. Let (M;);c; be a family of left modules over a ring R. The abelian
group [ M; becomes a left R-module with the multiplication by the elements of R

iel
defined as in [[Z8. Moreover @ M, is a submodule of this R- module.
i€l
Proof. Exercise. n

Definition 1.44. Let R be a ring, (M;);cr be a family of left R-modules. The
abelian group [[ M; with the left R-module structure defined in [Z3 is called the
i€l

direct product of the family of left R-modules (M;);c; and is denoted by
[I M. If I ={1,2,...,n} we write My X ... X M,, instead of [ M;. If M = M; for
i€l i€l

all i € I, then we also write M1 and M™ if I = {1,....,n}. The left R-module @ M,

el

will be called the direct sum of the family of left R-modules (M;);c;.

If, for every v € I, M; is a fized left R-module M, we will denote the direct sum

considered before by M),

Theorem 1.45. (Universal Property of the Direct Product of a family
of Modules) Let R be a ring, (M;)ic; be a family of left R-modules. Then, for

every j € I, the canonical projection m; @ [[ M; — M; is a surjective module
i€l
homomorphism..

Moreover, for every left R-module M and for every family (f;),.; of homomorphisms

iel
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fi : M — M;, there ezists a unique R-module homomorphism f : M — [] M; such
iel

that w; o f = f; for every v € I.

This homomorphism is called the diagonal homomorphism of the family (f;)

and will be denoted by A((f;)ier)-

Proof. Exercise ( see Theorem [Z32). O

Exercise 1.46. Let A = A((f;)icr) where, for each i € I, f; : M — M; is a left
R-module homomorphism. Then

Ker (A) = ﬂKer (fi)
iel
Corollary 1.47. Let (M;);c; be a family of left R-modules and let f: M — ] M;
il
be a left R-module homomorphism. Then f = A((m; o f)ier). Therefore if f, g :

M — [ M; are left R-module homomorphisms we have
i€l

il

f=g& mof=mogqg foreveryiel.

Proof. For each i € I we have m;0 A((m; 0 f)ie;) = m;i o f. Hence, by the uniqueness
of the diagonal homomorphism, we get f = A((m; o f)icr)- O

Theorem 1.48. (Universal Property of the Direct Sum of a family of
Modules) Let R be a ring, (M;),.; be a family of left R-modules. Then, for every
j € I, the canonical injection €; : M; — @ M; is an injective R-module homo-
iel
morphism. Moreover, for every left R-module M and for every family (f;),c; of
R-module homomorphisms f; - M; — M, there exists a unique R-module homomor-
phism f: @ M; — M such that f oe; = f; for everyi € I.
i€l

This homomorphism is called the codiagonal homomorphism of the family (f;)
of homomorphism and will be denoted by NV ((fi)icr)-

el

Proof. Exercise (see Theorem [). O
Corollary 1.49. Let (M;);c; be a family of left R-modules and let f : @ M; — M be
el
a left R-module homomorphism. Then f = N ((foe;)ier). Thereforeif f, g : @ M; —
el

M are left R-module homomorphisms we have
f=g& foe; = foeg; for everyic 1.

Proof. For each i € I we have V((f o¢;)ier) 0g; = f oe;. Hence, by the uniqueness
of the codiagonal homomorphism, we get f = V((f o&;)ier). O

Lemma 1.50. Let R be a ring, M be a left R-module and let (N;);er be a family of
submodules of M. Then () N; is a submodule of M.

el

Proof. Exercise. O
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1.4 Sum and Direct Sum of Submodules. Cyclic
Modules

Definitions 1.51. Let M be a left module over a ring R. Givenn € N, n > 1,

TyeyTn € R, @y, ...;x, € M, the element > ryz; of M, is called a linear com-
i=1

bination with coefficients in R of the elements xz1,..,x,; r1,...,r, are called

coefficients of the linear combination.

Let S be a subset of M. In view of Lemma 220, the intersection

N L

LEE(RM,S)

of all submodules of M that contain S is a submodule of M that contains S. Clearly
it 1s the smallest submodule of M containing S. This submodule is called the sub-
module of M generated by S and is denoted by RS. If S = {s} we write Rs
instead of R{s}.

If (M;)ier is a family of submodules of M then the submodule of M generated by
U M; is called the sum of the family of submodules (M;);c; and is denoted by

i€l
S M,

el

If I ={1,...,n} we write My + ... + M, or > M; instead of >_ M.

=1 el

Theorem 1.52. Let R be a ring, M a left R-submodule and let S be a subset of M.
Then, if S = @, RS = {0}. If S # & then

RS = {ZHS@‘ |neN,n>1,1r€R,s; €S for everyi = 1,...,n}

=1

In other words RS is the set of all the linear combinations with coefficients in R of
the elements of S.

k
If S = {81, ...78k} then RS = {z 7iS; | T € R}
i=1
In particular

Rs={rs|r e R}.

Proof. It S =@ , {0} D S and then RS = {0}.
Assume then that S # @ and let

N = {Zrﬁi IneN,n>1r€R,s €8 for every i = 1,...,n}

i=1

N D S: in fact, for every s € S we have s =1 - s.
N is a submodule of M. N is clearly a subgroup of M. Let now r € R, y € N.
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n
Then there exist n € N, n > 1 and r1,...,7, € R, $1, ..., 5, € S such that y = > r;s;.
i=1

Then we have .

ry = Tinsi = Z(rn)si.
i=1

i=1
Therefore N D RS.

Conversely, let L be a submodule of M containing S. Then, for every r € R
and s € S, L contains rs. It follows that L contains any linear combination with
coefficients in R of elements of S and so L contains N and hence RSO N. OO0 [O

Corollary 1.53. Let R be a ring, M a left R-module and let (M;);er be a family of
submodules of M. Then

ZMi: {th IneN, n>1i;€l and x5, € M;; for every j = 1,...,n}

icl j=1

In particular, if I ={1,...,k},

k
i=1

Proof. 1f x; € M;, then, for every r € R, rx; € M;. n

Corollary 1.54. Let R be a ring, M a left R-module and let S be a monempty
subset of M. Then
RS = Z Rs.

ses
In particular, if S = {s1,...,sx}, RS = Rs; + ... + Rsg.
Definitions 1.55. Let M be a left module over a ring R. We say that :

a subset S of M 1is a set of generators of M if RS = M;

- M is finitely generated if M admits a set of generators which is a finite set;

M is cyclic if there exists an m € M such that {m} is a set of generators of
M, i.e.M = Rm;

an element (s, ...,8,) € M™ is said to be linearly independent (over R)

k

if, given any ry,...,r, € R, Y ris; = 0 implies r; = 0 for every i, i.e. if the
i=1

only zero linear combination with coefficients in R of the elements sy, ..., s, 1S

that one with all coefficients equal to O ;
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- an element (1, ..., 8,) € M™ is said to be linearly dependent (over R) if it
1s not linearly independent, 1i.e. if there exists a zero linear combination with
coefficients R of s, ..., s, where the coefficients are not all zero;

- an element (s1,...,8,) € M" is called a basis of M if (s1,...,5,) is a linearly
independent element and {s1, ..., $,} is a set of generators of M.

Theorem 1.56. Let R be a ring, M a left R-module and let (xy,...,x,) € M™. Then
there exists a left R-module homomorphism

v: R —= M

such that v (e;) = x;, where ¢; = (0,...,1,0,...,0) ( all components except the i-th
are 0 and the i-th component is 1) for every i =1,....n.
Moreover :

1. this homomorphism is unique;
2. Im (v) = R{xy,...,xn};
3. v is injective < (x4, ...,x,) is linearly independent.

Proof. Define v : R® — M by setting

n

V(11 mn)) = Zrixi for every (rq,...,mn) € R"

i=1

Clearly we have that v (e;) = z; for every i = 1, ..., n.
v is a left R-module homomorphism. In fact let (r4,...,7,), (s1,...,8,) € R", r € R.
We have that

V(11 s Tn) + (81, ..,8,)) = )
= 0((ry + 8150y T + 8n)) = ;(H +os)wi =

= > iz + >, siwi = v((r1, ey 7)) FU((S1, 0, 80))
i=1 i=1

v(r(ry, .oy ) = 0((rry, ) = erixi = TZ?%'CI%' =710((r1, ... ).

v is unique. Let v/ : R® — M be another left R-module homomorphism such that
V' (e;) = x; for every i = 1,...,n. Let (rq,...,r,) € R". Then (r1,....,m,) = >_ rie;
i=1

and hence

V((ry, .y mp)) = U’(Z rie;) = va' (€;) = anz =0((ry, .. 7n))
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Clearly Im (v) = RS.
Since Ker (v) = < (71, ...,m,) € R™ | Y ryw; = O}, it is clear that Ker (v) = 0 if and
i=1

only if (xy, ..., z,) is linearly indepenaent. O ]

Corollary 1.57. With notation as in Theorem 24, (x4, ...,%,) 1S a basis of M if
and only if
v:R"—> M

18 an isomorphism.
Corollary 1.58. The element (e, ...,e,) is a basis of R".

Corollary 1.59. Let R be a ring and let ¢ : M — M’ be a left R-module isomor-
phism. If (xq,...,xy,) is a basis of M, then (¢ (x1), ..., (z,)) is a basis of M'.

Proof. Let v: R" — M and v/ : R® — M’ be the R-module homomorphisms such
that v (e;) = x; and V' (¢;) = @ (x;) for every i = 1,...,n. Then (g ov) (¢;) = ¢ (x;)
for every ¢ = 1,...,n, and hence p o v = v'. Since ¢ and v are isomorphisms, so is
(N O

1.60. Let R be a ring, let M be a left R-module and let x € M. The map
e R — M

T = T

is a left R-module homomorphism and Im (u,) = Rz by Theorem T=2@. Thus
Ker (1) = {r € R | rz =0} is a submodule of gR, that is a left ideal of R. This
ideal is called the (left) annihilator of x in R and is denoted by Anng (z).The
First Theorem of Isomorphism for Modules now allows to identity:

R/Anng () = Rz.

Corollary 1.61. Let R be a ring. The cyclic left R- modules are exactly those
isomorphic to modules of the form R/I where I is a left ideal of R.

Proof. If M = Rx then, as observed in B0, we have that R/Anng (x) = M.

Conversely, let I be a left ideal of R and let f : g(R/I) — rM be an isomorphism.
We let © = f(1+1). Then, for every y € M, there exists an r € R such that
y = f(r+1) and we have that y = f(r(1+ 1)) = rf(1 + I) = rz. Therefore
M = Rx. I O

Remark 1.62. Let R be ring. In general it is not true that every non-zero finitely
generated left R- module has a basis. Moreover it can be proved that this holds if
and only if R is a division ring.
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Example 1.63.

1. Letn € N, n > 0. Then Z/nZ is a cyclic Z-module: Z/nZ = Z (1 + nZ).
But Z/nZ does not admit a basis. In fact, for every x € Z/nZ we have that nZ
C Anng (z).

Proposition 1.64. Let (f; : M; — M)._; be a family of morphisms of left R-modules
and let [ =V (fi);e; - Then

Im (f) = Zlm(fi)
iel
Proof. Let (;),c; € @,c; M; and let F' = Supp (). We have
fla)=>filz) €D f: (M),
i€l icl

Conversely, let m € >, fi (M;). Then there exists a finite subset F' of I and, for
each 7 € F an element x; € M, such that

m = Z fi ().
Let 2 = ", p i (). Then we have
f(z) = 2; flei (i) = 2; (foe) (z) = 2; fi (@) = m.
ic ic ic )

Notations 1.65. Let R be a ring, M a left R-module and let (M;);cr be a family of
submodules of M. Let u; : M; — M be the canonical inclusion and let

icl
be the codiagonal morphism of the family (u;)icr.
Corollary 1.66. Let R be a ring, M a left R-module and let (M;);er be a family of
submodules of M. Within the notations of @d we have that
Im (u) = Z M;.
iel
Proof. Tt follows from Proposition ([54). O

Proposition 1.67. Let R be a ring, M a left R-module and let (M;);c; be a family
of submodules of M. Within the notations of L&, the following statements are
equivalent:
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(a) u is injective.
(b) For everyi € I, we have that
Min > M= {0}

jen{i}

Proof. (a) = (b). Let i € I, and let x € M; N}, p r;y M;. Then there exists a finite

subset F' of I\ {i} and, for every j € J, an element x; € M; such that
Tr = Z Z;.
jeF
Since x € M;, we can consider z = ¢; (z). Let w =3, ¢; (z;). Then we have

u(z) = ulsi(@)=(uoe) (@) =ui(@x)=a= ;=) u(z;)=

jEF jeF
= > (uog)(z;) =u (Z € (%‘)) =u(w).
jEF jeF
Since u is injective, we deduce that z = w and hence
Supp () € Supp (2) N Supp (w) € {i} N (I\{i}) =2

so that z = 0.
(b) = (a). Let 0 # v € @,.; M. Then there is an iy € F' = Supp (v). Assume
that = € Ker (u). Then we have

O:u(x):th

teF
and hence
Liy = — Z xtEMioﬂ Z M]:{O}
teF\{io} J€Nio}
so that we get x;, = 0. Contradiction. ]

Definition 1.68. Let R be a ring, M a left R-module and let (M,);e; be a family of
submodules of M. Within the notations of I&d, we will say that M is an internal
direct sum of the family (M;)ier if u : @,e; M; — M is an isomorphism. In this

case we will also write ‘
M =P M;
el
Corollary 1.69. Let R be a ring, M a left R-module and let (M;);c; be a family
of submodules of M. Then M is an internal direct sum of the family (M;);er if and

only if
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1) M=%, M
2) For everyi € I, we have that M; N Y7,y My = {0}.
Proof. 1t follows from Corollary and Proposition [H4. ]

Exercise 1.70. Let R be a ring, M a left R-module and let (M;);c; be a family of
submodules of M. Show that M is an internal direct sum of the family (M;);cr if
and only if every element x € M can be written as

xr = Z x; where the x; =0 for almost every i € I
iel

and moreover this representation is unique.

Definition 1.71. Let R be a ring and let L be a submodule of a left R-module M.
We will say that L is a direct summand of M if there exists a left submodule H of
M such that .

M=L®H.

Remark 1.72. In Definition [_73, the submodule H is, in general, not unique. For
example, if R =k is a field, M = k x k and L = k(1,0), then H can be chosen to
be any k (a,b) with b # 0.

1.5 Exact sequences and split exact sequences

Notations 1.73. Let R be a ring and let M be a left R-module. In the following,
for everyr € R and x € M, the element r - x will be often denoted simply by rx.

The left R-module with only one element 0 will be simply denoted by 0 instead
of {0}.

Definition 1.74. A sequence of left R-module homomorphisms

~--fn—71>Mn_1£>Mnf"—+l>Mn+1ﬂ~--

15 said to be exact if
Im (f,) = Ker (fn11) for everyn € Z

A sequence of the form
0L M5 N0

15 called a short sequence.

Exercise 1.75. Consider a short sequence of left R-module homomorphisms

0= L1 M- N0

Show that this sequence is exact if and only if
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1) f is injective,
2) g is surjective,
3) Im(f) = Ker(g).
Examples 1.76.

1) Let g: M — N be a surjective homomorphism. Then

0 — Ker (g) == M -2 N — 0,

where © : Ker (g) — M 1is the canonical inclusion, is an exact sequence. In
particular, for every submodule L of a module M, the sequence

0—L—5 M2 P/L—0

18 exact.

2) Let f: L — M be an injective morphism. Then the sequence

0— L -5 M -2 M/Im(f) -0
18 exact.
Proposition 1.77. Let £ : M — H andn : M — N be left R-module homomor-
phisms and assume that
® 1) 15 surjective
e Ker(n) C Ker ().

Then there exists an homomorphism o : N — H such that

ocon=2~E.
Moreover such an homomorphism is unique with respect to this property.

Proof. Since Ker (1) C Ker (§) , ny the Fundamental Theorem of the Quotient Mod-
ule 20, there exists an homomorphism & : M/Ker () — H such that £ = £opge(y)-
By the First Isomorphism Theorem for Modules 20 i) : M /Ker (n) — Im (n) = N
is an isomorphism. Let v : N — M/Ker (n) be a two-sided inverse of 7 and set

o = £ ovy. We compute

001 =0070PKe(y) =&0°7 070 Prer(n) = & © PKer(n) = &-

The last assertion follows directly from the surjectivity of 7. O
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Proposition 1.78. Let ¢ : L — M and ¥ : U — M be left R-module homomor-
phisms and assume that

® © is injective
e Im (¥) C Im (p).
Then there exists an homomorphism ©: U — L such that
porm =1.
Moreover such an homomorphism is unique with respect to this property.

Proof. Since ¢ is injective, we know that o/™®) is bijective. Let h : Im () — L be
the two-sided inverse of ™). Since Im (¢) C Im (¢) we can consider 9™, Let
i : Im (¢) — M be the canonical injection. Set 7 = h o 9™ We compute.

pom=@oho Ylmle) — 4 o ™) o h o Ylmle) — 4 o Td,(z) © YIme) — 9.
The last assertion follows directly from the injectivity of . [

Lemma 1.79. Let L 15 M %5 N be left R-module homomorphisms such that
gof=0

and assume that there exists an R-module homomorphism p : M — L and an R-
module homomorphism s : N — M such that

Idy, = fop+sog.
In this case

1) If f is injective, then
po f=1Id..

2) If g is surjective, then
gos=Idy.

Proof. 1) We compute
f=ldyof=(fop+tsog)of=/fopof+sogof=fopof
and we deduce that
foldy=f=fopolf.

Since f is injective, we get that po f =1Idy.
2) We compute

g=goldy =go(fop+tsog)=gofop+gosog=gosog
and we deduce that
I[dyog=gosog.

Since g is surjective, we get go s = Idy. O
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Proposition 1.80. Let 0 — L L M %5 N =0 be a short exact sequence. Then

1) For every R-module homomorphism p : M — L such that po f = Idy, there
exists a homomorphism s : N — M such that Idy; = fop+ sog. Moreover
this s 1s unique.

2) For every R-module homomorphism s : N — M such that g o s = Idy, there
exists a homomorphism p : M — L such that Idy; = fop+ sog. Moreover
this p is unique.

Proof. 1) Let p: M — L be such that po f =1dy. Let £ = Idy; — fop. We calculate
§of=(du—fop)of=f—f=0.

This implies that Ker(¢g) = Im (f) C Ker (&). Since g is surjective, we can apply
Proposition 74 to deduce that there exists an homomorphism s : N — M such
that ¢ = sog. Thus we get Idy; — fop=sog and hence Idy; = fop+ sog. Let
s’ : N — M such that Idy; = fop+ s og. Then

fop+sog=fop+sog
implies
sog=sog
and from the surjectivity of g, we conclude.
2) Let s : N — M be such that g o s =1Idy,. Let ¥ = Idy; — s o g. We calculate
god=go(ldyy —sog)=g—g=0.

This implies that Im (¢) C Ker(g) = Im(f). Since f is injective, we can apply
Proposition 78 to deduce that there exists an homomorphism p : M — L such
that fop =1. Thus we get Idy; —sog= fop and hence Idy; = fop+sog. Let
p': M — L such that Idy; = fop' + sog. Then

fop+sog=fop +soyg

implies
fop=fop

and from the injectivity of f, we conclude. O
Definitions 1.81. Let L —X5 M be a left R-module homomorphism. We say that

1) f splits if there exists a left R-module homomorphism p : M — L such that
pof=1Idg.

2) f cosplits if there exists a left R-module homomorphism s : M — L such that
f oSs = IdM
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Definition 1.82. Let 0 — L —25 M %5 N — 0 be a short ezact sequence. We say
that this exact sequence splits if there exist R-module homomorphisms p : M — L
and s : N — M such that Idy; = fop+ sog. In this case we also say the the given
sequence s split exact.

Lemma 1.83. Let o : U = V and § : V. — U be left R-module homomorphisms
such that Boa =1dy. Then V =Im (a) & Ker (8) .

Proof. Let x € Im () N Ker (8). Then there exists an element u € U such that
x = «(u). Then we have

0=p(z)=p(au)=(Boa)(u)=u
and hence z = a (u) = « (0) = 0.
Let x € V. Then
r=a(f@)+[r—a(f)
where o (5 (z)) € Im () and [z — a (B (z))] € Ker (5). In fact we have
Bz —a(B (@) =p4(z) = (Boa)(B(x))=pB(x) - B(z) =0.
[l

Theorem 1.84. Let 0 — L —15 M —%5 N — 0 be a short ezact sequence. The
following assertions are equivalent:

(a) f splits i.e. there exists an R-module homomorphism p : M — L such that

po f=1Idg.
(b) g cosplits i.e. there exists an R-module homomorphism s : N — M such that
gos=Idy.

(¢) The given exact sequence splits i.e. there exist R-module homomorphisms p :
M — L and s: N — M such that Idy; = fop+sog.

(d) f(L) is a direct summand of M i.e. there exists an R-submodule H of M such
that M = f (L) @ H.

Moreover
1) if (a) holds then M = f (L) @ Ker (p) ;
2) if (b) holds then M = Ker (¢g) ® Im (s) .

Proof. (a) = (c) It follows by Proposition [=0.
(¢) = (a). It follows by Lemma [79.
(b) = (c) It follows by Proposition [=0.

=
= (c)
(¢) = (b). It follows by Lemma [Z79.
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(a) = (d). Apply Lemma X3 to o = f : L = M and 8 =p: M — L to get
that M = f (L) @ Ker (p).

(d) = (a). Let v : f(L)® H — f(L)® H be the isomorphism defining this
internal direct sum and let 7 : f (L)@ H — f (L) be the canonical projection. Since
f is injective, we know that f™() is bijective. Let h : f (L) — L be the two-sided
inverse of f"™() Set p=homowv!. Then, for every x € L we have

(pof)(z)=(homov tof)(z)=(hom)((f(z),0)=h(f(z)) =2

and hence we deduce that po f =1d;.
(¢) = 2) Apply LemmaCZ3toa=s: N — M and f =g : M — N to get that

M =Im (s) ® Ker (g). O

1.6 Hompg (M, N)
Notation 1.85. Let M and N be left R-modules. We set
Hompg (rkRM,g N) = Homg (M,N) ={f: M — N | f is an R-module homomorphism} .

Proposition 1.86. Let M and N be left R-modules. Then Hompg (M, N) is a sub-
group of the abelian group NM . In particular Hompg (M, N) is an abelian group.

Proof. Exercise. O

Notations 1.87. Let f : L — M and f' : M’ — L' be left R-module homomor-
phisms . Then,we can consider the map

Hompg (f', f) : Hompg (L', L) — Hompg (M', M) defined by setting

Hompg (f', f) (&) = folo f' for every & € Hompg (L', L)
VRS N SRS Vi

Whenever L' = M' = U and f = Idy we will simply write Hompg (U, f) instead of
Hompg (Idy, f). Thus we have that

Hompg (U, f) : Hompg (U, L) — Hompg (U, M) s defined by setting

Hompg (U, f) () = fo&  for every & € Hompg (U, L)

Analogously whenever L = M = U and f = Idy we will simply write Hompg (f',U)
instead of Hompg (f',1dy) Thus we have that

Hompg (f',U) : Hompg (L', U) — Hompg (M',U) is defined by setting

Hompg (f',U) () =(o f'  for every ¢ € Hompg (L', U).
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Proposition 1.88. Let f : L — M and f' : M' — L' be left R-module homomor-
phisms . Then, the map

Hompg (f', f) : Hompg (L', L) — Hompg (M', M)
1S a group homomorphism.
Proof. Exercise. O

Theorem 1.89. (Universal Property of the Direct Product of a family of
Modules) Let R be a ring and let (M;);e; be a family of left R-modules. For every

g€l letmj: [[ M; — M; be the jth canonical projection. Let M be a left R-module.
iel

Then we can consider the family of group homomorphisms (Hompg (M, m;)),., where,

for each i € I, we have that

Hompg (M, m;) : Hompg (M,HMZ> — Hompg (M, M;) and Hompg (M, m;) (f) =mo f

il
for every f € Hompg (M,HMZ> :
il

Let

F = A((Hompg (M, 7))ics) : Homp (MHM) — [ [ Homp (M, M;).

icl iel
Then F (f) = (mio f),e; for every [ € Homp (M, HMZ>
iel
The group homomorphism F' s bijective.

Theorem 1.90. (Universal Property of the Direct Sum of a family of
Modules) Let R be a ring, let (M;),.; be a family of left R-modules. For every

jel, lete;: M; — € M, be the jth canonical injection. Let M be a left R-module.
iel

Then we can consider the family of group homomorphisms (Hompg (g5, M)),., where,

for each i € I, we have that

Hompg (g, M) : Hompg (EB MZ-,M> — Hompg (M;, M) and Hompg (e;, M) (f) = foe;

iel
for every f € Hompg (@ MZ-,M> )
1€l
Let
G = A((Homg (g, M))ics) : Homp (@ ]\/[i,]\/[> — [ [ Homp (M;, M)

el il

Then G (f) = (foei),e for every f € Homp (@ M,»,M)

icl
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The group homomorphism G is bijective.

Proposition 1.91. 1) Let0— L s M -5 N be an exact sequence. Then, for
every left R-module U, the sequence

(1.1) 0 Hompg (U, L) " Homp (U, M) "8 Homy, (U, N)

18 exact

2) Let L T M 25 N = 0 be an exact sequence. Then, for every left R-module
U, the sequence

(12) 0 — Hompg (N,U) "7 Homp (M, U) "2 Homp (L, U)
18 exact.

Proof. 1 a)Hompg (U, f) is injective. In fact, let ¢ € Hompg (U, L) be such that
0 = Homg (U, f)({) = f o (. Since f is injective, from f o ( = 0 we deduce that
¢=0.

1b) Im (Hompg (U, f)) C Ker (Homg (U, g)) . Let ¢ € Hompg (U, L) . Then

Hompg (U, g) (Hompg (U, f) ({)) = Hompg (U, g) (f o () = gofo( = Osince gof = 0.

lc) Ker (Hompg (U, g)) € Im(Hompg (U, f)). Let ¥ € Ker (Hompg (U,g)). This
means that 0 = Hompg (U, g) (¢) = g o). From g o = 0 we deduce that Im () C
Ker (¢) =Im (f).

Since f is injective, by Proposition 78, there exists p : M — L such that
fop=1. Thus ¥ = Homg (U, f) (p) .

2a) Hompg, (g, U) is injective. Exercise.

2b) Im (Hompg (g,U)) C Ker (Hompg (f,U)) . Exercise.

2¢) Ker (Hompg (f,U)) C Im (Hompg (g,U)). Let £ € Ker (Hompg (f,U)). This
means that 0 = Hompg (f,U) (§) =& o f. From £ o f = 0 we deduce that Ker (g) =
I (f) C Ker (€).

Since g is surjective, by Proposition [CZ4, There exists s : N — M such that
sog=¢. Thus £ = Hompg (g,U) (s) ]
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Free and projective modules

Definition 2.1. Let R be a ring and let X be a nonempty set. A free left R-module
with basis X is a pair (F,i) where

e [ is a left R-module and
e 1 : X — F s amap

such that the following universal property is satisfied.

For every map f : X — M, where M 1s a left R-module, there exists a left
R-module homomorphism f such that f o1 = f and moreover this homomorphism
1S UNLQUE. .

Proposition 2.2. Let R be a ring and let M be a left R-module.
1) Then, for every x € M, the map
te : rRR — rM defined by setting p, (a) = ax for every a € R
is a left R-module homomorphism.
2) The homomorphism p =V (iz),cx rRY) — M is surjective if and only if X
be a system of generators of M.

Proof. 1) Follows by [GO.
2) Always by we know that Im (u,) = Rz. By Proposition we have

Im (p) = Z Im (p,) = Z Rz.

zeX zeX

Proposition 2.3. Let R be a ring and let X be a nonempty set. Let
F=RWX = @Rx where, for each x € X, R, = grR
zeX

and, for everyy € X, lete, : Ry, — € R, be the canonical injection. Leti: X — F
zeX
be the map defined by setting i (x) =€, (1g). Then (F,1) is a free module with basis

X.

35
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Proof. Let M be a left R-module and let f : X — M be a map. By Proposition
232, the map f, : R, = R — M defined by setting f, (a) = af (z) is a left R-module
homomorphism. We set

7 =V (fx):ceX .

Recall that, for every z € X, we have f oe, = f,. For every z € X, we compute

(foi)(x)=(i(x)) = f(e.(1r)) = foea (1r) = fo (1) = [ (2).

Therefore we get that foi = f. Let now g : @ R, — M be another morphism
zeX
such that

g-i=1.
Let us prove that f = g or equivalently that foe, = goe, for every z € X. We
have

gogs (az) = az[goe, (1)) = az [goi(v)] = a. f (z) = a, [70 i (:L’)] = Qg [70 Ex <1R)} = 705w (az)
for every a, € R,. O

Theorem 2.4. Let R be a ring and let X be a nonempty set. Then

1) There exists a free left R-module with basis X .

2) Let (F,i) and (F',i") be free left R-modules with basis X. Then there exists a
left R-module homomorphism ¢ : F'— F' such that ¢ oi =1'. Moreover

e o is unique with respect to this property.

® 0 is an isomorphism.

Proof. 1) follows by Proposition EZ3.

2) Since (F, 1) is a free module with basis X, there exists a left R-module homo-
morphism ¢ : ' — F’ such that p o =7¢'. Since (F’,7’) is a free module with basis
X, there exists a left R-module homomorphism ¢’ : F/ — F' such that ¢’ o’ = i.
We compute

Popoi=¢ ot =i.

On the other hand we also have
IdF 01 =1.

In view of the definition of free module, there exists only one homomorphism which
composed with 7 is equal to i. Therefore we get that ¢’ o ¢ = i. By interchanging
the role of (F,i) with that of (F”,i') we also get ¢ o ¢/ = Idp. Therefore ¢ is
bijective. [

Exercise 2.5. Let (F,i) be a free module with basis X. Prove that i is injective.
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Definition 2.6. Let X be a non-empty set and let M be a left R-module. Let (F,1)
be a free module with basis X. Let f = (mg),cy € M*X and consider the only
homomorphism ¢ : F — M such that ¢ oi = f. f is called linearly independent
whenever ¢ is injective.

X 4% F
N Lo
M

Proposition 2.7. Let X be a nonempty set, let M be a left R-module and let
f=(my),cx € M¥. The following assertions are equivalent

(a) f is linearly independent.

(b) For every nonempty finite subset H of X and (r;),.x € RX)

ermxzoérx:Ofor every x € H.
rzeH

Proof. By Theorem P and by Proposition 223 we can assume that
F=R%X = EBRJ; where, for each z € X, R, = rR
reX

and 7 : X — F be the map defined by setting i (z) = €, (1g) where, for every y € X

ey : Ry, — @ R, denote the canonical injection. Let a = (r;),.y € R¥) and let
zeX
Supp (a) € H where H is a nonempty finite subset of X. Then

a= st (rz)

zeH

and

pla) = ¢ (Z Ea (Tz>> = Z (poey)(rs) = Z rz[(poes) (1r)]

= Yl ) =Y e (@) =Y raf (1) = > rom,

(a) = (b). Let H be a nonempty finite subset of X, let (r;),.y € R¥) and
assume that Y . rym, = 0. Set

a= Z ez (12)
xeH
Then, by the foregoing, we have

v(a) = ermm = 0.

zeH
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Since ¢ is injective, we get a = 0 i.e. r, = 0 for every z € X.
(b) = (a). Let a = (ry),.x € R®) and assume that ¢ (a) = 0. Let H = Supp (a)
and assume H # @&. Then, by the foregoing we have

0=¢p(a) = ermx.

zeH

In view of our assumption (b) this implies that r, = 0 for every x € H i.e. H = &.
Contradiction. ]

Definition 2.8. Let X be a non-empty set and let M be a left R-module. An element
(M) ey € M is called a basts of M if (my),x is a linearly independent element
and the set {m, | x € X} is a set of generators of M.

Proposition 2.9. Let X be a non-empty set, let M be a left R-module and let
(M) ,ex € MX. Let ¢ : R — M be the only morphism of left R-modules such
that ¢ (e, (1g)) = my for every x € X. Then the following assertionsare equivalent:

(a) (mg),cy 5 a basis of M.
(b) ¢ : RX) — M is an isomorphism.

Proof. Note that
¥ = \Y (()0 ° Ex)xeX =V (/“Lm>m€X :

The conclusion follows in view of Propositions 220 and 22 O
Exercise 2.10. (e, = ¢, (1g) | # € X) is a basis of R™X).

Definition 2.11. Let g P be a left R-module. rP is said to be projective if, for every
surjective left R-module homomorphism

M2y N 0

and for every left R-module homomorphism h: P — N, there exists a left R-module
homomorphism h : P — M such that go h = h.

Proposition 2.12. Let grP be a left R-module. Then the following assertions are
equivalent.

(a) grP is projective.

(b) For every short exact sequence 0 — L oM 2N S0 of left R-module
homomorphisms, the sequence

0 — Homg (P, L) "7 Homp (P, M) "2 Homp (P, N) — 0

15 exact.
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Proof. (a) = (b). By Proposition [T, we have only to prove that Hompg (P, g) is
surjective. Thus let h € Hompg (P, N). Then h : gP —>_RN is an homomorphism.
Since g P is projective, there exists an homomorphism h : P — M such that h =

goh =Hompg (P,g) (E)
(b) = (a). Let M -5 N — 0 be a surjective homomorphism and le h : P — N
be a left R-module homomorphism. Then h € Hompg (P, N). Since the sequence

O—>Ker(g)L>Mi>N—>O,

is exact, we deduce from (b) that Hompg (P, g) is surjective so that there exists an
homomorphism h € Hompg (P, M) such that h = Homg (P, g) (h) = go h. O

Proposition 2.13. Let (P;),_; be a family of left R-modules. Then the following
assertions are equivalent:

el

(a) FEach P; is projective, for everyi € I.
(b) @ P; is projective.

icl
Proof. (a) = (b). Let M -2 N — 0 be a surjective homomorphism and let h :

@ P, — N be an homomorphism. Foreveryi € I lete; : P, — € P, be the canonical
iel i€l

injection. Since P; is projective, for every i € I, there exists an homomorphism
h; : P, — M such that go h; = hoe;. Set h = V (h;),; and recall that hoe; = h;

for every ¢ € I. We compute
gohogi=goh;=hoe,.

By the universal property of the direct sum, there exists only one homomorphism
which composed with every ¢; is equal to hoe;. Therefore we deduce that goh = h.
(b)) = (a). Fix an ig € I. Let M 2 N — 0 be a surjective homomorphism
and let h : P,, — N be an homomorphism. Consider the family of left R-module
homomorphisms (h;),., where h;; = h and h; = 0 for every i € I, i # ip. Let
[ =V (hi);e; @ P; — N. Since @ P, is projective, there exists an homomorphism
icl iel
f: P, — M such that go f = f. Let h = f oe;,. Then we get
i€l
goh=gofoey,=foey=hy,=h
O

Corollary 2.14. FEwvery direct summand L of a projective left R-module P is pro-
jective.

Proof. Since L is a direct summand of P, there exists a left submodule H of P such
that ‘
P=L&H.

Let p: L& H — L & H = P be the usual isomorphism. Since P is projective, also
L & H is projective and hence, by Proposition 23, L is projective. O
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Proposition 2.15. Let R be a ring and let X be a nonempty set. Then the left
R-module gk R is projective.

Proof. In view of Proposition 13, we will show that rR is projective. Thus let
M -2+ N — 0 be a surjective homomorphism and let i : gkR — N be an homomor-
phism. Since g is surjective, there exists an x € M such that g (z) = h(1g). By
Proposition 22, there exists an homomorphism % : kR — M such that h (a) = ax
for every a € R. For every a € R, we compute

(goh)(a) =g (ax) = ag (z) = ah (1) = h(alg) = h(a).
Thus we get that g o h = h. ]

Proposition 2.16. Let (F,i) be a free left R-module with basis X. Then F is
projective.

Proof. 1t follows by Proposition 13, in view of Proposition E23 and Theorem 4.
O

Proposition 2.17. Let P be a left R-module. Then the following statements are
equivalent

(a) grP is projective.
(b) Ewvery short exact sequence of the form 0 — L EEAN ANy NN splits.

(¢) rP is a direct summand of a free left R-module.

(d) grP is a direct summand of a projective left R-module.

Proof. (a) = (b). Since P is projective, there exists a left R-module homomor-
phism s : P — M such that so g = Idp.

(b) = (c). By Proposition Z2, we have a surjective homomorphism ¢ : xR —
rP. By 2) in Theorem X, there exists an R-submodule H of zR") such that
RRP) = Ker (g) ® H. Then H =~ zR® /Ker (g) = P so that

P is a direct summand of Ker (¢) ® P = Ker (¢) ® H = Ker (¢) ® H = rR®).
(¢) = (d) is trivial,
(d) = (a) follows by Corollary 214, O
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Injective Modules and Injective
Envelopes

Definition 3.1. Let gE be a left R-module. rE is said to be injective if, for every
injective left R-module homomorphism

0= L2 M

and for every left R-module homomorphism f : L — E, there exists a left R-module
homomorphism f: M — E such that foj= f.

Proposition 3.2. Let gE be a left R-module. Then the following assertions are
equivalent.

(a) rE is injective.

(b) For every short exact sequence 0 — L M LN S0 of left R-module
homomorphisms, the sequence

) Homp

0 — Hompg (N, E) "2 Homp (M, B) "2 Homp, (L, B) = 0

18 exact.

Proof. Is analogous to the prove of Proposition T2 and it is left as an exercise to
the reader. n

Proposition 3.3. Let (E;)
assertions are equivalent:

be a family of left R-modules. Then the following

iel

(a) Fach E; is injective, for every i € I.

(b) [ E; is injective.

el

41
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Proof. (a) = (b). Let j : L — M be an injective left R-module homomorphism and
let f: L — [] E; be aleft R-module homomorphism. Then
icl

f:A(Wiof)z‘eI'

Let 7 € I. Since Ej; is injective, there exists a morphism f; © M — E; such that
fioj=mof. Let f=A (fi)iel and, for every ¢ € I, let us compute

Wio?oj:ﬁoj:mof.

By the Universal Property of the Direct Product, we deduce that foj = f.

(b) = (a). Let j : L — M be an injective left R-module homomorphism and let
f L — E;, be aleft R-module homomorphism. For every ¢ € [ set h; : L — Ej;
equal to the zero map if ¢ # iy and hy, = f. Let h = A(h;),., : L — [] E;. Since

il

[] E; is injective, there exists an homomorphism h : M — [] E; such that hoj = h.
iel i€l
Set f = m;, o h and let us compute

el

Toj:ﬂ-iooﬁoj:ﬂ-iooh:hio:f'
L]

Corollary 3.4. Let E; and E5 be left R-modules. Then FEy ® Ey is injective if and
only if each E; is injective for i =1, 2.

Corollary 3.5. Every direct summand L of an injective left R-module E s injective.

Proof. Since L is a direct summand of F/, there exists a left submodule H of E such
that .

E=L&H.
Let p: L H — L & H = F be the usual isomorphism. Since F is injective, also
L & H is injective and hence, by Corollary B4, L is injective. O

Theorem 3.6. (Baer’s Criterion for injectivity). Let E be a left R-module. The
following assertions are equivalent.

(a) E is injective.

(b) For any left ideal I of R and for every homomorphism of left R-modules f :
I — E, there exists an homomorphism h : R — FE such that hot = f, where
1 : I — R is the canonical inclusion.

Proof. (a) = (b). It is trivial.
(b) = (a). Let j: L — M be an injective left R-module homomorphism and let
f L — FE be a left R-module homomorphism. We set

H = (H,¢)|j(L)CHC M and
N Y H — FE is a left R-module homomorphism such that 1 o j [H — f
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Clearly ‘H # @ since (L,() € H where ¢ = f o1 and 9 is the two-sided inverse of
G In fact o jVE) = foo i) = f.
We define a partial order on H by setting

(H,y) < (H',¢') if and only if H C H" and ¢{y = 1.

It is easy to check that (#H, <) is an inductive set. Hence, by Zorn’s Lemma, it has a
maximal element, say (Hy, o). We will prove that Hy = M. Assume that H g M
and let x € M \ Hy so that Hy & Hy + Rx. Set

J={a€R|ax € Hy}.

J is a left ideal of R. In fact, let a,a1,a; € J and let » € R. Since ay,a, € J, we
have that a1x € Hy and asx € Hy, from which we deduce that

(a1 —a2) x = ayx — agx € Hy
and hence a; — as € J. Moreover a € J means that ax € Hy, from which we get
(ra)x =r (ax) € Hy
which means that ra € J. Let us consider the map x : J — E defined by setting
(3.1) X (@) = ¢ (ax) for every a € J.

x is an R-module homomorphism. In fact let a,a;,a2 € J and let r € R. We
compute

X ((a1 + a2)) = o ((a1 + a2) ) = Yo (a1 + azx) = Yo (a12)+1o (a2x) = x (a1)+x (a2)

and
woisR;homo

x (ra) = tho ((ra) z) = ¢o (r (az)) i (ax) = rx (a) .
By assumption there exists a left R-module homomorphism A : R — E such that

Ao« =y where a: J — R is the canonical inclusion.
Let us define a map ¢y : Hy + Rx — E by setting

o (h+rz) =1 (h) + A(r).

% is well defined. In fact, assume that h + rz = b’ +r’z. Then
h—h=("—r)z e HyN Rz.

This means that (r' —r) € J so that

o (h) = o (B') = 1ho (h = h') = oo ((r' — ) ) =
(E)X(r’—r):)\oa(r’—r):)\(r'—r):)\(r’)—)\(r)

Thus @//J/\O\is well defined. It is easy to check that 7,/05 is a left R-module homomorphism.
Since oy, = Yo this contradicts the maximality of (Hyg, o). O
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Definition 3.7. Let R be a commutative ring. An element a € R is said to be a
zero-divisor if there exists an element b € R, b # 0 such that a - b = 0.

Remark 3.8. The element 0 is always a zero-divisor. Any zero-divisor different
from 0 s called non trivial zero-divisor.

Examples 3.9. 1) In the commutative ring Zg the unique non trivial zero-divisors
are 2+ 67 , 3+ 6Z and 4 + 67Z.

2) A commutative ring D is a domain if and only if it has no non trivial zero-
divisor.

Definition 3.10. Let E be a module over a commutative ring R. E is said to be
divisible if, for any r € R, r not a zero-divisor, we have rE' = FE i.e. for everyx € E
there is an element x' € E such that rx’ = x.

Example 3.11. Let D be a commutative domain and let QQ = Q (D) be its ring of
quotients. Then Q) is a divisible D-module. In fact, for every d € D,d # 0 and for

every q € @, one has
=d L
q - Yq *

Proposition 3.12. Let R be a commutative ring, Let E be an R-module and let
(Ei);er be a family of R-modules. Then

1) E is divisible if and only if any quotient of E is divisible.

2) @ E; is divisible < E; is divisible for any i € [ < [] E; is divisible.

el i€l

Proof. 1) Let L be a submodule of E and let » € R be a non-zero divisor. Let
y € E/L. Then there exists an element x € E such that y = x + L. Since FE is
divisible, there exists an element 2’ € E such that r2’ = z. Then we have

r(z’+L)=(ra')+ L=x2+ L.

2) Assume that E; is divisible for any ¢ € I, let € [[ E; and let r € R be
iel
a non-zero divisor. Then, for every ¢ € I, there is an element x; € E; such that

& = (2;);c;- Since Ej; is divisible, for every i € I there exists an element z; € E;

such that rz} = z;. Let 2’ = (27),c;- Then ra’ = r (2),.; = (rz}),c; = (Ti),e; = T

Assume now that x € @@ E; and set o}, = 0 if i ¢ Supp (z) while, if i € Supp (x),

icl
let 2 € E; be such that rz; = x;. Let 2’ = (2}),c;- Then Supp (2') = Supp (x) and
hence
v' € @ E;. Moreover we have ra’ = r(x}),.; = (rz),c; = (xi);e; = x. . This

icl
shows that also @ E; is divisible.

iel
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Assume now that [] £; is divisible and consider the canonical projection 7; :
iel
[[ £; — E;. Since 7 is surjective, we deduce that E; is isomorphic to a quotient of
icl

[1 £; and hence, by 1), we get that Ej is divisible.

i€l
In the case when P F; is divisible, since the canonical projection 7’ : P E; — Ej
iel el
is still surjective, the same proof applies. O

Definitions 3.13. Let D be a commutative domain and let M be a D-module. An
element x € M s called a torsion element if there exists an d € D,d # 0 such that
dx = 0.
We set
t(M)={x € M|z is a torsion element} .

We say that M is a torsion module if t (M) = M and that M is a torsion-free
module if t (M) = {0}.

Exercise 3.14. Let D be a commutative domain and let M be an D-module. Show
that

1) t (M) is a submodule of M.
2) t (M) is the largest torsion submodule of M.

3) M/t(M) is a torsion-free module.

Proposition 3.15. Let T be a torsion abelian group and let P be the set of prime
natural numbers. For each p € P set

T, = {x € T | there is an h € N such that p"x = 0} .
Then T, is a subgroup of T and

T = @Tp.

peEP

Proof. Let p € P and let 2,2’ € T,. Then there exist h, /' € N such that p"z = 0
and p"' 2’ = 0. Then we get

P (@ — af) = p" = p" e = p (pha) — p (Ph/x/) =0

Since 0 € T},, we conclude that T}, is a subgroup of 7.
Let us prove that
T=>"T,

peEP
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Let x € T'. Then there is an element n € N, n # 0, such that nz = 0. If n = 1, then
x = 0 and there is nothing to prove. Otherwise can write

= ph.... phe for suitable s € N, s > 1, hy,...hy €N,

n
where hq,...,hy > 1and py,...,ps € P are distinct prime numbers.

For each i = 1,...s, we set ¢; = . Then we get that MCD (q1,...,qs) = 1 and
p;
hence, there exist A,... Ay € Z such that

1:)\1ql+...+)\sqs.

Note that, for each i = 1,...s, we have

i (Nigix) = )\ipé“%x =\nz =0

7

and hence we deduce that \;q;xz € T,,,. Moreover we get

le-m:(/\1q1+...+/\5q5)x:)xlqlx—i—...—i—/\sqsxEZTP.

peEP
Let us prove that, for each q € P,
T,n Y T,={0}.
PEP\{q}

Let z € Tqﬂzpep\{q} T,. Then there exists an s € N, s > 1 and, for eachi =1, ... s,
an element p; € P\ {¢} and an element x; € T, such that

r=x +...+ T

Since z; € T, there exists an h; € N such that p?‘xz = 0. Moreover, since =z € T},
there exists an h € N such that ¢"z = 0. Let n = p/ - ... . p"s and, for each i, let

¢; = - Then we get that
p;

i

nr=n(r+...+x)=qple +... +qptaz,=0.

Moreover, since each p; € P\ {q} we have that MCD (n, qh) = 1. Therefore there
exist A\, u € Z such that 1 = An + pg". We obtain that

r=1-2z= M+ pd") z= I+ pd"z=0.
]

Example 3.16. Q/Z is a torsion abelian group. In fact, for every q € Q, there
exist m,n € Z,n > 0 such that g = *. Then

n(qg+7Z)= <n@>+Z:m+Z:Z.

n
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Moreover, for each p € P, we have

Q/z), = {q+Z € Q/Z | there exists an h € N such that p" (¢+Z) =0+ Z} =

Exezmse{mh—i-Z|m€Zandh€N}.
p

The group (Q/Z),, is usually denoted by Z (p>) and it is called the Prufer p-group.
By Proposition BId, we have that

Q/z=Pzr).

peEP

Exercise 3.17. Let p € P. For each h € N, h > 1,let <#—|—Z> be the cyclic
subgroup of Z (p>) spanned by # + 7Z. Show that

1 1 1
<E+Z>Q...§<E+Z>Q<W+Z>Q...Q

zZp>) = <ih+Z>.

heN,h>1 p

and that

Proposition 3.18. Let D be a commutative domain and let E be a torsion-free
divisible R-module. Then E 1is an injective module.

Proof. We will apply Theorem B@. Thus let I be an ideal of D and let ¢ : I — D
be the canonical inclusion. Let f : I — E be an homomorphism. We seek an
homomorphism f : D — E such that foi = f. If f = 0 we just set f = 0. If
f # 0, there exists an element a € I such that f(a) # 0. Then we get that a # 0
and hence, since F is divisible, there exists an element = € E such that f (a) = az.
Let f = p,: D — Eie. f(d) = dx for every d € D. Let us check that foi = f.
Thus let b € I and let us prove that

(foi)(d)=f(b).

If b = 0, there is nothing to prove. Thus let us assume that b # 0. Then f (b) € E =
bE and hence there is an element z;, € E such that f (b) = bx,. We compute

bf (a) = f(ba) = f (ab) = af (b) = abxy,.
Therefore we obtain that bf (a) = bax, i.e.
b(f (a) — axp) = 0.

Since b # 0 and D is a domain, this implies that f (a)—az, = 0i.e. that f (a) = ax.
Since we have also that f (a) = az, we deduce that

ar = axy
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and since a # 0 and D is a domain, we infer that x = x,. Then we finally obtain
that

(foi)(b)=f(b)=bx=bx,=f(b).
O]

Corollary 3.19. Let D be a domain. Then the ring of quotient Q (D) of D is an
injective D-module.

Proof. By Example BT, we have that @ (D) is a divisible D-module. Since @ (D)
is a domain, it is in particular a torsion-free D-module. Thus,by Proposition BIR,
Q) (D) is an injective D-module. O

Proposition 3.20. Let R be commutative ring. Every injective R-module is divisi-
ble.

Proof. Let E be an injective R-module and let a € R be a non-zero divisor. We have
to prove that aE = E. Thus let # € E and let us define a map ¢ : (a) = Ra — E
by setting ¢ (ra) = rz. Let us check that ¢ is well-defined. Assume that r,7’ € R
and that ra = r’a. This implies that (r — ") a = 0 and hence, since a is not a zero-
divisor, that (r — ') = 0 i.e. » =1’ so that rz = r’x. It is easy to check that ¢ is
an R-module homomorphism. Since F is injective, ¢ extends to an homomorphism
P:R— E. Let y =% (1). We have

ay =ap (1) =9 (a) = ¢(a) = .
m

Proposition 3.21. Let D be a principal ideal domain and let E be an D-module.
Then E is injective if and only if E is divisible.

Proof. In view of Proposition we have only to prove that every divisible module
is injective. Thus let E be a divisible D-module. We will prove that E is injective
by using Baer’s criterion (B@). Thus let I be an ideal of D and let f : [ — E be
an D-module homomorphism. Since D is a principal ideal domain, there exists an
a € D such that I = (a) = Ra. If a = 0, then f is the zero homomorphism and
hence can be trivially extended to R. If a # 0 then a is not a zero-divisor in D.
Since FE is divisible, there exists an y € E such that

ay = f(a).

Let us consider the homomorphism i, : D — E which is defined by setting p, (d) =
dy for every r € D. Then, for every r € D we have:

py (ra) =ray =rf(a) = f (ra).

Therefore p,, : R — E is an homomorphism which extends f. O



49

Example 3.22. The abelian groups Q,Q/Z,7 (p>) are all divisible groups and
hence injectives. In fact Q is divisible by Example BI2. Hence Q/Z is divisible
by Proposition BI2 and Z (p>) is divisible by Propositions BId and EI3.

Exercise 3.23. Prove that the abelian groups R and R/Z are injectives. Prove also
that t (R/Z) = Q/Z. Deduce that there exists a subgroup H of R which contains Z
such that _

R/Z=Q/Z® H/Z
and that H/Z is torsion free.
Theorem 3.24. Every abelian group can be embedded in an injective abelian group.

Proof. Let G be an abelian group. Then, by Proposition B3, there is a surjective
homomorphism A : Z(%) — G and hence we have that

G=79/L.

. Let L = Ker (h). Then the canonical inclusion i : Z(%) — Q(%) induces an injective
homomorphism £ : Z(@ /L — Q@ /L and hence we get an injective homomorphism
0 : G — Q@ /L. By Example BT, Q is divisible and hence, by Proposition B2
also Q@ and Q@ /L are divisible. Then we can apply Proposition B2 to infer
that Q) /L is an injective abelian group. O

3.25. Let R be any ring and let G be an abelian group. Then we can consider
the abelian group Homg (R, G). This abelian group can be endowed with a left R-
module structure as follows. For every a € R and f € Homy (R, G), consider the
map

ga : R — G defined by setting g, (r) = f (ra) for everyr € R.

Let us check that g, € Homg (R, G). Let r1 and ro € R and let us compute

9o (T1+712) = f((r1 +712)a) = f (ria+rea) = f (ria) + f (r2a) = ga (1) + ga (12) -
Then we set

(3.2) a- f = g, which means that (a- f)(r) = f(ra) for everyr € R.

Let us check that this defines a left R-module structure on Homg (R, G). Thus let
a,b,ai,as € R and f, f1, fo € Homg (R, G). For every r € R we compute

(3.3) la-(fi+ f2)](r) = (fi + fo) (ra) = fi(ra) + fo(ra) =
=(a-fi)(r)+(a-f2) (r)=[(a- fi+(a-f2))](r),
(3.4) (a1 +az) - f](r) = f(r(ar+az)) = f(ra1 +raz) =

= f(ra) + f (raz) = (a1 - ) (r) + (a2 - f) (r) = [(a1 - f) + (a2 - f)] (r)
and
3.5) [(ab) - f](r) = f (rab) = (b- f) (ra) =la-(b- f)](r).

(
(B3) entails that a - (f1 + f2) = (a- fi + (a- f2)), (BA) entails that (ay + az) - [ =
(a1 - f)+ (a2 - f) and finally (B3) entails that (ab) - f =a - (b- f).
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Proposition 3.26. Let R be a ring and let E be an injective abelian group. Then
Homy (R, F) is an injective left R-module.

Proof. Let 0 — L -2+ M be an injective R-module homomorphism and let f :
L — Homy (R, E) be a left R-module homomorphism. We seek a left R-module
homomorphism f : M — Homgz (R, E) such that foj = f. First of all we consider
the map ¢ : L — E defined by setting ¢ (a) = f (a) (1g) for every a € L. Let us
check that ¢ is an abelian group homomorphism. Let a;,a, € L and let us compute

¥ (al + a2) =f (a1) (1R> + f (CZQ) (1R> [f (a1> + f (a2>] (1R) fisanhomo
= f (a1 +az) (1r) = ¢ (a1 +a2).

Since E is an injective abelian group,there is an abelian group homomorphism ¥ :
M — E such that o j = . Now, for every m € M let us consider the map

def—&-ianmZ(R,E)

fm : R — E defined by setting f,, (a) = @ (am) for every a € R.
Let us check that f,, € Homg (R, E). Let a1, as € R. We have

) pisgrouphomo

fm (a1 + az) =@ ((a1 + az) m) =@ (aym + agm
=@ (am) + P (azm) = fm (a1) + fm (a2) -
Hence f,, € Homy (R, E). Now we consider the map
f: M — Homg (R, E) defined by setting f (m) = f,, for every m € M.

This means that, for every m € M and a € R, we have
[f (m)] (a) =7 (am).

Let us check that f is a left R-module homomorphism. Let z, 2,2, € M and let
r € R. For every a € R we compute

) pisgrouphomo

(3.6) [f (21 + 22)] (@) = P (a (21 + 22)) = P (azy + axs
— — def—i—inH;mZ(R,E)

=P (az1) + P (axs) = f (z1) (@) + f (22) (a)
:[7($1)+f( )“)

and

37 o)) @ =pab) =3 ((e)2) = [F@)] (@) S [ F@)] (@

(BM) entails that f (z, + x2) = f (21) + f (z2), while (B32) entails f (rz) =r- f (z).
Therefore we deduce that f is a left R-module homomorphism.

It remains to check that foj = f. Thus let y € L and, for every a € R, let us
compute

[(fod) W] (a) =F (W) (a) =F(aj () =7 (i (ay)) = (@ o J) (ay) = ¢ (y) = [f (ay)] (1r)

2
PR o f ()] (1r) S F () (alm) = £ (9) (@)
This implies that ( fo ) (y) = f (y) for every y € L and hence that foj = f. O
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Lemma 3.27. Let M be a left R-module. Then the map x : M — Homgy (R, M),
defined by setting, using the notations of Proposition 23,

X () = p, for every x € M,
s an injective left R-module homomorphism.

Proof. Let x,x1,29 € M and a € R. For every r € R we have

X (z1 +22)] (r) = hyyrw, (1) =7 (21 + x2) = ray + raxg = hyy (r) + hy, (1)
[hay + D, ] (1) = [X (1) + X (22)] (1)

and

X (@2)] (r) = hao (r) = 7 (ax) = (ra) @ = hy (ar) = [a - ha] (r) = [a- x ()] (r).

Moreover we have
X () (1g) = hy (1g) = lpzr =«
so that, if x # 0, we infer that x (z) # 0. 0

Theorem 3.28. Let R be a ring. Then any left R-module can be embedded in an
injective left R-module.

Proof. Let M be a left R-module. We seek an injective left R-homomorphism ¢ :
M — H where H is an injective left R-module. By Theorem BZ4, there is an
injective abelian group homomorphism ¢ from the abelian group M to an injective
abelian group E:

0> M-S E.

By Proposition T, we know that Homy (R,7) : Homg (R, M) — Homgz (R, E) is
an injective group homomorphism. Let us check that ¢ = Homg (R, %) is a left R-
module homomorphism. Thus let » € R and f € Homg (R, M). For every a € R we
compute

(B82)

(Pl (@) = (iorf) (@) =i[(r-f) (@] B i(f (ar) = (i f) (ar) = o ()] (ar) =
D0 ()] ).

This implies that ¢ (rf) = r- ¢ (f) and hence ¢ is a left R-module homomorphism.
By Proposition BZ8, Homy, (R, E) is an injective left R-module. By Lemma B2,
we conclude. ]

Proposition 3.29. Let E be a left R-module. Then the following statements are
equivalent

(a) rE is injective.

(b) Ewvery short exact sequence of the form 0 — E MmN S0 splits.
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(¢) For every injective left R-module homomorphism f : E — M, f(E) is a direct
summand of M.

Proof. (a) = (b). Since F is injective, there exists an homomorphism p : M — E
such that po f = Idg and hence, by Theorem X4, the given short exact sequence
splits.

(b) = (c¢). Let f: E— M be an injective left R-module homomorphism. Then
we can consider the short exact sequence

0= E-L M™5 M/f(B) —o.

By assumption (b), this sequence splits and hence, by Theorem R4, there is a
submodule X of M such that

M=f(E)®X.

(¢) = (a). By Theorem BZR, there is an injective left R-module homomorphism
¢ E — H where H is an injective left R-module. In view of assumption (c), there
is a submodule X of H such that

H=¢(E)®X.

By Corollary B3, we deduce that ¢ (F) is an injective left R-module. Since ¢ is an
injective homomorphism, we deduce that E = ¢ (F) and hence F is injective. [

Definition 3.30. Let L be a submodule of a left R-module M. We say that L is
essential in M if, for every non-zero submodule H of M, H N L # {0}.

Proposition 3.31. Let L be a submodule of a left R-module M. Then L is essential
in M if and only if, for every x € M, x # 0, there is anr € R such that 0 # rx € L.

Proof. Exercise. O

Examples 3.32. Z s essenzial in the Z-module Q and <}D + Z> 15 essential in the
Z-module Z (p™).

Proposition 3.33. Let (M)),., be a family of left R-modules and assume that, for
every A € A, Ly is an essential submodule of M. Then

@ Ly s an essential submodule of @M,\.
AEA AEA

Proof. Let x € @ My, © # 0. Then Supp (x) is a finite nonempty subset F' of
AEA
A. By induction on n = |F|, we will prove that there is an r € R such that
0#rze @ Ly If n=1,then F = {\} for some \; € A. Then = = ¢,, (zy,)
AEA
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where z), € M,,. Since 0 # x,, and L), is essential in M), there exists an r € R
such that 0 # r - ), € L,,. Hence we get

0 75 € (T’ . .Z')\l) ISESW (L)\l) € @LA

AEA

and since
r-T =T\ (x/\l) =&xn (7“ ’ :C)q)
we conclude.
Let us assume that the statement hold for all k € N, £ > 1 and & < n for some
n € N, n > 1, and let us prove it for n + 1. Let \; € F. Then there exists an r € R
such that 0 # rxy, € Ly,. Let us consider rx — rey, (xy,). If ra —rey, (zy,) = 0,

then 0 # rz = rey, (za,) € ex, (L) € @ Ly. Otherwise 0 # rx — rxy, and
AEA
Supp (rz —rey, (zy,)) € Supp () \ {A\1} so that |Supp (re —rzy,)| < |F| =n+ 1.

Thus there exists an s € R such that

(3.8) 0£s(rz—rey (mn) € P La

AeSupp(x)\{ 1}

Then

srr = srx — srey, (Ty,) + srey, (xy,) € @ L.
AESupp(x)

Assume that srz = 0. Then from (BF) we would get

0 # —srey, (zy,) € @ Ly

AeSupp(x)\ {1}

which is a contradiction. Therefore 0 Arx € € L. O
AESupp(x)
Proposition 3.34. Let L be a submodule of a left R-module M. Let H be a submod-

ule of M maximal with respect to the property LN H = {0}. Then L+ H = L o H
15 essential in M.

Proof. Let x € M such that (L+ H) N Rx = {0}. Let y € LN (H + Rz). Then
there exists an element h € H and an element » € R such that y = h + rx. Then
we get

re =y—he(L+H)NRx={0}

and hence we deduce that ro =y —h =0 so that y =h € LN H = {0}. Thus we
obtain that L N (H + Rxz) = {0}. By the maximality property of H we deduce that
Rx C H. Hence we obtain

Rx CHC (L+ H)NRx=1{0}

and we deduce that x = 0. O
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Proposition 3.35. Let A, B be submodules of a left R-module M and assume that
A C B. Then the following assertions are equivalent.

(a) A is an essential submodule of B and B is an essential submodule of M.

(b) A is an essential submodule of M.

Proof. (a) = (b). Let x € M, x # 0. Since B is essential in M, there is an r € R
such that 0 # rz € B. Since A is essential in B, there exists an s € R such that
0 # srx € A.

(b) = (a). It is trivial. O

Definitions 3.36. Let M be a left R-module. An extension of M is a pair (H,j)
where H is a left R-module and j : M — H s an injective left R-module homomor-
phism.

o An extension (H,j) of M is called proper whenever j (M) & H.

o An extension (H,j) of M is called injective whenever H is an injective left

R-module.

o An extension (H,j) of M is called essential whenever j (M) is essential in H.

Exercise 3.37. Let L be a submodule of a left R-module M and let f : M — M’
be an inective homomorphism. Show that L is an essential submodule of M if and
only if f (L) is an essential submodule of f (M).

Proposition 3.38. Let j : M — H and n : H — H' be injective homomorphisms
of left R-modules. Assume that j (M) is an essential submodule of H. Then the
following assertions are equivalent:

(a) noyj (M) is an essential submodule of H'.

(¢) n(H) is an essential submodule of H'.

Proof. Since 7 is injective, no j (M) is essential in 1 (H). The conclusion follows by
Proposition BZ333. O

Definition 3.39. Let j : M — H be an injective homomorphism of left R-modules.
(H,j) is said to be a maximal essential extension of M if

1) (H,j) is an essential extension of M i.e. j (M) is an essential submodule of H,

2) if (H',n) is an essential extension of H, i.e. if n : H — H' is an injective
homomorphism of left R-modules such that n (H) is an essential submodule of
H', thenn(H) = H'.



25

Remark 3.40. Let (H,j) be an essential extension of M and let (H',n)be an ex-
tension of H. In view of Proposition @38 (H' ,n) is an essential extension of H if
and ony if no j (M) is an essential submodule of H'.

Proposition 3.41. Let M be a left R-module, let (N, j) be an essential extension
of M and let (E,i) be an injective extension of M. Then there exists an injective
homomorphism o : N — E such that ao j = i.

Proof. Since F is injective, there is a left R-module homomorphism o« : N — FE
such that a o j =i. Let y € Ker(a) N j(M). Then there is an x € M such that
j () =y and from y € Ker () we infer that

O0=a(y) =a((@)=(aoj)(z)=ilz).

Since 17 is injective this implies that x = 0 and hence y = j (z) = 5(0) = 0. Thus
we deduce that Ker (a) N7 (M) = {0}. Since j (M) is an essential submodule of N,
this implies that Ker (o) = {0} i.e. « is injective. O

Proposition 3.42. Let M be a left R-module and and let (E,j) be an injective
extension of M. Then E contains a submodule H such that j (M) C H and (H,j‘H)
15 a mazimal essential extension of M.

Proof. Let Q = {K | j (M) is an essential submodule of K and K < zpE}. Clearly
Q2 # @ since j (M) € Q. Now (2, C) is an inductive partially ordered set. Hence,
by Zorn’s Lemma, it has a maximal element. Let H be a maximal element for
(©,C). Then (H,j'H) is an essential extension of M. Let us prove that (H,j‘H)
is a maximal essential extension of M. Let ¢« : H — FE be the canonical inclusion.
Then i (H) = H and i o j¥ = j. Hence we have

(3.9) i (le (M)) =j (M) is an essential in i (H) = H.

Let n: H — H' be an injective homomorphism of left R-modules such that n (H) is
an essential submodule of H’. We have to prove that n (H) = H'.

By Proposition B, there is an injective homomorphism « : H' — FE such
that aw o = 4. Therefore since n(H) is an essential submodule of H' and « is
injective, we deduce that o« (n(H)) is an essential in o (H'). From (B3), we know
that j (M) = i (j17 (M)) is an essential in H = i(H) = aon(H) = a(n(H)).
Since H = «(n(H)) is an essential in « (H'), by Proposition B33, we get that
J (M) is essential in « (H') so that a (H') € Q. From H = a(n(H)) C a(H'), by
the maximality of H we get that H = a(H'). As H = «(n(H)), we obtain that
a(n(H)) = a(H') which implies, in view of the injectivity of o, that n (H) = H'. [

Theorem 3.43. Let E be a left R-module. Then E is injective if and only if E' has
no proper essential extension.

Proof. Assume that E is injective. Let j : E — H be an injective homomorphism
of left R-modules and suppose that j(E) is essential in H. We will prove that
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j (F) = H. Since E is injective, by Proposition B9, there is a submodule L of H
such that H = j(E) @ L. Since j (E) is essential in H and j(E) N L = {0}, we
deduce that L = {0}. Hence H = j (E).

Conversely, assume that E has no proper essential extension. Let i : E — M be
an injective homomorphism. We will prove that ¢ splits. Assume that i (E) ; M.
By Zorn’s Lemma, there exists a submodule H of M maximal with respect to the
property ¢ (E) N H = {0}. If H = {0} then, for any L < M with L # {0}, we
would get that i (F) N L # {0} and hence i (E) would be essential in M which is
a contradiction since i (E) & M. Thus H # {0}. If i (E) + H = M we would get
i(E) @ H = M. Therefore we can assume that i (E) + H & M. We deduce that

i(E) _i(E)+H _M

i(E)gi(E)ﬂH: H Z*H

Let j:i(F) — % be the composition of the displayed isomorphisms . Then

joi(E) S 4. Thus there exists a submodule Y of M such that H 'Y C M and

(Z(E)T*H> m% ~ {0} - % .

(((E)+H)NnY = H.

Thus we infer that (i (E)NY) C (i(E)+ H)NY = H and hence (i (E)NY) C
(i(E)NH) = {0}. Since H & Y C M this contradicts the maximality of H.
Therefore we get that i (£) + H = M and hence i (E) & H = M. O

Definition 3.44. Let i : M — E be an injective homomorphism of left R-modules.
(E,1) is said to be a minimal injective extension of M if

1) E is an injective left R-module,

2) for any injective homomorphism i' : M — E' where E’ is an injective left R-
module, there exists an injective homomorphism x : E — E' such that yoi = 17'.

Proposition 3.45. Let i : M — E be an injective left R-module homomorphism.
Then the following assertions are equivalent.

(a) (E,7) is an injective and essential extension of M.
(b) (E,i) is a maximal essential extension of M.
(¢) (E,7) is a minimal injective extension of M.

Proof. (a) = (b). Let n: E — H be an injective homomorphism of left R-modules
and assume that 7 (E) is essential in H. Then, by Theorem BZ3, we have that 7 is
an isomorphism.

(b) = (a) . Let us prove that F is injective. By Theorem B3, this is equivalent
to prove that E has no proper essential extension. Let n : E — E’ be an injective
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homomorphism and assume that 7 (E) is essential in E’. Since (E, i) is a maximal
essential extension of M, we deduce that 7 is an isomorphism.

(a) = (¢). Let ¢/ : M — E’ an injective homomorphism and assume that E’
is injective. Then, by Proposition B2, there exists an injective left R-module
homomorphism y : E — E’ such that x o = 1.

(¢) = (a) . By Proposition B232, E contains a submodule H such that i (M) C H
and (H ilH ) is a maximal essential extension of M. Since we already proved that
(b) = (a), we know that H is injective and hence (H,i"’) is an injective (and
essential) extension of M. Then, by (c), there exists an injective homomorphism
X : E — H such that x oi =.i#. Since il! (M) is essential in H and il (M) =
xoi (M) C x (F), by Proposition B33 we deduce that xoi (M) is essential in x (E).

Since x is injective, we deduce that ¢ (M) is essential in F. O

Theorem 3.46. Let M be a left R-module. Then there exists an injective homomor-
phism of left R-modules i - M — E such that (E, i) fulfills the following equivalent
conditions:

(a) (E,i) is an injective and essential extension of M.
(b) (E,i) is a maximal essential extension of M.
(¢) (E,i) is a minimal injective extension of M.

Moreover if both (E,i) and (E',i') fulfill these conditions, then there exists an
homomorphism o : E — E’ such that acoi = 1. Furthermore « is an isomorphism.

Proof. In view of Proposition B43, we know that conditions (a), (b) and (c) are
equivalent. By Theorem B8, there exists an injective left R-module homomorphism
t : M — I where [ is injective. By Proposition B2, I contains a submodule H such
that ¢ (M) C H and (i, H) is a maximal essential extension of M.

Assume now that both (F,7) and (£’,7') fulfill above conditions. Since (F,i) is a
minimal injective extension of M, there exists an injective homomorphism o : F —
E’ such that a«oi =1¢. Then aoi (M) =4’ (M) is essential in E’ and being (E, i) a
maximal essential extension of M, we get that o (E) = E'. O

Definition 3.47. Let M be a left R-module. A pair (E,i) which satisfies the equiv-
alent conditions of Theorem 1s called an injective envelope of M. An injective
envelope of M will also be denoted simply by Er (M) or even by E (M).

Exercise 3.48. Let L be an essential submodule of a left R-module M. Show that
E(L)=FE(M).

Examples 3.49.

1) Ez (Z) = Q. In fact, by Example @23, Q is an injective abelian group. Let us
prove that 7 is essential in Q. Let ¢ € Q,q # 0. Write ¢ = ™ where m,n € 7Z
and m,n # 0. Then ng=m € Z and m # 0.
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2) Ez(Z/pZ) = Z (p>®). In fact, by Example BZ3, Z (p>°) is an injective abelian
group. Let H = <§ —|—Z>. Then H is an essential submodule of Z (p*°). In
fact, if x € Z (p™) and x # 0 there exist m € Z,h € N such that

a:zmh%—Z where h > 0 and (m,p) = 1.
p

Then m
(p" )z = E+Z7AO+Z.

In fact if % € Z, then there is an a € Z such that m = ap which contradicts
that (m,p) = 1. Since o G) + Z) = p we get that Z/pZ = H.

Exercise 3.50. Let D be a commutative domain. Show that Ep (D) = Q (D).
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Generators and Cogenerators

Notation 4.1. In the following we will denote by R-Mod the class of all left R-
modules.

Definition 4.2. Let R be a ring. A left R-module r(Q is called a generator of R-
Mod if, given R-module homomorphisms f,g : M — N with f # g, there is a left
R-module homomorphism h : Q — M such that

foh#goh.

Proposition 4.3. Let Q) be a left R-module. The following assertions are equivalent:
(a) Q is a generator of R-Mod.
(b) For every left R-module M we have that

M= Y Im(h)

(¢) For every left R-module M, there ezists a nonempty set I and a surjective R-

module homomorphism
QY — M — 0.

Proof. Let us consider QHomr(@.M)) — ) Qn where @, = @ for every
heHomp(Q,M)

h € Hompg (Q, M). Let v = V (1), cyomp.n) QHemr(@M) 5 M. We know (cf.
Proposition [G4) that

Im (p) = Z Im (h)

heHomp(Q,M)

(a) = (b) . Let us prove that ¢ is surjective. Let 7' = Im (¢) and let us assume that
T G M. Then M/T # {0}. Let p = pr : M — M/T be the canonical projection.
Then p # 0 and hence there exists a left R-module homomorphism y : () — M such
that po x # 0o x = 0. Since po x # 0 we get that

Im(y) ¢ Ker(p) =T =Im(¢) = >  Im(h)

heHomp (Q,M)

29



60 CHAPTER 4. GENERATORS AND COGENERATORS

which is a contradiction.
(b) = (c). Let I = Hompg (Q, M) and let ¢ = V (h),cpomp(0.an- Then

Im (p) = Z Im (h) = M.

heHomp (Q,M)

(¢) = (a).Let f,g : M — N be homomorphisms of left R-modules with f
g. By assumption (c), there exists a nonempty set I and a surjective R-module
homomorphism
p: QD — M.

Since p is surjective, from f # g we infer that f o p # g o p and hence, there exists
an ig € I such that

fopoei, #gopoe.
Set h=poeg;, :Q — M. Then foh# goh. O

Corollary 4.4. R is a generator of R-Mod.
Proof. Tt follows by Propositions 2 and B=3. m

Exercise 4.5. Let r(Q) be a left R-module and assume that there is a surjective left
R-module homomorphism p : rQQ — rR. Show that grQ is a generator of R-Mod.
Deduce from this, that if gL is a left R-module, then the left R-module rR ® gL is
a generator of R-Mod.

Exercise 4.6. Let gr(Q) be a generator of R-Mod. Show that there is ann € N,n > 1
and a a surjective left R-module homomorphism p : RQ™ — rR.

Definition 4.7. Let R be a ring. A left R-module rK is called a cogenerator of
R-Mod if, given R-module homomorphisms f,qg: M — N with f # g, there is a left
R-module homomorphism h : N — K such that

hof#hog.
Proposition 4.8. Let K be a left R-module. The following assertions are equivalent:

(a) K is a cogenerator of R-Mod.

(b) For every left R-module M we have that

N Ker(f)=1{0}.

f€Homp(M,K)

(¢) For every left R-module M, there exists a nonempty set I and an injective R-
module homomorphism
0—M— K"
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Proof. Let us consider KHomr(MEK) — b K, where K, = K for every
h€Homp(M,K)

h € Homp (M, K). Let ¢ = A (h)cpomparz) © M — KPR We know (cf.
[Z48) that

Ker(p)= [  Ker(f)

fe€Homp (M,K)

(a) = (b). Let M be a left R-module and let x € M,z # 0. Let i : Rx — M be the
canonical inclusion. Then i # 0. Hence there exists a morphism h : M — K such

that hoi # ho(0 = 0. Clearly h o # 0 infers that h (z) # 0. We deduce that

N Ker(f)={0}.

feHomp(M,K)

(b) = (c). Since
Ker (1) = (] Ker () = {0},
zeM
Y M — KHomr(ME) i ipjective.
(¢c) = (a). Let f,g: M — N with f # g be left R-module homomorphisms and
let ¢ : N — K be an injective R-module homomorphism. Since ¢ is injective, from
f # g we get that p o f # ¢ o g. This implies that there is an iy € I such that ;0

o f #my,opogwhere m;, : K! — K denotes the ig-th canonical projection. Let
h=m,op:N— K. Then hof#hog. O

Definition 4.9. Let gS be a left R-module. We say that grS is a simple left R-
module if

1) §#{0},
2) the only submodules of rS are S and {0} .

Proposition 4.10. Let gS be a left R-module. Then the following statement are
equivalent.

(a) rS is simple.
(b) S # {0} and, for any x € S, x #0, Rx = S.

Proof. (a) = (b). Let x € S, x # 0. Then 0 # x € Rx so that Rz # {0}. Therefore
we infer that Rx = S.

(b) = (a). Let L be a non-zero submodule of S. Then there is an = € L such
that x # 0 and hence we get that S = Rx C L so that L = S. O

Proposition 4.11. A cyclic left R-module Rz is simple if and only if Anng (z) is
a left maximal ideal of R.
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Proof. We know that the map h, : R — Rx defined by setting h, (a) = ax for
every r € R, is a surjective left R-module homomorphism and Ker (h,) = Anng ()

so that we have that ¢ = lAzx : #;(x) — Rx is an isomorphism. Therefore Rz is

simple if and only if #;(x) is simple i.e. there are no proper left ideals I of R which
properly contain Anng (). O

Corollary 4.12. Let grS be a left R-module. Then gS is simple if and only if grS
18 isomorphic to % where m is a left mazimal ideal of R.

Proof. Assume that rS is simple and let x € S, © # 0. Then, by Proposition I,
Rz = S is simple so that, by Proposition B0, Anng (x) is a left maximal ideal of
R. Conversely assume that zS is isomorphic to % where m is a left maximal ideal
of R and let z = 1+ m. Then Rz = & and Anng (z) = m. Thus, by Proposition
BT, Rz is simple. O]

4.13. Let R be a ring and let I be the set of maximal left ideals of R. We define
an equivalence relation on M by setting

R R
m; ~my < — = — as left R-modules.
my mo

We denote by Q2 a set of representatives of the equivalence classes of MM with respect
to ~. Clearly, by Corollary 13,

S:{Elmeﬁ}
m

18 a set of representatives of the isomorphism classes of simple left R-modules.
Theorem 4.14. Let R be a ring. Then
R
K = E|—
P (y)
mef)
18 a cogenerator of R-Mod.

Proof. Let M be a left R-module and let 0 # x € M. Let
E={L|L<gMandx¢L}.

Since 0 # x € M we have that {0} € £ and hence £ # @. It is easy to prove that
(€, <) is an inductive set. Let Ly be a maximal element in (£, C). Set
R L
Lo

Then
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R7 is a simple left R-module.

Let H ; RZ be a proper submodule of RZ. Then there is a submodule H of
Rx + Ly such that

Lo C HSG Rx+ Lo andﬁ:%.

Now Lo C H ; Rz + Lo implies that © ¢ H. Hence, by the maximality property of
Ly, we deduce that Ly = H so that H = {0}.

By 1) and Proposition BT, there is an m € €2 such that m = Anng (7). Hence
we have an injective left R-module homomorphism x : Rx — F (5).

Let i : Rx — LMO be the canonical inclusion. Since F (%) is injective, x extends
to a left R-module homomorphism 7 : LMO — F (ﬁ—f)

Let p=pr, : M — LMO be the canonical projection and let ¢, : (%) — K be
the canonical injection and set

f=timonop: M — K.

Then
[ (@) =in(n(z+ Lo)) = in (x (x + Lo)) # 0.

The conclusion now follows in view of Proposition E3. O

Lemma 4.15. Let K be a cogenerator of R-Mod and let x : K — U be an injective
R-module homomorphism. Then U is a cogenerator of R-Mod.

Proof. Let M be a left R-module and let x € M,z # 0. Since K is a cogenerator of
R-Mod, By Proposition B8, there exists a left R-module homomorphism f, : M —
K such that f, (z) # 0. Since x : K — U is an injective R-module homomorphism,
we have that (x o f;) (z) # 0 and yo f, : M — U is a left R-module homomorphism.
We conclude by Proposition 3. [

Proposition 4.16. The left R-module £ = E (@ %) 1S an injective cogenerator

meQ
of R-mod.

Proof. Let i : @ L - PE(E)andj: QL - E (@ %) be the canoni-
meQ meQ) meQ) meQ
cal inclusions. Since FE is injective, there is a left R-module homomorphism x :

@ E(£) — E such that y oi = j. Thus Ker(x) N Im (i) = {0}. By Proposi-
me

tion B33, Im (i) is essential in @ E (£) so that y is injective. Apply now Lemma
mes)

ET3A. [l

Remark 4.17. It is very well known that there exists a unique minimal injective
cogenerator M in the category of modules over a ring R with 1. It is very tempting
to think that the uniqueness holds in general when the injectivity property is dropped
[see, e.g., C. C. Faith, Algebra, I. Rings, modules and categories, corrected reprint,
Proposition 3.55, Springer, Berlin, 1981; F. W. Anderson and K. R. Fuller, Rings
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and categories of modules, see pp. 211, 216, Ezercise 14, Springer, New York,
1974.].

In the paper by Barbara Osofsky, "Minimal cogenerators need not be unique”,
Comm. Algebra 19 (1991), no. 7, 2071-2080, two counterexamples are presented.
In the first one, an arbitrarily large cardinal number of nonisomorphic cogenerators
which embed in every cogenerator is obtained. In the second one it is shown that
even a commutative ring need not have a unique minimal cogenerator.



Chapter 5

2 x 2 Matrix Ring

Let k be a field and let R = M, (k) be the ring of 2 x 2 matrices over R. Let e
be the matrix with all zero entries except for (i,j) where the entry is 15. A simple
calculation show that

R€11 = ]{7611 -+ /{3621 = R€21 and R612 = ]{3612 -+ k’€22 = Regg.

Set
Il = RGH and IQ = R€22

Anng (e17) keia + kega = Iy
Anng (e13) = ke + kegy = 1o
Anng (e21) = key +ken =1
Anng (e0) = key + key = I4.

Therefore we have

R R
(5.1) = R S Ben=1
(5.2) If; _ ﬁ}m) ~ Reyy = I
(5.3) % _ ﬁ@ ~ Rew = I,
(5.4) I—}f _ m ~ Rey — Iy,
This implies that

(5.5) I = Reyy & ]—}z ~ Reyy = Iy,

Proposition 5.1.

1) Both I, and Iy are left simple modules and I; = I5.

65
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2) Both I and Iy are left maximal ideals of R.

3) Let A€ k,\#0. Set x)y = e11 + Aejg and Iy = Rxy. Then I is a left mazimal
ideal of R and % = [,

Moreover Iy is also a simple left R-module and I = I—Iz >~ [.

4) For every mazximal ideal M of R with M # I, and M # I, there exists a
A€ K, \#0, such that M = 1.

5) If A\ N € k,A#0# Nand X # N then I # L.
6) Every simple left module is isomorphic to I.

Proof. 1) Let € I1,z # 0. Then
T = A11€11 + A21€21 wWhere )\11, Aot € k.

Case A1 # 0. Then
€11 = ()\11)71 ennr € Rx
and hence Iy = Re;; € Rx so that Rx = 1.
Case A\;; =0 and \y; # 0. Then
€91 = ()\21)_1 €20 € Rx

and hence I; = Rey; € Rz so that Rx = 1.
2). It follows from 1) in view of Proposition BT
3) Let A € k, A # 0. Let us prove that I a left maximal ideal of R. We have

Y\ = €21 + )\622 = €91x) € Rx,\ and Ty = €11+ )\612 = €12Yx € Ry,\

and hence
Rx A= Ry)\.

Now Is Q I, otherwise ey € I, and hence also ey; = yn — Aees € I). Thus
R = Reyy + Regs C I, so that R = Rx) and hence det (x) # 0. Since det (x,) = 0,
this is a contradiction. Since I, is simple, we get that I, NIy = {0}. On the other
hand z, and y, are linearly independent. In fact ax) = [y, writes as

aeq1 + Oé)\elg = Bezl + 6)\622

from which it follows that « = 0 = §. Hence dimy (I, + I5) = dimg (IA o Ig) =

dimy, (1) + dimg (I3) > 4 which implies that I @ I, = R and dimy (1)) = 2. In
particular we get that (zy,y,) is a basis for I,. Moreover we have

R
Ty
I, °
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is a simple left R-module whence I is a left maximal ideal of R. Furthermore, since

R
nL=—=—=1
A T 1

we obtain that I, is also a simple left R-module.

4) Let M be a left maximal ideal of R and assume that M # I; and also
M # I,. Then I, g M and hence, since I is a simple left R-module, we deduce
that M N Iy = {0}. Clearly we also have M + I, = R. Thus we deduce that

R=M®a I,

Therefore there exist m € M, \i1, Aoo € k such that
(5.6) e11 = m + Aa€1a + Agz€on.
By multiplying (B8) on the left by e we get

0 = e1om + Apera.
Assume that A9y # 0. Then we obtain

€19 = —A§21612m eM

so that Iy = Rejp C M, a contradiction. Therefore Agy = 0 and (M) rewrites as

e11 = m + Aae2.

Clearly A2 # 0 otherwise we would have e;; = m € M and hence I, = Re;; € M,
a contradiction. Hence we obtain

m=e11 — )\12612 = T where \ = —)\12 7£ 0.

From 3) we know that Rm = Rz, is a left maximal ideal of R. Since Rx) = Rm C
M, we conclude that M = Rux,.
5) Assume that I, = I,. Then there exists ¢,s € k such that

Ty = tl‘)\/ + SYx i.e.
€11 + )\612 = t€11 + t)\lelz + se91 + 8)\622

which implies s =0,t =1 and A = \.

6) Let S be a left simple module and let 0 # z € S. Then S = Rx = R/Anng (z)
and Anng (z) is a left maximal ideal of R. Hence, in view of 2) and 4) we have
Anng (x) € {I1, L5, I\ | AN € k, A # 0} . If Anng (x) = I, for some X € k, \ # 0, then,
in view of 3) and (BX)we have that % =~ [, = ;. If Anng (z) = 1, then, by (B3)
R/]l = Illf AHHR (l’) = _[2, then, by (Eﬂ) R/IQ = ]1. ]
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Tensor Product and bimodules

6.1 Tensor Product 1

Definition 6.1. Let R be a ring. Let Mg be a right R-module and let RN be a
left R-module. Given an abelian group G, a map  : M x N — G is said to be
R-balanced if

1) B ((x1+22,9)) = B ((21,9)) + 8 ((22,y)) for every w1, 29 € M and y € N;

2) B((z.y1+y2)) =B ((z,91)) + B((z,y2)) for every x € M and y1,y> € N;
3) B((zr,y)) =B ((x,ry)) for everyx € M,r € R,y € N.

Definition 6.2. Let R be a ring. Let My be a right R-module and let RN be a left
R-module. A pair (T,7) is called a tensor product of Mg and gN if

T1) T is an abelian group;
T2) 7: M x N — T is an R-balanced map;

T3) for every abelian group G and every R-balanced map B : M x N — G there
exists a unique abelian group homomorphism f T — G such that foT = [3.

Theorem 6.3. Let R be a ring. Let Mg be a right R-module and let RN be a left
R-module. Assume that both (T, 7) and (T",7') are tensor products of Mg and rN.
Then there is a unique abelian group homomorphism o : T — T" such that aotT = 7'.
Moreover « is an isomorphism.

Proof. Since (T, 7) is a tensor product of Mg and gN and 7/ : M x N — T" is an
R-balanced map, there is a unique abelian group homomorphism « : T" — T” such
that c o7 = 7.

Since (T",7') is a tensor product of Mg and gN and 7 : M x N — T is an
R-balanced map, there is a unique abelian group homomorphism o : 7" — T such
that o o 7/ = 7. Therefore we obtain that

doaor=dor=7and aocd o =aor=17".

68
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Since both Idr : T'— T and (¢/ o) : T — T are abelian group homomorphisms
such that
Idror=7and (¢'oa)oT =T,

and since (7, 7) is a tensor product of M and gN, in view of property T3) we
deduce that Idy = o' o .

Since both Idy : 7" — T" and (o /) : T" — T are abelian group homomor-
phisms such that

Id o7 =7 and (aod)or =7/,

and since (7”,7') is a tensor product of Mg and gN, in view of property T3) we
deduce that Id7 = aoa’. O

6.4. Let us consider the abelian group

7(MxN) _ @ Lz y) where Ly = 7 for every (x,y) € M x N
(z,y)EM XN

and, for every (x,y) € M X N, let €(zy) : Lzy)y — ZWMXN) e the canonical injection.
For every x € M and y € N let us set

(z,y) = E(z,y) (1z)

so that
o . — - 1Z wheneveT (I‘,y) — (ta S)
(2,y) : M X N = Z and (2,9) ((t, 5)) = { 0z whenever (x,y) # (t,s)

Recall that ZM>*N) s an abelian group where the addition is defined by setting
(f +9) ((m,n)) = f ((m.n)) + g ((m.n)) for every (m,n) € M x N.

Let L be the subgroup of ZM*N) generated by all elements of the form

—

(1 4+ 22,y) — (21,y) — (22,y) for all vy, 29 € M,y € N;

(z,y1 +y2) — (z,y1) — (x,y2) for allz € M,y;,y2 € N;

(xr,y) — (z,ry) for allx € M,r € R,y € N.

Then in Z(MLXM we have the following equalities

(6.1) [(m:w\g,y)—{—[/} = [(:16/1\,1/) —i—L] + [($2/,\y)+[4:| for all x1,x9 € M,y € N;
(6.2) [(m,ﬁ’yz) —i—L] = [(x,/y\l) +L] + [(a:,/y\g) +L} for all x € M,y,,ys € N;

(6.3) [@+L}:[@+L] forallz e M,r € R,y € N.
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We set
— 7, (MXN)
x®Ry:($7y>+L€ L

With this notations, from (BE), (632) and (B33) rewrite as

for every (x,y) € M x N.

(6.4) (x14+22) ®ry = X1 Qry+ 22y for all x1,x9 € M,y € N;
(6.5)  2®Rr(+y2) = TRrYy1+T@rY: for allz € M,y1,ys € N;
(6.6) rr@ry = xQgry forallz € M,r € R,y € N.

Z(MXN)
T =

and let 7: M x N — T be the map defined by setting
7((x,y)) = x ®gy for every (z,y) € M x N.

Theorem 6.5. Let R be a ring. Let Mg be a right R-module and let xRN be a left
R-module. Using the notations introduced in (B3),the pair (T, T) is a tensor product
of Mg and gN .

Proof. First of all let us prove that 7: M x N — T is an R-balanced map. We have

7 ((z1+22,9)) = (21 + 72) ®r Y =4 11 QrY + 22 ®rYy =T ((21,)) + 7 ((22,9))

for all z1,290 € M,y € N,

(@ + 1) =70 (1 + 1) = 2 @ry1+2@rys =7 (@) + 7 ((z, 12))

for all z € M,y,,y2 € N and

7((zr,y)) = 2r @py =z Qpry = 7 ((21,7Y))

forallz € M,r € R,y € N.
Let i : M x N — ZM*N) be the map defined by setting i ((z,y)) = €y (12) =

—

(z,y). Recall that, by Proposition 3, (Z(MXN),Z') is a free Z-module with basis
M x N.

Let now f : M x N — G be an R-balanced map. Since (Z(MXN),Z') is a free
Z-module, there exists a unique abelian group homomorphism & : ZM*N) — G such
that h o7 = . Let us compute

h(@tany) = (hoi) (@ +a2y) = B((x +a2,9) 2 B ((@1,9) + B (w2,9)) =

= (hoi) ((w1,9) + (ho i) ((w2,9) = h ((w1,9)) + b ((22.1))

which means that

—

(6.7) (z1 + m2,y) — (21,y) — (22, ) € Ker (h);
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Bisbalanc

B+ w) = (hod) (@ +u) = 8@y +) ™2 B (e,90) + B (@) =
= (hoi)((w,y) + (hod) (z,12)) = b (o)) + 1 (@ 10))

which means that

—

(6.8) (11 +y2) — (x,11) — (z,y2) € Ker (h);

h(@ny) = (hoi)((er,y) = 8 ((ary) "= B ((w,ry))
= (hoi)(w,ry) = ((@.ry))

which means that

—

(6.9) (xr,y) — (z,1y) € Ker (h).

From (67), (B8) and (B3), we deduce that L C Ker (h). Hence, by the Funda-
mental Theorem of Quotient Groups, there exists a unique group homomorphism
h:T= M — (G such that h o p;, = h. Note that py o4 = 7 so that

hoT=hop,oi=hoi=}.

Let us prove that f = h is unique. Let f' : T — G be a group homomorphism
such that f" o7 = . Then we have

floproi=for=p=hopyoi

Since there is a unique group homomorphism h : ZM*N) — G such that hoi = 3
we infer that

flopr=h=hop.
Since py, is surjective, this implies that f' = h. n
Notation 6.6. In view of Theorem B3, we know that for

Z(MXN)
T =

and 7: M x N — T the map defined by setting
7((x,y)) = x gy for every (z,y) € M x N.

(T, 7) is a tensor product of Mr and rRN. Moreover, by Theorem B3, such a pair is
essentially unique. We will denote it by (M ®gr N,T), or even by M ®@r N, if there
is no risk of confusion. Given (z,y) € M x N, sometimes we will simply write x ®y
instead of x Qg y.

Exercise 6.7. Let Mg be a right R-module and let RN be a left R-module. Show
that, for any m € Z,x € M,y € N we have

m(z®y)=(mz) @y =z (Mmy)
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Proposition 6.8. Let Mg be a right R-module and let gN be a left R-module. Then
any element of M @r N can be written as

in®yi where n € Non >1 and ,x1,...,2, € M,y1,...,y, € N.
i=1

In particular the elements of type x @py,x € M,y € N, for a system of generators
of the abelian group M Qg N.

Proof. Let w € ZM*N) = D 2.yyerrxn Lay)- By Lemma [0 we have

w= Z E(z,y) (W(JE,y) (w)) :

(z,y)EM XN

For every (x,y) € M x N, set m(,y) = T(gy) (w) € Z. Then we have

—

w= " Y ey (Mew) = Y Mawien(z)= Y, muyley).

(@,y)€Supp(w) (z,y)€Supp(w) (x,y)€Supp(w)

Therefore there exist n € Nyn > 1and xq,...,2, € M,y1,...,yo € N,mq,...,m, €
Z, such that .
w = Zmi(xiayi)
i=1

Hence in ZM*N) /[, we have
w+L:Zmz(xz7yz)+L Zmz[xzayz +L} Zmz xz®yz :
i=1 i=1

= Z (myz;) @ y; = Zti ® y; where t; = m;x; € M.
=1 i=1

Remarks 6.9. Let My be a right R-module and let gN be a left R-module.

1) Let G be an abelian group, To give an abelian group homomorphism f : M ®pg
N — @G, it is enough to give an R-balanced map 5 : M x N — G.

2) In view of Proposition B3, if f and g : M®@pr N — G are group homomorphisms,
we have that f = g if and only if f (x ®ry) = g(r ry) for all x € M and
y € N.

Lemma 6.10. Let My be a right R-module and let xRN be a left R-module. Then,
for every x € M and y € N we have

r®r0=0and 0®@ry =0.
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Proof. Let x € M. We have:

2 @r0=2%5(0+0) Z 2 @R 0+ 350

so that we get
TR@r0=2@r0+2®5p0.

Since M ®g N is a group, we deduce that x @z 0 = 0. The other equality is proved
in an analogous way. [

Lemma 6.11. Let f : L — L’ be a right R-module homomorphism and let g : M —
M' a left R-module homomorphism. The map

S LxM — L'@rM' defined by setting B ((x,y)) = f (2)®rg (y) for every x € L and y € M.
s R-balanced.
Proof. Let x,x1,29 € L,y,y1,y2 € M and r € R. We compute

B((x1+22,9) = f (21 +22) @r g (y) = [f (21) + [ (22)] ®Rg(y) =
= f(r1) ®@rg(y) + [ (22) ®r g (y) = B ((21,¥)) + B ((72,9)) -
(

B,y + 1) = F (@) ®rg (1 +12) = £ () @r g () + 9 (1)) =
= f(z)®rg ) + f(z) ®r g (y )=6(($y1)) B ((,2))
f(

T,y
B(zr,y)) =flar)®g(y) = f(x @) S f@)ergy) = f@)@gry) =
zﬁ((:v ry)) -

- |Iﬂ

]

Notation 6.12. Let f : L — L’ be a right R-module homomorphism and let g : M —
M’ a left R-module homomorphism. By Lemma B3, the map B : LXM — L'®@r M’
defined by setting B ((z,y)) = f(x) ®r g(y) is R-balanced. Therefore there is a
unique group homomorphism, which will be denoted by f Qg g , or simply by f ® g,
such that

f®rg : LORM — L'@rM' and (f ®r g) (x@y) = [ (2)@grg (y) for every x € L and y € M.
If f =1dy, the notation L ®g g will be also used. Similarly if f = Idyy.

Lemma 6.13. Let f: L — L and f' : L' — L" be right R-module homomorphisms
and let g: M — M’ and g : M — M" be left R-module homomorphisms. Then

(ffef)@r (g og)=(f"®rg)o(f@rY).
Proof. Let x € L and y € M. We compute

[(f e f)@r (g egl(z@y)=I[(ff) (@)@ og) W)= (f(=)eg ()=
=(f"@rg) (f (@) @9 ) =[(f'®rg) o (fOrg)](xDy).

In view of 2) in Remarks B9, we conclude. [l
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Proposition 6.14. Let

RM L ML M7 0

be an exact sequence of left R-modules and left R-modules homomorphism. Then,
for every right R-module Lg, the sequence of abelian groups

Log M 28 Lo M™% Le, M" =0
18 exact.

Proof. Let x € L and y” € M”. Since g is surjective there exists an y € M such
that g (y) = y”. Then

(LOrg)(z@y)=2®g(y) =zy".

In view of Proposition B3R, we conclude that L ®p ¢ is surjective .By Lemma B3,
we have that

(Legpg)o(L®gf)=L®g(fog)=L®g0=0.

Therefore Im (L ®g f) C Ker (L ®gg). Letp: LOg M — Inf(%gff) be the canonical

projection. Then, By the Fundamental Theorem for Quotient Modules =21, there
exists a unique Z-module homomorphism

L®r M

Gg:—————— s Ly M”
S ey 0"

such that gop = L ®g g. Moreover g is injective if and only if Im (L ®p f) =
Ker (L ®g g). To this aim, we will construct a group homomorphism ¢ : L&g M" —

hf(%%]}\f 7 which will be a left inverse of g. Let us consider the map

L®r M
B((z,y") =(x®@y) +Im (L ®g f) where y € M and g (y) = y".

B:Lx M — defined by setting , for every (x,y") € L x M"

g is well defined. In fact, assume that y;,y2 € M and ¢ (y1) = g (y2) = y”. Then
y1 — Y2 € Ker(g) = Im (f) so that there is an m € M such that f(m) = y1 — yo.
Thus we get

TRY —TRYp=2Q (Y1 —y2) =r® f(m) =
=(L®gr f)(zr@m) €lm(L®g f)

so that
@y +Im(L@g f) =2y +Im (L &g f).
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B is balanced. Let x,z1, 22 € L,y",y/,y5 € M" and r € R. Let y,y1,92 € M

such that g<y> - y”7g(y1> - yi,7g(y2> = yg Then g(yT) = g(y)r = y”'r and
g (Y1 +v2) = g(y1) + g (y2) so that we have

B((x1+29,9") = (1 + 22) @y +Im (L ®p f) 2 (21 @y + 2, @y] +Im (L ®p f)
=t @y+Im (L g f)] + 1@y +1Im (L &g f)] = B((71,9)) + B ((z2,9)) .
Bl +98) =le® (1 +)] + I (Lor ) Z [r ©y1 + 2 @ ya] + Im (L@ f)
=lz@y +Im(L g )+ [z @ys +Im (L @g f)] = B((z,y") + B ((z,y}))
B((ery") =ar @y +Im (Lo f) == @ ry+In(Log f) =6 ((ry").
Therefore there is a group homomorphism

L®r M

(L o5 f)
gz®y") = (x®y)+Im (L ®g f) where y € M and g (y) = y".

g : LeoM' — such that, for every (z,y") € L x M"

For every x € L and y € M, we compute

(qog)z®@y) +Im(L®g f)]=(qogop)(z®@y)=qr®g(y) =2y
0

1 be a family of left
R-modules. Let T : L X (@ MZ) — @ (L ®g M;) be the map defined by setting

i€l i€l

Proposition 6.15. Let L be a right R-module and let (M;)

(2, Wi)ier)) = (@ @ui);ep for every x € L and (y;);c; € @ M;.

i€l
Then 7 is R-balanced and (@ (L ®r M,;) ,T) =L ®g (@ Mz) .
iel iel

Proof. Let x, 21,72 € L, (¥i);c;» (2i);e; € D M; and r € R. We compute
iel

7 (214 22), (W)ser) = (31 +22) @ i)y = (01 @ i+ T2 ® U)oy =

= (1 @ Yi)ier + (22 @ Yi) ey = ((xla )) ((ZC27 Yi zeI))
(

i)ic
T ((x (Yi)ier + (ZZ)zeI)) = (( (yi + 2); )) (Wi +2i)ier =
=(@T®UY+TR2)c; =T OYi)ier + (@@ 2)c, =7 (( (i zel)) +7 (2, (2)ie1))

(@ Wier) = (@) @ y)ies = @@ 19y =7 (@ (9)ier)) = 7 (2.7 (W)er)) -

)

Hence 7 is R-balanced. Let now 3 : L x (@ Ml> — G be an R-balanced map. We
iel
have to show that there exists a group homomorphism f : @ (L ®g M;) — G such

icl
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that f o7 = B and moreover this f is unique w.r.t. this property. Let ¢; : M; —

P M; denote the jth canonical injection. First of all let us show that the map
iel

BO(LXEEZ‘)ZLXMZ‘—)G
is R-balanced. Let x,x1,29 € L,y,y1,y2 € M; and r € R. We compute

(B0 (L xe)]((x1 4 22,y)) = B((x1 + 22,6 (y))) = B (71,8 () + B (22,2 (y))) =
= [Bo (L xe&)[(z1,y) + (22, 9)] -
[Bo (L xe)((z,y1+1y2) =B ((x,8 (y1 +y2))) = B(
== B ((z,i (1)) + B ((z,€i (y2))) -
= [Bo (L xe)]((z,y1)) +[Bo (L x &) ((z,y2))
(B0 (L xe&)](zr,y) = B((zr,e: (v) = B((z,re: (v))) = B((x,rei (ry))) =
= [Bo (L x &) ((z,ry)).

Hence there exists a unique group homomorphism f; : L ® g M; — G such that

filr@y) =B ((z,& (y)))

for every x € L and y € M;. By the universal property of the direct sum, we can
consider f =V (f),; : @ (L ®r M;) — G. We have

i€l

For) (ea)) = £ (@ mi) =3 8((we: ) (( 3. y))

iel iel
— 5 (o W)
Let now f: @ (L ®r M;) — G be another group homomorphism such that f' o7 =
S. For everylejl €1, let €} : (L®r M;) = @ (L ®r M;) denote the j-th canonical
injection. Note that for every j € I,z € L ;frid y; € M;

((x ® (?ijsij))ig)j = r®y, and
((x @ (Y0i4));e;), = z©0=0fori#j.
Thus we deduce that

(z,€i (Y1) +€i (y2)))

e; (x®y;) = (@ (Y;0i)) e
and hence we get
[ro (L xep)]((z,y5) = 7 (2.6 () = 7 (2, (43055)5e1)) = (& @ (Y3055))se; = €5 (x @ )
For every € L and y; € M;, we have
(frog)) (z@y;) = f (g (x@y;) = f'lro (L xe)]((z,y;) =
=[foro(Lxe)l((z,y;)) =80 (Lxe)l((x,y;)) =[foro(Lxe)l((zy)) =
= flro(Lxe)l((z,y)) == fej(z@y;) = (foe)) (x@y;).

We deduce that f'oe’ = fog for every j € I. In view of the universal property of
the direct sum, we conclude. O



6.1. TENSOR PRODUCT 1 7

Proposition 6.16. Let L be a right R-module and let (M;),.,; be a family of left

R-modules. Let T : L X (@ MZ> — @ (L ®r M;) be the map defined by setting

i€l i€l

(2, Wi)ie;)) = (@ @ i)y for every x € L and (y;);c; € @MZ

el

Then T is R-balanced so that there is a group homomorphism ¢ : L ®p (@ Ml> —
iel
P (L ®g M;) such that

el

¢ (2 ®r (Y)icr) = (@@ y;);e; for every x € L and (y;),.; € @Mz
iel

Y 1S an isomorphism.

Proof. By prposition EI3, we know that 7 is R-balanced. Let ¢; : M; — G%MZ

ic
denote the jth canonical injection and let ©; = L®ge; : L&p M; — LRg (691 Ml>
i€

Set v = V(L ®pe;)e; : B (L OrM;) = L®r (@Ml> . Let us prove that ¢ is a

icl i€l
two-sided inverse of ¢. We have

(o) (0 Wer) =¥ (E®p)ey) =Y tilz@y) =Y (r@e ) S

i€l el

=z ® Zéi (y;) = v ®r (yi>iel .

i€l

By 2) in Remarks B9, we conclude that 1 o ¢ = Id . Let now j € I and
L®R< )

D M;

i€l
let € : (L ®gr Mj) — G% (L ®r M;) denote the jth canonical injection. Note that
1€
for every j € I, x € L and y; € M;
((l’ & (yjéij))iel)j = R Yj and

(@ (Y0i7))ier), = 2®@0=0fori#j.

Thus we deduce that
& (v ®y;) = (@ (Y0i)) 1

Let us compute

(potpocs) (z@y;) =(po) (z@y;) = (e (y;) = ¢ (£ ® (y;0i);c;) =
= (2 ® (Yj0ij));e; = €5 (x @ y5) -
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By 2) in Remarks B9 we deduce that
@ o ’Lp o 5; = g;.
for every 7 € I. By the universal property of the direct sum, this implies that

pot=Idgwerm)- O

i€l

6.2 Bimodules

Definition 6.17. Let A and R be rings. An A-R-bimodule (left A-module - right
R-module) is a tern (M, ALLM,M%) where (M, A,uM) is a left A-module, (M, MAR/[) 18
a right R-module and

a-(x-r)y=(a-x)-r for everya € A,z € M,r € R.
We will use the notation sMpg to denote the A-R bimodule (M, A,LLM,;L]\R/[).
6.18. We have seen in [[] that any abelian group M is a left End(M) module where
f-x=f(x) for every f € End(M) and x € M.

Also, M is a right End(M)°P-right module When we regard M as a right End(M)°P-
module, using the convention introduced in B, we write

x-f for every f € End(M)? and x € M.
Now we have
(6.10) (x-f)-g=x- (f “End(M)°P 9) =T (g'End(M) f) =xz(g9of)=g(f(z)).
For this reason, when considering f € End(M)?, we prefer to write
(z) f
instead of f (x). In this way (BE0) rewrites as
(@-f)-9=(()f)g=(2) (f “End(M)°? 9) .

Let now M be a left module over a ring A and let M denote the abelian group
underlying M. We denote by End (4 M) or aEnd (M) the subring of End (M)Op
defined by

End (4M) = {f € End (W)Op | f is a left A-module homomorphism} .

Then M is an A-Endy (M)-bimodule. In fact, for every a € A,x € M and f €
Endy (M) we have

(@) f=(a-2)f """ aq [(2)fl=a-(z-f).
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Similarly, let M be a right module over a ring R and let M denote the abelian group
underlying M. We denote by End (Mg) or Endg (M)the subring of End (M) defined

by
End (Mg) = {f € End (M) | f is a right R-module homomorphism} .

Then M is an End (Mg)-R-bimodule. In fact, for every f € End (Mg),x € M and
r € R we have

(f-x)r=(f(@) r =" far)=f(x-r)=f-(z-7).

Notation 6.19. To be consistent with GI8, from now on, if f: M — L s
a left A-module homomorphism, we will write

(x) f
instead of f (x), for every x € M.

6.20. Let A be a commutative ring and let M be a left A-module. Then M has a
right A-module structure defined by setting

rx-a=a-x for everya € A and x € M.

M endowed with its left A-module structure and with this right A-module structure
becomes an A-A-bimodule. In fact we have

a(x-b)=a(b-z)=(a-b)x=(b-a)xr=>b(a-x)=(a-x)b for every a,b € A and x € M.

This particular A-bimodule structure will be called symmetrical A-bimodule struc-
ture. In the particular case when A is a commutative ring, symmetric A-modules
are often called just A-modules. If A = k is a field, a symmetric k-k-bimodule is
simply called a vector space.

Exercise 6.21. Let k be a field. Are all k-k-bimodule structure over k symmetrical?

Exercise 6.22. Let k be a field and let V be vector space over k of dimension 2.
Let us consider V' as a right k-module. Then V' has a natural structure of End (V%)-
k-bimodule. Fiz a basis (eq,es) of Vi. For each A € End (V) write

Afer) = eihin + ealy

Aea) = ez + eala

A Mg
F(A) = :
) ( Agr Agp )
Show that the assignment A — F (A) yields a ring isomorphism F : End (V) —
M, (k). Show also that gaacv,)V is simple.

and set
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Remark 6.23. By Remark =3 every abelian group is a left Z-module and hence a
symmetrical Z-bimodule. Let now Mg be a right R-module. Since M is an abelian
group, M can be considered as a left Z-module. Let us check that indeed M is a
Z-R-bimodule. In fact, given n € Z,x € M,r € R, we have

) By6inPropositionl D

n-(x-r)y=n(x-r nr-r=(n-x)-r.

Definition 6.24. Let L and M be A-R-bimodules. An A-R-bimodules homomor-
phism from L to M is a map f: L — M which is both a left A-modules homomor-
phism and a right R-module homomorphism. In this case we write f : sLr — 4 Mpg.

Exercise 6.25. (4 (M;)g),.; be a family of A-R-bimodules. Show that [T M; and
iel

P M;, endowed with their left A-module structure and their right R-module structure

i€l

are A-R-bimodules.

6.26. Let 4Lpr be an A-R-bimodule and let gMp be a B-R-bimodule. For every
a€ Abe B and f € Hompg (Lg, M) we can consider the maps

fa L — M defined by setting f, (x) = f(a-z) for every x € L,

of + L — M defined by setting ,f (x) =b- f () for every x € L.
Proposition 6.27. By means of the notations introduced in EZ4, for every a €

A,b € B and f € Hompg (Lg, MR), the maps f, and ,f are right R-module homo-
morphism.

Proof. Let x,21,29 € L and r € R : We compute

fa(x1+29) = fla 2y +a-x) = f(a-x)+ fa-x2) = fo(21) + fa(22)
folw-r)=fla-(z-7)=f((a-x) r)=f(a z)-
bf (1 +22) = f (21 +22) = b [f (21) + [ (22)] =
pf(x-r)=b-f(x-r)=0b-[f(z) 7] =
L]

Proposition 6.28. Let 4L be an A-R-bimodule and let gMpg be a B-R-bimodule.
The abelian group Hompg (Lgr, Mg) has a natural structure of B-A-bimodule defined
by setting, in the notations of Proposition [0.27,

fra=foandb- f=,f for everya € A,b € B and f € Hompg (Lg, MR) .
Proof. Let f,g € Hompg (Lgr, Mg),a,a’ € A,b,b' € B. For every x € L, we compute

[(f+9)-al(x)=(f+g)(a-2)=fla-z)+g(a-2)=(f-a)(x)+(g-0a)(z) =
=[(f-a)+(g9-a)](z)
[f-(a+a)](z)=f((a+d)-2)=fla-z+d z)=f(a-2)+ f(a" - 7) =
= (f-a) (@) + (f-d) (x) == [(f -a) + (f - )] ()
[(f-a)-d](z) =(f-a)(a"-2)=f(a-(a"-2)) = f((a-a)x) = [f - (a-a)] ()

)= [ (la-z) = [(2).
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From this equalities we deduce that

(f+g)-a=(f-a)+(g9-a)
flatad)=(fa)+(f-d)
[-la=f

and hence Hompg (Lg, Mpg) becomes a right A-module. Similarly, we calculate

b-(f+9)l@)=0b-[(f+9)(x)]=b-f(x)+g(@)=0b-f(x)+b-g(x) =
=0 f)@)+0-g)(x)=[0b-f)+(b-g)](2)
[z

[(b+) - fl(x) = (b+b)- f(x)=b-f(z)+ )= (b f)(x) + U f)(x) =

(b-

U

=[(0- )+ (" Nl (z)

b (0" (@) =b- [0 £)@)] =b- " f(@)] = (b-V) f(x) = [(b- V) - f] ().

From this equalities we deduce that

b-(f+g) = b-f+b-g
(b+b’) f=00H+0-f)
b-(b'-f) = (b-V)-f

and hence Hompg (Lg, Mg) becomes a left B-module. Finally we have
b-(f-a)](@)=0b-[(f-a)(@)]=b-f(a-z)=(b-f)(a-x)=[b-[)-a](z)

which implies that
b-(f-a)=(b-f)-a
From this we deduce that Hompg (Lg, MR) is a B-A-bimodule. O

Proposition 6.29. Let sMpg be an A-R-bimodule. The map

py : Homgp(R,M) — M
/ = f(1g)

is an isomorphism of A-R-bimodules whose inverse is the map

oy M — Hompg (R, M)
r = (rex-r)

Proof. 1t is easy to check that pj; is a group homomorphism. Let x € M and let
pz : R — M be the map defined by setting

pe(r)=x -1

Let r,s € R. We compute

po(r-s)=x-(r-s)=(x-r)-s=p;(r) s
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Thus we deduce that p}, is well defined. Let f € Hompg (R, M), r € R and xz € M.
We have

[(Par © par) (NI (1) = [phs (oae ()] (1) = paa () -7 = f(1r) -7 = [ (r)
and
(o210 ) (2) = [y (@] (1) = 2 1 = 3.
Now let r € R, f € Hompg (R, M),a € A. We have
pu(a-F-1) = (@ f-r) () =a-F(r-1p)=a-f()=a-f(ln-r) =
= a-f(lg)-r=a-pu(f)

6.3 Tensor Product 2

6.30. Let A and R be rings and let 4Mp = (M, A,uM,,uAR4) be an A-R-bimodule.
Given a left R-module rN, we want to endow the abelian group M ®@r N with a left
A-module structure. For this purpose, for any a € A, we consider the map

g : M xN—M®rN
defined by setting
g ((2,y)) = (az) @ y.

Lemma 6.31. By using assumptions and notations of B=30, the map oy : M X N —
M ®gr N is R-balanced.

Proof. Let x,x1,29 € M,y,y1,y2 € N and r € R. We compute

O (21 + T2, 9)) = [0 (21 4 22)] @ y = (a1 + a2) @y D (a21) @y + (az2) @y =

— a, ((21,)) + au ((22,9)) -
g ((z,y1 +y2)) = (az) ® (y1+y) (a$)®y1+(aw)®yzZaa((af,yl))Jr%((a:,yz))-
au ((zr,y)) = [a(@r)] @ y “2™ [(az)r] @ y B (az) @ ry = o ((z,7y)).
]

6.32. In view of Lemma BEZ3D, for every a € A, there is a group homomorphism
0. MR N — M ®g N such that 0,07 = .

Proposition 6.33. By using assumptions and notations of B230 and of BZ33, the
map
o:A— End(M ®gN)

defined by setting

o(a) = o, for everya € A, i.e
o(a)(z®@y) = (ax)®y for everyx € M andy € N,

18 a ring homomorphism.
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Proof. Let a,b € A. Then, for every x € M and y € N we have

clatb)(@®y) =[a+b)r]®y=(u+br)oy D (ax)oy+ (br) @y =

=0 (@) (z@y) + o B) (@©y) “E o (@) +o (1)) (z@y)
o(la)(z@y) = (lar) Ry =r®y
o(a-ab)(z@y)=[(aab)z]@y=[a(br)@y=0(a)(bx®y) =
=0(a) (0 (b)(z®y)) =[o(a)oo ()] (z®y).

In view of 2) in Remarks B9 we deduce that
o(a+b)=0c(a)+0o(b),0(la) =Idygen.0(a-ab) =0c(a)oo(b).
Hence o is a ring homomorphism. 0

6.34. Let A and R be rings, let \Mp = (M, A,uM,,uﬁ) be an A-R-bimodule and
let RN be a left R-module. By Proposition BZ33, in view of Theorem 8, the group
M ®gr N becomes a left A-module by setting

a(r®y)=(ax) @y for everya € A and x € M,y € N.

In an analogous way, one can prove that if kNg = (N, R, ,uﬁ) 15 an R-B-bimodule,
the group M ®@r N becomes a right B-module by setting

(x®y)b=x® (yb) for everya € A andx € M,y € N.

Proposition 6.35. Let A and R be rings, let \Mp = (M, AuM,uﬁ) be an A-R-
bimodule and let RN = (N, RMN»M%) be an R-B-bimodule. With respect to the
left A-module structure and to the right B-module structure described in [6.34, the
abelian group M ®r N becomes an A-B-bimodule.

Proof. Let a € A;b € B and z € M ®r N. We have to prove that
(az)b=a(zb).
In view of Proposition B3, it is enough to prove that
[a(z@y)]b=allz©y)b.

We compute

la(z©y)]b = [(ax) @ y]b = (ax) © (yb) = afz (yb)] = a[(x ® y) b].
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Proposition 6.36. Let A and R be rings, let 4Mp = (M, AMM,,uﬁ) be an A-R-
bimodule, let RN be a left R-module and let L be a right A-module. To give a left
A-module homomorphism

fIA(M®RN)—>AL
one has to give an R-balanced map [ : M x N — L such that
(6.11) B ((ax,y)) = ab ((x,y)) for every x € M andy € N.

Proof. Let : M x N — L be an R-balanced map such that (610) is fulfilled. Then
there exist a group homomorphism f: M ®r N — L such that

(z@y) f=08((zy)).

Let us check that f is a right A-module homomorphism. Let a € Aand z € MQzN.
We have to prove that

(az) f = a((2) f).

In view of Proposition B3, it is enough to prove that
(a(z®y)) f=al(x®y)f] for every x € M and y € N.
We have
(a(z@y)) f = ((ax) @y) f = B((azr,y)) = aB ((2,y)) = af (z@y).
The converse is trivial. ]

6.37. In the particular case when A is a commutative ring and we consider (sym-
metric) A-bimodules, we have

a(r®ay) = (ax) ®ay = (va) Ray=rRaay =1 X4 (ya) = (R4 y)a
for everya e A,z € M,y € N.

In this case (BIX) rewrites as

B ((azx,y)) = B ((x,ya)) = aB ((z,y)) for everya € A,x € M,y € N.

In this case B is called A-bilinear map.

Definition 6.38. Let A be a commutative ring and let M and N and L be (sym-
metric) A-bimodules. A map B: M x N — L is said to be A-bilinear if

1) B((z1+22,9)) = B ((1,y)) + B ((x2,y)) for every x1, x5 € M and y € N;

2) B((x,y1+1y2) =B ((x,y1)) + B ((x,y2)) for every x € M and y1,y2 € N;

3) f((ax,y)) = B ((z,ya)) = ab ((x,y)) for every x € M,r € A,y € N

Proposition 6.39. Let A be a commutative ring. Any A-bilinear map is A-balanced.



6.3. TENSOR PRODUCT 2 85

Proof. Let M, N,L be symmetric A-bimodules and let 5 : M x N — L be an

A-bilinear map. Since we are considering symmetric A-bimodules, we have:

B ((za,y)) = 8 ((az,y)) = B ((z,ya)) = B ((z, ay))
for every v € M,y € N,a € A. m

Proposition 6.40. Let f : A\Lr — aMpg and g : RpWp — rZp be bimodule homo-
morphism. Then f @prg: a(LQrW)g = 4 (M Qg Z)g is a bimodule homomor-
phism.

Proof. For every n € Non > 1,2q,...,2, € L,wy,...,w, € W,a € A,b € B we
have:

(f ®rg)

i=1

a (Z T; ® wi) b] = (f QR g) (Z (agpl) R (wzb)> —

= flaz)@gwb) =) [af (@)]@[g(w)b] =a (Z flzi)©g (%)) b

i=1 i=1
[

6.41. Let aLp be an A- R-bimodule and let (r(M;)g),c; be a family of R-B-
bimodules. Then, by Ezercise 23, @ M; is an R-B-bimodule and .@ (L ®g M;)

iel iel
is an A- B-bimodule. By Proposition BId,there is a group isomorphism ¢ : L Qg

(@ Mi) — @ (L ®r M;) such that

il il
0 (2 Qr (Wi)ier) = (€ QrYi)se;y for every x € L and (yi);c; € @ M;.
icl

1S an isomorphism.

Proposition 6.42. By means of the notations of 41, the map ¢ : L& g (@ MZ> —
el
P (L ®gr M;) is an isomorphism of A- B-bimodules.
il
Proof. For every x € L, (y;),c; € @ M;,a € A, b € B, we have:
il

® (a : [x Or (yi>iel]) = ¢ ((a - 1) ®p (yi>iel) =((a-7)®g yi)ie[ =a-(r®g yi)ie[ =

= ay (37 ®r (yi)iel)
o ([r@r (W)ier] - 0) = ¢ (x@r [(Wi)ies b)) =¥ (2 @R [(4i  b)ies]) = (2 @R (4i - )se; =

= (z®g yi)ie] b=y (:C ®r (yi)z‘el) -b

In view of Proposition BX, we conclude. O
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Proposition 6.43. Let A be a ring and let AM be a left A-module. Then there is
defines an isomorphism of left A-modules
y,:[LMA(A(}@AM) —)AM

which satifies
pla®z)=a-x for everya € A and x € M.

Proof. Let B: Ax M — M be the map defined by setting
B ((a,z)) =a-z for every a € A and x € M.

[ is A-balanced. In fact, given a,b,a,,a2 € A, x, 11,19 € M we have

A (a1 + az) , x)) (a1 +ag) -2 =ar-w+az-x=fF((ar,2) + B ((az, )
B (a1 +33)) = a'($1+$2)=a'$1+a'$2=5((a 1)) + B ((a, 22))
B(ab,x)) = (a-b0)-z=a-(b-z)=[F((a br)).
Moreover g fulfills (BI). In fact, we have
a-B((b,x)=a-(b-z)=pF((a-b,x)) for every a,b € A and x € M.

Let us prove that y is an isomorphism. Since ((14 ® z)) u = x, p is clearly surjective.
Let © € Ker (u). Then there exists n € N,;n > 1,a4,...,a, € Aand xq,...,2, € M
such that

n

x:Zal(X)x,andO— Zazx,

i=1
so that

n

x:ZaiQZ)xi:zn:lA@aixi:1A®zn:aixi:1,4®0:0.
i=1 i=1

i=1
[l

Definition 6.44. Let A be a ring. A right A-module L4 is said to be flat if, for
any short exact sequence of left A-module homomorphism

O%AM/L}AML)AM”—)O

the sequence
0= Lo M 24 Lo MY Lo M =0

1S exact.
In view of Proposition 614, we have:

Proposition 6.45. A right A-module L4 is flat if and only if, for every injective left
A-module homomorphism f : 4M' — M, the homomorphism L ®4 f is injective.
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Remark 6.46. Not every right A-module is, in general, flat. In fact consider the
exact sequence of Z-modules:

027 57 -2 7)27 — 0
where i is the canonical injection and p is the canonical projection. Then
2)27.Qi : 1]22R27 — 1./]27 Q 7
is not injective. In fact, for every a,b € 7, we have
(Z)271) ((a+2Z) @ 2b) = (a+2Z)®2b= (a+2Z)2R@ b= (20 +2Z) @b =0

and hence (Z/2Z®i) = 0. On the other hand 2Z = Z and hence Z/2Z&27 =
Z)2ZRL = T,)2Z # 0.

Lemma 6.47. Let (f; : N| — N;)
Then the homomorphism

Dfi: &N — DN

il il iel
(@)ie; > (f (20)ies

i1 be a family of right A-module homomorphisms.

is injective if and only if f; : N/ — N; is injective for every i € I.
Proof. Exercise. O]

Proposition 6.48. Let (L;),.; be a family of right A-modules. Then @ L; is flat if
il
and only if L; is flat, for every i € I.

Proof. Let f : 4M' — oM be an injective left A-module homomorphism. Let us
consider the isomorphism of Proposition E18, o : (@ Li> QAM — @ (L; @4 M)

il iel
where
¢ ((Yi)je; ®ax) = for every (yi);c; € @Li and z € M.
iel
Then the diagram

M’

(@r)earr = @Lwair)

iel icl
<@Lz) ®a fl i@(Li@)Af)

M
(EBLZ) A M T P(LiosM)
iel el
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is commutative. In fact for every (y;),c; € @ L; and 2’ € M’ we have
iel

P (Li®af)

el

= 0 @ f(2)ics = " (Wi)ics ®a [ (@) = " (K@ Lz-) ®a f

[ell@s)

Hence (@ Li) ®4 f is injective if and only if @ (L; ®4 f) is injective. By Lemma

il il

B2 P (L; ®4 f) is injective if and only if L; ®4 f is injective, for every i € I. [
iel

Lemma 6.49. Let A be a ring. Then the right module A4 is flat.

((yz & xl)z’el> =

0 ™ ((yi)se; @a2') = [@ (Li®a f)

el

(W)res 01 x’>) -

((yi)iel ®a $/> .

Proof. Let f : 4M’' — sM be an injective left A-module homomorphism. Let us
consider the isomorphism of Proposition G243

pM AgaM — M

a@qr +— a-x

Then the diagram

Aos M A Ag,M

My b
M L v

is commutative. In fact, for every a € A, 2’ € M’ we have

(fou)@ea) = fla-a) =af (@) = M (@ [ () = (1" 0 (A4 ) (a2 ).
Since f is injective, we deduce that also A ®4 f is injective. O

Proposition 6.50. Every projective right A-module P, is flat.

Proof. By Proposition I, P, is a direct summand of a free right A module A‘(AX).
By Lemma EZ9 and Proposition 62438, the right A module AEL‘X) is flat so that, by
Proposition B4R, P, is flat. m
Corollary 6.51. Every vector space over a field k is flat.

Lemma 6.52. Let us consider the commutative diagram

ML oM S M o
Lo 4=y

N LN SN S0
)

0
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where @ is a surjective homomorphism and v is an isomorphism of right A-modules.
Then there exists a right A-module homomorphism ¢ : M" — N" such that the
diagram

S

M LM S M S0
Lo 1= 1¢

N L N B N S0
!

0

is commutative. Moreover ¢ is an isomorphism.

Proof. Let us define ¢ : M" — N” by setting
C(2")y=h(¢(x)) where x € M and g (x) = 2".

Let us check that ¢ is well-defined. Let x and T € M such that g (z) = 2" = ¢ ().
Then z — 7 € Ker (¢g) = Im (f) and hence there exists an element 2’ € M’ such that
r—7T = f(2'). We compute

(hot))(z=m) = (hot)(f(2') = (hoto f) (') = (hojor))(a) = (ho0)(z) =0.

We deduce that (h o) (z) = (ho1)(Z) and hence ( is well defined. Moreover, by

construction we have
Cog=hot.

Since g is surjective and ho1) is a right A-module homomorphism, we deduce (exer-
cise) that ( is a right A-module homomorphism. Moreover since h o 1) is surjective,
also ( is surjective. Let us prove that ¢ is injective. Let z” € M"” be such that
¢ (2") = 0. Then there exists an x € M such that g (x) = 2” so that

0=C(g9(x)) =hot(z).

Hence ¢ () € Ker (h) = Im (j) so that there exists an ¢y’ € N’ such that ¢ (z) =
J (). Since ¢ is surjective, there is an 2’ € M’ such that y' = ¢ (2’). We deduce
that

v(x) =i ) =7le() =v(f ().

Since 1 is injective, this implies that © = f (') so that 2" = g (z) = g(f (2')) =
0. [l

6.53. Let L be a right A-module and let I be a right ideal of A. We set
L-I:{inailnEN,nz l,x1,...,2, € Lyay,...,a, € I}.
i=1

Clearly L - I is a right A-submodule of L.



90 CHAPTER 6. TENSOR PRODUCT AND BIMODULES

Proposition 6.54. Let L, be a right A-module and let I be a two-sided ideal of A.
Then the map
C : L ®y % — %
x@(a+I) — za+L-1

1s well-defined and is an isomorphism of right A-modules.

Proof. Let us consider the isomorphism p” : L ® 4 A — L of Proposition EZ3. Let
i : I — A be the canonical inclusion and p : A — A/I the canonical projection.
Then we have

Im(uLo(L®Ai)) :{inai|n€N,n2 L,xy,...,2q € Lyay,...,a, € [} = L-I.
i=1

Let ¢ be the corestriction of u” o (L ®414) to L - I and let j : LI — L and be the
canonical inclusion. Then we have a commutative diagram h : L — L/LI is the
canonical projection. By Lemma B2, there exists an isomorphism ¢ : L®4 A/L® 4
I — L/LI such that the diagram

Loal "3 LosA " Lo (A/) — 0
Lo 1= u* 1<
L L L LA L/LI = 0
1
0

is commutative so that we have
(@ a+1)=C(L®ap) (z®a) =hp* (z®a) =za+ LI
O]

6.55. Let 4Mpg be a bimodule. Let L be a right A-module and let N be a right
R-module. For every & € Hompg (L ®4 M, N) and for every x € L we consider the

map
&t M — N
m — {(x®@m)’

Proposition 6.56. In the notations of B2,
1) the map & : M — N is a right R-module homomorphism.

2) Foreveryz,z’ € L anda € A we have that, in the right A-module Hompg (4Mg, Ng) :
(612) 59&-&-:6’ =&+ gx’ and §oa = 590 - a.

3) the map
A¢: L — Hompg (M, N)
r — &x

1 a right A-module homomorphism.
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4) giwven £ € Hompg (L ®4 M, N) we have that, in the abelian group Hompg (M, N)
(6.13) (E+&), =& +&

5) given&’ € Hompg (L ®4 M, N) we have that, in the abelian group Hom 4 (L, Hompg (M, N))
(6.14) Aere = Ae + Agr.

Proof. 1) Let m,m’ € M and let r € R. We compute

E(m4+m) = E(x®(m+m)) (E)é’(:ﬁ®m+x®m’):

= {wam)+{(ze@m) =& (m)+& (m),

& (mer) = E@om-r)=e(@@em)-r) =" (@ om) =& (m)

2) Let x,2" € L and let a € A. For every m € M we compute

orar (M) =€ (v + 2" @m) (E)€($®m+w’®m)=£($®m)+€(a:’®m):

=& (m) + & (m) = (& + &) (M),

(B3)

ra(m)=E(x-a®m) = E(x@a-m) =& (a-m) Eo

& -a)(m).
3) Let z,2" € L and let a € A. In view of (E12) we have
A§ ($ + $/> = £x+x’ =&+ & = A§ ($) + Af (l’/) )
Ae(z-a) = &a=6& a=NA(x)a

4) For every m € M, we compute

€+&), (m)=(E+&)(z@m)=E(z@m)+{ (z@m) =& (m)+& (m) = (& + &) (m).
5) For every = € L, we compute

Aere (2) = (€ +€), =& +€ = Ac () + Ao (2) = (Ae + Agr) (@) .

]

6.57. Let 4Mpg be a bimodule. Let L be a right A-module and let N be a right
R-module. For every ¢ € Homu (La, Hompg (4Mg, N)), we consider the map

Be: LxM —s N
(z,m) = ((z)(m) "

Proposition 6.58. In the notations of 02014, the map B : L x M — N 1is A-
balanced and it satisfies Be ((x,m - 1)) = B¢ ((x,m)) - r for every x € L, m € M and
r € R. Therefore by Proposition BZ34, there exists a left R-module hoomorphism
I'¢: L®a M — N such that

I'e(z®@m) = (x)(m) for everyx € L and m € M.
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Proof. Let x,2’ € Lym,m' € M,a € A,r € R. We compute

Be (x4 a/,m)) = C(x+a’) (m) “FE ¢ (@) + ¢ ()] (m) =
() (m) +C (o) (m) = B (em)) + B (' m))

B ((wom+m')) = C(x) (m+m) TR (@) (m) + ¢ () (m) =
— B ((x, >>+5<<< m')

¢(

¢(

(

¢

Be((x-a,m)) = ((z-a)(m) =" (¢ (2) - a] (m) ET

¢ () (a-m) = B ((x,a-m))

¢(z EHomR(AMR N)

%2

Be ((w,m-r)) = (€ () (m)] -1 =

(@)
~ 4

((

8

(
(m-r)
x,m))-r.
]

Theorem 6.59. Let sMpg be a bimodule. For every right A-module L and every
right R-module N, we set

A% . Homp (L ®4 M,N) — Homy (L, Hompg (M, N))
(LoaM -5 N) — A

and
'Y : Homy (L,Homp (M,N)) — Hompg (L ®4 M,N)
(L 5 Hompg (M, N)> — Te.
Then £ € Hompg (L ®4 M,N),( € Homy (L, Hompg (M, N)), for every x € L and
m € M we have

[AX (&) (@)] [m] = [A¢ (@)] (m) =& (m) =& (x @m)
X O] @@m) = T¢(x@m)=¢(2)(m
AL is a group isomorphism with inverse I'L.

Proof. Let &,& € Hompg (L ®4 M, N). We have

AR (€+€) = Aeve = Ac+Ae = A% () + A% (©).
Moreover for every x € L and m € M we have
(T 0 AK) (O] (z@m) = [[x (Ad] (x®@m) =T (x®@m) = A¢ () (m) =
= & (m)=&(x®@m).

By 2) in Remarks B9, we conclude that (I'y o A%) (€) = ¢
Let now ¢ € Homy (L, Hompg (M, N)). For every z € L and m € M, we compute

{[(AN o TR) (O] (@)} (m) = {[(Ax) TO] (2)} (m) = [Ar, (2)] (f) =
= (I'¢), (m ) Lo (z®@m) = C(z)(m).
This yields that (A% o T'%) (¢) = ¢. O
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Exercise 6.60. In the assumptions and notations of Theorem BEZ23, Assume that L
is B-A-bimodule and that N is an S-R-bimodule. Prove that A% is an S-B-bimodule
homomorphism.

Theorem 6.61. In the assumptions and notations of Theorem E223, let f € Homy (La, Lq)
and g € Hompg (N1, N3). Then the following diagram is commutative.

Al
Homp (L, ®4 M, N;y) —> Homy (L1, Hompg (M, Ny))
HOIHR (f XA Mag) J/ \I/HOI'HA (f,HOHlR (M7g))

AL2
Homp (Ly @4 M, Ny) —3 Homy (Ly, Homp (M, Ny))

Proof. Let £ € Hompg (L ®4 M, Ny). Note that Hompg (f ®4 M,g) () = go o
(f @4 M). Alsoif ( € Homy (L, Hompg (M, N7)), we have that Homy (f, Homg (M, g)) (¢) =
Hompg (M,g)o (o f.
For every x € Ly and m € M, we calculate:
[{[AR o Hompg (f @4 M, 9)] (&)} (2)] (m) = {[ARZ (g0 o (f @a M))] ()} (m) =
=[gogo(f@aM)(x@m)=[gofo(f®sM)](z@m)=(g0&)(f(x)®m)
[{ [Hom (f, Homp (M, g)) 0 A% ] (€)} (2)] (m) = { [Homp (M, g) o AR (€) o f] ()} () =
= [Homp (M, 9) (§50)] (m) = (90 &) (m) = g (€ (f (x) @m)) = (g0 &) (f (z) @m).

O



Chapter 7

Homology

7.1 Categories and Functors

Definition 7.1. A category C consists of:
1) a class of objects denoted by Ob (C).

2) for every C1,Cy € Ob(C) a set Home (Cy,Cy), called the set of morphisms
from C4 to Cs

3) for every Cy,Cy,C3 € Ob(C) there is a map

o : Homc(C'l, CQ) X HOHIC (CQ, Cg) — HOIHC (Cl, Cg)
(f,9) —— go [ called the composite of g and [

satisfying the following conditions:
1) ’Lf (Cl, 02) 75 (Cg, 04), Homc (01, Cg) N HOHIC (Cg, C4> = @,’
2) if h € Home (C3,Cy), ho(go f) = (hog)o f;

3) for every C € C, there exists Ide € Home (C,C) such that for every f €
HOIIlC (C, Cl), f o Idc = f = Idcl o f

We also write f : C7 — Cy or Cy S, Cy instead of f € Home (Cy, Cs).
Moreover if C' € Ob (C), we will simply write C' € C.

Example 7.2. Sets, together with functions between sets, form the category Sets.
For every algebraic structure you can consider its category: take sets endowed with
that algebraic structure as objects and take morphisms between two objects as mor-
phisms. In this way, you obtain the category of groups, Grps, of rings, Rings, of
right R-modules, Mod-R and so on.

Definition 7.3. A category is called small if the class of its objects is a set; discrete
if, given two objects Cy,Cs, if C1 = Co then Home (C1,Cy) = {Id¢g, }, if C1 # Cs
then Home (C1,Cs) = @. Let C be a category. The opposite category of a category
C is the category C° where Ob (C°) =0b(C) and Homeo (C, Cy) = Home (Cy, Cy).

94
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Definition 7.4. A subcategory D of a category C is a category such that Ob (D) C
Ob (C) and for every Dyi,Dy € D, Homp (D1, Ds) C Home (Dq, Dy). When the
inclusion 1s an equality, D 1is called full subcategory of C.

Definition 7.5. Let C be a category. A morphism C NN Cs is an isomorphism if
there exists a morphism Cy — Cy such that f o g =1Idg, and go f = Idg,.

Remark 7.6. Let [ : Cy — Cs be an isomorphism in a category C and let g,q :
Cy — C1 be such that fog=1dc, = fog and go f =1de, = ¢’ o f. Then we have

g =g oldg,=g'o(fog)=(gof)og=1Idg,0g=y.

Hence there ezists a unique morphism g : Co — Cy be such that fog = Ide, and
go f=1dg,. This unique morphism will be denoted by f=1.

Definition 7.7. Let A, B €C and f: A — B, then

e f is a monomorphism if, for every gi,go : C —> A such that f o gy = f o g,
we have g = go;

e f is an epimorphism if, for every g1,9o : B — C' such that g1 o f = gs 0 f,
we have g, = gs.

Proposition 7.8. Let A,B € C and let f : A — B. If f is an isomorphism then
f is a monomorphism and an epimorphism.

Proof. Since f is an isomorphism, there exists a morphism f~! which is a two-sided
inverse of f. First we prove that f is a monomorphism. Let g1,92 : C — A be a
morphism such that fo g, = f o g,. Then, by composing to the left with f~! we get
flofogi = f~tofogy and thus g, = go, i.e. f is a monomorphism. Now we want
to prove that f is an epimorphism. Let ¢;,¢9s : B — C such that g o f = gs 0 f.
By composing to the right with f=! we get gy o fo f~' = gs o f o f~! from which
follows g1 = g9, i.e. f is an epimorphism. O]

Exercise 7.9. Let f : A — B and g : B — C be morphisms in a category C .
Then

e if both f and g are monomorphisms, also g o f is a monomorphism;
e if both f and g are epimorphisms, also g o f is an epimorphism.

Remark 7.10. The converse of Proposition [T.§ doesn’t hold in general, such as
in the case of the inclusion Z — Q in the category of rings. In fact, let C be the
category of rings, let

17— Q
be the canonical inclusion and let hi, hy : Q — A be such that

h1

7Z—~Q A

ho
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hi ot = hyoi. We will prove that hy = hy. Let m € Z and let n € N, n # 0. Since
hj is a morphism of rings for j = 1,2, we have that

1y = hy(1)=h (%) = h; (n) by <%) and also

1= = (2) =y (3) 10

so that

Moreover we have

Therefore we get

() = () = = = (2) 1 2

that s hy = ho so that @ is an epimorphism. Now, let 1,92 : R — Z

g1

R y/y g

g2

be such that 10 g, =10 go. Then g, = go t.€. 1 15 also a monomorphism. Note that
1 18 not an isomorphism: a non-zero group morphism

fQ—Z

does not exists since Q is divisible but Z is not. In fact, assume there exists a group
morphism
f:D—2Z

where D s divisible. By definition of divisible group, for every n € N, nD = D.
Since f is a group morphism, f (D) C Z and thus f (D) = tZ for some t € N\ {0}.
Since f is a group morphism and D is divisible we have that

nf(D) = f(nD)=f(D)=1Z
and therefore

ntZ, =t7.
In particular, for every n € N, there exists y, € Z such that

t = nity,.
Forn =2 we get

t= 2ty2
and thus

1 =2y,

contradiction since 2 is not invertible in 7.
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Proposition 7.11. Let A be a ring and let f : L — M be a morphism in Mod-A.
Then

1) f is injective < f is a monomorphism in Mod-A.
2) f is surjective < f is an epimorphism in Mod-A.

3) f is an isomorphism < [ is an isomorphism in Mod-A. < f is both a monomor-
phism and an epimorphism in Mod-A.

Proof. 1) = . It is trivial.
1) < . Let © € L such that © # 0. Let us consider the morphism in Mod-A
(Proposition E2)

hy : Ay — Ly defined by setting h, (a) = xa for every a € A.

Then
hy (1) =2 #0=0(z)
where 0 denotes the zero morphism from A to M. Since f is a monomorphism in
Mod-A, we get
fohy# foO.

It is easy to see that this implies

(f o hs) (1) #0.

Since (f o hy) (1) = f (x) we conclude.
2) = . It is trivial.
2) < . Let p: M — M/Im(f) be the canonical projection. We have to prove
that M =Im (f) i.e. that p =0 where 0 : M — M/Im (f) is the zero morphism.
Since po f = 0o f and since f is an epimorphism in Mod-A, we get that p = 0.
3) It follows easily from 1) and 2). O

Notations 7.12. Let A be a ring. In view of the foregoing, from now on

e an injective homomorphism [ of right (left) A-modules will also be called a
monomorphism. We will also say that f is mono, for short.

e a surjective homomorphism of right (left) A-modules will also be called an
epimorphism. We will also say that f is mono, for short.

e a bijective homomorphism of right (left) A-modules will also be called an iso-
morphism. We will also say that f is iso, for short.

Definition 7.13. Let C and D be categories. A covariant functor F' : C — D
between C and D consists of
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1) a collection of objects of D
(F(C))cec
2) a collection of morphisms in D
(F(f): F(Cy) — F(C’g))feHomc(ChCQ) for every Cy,Cy € C

such that
F(lde) =Idp(c) and F(go f) = F(g) o F (f)

for every morphism f € Home (C1,Cy) and g € Home (Cy, Cs).

Definition 7.14. Let C and D be categories. A contravariant functor F': C — D
between C and D consists of

1) a collection of objects of D (F (C))qee
2) a collection of morphisms in D

(F'(f): F(Cy) — F(Ch)); ) Jor every Cy,Cy € C

EHomc(C’l,

such that
F(lde) =Idp(c) and F'(go f) = F (f)o F(g).

for every morphism f € Home (C1,Cy) and g € Home (Cy, Cs)..

Examples 7.15.

Let 4Lg be an A-R-bimodule. Then we can consider the following functors.
1) The covariant functor Homg (4Lg, —) : Mod-R — Mod-A defined by setting
Hompg (4Lg, —) (Mg) = Hompg (aLg, Mg) and Hompg (4Lg, —) (f) = Hompg (4Lg, f)
for every Mr € Mod-R and f morphism in Mod-R.
2) The covariant functor — @4 aLgr : Mod-A — Mod-R defined by setting
(= ®a aLlr) (Ma) = Ma®4 aLr and (— @4 aLgr) (f) = f ®a alr
for every My € Mod-A and f morphism in Mod-A.

3) The contravariantvariant functor Hompg (—, ALg) : Mod-R — A-Mod defined by
setting

HOHlR (—, ALR) (MR) = HOHIR (MR, ALR) cmd HOIIlR (_,ALR) (f) = HOIIlR (f,ALR)

for every Mr € Mod-R and f morphism in Mod-R.
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Lemma 7.16. Let F': C; — Cy and G : Cy — Cs, be functors. For every C' € C; we
set

GF(C)=G(F(C))
and for every morphism f : C; — Cs we set
GE(f)=G(F(f)).
This gives rise to a functor GF = G o F' : C; — C3 which is
1) covariant whenever both F' and G are covariant,
2) covariant whenever both F' and G are contravariant,

3) contravariant whenever F is covariant and G is contravariant,

4) contravariant whenever F' is contravariant and G is covariant.

Proof. Exercise. ]

F
Definitions 7.17. Given two covariant functors C = D, a functorial morphism
G

(or natural transformation) o : F' — G is a collection of morphims in D, for every
C € C, by a morphism (F ) 2% @ (C)>c . such that, for every C AN Cs,
S

ag, o F(f) = G(f)eaq

i.e. the following diagram

F(C) 22 (o)

F(f)i o J{G(f)
F(C) Tc; G (Cy)
is commutative. « is called a functorial isomorphism (or natural equivalence) if,

for every C' € C, ac is an isomorphism in D. In this case the functors are called
isomorphic and we write F' = G.

Exercise 7.18. Let a : F' — G be a functorial isomorphism. Show that the collection
B = ((ac)fl)oec is a functorial isomorphism from G to F.

Notation 7.19. Let a : F — G be a functorial isomorphism. Then the functorial

isomorphism (3 in Exercise [[.I§ will be denoted by o~ !.

Examples 7.20. Let sMpg and sMy be A-R-bimodules and let f : sMp — aMp
be a morphism of A-R-bimodules i.e. f is both a left A-modules and also a right
R-modules homomorphism. Then

Hompg (f,-) : Hompg (4 My, -) — Hompg (4 Mg, -)

and
QA f i -QaAM — -@, M’

are functorial morphisms (Ezercise).
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Definitions 7.21. Let F': C — D We say that

e [ is an equivalence of categories if there is a functor G : D — C such that
FG = 1dp and GF = 1de. In this case we also say that (F,G) is an equiva-
lence of categories.

e F' is an isomorphism of categories if there is a functor G : D — C such
that FG = Idp and GF = 1d¢. In this case we also say that (F,G) is an
isomorphism of categories .

Definitions 7.22. Two categories C and D are called

e equivalent if there exist fuctors F : C — D and G : D — C such that (F,G) is
an equivalence of categories.

e isomorphic if there exist fuctors F : C — D and G : D — C such that (F,G)
18 an wsomorphism of categories.

7.2 Snake Lemma

Lemma 7.23 (Snake Lemma). Let A be a ring and let

0 L M’ N’

be a commutative diagram in Mod-A with exact rows.

1) Then there exist right A-module homomorphisms €., T, €,

', 7w such that the
diagram

ia ig iy
L—>M—"—>N 0
a B Y
0 —sM—"N
Pa bp Py

e !
coker o« —— coker 3 — coker 7y
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is commutative and exact. They are uniquely defined by the following equali-

ties:

(7.1) i3 0 € = €|Ker(a) = €O iq
(7.2) iy O Ty = T Oig
(7.3) €. 0py =psoe
(7.4) T, opg =pyom.

2) There exists a right A-module homomorphism w : Ker (y) —Coker () such
that the sequence

Ker () - Ker (8) = Ker (7) —2 Coker (o)~ Coker () = Coker ()
1S exact.

3) If € is mono, €, is also mono and if 7' is epi, so is ..

Proof. 1) Construction of the homomorphisms ¢,, m,, €, ..
) Let x € Ker (). Then a(x) = 0 and hence 0 = €« (x) = fe(z) so that
€ (x) € Ker () . Therefore we get € (Ker (a)) C Ker () and we can set

e = (epera) .

It follows that

)\Ker(ﬁ)

iﬁ O €y = Zﬂ o (6|Ker(o¢) = €|Ker(a) — €°© Lo

m.) Let m € Ker (). Then 0 = 5 (m) and hence 0 = 75 (m) = ym (m) so that
7 (m) € Kerry. Therefore we get 7 (Ker (3)) C Ker () and we can set

R T

It follows that

Ker(y) .
) = MKer(8) = T O lg.

ly O Ty =1y O (WIKcr(B)

€,) We have pgoe’oa = pgo foec =0 so that (pgoe’) (Im(a)) = 0. Hence,

by the Fundamental Theorem for Quotient Modules 20, there exists a unique
M’

homomorphism €, :Coker () = ﬁ —Coker (8) = fm(g Such that

€ op, = pgoe

Le. € (¢’ +Im(a)) = €(2')+Im(B) for every 2’ € L.
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7.) We have p,on’ o f = p,ovyonm =0 so that (p, on’) (Im(8)) = 0. Hence,
by the Fundamental Theorem for Quotient Modules 20, there exists a unique

!

homomorphism 7, :Coker () = % —Coker () = In]lvw such that

m.ops = pyoT
Le. m (m' +Im(8)) = =« (m')+Im(y) for every m' € M'.

2) The diagram is commutative. It follows from (1) , (2) , (=3) and ().

3) The diagram is exact.

3a) Im (e,) € Ker (7). We have i, om, o€, =moeoi, =001, =0. Since i, is
mono we get that 7, o€, = 0.

3b) Ker (7.) C Im (e,). Let m € Ker (7). Thenm € Ker () and 0 = iym,. (m) =
mig (m). Thus ig (m) € Ker(w) = Im () and hence there is an € L such that
ig (m) =€ (x). Then

0=p(ig(m)) = B(e(x)) =€ (a(z)).

Since € is mono we deduce that a (z) = 0 i.e. € Ker(a) and hence x = i, (z).
Thus ig (m) = € (in (x)) =i (e« (x)). Since ig is mono, we deduce that m = e, (z).
3c) Im (€)) € Ker ().

Im (¢}) = Im (€, o p,) = Im (pgoe’).
Since
T opgoe =p,on’ o =p,00=0

we get
Im (€,) = Im (pg o &) C Ker (7).

3d) Ker (7)) CIm(€,). Let m' +1Im (8) = pg (m') € Ker (7)), i.e. m'+1Im (5) €
M [T (8) and 0+ T (3) = 2 (! + I (8)) = wlps () = port’ () e, 7' () €
Im () so that there exists a y € N such that

' (m') =7 (y).
Moreover, since 7 is epi, there exists m € M such that
y =m(m)

so that
T (m') =v(y) =7 (7r(m)) =" (B(m)).
=1

Hence m' — 5 (m) € Ker (') = Im (¢’) and hence there exists 2’ € L’ such that

m' — B (m) =€ (2).

Thus we have
ps (M) = pg (¢ () = €, (pa () € Im (€,) .
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4) 4a) Construction of w. Let y € Ker(y). Since 7 is epi, there exists an
m € M such that i, (y) = 7 (m). We have 0 = 7 (i, (y)) = v (7 (m)) = 7' (5 (m)),
ie. f(m) € Ker(n') = Im(€’). Hence there exists an element 2’ € L’ such that
¢ (x') = B (m). We set
w(y) =" +Im(a)

4b) w is well-defined. Let ™ € M such that = (m) = i, (y) and let 7’ € L' such
that € (z') = g (m). Then we have

m(m)=m(m) i.e. m —m € Ker (r) = Im (¢).
Thus there exists an x € L such that
(7.5) e(z) =m —m.
On the other hand we have
(16) @ —T)=¢ (@)~ ¢ @) =B(m) - Bm) =B (m—m).
Thus from (3) and (Z3) we deduce that
€ (¢ =T)=p(m—m)=p(c(x)) =€ (a(r)).
Since € is mono we get @' — T = «a (z) so that
' +Im(a) =7 +Im (a).

4c) w is a homomomorphism. Let y,y> € Ker (7). Since 7 is epi, there exist
my,mg € M such that i, (y1) = 7 (mq)and iy (y2) = 7(mgy). By 4a) there exist
xy,xh € L' such that §(mq) = € (2}) and B (mg) = € (24). Since m and [ and € are
homomorphisms we have that

m(my+mg) = w(my)+7m(me) =y +yo and
Blmy+ma) = Blmy)+ B (m) =€ (2}) +€ (ah) = € (& +33).

Therefore, by definition of w, we have

w(y +1y2) = (¢)+ ) +1m(a)
7y +1Im(a)) + (25 + Im (a))
= w(y) +w(y).
Let now y € Ker (y) and a € A. Since 7 is epi, there exists an m € M such that

i (y) = m(m). By 4a) there exists an element 2’ € L' such that g (m) = € (2/).
Since 7 and § and € are homomorphisms we have that

7(m-a)=n(m)-a=y-aand f(m-a)=LF(m)-a=¢€(2')-a=¢€(2'-a).
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Therefore, by definition of w, we have

w(y-a) = 2'-a+Im(a)
= (@ +Im(a))-a
= w(y)-a
5) The sequence is exact. In view of 3) we need to prove the following.
5a) Im (m,) C Ker (w). Let y € Im (m,). Then there exists an m € Ker (g) such
that y = 7, (m) and hence i, (y) = i,m, (m) = 7 (ig (m)). Then, by 4), there exists
an ' € L' with € (') = B (ig(m)) = 0. We deduce that 2’ € Ker (¢/). Since € is
mono, we get ' = 0 so that
w(y)=2"+Im(a) =0+ Im(a)

and hence y € Ker (w).
5b) Ker (w) C Im (7). Let y € Ker (w). Then y € Ker (y) and hence, by 4),
there is an m € M such that 7 (m) =i, (y), and an 2’ € L' such that g (m) = € (2/)
and we have
0+Im(a) =w(y) =2+ Im(a)

i.e. 2’ € Im (). Hence there exists x € L such that 2’ = o (x). Then we have

B(m) =€ (z) =€ (a(x)) = B (e(x))
that is m — e (z) € Ker (3). Since me = 0 we get i, (y) =7 (m) =71 (m —e(x)) =
7 (ig (m — € (x))) = iyme (M ( —¢(x)), and hence y = 7, (m — € (z)) € Im (7).

5¢) Im(w) C Ker(€,). Let w € Im(w). Then there exists y € Ker(y) with
w (y) = w. By 4) there is an m € M such that 7 (m) = i, (y) and there is an 2’ € L'
with € (') = 8 (m) and

w=w(y) =2 +Im(a) =7, (@).
Hence
€, (w) = € (ma (') = ps (€' (') = ps (8 (m)) = 0+ Im (6),

Le. 2/ +Im(a) € Ker (€,).

5d) Ker(€)) C Im( ). Let z € Ker(€,). Then there is an 2’ € L’ such that
z =o'+ Im (a) = p, (2') and

0+ Im (B) = € (2) = € (pa () = ps (€ (z')) .

Therefore ¢ (') € Im () so that there exists an m € M such that 8 (m) = € (/).
Let y = m(m). Then, we have

Y(y) =7 (7 (m)) =7 (B (m)) =7 (¢ (x)) = 0.
Therefore y € Ker () and,by definition w, we have
w(y) =2 +Im(a)

so that z = 2’ + Im (o) = w (y) € Im (w).
6) If ¢ is mono then ¢, is also mono. It follows from ig o €, = € 0 i,.
7) If 7' is epi then 7/ is also epi. It follows from 7/, o psg = p, o7’ ]
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7.3 Chain Complexes

Definitions 7.24. A chain complex of right A-modules is a a pair (C.,d?') =
<(O”)nEZ , <d7€.)n€Z> where each C,, is a right A-module, dS* : C,, — C,,_1 is a right
A-modules homomorphism and d$* o dg:rl =0 for everyn € Z. For eachn € Z

. i = (i),

<g, s called the differential operator of the chain complez,

o Z,(C.) :=Ker (dS*) is called the n-th cycle of the chain complez

e B,(C,) :=1Im (dg;l) is called the n-th boundary of the chain complex ,

Ker(di®) _ 2,(Cy)

[ Bn (C.) Q Zn (C.) and Hn (Co> = Inl(dgjﬂ) Bn(Ce)

ogy module of the chain complex.

1s called the n-th homol-

We will denote by

o iy :Z,(Cy) — C, the canonical inclusion and by pz, : C, — Cn/Z, (C,) the
canonical projection;

e ip, : B, (C,) — C, the canonical inclusion and by pg, : C, = C /B, (C,) the
canonical projection;

e jg, : B,(Cs) — Z,(C,) the canonical inclusion and by qp, : Z,(Cs) —
Zn (C,) /B (Co) = H,, (C4) the canonical projection.

e ju,: H,(C,) = C,/B, (C,) the canonical inclusion.
Clearly we have
(7.7) JH, © 4B, = DB, © 12,
Whenever needed, we will write Z, (Cs) and B, (Cs) in the above subscripts.

Definition 7.25. Given chain complexes (C’.,d,c‘) and (D.,d?'), a morphism of

chain complexes of right A-modules ¢4 = (¢1),cz : (Ce,dS*) = <(C’n)nez, (dg')nez> —

(D., df)') = <(‘D">n€Z , (dﬁ-)nez> consists of a family of right A-modules homomor-
phisms (@, : C, — Dy), oy such that the following diagram is commutative

Pn+1
Crst 25 D,y
dcs

D
n+1l \Ldn-l.—l

i.e. dfh O Ppt1 = Pp O dgll; for every n € Z.
We will simply write p instead of ¢, whenever no risk of confusion
will arise.
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Notation 7.26. We will denote by Ch(Mod-A) the category of chain complexes.
Obuiously the objects are chain complezes of right A-modules and morphisms are
gust morphism of chain complezes of right A-modules.

Lemma 7.27. Let (C’., d?‘) be a chain complex and let n € Z. Then the map
cig' : Coker (dS,) = I(i—g.) — Ker (di*,)
m n+1 .
T, + Im (df;l) — dy (z,)

1s well-defined and is a right A-modules homomorphism. It is uniquely defined by

(7.8) iz, .(Ce) © dS* 0 DB, (c) = di”
Moreover we have

Ker <c?§'> = H, (C,) and Coker (c@) =H, 1 (C,).

Proof. Since d$* o dg;l = 0,we have that Im (dfjrl) C Ker (df’). Then, by the Fun-
damental Theorem for Quotient Modules 20, there exists a unique homomorphism

— C
dc.) N o
( " Im (df;l) -~ '
such that L
d% o pp,(c.) = dS* ie.
dCe (zn + Im (dgjrl)) = d% (x,) for every z, € C,.
Since d%*, 0 d%» = 0 we have that Im <@> = Im (d$*) C Ker (dg:l) and we
can set

) |Ker(d®,) C,

dCe — (dc' e
! ! Im (d}3,)

— Ker (dg;l) ie.

1Z,_1(Ca) © d/ng =d%

so that -
iz, 1(Ce) ©dS* © P, (cy) = di.
We have
Ker (d/na'> = {cu+ B, (C.) | dS* (o) = 0}
= {cu+ B, (C.) | cn € Ker (d5°) = Z, (C4)}
Z, (C,)
p— p— H °
and
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7.28. Let @, : (C., d?‘) — (D.7 d?') be a morphism of complexes We can consider
the following morphisms

1) A morphism between kernels of the differential operators= cycles.
Since d2*, 0 pn_1 = pn_g 0dS |, we have that
(A1 0 pn1) (Ker (d$*,)) = (pn—20dS,) (Ker (dS,)) =0
so that
(7.9) pn—1 (Ker (di®,)) C Ker (d))2))

and we can consider

)7 () = Ker (d) s Ker () = Z, (D)

A (p) = ((90n71)|zn,1(c.)
Cn—1 — Pn—1 (Cn—l) :

so that
(7.10) Zn_1(Da) © A (9) = 1017, (c4)

2) A morphism between cokernels of the differential operators.

Since df}rl O Ppi1 = Pp O dg;l, we have that

on (Bn (Cs)) = ¢n (Im (dg-.s-l)) = SOndg-T—l (Cnyr)
= (dr?-r-l © 90n+1> (Cht1) € Im (df_i’_l) = B, (D.)
so that
PBa(Da) (@0 (Bn (C))) =0

Then, by the Fundamental Theorem for Quotient Modules 20, there exists a
unique homomorphism

C D
1—\ n — k Ce k Da — n
n (©) B, (Co) Coker (dn+1) — Coker (dn+1) Bo (DY)

such that
(7.11) I (0) ©PB.(Cy) = PBa(D) © Pn
i.€.

Ly () - % = Coker (dgjrl) —  Coker (dt,) = BnD(g.)

cn + By, (Cs) — ©n (Cn) + By (D) .

3) A morphism between the homology modules.
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We have that

L\ (9) (Z%(C”>) (T (9) 0 D) (Za (C2)) = (paony © 00) (Za (Cu) =

B, (C)
(=)
= PB,(0.) (¢n (Za (CF))) S PB.(D.) (Zn (D))
~ Zu(Ds)
= B.(Dy H, (D.)
Therefore we can consider
Zn(De)

i.€.
Ho(9): ey =Ha(C) — Hi(Di) =23
We have
(7.12) JH(Ds) © Hy (@) = T (9) © jm, (Co)
and

()
]Hn(D.) o H, (p) o qp,ca) =
( ) © JH.(CY) © qBa(Ca) =
[y (@) 0 PB,(Ca) © 12, (Ca)
(=) :
= DPB,(Ds) © PnClz,(Cy)

so that we get

(713> an(D‘) © Hn (()0) © QBn(C.) = an(Do) © (pn o ZZn(Co)

Moreover we have

. =2 . ()
JHu_1(Ds) © Hno1 (9) ©GB,_1(C) = PBa_y(Ds) © Pr—1°17,_,(Cy)

. =1
= PBp_1(De) © 124_1(Ds) © Mn (©) = =" JH,_1(Ds) © qBo_1(Ds) © M () .

Since ju,_,(p.) 18 mono, we deduce that
(7.14) Hyo1 () © 4B, 1(ce) = 4B, 1(Ds) © An () -
Proposition 7.29. In the notations of [T.28, we have that

(7.15) A () 0dGe = dD o T, (¢)
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i.e. the following diagram is commutative:

C, I'n(p) D,
Br(Ce) Br (Do)
| |
Zn—l (Co) m Zn—l (Do) ;

We have also the commutative diagram

Cy a D,
PByn(Ce) PBy(De)
Co\ _ _Cn ™6 p, _ D.
Coker (dn+1) = B (Co) By = Coker (dn+1)
dge Jg\-i id/,é\' dre
Co \ _ _ D
~ Ker (dy) = Zn1 (C4) T A (D,) = Ker (dnil)
Cnfl On_1 anl

Proof. We have

, - {ramus | . % =
Zanl(Do) © An ((10) © dg. Oan(Co) ( - ) (pn_l © Zanl(C.) © dg. Oan(Co) (:) (p'l’L—l © dg.

=) . TR () —==
d’r?. © (pn = ZZn—l(Do) © d’rLl). © an(Do) © (pn = ZZn—l(Do) © d??. © Fn (90) Oan(C-)'
Since iz, ,(p,) is mono and pg, (c,) is epi, we get

A (p) 0dGe = dP o T, ().

AT, () O DB, (Cs) = PBn(Da) © Pn = d?* (¢n (cn) + By (Da))
= dﬁ). (‘Pn (Cn)> .

The last diagram is commutative in view of ([C3)

(7, 1(Ca) © dS 0 pp,(cy) = dS°,

(1)
Ly (p) o PB,(Ces) = PBn(Ds) © Pn,
(o) |
Zo_1(Dy) © Ay () =pn10 1 Zn_1(C4)
and ([CI3)

A () 0 dCr = dDe o T, ().



110 CHAPTER 7. HOMOLOGY

Lemma 7.30. Let Cy — D, N E, be morphisms of complexes, then Yoy, defined
by setting (¢ o @), = 1y, 0 @, for every n € Z, is also a morphism of complezes and
for every n € Z the following equalities hold.

(7.16) Ap (Pop) =N, (1) oA ().
(7.17) In(op) =Ty ()l (0).
(7.18) Hy, (Y op)=H,(1)o H,(p).

so that we get obviously defined functors
H, : Ch(Mod-A) — Mod-A.
Proof. For every n € Z we have

dy*o(y 0 p), = d* 0,00y = hn_10d) 0Py = Y100, | peody® = (o @), _jody*

and hence we deduce that 1 o ¢ is a morphism of complexes.
1) Let us prove ([I3).
We compute
- (=m) . (m) ,
?/anl(Ec) © An (1/} © 80) - (¢n—1 o SOTL_1> ° 2Z'n,fl(C’-) - wn—l © ?/anl(Do) © An (QO) -
(Tm) |
= ZZn—l(Eo) © An (,é/}) © An (W) N
Since iz, ,(g,) is mono, we obtain(I18).
2) Let us prove ([17).
We compute

() ()
Lo (Po@)opp.cy = PBar)© (Unown) = Tn(¥)opp,p,) o0 pn=
()
e Fn ('l/]) e} Fn (@) o an(C')'

Since pp, (c,) is epi, we obtain (IZI7).
3) Let us prove (CI3).

) (2) ) (T2)
JHa(Bs) © Hy (V) 0o Hy (©) 0By = I'n (V) 0 Jm,pay © Hy (0) 0 qB, ) =

. () .
=T (W) oT'n () 0 Jr,(c0) © 4Buc) = Tn (W) oL'n () 0 DB, (cy) © iz, (00) =

(1) ) (TT) )
= ' (¥) 0PBL(D) © P iz, (C0) = Do(Ee)© Vn© PnOliz, (o) =

. . ()
= Do(Ea) © (Un 0 0n) Oz, () = Pu(ka) © (Y0 9), 0tz c) =

- an (E.) © Hn (@Z) © @) o an(C.)

Since jg, (E,) is mono and gg,(c,) is epi, we get H, (¢ o @) = H, (v) o H, (¢) .
[l
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Definition 7.31. Let @0 = (¢n),cz  (Co,dS*) —> (Da,d?*) and o = (¥n),cp
(D.,d?') — (E.,dfj') morphisms of complexes. We say that

0—Co25 Dy 2% B, =0
15 an exact sequence of complexes if, for every n € Z, the sequence
0—>C’nﬁ>Dnﬂ>En—>0 1$ exact.

Theorem 7.32. Let 0 — Cy 2> D, ﬂ) E, — 0 be an exact sequence of
complezes of right A-modules. Then, for every n € Z, there ewists a morphism
H, (E)) = H,_, (C,) such that the sequence

) Hnl(;p.)

s H(C) ™™ g0 Y 1, (B 2 o1, () T 1, (D, H,_: (E.)

18 exact.

Proof. Let n € Z and let us consider the following diagram:

Ch n(y) D, n () E, 0
Bn(Ce) B (Do) B (E,)
| | |
0—Z, (Co) m Zn-1 (Do) m Zn-1 (Eo)

In view of (I13), this diagram is commutative. Let us prove that the rows are exact.
1) ', (v) is epi. By (1) we have

r, (w) O PB,(Ds) = PB,(Es) © Yy

Since 1, and pp, (p,) are epi, so is I, ().
2) A, (¢) is mono. By (I10) we have

17,_1(De) © An (Pa) = 1077, ,(C4)

Since ¢, and iz, | (c,) are mono, so is A, (¢).
3) Im (I, (¢)) € Ker (', (v)). We have

(2) ()
L (W) oLy (@e) 0By = Tn (o)) opBac) = PBas) © (Woyp), =

= PB.(E,) © ¢n O PYn = 0.

Since pg, (c,) is epiwe get that I';, (1) o 'y, (¢) = 0.

4) Ker (I' () € Im (I, () -
Let z,, + B, (D,) € Ker (I';, (¢)), then

0 =T () (20 + Bn (D) =2 (T (¥) 0 po (o)) (10) = (P, () © ¥n) () = o ()4 By (Eu)
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ie. ¥, (z,) € B, (F.) =Im (dfh)- Thus there exists e, .1 € E,,1 such that

(0 (xn) = dr%rl (en+1) .

Since ¥, 11 is epi, there exists y, 11 € D,11 such that ¥, 11 (Yni1) = ens1; We have

U (Tn) = dfh (eny1) = dfh (Vns1 (Unt1)) = ¥n (dgh (yn+1)) )

ie. z, —d2t (yo1) € Ker (v,) C Im(p,). Hence there exists ¢, € C, such that
Pn (Cn) =Tn — dfh (yn+1) so that

Im (T () 3 Lo () () = @ (ca)+Bo (Da) = 00=dt1 (Yns1)+ By (D) = 2t By (Da)
5) Im (A, (¢)) C Ker (A, (¢)) .We have

120 50 ()0 A (0) =iz ey o M (V0 0) = (s 0 pn1)0iz, (cay) =0

Since iz, ,(g,) is mono, we deduce that A, (¢) o A, (¢) = 0.
6) Ker (A, (¢)) CIm (A, (¢)). Let x,,_1 € Ker (A, (v)), then

0= (iZn—l(Ec) oA, (¢>) (xn—l) (I'C:EIJ) (¢n_1 o iZn_1(D.)) (:L‘n_l) ,

ie. iz, (D) (Tn-1) € Ker (¢,_1) = Im (¢,_1). Then there exists ¢,_1 € C,_1 such
that iz, (p.) (n-1) = @n—1(cn—1). Now we have prove that ¢,—y € Z,_; (C,). We
have

xn—leZ_n—l(Dc)

Pn—2 (dgh (Cnfl)) = d’rlb):l (¢n-1(n-1)) = dr?ll (n-1) 0

As ©,_5 is mono, we deduce that d5*, (¢,_;) = 0 so that ¢,_; € Z,_1 (C,). Hence
we can write

1Z,_1(Da) (xn—l) = Pn-1 (Cn—l) = Pn-1 (Zanl(Co) (Cn—l)) = (Zanl(Do) oA, (@)) (Cn—l) =

=iz, 1(Ds) (A (9) (Cn-1)) -

Since iz, ,(p,) is mono, we deduce that

Tn1 =N (¢) (cn-1) € Ap (00) -

Since the diagram is commutative and exact, it satisfies conditions of Snake
Lemma [Z3. Now recall that, by Lemma [0, we have

Ker (c@) = H, (C,) and Coker (d/na> =H, 1 (C,).
Recall also that, by formula (ZI2) we have that

JH. (D) © Hy () = T (¢) 0 jm, (Co)
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and by formula (ZI4) we have that

Hy 1 (9s) ©4B,_1(C) = 4B,_1(D) © M (00) -

Hence, in view of the uniqueness of the homomorphisms involved in the statement
of Snake Lemma [Z3, we have the following commutative and exact diagram.

H,(C)— g (D) Y g (B
an(C.) an(Do) an(Eo)
Cn Fn(@) D, F”(¢) E, O
B, (Cb) Bn (D) Bn(Es)
a5 dbe dbe
An () An(9)

0 Zy1 (Co) =5 Z,y 1 (D) Zp-1 (E)
9H, _1(Ce) 9Hy,_1(De) 4H, _1(Ee)

Hn—l (Co) anl(‘P) Hn—l (Do) H"*I(w) Hn—l (Eo)

Moreover there exists an homomorphism w, : Ker <d/nE\') = H, (E,) — Coker (c@) =
H, 1 (C,) such that the sequence

Hn(p)

= Hy (CF) Hn ()

18 exact. O

Remark 7.33. Note that

wy (en + By (Es)) def Cn_1 +Im (d/g\'> =c¢y_1+ Bn1 (C,).

where e, + By (Ea) = Ty () (2 + Bo (DW)) and dP* (z, + By (Da)) = Ay () (o) -
and hence

Wn, <€n + Bn <E0>> =Cp1+ Bn—l (Co) .
where e, = ¥y, (z,) and d2* (2,) = @ (Ca1) with co_1 € Z, (C,).

7.4 Homotopies

Definition 7.34. Let @q, 1, : (C’.,d,c') — (D.,d?') be morphisms of complexes.
A homotopy X between ¢ and ) consists of a family of homomorphisms (X, : Cr, — Dypi1),ey
such that

Pn — wn = d’rlz)—l.—l 0y +Xp 10 dg.

H, (D,) = H, (E,) - H,_1(C,) =" H, 1 (D,) H, 1 (E,)...
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X
Cn > Dn+1

Pn
dg.J« ¥ ld&l
n

Cnfl > Dn
E'n,fl

If there is a homotopy between @, and s we say that pe is homotopic to Y, and we
write Yo ™ Ps.

Theorem 7.35. If p,, 1%, : Co —> D, are homotopic, then H, (ps) = H, (1) .

Proof. Let ¥ : ¢ — 1 be the homotopy between ¢ and 1. Then, for every n € Z,
we compute:

, =x) .
JH,(De) © Hn (9) 0 4B, () = DPBu(Da) © Pn © iz, (Cy)

= pp.(pa) © (Y +d2t1 0, + X1 0dS*) 0ig, o) =

= (an(D.) © Yp + PB.(Ds) © dfil © Y + PB(Ds) © Xin—1© dff‘) O lz,(Co) =

. . dg'oi n(c.>=0
PBn(Ds) © ¥n ©12,(Co) + PBn(Da) © Xin—1 © df‘ 017,(Cy) =

an(Doidfil:O
: (=)
= PBa(Da) O Yn O lzy(c0) = = Ja(pa) © Ha (¥) 0 45, c0)
Since jp, (p,) is mono and g, (c,) is epi, we get H, (pes) = H, (). O

Proposition 7.36. The homotopy relation >~ is an equivalence relation.

Proof. Clearly the relation is reflexive (with ¥, = 0) and symmetric (with X! =

—X,). Now we prove that it is also transitive: let ¢ = (B N X be two homotopies.
Then ¢,, — ¢, = dﬂ‘rl oY, + %, 10d% and ¥, — xn, = df}rl 00, +6,_10d%. Then
we have

On = Xn = (00 — ) + (o — xn) = dl31 0 (5 +0y) + (St + Opi) 0 dS.

Thus ¥ + © is a homotopy between ¢ and x where (X +0) =X, +0,. O

Lemma 7.37. Let C, ﬂ) D, M E, be morphisms of complexes.

1) If o >~ then ¢’ o p ~ ¢ 0.
2) If ¢/ ~ ' then ¢ o ~ ' o).
3) If p ~ 1) and ¢’ ~ ' then ¢' o ~ ' o).
Proof. 1) Let us denote by ¥ the homotopy between ¢ and 1. Then we have

O oo —@hot, = ¢, 0 (pn—Yp)
P odt; 0Ty + ¢, 0%, g 0dy
= df;1090;+102n+90;z02n—10dg'
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since ), is a morphism of complexes; then ¢, o ¥ determines a homotopy between

(¢' 0 p), and (¢' 0 ¢),, where ("0 X), = 4y 0 L.
2) Let © be the homotopy between ¢ and v’. Then we have

@;Own_@béod)n = (90;—?%)01/%
= dgjrlo@nozbn—i_@n—lodq?.own
= df-.i-l © @n o wn + 6n—1 o ¢n—l o dg.

since ¥ is a morphism of complexes. Thus © o ¢ determines a homotopy between
@' 01p and ¢’ 0 1), where (© 0¢p) = O, 01,.

3) If p ~ ¢ and ¢ ~ ¢/, by 1) and 2) we have ¢’ 0 p =~ ¢’ 01) and ¢’ 01) ~
Y" o). Since the homotopy relation is an equivalence relation, by transitivity we get
pop~ifoy. O

Definition 7.38. Let A and B be rings. Any functor F : Mod-A — Mod-B is
called additive if it satisfies

F(f+9)=F(f)+F(g)
for every f,g: M — M.

Exercise 7.39. Let F' : Mod-A — Mod-B be an additive functor and let Opg -
M — M’ the zero homomorphism. Show that F (Opar) = Oruyrpoury of Fois
covariant while F (0ar,p0) = Opury, pany of F'is contravariant.

Exercise 7.40. Prove that all examples in [7_1J are additive.

Lemma 7.41. Let F' : Mod-A — Mod-B be an additive covariant functor and let
(C., d?’) be a chain complex in Mod-A. For every n € 7, set

(F(Cy)), = F(Cy) and d5'°) = F (d$*) for every n € Z.

Then <F (Cy) ,df(c')> s a chain complex in Mod-B. Moreover if p, : (C’., d?‘) —
(D., d?') is @ morphism of chain complexes in Mod-A, for everyn € 7, set
F (o), = F(on) .
Then F (p,) : (F (C.) ,df(c')) — (F (D) ,df(D°)> is a morphism of chain com-
plexes.
Proof. For every n € Z, we have
F(dS*)oF (dS*) =F (dS*,0dS*) =F(0)=0
and also
dgq(tll).) oF (Qon—i-l) = I (dfil) o[ (Spn—&-l) =r (dfil © Qpn—i-l) =F (Qﬁn ° dgjrl) -
= F (Spn) ol (dg_.H) =F (Spn) © diiﬁ.)'
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Exercise 7.42. In the notations of Lemma [7Z1, assume that also 1, : (D., df)') —
(E., d?’) is a morphism of chain complexes in Mod-A. Show that

(7.19) F (a0 @a) = F(1hs) 0 F (00) .

Lemma 7.43. Let F' : Mod-A — Mod-B be an additive covariant functor and
let o =~ 1hg be homotopic chain complex morphisms. Then F (ps) ~ F (). In
particular Hy, (F (ps)) = Hy, (F (s)).

Proof. Let pe,1 : Co —> D, be the morphisms of chain complexes and let ¥ :
e — 14 be an homotopy between ¢, and 1,. Thus ¢,, —1,, = d£;102n+2n_10dn0°.
By applying F' to this relation we get

F(on) = F (n) = F (d21) 0 F (Z0) + F (Zn1) o F (d77)
—d5 ") o F(S,) + F (Sny) 0 dE(©),
Hence F (¢) ~ F (¢) via the homotopy F (X) : F' (@) — F (¢) where (F (X)), =

F(%,) for every n € Z.
The last assertion follows in view of Theorem [Z33. O]

Example 7.44. In general H,, (ps) = H,, (1) does not imply pe ~ 1. For instance,
consider two complexes Cy and Dy and the morphism p, between them:

00— =Z-2-Cy =L —= 00— ...
| e |
—>0—>D1=Z—Dy=0—>0——....

Since all the compositions @,_1 o dS* and dP* o ¢, are zero, @, is a morphism of
complezes. We have H,, (Do) = 0 for everyn # 1 and H, (C,) =0, thus H, (p) =0
for every n, that is H, (ves) = Hy, (0), but we £ 0. In fact assume @, ~ 0. Then, for
any additive functor F, we get F (¢,) ~ F (0) = 0. Let F be the functor — @z %.

By applying F' and considering that Z @ % = %, the diagram becomes

In particular Hy (F (C.)) = 2 = Hy (F (D.)) and H, (F (p)) = Idz , from which
we deduce F (ps) £ 0 and thus pe % 0.

7.5 Projective resolutions

Definitions 7.45. A chain complex (C.,d?‘) is called
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e positive if C,, =0 for every n < —1,

e acyclic positive if if C,, = 0 for everyn < —1 and H, (C,) = 0 i.e. Im (df;l) =
Ker (dg‘) for everyn > 1,

e projective if C), is projective for every n € Z.

Remark 7.46. An acyclic positive chain complez is a chain complex of the form

dC. Ce
...HCQAC&;)C[)HO,

with Z,, (Cy) = B, (C,) for every n > 1. The sequence is not exact since d<* is not
epi, but we can consider the following exact sequence
dSe dse Co

Co 25 C, - Cp = ——~ = Hy (C, 0.
— Oy = C; — 0—>BO(C.) 0(Cs) —

Definition 7.47. Let M be a right A-module and let (C’., d,o') be an acyclic positive
projective chain complex with Bo((%.) = M. Then (C’.,d.c') s called a projective
resolution of M and we have

dC. Ce x
—>02i>01%00—>M—>0

Lemma 7.48. Fvery module is epimorphic image of a projective module.
Proof. Tt follow by Proposition E22 and Proposition Z18. O
Proposition 7.49. Fvery right A-module admits a projective resolution.

Proof. Let M be a right A-module. By Lemma [[Z3, every module is an epimorphic
image of a projective module, i.e. there exists an epimorphism ¢ : Py — M
with Py projective. We construct the complex recursively. Let us consider Ker (¢g)
and let iy : Ker (pg) — Py be the canonical inclusion. By Lemma 2R there is a
projective module P; and an epimorphism ¢; : P, — Ker (¢g). Let us set

df’ = i() o 1.
Then
Im (di*) = Ker (¢p) .

Let us consider Ker ((JlllD ‘) and let 7; : Ker ((JlllD ‘) — P, be the canonical inclusion.
By Lemma 28 there is a projective module P, and an epimorphism ¢y : P, —
Ker (df’). Let us set

dg. = ’6'1 O 2.

Then
Im (dg‘) = Ker (df‘) .
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Assume that, for some n € N, n > 2 we have F,,..., P, projective modules and
dr, ..., dP such that

Im (df') = Ker (df_'l) for every i = 2,...,n

By Lemma 48, there exists a projective module P, ,; and an epimorphism ¢, :
P17 — Ker (df‘). Set

P .
dnjrl = @n+1 0 1p

where 17,, is the canonical inclusion of Ker (dﬁ') in P,. Then

Im (dﬁjrl) = Ker (df’) .

dPs Pe
Pn+1 nt Pn il Pn—l
Ker (d*)

Thus, in this way we construct an acyclic, positive and projective complex. Moreover

R P _ P _
BotPe) = Tmlen) — Ker(eo) — M- .

Theorem 7.50 (Lifting Theorem for Chain Complexes). Let (P., dl ) be a positive
projective chain complex, let (D.,d.D') be an acyclic positive compler and let ¢ :
Hy (P,) — Hy(D,) be a morphism in Mod-A. Then there exists a morphism of
chain complezes o : (Po,dl*) — (Do, dP*) such that Hy(ps) = ¢. Moreover,
if e (Po,dl*) —> (Do, dP*) also satisfies Ho (V) = @, we have po ~ . In
particular H, (@) only depends on .

Proof. We have the following situation where mp = pp,(p,) and mp = ppy(p.)

ke e

P, P Py—~ Hy(P,) —=0

%2}
d2Dl dlD. 7TD \L
DQ Dl Do Ho (D.) e 0.

Existence of ¢,. Since F, is projective, there exists ¢y : Py — Dy such that
(7.20) Tp ©C ¥y =@oTp.
Since Im (d{*) = Ker (7p), by composing to the right with di*, we get

WDOQOOOdf':é,OOWpOdf':O
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hence we have that Im (g9 o di*) C Ker(mp) = Im (d{*) = By (D.). Since P, is
projective there is a morphism ¢; : P, — Dy

P

Ve

(2
- (@oodf' ) PoPe)

D1 oomr Bo (Do) —=0,
1

such that

(d?‘)lBO(D') )\Bo(D-)

o1 = (poodi
so that

[Bo(Ds) |Bo(Da)

dlD' o = iBo(D.) o (df)') o = iBo(D.) o (QOO o df’) = (g © df’

Proceeding recursively we construct ¢, using the acyclicity of D, which allows

us to reiterate the process. Namely assume that for some n € Nyn > 1
on: P, — D,
is constructed so that
dr?. CYn =Pn-10° drlj.
Then we have
d’r?. O ¥Yn O dﬁ—l = Pn-10 dvlj. © dﬁ-l =0

so that Im (¢, o dfjrl) C Ker (db*) = Im (dﬁ;l) = B, (D,). Since P, is projec-
tive, there exists a morphism ¢, 1 : P,4+1 — D,1 such that

o \|Bn(Ds) .\ [Bn(De)
(dg—l-l) O Pny1 = (Spn © d5+1)
so that
. Bn(De . Bn(De
dr?ll O Pn+1 = 1Bn(Ds) © (d5i1)| )6 Pn+1 = LB, (Ds) © (SOn o dﬁh)' ) =
=0 dfjrl.
Pn+1
50i+/1/ - (gonod,’fil)‘B"(D‘)
/4/
Dy B, (Ds) —0,

—_—
De \|Bn(De)
dnJrl)

Now we prove that Hy (p.) = ¢. Note that, since dj* = 0 and d}* = 0 we have
that Zy (D) = Ker (dy*) = Do and Z, (P.) = Ker (dy*) = Py. Thus iz,p,) = Idp,
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, qBo(p) = TP+ Fo = Zo (Ps) = Zo (Pa) /Bo (Fe) = Ho (Ps) and jmy(p,) = Idg,(p.) :
Hy (Ds) — Do/ By (D,). Therefore we have

. == .
Hy (¢s) 0 Tp = jHy(pa) © Ho () © qBo(Pa) = PBo(Ds) © 0 © iz(Py) =

B . (=20) . _
=TpDOYyOlzyp,) = WPOTMpOlzyp,)=PYOTp
so that
Ho(ps) omp =pomp

and since mp is epi we get
Ho (ps) = ¢.

Uniqueness up to homotopies. Let 1, be another lifting of ¢ i.e. 1, :
(P., df‘) — (D., d?') is a chain complex morphism such that Hy (vs) = 1. We
look for a homotopy X : ¥ — ¢. Now for every n < —1 we have P, = 0 and hence
on = 0,1, =0 and X, =0 for every n < —1. Thus Xy : Py — D; must satisfy

tho — o = di" 0 Lo + L_y o df* = df’* o Lo
On the other hand we have

. (3) .
gOO?TP = HO (w.) Oﬂ-P = .]Ho(D.) OHO (w’) OQBO(PO) = pBO(Do) OwO OZZO(PO) = ﬂ-D Owo
so that we get
(721) poTmp :7TDO¢0.

We compute

1) (=20
WDO(¢O_W0):WDO¢O_WDOW0( 2 )QOOWP—@OWP:O-
Thus we deduce that Im (¢ — ¢o) C Ker (7p) = Im (df*) = By (D,) and since P,
is projective there exists
ZO : Pg — Dl

such that (Do)
(7)™ 0 2 = (= ) P

so that

‘BO(DC |B()(D.

):wo—%,

AP 0 S = ipy(pay © (@)™ 0 5 = iy(a) (0 — o)
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Recursively assume that, for some n € N, there exists ¥, 1 : P,y — D, and
Y+ Py — Dyyqsuch that

Un—on=d22, 0%, + 5, 1 0d5.
We look for a ¥, 41 : P11 — D,.o such that
Una1 — Prg1 = A2ty 0 Sy + X 0dly .
We have

De Pe \ _ jDe De De Pe
dyty 0 (wnJrl — Q1 — 2n © dn+1) =dp2y 0 Unp1 —dpty 0P —dypt o Xn 0d, Y =

=podie, —ppodit, — [Yp — o —Su10di*] 0d, =
=0

Then we get
Im (Y41 — @n1 — S o diy) C Ker (d2t,) = Im (ds,) = Baii (D)

Thus, since P, is projective, there exists ¥,41 : P,+1 — Dy42 such that

(dr?ig)anH(D.) 0 Ynt1 = (wnﬂ — Qng1 — 2p O dill)anH(D.)
so that
(@712) 0 St = im0 @ (d25) " 0 Xy =
iBypa(De) © (Y41 — Pny1 — T © df'ﬂ)'BnH(D') = Y1 = Prt1 — B 0 dyy
ie.

Ynt1 — Pnt1 = (dﬂh) 0 Y1+ Spodhy.

PnJrl

[Bp+1(De)
. (Vn+1=nt1=Snodyy, ) TS

Dn+(2dD- )‘Bn+2(D->Bn+1 (D.) 0,

n+2

]

Definition 7.51. In the notations and assumptions of Theorem [7.00, any morphism
of chain complezes pq : (Po,d*) — (Do, dP*) such that Hy (¢.) = ¢ will be called
a lifting of .
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Lemma 7.52. Let M 25 M’ 25 M” be morphisms in Mod-A and let (P., df’) be

a projective resolution of M, (P.’, df‘) a projective resolution of M’ and (P.”, df‘l>
a projective resolution of M". If @, : (P.,df‘) — <P,’,df'/> is a lifting of ¢ and
o, <P,’,df‘/> — (P.”,d?’”> is a lifting of ¢, then

oo pe: (Po,d) — (P,”,dfi’>

is a lifting of ¢’ o .

Proof. By Lemma [230 we know that ¢/, oy, : (P., df’) — (P,”, df'“> is a morphism
of chain complexes. Moreover, for every n € Z, we have

Ho (o ps) =) H,(¢,) 0 Hy (24)

In particular, for n = 0, we get

Hy (@, 0 @e) = Hy (¢,) 0 Hy (a) = ¢" 0 .
O

Theorem 7.53. Let P, and Qs be projective resolution of a right A-module M. In
view of Theorem [7-00, we can consider the liftings e : Po — Qo and 1y : Q¢ —> P,
of Idys. Then

1) o0 t)e > 1dg, and e o pe =~ Idp,.

2) H,(pe): H, (Ps) — H, (Q,) is an isomorphism with inverse H, (1), for every
n € N.

Proof. 1) In view of Lemma [[B32, p,01), : Qo — Q, is a lifting of Idy,0ldy = Id .
Since also Idg, is a lifting of Id,s, we deduce, in view of Theorem [[20, that

(7.22) Ve © e ~ Idg,.

In a similar way we get also that

(7.23) e 0 e = Idp, .
2) For every n € N, we have

H, (a) 0 H, () "= H, (20 000) = H, (1dg.) = 1, (qu)

and
(= (=233)

H, (100) 0 Hy (20) "= H, (0 0 00) "= H, (1dp,) = Ty (1.
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7.6 Left Derived functors

Remark 7.54. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor, e.q. T = — ® 4Lr where o4Lr is an A-R-bimodule. Let M
be a right A-module and let P, — M — 0 be a projective resolution of M in
Mod-A. By applying T we get, in view of By Lemma [T, a chain complex with
(T (P,) ,dT(P')>, which, in general, is no longer acyclic i.e. H, (T (P,)) is not

necessarily zero for every n > 1.

Notations 7.55. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. Let n € N. Let M € Mod-A and let (P.,df‘) be a projective
resolution of M in Mod-A. We set

(LP°T)n (M) =H, (T (P,)).

Let ¢ : M — M’ be a morphism in Mod-A and let (P,’, df‘) be a projective resolu-
tion of M'. Let g : (P, dl*) — (P,’,df‘) be a lifting of ¢ (see Theorem [750). We

set

(L7PT) () = Hy (T (02))

Proposition 7.56. In the assumptions and notations of [7.0d, for every n € N, we
have that

1) (LPPT) () is well-defined i.e. does not depend on the lifting ¢a of ¢,

2) If M 2o M MY are morphisms in Mod-A and (P,”,df)‘/) 1S a projective

resolution of M", then
(LT) ('op) = [(LPHT) ()] e |(L*T) (9]
3) (LP°P°T)n (Idar) = 1dppery

Proof. 1) Let 1, be another lifting of ¢. Then, by Theorem Ve = 1. Then, by
Lemma A3, T () ~ T (1s) and hence H,, (T (ve)) = Hy (T (1)) -

2) Let p, : (P.,df') — (P,’,df‘) be a lifting of ¢ and let ¢, : (P,’,df‘l) —
(P.” , df)‘ﬁ> be a lifting of ¢'. Thus we get

[(LP.’H’ >n (‘Pl)} o [(LRP.’T)n (gp)} = H, (T (¢.)) o Hy (T (¢)) =

= H (T () o T () T Ha (T (00 ) =

R L (T (¢ 0 9),)) = (LRP:IT)n (o)
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3) Since Idp, is a lifting of Id,;, we have
(LP°P'T)n (Idy) = H, (T (Idp,)) = H,, (Id7(p,)) -

Since H,, (IdT(p.)) = Idw, (r(p.)) (exercise) we obtain that (LP'P'T)n (Idar) = Idg, () =
Idrer), (- =

Lemma 7.57. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. Let (P.,df‘) and (Q.,d?‘) be projective resolutions of M in
Mod-A. Let apq, : (Po,dl*) — (Q.,d3*) be a lifting of Idy and let aq,p, :
(Q.,d?') — (P.,df') be a lifting of 1dy; (see Theorem [75Q). Then

H, (T (ar,q.)) = (L™9T), (Idy) and H, (T (ag,r,)) = (L9™T), (Idy)

are mutual inverse and hence they determine an isomorphism between H, (T (P,)) =

(LP'T)n (M) and H, (T (Q.)) = (LQ‘T)n (M) .
Proof. By Theorem [Z23, we have that aq,p, o ap,g, >~ Idp, and thus

Exercisell22 LemmallZ3

T (ag.r.) o T (apr.q.) T (ag.poapq,) =~ T (ldp)=Idre,)

Then we get

g, ) = Hy (o) = Ha (T (aq.r.) o T (apq.))

= H, (T (ag.r.)) o Ha (T (ar.q.))
= (L9PT) (Idp) o (L™@T) (Ida).

Similarly we also have

T (ap,q.) o T (ag.r.) = Ldr@.)

and
g, 1@y = (L™9T), (Ida) o (L9"T) (Idy)

so that H,, (T (aq.p,)) and H,, (T (ap,q,)) determine an isomorphism between H,, (T (F,)) =
(LPT) (M) and H, (T (Q.)) = (L2 T) (M), O

Lemma 7.58. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. Let ¢ : M — M' be a morphism in Mod-A, let (P.,df‘)
and (Q.,d?') be projective resolutions of M and let (P,’,df‘) and < ’,,d?,’> be

projective resolutions of M'. Then we have

[(2997) ()] o [(£72T), ()] = [(L7OT) (1da)] o |(277T) ()]

n
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Proof. Let ¢, : Py — P. be a lifting of ¢. Then, in the notation of Lemma 57 and
in view of Lemma [[22, we have that

ap,Q, © Pe ©QQ,P, * (Qn d.Q.) — (Qlu d?‘)
is also a lifting of ¢. Therefore, for every n € N, we have

(LQ.Q’.T> (¢) = H, (T (apq, © e © ag.p,))

n

Now, by Exercisell22, we have
T (apq, 0 o 0 aq.r.) = T (apq,) o T (¢e) o T (2q.p.)
and, by Lemma 230, we know that
H,, (T (apyqy) o T () 0 T'(aqur.)) = Hu (T (apqy)) 0 Ho (T (9s)) 0 Hn (T (0 p.)) -
Thus we deduce that

(LQ.Q’.T> (p) = Hp (T (apig, © pe 0 ag.p,)) = Hy (T (apqr))oHn (T (pe))oH, (T (g, p,)) -

n

Thus we obtain
(zir) (5= [(1707) ] [(2751)

By Lemma 52 we know that (L™?+T) (Idy) is the two-sided inverse of (L9*™T) (Idy),
so that we get

(#)] o (LT, (1dar)]

n n

(1da)| o [(L77T) ()]

O

n n

[(LQ.Q’.T>n (@)} o [(LP‘Q'T)n (IdM)} — [(LP:Q/'T>

Notations 7.59. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. By Lemma [7.07 and Lemma [7.08 we can omit the projective
resolutions and set

L,T (M) = (L™T) (M)=H, (T (F,)).

for every M € Mod-A and

LT (0) = (L™PT) (¢) = Ho (T (¢))

n

for every left R-module homomorphism ¢ : M — M'.

Remark 7.60. Clearly L, T (M) and L,T (¢) are defined only up to "well-behaved”
1somorphisms.
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Proposition 7.61. In the notations of [1:09, the assignment M — L,T (M) and
o — L, T () gives rise to a covariant functor L,T : Mod-A — Mod-R.

Proof. By Proposition [[h8, we have

), o) = [(507) (] [(27) (o]

n

and
(Ly*™T) (Idar) = 1 Papyy-

]

Definition 7.62. The functor L,T in Proposition [7.01 is called n-th left derived
functor of T.

Lemma 7.63. Let us consider the following diagram with exact rows, where P'and
P" are projective modules, 1 - P' — P'® P” is the canonical injection and p : P'&® P”
— P” 1s the canonical projection,

0— =P “spgopr 2. pr_.g,.

0 M—sM——sM" 0
0 0

Then there is an epimorphism P' ® P" — M such that the diagram

0—=P,—-PoP X spP ——0

g

T |

\
0—sM —>M—sM"—>0
0 0 0 ,

15 commutative.

Proof. Since P” is projective and «” is epi, there exists §: P” — M such that
Qo 5 — 7_{_//

P//

S

M —>M"
o’ )
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Let us set
1=V (o7, B)
ie.
7((v,y") = (7' (v)) + B (") forally € P' and 3" € P".
Then we have
moi=a or
so that the right-hand square is commutative. In the left-hand one we have
o (m (W, y") = o (& (7" (y) + B (") =" (& (7 () + " (B
= " (BW)=7"(") = ( ((¢/,y"))) forally’ € P"and y" € P".

Let us prove that 7 is surjective. Let x € M, then o” (x) € M” and since 7’
is surjective there exists y” € P” such that o' (x) = 7" (y") = o” (8 (y")). Then
r—LF(y") € Ker () = Im (') so that there exists 2’ € M’ with o/ (z') = 2 — 3 (v").
Since 7' is surjective there exists ¥’ € P’ such that 7’ (y') = 2/. We get 7 ((v/,vy")) =
o (7 (W) + 8" =a @)+ 5" =
Theorem 7.64 (Horseshoe Lemma). Let A be a ring, let

0— M 5 M5 M —0
be an exact sequence in Mod-A. Let <P’ dl ) be a projective resolution of M{ and

let (P” i ) be a proiective resolution of M" For every n € Z set
P,=P ®P).

Then

1) the modules P, give rise to a projective resolution (P., df’) of M ;

2) for every n € Z, let i,. : P, — P, @& P/ be the canonical inclusion and let
pn 2 P ® P! — P! be the canonical projection. Then

o = (in) e+ (PLdi*) = (Podl?)
and
Pe = (Pu)uere + (Pordl®) = (P20
are morphism of chain complexes;
3) ie is a lifting of & and p, is a lifting of o
4) the sequence
0—s (P,’,dfi) Sy (P, dP) (P” dP”) 50

15 exact.
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]
Proof. Since <P,’, df‘) is a projective resolution of M} and <P,” , d?‘n) is a proiective
resolution of M" we have epimorhisms
gy : Py — M, m( : Py — M".
such that the sequences

aPe /
P2 P M0
1 df‘/ n o "
are exact. Then, by Lemma B3, there exists an epimorphism P’ @ P" =% M
such that the diagram

0 - P % Raeprl X B = 0

T o 4 T 4
0o - M = M 2 M =0
{ { {
0 0 0

is commutative and exact. Then assumptions of Snake Lemma [Z3 are fulfilled so
that the sequence

0 — Ker (7)) % Ker (o) 25 Ker (/) —s Coker () = {0}

is exact. Let

Jo @ Ker(my) — Py
Jo - Ker (71'0) — B
Jo : Ker () — Py

be the canonical inclusions. Recall that af and af are uniquely defined by

(7.24) Jooay = dgojj
.1 "o .
(7.25) Jo ©%& = Po© Jo-

Therefore we get the commutative and exact diagram:

0 — Ker(m) 20 Ker (m) —% Ker (nj) — 0

Jo 4 Jod Jo 4

0 —» P pPep X P 50
| o 4 |

0 - M 5 M X M S0
{ { {

0 0 0
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Since (P,’,df‘) is a projective resolution of M| and (P,” ,d?'”> is a proiective

resolution of M"” we have that Ker (7)) = Im (df‘) and Ker (1) = Im (df'") . Let

= () = ()

T

Then, by Lemma (B3, there exists an epimorphism P/@® P/ — Ker (1) such
that the diagram

0 - P X PPl Xy pr 500
ml L T
0 = Ker(m) % Ker(my) ¥ Ker(n) — 0
\ ! !
0 0 0

is commutative and exact. By Snake Lemma [23, we get the exact sequence

0 — Ker (7]) = Ker (df‘/) L5 Ker (m1) —% Ker (77) = Ker (df'ﬁ> — Coker (77) = 0.

Let
Jj1 : Ker(m) — P
j1 - Ker(m)— P,
g1 Ker(x]) = P/

be the canonical inclusions. Recall that o/ and of are uniquely defined by

(7.26) jioay = 4107
(7.27) jioai = pioji.

Now we get

. P, . . , (=23) . ’ ’ . .
igod;® =1igojyom = JooQyOm =JgOmM Ol
. (=3) ., " Y/ "
PoOJooT = JgOCQyOT1=]JgOCT OP1

and hence the exact commutative diagram

0 — P s Plepr 2y P! = 0
di* =jhomid  jeomd  jjomi=di |
0 — P, oy Plopr % P —~ 0
) 4 0 4 )
0 — M e SN M = 0

+ + +
0 0 0
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We set

di* = joom.
Since jo is mono, note that,
Ker (di*) = Ker (m)
so that we have the exact sequence

/!

0 — Ker (m}) = Ker (df‘> L Ker (m1) = Ker (di*) A, Ker (r]) = Ker (df’) — 0.

and we can consider the diagram

0 — P} 2y Plepr Py - 0
m | T 4
P! P! a/l P o/l’ P P
0 — Im<d2‘>:Ker<d1') L Ker (dP) 2 Im(dQ’):Ker(dl’) 0.
1 \
0 0

Then, by Lemma (B3, there exists an epimorphism 7y : P, = Py & Py —
Ker (df ) such that the diagram

0 — P 2y Plepr Py —~ 0
L | "
0 — Im () = Ker (df) A Ker (dP) 25 m (d5%) = Ker () — 0
{ I !
0 0 0

is commutative and exact. Then by Snake Lemma [Z3, we get the exact sequence
0 — Ker (13) = Ker <d§'/> 25 Ker (my) —25 Ker (74) = Ker (d?) — Coker (m3) = 0.
Let

Jo  Ker(mh) — Py
jg : Ker (7'('2) — PQ
gy Ker(my) — Py

be the canonical inclusions. Recall that of and of are uniquely defined by

(7.28) Jaody = iyojy
(7.29) Jy oy = P30 j.
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Now we get

. P] . ./ , (@) . / / . .
110dy* =110J,0Ty = J10Q] 0Ty =1 0T 0l
(==z2)

. 1/ " 1/ "
P19J10T2 = J; Oy OTg = ] OTy O P2

and hence the exact commutative diagram

0 — P} 2, PePl 2 P - 0
dy* = jiomy | jroms | oy =d |
0 — P - PlepP X P - 0
™ 4 m Tl

0 — Im <d§‘> = Ker (df',> L Ker (df') R (di‘,,) = Ker (df'"> — 0
b 4 }
0 0 0

We set

dy* = jioms

By induction assume that, for some n > 2 we have for allt =1,... n
di* P,=P &P »P_1=P_ &P,
such that the diagrams

0 - P 5 PeP T P00

d;* df* | d* |
0 - P, S p ep, " P50
s L AN di* |
0o - P, B3 pP.,eprP, ™ P, =0
b \ \

are commutative and exact. For every ¢, let
Ji-1 ¢ Ker (df—.ll> - P,
jeer : Ker (df*)) = Py
jla s Ker (d¥) = Pl

denote the canonical inclusions. Let

7T1,5 = (dP.’)Im(dfi) T = (df.)ﬂm(dfo) and 71_1/&/ _ (dp:/)lm(df‘/) |

t t
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For every t > 2, we have that

() = Ker (d/*,) ,m (df*) = Ker (d*,) , Tm (/) = Ker (/%)
and hence
Pl

(7.30) Jio1 0T = df‘;jt—l o = dt * and j; o =d,

Now, by applying Snake Lemma to the commutative and exact diagram

0 - P, "3 p ogpr, M opr
T di, | dyti )

0 - P, "3 p gp, "™ pr, 0
we get the exact sequence
0 — Ker (dfl 1) 3" Ker (dl*}) 5" Ker <dful>

where o/, | and /!, are canonically defined by

(7.31) Jn10Qp_ = dn_10J5 4
(7.32) Jn1 Oy | = Dp10 jn_1.
Since n > 2

Im (df‘) = Ker <df‘_1> , Im (df‘) = Ker (df’_ ) Im (d ) Ker (df:"l)

we can consider the diagram

0o —» P N Pep v P 500
' T 4 !
0 = Tm(a) =5 Im(d) T (dF)
\J \J \:
0 0 0

Note that this diagram is commutative. In fact we have
. ’ , (=33) . . ’ . P P, . . .
Jn-100¢, 10T, = 1p-1°97], 1°7T, =1tn-10° dn = dn. Olp = Jn-10TpOly
so that, since j,_1 is mono, we get
/

/ o .
Qp_1 OTy = Tp O ln.

We also have

.11 I (=332) . P P! .11 "
In-1°0,_1°Tn = Pn-1°Jn-1°Tn = Pn—10° dn. = dn. OPn = Jp-1°7T,CPn
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so that, since j_, is mono, we get

Q4 O Ty = T O Pp.
Note that this implies that o/, is epi so that we have the commutative and exact

diagram

0 — PTIL Z—”) Pr/LEBPrlL/ RN PT/L/ 0
W;J/ ﬂ-nJ/ 7TZ
(7.33) 0 — Im(d*) 2 (@) 2 m(d¥) - 0
\ l 1
0 0 0

By applying Snake Lemma 23 to the diagram ([=33), we get the exact sequence
0 — Ker (7],) = Ker (df‘) % Ker (m,) = Ker (d*) % Ker () = Ker (df‘/> —0
where o/, and o are uniquely defined by

(7.34) jnoa, = inoj,
(7.35) Jroal = Dpo jn.

Now we can consider the diagram

/ in+l / 1/ Pn+1 7/
0 — Pn-f—l Pn+1 S Pn+1 Pn+1
/ !
Tpt1 \l/ Tpt1 ir

/ o

0 — Im <d:i1> = Ker (dﬁ') % Ker (df’) —’;> Im (dfj/;) = Ker <d§‘/>

+ + +
0 0 0

Then, by Lemma [G3, there exists an epimorphism 7,41 : Pyy = P, ® P | —
Ker (d’*) such that the diagram

/ Z"’H’l / i Pn+1 i
0 — Pn+1 Pn+1 D Pn+1 Pn+1
/ 7
Tot1 4 Tn+1 4 Tnt1 4

/

0 — Im <d:i1> = Ker (df‘) i’) Ker (df’) a_;;> Im <d:j/;1> = Ker <d§‘/>

+ S +
0 0 0

is commutative and exact.
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Now we get

. dP; . . / (=3) . / / . .
tp O n+1 — in O .]n © 7Tn+1 = Jn o Oén o 7Tn+1 =In o Tn+1 < In+1
. (=3) ., " Y "
PnOJnO®Tnt1 = Jpn @0, 0 Tntl = Jp © Myt © Pntl

and hence the commutative diagram

in Pn
0 = Py = PL,eP, =5 P

n+1 nt1 — 0
diy = jhom, | Jn © Tag1 L Jlomly =d, |
0 — P Sy PP Iy P! ~ 0
dnt | di | |
0 — P, “op o eP, — P, — 0
We set

Pe __ -
dn+1 = Jn© 7Tn+1.

Note that, since 7,1, is epi,
Im (d}%,) = Im (j,) = Ker (d2*).

]

Remark 7.65. The previous Theorem is called ”Horseshoe Lemma” because we have
to complete the horseshoe-shaped diagram

0
1
o= PP - P —- P, - M — 0
{
M
1
= P - Pl = Pl — M' — 0

!
0

Lemma 7.66. Let A and R be rings, let T : Mod-A — Mod-R be an additive

covariant functor and let 0 — L oM LN S 0bea split exact sequence in
Mod-A. Then the sequence

0 7@ Mron Ny <o

18 split exact.
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Proof. By Theorem [, there exists an R-module homomorphism p : M — L and
an R-module homomorphism s : N — M such that
pof=Idy,gos=1Idy and Idy; = fop+sog.

By applying T" we get
T (p)oT (f) =1Idrwy, T (9)oT (s) = Idpvy and Idpan =T (f)oT (p)+T (s)oT (g) .

By applying Theorem 84 once more, we get that the sequence

07 M ron vy = o

is split exact. O

Theorem 7.67. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. Let

Oé,

0— M 5 M5 M —0

be an exact sequence in Mod-A. For every n > 1 there exists a (connection) mor-
phism L,T (M") 2% L, T (M') in Mod-R such that the sequence in Mod-R

L,T(a) (a”)

— Ly T (M5 L, () ") L) P S LT (M) —
s LT (M) Lo (M) S Lo () TS Lo () — 0

18 exact.

Proof. By Theorem [ there are projective resolutions P, P, := P, @® P) and P!
respectively of M’, M and M”, and morphism of chain complexes

o = (in),en <P’ dP) — (P.,df)

and
Pe = (e (Portl*) = (PL,at¥)

such that i, is a lifting of o’ and p, is a lifting of o’ and the sequence
0— <P,’,df‘> L (P, dl) 2 (P” dle ) —0
is split exact. Then, By Lemma 68, the sequence

T (pe)

—T(P!y—0

'L'

0—T(P)—=T(P)

is split exact. Then we can apply Theorem [Z32 and get that for every n € Z, there
exists a morphism H,, (T (P")) =% H,_, (T (P.)) such that the sequence

= 1,7 (P S g ) I8 1L (P 2 H, T () T

H, (T (P,
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is exact. Then we have
1) Since P., P, := P, ® P} and P, are projective resolutions of M’ M and M
respectively, then

H,T(P))=L,T(M'"),H,T(P,)=L,T(M),H, (T (P))=L,T (M").
2) Since i, is a lifting of o/ and p, is a lifting of o, then
L,T (/)= H, (T (i,)) and L, T (a") = H, (T (ps)) .
]

Proposition 7.68. Let A and R be rings, let T : Mod-A — Mod-R be an additive
covariant functor and let P be a projective module. Then L,T (P) = 0 for every
n >0 and LyT (P) =T (P).

Proof. Clearly, a projective resolution of P is given by Fy = P and P, = 0 for every
n # 0. In fact M = — P = H,(P,). By applying T to this resolution we

a7} = 0

Pe
get that L, T (P) = H, (T (P,)) is always 0 whenever n # 0 and equal to _I:;fg;}g. )) —
T (P) for n =0. -

Definition 7.69. Let A and R be rings, and let T : Mod-A — Mod-R be an
additive covariant functor. T is said to be right exact if, for every eract sequence

M-S M M —s 0, the sequence T (M’) e T (M) T T(M") — 0 is
also exact.

Proposition 7.70. Let A and R be rings, let T : Mod-A — Mod-R be an additive
covariant functor. Then the following statements are equivalent:

(a) T is right exact.

(b) For every exact sequence 0 — M' — M — M" — 0, the sequence
T(M)—T(M)—T(M") — 0 is exact.
Proof. (a) = (b). It is trivial.

Oé,

(b) = (a). Let M — M 2% M" — 0 be an exact sequence and consider the
commutative and exact diagram

0

N

ker o

Y .

M 0

~ Ve
e “\
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Then v
0 —Ker(a) ML —— —0
Ker (o)
and ) B
0— M M0
Ker (o)

are exact. Hence we get the following exact sequences:

T (Ker (o)) 24 () ™9 (Kf(a)) 0,

T (#{a,)) ") n Y T () — 0.

Since T is a functor, we have that T (o/) o T (p) = T (o/ o p) = T (a’) . Moreover we
have

Im (T (o)) =Im (T () o T (p)) TRert 1, (T () = Ker (T ("))

Thus we obtain the following commutative and exact diagram

T (ker o)
) - - =D ) 2 (g
T(p) T(a')
T (ké\fa’)
\0

]

Proposition 7.71. Let A and R be rings, and let T : Mod-A — Mod-R be an
additive right exact covariant functor. Then LoT and T are isomorphic.

Proof. Let M € Mod-A and let (P.,df') be a projective resolution of M. Then

from the exact sequence
»

P .
P1;>P0—>M—>O

we deduce that

T(dFe -
) ") 1) TS T () — 0
P.
is exact. In particular Im (7' (d{*)) = Ker (T (7)). Note that Py o 0, so that
T(dp*) P
T (Py) — 0 and hence Ker (T (d;*)) = T (P,). Thus we get

_ Ker (T (dy*)) _ T (F)
Im (T (di*))  Ker (T (7))

LyT (M) = Hy (T (P,))
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and therefore

that is LT ~T. ]

Corollary 7.72. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
right exact covariant functor. Then the sequence

LT(a

LT (M) "8 Lo vy —
Py — 0

— Lo T (M"Y 258 L, T (M) =%

s LT (M"Y s a7 ()

18 exact.
Proof. Apply Theorem [[G4A and Proposition [Z71T. O]

7.73. Let sNgi be an A-R-bimodule and let T = — @4 N : Mod — A — Mod — R.
Then by Proposition and Fzxercise [TZ0,T is an additive right exact functor.
For every n € N, we set

Tor? (—,N) = L,T.

Then, by Corollary [7_73, we have the exact sequence

Tor1 (a/,N) Tor1 (a”,N)

- — Torg (M",N) —)Tor1 (M',N) Tord (M, N)
M @ N M@ N A MY @, N — 0

Tor{ (M",N) ==

Proposition 7.74. Let T : Mod— A — Mod— R be a right exact additive covariant
functor and let (P., df’) be a projective resolution of M in Mod-A. Letn € N,n > 2,
let K, = Ker (df‘_l) and let p : K, — P,_1 be the canonical injection. Then
L,T (M) = Ker (T (n)).

Proof. Let
= (d)).

Since n > 2 we have that
Im (df‘) = Ker (df:l) =K,
so that
$n O M= dﬁ.
In particular we have that the sequence

Po
s P TR P K, 0
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is exact. Then, by applying the right exact functor 7', we get the following exact
diagram

T (Pni1) (P,) — T(K, — 0
) T (d) | T(n) |
T(Idpn_1>fIdT(Pn_l)
0 — 0 — T (P,1) (Pn-1)
i
0

Then we can apply the Snake Lemma [2Z3, from which we deduce that the following
sequence is exact

T (Poiy) —1 Ker (T (d2*)) - Ker (T (1)) — Coker (0) = 0.

Here
e (T(dP [Ker(T (1))
F= (@) T g = (1 ) ograry)
so that
Ker (g) = Im (f) = Im (T (d}3,))
Thus we get

]

7.7 Cochain Complexes and Right Derived Func-
tors

Definitions 7.75. A cochain complex of right A-modules is a a pair (C®,d%.) =
((C™) ez (dRe),cp) where each C™ is a right A-module, . : C™ — C™ is a right
A-modules homomorphism and djxt' o d = 0 for every n € Z. For eachn € Z

o (dge) = (die),cz is called the differential operator of the cochain compler,
o 7" (C*®) := Ker (dit.) is called the n-th cococycle of the cochain complex ,

e B"(C*):=1Im (dgil) is called the n-th coboundary of the cochain complex ,

e B"(C*) C Z"(C*®) and H™ (C*®) := Il{er((:?')) g:%g:g is called the n-th coho-
m(de

mology module of the cochain complez.
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Definition 7.76. Given cochain complexes (C*®,d%.) and (D*®,d},.), a morphism of

cochain complexes of right A-modules ¢* = (o), : (C*,d&e) = ((C™),ez s (de),ecq) —

(D*,dpe) = ((D™),c7+ (dbe)ez) consists of a family of right A-modules homomor-
phisms (" : C" — D"), o, such that d}. o " = @™t o di., for every n € Z.

Definition 7.77. Let ¢*, ¢ : (C*,dy,) — (D*,dp.) be morphisms of cocom-
plezes. A homotopy A between ¢ and ¥ consists of a family of homomorphisms
(A" : C" — D" 1), such that

Pt =Yt =dh o AT+ AT o dl.
If there is a homotopy between ¢ and " we say that ¢ is homotopic to " and we
write @~ ).

Notation 7.78. We will denote by Coch (Mod-A) the category of cochain com-
plexes. Obuviously the objects are cochain complexes of right A-modules and mor-
phisms are just morphism of cochain complexes of right A-modules.

Theorem 7.79. The assignments

<(Cn)nEZ7<d7€.)n€Z> = <(C_”)"EZ’<d€;)”EZ>
(Pnez = (P-n)nez

define a covariant functor F : Ch(Mod-A) — Coch (Mod-A) which is an iso-
morphism of categories. The inverse of F is the functor G : Coch (Mod-A) —
Ch (Mod-A) defined by setting

G ((C")nez» ([dE)nen) = (C'_")nez, (da?)nez for every ((C™),ez+ (d¢e),ez) € Coch (Mod-A)
G (((p”)nez) = ((p’")neZ for every morphism (¢"), 5 in Coch (Mod-A) .
Moreover, for every n € Z, we have

H'oF = H_,
H,oG = H™.

Proof. We have

Ker <d713“(0.)) B Ker (dg;b)
Im (d;}?é.» Im (d(j;zﬂ)

1™ (F((CV))) = = H ,(C.).

[]

Theorem 7.80. Let 0 — C* 255 D* 55 B* —5 0 be an ezact sequence of cochain
complexes of right A-modules. Then, for every n € Z, there exists a morphism

H™(E*) “ gt (C*) such that the sequence

n . . n n+41 ° n+1 .
s (%) TR g (poy D e (e gt o0y YT et (pey YT et gy

15 exact.
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Definitions 7.81. A cochain complex (C*,dg.) is called

1) positive if C" =0 for every n < —1.

2) acyclic positive if it is positive and H" (C*) = 0 for every n > 1.

3) injective if C™ is injective for every n.

Definition 7.82. An injective resolution of a right A-module M is an acyclic
positive and injective cochain complex (E®,d%.) such that H° (E®) = %({’)51’)) =

E.
Ker (d%.) = M so that the sequence

dle

0 —s M — E° %y pr Ty g2 T
1S exact.
Proposition 7.83. Fvery right A-module admits an injective resolution.
Proof. Follow the same pattern of Proposition 29, using Theorem BZ2R. O]

Theorem 7.84 (Lifting Theorem for Cochain Complexes). Let (C*,dg.) be an
acyclic positive cochain complex, let (E®,d%.) be an injective positive cochain com-
plex and let ¢ : H° (C*) — H° (E*®) be a morphism in Mod-A. Then there exists a
morphism of cochain complexes ©® : (C*,d%e) — (E®,d%.) such that HC (¢*) = .
Moreover, if ¥* : (C*,d%.) — (E*,d%.) also satisfies Hy (¢°*) = ¢, we have
©® ~ . In particular H™ (¢*) only depends on .

Definition 7.85. In the notations and assumptions of Theorem [7.54, any morphism
of cochain complexes p* : (C*,d%e) — (E*,d%.) such that H® (¢*) = ¢ will be called
a lifting of ¢.

Theorem 7.86. Let (E*,d%.) and (G*,dg.) be injective resolution of a right A-
module M. In view of Theorem [T.84, we can consider the liftings ¢* : E* — G
and Y°* : G* — E*® of Idy;. Then

1) ¢*ot® ~1dg and ¥*® o ¢* ~ Idg..
2) H" (¢*) : H" (E®*) — H™ (G*) is an isomorphism with inverse H™ (1*), for every
n € N.

7.87. Let A and R be rings, and let T : Mod-A — Mod-R be an additive covariant
functor. By applying T' to an acyclic positive injective resolution (E®,d%.) of M €
Mod-A , we set

(ReT)" (M) = H" (T (E*)).

Let ¢ : M — M be a morphism in Mod-A and let (F., d%.) be a projective resolu-
tion of M. Let ©® : (E*,d%.) — (E.,d'ﬁ.> be a lifting of v (see Theorem [I-33). We

set
(RpegT)" (p) = H" (T (¢%))
One can prove a suitable version of Lemma [T.07:
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Lemma 7.88. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. Let (E®,d%.) and (F*,d%.) be injective resolutions of M in Mod-
A. Let agepe 2 (E®,d%e) — (F*,d%e) be a lifting of Idy and let apepge @ (F*,dye) —
(E°®,d%.) be a lifting of Idpy (see Theorem [722Q). Then

a" (T (OéEoFo)) = (REOFOT)n (IdM) and H™ (T (OéFoEo>> = (RFOEOT)H (IdM)
determine an isomorphism between H™ (T (E®)) = (RgeT)" (M) and H" (T (F*)) =
(RpT)" (M)

and a suitable version of Lemma [OR:

Lemma 7.89. Let A and R be rings, and let T' : Mod-A — Mod-R be an additive
covariant functor. Let ¢ : M — M be a morphism in Mod-A, let (E*,d%.) and

(F*,d%.) be injective resolutions of M and let (E., d.ﬁ') and (F., d%.) be injective
resolutions of M. Then we have
(RpepT)" ()] © [(Rpe s T)" (Idw)] = [(Bpep+T)" (Idar)] 0 [(R g T)" (9)] -

Notations 7.90. Let A and R be rings, and let T : Mod-A — Mod-R be an addi-
tive covariant functor. By Lemma [7.88 and Lemma [7.83 we can omit the injective
resolutions and set

R'"T (M) = (RgT)" (M) = H" (T (E*)).
for every M € Mod-A

R'T (¢) = (RpupT)" (@) = H" (T'(¢%)) -
In this way we get a functor R*T : Mod-A — Mod-R.

Definition 7.91. The functor R"T : Mod-A — Mod-R is called n-th right derived
functor of 7.

Theorem 7.92. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
covariant functor. Let

0— M 5 M5 M —0
be an ezxact sequence in Mod-A. For every n > 0 there exists a (connection) mor-
phism R"YT (M") “% ROT (M) in Mod-R such that the sequence in Mod-R

ROT (o

0 — RT (M) "8 ROT (M) ROT (M") % R'T(M') — ...
R"T(a')

s R (M) TS jrr () TS gor () s RRAT (M) —

RO T(a

15 exact.
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Proposition 7.93. Let A and R be rings, let T : Mod-A — Mod-R be an additive
covariant functor and let E be an injective right A-module. Then R"T (E) =0 for
everyn > 0 and R°T (E) =T (E).

Definition 7.94. Let A and R be rings, and let T : Mod-A — Mod-R be an
additive covariant functor T is said to be left exact if, for every exact sequence

0— M % M 25 M", the sequence 0 — T (M) — ey T(M) — ) T (M") is also
exact.

Proposition 7.95. Let A and R be rings, and let T : Mod-A — Mod-R be an
additive left exact covariant functor. Then R°T and T are isomorphic.

Corollary 7.96. Let A and R be rings, and let T : Mod-A — Mod-R be an additive
left exact covariant functor. Then the sequence

0 — 7)Y ron ™Yy <L BT (M) —
s rrr (M) Y grr vy B Rer () R”“T(M’)
1S exact.

7.97. Let 4Ng be an A-R-bimodule and let T'= Homa (4aNg, —) : Mod-A — Mod-
R. Then by Proposition IdD and Ezercise [TZ0, T is an additive left exact functor.
For every n € N, we set

Ext’, (N,—) = R"T.

Then, by Corollary [7.90, we have the exact sequence

Hom (4 Ng,a')
) =

0 — Homy (4Ng, M’ Homy (4Ng, M) HOmA(LJ;fR,a”)

w

Homy (4 Ng, M") L Extl (4Ng, M') — ...

EXtA(ANRa) EXtA(ANR,O/')

. — Ext" (4Ng, M) Ext (4Ng, M)
Eat’ (4Ng, M") 25 Ext™ (WNg, M) —>

7.98. Let us consider an additive contravariant functor W : Mod-A — Mod-R.
The right derived functors R"W are obtained as right derived functors of the co-
variant functor W' : (Mod — A)*" — Mod-R. In order to compute R"W (M) we
consider a projective resolution (P., df‘) of M in Mod-A, form the cochain complex
(WP,,d¥") and take the cohomology

R'W (M) = H" (WP,

for every n € N.
Analogously we obtain the left derived functors of contravariant functors via in-
jective resolutions.



144 CHAPTER 7. HOMOLOGY

Definition 7.99. Let A and R be rings, and let W : Mod-A — Mod-R be an

additive contravariant functor. W is said to be left exact if, for every exact sequence
W (a” W(o! :
VoD W o) S W (s

O[/

M M2 M 0, the sequence 0 — W (M")
also exact.

Example 7.100. Let 4Ny be an A-R-bimodule and let W = Hompg (—, 4Ng) : Mod-
R — Mod—A. Then by Proposition I and Fxercise[740, W is a left exact additive
contravariant functor. The right derived functor of W are denoted by Ext}, (—, Ng).

7.101. Analogously one defines right-exactness. Results similar to Proposition [7.63,
Proposition [7_71 and Proposition may be proved.



Chapter 8

Semisimple modules and Jacobson
radical

8.1. Throught this chapter R will denote a ring.

Definition 8.2. Let My be a right R-module. Mg is said to be semisimple if there
is a family (Sx),cp of Tight simple R-submodules such that

P

Exercise 8.3. Let (Sy)\cp be a family of right simple R-modules and assume that

Mg = @ Sy. Prove that Mg is semisimple.
AEA

Lemma 8.4. Let My be a right R-module and let (Sx),c, be a family of right simple
R-submodules such that
M=>"5).

Then for each submodule L of M, there exists a subset I' C A such that
M=Le& s,
yel’

In particular, M is semisimple.

Proof. Let us assume that L ;Cé M. Let

5':{F§A|ZSwz@SwandLﬂZSwz{O}}.

yel’ yel yel’

Then € # @. In fact, since L G M there is at least a v € A such that S, ¢ L so
that L NS, = {0}. Let us prove that (£, C) is inductive. Let (I';),.; be a chain in

£ and let
F:Un.

il

145
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We want to prove that I' € £. First of all, let us prove that Zwer S, =59,
yer
Assume that > S, # @ S,. Then there is a 7o € I' such that

vyel

S > S, #{0}

velr~{ro}
1.e.
(8.1) S C Y. S,
vel'~{vo}

Since I' = |J I';, there is an ip € I such that vy € I';, and for every i € I we have
icl
either I';, C I'; or I'; C I';,. Therefore

r= Jnuv o= nur,=J I
icl icl icl icl
Iy Cry IiCrhy iy CLy IFN SR
where, in the last equality we have used that

r,< |J T

el

i Cry

Moreover
I~ {vt= {J @~{n}.
iel
I Cry
(ED) .

Let 0 # x,, € S,,. Then z,, € S5, C 37 ) Sy Hence there is an n € Nyn >
1, elements 71, ...,7, € I' \ {70} and elements z,, € S,,,...,2,, € S,, such that

Trg = Ty oo o F Ty

Since v1, ..., 7 € IN{70}, forevery t = 1,...,n there is a set I';, such that I';, C Ty,
and 1 € I';, ~ {7}. Let 1 <wu < n besuch that I';, C T, for every t =1,...,n.
Then v € 'y, C Ty, and v, ..., 7, € Iy, {70} so that

(8.2) 0F Ty =Ty + ...+ 2, € Z S, .
vELi, {10}
Since I';, € £ we know that

> 5 -@s,

YEly, Y€y,

and since 7y € I';, we deduce that

S0 > S, ={0)

Y€, ~ {0}
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which contradicts (B32).

Let us prove that LNY_ .S, = {0} . Assume that 0 A2z € LN ;-
there is an n € N,n > 1, elements vy,...,7, € I' and elements z,, € S,,,..., 2,
S, such that

Sy. Then
€

n

T=Ty +...+ T,

Since y1,...,7, € I', for every t = 1,...,n there is a set I';, such that I';, C I';,
and v € I';,. Let 1 < u < n be such that I';, C I';, for every t = 1,...,n. Then
Y1y Yn € I';, so that

O#z=2,+...+2,, € Z Sy

vels,

and we deduce that

Loy S #{0

vels,

which contradicts the fact that I';, € £.
Therefore I' € £ and clearly I' is an upper bound of the chain (I';),.,. Thus
(€, Q) is inductive. By Zorn’s Lemma, there is a maximal element I'y € €. Then

Zsz@SwandLﬂZSV:{O}.

~€lg ~v€lo v€lo

Let us prove that M = L+ ) . S,. Let A € A such that

Y€l

S\EL+> S,

7€l

Then Sx € 3. cp, Sy 1€

(8.3) Sin Y-S, ={0}.

v€lo

Let = =Ty U{A} and let us prove that = € £.
First of all, let us prove that

S5, -,

YEE YEE

i.e. that, for every ¢ € =,
Sen > 8, ={0}
veEN{¢}
We already know this for £ = A in view of (B3). Assume that £ € 'y and let

x € 5& N 2{: A97_+ S
velo\{&}
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Then there is an n € N,n > 1, elements vq,...,7, € I'o\ {¢} and elements z.,, €
Saty -5y, €85, and an element x) € Sy such that

T=Ty +...+ 2, + 2T

Then
3
T (T otz =ae Y 5,N5 S {0}

7€l
and we deduce that
T=12Ty +...+ 2, €SN Z S, ={0} as Ty € €.
Y€L0\{¢}
Let us prove that

LNY S, ={0}.

YEE
If
LNY S, #{0)
YEE
then there is an element
0£z€Ln) S,
yeE
Write
T = o, + T where xp, € Z S, and x) € Sy.
~v€lo
Then
=2 —ar, € L+ ZS7
~v€lo
and from S\ € L+ > er, Sy we deduce that z) = 0. Hence
T = r, ELHZS,y:{O}.

~v€lo

Therefore x = zr, + x, = 0. Contradiction.
We conclude that = € £ and I'y < = which contradicts the maximality of I'y. [

Corollary 8.5. Let Mg be semisimple right R-module and let (S)),c, be a family
of right simple R-submodules such that

Mp = @SA.

AEA
Let L be a submodule of Mgr. Then there is a subset = of A such that

L=@PSe and M/L= B Sh.

§EE AEA\E

In particular L and M /L are semisimple.
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Proof. By Lemma B3, there exists a subset I' C A such that

M=Le s,
yel
Then _ .
L= M/ES, and M/L =S,

yel’ vel’

Since . .
V@5 @5
yel AEA\T

we get

L= M/EBS7 > @ Sh.

vel AEA\T

]

Theorem 8.6. Let Mg be a right R-module. Then the following statements are
equivalent;

a) M is semisimple.

b

M is a sum of a family of simple submodules.

(

(b)

(¢) M is the sum of all its simple submodules.

(d) Every submodule of M is a direct summand of M.
(

e) Every short exact sequence

0L M5 NS0
splits.

Proof. (a) = (b) = (c) is trivial.

(¢) = (a) and (¢) = (d) . They follow by Lemma E4.

(d) < (e) It follows by Theorem 4.

(d) = ().

Let L be a submodule of a left R-module M. First of all let us prove that every
submodule H of L is a direct summand of L. In fact, by assumption, there is a
submodule K of M such that

M=H&K

so that (exercise)
L=H&(KnNL).



150 CHAPTER 8. SEMISIMPLE MODULES AND JACOBSON RADICAL

Let us prove that every non-zero submodule L of Mg contains a simple submodule.
Since L # {0}, thereisan x € L, z # 0. Let V' < Lg be a submodule maximal with
respect to the property z ¢ V. Let U/V be a non-zero submodule of R (z + V).
Since V' G U we get that € V so that

U/V =R(z+V).

Therefore R (x + V') is simple. By the foregoing, there is a submodule W of L such
that

L=VaoW.
Since W = V/L, we deduce that W has a simple submodule. ]

Definition 8.7. A ring R is said to be right semisimple if the right R-module Rg
18 semisimple.

Theorem 8.8. Let R be a ring. The following statements are equivalent.

(a) Ewvery right R-module is semisimple.

(b) Ewvery short exact sequence

0L M- N0
splits.
c) Every right R-module is projective.
d) FEvery right R-module is injective.

e) R is right semisimple i.e. Rg is semisimple.

f

) Rpg is a sum of a family of simple right ideals.
g) Rg is a sum of a finite family of simple right ideals.
)

h) Rg is a direct sum of a finite family of simple right ideals.

(
(
(
(
(
(
Proof. (a) <= (b). It follows by Theorem EB.

(b) <= (c). It follows by Proposition EZT4.
(b) < (d) . It follows by Proposition B=29.
(e) < (f). It follows by Theorem K.
(f) = (g)- Let (Sx),ca be a family of right simple R-modules such that Rp =
ZAeA Sy. Then there is a finite subset F© C A and elements z, € Sy, A € F, such

that
1= Zl’)\.

AEF
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Then
Rp=1-RCY S
AEF

(9) = (f). It is trivial.

(9) = (h). It follows by Proposition ET4.

(h) = (g). It is trivial

(a) = (e). It is trivial.

(e) = (a). Let Mg be a right R-module. By Proposition EZ2, there is an epimor-
phism

h: Rg™M — M.

Since Ry is semisimple, Rz is semisimple so that, by Corollary BA, M is semisim-
ple too. O

Theorem 8.9. Let D be a division ring and let n € Nyn > 1. Let R = M, (D).
Then

1) There is, up to isomorphism, only one simple right R-module Vi and Rp =
(Ve)".

2) R is right semisimple.

1°) There is, up to isomorphism, only one simple left R-module gW and rR =
(rW)".

2’) R is left semisimple.

Proof. 1) Let e;; be the matrix with all zero entries except for (4, j) where the entry
is 1p. For any matrix A € M,, (D) let A; denote its i-th row and A’ its i-th column.
Set
Si = €“R
Since
€iiChk = OinCik
we have that

n

S; = ZeikD ={Ae M, (D)| A =0 for every t #i}.
k=1

Then S; is a right R-module and

R=Sa&..08,.

Let us check that S; is a simple right R-module. Let x # 0,z € S;. Then there exist
element dj, k =1,...,n such that

n
Tr = E eikdk
k=1
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and since x # 0 there is at least a w € {1,...,n} such that d,, # 0. For every
te{l,...,n}, let
Tt = d;lewt.

Then

n

—1
Try = g eidrd,, eyt = €.

k=1
Therefore xR O S; and hence S; is simple.
Let us check that, for every j € {1,...,n}, S; = S5;. Let us consider the homo-
morphism
Wij : Rp — Rp
defined by setting
pij (r) = eji - 1.

pij (Si) = pij (Z eikD) = €ji - (Z GmD) = ZejkD = 5.

Then

Since S; is simpe, this implies that S; = S;.
Let now S be a simple right R-module and let x € S,z # 0. Then the epimor-
phism
h,: R — zR=S
ro— xr

is non-zero. Since R = 57 @ ... ® S, this implies tht there is a j,1 < j < n, such
that h, (S;) # {0}. Since S; and S are both simple, this implies that hys, : S :— S
is an isomorphism.

2) It is now trivial.

1’) It can be proved in an analogous way working on the left instead of the right
side. O

Lemma 8.10. Let R be a ring and let M and M’ be simple right R-module. Let
f:M — M be aleft R-module homomorphism and assume that f # 0. Then

1) If M is simple, f is a is monomorphism.
2) If M’ is simple, then f is an epimorphism.
3) If both M and M’ are simple, then f is an isomorphism.

Proof. Since f # 0, then Ker(f) & M and {0} G Im(f) € M'. Thus M simple
implies Ker(f) = {0} while m’ simple implies I'm(f) = M’ O

Lemma 8.11. (Schur’s Lemma) Let R be a ring and let Sk be a simple right
R-module. Then D = End(Sg) is a division ring.

Proof. Let f € D, f # 0. Then, by Lemma B0, f is an isomorphism. O
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Lemma 8.12. Let R be a ring, let Sk be a simple right R-module and letn € N;n >
1. Then
Endg (S;) = M, (D)

where D = End(Sg).

Proof. For every 1 < h,k < nlet i, : S — S™ be the h-th canonical injection and
let pi : S™ — S be the k-th canonical projection. Let

¢ : Endg (SR) — M, (D)

be the map defined by setting

m

o (f) = Z (pr o f oiy) epy for every f € Endg (Sk)

k=1

Let us check that ¢ is a ring homomorphism. Let f,g € Endg (S}). Then

p(fog)=w(f) »(g).

p(fog)=Y_ (pnofogoir)en = [Z profo (Z%%%) Ogoik] enk =

h,k=1 hk=1 v=1
= ( > phOfinOPUOQOik> enk = [Z (phOfoiv)ehv] [Z (ptOgoik)em]
h,k,v=1 h,u=1 k=1
=@ (f)-¢(9).
The other checkings are straightforward. It is an easy exercise to prove that ¢ is
bijective. O]

Theorem 8.13. Let R be a right semisimple ring. Then there exists a k € Nk > 1
and ny,...,ng € Nyny,...,ng > 1 and diwision rings Dy, ..., Dy such that

R=M,, (D)X ...x M,, (D) as rings.
Proof. By Theorem B, there is a finite set F' such that
i s
i€l
where each S; is simple. For each ¢ € F' let
F={jeF|S;=S5}.

Note that
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Let
m=|{F;|i€ F}

and let F;,, ..., F; be such that

(Fi|ie F}={F,,....F,}.

Then
F=\JF=F,u...UF,.

i€l

Note that
jeEF, <= 525, < F;=1F,

For every t € {1,...,,m} let n, = |F},| and let

=D s =)

JEF;,

Note that, t,u € {1,...,,m} and t # u implies that for each j € F;, and for every

h e F;,, S; 2 Sy Infact j € F;, implies that F; = F;, and h € Fj, implies that
F, = F;,. Now S; £ 5}, implies F; = F}, so that we get F;, = F; = F,, = F;, which
implies that £ = u. Hence, by Lemma B0, we have that

HOHIR (Sj, Sh) = {O} .

This implies that
Hompg (%, %,) = {0}

and hence
R = End (Rg) = Homp (@ > P Et> >~ Endg (31) X ... x Endg (3) .

In view of Lemma B2, we conclude. O

Exercise 8.14. Let Ry and Ry be right semisimple rings. Then Ry X Ry is right
semistmple.

Theorem 8.15. Let R be a ring. Then R is right semisimple if and only if R is
left semisimple.

Proof. Assume that R is right semisimple. By Theorem B3, there exists a k €
N,k >1and ny,...,nr € N,ny,...,n, > 1 and division rings Dy, ..., D, such that

R = M,, (D) % ...x M,, (Dy) as rings.

By Theorem B™, each M, (D;) is a left semisimple ring. O
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Lemma 8.16. Let (L;),.; be a chain of submodules of a right R-module M. Then

L=JL

icl

iel

s a submodule of M.

Proof. Let x,y € L and let r € R. Then there are i,j € I such that x € L; and
y € Lj. Since (L;),., is a chain, we have that L; U L; = Lj, where h € {i,j} and
hence x —y € Ly, C L. On the other hand rz € L; C L. O

Lemma 8.17 (Generalized Krull’s Lemma). Every non-zero finitely generated right
R-module M has a maximal submodule. In particular any proper right ideal I of R
is contained in a mazximal right ideal of R.

Proof. Let M be a non-zero finitely generated right R-module. We set
E={L|Ls M}.

Since {0} £ M we have that {0} € £ and hence £ # @. Let us prove that (£,C) is
inductive. Let (L;),.; be a chain of elements of £ and let

L:UQ.

i€l
By Lemma B4, L is a submodule of M.
Now we claim that L < M. In fact, assume that M = L and let {zy,...,2,} be

a set of generators of M. Then, for any i € {1,...,n}, there is a j; € I such that
x; € L;;. Since (L;),.; is a chain, there is a t € {1,...,n} such that

el

L“UULM:L“

We deduce that

and hence we get that M = L;,. Since L;, € £, this is a contradiction. Thus L € £
and L is an upper bound for the chain (L;), ;. We deduce that (£, C) is inductive
so that, by Zorn’s Lemma, it has a maximal element. If Ly is a maximal element
of £ then Lg is not properly contained in any proper submodule of M ie. Ly is a
maximal submodule of M.

If I is a proper right ideal of R, then the right R-module R/I is finitely generated
and nozero. Hence it has a maximal submodule L/I. Then L is a maximal right
ideal of R which contains I. O

Notations 8.18. Let R be a ring. We set

Q= U(R)={L| L is a mazimal left ideal of R}
Q. =Q.(R)={M | M is a mazimal right ideal of R}
rS ={S € pM | S is a simple left R-module}
Sr =4S € Mg | S is a simple right R-module}
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Definition 8.19. A left ideal I of R is called left primitive if there is a simple left
R-module S such that I = Anng (5).

Exercise 8.20. FEvery left primitive ideal of R is a two-sided ideal of R.
Notation 8.21. Let P,={I <g R | I is left primitive}
Lemma 8.22. Let R be a ring. Then

NL=(1

LeQ, IeP;

In particular [\ L is a two-sided ideal of R.
Ley

Proof. Let I € P, and let S be a simple left R-module such that

By Proposition B0, for every = € S, x # 0 we have that Rz = S and by Proposition
BT0 we get that Anng (z) is a left maximal ideal of R. This implies that

Ley
so that
ﬂ ID ﬂ L.
IeP, LeQ,

On the other hand, if L € §;, then
R(1+L)=R/L
is a simple left R-module and

L=Amg(1+ L) DAmg(R(1+ L)) €P,

so that
L2()!
I€P,
and hence
Ne=
Leqy IeP,

Theorem 8.23. Let R be a ring. Then

(L= M

Ley MeQ,
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Proof. Let H= () M and let us prove that (| L C H. Thuslet r € (] L and

MeQ, LeSy Ley
let M € Q,. Let us assume that r ¢ M. Then

M+rR=R
and hence there is an £ € M and an s € R such that
l=x+rs.

Since, by Lemma BZ2, () L is a two-sided ideal of R, we get that rs € (] L. Hence
Ley Le

1 —rs ¢ L for every L € € and hence, by Krull’s Lemma BT4, R(1 —rs) = R.
Then there is an element ¢t € R such that

(8.4) t-(1—rs)=1.

Then we get
t=1+trs.

Since () L is a two-sided ideal of R, we know that trs € (| L. Hence 1 +trs ¢ L
LeQ, Le&y

for every L € §); so that, by Krull’s Lemma, R (1 4 trs) = R. Thus thereisav € R
such that

v(l+trs) =1
Then
(8.5) v-t=v(l+trs)=1
so that
v:v~1(§)v~t-(1—rs) =
and hence
(8.6) v=1-rs.

Therefore we get
(E3) (B3)

(I1—rs)-t =v-t =1
Thus we deduce that
(8.7) (1—rs)-t=1
Thus from (B4) and from (B2), we obtain that (1 — rs) is invertible in R. Since

l—rs=xe M

this is a contradiction. ]
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Definition 8.24. Let R be a ring. We set

JR)=(L"E" M

LeQ MeQ,
J (R) is called the Jacobson radical of R.

Theorem 8.25 (Nakayama’s Lemma). Let I be a right ideal of a ring R. The
following statements are equivalent.

(a) ICJ(R).
(b) For every finitely generated right R-module M, M = M1 implies that M = {0} .

(¢) For any submodule L of a right R-module M, if M/L is finitely generated and
L+MI=M, then L = M.

Proof. (a) = (b). Assume that M # {0} is a finitely generated. By Krull’s Lemma
BTAa, M contains a maximal submodule L. Thus we get that S = M/L is a simple
right R-module. By Proposition 10, for every x € S, x # 0 we have that tR = S
and by Proposition B0 we get that

Amng (z) ={re R|xz-r=0}
is a right maximal ideal of R so that
I C J(R)C Anng (z)

and hence
xl = {0} for every x € S,x # 0.

Thus we deduce that ST = {0} i.e.

MI+L M
:—-I: 0
7 7 {0}
which means that
MI+L=1L

ie. M = MI C L which contradicts the maximality of L.
(b) = (c). Since M/L is finitely generated and L + M I = M implies that
M MI+L M
L~ L L
we deduce that M/L = {0} i.e. M = L.

(¢) = (a). Assume that I € J (R). Then there is an z € I and a right maximal
ideal L of R such that x ¢ L. This implies that L + xR = R and hence L + I = R.
Therefore we get that R/L is finitely generated and L + RI = R. By (b) we deduce
that L = R, a contradiction. O
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Proposition 8.26. Let R be a ring. The following statements are equivalent

a) R has a unique mazimal right ideal.
b) J(R) is a mazimal right ideal.
)

a') R has a unique mazimal left ideal.

(
(
(¢) R/J(R) is a division ring.
(
(

b') J(R) is a mazximal left ideal.

Proof. (a) = (b). It is trivial.
(b) = (c). Since J(R) is a maximal right ideal the right R-module R/J (R) is
simple. Let R = R/J (R). Then Ry is simple and

By Schur’s Lemma BT, R is a division ring.
(c) = (a) Let L be a right maximal ideal of R. Then

L J(R
m:{%}zﬁ

so that L = J (R). Hence R has a unique maximal right ideal.
The equivalences (a') < (V') < (c) follow by simmetry. O

Definition 8.27. A ring R is satisfying the equivalent conditions of Proposition
is called a local ring.

Proposition 8.28. Let R be a local ring and let J = J(R). Let M be a right
R-module and assume that the elements

v+ MJ, ...z, +MJ

are a set of generators of M/MJ as a vector space over R/J. Then z1,...,x,
generate M.

Proof. Let N =x21R+ ...+ z,R. Then

M N+MJ
MJ  MJ

so that M = N + MJ. Since M/MJ is finitely generated, by Nakayama’s Lemma
B23 we deduce that M = N. O




Chapter 9

Chain Conditions.

9.1. Throught this chapter R will denote a ring.

Definitions 9.2. Let M be a right R-module.
We say that

e M satisfies the Ascending Chain Condition (A.C.C.) on submodules if for
every ascending chain

My<My <--- <M, <--
of submodules of M there is an n € N tale che M; = M, for every i > n.

o M satisfies the Maximum Condition on submodules, if every nonempty set of
submodules of M has a maximal element.

Definitions 9.3. Let M be a right R-module.
We say that

e M satisfies the Descending Chain Condition (D.C.C.) on submodules if for
every descending chain

e <My, <--- <My < Mo
of submodules of M there is an n € N tale che M; = M, for every i > n.

e M satisfies the Minimum Condition on submodules, if every nonempty set of
submodules of M has a minimal element.

Theorem 9.4. Let M be a right R-module. The following statements are equivalent.

(a) M satisfies the Ascending Chain Condition on submodules.
(b) M satisfies the Mazimum Condition on submodules..

(¢) Ewvery submodule of M is finitely generated.

160
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Proof. (a) = (b) Let F be a nonempty set of submodules of M. Since F is nonempty,
then there is a submodule M, € F. Assume that F has no maximal element. Then,
for each element L € F there is at least an element L' € F such that L ;Cé L'. For
each L € F we can choose, by the Axiom of Choice, one such L’. Let

fr F — F
L — L.

By the Recursion Theorem, there is a map fy, : N — F such that
fMo (0) = My and fMo (n + 1) = f (fMo (n)) = (fMo (n))/

This implies that
S (n) S (fagy (n))" for every n € N.

For every n € N, let us set
M, = fu, (n).
Then, for every n € N, we get
My, G My

and hence a strictly ascending chain
My S MG M G M G S

which contradicts A.C.C..
(b) = (c) Let L be an R-submodule of M and set

F ={Ngr < Lg | Ng is finitely generated} .

Since {0} = OR € F, we have that F # & so that F has a maximal element N. Let
us show that L = N. Let « € L. Then

N+zR<L and N + zR is finitely generated.
Hence L € F . Since N < L, by the maximality property of N we deduce that

N =N+2zR
so that x € N.
(¢) = (a) Let
Mo < M; <---
be a chain of submodules of M. By Lemma BET3, L. = U;enyM; is a submodule of M.
Hence there is an n € N,n > 1 and elements zq,...,x, € L such that

Foreveryi € {1,...,n} thereisa j; € Nsuch that x; € L;,. Lett = max {ji,..., jn}.
Then

so that, for every 1 € N
M; C L C M,.

This implies that, for every ¢ > t, we have M; = M;. n
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Definition 9.5. Let Mg be a right R-module. We say that Mg is noetherian if M
satisfies one of the equivalent conditions of Theorem [I3.

Definition 9.6. Let My be a right R-module. We say that M s finitely cogenerated
if, for every set L of submodules of M tale che

(L= {0}

LeLl

there is a finite subset F' of L such that

() L={0}.

LeF

Definition 9.7. Let My be a right R-module. We say that M is finitely embedded
if its socle is essential and finitely generated.

Lemma 9.8. Let Hg be a semisimple right R-module. Hg is finitely cogenerated <
H = & S\ where F is a finite set and each Sy € S,.

AEF

Proof. (=). Let (S),c, be a family of right R-modules such that

H:@SA.

AEA

For each v € A set

H= & s

AeM\{~}

Let x € () H,. Then
YEA

Supp () € [ (M\{2}) =2

yEA
so that z = 0. Thus we get that

ﬂH’Y:{O}‘

yeEA

Since H is finitely cogenerated, there is a finite subset F' C A such that

() H, ={0}.

YEF
Then we have
{0}=H,= D 5
YEF AEA\F

1.e.

H:@SA.
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(<) Assume that H = @ S\ where F' is a finite set and each S\ € S,. Let F
AEF
be a set of submodules of H such that

() L #{0}
LeA
for each finite subset A of F and let us show that

() L # {0}

LeF

Let us proceed by induction on |F|. If |F| = 1, then F' = {\} and H = S so that
there is nothing to prove. Let us assume that our statement hold true for some
n € N,n > 1 and let us prove it for n + 1. Let us fix a A\y € F' and let us write

H=T®AS5,, where T' = @ Sx
AeF\{ o}

In the case when, or each finite subset A of F, we have

() (LNnT)# {0}

LeA

then, by Induction hypothesis, we get that ﬂ (LNT) # {0} and hence () L #
LeF
{0}. Otherwise there is a finite subset A of of f such that

() (LNT)={0}.

LeA

Let K = () L. Then
LeA

K _T+K _H T®S,
K ~ C 0 ~v

{0y # KnT T =T T

and hence K = 5, so that K is a simple right submodule of /. We have

LNnK= (] N#{0}

NeAU{L}
we deduce that K C L for every L € F and hence we conclude that

(L #{0}.

LeF

= Sy

Since,
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Proposition 9.9. Let My be a right R-module. The following statements are equiv-
alent.

(a) Mpg is finitely cogenerated.
(b) Mg is finitely embedded.
Proof. (a) = (b). Let {0} # L be a submodule of Mg and let us set
&= {H|{0} #HCL}.
Clearly L € £ so that £ # &. Let us consider the partially ordered set
(€,2)

and let us prove it is inductive. Let (H;),.; be a chain in (£,2) and let

H:ﬂm

i€l

Let us show that H € £ i.e. that H # {0}. In fact assume that H = {0}. Since Mg
is finitely cogenerated, there is a finite subset F' C I such that

() H: = {0}.

er
Since (H;),., is a chain in (£, D), there is an element ¢ € F' such that
H; O H, for every i € F

so that
{0} = ﬂ H; 2 H;
el

which yields a contradiction since H; € £. Thus H € £ and H is an upper bound
for the chain (H;),.; in (£, 2) . Hence, by Zorn’s Lemma, there is at least a maximal
element, say Hy in (£,2). Let us prove that Hy is simple. Let 0 # x € Hy. Then
{0} #22-RC H C L so that x - R € £ and hence, by the maximality property of
Hy in (£,2). we get that « - R = Hy,. Therefore Hy, is simple.

Hence every nonzero submodule L of Mg contains a simple right R-module which
implies that Soc (M) is essential in M. Since Soc (M) is a submodule of Mp and
Mp, is finitely cogenerated, also Soc (M) is finitely cogenerated. By Lemma B3, we

deduce that Soc (M) = @ S\ where F is a finite set and each Sy € S,.
AEF
(b) = (a). Assume that Soc (M) = @ S, where F is a finite set and each
AEF
Sy € S,. Let F be a set of submodules of M such that

() L={0}.

LeF
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Then we have

() [Soc (M) N L] = Soc (M) (] L= {0}.

LeF LeF
By Lemma EX, we deduce that there is a finite subset A of F such that

() [Soc(M)N L] = {0}

Since Soc (M) = € S) is essential in M, we get that
AEF

() L={0}.

O

Theorem 9.10. Let M be a right R-module. The following statements are equiva-
lent.

(a) M satisfies the Descending Chain Condition on submodules.
(b) M satisfies the Minimum Condition on submodules.

(¢) Ewvery quotient of M is finitely cogenerated.

Proof. (a) = (b). It is analogous to (a) = (b) in Theorem HA.
(b) = (c) Let L be a submodule of My and let Q be a nonempty set of submodules
of M/L such that

() @={0}.

Qe
Now, for every ) € Q, there is a submodule Ly < M such that

Lq
©=7
Let
]—":{ﬂLQ|F§QaHdFiSﬁnite}.

QeF

Since Q is nonempty, thereis a ) € Q. Then Lg = ﬂKG{Q} Ly € F so that F # @.
Hence F has a minimal element N. Then there is a finite subset F of Q such that

N =) Lo

Qer

Let K € Q and let Fxy = FU{K}. Then

() Lu= (ﬂLQ>mLK <()Le=N
HeFg Qer QeF
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By the minimality of N we deduce that

() Lu= (ﬂ LQ>mLK: () Lo = N for every K € Q.

HeFg QEF QeF
and hence
N = ﬂLQgLKforeveryKEQ.
QeF
Therefore
N={(NLoC ()L SN=()Lq
QEF Keo QEF
so that

B Lo Ngeole Ngerle Lo
M=N7=""7"="7 =N7=Ne
QeQ Q€eF QEF

(¢) = (a) Let
e < My < My < My

be a decreasing chain of submodules of Mz and let
L=()M,.
neN

Then u ﬂ \
no_ neN n —
N = {0}.

neN

Since M/ L is finitely cogenerated, there is a finite subset F' C N such that

—ﬂ"GEM” =N % = {0}.

neF
Let t = max F'. Then we get

My=(\M,=L=()M,C M, for every n € N

ner neN

so that, for every n > t we get

ie. M, = M,. [l

Definition 9.11. Let Mg be a right R-module. We say that Mpg is artinian if M
satisfies one of the equivalent conditions of Theorem [TI1D.
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Examples 9.12. 1) Every commutative principal ideal ring R is right and left
noetherian.

3) Note that
Z(p®) = {§+Zymez,teN} CQ/zZ

is a right (and left) artinian Z-module which is not noehterian. In fact

@) =2 u{(+z)nen),

which yields the following strictly ascending chain of Z-submodules

o= (o) e s (on) s o)

Theorem 9.13. Let
0L -1 M2 N0

be a short exact sequence of right R-modules. The following statements are equiva-
lent.

(a) M is right noetherian (artinian).

(b) Both L and N are noetherian (artinian).

Proof. (a) = (b) Since L = f (L) we may assume that L < M. Then every ascending
chain
Lo<Ly <+ <L, <---

of submodules of L is an ascending chain of submodules of Mpg. Thus L is right
noetherian
Let
No< Ny <---<N, <

be an ascending chain of submodules of N. Then

g5 (No) < g (V) <+ < g (V) < -

is an ascending chain of submodules of M. Hence there is a ¢ € N such that
g (N;) = g~ (V) per ogni @ > t. Since g is surjective, we infer that

Ni=glg™ (Ni)] = glg™ (V)] = Ny

for every ¢ > t.
(b) = (a) Let
My<M <---<M,<--

be an ascending chain of submodules of Mg. Then

M) S f7 (M) <o S fT (M) < -
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is an ascending chain of submodules of L and
g(My) S g(My) < - < g(M,) < -
is an ascending chain of submodules of N. Hence there is a t € N such that
(M) = [ (My) and g (M;) =g (M,;) for every i € N;i > t.
Let ¢ > t and let us prove that M; C M,. We have

M0 f(L) = [fIfT(M)]=fIf"(M)]=M,nf(L),
M;+ f(L) = M;+Ker(g) =g [g(M;)] =g [g(M;)] = M; + Ker (g) = M; + f(L).

Let x; € M;. Then
v, € M; C M+ f(L)= M+ f (L)

and hence there are y € L and x; € M, such that

z; =+ f(y)
so that
fy) =2 —x € My + M, C M,.
Thus we get
fly)e Min f(L) =M, f(L)
and hence
The proof in the artinian case is dual. [

Corollary 9.14. Let My, Ms, ..., M, be right R-modules. The following statements
are equivalent.

(a) My & My --- & M, is noetherian (artinian).

(b) For every 1 < i <mn, M; is noetherian (artinian).

Proof. Let us consider the short exact sequence
0—>M1L>M1@MQPH2M2—>O

where 77 is the canonical injection and ps is the canonical projection. Then, in view
of Theorem B3, we deduce that M; & M, is noetherian (artinian) if and only if
both M; and M, are noetherian (artinian). 0

Lemma 9.15. Let H be a semisimple right R-module. The following statements
are equivalent.

(a) H is right noetherian.

(b) H is finitely generated.
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(¢) H is right artinian.
(d) H is right finitely cogenerated.

(e) H= & S\ where F is a finite set and each Sy € S,.
AEF

Proof. Let (S)),c be a family of right R-modules such that
H =S

(a) = (b). It follows by Theorem E.
(b) = (¢).Letn € Nyn > 1snflet x1,...,z, € H such that H = x1R+. . .4+z,R.
For each i € {1,...,n}, there is a finite subset F; C A such that

x; € @S)\

MCE;

Let .
F=JF.

i=1

Then we get
H=x2R+...+x2,RC @SA
A\EF

and hence

H:@ﬁX

Since each S) is right artinian, by Corollary BI4, also H is artinian.
(¢) = (d). It follows by Theorem E10.
(d) = (e). Tt follows by Lemma IS.

(e) = (a). We have
H = S

AEF

where F' is a finite set and each S, € §,. Since each S, is right noetherian, by
Corollary B4, also H is right noetherian. [

Definition 9.16. The ring R is called right noetherian if Rg is noetherian.

Remark 9.17. Let M be a right R-module. Then, by Theorem [J3, every submodule
of Mg is finitely generated . In particular gRM is finitely generated. The converse
is, in general, not true. In fact, if R is a ring, then Rg is always finitely generated.

Theorem 9.18. Let R be a ring. The following statements are equivalent.
(a) R is right noetherian (artinian)
(b) Every finitely generated right R-module is right noetherian (artinian).
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Proof. (a) = (b) Let Mg be a finitely generated right R-module and let {z1,...,x,}
be a finite set of generators of M. For every i € I = {1,...,,n}, let us consider the

homomorphism
hy,: R — M
roo— xr

and let
h = V(hxi)iel R — M

Then h is an epimorphism. By Corollary EId, (Rg)" is right noetherian so that, by
Theorem ET3, M is right noetherian.
(b) = (a). Since Rr = R1pg, we conclude. O

Definition 9.19. The ring R is called right artinian if Ry is artinian.
Definition 9.20. Let R be a ring and let J = J (R). R is called semiprimary if

e R/J is semisimple
o J is nilpotent, i.e. there is an n € N such that J* = {0} .

Theorem 9.21. Let R be a right artinian ring. Then R is semiprimary.

Proof. Let

Sz{ﬂLMnENLEQ}.

i=1
Since R is right artinian, £ has a minimal element. Let H be a minimal element for
E. Then there exists an h € N and [4,..., I, € ), such that

H=()I
j=1
Let L € Q,. Then
h
HOHNL=()LNLEE.

j=1
By the minimality of H we deduce that H = H N L i.e. H C L. Therefore we get

Hg(]L:JgH
LeQ),

1.e.

Hence we have an embedding
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Since, for every j € {1,...,n}, R/I; € S,, in view of Corollary A, £ is semisimple.

Now let us consider the descending chain of (right) ideals of R :
J>P> >IN

Since R is right artinian, there is an n € N,n > 1 such that J*¥ = J" for every
k > n. Let us assume that J" # {0} and let

F={L|L<Rpand L-J"+#{0}}.

Then J € F. Therefore F is nonempty and hence it has a minimal element. Let [
be a minimal element of F. Then I - J" # {0} so that there is an = € I such that

x-J"#{0}.

Then
(x-J)-J" =z -J" =2 J"#{0}.

Since x - J C x - R C I, by the minimality of [ we get = - .J = I and hence

z-J=x-R
so that
(x-R)-J=uxz-R.
Since x # 0 this contradicts Nakayama’s Lemma BZ3. ]

Proposition 9.22. Let R be a semiprimary ring and let M be a right R-module.
The following statements are equivalent.

(a) M is right noetherian.
(b) M is right artinian.

Proof. Let J = J(R). We know that there is an n € N such that J* = {0} and
R/ J is right semisimple. Let us consider the finite chain of right submodules of M :

M=MJ">MJ>...>MJ"'>MJ"={0}.
For every i € {0,...,n}, we have that

MJz'—l

MJi
so that each MJ='/MJ" has a natural structure of right R/.J-module defined by
setting

T =1{0)

MJi—l

MJi
Note that, with respect to this structure, a subset of MJ"'/MJ' is an R/J-
submodule of M J*~/M J* if and only if it is an R-submodule of M J*~! /M .J*. Since

(r+J)-x=r-xfor every x €



172 CHAPTER 9. CHAIN CONDITIONS.

R/J is semisimple, by Theorem BR, M J=' /M J* is a semisimple R/J-module and
hence a semisimple R-module.

By Lemma HI3 each MJ™!/MJ" is right noetherian if and only if it is right
artinian.

(a) = (b). Since M is right noetherian, by Theorem B3 each MJ"™!/MJ* is
right noetherian and hence right artinian. Let us show that M is right artinian by
induction on n. Assume that n = 1 ie. J = {0}. Then M = MJ°/M J is right
artinian. Assume that the statement hold for sum n € N, n > 1 and let us prove it
for n + 1. Let us set

M':MJand R,:F

Then

R J
J, - J(R/) =J (Jnl) - Jn—1

so that
(J)"" = {o}.
On the other hand
M’~J”_1:M~J”:{O}

and hence M’ has a natural structure of R’-module. Since M is right noetherian,
by Theorem B3, also M’ is right noetherian. Thus, by Induction we get that M’ is
right artinian as a right R’-module and hence alos as an R-mdoule. Let us consider
the exact sequence

M
O—MJ— M ———0.
MJ

Since both MJ and M/MJ are artinian, by Theorem HT3 we get that also M is

artinian.
(b) = (a). It is analogous. O

Theorem 9.23 (Hopkins-Levitzki). Let R be a ring and let J = J (R). The follow-
ing statements are equivalent.

(a) R is right artinian
(b) R is right noetherian and semiprimary i.e. J is nilpotent and R/J is semisimple.

Proof. (a) = (b). By Theorem B2, R is semiprimary. Then, by Proposition B=22
we get that R is right noetherian.
(b) = (a). It follows by Proposition B22. O

Examples 9.24. Still MISSING!!!!



Chapter 10

Progenerators and Morita
Equivalence

10.1 Progenerators

10.1. Let A and B be rings and let AMpg be an A-B-bimodule. For every a € A, the

map
A M — M
r = ax

is a right B-module homomorphism. For every b € B, the map up is analogously
defined.

Proposition 10.2. Let A and B be rings and let ;Mp be an A-B-bimodule. In the
notations of I, the maps

Apu: A — End(Mp)
a = Jn

are ring homomorphism.
Proof. Let a,a’ € A. For every x € M we compute
(Zrown) (x) = dpuldz) = a(dz) = (ad)x = jpu(x).
O

Definition 10.3. Let A and B be rings. An A-B-bimodule 4 Mpg is called faithfully
balanced if the maps u* and Bu of Proposition A are ring isomorphism.

Lemma 10.4. Let R be a ring, let M g be a right R-module. For every m € M and
f € Homg (M, R), let m - f denote the map from M into M defined by setting

(m- f) (x) =m-(f (z)).
Then m - f € Endg (M).

173
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Proof. Let r € R and x € M. We have

(m- f) (@r) =m-(f (zr)) =m-[f (@) -r]=[m-(f(2))]-r=(m-f))r
]

Notations 10.5. Let R be a ring and let X and Y be non-empty sets. Then an
X xY-matrix over R is simply a map A : X XY — R. Then, for each (z,y) € X XY
we set

Aa:,y =A ((I, y))

and call it the (x,y) entry of A. We will also write

A=

(A%y ) (z,y)eX XY *

Letx € X and lety € Y. Then

(Moy) e yyetayy 18 called the x row of A and (Asy) , exxp

The matriz A is said to be row finite (resp. column finite) in case each row (column)
of A has at most finitely many non-zero entries. The set of all X X Y-matriz over R
will be denoted by Mxy (R) and the subsets of row finite and column finite matrices
by REMxyy (R) and CFMx«y (R) respectively.

Consider the right R-module

F =R¥ @R where, for each x € X, R, = Rpg.

reX
For everyt € X, let ey : Ry — € R, be the canonical injection and let e; = g, (1).

zeX
Let « € Hom_p (R(Y), R(X)) and write

a(ey) = (Oay)pex = D Caliay
xeX

Then the assignment

o= <a$»y>(x,y)6XXY

defines a bijection
®: Hom_p (RY), RY) — CF Mxyy (R).
When'Y = X we have
O (o) =

(aof) <€y) = a(B (€y>> = (Z ewﬁm,y) = Z (€x 6wy Z Z ettt 2 Bzy =

zeX zeX zeX teX

is called the y column of A

>

teX

(

Z at,mﬁx,y

zeX
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Oé o B (Z Qi m/Bz y)
z€X (ty)eX xX

Hence CFMx«y (R) inherits a ring structure by setting

A . F — (Z A%trty)
teX (z,y)eX xX

Clearly, in this way, ® becomes a ring isomorphism.

Theorem 10.6. Let R be a ring, let My be a generator, let A = End (Mpg) and
B =End (4M). Then the ring homomorphism

pft: R — End(uM)
ro= o pf

so that

s an isomorphism i.e. the bimodule sMpg is faithfully balanced.

Proof. (First Proof) Since Mg is a generator, there exists an n € N;n > 1 and an
epimorphism

m: Mp — Rpg.
For every 1 <t < n let

’it . MR — ME

denote the t-th canonical injection and 7, = 7 o 4;. Since 7 is surjective there exists
(@1, ...,2,) € M} such that

1 =7 ((21,...,20)) :Zm(xi).

Let r € Ker (4*). Then pff = 0 i.e. zr =0 for every x € M and hence

7":1R'T:i7ﬁ‘($i)'r=im(mi-r):O
i=1 i=1

Thus pft is injective.
Let now b € B = End (4M). For every x € M we have

(@) b= (z-1g) b_< Zﬂ-z z>b:<2$7ﬁ($z)>b:<2(xWz)(%)>b

By Lemma II4, we have z-7; (x;) = (v - m;) (z;) and - m; € A = Endg (Mg). Since
be B=End(aM) we get

(x)b = (Za:m(x,)) b= (Z(:Bm) (xl)) b= (Z(mm)xl> b

=1 =1
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Therefore we deduce that
b= pf where r = x - [m (Z (x)b)] .
i=1
(Second Proof) Since My is a generator, there exists an n € N;n > 1 and a map
m:Mp— Rp

which is an epimorphism of right R-modules. Since Rp is projective, there is a right
R-module homomorphism
o:Rr— Mg

such that
mo = Idg.
Therefore we get that
(10.1) M" =1Im (o) @ X where X = Ker (7).

Let y1,...,y, € M be such that

o(1r) = (Y1, Yn) -

Then, for every r € R we have
o(r)=(nur, ..., ysr)
and
(10.2) Im (o) = (y1,...,yn) R=yR where y = (Y1, .., Yn) -

Let r € Ker (,uR). Then pf = 0 ie. xr = 0 for every z € M and hence o (r) =
(y17y ..., ynr) = 0. Since o is a monomorphism, we deduce that » = 0 and hence p
is injective.

Let now b € B = End (4M) and let us assume that

In view of () and of (), there exists an 7 € R and an T € X, T # 0 such that
Z=9Yyr +7x.

Let
ix : X —>M"andxy : M" — X

denote respectively the canonical injection of X and the canonical projection on X
with respect to the decomposition (). We set

Q:ixﬂxiME—}Mg.
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Then we have
a(z)=ix(T)=T#0
and
a(yr) = 0 for every r € R.

For every 1 <t < n let
1 Mp — Mp and p, : Mp — Mpg

denote the ¢-th canonical injection and projection. Since 0 # «(z) € My there
exists an s € {1,...,n} such that

0 # psa (2) = psa (1, ..., ynb) = pscv (Z WPy [(yb)]> =
= psQ (Z it [P (yb)]) = paais [p (yb)]

Since
pe (yb) = yb = (e (v)) b
we get
it [pe (yb)] = i [(pe (y)) O]
and since psai; € End (Mg) = Aand b € B = End (4 M), we deduce that, for every
t € {1,...,n} so that

psaeiy [pe (yb)] = (psaviy) [(pe (y)) D] = [(pscvie) pe (y)] b

and hence

3

0 # psa (2) = Z [(pscviy) pe (y)] b = (

t=1

(psiiy) pe (y)) b=
()i (S

— [pea )b = [ (0)]b =0

which is a contradiction. Therefore we infer that z = (y1b,...,y,b) € yR and hence
there exists an 7 € R such that

M:

Z = (ylba>ynb) = y?: (yl’?a)yn?)
i.e.

(10.3) y;b = y;r for every 1 < i < n.
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For every x € M let us consider the right R-module homomorphism

hzi RR — MR
T = xr

we have

3

where
a; = h,mi; € End (Mg) = A for every 1 <t <n.

Since b € B = End (4 M), we get

zb = <Z ay (yt)> b= Z laz (y:)] b= Z ay [(y:) b] = a; (yir) =

t=1

Since this holds for every z € M, we deduce that

b=pi = (7).

10.7. Let Pgr be a right R-module. We set
P* = Hompg (Pg, Rg) .
By Proposition 28, P* has a natural structure of left R-module defined by setting
(rf)(x)=rf(x) forallr € R, f € P,z € P.

Definition 10.8. Let Pr be a right R-module. A dual basis for Pr is a pair
(@)1 (x7);c;) where (z;),c; is a family of elements of P and (x}),.; is a fam-
ily of elements of P* subject to the conditions

P1) For every x € P,z (x) = 0 for almost every i € I, i.e. there is a finite subset
F, C I such that z} (z) =0 for every i ¢ F,.

P2) For every x € P, the following equality holds:

x—Exz x;
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A dual basis is said to be finite whenever I is a finite set.
Theorem 10.9. (Dual Basis Lemma) Let Pr be a right R-module. Then

a) Pg is projective if and only if it has a dual basis.
b) Pg is projective and finitely generated if and only if it has a finite dual basis.
Proof. Let X be a system of generators of P. For every x € P, let
hy : Rr — Pp defined by setting h, (r) = xr for every r € R.
Then h, is a right R-module homomorphism and, by Proposition 2
h=V (h),cx : RREY) — P.

is a surjective homomorphism.
Assume that P is projective. Then, by Proposition (EI4), there exists a right
R-module homomorphism v : P — Rz") such that

ho~=Idp.

For every x € X let
Ty © RR(X) — RR

denote the zth canonical projection.

(10.4) z=(hoy)(z) =) hy(m(v(2)) =) yllm 07 (@)

yeX yeX

For every y € X, set

*

Yy =Tyory
and
Fy = Supp (v (v)).
Then, y* € P* and for every y ¢ F, we have
y* (x) = myoy(z) =0.

Moreover, from (IIA) we get that

r=> y-y ()

yeX
Conversely assume that ((z;);;, (2]);c;) is a dual basis for Pr and let

A=A (2]),c; : Pr — RE.
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Since, for every x € P, z} (x) = 0 for almost every i € I, we have that Im (\) C Rg)

so that we can consider the corestriction v of A to Rg). Now let
X =V (he,)ie; : R — P,
For every y € P, we have
(o) W) =D ha (mi (v (@) =D ha, (@] () = D wi-a} (y) =y
iel iel i€lz;

Therefore we deduce that

xovy=Idp
and hence, in view of Proposition (EI2), Pg is projective. ]
Lemma 10.10. If ((z1,...,2,), (z3,...,2%)) is a finite dual basis of a finitely gen-

erated projective right R-module Pr, then for every & € Hompg (P, R), using the left
R-module structure of Hompg (P, R) enduced by rR, we have

(10.5) §=D &)

Thus the left R-module Hompg (P, R) is projective and finitely generated with dual

basis ((z3,...,2%), (71,...,Ty,)) where, for everyi=1,....n

z; (&) =& (x;) for every & € Hompg (P, R) .
Proof. For every y € P, we compute

ZS(%) I] (y) =D &)l (y) =Y Elwi-a} (y)] =€ [me (y)] =&(y).

i=1 i=1

We have to prove that for every i = 1,...,n,the map z; is left R-linear. In fact we
have

Ty (r§) = (r€) () = r- & (w:) = - T: (€) -

Proposition 10.11. Let Pr be a right R-module. Then the map

wp: P — Hompg (Homg (P, R),R)
y = &= &)
is well defined and is a right R-module homomorphism. If Pg is a finitely generated

projective, then it is an isomorphism. Namely if ((z1,...,2,),(z3,...,25)) is a
finite dual basis of Pgr, then the inverse (p of wp s defined by setting

Cp(a) = Zml (x}) a for every a € Homp (Hompg (P, R), R).
i=1
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Proof. For every ¢ € Hompg (P,R),a € Hompg (Hompg (P,R),R) and y € P, we
compute

@HWPNQHMFZQKP®OZ§@PW»=§<§:%-@DQ)=

:Zf(%’)'(ﬁ)a: [Zf(ml)x;‘] amzm(g)a

i=1

]
Proposition 10.12. Let 4 Pg be an A-R-bimodule. For every M € Mod-R the map
ay : M ®gHompg (P,R) — Hompg (P, M)
me f =y = mf(y)

is well defined and is a right A-module homomorphism. If Pg is finitely generated
and projective, then s is an isomorphism. Namely if ((x1,...,x,), (z],...,2})) is
a finite dual basis of Pg, then the inverse By of apr is defined by setting

B (h) = Z h(z;) ®@g x; for every h € Hompg (Pr, MRg) .
i=1
In particular
P ®p P* = 4P ®p Hompg (P, R) ~ Homp (P, P)
is an isomorphism of A-A-bimodules.
Moreover the collection (aar) e rroa.rYi€lds a functorial isomorphism
Hompg (P, —) = — ®g Hompg (P, R) .

Proof. Let m € M and f € Hompg (P, R). We compute

n

Buoan) (m® f) = [an (me f) (@) @z} =Y mf (x;) @rw; =

i=1 i=1
, I3
:m®RZf(xi)xi = MmQ®gf.
i=1

Let now h € Hompg (Pgr, Mg) and let us compute, for every y € P
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We deduce that o (D71 h(x;) @p x}) = h.

lop (a(z2@r 8 D) (y) = [ap(az®@r &) (y) =az-[(h) (Y] =a-z-E(b-y)
[a-ap(z@r€) b (y) = a-[(ap(z@rE) D) (y)] =a-[(ar(z@rE)) (b-y)]
= a-[z-£(b-y)]

Definition 10.13. A right R-module Pg is called a progenerator if it is a finitely
generated projective generator.

Lemma 10.14. Let 4Pr be a faithfully balanced A-R-bimodule. Then the following
are equivalent

(a) Pg is a progenerator.

(b) 4P is a progenerator.

Proof. Assume that Py is a progenerator. Then we have a two splitting epimorphism
of right R-modules
R’é—)PRandP}?%RR

which give rise, by applying Hompg (—, Pgr) to two splitting monomorphism of left
A-modules
PropZd
A =Homg (P, P) — Hompg (R", P) = [Homg (R, P)]" = P

PropE2g9

and P = Homg (R, P) — Hompg (P, P) = A™.
[l

Lemma 10.15. Let Pg be a progenerator and let RP* = Hompg (Pg, Rr). Then rP*
1S a progenerator.

Proof. Since Pg is a progenerator, we have a two splitting epimorphism of right
R-modules
RE%PRaHdP]{L%RR

which give rise, by applying Hompg (—, Rg) , to two splitting monomorhisms of left
R-modules
Prop=Za
P* = Homp (P, R) — Hompg (R", R) = [Homp (R, R)]" = R"

PropE=2d

and R = Homg (R, R) — Hompg (P™, R) = [Hompg (P, R)]" = (P*)™.
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Proposition 10.16. Let Pr be a progenerator and let A = End (Pgr). Then both
the bimodules 4Pg and rP} are faithfully balanced.

Proof. Since Pg is a generator, by Theorem [IIA, 4 Pg is faithfully balanced. Now, by
Lemma TH, zP* is a progenerator. Let B = Hompg (P*, P*). Then, by Theorem
[IM, p P} is faithfully balanced. Let us consider the canonical ring homomorphism

pw=put: A — Homg(P* P*)=DB
a = ptiE—E-a
We will prove that u is an isomorphism. First of all, note that, for every € € P*,a €
A,y € P we have

(€-a)(y)=¢(a-y) =& (a(y) =(§oa)(y)
which entails
(10.6) E-a=Eoa
By Lemma IITA, zP* is a progenerator and hence, by Proposition T2
ap- : Hompg (P*,R) ®p P* — Hompg (P*, P*)
feg = = f(0)€
is an isomorphism. By Proposition I,
wp: P — Hompg (P* R)
y = £ &(y)
is also an isomorphism. Therefore we have the chain of isomorphisms

-1
op wp®@grP*

HOHIR(P,P) = P@RHOHIR(P,R>:P®RP* =
~ Homp (P*, R) ®r P* = Homp (P*,P").
Let us prove that ap+ o (wp ®g P*) o (04131) = \. For any a € A, we have

[aps o (wp ®R P7) 0 (ap')] (a) = [ap o (wp @r P)] (ap') (a)

= [ap: o (wp ®r P7)] (Za (i) ®r xf)

=1

- ap. [pr (a(xi)) ®r x]

so that we get

n

{ap- o (wp®r P)o (ap")] (@} Q) = Y lwr(a(e:) ()]

i=1
n

= Y Clam) 2= Y (Coa) (w1)

=1
@) @

Hence we deduce that p is an isomorphism. O]
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Corollary 10.17. Let Pr be a progenerator, let A = End (Pgr). Then both the
bimodules 4 Pr and rP} are faithfully balanced and each of the modules

* Pk
PR;AP7RP 7PA
15 a p7"0967’1,€7”(1t07".

Proof. By Proposition 1A, the bimodules 4Pr and P} are faithfully balanced.
By Lemma T3, zpP* is a progenerator. Then, by Lemma IT4, also 4P and P}
are progenerators. O

Theorem 10.18. Let Pg be a progenerator and let A = End (Pg). Then the functor
Hompg (4Pr,—) : Mod-R — Mod-A is an equivalence of categories whose inverse is
the functor — @4 APr : Mod-A — Mod-R.

Proof. Let M € Mod-R and let us consider the evaluation map

Vnm . HOII]R(APR7M)®AAPR — M
f®ay = fy)

It is easy to check that v, is well defined and it is a right R-module homomorphism.
By Proposition (B23) we know that

M= > Im(h).

heHompg (P,M)

Thus given x € M there exists a finite subset F, C Hompg (P, M) such that

Thus, for every h € F, there exists an gy, € P such that

T = Zh(yh)ZVM<Z h®Ayh>~

heF; heF,
Therefore vy, is surjective. Assume now that m € N,m > 1, and f1,..., f,, are
elements in Hompg (4 Pgr, M) and yi, ...,y are elements in P such that

0=vu <Zfi®Ayi> ZZfi(yi)-

Let
f:V(fl,...,fm):Pm—>M.

and for every 1 < ¢ < m, let ¢; : P — P™ and p; : P* — P be the i-th canonical
injection and projection respectively. Then, for every w = (wy,...,w,) € P™ we
have that

[Z e; o ;) ] Z foeiop)(w)= (Zfiopi> (w)
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i.e.
(10.7) f=Y fiop

=1

In particular for
Yy = (ylv"'7ym)

we have

:Zfi(yi)zosothatyz(y1,---,ym)GKer(f)-

Since Py is a generator of Mod-R, There exists a surjective right R-module homo-
morphism
x : P%) — Ker (f) € P™.

For every x € X let
g, P— PX and 7, : P L p

be the canonical injection and projection respectively. Then

X = V (Xa2),ex Where x, = x oe, € Hompg (Pg, Ker (f)).

Since y € Ker (f), there exist a z € P™) such that y (2) = y. Let F = Supp (2).
Then

and

?/:X(Z):X(Z(gxoﬂm)(z)) :Z(XOé‘ZOT{'x)(Z):

= Z (X e} 696) (ﬂ'x (2)) - ZXz (Zz)

where x, = x o, € Hompg (Pg, Ker (f)). Hence we have

(10.8) fox.=0

and hence, since p; o x, € End (Pgr) = A, we get

Zfl@AyZ:ZfZ(g)Apl Zfz(g)Apz (ZXQ} Za:>:

zeF
_ZZ.]C%@A p’LOX.ﬁC zz —ZZfz®A szXx) Zx ZZfz(plOXw)®Azx:
i=1 z€F zeF 1=1 zeF =1

=, (Zfiopi> OXe ®aZs =) > foXe®az =y,
=1

zeF TEF
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Let now L € Mod-A and let us prove that the natural map

vr: L — Hompg (4Pr,L ®4 aPr)
T = Y= ray '

is an isomorphism. Let us consider the isomorphism of Proposition 623

pl: LesA — L
rT®sa +— T-a
and the composition of homomorphisms

1

~—

(n

L®aBp
L LosA = L®yP®gHomg (P R)=

AL AP

:L®AP®RP* = HomR(P,L®AAP)

12

where [p is as in Proposition IITA and arg,p as in Proposition MITA. For every
x € L and y € P we compute

|:<aL®AP o(L®ypBp)o (HL)ﬂ) (93)} (y) = [(arg,p o (L®aBp)) (x®a14)] (y)

= [aL®AP (97 ®4) T Or ivf)] (y) = [Z are,p (T @42 @r 77) | (y)

i=1 i=1

= Z($®A$i)$f (y) =2 ®a vaﬂf (y) =z®ay.
i=1 i=1

Therefore we deduce that v, = arg,po (L ®4 fp) 0 (ML)_l is an isomorphism. []

Corollary 10.19. Let Pg be a progenerator and let A = End (Pg). Then the functor
Homyu (P, —) : A-Mod — R-Mod is an equivalence of categories whose inverse is
the functor APr @r — : Mod-A — Mod-R.

Proof. By Corollary MITA, 4P is a progenerator and R = End (4P). Apply now
Theorem MITA. [l

Exercise 10.20. Let n € N, n > 1 and let Pr = R%. Then Endg (Pr) = M, (R)
as rings.

Example 10.21. Let n € N, n > 1 and let Pp = R%. Then Pg is a progenerator
and A = Endg (Pg) = M, (R). Hence, by Theorem I8, the functor

Hompg (4 Pr,—) : Mod — R — Mod — A = Mod — M,, (R)

s an equivalence of categories whose inverse is the functor — ® 4 aPr : Mod-A —

Mod-R.
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Lemma 10.22. Let Pg be a progenerator, let A = End (Pg) and let us consider the
bimoduley ((P*)") 5 := Homyu (P*, A) where P* = Hompg (P, R). Then the map
Q: P — Homyu (gP*,Homg (P4 P))
v Eo(y=a-E(y) '
is well defined and is an isomorphism of A-R-bimodules.
Proof. By Theorem IR, for every M € Mod-R the evaluation map
vy o Hompg (P,M)®@a P — M
f®ay = fy)

is well defined and it is a right R-module isomorphism. In particular, for M = R

we have that
vg: Homp (4Pr,R)®a APr — R

f®ay = f(y)
is a right R-module isomorphism. Now we have the following chain of isomorphisms
P =~ Hompg (R, P) = Hompg (P* ®4 P, P) = Homy (P*,Hompg (P, P)) = Homyu (P*, A)

where the first one is p)» : P — Homg (R, P) which is the isomorphism of Prop 629,
the second one is Hompg (vg, P) and the third one is AL of Theorem ERY. Let us
prove that the composition of these isomorphisms is €2. Let x,y € P and & € P*.
We have

{{(AR" o Homp (vi, P) 0 ) ()] ()} () = {[AF" (4 () 0 v)] ()} )
= (Pp () ovr) (E®ay) =
=y (1) (€ () = 2 € (y) = [2 () ()] (9) -

Let us prove that €2 is a homomorphism of A-R-bimodules. Let a € A;r € R,z €
P ¢ € P* and y € P. We compute

[(a-Q(z)-r)] (&) ) = {a [Q) (-} ) =a {[Q() (- )}
= a-(z-[(r-

= (a-z-r)-&(y) =[Qa-z-7) ()] (1Y)

Theorem 10.23. Let Pr be a progenerator, let A = End (Pgr). By Proposition
14, the bimodules APr and rP} = Hompg (P, R) are faithfully balanced. Let us
consider the following functors:

H = Homg(P,—): Mod-R — Mod-A

T = —Q®rP*: Mod-R — Mod-A

T = —®aPg:Mod-A— Mod-R

H' = Homyu (P*,—): Mod-A — Mod-R.

Then we have functorial isomorphisms

H=2T and T = H'.
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Proof. For every M € Mod-R let
ay : M ®g Hompg (P,R) — Hompg (P, M)
m® f =y mf(y)

be the isomorphism of Proposition MITA. Then the family of maps (o) ysenron—r
gives rise to a functorial isomorphism

a:— Qg P"— Hompg (P, —)

between the functors H and 7”. Similarly consider the progenerator P; = Hompg (P, R)
with R = End (Pj) and the bimodule 4 ((P*)"), := Homy (P*, A). For every

L € Mod-A let
o i L®a(PY)" — Homyu (P*, L)

@ f =y af(y)
be the analogous of the isomorphism of Proposition MITA for the bimodule P} with
P finitely generated and projective.Then the family of maps (), c /004 gives rise
to a functorial isomorphism o : — ®4 (P*)" — Homyu (P*,—) = H'. By Lemma
22, the map
Q: P — Homy (P*,Hompg (P, P)=A)
z = L (y—a-§(y)

is well defined and is an isomorphism of A-R-bimodules. Hence we conclude that

—®40 o
—@aP = —®4(P)

is a functorial isomorphism. In conclusion we have a functorial isomorphism
T=—-—®4P>Homy (P, —)=H" O

Proposition 10.24. Let sWgr be an A-R-bimodule. By means of Proposition G283,
for every M € Mod-R let us consider the left A-module Hompg (M, W) and for any
L € A-Mod let us consider the right R-module Hompg (M, W). Then the map

v : Homy (4L, Hompg (M,W)) — Hompg (Mg, Homu (L, W))
/ o e [0 f]() LW

1 an 1somorphism natural in each variable.

Proof. Consider the map

¢ : Hompg (M,Homy (4L, W)) — Homy (L,Hompg (M, W))
h = = {)h(): LW

Let us prove that it is a two-sided inverse of 9. For every | € L and x € M,
f € Hompg (M,Homy (L, W)) and h € Hompg (M, Homy (L, W)) we have

{{Q) (Co?) (NI} (@) = ) [9(f) (=)] = [(1) f](z)
and
{D)[(Weo Q) (W] (x)} =) (W] (x) = ()N (z).

The remaining of the proof is left to the reader. m
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Exercise 10.25. The family of isomorphisms (pa)yrenroar » Where

py o Homp (R, M) — M
f = f(1g)

is the map of Proposition G239, defines a functorial isomorphism p : Hompg (R, —) —
IdMod-R-
Lemma 10.26. Let F' : Mod-R — Mod-A be an additive functor. Assume that

(F,G) is an equivalence of categories via the functorial isomorphisms w : G o F' —
Idarea-r and W' : F o G — Idpea-a - Then, for every family (M;),., in Mod-R we

have that
F (@M) =~ F ).

el i€l

Proof. By..., F is full and faithful. Let ¢; : M; — @ie ; M; denote the i-th canonical
injection. Let

be a family of morphisms in Mod-A. Then there exists a unique morphism

C:EPM—M
iel
such that
(og;=¢( forevery i € 1.
Thus we get

F({)oF(gi) = F(¢) =10, for every i € I.

Assume that

X:F(@%) — F (M)

i€l

is another morphism such that
xoF(g)=F(() =10, for every i € I.

Then x = F(§) for some & : @, ; M; — M and, since F is faithful, we get

iel
Eoeg; = (; for every i € I.
By the unicity of ¢, we conclude. O]

Let F': Mod-R — Mod-A be an additive functor. Assume that (F,G) is an
equivalence of categories via the functorial isomorphisms w : G o F' — Ids.q.r and
W' F oG — Idyega By..., Fis full and faithful i.e. for every M, My € Mod-R,
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the map

F]\]\/[il . HOIﬂMOd_R (Ml, Mg) = HOHlR (Ml, Mg) — HomMOd_A (F (Ml) s F (MQ))
= HOIIlA (F (Ml) s F (MQ))

defined by setting
Fyp, (f) = F(f)

is a group isomorphism. In particular, for M € Mod-R,
FY: Endg (M) = Homyseg.g (M, M) — Hompreqn (F (M), F (M)) = End, (F (M))

is a group isomorphism. Let us prove it is a ring homomorphism. Let f,g €
Endg (M) . we have

Fif (fog)=F(fog)=F(f)oF(9)=Fy (f)oFy (9).

Hence F' (M) is an Endg (M)-A-bimodule.
Let us consider the particular case of M = Rg. Set Qa4 = F (Rg). By the

foregoing we have
R =FEndy (Q)

so that @) is an R-A-bimodule.
Similar results hold for G. Let Pr = G (A4). Then Endg (P) = A, P is an
A-R-bimodule and, for every M € Mod-R, we have the chain of isomorphisms

FOD " Homa (A F 1) 2" Homp (G (A).GF (M)

Homp(G(A),war)
= Hompg (G (A), M) = Hompg (P, M) .

We leave it as an exercise to the reader to prove that this is an isomorphism of right
A-modules. Since p, G* and Hompg (G (A),w) are functorial isomorphisms, we get
a functorial isomorphism between the functors F, Hompg (P, —) : Mod-R — Mod-A,

¢ : F'— Hompg (P, —).

By Theorem (G, F') is an adjunction. Since also (— ®4 P,Hompg (P, —)) is an ad-
junction, By Theorem —, we get that G = — ®4 P. In particular G is a right exact
functor. By interchanging the role of F' and G, we get that also F'is a right exact
functor and since the functors F,Hompg (P, —) : Mod-R — Mod-A are isomorphic,
we deduce that even Hompg (P, —) is a right exact, and hence an exact, functor.
Hence Pg is a projective right R-module. Let M € Mod-R. Then, in Mod-A we
have an exact sequence of the type

AN 5 (M) =0

which, in view of Lemma yields the exact sequence in Mod-R
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PY = (G (AN =G (AN) — GF (M) = M — 0.

Thus we deduce that Pg is also a generator. By symmetry we also get that Q4 is a
generator. Hence in Mod-A we have an epimorphism of the form

QY — Ay —0
which yields the exact sequence in Mod-R
R"¥[GF (R)]"=G(Q)" — G(A) =0

so that we get that Pg is also finitely generated. Therefore we obtain the following
theorem.

Theorem 10.27. Let F': Mod-R — Mod-A be an additive functor. Assume that
(F,G) is an equivalence of categories. Set PR = G (A4). Then Pg is a progenerator
and we have functorial isomorphisms

F = Hompg (P,—) and G = ®4P.
Proposition 10.28.
HOHlA_ (E, GB) ®B F = HOIHA_ (E, GB ®B F)

Q. HOHlA_(E,GB)®BF — HOIIlA_(E,GB@BF)
fewx = [y ) f ©p ]

when
o +F isprojf.g. or
e pI is proj.f.g.

« is an isomorphism. If gF is proj.f.g. with dual basis ((x1,...,x,), (z],...,z))
,and f € Homy (FE,Gp ®p F), we have

ot (f) = ZZ[eHgt-(yt)xf]G@B%
e f = Y a®su

F®pHom 4 (E,pG) = Hom 4 (F,F ®p G)

ﬁ: F@BHOHI_A(E,BG) — HOHI_A(E,F®BG)
@ f = [y r@p f(y)]

when

e [, is proj.f.g. or



192 CHAPTER 10. PROGENERATORS AND MORITA EQUIVALENCE

o Fg is proj.f.g.

B is an isomorphism. If Fg is proj.f.g. with dual basis ((x1,...,x,), (z],...,2%))
,and f € Hom_ 4 (E, F ®p G), we have

BTHS) = in®32[6H$f(yt)gt]
fle) = > u®sa

Proof. Assume Fjp is projective and finitely generated. Then, by Proposition I,
we have that

wrp: F — Hompg (Hom.g (F,B),B)="*(F%)
y = =)

is a right B-module isomorphism and by Lemma T F* is a finitely generated
and projective left B-module. Hence, by Proposition T2

proplIT32

F®pHom 4 (F,pG) =" (F*)®pHom. 4 (E,pG) = Hompg (F*,Hom. 4 (E,5G)) =

Propl=2a propldITA
=  Homy, (F,Homp (F*,G)) = Hom(E,"(F")®pG)=Hom 4 (F,F®pG).

[
Corollary 10.29.
Qa HOHIA_<E,GA>®AF — HOIHA_(E,AGA®AF)
few = ly= () f@az]
a: Homy (F,A4)®@4F — Homy (F,A®4F)=Homyu (E,F)
fex = Y= ) fRar (y)f
a ' Homu (E,F) = Homu. (E,A®4 F) — Homy (E,A)®4F
v = 2le=1a-((e) ) il ®a

Homy (B, A®4 Homy (Ga, A)) = Homy. (E, Hom,
= Homy (G ®4 E, A)

yr(y )f®AgH(y)

r@y e (2)[(y) -9 = [ (W) flg
a Hom 4. (G XA E,A) = Hom 4. (E,HOIHA_ (GA,A)) Hom 4. (E A®4 Homy. (GA,A)) —

a: Homy (E,As) ®4 Homy (Ga, A) —

f®g >

2 —
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a: Homy (F,As) ®4 Homy (Ga, A) — Homy. (G®4 E,A)

feg = r@y = z-(y) flg
a b Hom 4. (G Xa E,A) — Homy4. (E,AA) ®4 Hom 4. (GA7A)
90 = Yile (1 ®e) gl ®a ]
where ((z1,...,x,), (23,...,2%)) is a dual basis for G 4

Corollary 10.30. Case A is commutative and we have symmetric modules

a: Homy (F,As) ®4 Homy (Ga, A) — Homy (G®y4 E,A)

fog = xRy g()f(y)
a ' Homu (G®a E,A) — Homa.(E,As) @4 Homy. (G4, A)
@ = Y lem (v ®e) ®@a ]

Definition 10.31. Let Z be a commutative ring. A Z-algebra R is called an Azu-
maya algebra over Z if

1) the map
v: R®.R — End.z (R)
Ya;®za; — [r— axal]

18 an isomorphism

2) zR is a progenerator.

Proposition 10.32. Let R and S be algebras over a commutative ring Z. Then
R-Mod-S = Mod-(S ®z RP) via

r-(s@r)=r-x-s
Similarly R-Mod-S = (S ® 7 R)

Proof.
[z @] (@) =z [(s@r) (s ©r)
[z-(s@r)]- (@)Y= -z-s5)-(Fes)=r-(r-z-s)-sf=0"r)-x-(s-5)
r-[(s@r)- (f@r)=x-(s-sS@r-r)=>0"r)-z-(s-5)

Notation 10.33. Let R be an algebra over a commutative ring Z. We set
R°=R®z R?” and “‘R=R?®z R
Then, by the foregoing we have

*R-Mod = R-Mod-R = Mod-R°.
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Notation 10.34. Let M be a bimodule over a ring R. We set
M? ={x € M |rz=ar for everyr € R}
Lemma 10.35. Let M be a bimodule over a ring R. Then the map

oy : Hompe (R, M) = Homp.p (R, M) — MZ~
f = f(1gr)

1 an 1somorphism.

Proof. Let us consider the isomorphism

py : Homgp(R,M) — M
f = f(1r)

of Proposition E2Z9. Let f € Hom p (R, M) and assume that f € Homg_g (R, M).
Then, for every » € R we have

r-f(lr)=f(r)=f(1gr) r

so that f (1z) € M. Conversely, assume that f (1) € M%. Then, for every r € R,
we have

fr)=f(g)-r=7r-f(1r)

so that for every x € R we have

flra)y=f0r)-(@)=[r-fp)]-x=r-[f(lr) -2l =7 f(2).

Lemma 10.36.
[Hom 7 (s Xr1,s YT)]S = Homg 1 (s X7,5 Y1)
Proof. Let f € Hom.r (s Xr,s Yr). Then, for every s € S we have, for every x € X
(1) (@) = s f () and (f-5) (&) = f (s 2)

so that

s-f=f-s<=s-f(xr)=f(s-x) for every v € X <= f € Homg 1 (sX7,5 Y1) .
[

Corollary 10.37.

[Hom_g (X, Y)]® = Homg.s (X,Y) = Hom_ge (X, Y) = Homeg. (X,Y)
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Proposition 10.38. Let Z be a subring of a ring S which centralize S i.e. z-s = s-z
for every € Z and s € S. Then M?® is a right Z-submodule of M. Let

i M5 — M
be the canonical injection. Then the map
Hom » (W,4) : Hom_z (W, M*) — Hom_z (W, M)
yields an isomorphism
Hom_; (W, M%) 2 [Hom._, (W, M)]® .
Proof. For every s € S,z € Z,m € M® we have

s-(z-m)=(s-z) - m=m-(s-z)=m-(z-5)=(m-2)-s.

Hom_ (W, MS) = Hom_z (W, Hom_ge (S, M)) = Hom_ge (W ®z S, M) = Homg.s (W ®z S, M) =
Remmalt=E i om o (W @y S, M)])® 2 [Hom.; (W, Homg (S, M))]® = [Hom., (W, M)]*
]

Lemma 10.39. Let R be an algebra over a commutative ring Z and let S be a
Z-subalgebra of R. Then the map

©: RS @z R — (R&zR)°
CL®Zb — a®Zb

s well defined and it is an isomorphism of S-S-bimodules.
Proof. By Lemma =33 the map

¢ : Homeg (S, R) = Homg.s (S, R) — R®
f = f(1s)

is an isomorphism. By Lemma [I38
[Hom.7 (s X7,5 Y7)]® = Homg.r (sX7.5 Y7)
(Hom.g (S, R ®7 R))° "=° Homg.g (S, R @4 R)
Since zR is projective and f.g., by Proposition IZY, we have that

a: Homy (F,Gp)®@p F — Homy (E,Gp®pF)
fex = [y~ (y) f ®p 7]

«: Homeg (S,R)®z R — Homeg. (S, R®y R)
foz = [y = (y) f©p ]
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is an isomorfism. Therefore we deduce that

(namesa}

RS KRz R = HOHIES_ (S, R) Rz R = HOmes_ (S, R KRz R) = HOHlS_S (S, R KRz R) =
"= (Hom_g (S, R®z R))° = (R®y R)*.

Excplicitely let
Z a; @4 r, where a; € R® for every t.

Then we have

[Zat Rz rt] — [Z’ZL?@ZQ} — [s — Zsat Rz rt] — [Zat Rz Tt} .
[

Lemma 10.40. Let R be an Azumaya algebra over the commutative ring Z and let

S be a Z-subalgebra of R. Then the map

x: RP®z R — Homg. (R,R)
Yoar Rz by — (v ap -z by

is well defined and it is an isomorphism.

Proof. By Lemma we have that the map

©: @z R — (R®zR)°
a®zb — a®zb

gis well defined and it is an isomorphism of S-S-bimodules. Now, by definition of
Azumaya algebra we have that the map

v: R®.,R — Endyz (R)
dYa;®za;, — [r—) axad]

is an isomorphism of S-bimodules. Therefore we deduce that

defAzumaya Z CS+Zcomm

LemII=33
(RozR)® =  (Endz(R)® = Homsyz(R,R) =  Homg (R,R)

[Hom.7 (s X7,s YT)]S = Homg 7 (s X7, Y1)
Il

Lemma 10.41. Let R be an Azumaya algebra over the commutative ring Z and let

S be a Z-subalgebra of R. Assume sR f.g. projective. Then the map

Q: RsR — Hom_Z(RS,R)
a®sb +— |a— aad]

1s well defined and it is an isomorphism.
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Proof.

LemIZa

Hom » (R°, R) = Hom ; (R°,Hom (R, R)) ® Hom p (R° ®; R,R) = Hom g (Homg. (R, R

s Rf.g.proj+ProplITa
~

>~ Hom.z (*R ®5 R, R) = Hom_g (*R, Hom_g (R, R)) = Hom.g ("R, R) 2 R®s ("R)’
= R®s R

]

Lemma 10.42. Let R be an Azumaya algebra over the commutative ring Z and let
S be a Z-subalgebra of R. Assume sR f.g. projective. Then the map

U: R®sR®sR — Hom.y (R°®z; R% R)
aRsb®sc +— [a®z P — aabfd]

15 well defined and it is an isomorphism.
R®s R®s R=Hom y (R°®z R°, R)

Proof. ...
Lemr=m g s Rf.g.proj+PropdIT2
(R Rg R) ®s R = Hom. (R ,R) ®g R =

~ Hom z (R°, R ®s R) “E Homy (R°,Hom 7 (R®,R)) = Hom » (R® ®7 R°, R)

Hom.; (RS @, RS,R) = Hom, (RS, Homy (RS.R)) = Hom., (R, R®s R) =

s Rf.g.proj+PropITa S LemIIZ1
=~ Hom.z (R°,R)®s R = (R®sR)®sR
O

Lemma 10.43. Let R be an Azumaya algebra over the commutative ring Z and let
S be a Z-subalgebra of R. Assume sR f.g. projective. Then the map

I': (RosR)® — End, (R
a®gb = o aad)]

s well defined and it is an isomorphism.
(R®s R)® = End_, (R®)

Proof.

LemIIZ1 g Proll=33

(RosR)° =  [Homy, (R R)]” = Hom, (R% R
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Lemma 10.44. Let R be an Azumaya algebra over the commutative ring Z and let
S be a Z-subalgebra of R. Assume sR f.g. projective. Then the map

Z=: (R®sR®sR)” — Hom,, (R® @, RS, RS)
a®gb®gc = [a®z B — aabpc]

1s well defined and it is an isomorphism.
(R®s R®s R)° = Hom_, (R® @, R, R®)

LemIIZA S Prol=33

Proof. (R®g R ®g R)S = [Hom_z (RS ®z RS, R)] >~  Hom._y, (RS ®z R, RS)

Hom_; (W, M5) = [Hom.; (W, M)]°
]

Notation 10.45. Let S be a subring of a ring R. We define on R®g R an R-coring
structure by setting

A(a®sb) = (a®s 1) @r (1 @ b)

and
£ (a ®gb) = ab.

Lemma 10.46. Let S be a subring of a ring R. Then for every M € R-Mod-R, we
have
v HomR—Mod—R (R XRg R, M) — MS
/ = f(lgr ®s 1g)

is an isomorphism of S-S-bimodules.
HomR—Mod—R (R ®S R, M) = MS

so that
Endp.cr (R®s R) = (R®g R)° NGr(R®g R)

Proposition 10.47. Let R be an Azumaya algebra over the commutative ring Z
and let S be a Z-subalgebra of R. Assume sR f.g. projective. Then

I': H ~Moi-r (R®s R,R®s R) — End, (R®
fOHlR Mod—R (R ®g s i) . [anr—;Z%a')O!b] where f(1r ®g 1p) = Za@sb

mduces an isomorphism

Endg.cor (R®s R) = Endy oy (R%)



10.2. FROBENIUS 199

Proof. Let f € Hompg_poq-r (R®s R, R®g R). Then f € Endg.co (R®g R) if
and only if
AOf: (f®sf)OA
Let
A HomR—Mod—R (R XRg R, R XRg R XRpr R XRs R) — HOIIl_Z (RS KRz R
h = [a®z 8-> aq
where h (1 ®s 1g) = Z a; @5 bij QR i jr s d; j 1
Then Ao f = (f ®s f)o A if and only if

AAof)=A((f@s [)oA).

Let
f(lr®s1R) = Zai ®s b;.
Then
(Ao f)(1r®s1r) =Y ai®s1p Or 1r g b;
so that
Ao N(awzf) =) ai-(a-B)-b;=T(f)((a-5))
and

[(f®s f)oAl(1r ®s 1r) = [ (1r ®s 1r)®rf (1r ®s 1) = Z ai®5bi®RZ a;®sb;
so that
A((f ®s f) o A)] (a®zB) = }:}jm a-bi-aj-B-b;=T(f)(a)-T(f)(B)

Therefore A(Ao f) =A((f®s f)o A) if and only if
L(f) (- 8) = T(f) (@) - T (f) () for every a, 3 € RS.

10.2 Frobenius

Lemma 10.48. Let R be a ring. Assume that Pg is projective and finitely generated.
Let P* = Hompg (Pg, Rg) and regard it has a left R-module via

(r-f)(z)=r-f(x).
Let P** = Hompg (rP*,r R) which is a right R-module via
(f) (- r) = [(f) ()] -7
and let w = wp : P — P** the map defined by w (x) = T where
(f)x = f(x) for every f € P*.

Then w is well-defined and it is an isomorphism of right R-modules.
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Proof. Let x € P. Then

(r-flz=(r-f)(x)=r-f(z)=r-[(f)]
which means that * € Hompg (rP*,g R). Let us check that w is right R-linear. Let
fepP*
() [w(@-r)]=(f)|w(@)- 7]
Nw@-n]=fl@-r)=f@)-r=() @ r)=(f)|w@)- ]
Let ((x1,...,2,),(x},...,2%)) be a finite dual basis for P. Let us check that w is
injective. Let 0 £ x € P. Then

Hence there exists an i such that  (x) # 0. Hence (z7) T = z} () # 0. Let us check
that w is surjective. Let a € P**. By lemma MO0, the left R-module Hompg, (P, R) is
projective and finitely generated with dual basis ((«7,...,2%),(Z1,...,Z,)). Hence

rrn

o =5 (@) a] = [ Y @i (2) o] w.
[l

10.49. Let R be a commutative ring and let A be an R-algebra i.e. there is a ring
morphism 1 : R — A such that Im(n) C Z (A) where Z (A) denotes the center of
A. In this case we will write also morphism of left A-modules on the
left. The abelian group Hompg (Ag, Rr) has a structure of right A-module defined by
setting

(f-a)(z)=f(ax).
The abelian group Hompg (rA,g R) has a structure of left A-module defined by setting
(a-f)(x) = f(za).

Since A is a symmetrical R-bimodule we have that Hompg (AR, Rgr) = Hompg (rA,gr R).
We set AY = Homp (AR, Rg) = Hompg (rA,g R). Then AY is a left and also a right
A-module. Let us check that it is indeed an A-A-bimodule. In fact we have

la-(f-0)](z)=(f-b)(x-a)=f(b-(z-a)=[f((b-z)-a)=(a-f)(b-x)=][a-f) b](x).

Note that the induced R-R-bimodule structure on AV makes it a symmetrical R-
bimodule.

Corollary 10.50. Let A be an algebra over a commutative ring R. Then, in the
notations of [U4Y and Lemma [[TZ3, let

Avv = HOHlR (RAV,R R)
endowed the left A-module structure defined by
(f)(a-a)=(f-a)a for everya € A,a € AYY, f € A".

Then w = wy : 4 A — 4 A* = AV is an isomorphism of left A-modules.
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Proof. By Lemma IIZ8 we have only to prove that w is a morphism of left A-
modules.

Let a,x € A, f € AY. We have

[a-w(@)](f) =w(@)(f-a)=(fa)(z)=[f(a z)=]wla 2)](f).

10.51. Let p : Ay — AY be an isomorphism of right A-modules. Then ¢ : RA —
rAY is also a left R-modules homomorphism so that we can consider

HOHIR ((,O,R R) : HOIIIR (RA\/7R R) — HOIIIR (RA,R R)

which is a group isomorphism. Let us check it is a left A-modules isomorphism. For
every x,a € A, f € Hompg (RAY,gr R), we have

Homp (p.r R) (a- )] () = [(a-f)og](x) =(a-f)(p(@)) = flp(x) a] "=
= J(p(@-a) =la-(po () = (a- [Homn (p.r R) (f)]) (@)

so that
HomR (%R R) : AA** = AVV — HOHlR (RAaR R) = AAV

is an isomorphism of left A-modules. Since w = wy : gA — A = AYY is also an
isomorphism of left A-modules, we get that

C: HOII]R ((p,RR> owy : AA — AAV

is an isomorphism of left A-modules. We have

¢ (1) = Homg (¢,x R) (“1“) I

so that, for every a € A, we get

COI (@) = [Top] (@) =@ (@) (1) = ¢ (1-a) (1) " E"" [p(1) -] (1) = (1) (a- 1) = 2 (1

Thus we deduce that



