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Chapter 1

Modules

1.1 Homomorphisms and Quotients

Definition 1.1. Let R be a ring. A left R-module is a pair (M, RµM) where
(M+, 0) is an abelian group and

µ = RµM : R×M →M

is a map such that, setting
a · x = µ ((a, x)) ,

the following properties are satisfied :

M1 a · (x+ y) = a · x+ a · y;

M2 (a+ b) · x = a · x+ b · x;

M3 (a ·R b)x = a · (b · x);

M4 1R · x = x

for every a, b ∈ R and every x, y ∈M .
In this case we will say that M is a left R-module. The notation RM will be used
to mean that M is a left R-module.

Definition 1.2. Let R be a ring and let Rop denote the opposite ring of R. A right
R-module is a left Rop-module i.e. it is a pair (M,µ′) where (M+, 0) is an abelian
group and

µ′ = µRM : R×M →M

is a map such that, setting
a · x = µ′ ((a, x)) ,

M1′ a · (x+ y) = a · x+ a · y;

4
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M2′ (a+ b) · x = a · x+ b · x;

M3′ (a ·Rop b) · x = a · (b · x);

M4′ 1R · x = x

for every a, b ∈ R and every x, y ∈M .
In this case we will say that M is a right R-module. The notation MR will be used
to mean that M is a right R-module.
Note that

a ·Rop b = b ·R a

so that M3’ rewrites as

(a ·R b) · x = (b ·Rop a) · x = b · (a · x)

For this reason, if M is a right R-module, one usually writes x · a instead of a · x,
for every a ∈ R, x ∈M . With this notation the conditions M1’), M2’), M3’), M4’)
may be rephrased as follows:

M1” (x+ y) · a = x · a+ y · a;

M2” x · (a+ b) = x · a+ x · b;

M3” x · (a ·R b) = (x · a) · b;

M4” x · 1R = x.

The abelian group M is called the underlying additive group of the left (
resp. right) R-module M .
Given x, y ∈M we will write x− y instead of x+ (−y).

Remark 1.3. If R is a commutative ring, then every left R-module is, in a natural
way, a right R-module, and conversely.
In fact, let M be a left R-module, given a, b ∈ R, x ∈M , we have

a · (b · x) = (a ·R b) x = (b ·R a)x = b · (a · x) .

In the same way, if M is a right R-module, given a, b ∈ R, x ∈M , we have:

(x · a) · b = x (a ·R b) = x · (b ·R a) = (x · b) · a.

Therefore, when R is a commutative ring, we will, in general, simply say that M is
an R-module.

Examples 1.4.
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1. Let G be an abelian group with additive notation. G becomes, in a natural
way, a Z- module by defining, for every n ∈ Z and x ∈ G,

n · x = nx

where nx denotes the nth power of x in the additive notation.

2. Let A be a ring, R be a subring of A. A becomes a left (resp. right) R-module
by setting, for every r ∈ R, a ∈ A, ra ( resp. ar) to be the product of the
element r ∈ R ⊆ A with the element a ∈ A ( resp. of the element a ∈ A with
the element r ∈ R ⊆ A) in the ring A.
In particular the rings R,R[X], R[[X]] may be considered as left (resp. right)
R-modules.
If D is a commutative domain, Q (D) is a D-module.

3. More generally, let f : R → A be a ring homomorphism. Any left A-module(
M, AµM

)
inherits the structure of a left R-module by setting

RµM ((r, x)) = AµM ((f (r) , x)) for every r ∈ R and x ∈M

i.e.

r · x = f (r) · x for every r ∈ A and x ∈M.

This module is often denoted by f∗ (M) and called the R-module obtained by
restriction of the ring of scalars from A to R.

1.5. If R is a division ring and M is a left (resp. right) R-module we say that M
is a left (resp. right) vector space over R. If R is a field, we simply say that
M is a vector space over R.

Proposition 1.6. Let R be a ring, M a left R-module.
Then, for every a, b ∈ R and for every x, y ∈M we have :

1. a · 0M = 0M ;

2. 0R · x = 0M ;

3. (−a) · x = −a · x = a · (−x) ; (−a) · (−x) = a · x;

4. a · (x− y) = a · x− a · y;

5. (a− b) · x = a · x− b · x .

6. n (a · x) = (na) · x = a · (nx) for every n ∈ Z, a ∈ R, x ∈M.
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Proof. 1) Let us start from : a·0M = a (0M + 0M) = a·0M+a·0M . Adding − (a · 0M)
to both sides we find : 0M = a · 0M .

2) First we look at the obvious : 0R · x = (0R + 0R)x = 0R · x + 0R · x. Adding
− (x · 0R) to both sides we find : 0M = 0R · x.

3) From (−a)x+ ax = ((−a)+ a)x = 0R ·x = 0M we obtain that (−a)x = −ax.
In a similar way it follows from

ax+ a (−x) = a(x+ (−x)) = a · 0M = 0M

that a (−x) = −ax. Moreover : (−a) (−x) = −(a(−x)) = −(−(ax)) = ax.
4) We calculate:

a(x− y) = a(x+ (−y)) = ax+ a(−y) = ax+ (−(ay)) = ax− ay.

5) We calculate:

(a− b) x = (a+ (−b))x = ax+ (−b)x = ax+ (−bx) = ax− bx.

6) It is easily proved by Induction.

1.7. Let M be an abelian group and let A = End(M) denote the ring of endomor-
phisms of M . Then M becomes a left A-module by setting

f · x = f (x) every f ∈ A and x ∈M.

In fact,note that

(f ·A g) x = (f ◦ g)·x = (f ◦ g) (x) = f (g (x)) = f ·(g · x) for every f, g ∈ A and x ∈M.

Now let φ : R → End(M) be a ring morphism. Then, in view of Example 3 in
1.4, we can consider the left R-module φ∗ (M) i.e. M becomes a left R-module by
setting

r ·m = φ(r)(m) for all r ∈ R and for all m ∈M .

Conversely let M be a left R-module and let End(M) denote the ring of endomor-
phisms of the abelian group underlying the R-module structure of M . For every
r ∈ R consider the map

tr : M → M
m 7→ r ·m .

Clearly tr ∈ End(M) and the map

ψ : R → End(M)
r 7→ tr

is a ring morphism. In this way we get:

Theorem 1.8. Let R be a ring and let M be an abelian group. The ring morphisms
φ : R → End(M) correspond bijectively to the left R-module structures on M .
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Proof. Using notation as above, given a ring morphisms φ : R → End(M) we have:

ψ(r)(m) = r ·m = φ(r)(m).

Conversely, if M is a left R-module we have: r ·m = ψ(r)(m).�

To get an analogous result for right R-modules we have to consider the ring
End(M)op which has the same addition as End(M) but where multiplication is
defined by

f · g = g ◦ f .
Rephrasing the foregoing theorem we obtain :

Theorem 1.9. Let R be a ring and let M be an abelian group. The ring morphisms
φ : R → End(M)op correspond bijectively to the right R-module structures on M .

Definitions 1.10. Let R be a ring and let M be a left R-module. A subset N of M
is said to be an R-submodule ( or simply submodule) of M if :

1. N is a subgroup of M ;

2. a ∈ R and x ∈ N implies that a · x ∈ N , for every a ∈ R and x ∈ N .

We write N ≤R M to mean that N is a submodule of M .
We denote by L(RM) the set of all the submodules of RM . Given a subset X of M
we set L(RM,X) = L(RM) ∩ L(M,X).

Remark 1.11. If N is a submodule of a left module M , then N is itself an R-
module with respect to

f : R×N → N
(a, x) 7→ a · x

where a · x is the product of a and x in M .

Examples 1.12.

1. Let R be a ring. Then the submodules of RR are exactly the left ideals of R.

2. Let R be a ring. For every n ∈ N we let

In = {f ∈ R[X] | deg(f) ≤ n}

In is a subgroup of R[X] as, given f, g ∈ R[X]

deg(f) + deg(−g) ≤ max(deg (f) , deg(g))

In is not an ideal of R[X] ( why? ), but it is a submodule of R[X] considered
as a left module on R. In fact, for every r ∈ R, f ∈ R[X] we have deg (rf) ≤
deg (f).
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Proposition 1.13. Let R be a ring and let M be a R-left module. A subset N of
M is a submodule of M if and only if :

1. N ̸= ∅;

2. for every x, y ∈ N we have that x+ y ∈ N ;

3. for every a ∈ R, x ∈ N we have that a · x ∈ N .

Proof. Let N be a subset ofM such that 1), 2) and 3) are verified. For every x, y ∈ N
we have that

x− y = x+ (−1)y

and hence x − y ∈ N . Therefore N is a subgroup and, by 3), also a submodule of
M
The converse is trivial. �

Definitions 1.14. Let M,M ′ be left modules over the ring R. A map f :M →M ′

is called a ( left) R-module homomorphism if :

1. f is a group homomorphism, that is if, for every x, y ∈M we have

f(x+ y) = f (x) + f(y);

2. for every r ∈ R and for every x ∈M we have

f (r · x) = r · f (x)

If f :M →M ′ is an R-module homomorphism we say that:

- f is an injective homomorphism if the map f is injective ;

- f is a surjective homomorphism if the map f is surjective ;

- f is an isomorphism if the map f is bijective.

We will say that M and M ′ are isomorphic and we will write M ∼= M ′ if
there exists an isomorphism f : M → M ′. Observe that, in this case, the
inverse map of f , f−1 : M ′ → M is also a module isomorphism ( the proof is
left as an exercise).

1.15. The definitions of submodule of a right R-module and of right R-module
homomorphism are similar to those given in 1.10 and 1.14.
If R is a division ring, the submodules of a left (resp. right) R-module are called
subspaces of M and the R-module homomorphisms are also called vector spaces
homomorphisms or linear maps.
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Example 1.16. Let R be a ring. Given an element a ∈ R the map

µa : R → R
r 7→ r ·R a

is a left R-module homomorphism from RR into RR. Observe that, if a ̸= 1, then
µa is not a ring homomorphism.

1.2 Quotient Module and Isomorphism Theorems

Theorem 1.17 (Correspondence Theorem for Submodules).
Let R be a ring and let f :M →M ′ be a left R-module homomorphism. Then

1. if L ≤R M , f (L) ≤R M
′;

2. if L′ ≤R M
′, f← (L′) ≤M .

Hence, in particular :

Im (f) = f (M) ≤R M
′ and Ker (f) = f← ({0M ′}) ≤R M .

The assignment L 7→ f (L) defines a partially ordered set homomorphism

ϕ : L (RM,Ker (f)) → L (RIm (f))

whose inverse,

ϕ−1 : L (RIm (f)) → L (RM,Ker (f)) ,

is defined by ϕ−1 (L′) = f← (L′).
In particular the submodules of Im (f) are exactly those the form f (L) where L is
a submodule of M containing Ker (f).

Proof. Exercise. �

Theorem 1.18. Let R be a ring, let M be a left R-module and let N be a submodule
of M . We define a left R-module structure on the abelian group M/N by setting,
for every r ∈ R and for every x ∈M ,

r · (x+N) = (r · x) +N .

Moreover, with respect to this structure, the canonical projection pN : M → M/N
becomes a surjective R-module homomorphism.
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Proof. We have first to show that (1) is well defined, that is, given any r ∈ R, x, x′ ∈
M such that x+N = x′+N ( i.e. x−x′ ∈ N), we have that (r · x)+N = 9r ·x′+N
( i.e. r · x− r · x′ ∈ N).
But x− x′ ∈ N implies that r · x− r · x′ = r · (x− x′) ∈ N as N is a submodule of
M .
Let now a, b ∈ R, x, y ∈ R. We have:

a · [(x+N) + (y +N)] = a · [(x+ y) +N ] = (a · (x+ y)) +N = (a · x+ a · y) +N =

= (a · x+N) + (a · y +N) = a · (x+N) + a · (y +N);

(a+ b) · (x+N) = ((a+ b) · x) +N = (a · x+ b · x) +N

= (a · x+N) + (b · x+N) = a · (x+N) + b · (x+N) ;

(a · b) (x+N) = ((a ·R b)x)+N = (a · (b · x))+N = a · (b · x+N) = a · (b · (x+N));

1R · (x+N) = (1R · x) +N = x+N.

Finally:
pN (a · x) = a · x+N = a · (x+N) = a · pN (x) .

Definition 1.19. Let M be a left module over a ring R and let N be a submodule
of M . The left R-module ( defined in Theorem 1.18) having the quotient group
M/N for its underlying abelian group is called the quotient module ( or a factor
module) of M modulo N and is denoted by R(M/N) or simply by M/N .

Theorem 1.20 (Fundamental Theorem for Quotient Modules). Let R be a ring
and let f : M → M ′ be a left R-module homomorphism. If N is a submodule of M
contained in Ker (f), then there exists an R-module homomorphism f̄ :M/N →M ′

such that the diagram
commutes, i.e. f = f̄ ◦ pN .

Moreover:

1. f̄ is unique with respect to this property;

2. Im (f) = Im(f̄) and Ker(f̄) = Ker(f)/N ;

3. f̄ is injective ⇔ N = Ker (f).

Proof. In view of the Fundamental Theorem for the Quotient Group there exists a
group homomorphism f̄ : M/N → M ′ such that f = f̄ ◦ pN . Moreover: 1) such a
group homomorphism is unique; 2) Im (f) = Im(f̄), Ker(f̄) = Ker (f) /N ; 3) f̄ is
injective ⇔ N = Ker (f).
Hence we only have to prove that, for every x ∈M and r ∈ R:

f̄(r(x+N)) = r · f̄(x+N).
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It is now an easy calculation to arrive at:

f̄(r·(x+N)) = f̄(r·x+N) = f̄(pN(r·x)) = f(r·x) = r·f(x) = r·f̄(pN(x)) = r·(x+N).

�

Corollary 1.21 (First Isomorphism Theorem for Modules).
Let R be a ring and f : M → M ′ be a left R-module homomorphism. Then the
assignment

x+Ker (f) 7→ f (x)

defines an isomorphism of left R-modules

f̂ :M/Ker (f) → Im (f)

In particular, if f is surjective, then f̂ is an isomorphism and

M/Ker (f) ∼= M ′.

Theorem 1.22 (Second Isomorphism Theorem for Modules). Let L and N be sub-
modules of a module M over a ring R. Then L∩N and L+N are submodules of M
and the assignment x + (L ∩ N) 7→ x + N defines an R-module isomorphism from
L/(L ∩N) into L+N/N . Therefore:

L/(L ∩N) ∼= L+N/N

Proof. We know that L ∩ N is a subgroup of M . Let r ∈ R, z ∈ L ∩ N . Then
rz ∈ L and rz ∈ N , as L and N are submodules of M . Therefore r · z ∈ L ∩N .
We know that L+N is a subgroup of M . Let r ∈ R, z ∈ L+N . Then there exist
x ∈ L and y ∈ N such that z = x + y. Obviously rx ∈ L and ry ∈ N , and hence
r · z = r · x+ r · y ∈ L+N .
In view of the Second Isomorphism Theorem for Groups, the assignment x + (L ∩
N) 7→ x+N defines a group isomorphism

φ : L/(L ∩N) → L+N/N .

Let r ∈ R, x ∈ L, then we calculate:

φ(r(x+ (L ∩N)) = φ(rx+ (L ∩N)) = rx+N = r(x+N) = rφ(x+ (L ∩N)).

Therefore φ is a left R-module isomorphism. �

Theorem 1.23. Let R be a ring, f : M → M ′ be a left R-module homomorphism.
For every submodule N of M containing Ker (f) the assignment x + N 7→ f (x) +
f (N) defines an isomorphism f̂N :M/N → Im (f) /f(N) . Therefore

M/N ∼= Im (f) /f (N) .
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Proof. We know that the assignment x + N 7→ f (x) + f (N) defines a group iso-
morphism ψ = f̂N :M/N → Im (f) /N . Let r ∈ R, x ∈ N . We have :

ψ(r(x+N)) = ψ(rx+N) = f(rx) + f(N) = (rf(x)) + f (N)

= r (f (x) + f (N)) = rψ (x+N)

Therefore ψ is a left R-module isomorphism. �

Corollary 1.24 (Third Isomorphism Theorem for Modules). Let L and N be sub-
modules of a module M over a ring R and assume that L ⊆ N .
Then the assignment x+N 7→ (x+ L)+N/L. defines a left R-module isomorphism
from M/L into M/L/N/L. Therefore

M/N ∼= M/L/N/L.

Proof. Apply Theorem 1.23 to pL :M →M/L, recalling that pL (N) = N/L.

1.3 Product and Direct Sum of a Family of Mod-

ules

1.25. Let I and A be nonempty sets. At places, in mathematical literature, a map
f : I → A is called a family of elements of A indexed by I and we write

f = (ai)i∈I or f = (ai) where ai = f(i) for every i ∈ I .

In this context the elements of I are called indexes and, for every i ∈ I, ai is called
the i-th element of the family.
The use of this terminology and notation is traditionally reserved for particular situ-
ations. As we do not think that this is the right place to deal with this argument, we
will simply use the above terminology and notation, whenever it will be convenient.

In any case the reader should carefully note the difference between the family
(ai)i∈I , which is a map from I to A, and the set {ai | i ∈ I} , which is the image of
the previous map.
In fact, it may happen that ai = aj for two distinct indexes i, j ∈ I. It may even
happen that the set {ai | i ∈ I} consists of only one element! In this case the family
(ai)i∈I is also called constant (in fact, it is a constant map!).
Let (ai)i∈I be a family of elements of A indexed by I, (bj)j∈J a family of elements of
B indexed by J. Observe that these families are equal if and only if I = J, A = B
and ai = bi for every i ∈ I.
A family of elements of A indexed by N is called a sequence of elements of A.
A family of elements of A indexed by the set {1, 2, . . . , n} is usually called an n-
tuple of elements of A. In this case we write (a1, . . . , an) instead of (ai)i∈I and
ai, with 1 ≤ i ≤ n, is called the i-th element (or i-th coordinate) of the n- tuple.
Note that, by the above considerations, two n- tuples of elements of A, (a1, . . . , an)
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and (a′1, . . . , a
′
n) coincides if and only if ai = a′i for every i ∈ {1, . . . , n} .

We often consider families of sets, i.e. families (Xi)i∈I such that Xi is a set, for every
i ∈ I.
If (Xi)i∈I is a family of sets, we define its union, denoted by

∪
i∈I
Xi, and we read it

“union of the X ′i s, i ranging in I”, as the union of the set of sets {Xi | i ∈ I}. Thus:∪
i∈I

Xi = {x | x ∈ Xi for some i ∈ I} = {x | ∃ i ∈ I such that x ∈ Xi} .

Analogously we define the intersection of this family, denoted by
∩
i∈I
Xi, and we

read it “intersection of the X ′i s, i ranging in I”, as the intersection of the set of sets
{Xi | i ∈ I} . Thus: ∩

i∈I

Xi = {x | x ∈ Xi for every i ∈ I} .

If I = {1, 2, . . . , n} we use the notations
n∪
i=1

Xi or X1 ∪ . . . ∪ Xn instead of
∪
i∈I
Xi

and the notations
n∩
i=1

Xi or X1 ∩ . . . ∩Xn instead of
∩
i∈I
Xi.

Let (Xi)i∈I be a family of sets. We say that the sets of this family are pairwise
disjoint if, given i, j ∈ I, from i ̸= j it follows that Xi ∩ Xj = ∅. In this case,
obviously we have

∩
i∈I
Xi = ∅.

We remark here that to give a family of sets usually one just gives the set I of
indexes and, for every i ∈ I, a set Xi. In fact, the codomain of the family itself,
thought of as being a map, is understood to be clear from the context.

Definition 1.26. Let (Ai)i∈I be a family of nonempty sets. The Cartesian prod-
uct of such a family is the set, denoted by

∏
i∈I
Ai, to be read “Cartesian product of

the Ai’s, i ranging in I” given by∏
i∈I

Ai =

{
f : I →

∪
i∈I

Ai | f (i) ∈ Ai for every i ∈ I

}
.

According to 1.25, with the same notations, we write:∏
i∈I

Ai =
{
(ai)i∈I | ai ∈ Ai for every i ∈ I

}
.

If for every i ∈ I, Ai = A then the set
∏
i∈I
Ai is usually denoted by AI and we have:

AI = {f : I → A} .

If I = {1, 2, . . . , n} we write A1 × . . .× An or We have

A1 × . . .× An = {(a1, a2, . . . , an) | ai ∈ Ai for every i = 1, . . . , n} .

If A1 = A2 = . . . = An = A we write An instead of A1 × . . .× An.
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1.27. Let (Gi)i∈I be a family of groups. We can state, without using the Axiom of
Choice, that

∏
i∈I
Gi ̸= ∅. In fact, let 1i be the identity element of Gi. The map

f : I →
∪
i∈I

Gi

defined by letting f (i) = 1i for all i ∈ I, i.e. f = (1Gi
)i∈I , is an element of

∏
i∈I
Gi.

Now we can define a group structure on
∏
i∈I
Gi, as follows.

We define an inner composition law on
∏
i∈I
Gi by letting, for all i ∈ I and for every

x = (xi)i∈I , y = (yi)i∈I ∈
∏
i∈I
Gi

(xy)i = xiyi.

Proposition 1.28. Let (Gi)i∈I be a family of groups. Then, using the · composition
law defined in 1.27,

∏
i∈I
Gi is a group whose identity element is (1i)i∈I .

Definition 1.29. Let (Gi)i∈I be a family of groups. In the notations of Proposition
1.28, the group (

∏
i∈I
Gi, ·, (1i)i∈I) is called the direct product of the family of

groups (Gi)i∈I and will be simply denoted by
∏
i∈I
Gi. If I = {1, 2, .., n} we write

G1 ×G2 × ...×Gn instead of
∏
i∈I
Gi. If Gi = G for all i, then we also write GI and

Gn if I = {1, 2, .., n}.

1.30. Let (Gi)i∈I be a family of groups. Consider, for all j ∈ I, the map πj :∏
i∈I
Gi → Gj defined by setting πj((xi)i∈I) = xj for all (xi)i∈I . πj is called the j-th

canonical projection.

Lemma 1.31. Let (Ai)i∈I be a family of nonempty sets and let x ∈
∏
i∈I
Ai. Then

x = (πi(x))i∈I

Therefore if x, y ∈
∏
i∈I
Ai, we have

x = y ⇔ πi (x) = πi (y) for every i ∈ I.

Proof. Let x = (xi)i∈I ∈
∏
i∈I
Gi. For every j ∈ I we have xj = πj (x), and hence

x = (πi(x))i∈I .
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Theorem 1.32. (Universal Property of the Direct Product of a family
of Groups) Let (Gi)i∈I be a family of groups. Then, for all j ∈ I, the canonical
projection πj :

∏
i∈I
Gi → Gj is an epimorphism of groups. Moreover, for any group

G and any family (fi)i∈I of homomorphisms fi : G → Gi, there exists a unique
homomorphism f : G →

∏
i∈I
Gi such that πi ◦ f = fi for all i ∈ I. This homomor-

phism is called the diagonal homomorphism of the family (fi)i∈I of group
homomorphism and will be denoted by ∆((fi)i∈I).

Proof. Let j ∈ I.
The map πj :

∏
i∈I
Gi → Gj is surjective. In fact let xj ∈ Gj. Consider the element

g = (gi)i∈I ∈
∏
i∈I
Gi defined by gi = 1Gi

for all i ∈ I \ {j} and gj = xj. Then

πj(g) = gj = xj.
The map πj is a homomorphism. Let x = (xi)i∈I , y = (yi)i∈I ∈

∏
i∈I
Gi. Then

πj(xy) = πj((xiyi)i∈I) = xjyj = πj (x) πj(y).

Let now (fi)i∈I be a family of homomorphisms, fi : G → Gi. We define a map
f : G→

∏
i∈I
Gi by setting f(g) = (fi(g))i∈I for all g ∈ G.

f is a homomorphism. Let g, h ∈ G, then:

f(gh) = (fi(gh))i∈I = (fi(g)fi(h))i∈I =

= (fi(g))i∈I (fi (h))i∈I = f(g)f(h).

Given j ∈ I , πj ◦ f = fj. In fact, for all g ∈ G,we have :

(πj ◦ f)(g) = πj((f(g))i∈I) = fj(g).

Let now let f ′ : G→
∏
i∈I
Gi be another homomorphism such that πi ◦ f ′ = fi for all

i ∈ I.
Then by Lemma 1.31 ,

f ′(g) = (πi(f
′(g)))i∈I = ((πi ◦ f ′)(g))i∈I = (fi(g))i∈I = f(g)

for all g ∈ G. �

1.33. Let (Gi)i∈I be a family of groups, in additive notation. Given an element
x = (xi)i∈I ∈

∏
i∈I
Gi, we set

Supp (x) = {i ∈ I | xi ̸= 0Gi
} .

Supp (x) is called the support of x. Let F be the subset of
∏
i∈I
Gi consisting of

all the elements with finite support. Obviously the identity element 0 = (0Gi
)i∈I of
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∏
i∈I
Gi has finite support ( it is the only element with empty support); moreover, if

x = (xi)i∈I and y = (yi)i∈I have finite support also their difference x−y = (xi−yi)i∈I .
In fact

Supp(x− y) ⊂ Supp (x) ∪ Supp(y).

Therefore F is a subgroup of
∏
i∈I
Gi .

Definitions 1.34. Let (Gi)i∈I be a family of abelian groups. The subgroup of
∏
i∈I
Gi

consisting of all the elements with finite support is called direct sum of the family
of groups (Gi)i∈I and is denoted by

⊕
i∈I
Gi.

If, for all i ∈ I, Gi = G, then the direct sum of the family of groups (Gi)i∈I is also
denoted by G(I).

Remark 1.35. If I is finite, then∏
i∈I

Gi =
⊕
i∈I

Gi

1.36. Let (Gi)i∈I be a family of abelian groups. Fix a j ∈ I and let

εj : Gj →
⊕
i∈I

Gi

be the map defined by setting for all a ∈ Gj

(εj(a))i = a if i = j

(εj(a))i = 0Gi
if i ̸= j

In other words, εj (a) has all its components zero but the j-th, which is a.
The map εj is easily verified to be a monomorphism: it is called the j-th canonical
injection.

Notations 1.37. For all i, j ∈ I we denote by 0i,j : Gj → Gi the costant map equal
to 0Gi

. Moreover we denote by δi,j : Gj → Gi the map defined by setting

δi,j = IdGi
if i = j

δi,j = 0i,j if i ̸= j

Lemma 1.38. Let (Gi)i∈I be a family of abelian groups. Then, for every i, j ∈ I
we have

πi (εj(a)) = δi,j (a) .

Proof. Let i = j. Then, for all a ∈ Gj, we have πj(εj(a)) = (εj(a))j = a = IdGj
(a) .

Let i ̸= j. Then, for all a ∈ Gj, we have πi(εj(a)) = (εj(a))i = 0Gi
= 0i,j (a) .
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Exercise 1.39. Let (Gi)i∈I be a family of abelian groups. Prove that εj = ∆(δi,j)i∈I .

Lemma 1.40. Let (Gi)i∈I be a family of abelian groups and let x ∈
⊕
i∈I
Gi. Then

x =
∑

i∈Supp(x)

εiπi (x) =
∑
i∈I

εiπi (x) .

Proof. Let j ∈ I. Then, in view of Lemma 1.38, we have

πj

 ∑
i∈Supp(x)

εiπi (x)

 =
∑

i∈Supp(x)

πj (εi (πi (x))) =
∑

i∈Supp(x)

δi,jπi (x) = πj (x) for every j ∈ I

and hence, by Lemma 1.31, we conclude.

Theorem 1.41. (Universal Property of the Direct Sum of a family of
Groups) Let (Gi)i∈I be a family of abelian groups. For all abelian groups G and
family of homomorphisms (fi)i∈I , fi : Gi → G there exists a unique homomorphism

f :
⊕
i∈I

Gi → G

such that f ◦ εi = fi for all i ∈ I. Such a homomorphism will be called the codiag-
onal homomorphism of the homomorphisms family (fi)i∈I , and will be denoted
by ∇ (fi)i∈I .

Proof. Define

f :
⊕
i∈I

Gi → G

by setting

f (x) =
∑
i∈I

fi (xi) for all x = (xi)i∈I ∈
⊕
i∈I

Gi.

Observe that this makes sense, in fact xi ̸= 0 only for finitely many i’s.
Let x = (xi)i∈I , y = (yi)i∈I ∈

⊕
i∈I
Gi. Then

f(x+ y) =
∑
i∈I

fi((x+ y)i) =
∑
i∈I

fi(xi + yi) =
∑
i∈I

(fi (xi) + fi(yi)).

Since G is commutative, we have that

f(x+ y) =
∑
i∈I

fi (xi) +
∑
i∈I

fi(yi) = f (x) + f(y)

so that f is a homomorphism. Let j ∈ I, a ∈ Gj. Then

(f ◦ εj) (a) =
∑
i∈I

(fi(εj (a))i) = fj (a)
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hence f ◦ εj = fj for all j ∈ I.
Let now f ′ :

⊕
i∈I
Gi → G be another homomorphism such that f ′ ◦ εi = fi for all

i ∈ I. If x ∈
⊕
i∈I
Gi then

f (x)
Lem1.40
= f

(∑
i∈I

εiπi (x)

)
=
∑
i∈I

fεiπi (x) =
∑
i∈I

fiπi (x) =
∑
i∈I

f ′εiπi (x) =

= f ′

(∑
i∈I

εiπi (x)

)
Lem1.40
= f (x)

Therefore f = f ′. �

1.42. Let R be a ring and let (Mi)i∈I be a family of left R-modules. We define on
the abelian group

∏
i∈I
Mi a multiplication by the elements of R by setting, for every

r ∈ R, x = (xi)i∈I ∈
∏
i∈I
Mi,

rx = (rxi)i∈I .

Theorem 1.43. Let (Mi)i∈I be a family of left modules over a ring R. The abelian
group

∏
i∈I
Mi becomes a left R-module with the multiplication by the elements of R

defined as in 1.42. Moreover
⊕
i∈I
Mi is a submodule of this R- module.

Proof. Exercise.

Definition 1.44. Let R be a ring, (Mi)i∈I be a family of left R-modules. The
abelian group

∏
i∈I
Mi with the left R-module structure defined in 1.42 is called the

direct product of the family of left R-modules (Mi)i∈I and is denoted by∏
i∈I
Mi. If I = {1, 2, ..., n} we write M1 × ...×Mn instead of

∏
i∈I
Mi. If M = Mi for

all i ∈ I, then we also write M I and Mn if I = {1, ..., n}. The left R-module
⊕
i∈I
Mi

will be called the direct sum of the family of left R-modules (Mi)i∈I .
If, for every i ∈ I, Mi is a fixed left R-module M , we will denote the direct sum
considered before by M (I).

Theorem 1.45. (Universal Property of the Direct Product of a family
of Modules) Let R be a ring, (Mi)i∈I be a family of left R-modules. Then, for
every j ∈ I, the canonical projection πj :

∏
i∈I
Mi → Mj is a surjective module

homomorphism..
Moreover, for every left R-module M and for every family (fi)i∈I of homomorphisms
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fi : M → Mi, there exists a unique R-module homomorphism f : M →
∏
i∈I
Mi such

that πi ◦ f = fi for every i ∈ I.
This homomorphism is called the diagonal homomorphism of the family (fi)i∈I
and will be denoted by ∆((fi)i∈I).

Proof. Exercise ( see Theorem 1.32).

Exercise 1.46. Let ∆ = ∆((fi)i∈I) where, for each i ∈ I, fi : M → Mi is a left
R-module homomorphism. Then

Ker (∆) =
∩
i∈I

Ker (fi)

Corollary 1.47. Let (Mi)i∈I be a family of left R-modules and let f : M →
∏
i∈I
Mi

be a left R-module homomorphism. Then f = ∆((πi ◦ f)i∈I). Therefore if f, g :
M →

∏
i∈I
Mi are left R-module homomorphisms we have

f = g ⇔ πi ◦ f = πi ◦ g for every i ∈ I.

Proof. For each i ∈ I we have πi◦ ∆((πi ◦ f)i∈I) = πi ◦ f . Hence, by the uniqueness
of the diagonal homomorphism, we get f = ∆((πi ◦ f)i∈I).

Theorem 1.48. (Universal Property of the Direct Sum of a family of
Modules) Let R be a ring, (Mi)i∈I be a family of left R-modules. Then, for every
j ∈ I, the canonical injection εj : Mj →

⊕
i∈I
Mi is an injective R-module homo-

morphism. Moreover, for every left R-module M and for every family (fi)i∈I of
R-module homomorphisms fi :Mi →M , there exists a unique R-module homomor-
phism f :

⊕
i∈I
Mi → M such that f ◦ εi = fi for every i ∈ I.

This homomorphism is called the codiagonal homomorphism of the family (fi)i∈I
of homomorphism and will be denoted by ∇((fi)i∈I).

Proof. Exercise (see Theorem 1.41).

Corollary 1.49. Let (Mi)i∈I be a family of left R-modules and let f :
⊕
i∈I
Mi →M be

a left R-module homomorphism. Then f = ∇((f◦εi)i∈I). Therefore if f, g :
⊕
i∈I
Mi →

M are left R-module homomorphisms we have

f = g ⇔ f ◦ εi = f ◦ εi for every i ∈ I.

Proof. For each i ∈ I we have ∇((f ◦ εi)i∈I) ◦ εi = f ◦ εi. Hence, by the uniqueness
of the codiagonal homomorphism, we get f = ∇((f ◦ εi)i∈I).

Lemma 1.50. Let R be a ring, M be a left R-module and let (Ni)i∈I be a family of
submodules of M . Then

∩
i∈I
Ni is a submodule of M .

Proof. Exercise.
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1.4 Sum and Direct Sum of Submodules. Cyclic

Modules

Definitions 1.51. Let M be a left module over a ring R. Given n ∈ N, n ≥ 1,

r1, ..., rn ∈ R, x1, ..., xn ∈ M , the element
n∑
i=1

rixi of M , is called a linear com-

bination with coefficients in R of the elements x1, .., xn; r1, ..., rn are called
coefficients of the linear combination.
Let S be a subset of M . In view of Lemma 1.50, the intersection∩

L∈L(RM,S)

L

of all submodules of M that contain S is a submodule of M that contains S. Clearly
it is the smallest submodule of M containing S. This submodule is called the sub-
module of M generated by S and is denoted by RS. If S = {s} we write Rs
instead of R {s}.
If (Mi)i∈I is a family of submodules of M then the submodule of M generated by∪
i∈I
Mi is called the sum of the family of submodules (Mi)i∈I and is denoted by∑

i∈I
Mi.

If I = {1, ..., n} we write M1 + ...+Mn or
n∑
i=1

Mi instead of
∑
i∈I
Mi.

Theorem 1.52. Let R be a ring, M a left R-submodule and let S be a subset of M .
Then, if S = ∅, RS = {0}. If S ̸= ∅ then

RS =

{
n∑
i=1

risi | n ∈ N, n ≥ 1, ri ∈ R, si ∈ S for every i = 1, ..., n

}
In other words RS is the set of all the linear combinations with coefficients in R of
the elements of S.

If S = {s1, ..., sk} then RS =

{
k∑
i=1

risi | ri ∈ R

}
.

In particular
Rs = {rs | r ∈ R} .

Proof. If S = ∅ , {0} ⊇ S and then RS = {0}.
Assume then that S ̸= ∅ and let

N =

{
n∑
i=1

risi | n ∈ N, n ≥ 1, ri ∈ R, si ∈ S for every i = 1, ..., n

}
N ⊇ S: in fact, for every s ∈ S we have s = 1 · s.
N is a submodule of M . N is clearly a subgroup of M . Let now r ∈ R, y ∈ N .
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Then there exist n ∈ N, n ≥ 1 and r1, ..., rn ∈ R, s1, ..., sn ∈ S such that y =
n∑
i=1

risi.

Then we have

ry = r
n∑
i=1

risi =
n∑
i=1

(rri)si.

Therefore N ⊇ RS.
Conversely, let L be a submodule of M containing S. Then, for every r ∈ R
and s ∈ S, L contains rs. It follows that L contains any linear combination with
coefficients in R of elements of S and so L contains N and hence RS ⊇ N . �

Corollary 1.53. Let R be a ring, M a left R-module and let (Mi)i∈I be a family of
submodules of M . Then

∑
i∈I

Mi =

{
n∑
j=1

xij | n ∈ N, n ≥ 1, ij ∈ I and xij ∈Mij for every j = 1, ..., n

}

In particular, if I = {1, ..., k},

M1 + ...+Mk =

{
k∑
i=1

xi | xi ∈Mi

}
.

Proof. If xi ∈Mi, then, for every r ∈ R, rxi ∈Mi.

Corollary 1.54. Let R be a ring, M a left R-module and let S be a nonempty
subset of M . Then

RS =
∑
s∈S

Rs.

In particular, if S = {s1, ..., sk}, RS = Rs1 + ...+Rsk.

Definitions 1.55. Let M be a left module over a ring R. We say that :

- a subset S of M is a set of generators of M if RS =M ;

- M is finitely generated if M admits a set of generators which is a finite set;

- M is cyclic if there exists an m ∈M such that {m} is a set of generators of
M , i.e.M = Rm;

- an element (s1, ..., sn) ∈ Mn is said to be linearly independent (over R)

if, given any r1, ..., rn ∈ R,
k∑
i=1

risi = 0 implies ri = 0 for every i, i.e. if the

only zero linear combination with coefficients in R of the elements s1, ..., sn is
that one with all coefficients equal to 0 ;
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- an element (s1, ..., sn) ∈ Mn is said to be linearly dependent (over R) if it
is not linearly independent, i.e. if there exists a zero linear combination with
coefficients R of s1, ..., sn where the coefficients are not all zero;

- an element (s1, ..., sn) ∈ Mn is called a basis of M if (s1, ..., sn) is a linearly
independent element and {s1, ..., sn} is a set of generators of M.

Theorem 1.56. Let R be a ring, M a left R-module and let (x1, ..., xn) ∈Mn. Then
there exists a left R-module homomorphism

υ : Rn →M

such that υ (ei) = xi, where ei = (0, ..., 1, 0, ..., 0) ( all components except the i-th
are 0 and the i-th component is 1) for every i = 1, ..., n.
Moreover :

1. this homomorphism is unique;

2. Im (υ) = R {x1, ..., xn};

3. υ is injective ⇔ (x1, ..., xn) is linearly independent.

Proof. Define υ : Rn →M by setting

υ((r1, ..., rn)) =
n∑
i=1

rixi for every (r1, ..., rn) ∈ Rn

Clearly we have that υ (ei) = xi for every i = 1, ..., n.
υ is a left R-module homomorphism. In fact let (r1, ..., rn), (s1, ..., sn) ∈ Rn, r ∈ R.
We have that

υ((r1, ..., rn) + (s1, ..., sn)) =

= υ((r1 + s1, ..., rn + sn)) =
n∑
i=1

(ri + si)xi =

=
n∑
i=1

rixi +
n∑
i=1

sixi = υ((r1, ..., rn)) + υ((s1, ..., sn))

υ(r(r1, ..., rn)) = υ((rr1, ..., rrn)) =
n∑
i=1

rrixi = r
n∑
i=1

rixi = rυ((r1, ..., rn)).

υ is unique. Let υ′ : Rn → M be another left R-module homomorphism such that

υ′ (ei) = xi for every i = 1, ..., n. Let (r1, ..., rn) ∈ Rn. Then (r1, ..., rn) =
n∑
i=1

riei

and hence

υ′((r1, ..., rn)) = υ′(
n∑
i=1

riei) =
n∑
i=1

riυ
′ (ei) =

n∑
i=1

rixi = υ((r1, ..., rn))
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Clearly Im (υ) = RS.

Since Ker (υ) =

{
(r1, ..., rn) ∈ Rn |

n∑
i=1

rixi = 0

}
, it is clear that Ker (υ) = 0 if and

only if (x1, ..., xn) is linearly independent. �

Corollary 1.57. With notation as in Theorem 1.56, (x1, ..., xn) is a basis of M if
and only if

υ : Rn →M

is an isomorphism.

Corollary 1.58. The element (e1, ..., en) is a basis of Rn.

Corollary 1.59. Let R be a ring and let φ : M → M ′ be a left R-module isomor-
phism. If (x1, ..., xn) is a basis of M , then (φ (x1) , ..., φ (xn)) is a basis of M ′.

Proof. Let υ : Rn → M and υ′ : Rn → M ′ be the R-module homomorphisms such
that υ (ei) = xi and υ

′ (ei) = φ (xi) for every i = 1, ..., n. Then (φ ◦ υ) (ei) = φ (xi)
for every i = 1, ..., n, and hence φ ◦ υ = υ′. Since φ and υ are isomorphisms, so is
υ′. �

1.60. Let R be a ring, let M be a left R-module and let x ∈M . The map

µx : R → M
r 7→ rx

is a left R-module homomorphism and Im (µx) = Rx by Theorem 1.56. Thus
Ker (µx) = {r ∈ R | rx = 0} is a submodule of RR, that is a left ideal of R. This
ideal is called the (left) annihilator of x in R and is denoted by AnnR (x).The
First Theorem of Isomorphism for Modules now allows to identity:

R/AnnR (x) ∼= Rx.

Corollary 1.61. Let R be a ring. The cyclic left R- modules are exactly those
isomorphic to modules of the form R/I where I is a left ideal of R.

Proof. If M = Rx then, as observed in 1.60, we have that R/AnnR (x) ∼= M .
Conversely, let I be a left ideal of R and let f : R(R/I) → RM be an isomorphism.
We let x = f (1 + I). Then, for every y ∈ M , there exists an r ∈ R such that
y = f (r + I) and we have that y = f(r(1 + I)) = rf(1 + I) = rx. Therefore
M = Rx. �

Remark 1.62. Let R be ring. In general it is not true that every non-zero finitely
generated left R- module has a basis. Moreover it can be proved that this holds if
and only if R is a division ring.
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Example 1.63.
1. Let n ∈ N, n > 0. Then Z/nZ is a cyclic Z-module: Z/nZ = Z (1 + nZ).

But Z/nZ does not admit a basis. In fact, for every x ∈ Z/nZ we have that nZ
⊆ AnnZ (x).

Proposition 1.64. Let (fi :Mi →M)i∈I be a family of morphisms of left R-modules
and let f = ∇ (fi)i∈I . Then

Im (f) =
∑
i∈I

Im (fi)

Proof. Let (xi)i∈I ∈
⊕

i∈IMi and let F = Supp (x). We have

f (x) =
∑
i∈F

fi (xi) ∈
∑
i∈I

fi (Mi) .

Conversely, let m ∈
∑

i∈I fi (Mi). Then there exists a finite subset F of I and, for
each i ∈ F an element xi ∈Mi such that

m =
∑
i∈F

fi (xi) .

Let z =
∑

i∈F εi (xi). Then we have

f (z) =
∑
i∈I

f (εi (xi)) =
∑
i∈F

(f ◦ εi) (xi) =
∑
i∈F

fi (xi) = m.

Notations 1.65. Let R be a ring, M a left R-module and let (Mi)i∈I be a family of
submodules of M . Let ui :Mi →M be the canonical inclusion and let

u = ∇((ui)i∈I) :
⊕
i∈I

Mi →M

be the codiagonal morphism of the family (ui)i∈I .

Corollary 1.66. Let R be a ring, M a left R-module and let (Mi)i∈I be a family of
submodules of M . Within the notations of 1.65 we have that

Im (u) =
∑
i∈I

Mi.

Proof. It follows from Proposition (1.64).

Proposition 1.67. Let R be a ring, M a left R-module and let (Mi)i∈I be a family
of submodules of M . Within the notations of 1.65, the following statements are
equivalent:
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(a) u is injective.

(b) For every i ∈ I, we have that

Mi ∩
∑

j∈I\{i}

Mj = {0}

Proof. (a) ⇒ (b) . Let i ∈ I, and let x ∈Mi∩
∑

j∈I\{i}Mj. Then there exists a finite

subset F of I \ {i} and, for every j ∈ J , an element xj ∈Mj such that

x =
∑
j∈F

xj.

Since x ∈Mi, we can consider z = εi (x) . Let w =
∑

j∈F εj (xj). Then we have

u (z) = u (εi (x)) = (u ◦ εi) (x) = ui (x) = x =
∑
j∈F

xj =
∑
j∈F

uj (xj) =

=
∑
j∈F

(u ◦ εj) (xj) = u

(∑
j∈F

εj (xj)

)
= u (w) .

Since u is injective, we deduce that z = w and hence

Supp (z) ⊆ Supp (z) ∩ Supp (w) ⊆ {i} ∩ (I \ {i}) = ∅

so that z = 0.
(b) ⇒ (a) . Let 0 ̸= x ∈

⊕
i∈IM . Then there is an i0 ∈ F = Supp (x). Assume

that x ∈ Ker (u). Then we have

0 = u (x) =
∑
t∈F

xt

and hence
xi0 = −

∑
t∈F\{i0}

xt ∈Mi0 ∩
∑

j∈I\{i0}

Mj = {0}

so that we get xi0 = 0. Contradiction.

Definition 1.68. Let R be a ring, M a left R-module and let (Mi)i∈I be a family of
submodules of M . Within the notations of 1.65, we will say that M is an internal
direct sum of the family (Mi)i∈I if u :

⊕
i∈IMi → M is an isomorphism. In this

case we will also write

M =
·⊕
i∈I

Mi

Corollary 1.69. Let R be a ring, M a left R-module and let (Mi)i∈I be a family
of submodules of M . Then M is an internal direct sum of the family (Mi)i∈I if and
only if
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1) M =
∑

i∈IMi;

2) For every i ∈ I, we have that Mi ∩
∑

j∈I\{i}Mj = {0} .

Proof. It follows from Corollary 1.66 and Proposition 1.67.

Exercise 1.70. Let R be a ring, M a left R-module and let (Mi)i∈I be a family of
submodules of M . Show that M is an internal direct sum of the family (Mi)i∈I if
and only if every element x ∈M can be written as

x =
∑
i∈I

xi where the xi = 0 for almost every i ∈ I

and moreover this representation is unique.

Definition 1.71. Let R be a ring and let L be a submodule of a left R-module M .
We will say that L is a direct summand of M if there exists a left submodule H of
M such that

M = L
·
⊕H.

Remark 1.72. In Definition 1.71, the submodule H is, in general, not unique. For
example, if R = k is a field, M = k × k and L = k (1, 0) , then H can be chosen to
be any k (a, b) with b ̸= 0.

1.5 Exact sequences and split exact sequences

Notations 1.73. Let R be a ring and let M be a left R-module. In the following,
for every r ∈ R and x ∈M , the element r · x will be often denoted simply by rx.

The left R-module with only one element 0 will be simply denoted by 0 instead
of {0}.

Definition 1.74. A sequence of left R-module homomorphisms

· · · fn−1−→Mn−1
fn−→Mn

fn+1−→Mn+1
fn+2−→ · · ·

is said to be exact if

Im (fn) = Ker (fn+1) for every n ∈ Z

A sequence of the form

0 → L
f−→M

g−→ N → 0

is called a short sequence.

Exercise 1.75. Consider a short sequence of left R-module homomorphisms

0 → L
f−→M

g−→ N → 0.

Show that this sequence is exact if and only if
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1) f is injective,

2) g is surjective,

3) Im (f) = Ker (g) .

Examples 1.76.

1) Let g :M → N be a surjective homomorphism. Then

0 → Ker (g)
i−→M

g−→ N → 0,

where i : Ker (g) → M is the canonical inclusion, is an exact sequence. In
particular, for every submodule L of a module M, the sequence

0 → L
i−→M

pL−→ P/L→ 0

is exact.

2) Let f : L→M be an injective morphism. Then the sequence

0 → L
f−→M

p−→M/Im (f) → 0

is exact.

Proposition 1.77. Let ξ : M → H and η : M → N be left R-module homomor-
phisms and assume that

• η is surjective

• Ker (η) ⊆ Ker (ξ).

Then there exists an homomorphism σ : N → H such that

σ ◦ η = ξ.

Moreover such an homomorphism is unique with respect to this property.

Proof. Since Ker (η) ⊆ Ker (ξ) , ny the Fundamental Theorem of the Quotient Mod-
ule 1.20, there exists an homomorphism ξ :M/Ker (η) → H such that ξ = ξ◦pKer(η).
By the First Isomorphism Theorem for Modules 1.21 η̂ : M/Ker (η) → Im (η) = N
is an isomorphism. Let γ : N → M/Ker (η) be a two-sided inverse of η̂ and set
σ = ξ ◦ γ. We compute

σ ◦ η = σ ◦ η̂ ◦ pKer(η) = ξ ◦ γ ◦ η̂ ◦ pKer(η) = ξ ◦ pKer(η) = ξ.

The last assertion follows directly from the surjectivity of η.
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Proposition 1.78. Let φ : L → M and ϑ : U → M be left R-module homomor-
phisms and assume that

• φ is injective

• Im (ϑ) ⊆ Im (φ).

Then there exists an homomorphism π : U → L such that

φ ◦ π = ϑ.

Moreover such an homomorphism is unique with respect to this property.

Proof. Since φ is injective, we know that φ|Im(φ) is bijective. Let h : Im (φ) → L be
the two-sided inverse of φ|Im(φ). Since Im (ϑ) ⊆ Im (φ) we can consider ϑ|Im(φ). Let
i : Im (φ) →M be the canonical injection. Set π = h ◦ ϑ|Im(φ). We compute.

φ ◦ π = φ ◦ h ◦ ϑ|Im(φ) = i ◦ φ|Im(φ) ◦ h ◦ ϑ|Im(φ) = i ◦ Idφ(L) ◦ ϑ|Im(φ) = ϑ.

The last assertion follows directly from the injectivity of φ.

Lemma 1.79. Let L
f−→M

g−→ N be left R-module homomorphisms such that

g ◦ f = 0

and assume that there exists an R-module homomorphism p : M → L and an R-
module homomorphism s : N →M such that

IdM = f ◦ p+ s ◦ g.

In this case

1) If f is injective, then
p ◦ f = IdL.

2) If g is surjective, then
g ◦ s = IdN .

Proof. 1) We compute

f = IdM ◦ f = (f ◦ p+ s ◦ g) ◦ f = f ◦ p ◦ f + s ◦ g ◦ f = f ◦ p ◦ f

and we deduce that
f ◦ IdL = f = f ◦ p ◦ f.

Since f is injective, we get that p ◦ f = IdL.
2) We compute

g = g ◦ IdM = g ◦ (f ◦ p+ s ◦ g) = g ◦ f ◦ p+ g ◦ s ◦ g = g ◦ s ◦ g
and we deduce that

IdN ◦ g = g ◦ s ◦ g.
Since g is surjective, we get g ◦ s = IdN .
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Proposition 1.80. Let 0 → L
f−→M

g−→ N → 0 be a short exact sequence. Then

1) For every R-module homomorphism p : M → L such that p ◦ f = IdL, there
exists a homomorphism s : N → M such that IdM = f ◦ p + s ◦ g. Moreover
this s is unique.

2) For every R-module homomorphism s : N → M such that g ◦ s = IdN , there
exists a homomorphism p : M → L such that IdM = f ◦ p + s ◦ g. Moreover
this p is unique.

Proof. 1) Let p :M → L be such that p◦f = IdL. Let ξ = IdM−f ◦p. We calculate

ξ ◦ f = (IdM − f ◦ p) ◦ f = f − f = 0.

This implies that Ker (g) = Im (f) ⊆ Ker (ξ). Since g is surjective, we can apply
Proposition 1.77 to deduce that there exists an homomorphism s : N → M such
that ξ = s ◦ g. Thus we get IdM − f ◦ p = s ◦ g and hence IdM = f ◦ p+ s ◦ g. Let
s′ : N →M such that IdM = f ◦ p+ s′ ◦ g. Then

f ◦ p+ s ◦ g = f ◦ p+ s′ ◦ g

implies
s ◦ g = s′ ◦ g

and from the surjectivity of g, we conclude.
2) Let s : N →M be such that g ◦ s = IdM . Let ϑ = IdM − s ◦ g. We calculate

g ◦ ϑ = g ◦ (IdM − s ◦ g) = g − g = 0.

This implies that Im (ϑ) ⊆ Ker (g) = Im (f). Since f is injective, we can apply
Proposition 1.78 to deduce that there exists an homomorphism p : M → L such
that f ◦ p = ϑ. Thus we get IdM − s ◦ g = f ◦ p and hence IdM = f ◦ p+ s ◦ g. Let
p′ :M → L such that IdM = f ◦ p′ + s ◦ g. Then

f ◦ p+ s ◦ g = f ◦ p′ + s ◦ g

implies
f ◦ p = f ◦ p′

and from the injectivity of f , we conclude.

Definitions 1.81. Let L
f−→M be a left R-module homomorphism. We say that

1) f splits if there exists a left R-module homomorphism p : M → L such that
p ◦ f = IdL.

2) f cosplits if there exists a left R-module homomorphism s : M → L such that
f ◦ s = IdM .
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Definition 1.82. Let 0 → L
f−→M

g−→ N → 0 be a short exact sequence. We say
that this exact sequence splits if there exist R-module homomorphisms p : M → L
and s : N →M such that IdM = f ◦ p+ s ◦ g. In this case we also say the the given
sequence is split exact.

Lemma 1.83. Let α : U → V and β : V → U be left R-module homomorphisms
such that β ◦ α = IdU . Then V = Im (α)

.
⊕Ker (β) .

Proof. Let x ∈ Im (α) ∩ Ker (β). Then there exists an element u ∈ U such that
x = α (u). Then we have

0 = β (x) = β (α (u)) = (β ◦ α) (u) = u

and hence x = α (u) = α (0) = 0.
Let x ∈ V . Then

x = α (β (x)) + [x− α (β (x))]

where α (β (x)) ∈ Im (α) and [x− α (β (x))] ∈ Ker (β). In fact we have

β ([x− α (β (x))]) = β (x)− (β ◦ α) (β (x)) = β (x)− β (x) = 0.

Theorem 1.84. Let 0 → L
f−→ M

g−→ N → 0 be a short exact sequence. The
following assertions are equivalent:

(a) f splits i.e. there exists an R-module homomorphism p : M → L such that
p ◦ f = IdL.

(b) g cosplits i.e. there exists an R-module homomorphism s : N → M such that
g ◦ s = IdN .

(c) The given exact sequence splits i.e. there exist R-module homomorphisms p :
M → L and s : N →M such that IdM = f ◦ p+ s ◦ g.

(d) f (L) is a direct summand of M i.e. there exists an R-submodule H of M such

that M = f (L)
·
⊕H.

Moreover

1) if (a) holds then M = f (L)
·
⊕Ker (p) ;

2) if (b) holds then M = Ker (g)
·
⊕ Im (s) .

Proof. (a) ⇒ (c) It follows by Proposition 1.80.
(c) ⇒ (a). It follows by Lemma 1.79.
(b) ⇒ (c) It follows by Proposition 1.80.
(c) ⇒ (b). It follows by Lemma 1.79.
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(a) ⇒ (d) . Apply Lemma 1.83 to α = f : L → M and β = p : M → L to get

that M = f (L)
·
⊕Ker (p) .

(d) ⇒ (a) . Let v : f (L) ⊕ H → f (L)
·
⊕ H be the isomorphism defining this

internal direct sum and let π : f (L)⊕H → f (L) be the canonical projection. Since
f is injective, we know that f |Im(f) is bijective. Let h : f (L) → L be the two-sided
inverse of f |Im(f). Set p = h ◦ π ◦ v−1. Then, for every x ∈ L we have

(p ◦ f) (x) =
(
h ◦ π ◦ v−1 ◦ f

)
(x) = (h ◦ π) ((f (x) , 0)) = h (f (x)) = x

and hence we deduce that p ◦ f = IdL.
(c) ⇒ 2) Apply Lemma 1.83 to α = s : N →M and β = g :M → N to get that

M = Im (s)
·
⊕Ker (g) .

1.6 HomR (M,N)

Notation 1.85. Let M and N be left R-modules. We set

HomR (RM,RN) = HomR (M,N) = {f :M → N | f is an R-module homomorphism} .

Proposition 1.86. Let M and N be left R-modules. Then HomR (M,N) is a sub-
group of the abelian group NM . In particular HomR (M,N) is an abelian group.

Proof. Exercise.

Notations 1.87. Let f : L → M and f ′ : M ′ → L′ be left R-module homomor-
phisms . Then,we can consider the map

HomR (f ′, f) : HomR (L′, L) → HomR (M ′,M) defined by setting

HomR (f ′, f) (ξ) = f ◦ ξ ◦ f ′ for every ξ ∈ HomR (L′, L)

M ′ f ′→ L′
ξ→ L

f→ M .

Whenever L′ = M ′ = U and f = IdU we will simply write HomR (U, f) instead of
HomR (IdU , f). Thus we have that

HomR (U, f) : HomR (U,L) → HomR (U,M) is defined by setting

HomR (U, f) (ξ) = f ◦ ξ for every ξ ∈ HomR (U,L)

Analogously whenever L = M = U and f = IdU we will simply write HomR (f ′, U)
instead of HomR (f ′, IdU) Thus we have that

HomR (f ′, U) : HomR (L′, U) → HomR (M ′, U) is defined by setting

HomR (f ′, U) (ζ) = ζ ◦ f ′ for every ζ ∈ HomR (L′, U) .
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Proposition 1.88. Let f : L → M and f ′ : M ′ → L′ be left R-module homomor-
phisms . Then, the map

HomR (f ′, f) : HomR (L′, L) → HomR (M ′,M)

is a group homomorphism.

Proof. Exercise.

Theorem 1.89. (Universal Property of the Direct Product of a family of
Modules) Let R be a ring and let (Mi)i∈I be a family of left R-modules. For every
j ∈ I, let πj :

∏
i∈I
Mi →Mj be the jth canonical projection. LetM be a left R-module.

Then we can consider the family of group homomorphisms (HomR (M,πi))i∈I where,
for each i ∈ I, we have that

HomR (M,πi) : HomR

(
M,
∏
i∈I

Mi

)
−→ HomR (M,Mi) and HomR (M,πi) (f) = πi ◦ f

for every f ∈ HomR

(
M,
∏
i∈I

Mi

)
.

Let

F = ∆((HomR (M,πi))i∈I) : HomR

(
M,
∏
i∈I

Mi

)
−→

∏
i∈I

HomR (M,Mi) .

Then F (f) = (πi ◦ f)i∈I for every f ∈ HomR

(
M,
∏
i∈I

Mi

)
The group homomorphism F is bijective.

Theorem 1.90. (Universal Property of the Direct Sum of a family of
Modules) Let R be a ring, let (Mi)i∈I be a family of left R-modules. For every
j ∈ I, let εj :Mj →

⊕
i∈I
Mi be the jth canonical injection. Let M be a left R-module.

Then we can consider the family of group homomorphisms (HomR (εi,M))i∈I where,
for each i ∈ I, we have that

HomR (εi,M) : HomR

(⊕
i∈I

Mi,M

)
−→ HomR (Mi,M) and HomR (εi,M) (f) = f ◦ εi

for every f ∈ HomR

(⊕
i∈I

Mi,M

)
.

Let

G = ∆((HomR (εi,M))i∈I) : HomR

(⊕
i∈I

Mi,M

)
−→

∏
i∈I

HomR (Mi,M) .

Then G (f) = (f ◦ εi)i∈I for every f ∈ HomR

(⊕
i∈I

Mi,M

)
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The group homomorphism G is bijective.

Proposition 1.91. 1) Let 0 → L
f−→M

g−→ N be an exact sequence. Then, for
every left R-module U , the sequence

(1.1) 0 → HomR (U,L)
HomR(U,f)−→ HomR (U,M)

HomR(U,g)−→ HomR (U,N)

is exact

2) Let L
f−→M

g−→ N → 0 be an exact sequence. Then, for every left R-module
U , the sequence

(1.2) 0 → HomR (N,U)
HomR(g,U)−→ HomR (M,U)

HomR(f,U)−→ HomR (L,U)

is exact.

Proof. 1 a)HomR (U, f) is injective. In fact, let ζ ∈ HomR (U,L) be such that
0 = HomR (U, f) (ζ) = f ◦ ζ. Since f is injective, from f ◦ ζ = 0 we deduce that
ζ = 0.

1b) Im (HomR (U, f)) ⊆ Ker (HomR (U, g)) . Let ζ ∈ HomR (U,L) . Then
HomR (U, g) (HomR (U, f) (ζ)) = HomR (U, g) (f ◦ ζ) = g◦f◦ζ = 0 since g◦f = 0.
1c) Ker (HomR (U, g)) ⊆ Im (HomR (U, f)) . Let ϑ ∈ Ker (HomR (U, g)) . This

means that 0 = HomR (U, g) (ϑ) = g ◦ ϑ. From g ◦ ϑ = 0 we deduce that Im (ϑ) ⊆
Ker (g) = Im (f) .

Since f is injective, by Proposition 1.78, there exists p : M → L such that
f ◦ p = ϑ. Thus ϑ = HomR (U, f) (p) .

2a) HomR (g, U) is injective. Exercise.
2b) Im (HomR (g, U)) ⊆ Ker (HomR (f, U)) . Exercise.
2c) Ker (HomR (f, U)) ⊆ Im (HomR (g, U)) . Let ξ ∈ Ker (HomR (f, U)) . This

means that 0 = HomR (f, U) (ξ) = ξ ◦ f . From ξ ◦ f = 0 we deduce that Ker (g) =
Im (f) ⊆ Ker (ξ) .

Since g is surjective, by Proposition 1.77, There exists s : N → M such that
s ◦ g = ξ. Thus ξ = HomR (g, U) (s)
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Free and projective modules

Definition 2.1. Let R be a ring and let X be a nonempty set. A free left R-module
with basis X is a pair (F, i) where

• F is a left R-module and

• i : X → F is a map

such that the following universal property is satisfied.
For every map f : X → M, where M is a left R-module, there exists a left

R-module homomorphism f such that f ◦ i = f and moreover this homomorphism
is unique..

Proposition 2.2. Let R be a ring and let M be a left R-module.

1) Then, for every x ∈M, the map

µx : RR → RM defined by setting µx (a) = ax for every a ∈ R

is a left R-module homomorphism.

2) The homomorphism µ = ∇ (µx)x∈X : RR
(X) → M is surjective if and only if X

be a system of generators of M .

Proof. 1) Follows by 1.60.
2) Always by 1.60 we know that Im (µx) = Rx. By Proposition 1.64 we have

Im (µ) =
∑
x∈X

Im (µx) =
∑
x∈X

Rx.

Proposition 2.3. Let R be a ring and let X be a nonempty set. Let

F = R(X) =
⊕
x∈X

Rx where, for each x ∈ X, Rx = RR

and, for every y ∈ X, let εy : Ry →
⊕
x∈X

Rx be the canonical injection. Let i : X → F

be the map defined by setting i (x) = εx (1R). Then (F, i) is a free module with basis
X.

35
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Proof. Let M be a left R-module and let f : X → M be a map. By Proposition
2.2, the map fx : Rx = R →M defined by setting fx (a) = af (x) is a left R-module
homomorphism. We set

f = ∇ (fx)x∈X .

Recall that, for every x ∈ X, we have f ◦ εx = fx. For every x ∈ X, we compute(
f ◦ i

)
(x) = (i (x)) = f (εx (1R)) = f ◦ εx (1R) = fx (1R) = f (x) .

Therefore we get that f ◦ i = f . Let now g :
⊕
x∈X

Rx → M be another morphism

such that
g · i = f.

Let us prove that f = g or equivalently that f ◦ εx = g ◦ εx for every x ∈ X. We
have

g◦εx (ax) = ax [g ◦ εx (1R)] = ax [g ◦ i (x)] = axf (x) = ax
[
f ◦ i (x)

]
= ax

[
f ◦ εx (1R)

]
= f◦εx (ax)

for every ax ∈ Rx.

Theorem 2.4. Let R be a ring and let X be a nonempty set. Then

1) There exists a free left R-module with basis X.

2) Let (F, i) and (F ′, i′) be free left R-modules with basis X. Then there exists a
left R-module homomorphism φ : F → F ′ such that φ ◦ i = i′. Moreover

• φ is unique with respect to this property.

• φ is an isomorphism.

Proof. 1) follows by Proposition 2.3.
2) Since (F, i) is a free module with basis X, there exists a left R-module homo-

morphism φ : F → F ′ such that φ ◦ i = i′. Since (F ′, i′) is a free module with basis
X, there exists a left R-module homomorphism φ′ : F ′ → F such that φ′ ◦ i′ = i.
We compute

φ′ ◦ φ ◦ i = φ′ ◦ i′ = i.

On the other hand we also have

IdF ◦ i = i.

In view of the definition of free module, there exists only one homomorphism which
composed with i is equal to i. Therefore we get that φ′ ◦ φ = i. By interchanging
the role of (F, i) with that of (F ′, i′) we also get φ ◦ φ′ = IdF ′ . Therefore φ is
bijective.

Exercise 2.5. Let (F, i) be a free module with basis X. Prove that i is injective.
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Definition 2.6. Let X be a non-empty set and let M be a left R-module. Let (F, i)
be a free module with basis X. Let f = (mx)x∈X ∈ MX and consider the only
homomorphism φ : F → M such that φ ◦ i = f. f is called linearly independent
whenever φ is injective.

X
i→ F

f ↘ ↓ φ
M

Proposition 2.7. Let X be a nonempty set, let M be a left R-module and let
f = (mx)x∈X ∈MX . The following assertions are equivalent

(a) f is linearly independent.

(b) For every nonempty finite subset H of X and (rx)x∈X ∈ R(X)∑
x∈H

rxmx = 0 ⇒ rx = 0 for every x ∈ H.

Proof. By Theorem 2.4 and by Proposition 2.3 we can assume that

F = R(X) =
⊕
x∈X

Rx where, for each x ∈ X, Rx = RR

and i : X → F be the map defined by setting i (x) = εx (1R) where, for every y ∈ X,
εy : Ry →

⊕
x∈X

Rx denote the canonical injection. Let a = (rx)x∈X ∈ R(X) and let

Supp (a) ⊆ H where H is a nonempty finite subset of X. Then

a =
∑
x∈H

εx (rx)

and

φ (a) = φ

(∑
x∈H

εx (rx)

)
=
∑
x∈H

(φ ◦ εx) (rx) =
∑
x∈H

rx [(φ ◦ εx) (1R)]

=
∑
x∈H

rx [φ (εx (1R))] =
∑
x∈H

rx [φ (i (x))] =
∑
x∈H

rxf (x) =
∑
x∈H

rxmx

(a) ⇒ (b) . Let H be a nonempty finite subset of X, let (rx)x∈X ∈ R(X) and
assume that

∑
x∈H rxmx = 0. Set

a =
∑
x∈H

εx (rx)

Then, by the foregoing, we have

φ (a) =
∑
x∈H

rxmx = 0.
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Since φ is injective, we get a = 0 i.e. rx = 0 for every x ∈ X.
(b) ⇒ (a) . Let a = (rx)x∈X ∈ R(X) and assume that φ (a) = 0. Let H = Supp (a)

and assume H ̸= ∅. Then, by the foregoing we have

0 = φ (a) =
∑
x∈H

rxmx.

In view of our assumption (b) this implies that rx = 0 for every x ∈ H i.e. H = ∅.
Contradiction.

Definition 2.8. Let X be a non-empty set and letM be a left R-module. An element
(mx)x∈X ∈MX is called a basis of M if (mx)x∈X is a linearly independent element
and the set {mx | x ∈ X} is a set of generators of M.

Proposition 2.9. Let X be a non-empty set, let M be a left R-module and let
(mx)x∈X ∈ MX . Let φ : R(X) → M be the only morphism of left R-modules such
that φ (εx (1R)) = mx for every x ∈ X. Then the following assertionsare equivalent:

(a) (mx)x∈X is a basis of M .

(b) φ : R(X) →M is an isomorphism.

Proof. Note that
φ = ∇ (φ ◦ εx)x∈X = ∇ (µx)x∈X .

The conclusion follows in view of Propositions 2.7 and 2.2

Exercise 2.10. (ex = εx (1R) | x ∈ X) is a basis of R(X).

Definition 2.11. Let RP be a left R-module. RP is said to be projective if, for every
surjective left R-module homomorphism

M
g−→ N → 0

and for every left R-module homomorphism h : P → N , there exists a left R-module
homomorphism h : P →M such that g ◦ h = h.

Proposition 2.12. Let RP be a left R-module. Then the following assertions are
equivalent.

(a) RP is projective.

(b) For every short exact sequence 0 → L
f−→ M

g−→ N → 0 of left R-module
homomorphisms, the sequence

0 → HomR (P,L)
HomR(P,f)−→ HomR (P,M)

HomR(P,g)−→ HomR (P,N) → 0

is exact.
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Proof. (a) ⇒ (b) . By Proposition 1.91, we have only to prove that HomR (P, g) is
surjective. Thus let h ∈ HomR (P,N). Then h : RP → RN is an homomorphism.
Since RP is projective, there exists an homomorphism h : P → M such that h =
g ◦ h = HomR (P, g)

(
h
)
.

(b) ⇒ (a) . Let M
g−→ N → 0 be a surjective homomorphism and le h : P → N

be a left R-module homomorphism. Then h ∈ HomR (P,N) . Since the sequence

0 → Ker (g)
i−→M

g−→ N → 0,

is exact, we deduce from (b) that HomR (P, g) is surjective so that there exists an
homomorphism h ∈ HomR (P,M) such that h = HomR (P, g)

(
h
)
= g ◦ h.

Proposition 2.13. Let (Pi)i∈I be a family of left R-modules. Then the following
assertions are equivalent:

(a) Each Pi is projective, for every i ∈ I.

(b)
⊕
i∈I
Pi is projective.

Proof. (a) ⇒ (b) . Let M
g−→ N → 0 be a surjective homomorphism and let h :⊕

i∈I
Pi → N be an homomorphism. For every i ∈ I let εi : Pi →

⊕
i∈I
Pi be the canonical

injection. Since Pi is projective, for every i ∈ I, there exists an homomorphism
hi : Pi → M such that g ◦ hi = h ◦ εi. Set h = ∇ (hi)i∈I and recall that h ◦ εi = hi
for every i ∈ I. We compute

g ◦ h ◦ εi = g ◦ hi = h ◦ εi.

By the universal property of the direct sum, there exists only one homomorphism
which composed with every εi is equal to h◦ εi. Therefore we deduce that g ◦h = h.

(b) ⇒ (a) . Fix an i0 ∈ I. Let M
g−→ N → 0 be a surjective homomorphism

and let h : Pi0 → N be an homomorphism. Consider the family of left R-module
homomorphisms (hi)i∈I where hi0 = h and hi = 0 for every i ∈ I, i ̸= i0. Let
f = ∇ (hi)i∈I :

⊕
i∈I
Pi → N . Since

⊕
i∈I
Pi is projective, there exists an homomorphism

f :
⊕
i∈I
Pi →M such that g ◦ f = f . Let h = f ◦ εi0 . Then we get

g ◦ h = g ◦ f ◦ εi0 = f ◦ εi0 = hi0 = h.

Corollary 2.14. Every direct summand L of a projective left R-module P is pro-
jective.

Proof. Since L is a direct summand of P, there exists a left submodule H of P such
that

P = L
·
⊕H.

Let φ : L⊕H → L
·
⊕H = P be the usual isomorphism. Since P is projective, also

L⊕H is projective and hence, by Proposition 2.13, L is projective.
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Proposition 2.15. Let R be a ring and let X be a nonempty set. Then the left
R-module RR

(X) is projective.

Proof. In view of Proposition 2.13, we will show that RR is projective. Thus let
M

g−→ N → 0 be a surjective homomorphism and let h : RR → N be an homomor-
phism. Since g is surjective, there exists an x ∈ M such that g (x) = h (1R). By
Proposition 2.2, there exists an homomorphism h : RR → M such that h (a) = ax
for every a ∈ R. For every a ∈ R, we compute(

g ◦ h
)
(a) = g (ax) = ag (x) = ah (1R) = h (a1R) = h (a) .

Thus we get that g ◦ h = h.

Proposition 2.16. Let (F, i) be a free left R-module with basis X. Then F is
projective.

Proof. It follows by Proposition 2.15, in view of Proposition 2.3 and Theorem 2.4.

Proposition 2.17. Let P be a left R-module. Then the following statements are
equivalent

(a) RP is projective.

(b) Every short exact sequence of the form 0 → L
f−→M

g−→ P → 0 splits.

(c) RP is a direct summand of a free left R-module.

(d) RP is a direct summand of a projective left R-module.

Proof. (a) ⇒ (b) . Since RP is projective, there exists a left R-module homomor-
phism s : P →M such that s ◦ g = IdP .

(b) ⇒ (c) . By Proposition 2.2, we have a surjective homomorphism g : RR
(P ) →

RP . By 2) in Theorem 1.84, there exists an R-submodule H of RR
(P ) such that

RR
(P ) = Ker (g)

·
⊕H. Then H ∼= RR

(P )/Ker (g) ∼= P so that

P is a direct summand of Ker (g)⊕ P ∼= Ker (g)⊕H ∼= Ker (g)
·
⊕H = RR

(P ).
(c) ⇒ (d) is trivial,
(d) ⇒ (a) follows by Corollary 2.14,



Chapter 3

Injective Modules and Injective
Envelopes

Definition 3.1. Let RE be a left R-module. RE is said to be injective if, for every
injective left R-module homomorphism

0 → L
j−→M

and for every left R-module homomorphism f : L→ E, there exists a left R-module
homomorphism f :M → E such that f ◦ j = f .

Proposition 3.2. Let RE be a left R-module. Then the following assertions are
equivalent.

(a) RE is injective.

(b) For every short exact sequence 0 → L
f−→ M

g−→ N → 0 of left R-module
homomorphisms, the sequence

0 → HomR (N,E)
HomR(g,E)−→ HomR (M,E)

HomR(f,E)−→ HomR (L,E) → 0

is exact.

Proof. Is analogous to the prove of Proposition 2.12 and it is left as an exercise to
the reader.

Proposition 3.3. Let (Ei)i∈I be a family of left R-modules. Then the following
assertions are equivalent:

(a) Each Ei is injective, for every i ∈ I.

(b)
∏
i∈I
Ei is injective.

41
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Proof. (a) ⇒ (b) . Let j : L→M be an injective left R-module homomorphism and
let f : L→

∏
i∈I
Ei be a left R-module homomorphism. Then

f = ∆(πi ◦ f)i∈I .

Let i ∈ I. Since Ei is injective, there exists a morphism fi : M → Ei such that
fi ◦ j = πi ◦ f . Let f = ∆

(
fi
)
i∈I and, for every i ∈ I, let us compute

πi ◦ f ◦ j = fi ◦ j = πi ◦ f.

By the Universal Property of the Direct Product, we deduce that f ◦ j = f .
(b) ⇒ (a) . Let j : L→M be an injective left R-module homomorphism and let

f : L → Ei0 be a left R-module homomorphism. For every i ∈ I set hi : L → Ei
equal to the zero map if i ̸= i0 and hi0 = f . Let h = ∆(hi)i∈I : L →

∏
i∈I
Ei. Since∏

i∈I
Ei is injective, there exists an homomorphism h :M →

∏
i∈I
Ei such that h◦ j = h.

Set f = πi0 ◦ h and let us compute

f ◦ j = πi0 ◦ h ◦ j = πi0 ◦ h = hi0 = f .

Corollary 3.4. Let E1 and E2 be left R-modules. Then E1 ⊕ E2 is injective if and
only if each Ei is injective for i = 1, 2.

Corollary 3.5. Every direct summand L of an injective left R-module E is injective.

Proof. Since L is a direct summand of E, there exists a left submodule H of E such
that

E = L
·
⊕H.

Let φ : L ⊕H → L
·
⊕H = E be the usual isomorphism. Since E is injective, also

L⊕H is injective and hence, by Corollary 3.4, L is injective.

Theorem 3.6. (Baer’s Criterion for injectivity). Let E be a left R-module. The
following assertions are equivalent.

(a) E is injective.

(b) For any left ideal I of R and for every homomorphism of left R-modules f :
I → E, there exists an homomorphism h : R → E such that h ◦ i = f , where
i : I → R is the canonical inclusion.

Proof. (a) ⇒ (b) . It is trivial.
(b) ⇒ (a). Let j : L→M be an injective left R-module homomorphism and let

f : L→ E be a left R-module homomorphism. We set

H =

{
(H,ψ) | j (L) ⊆ H ⊆M and

ψ : H → E is a left R-module homomorphism such that ψ ◦ j|H = f

}
.
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Clearly H ̸= ∅ since (L, ζ) ∈ H where ζ = f ◦ ϑ and ϑ is the two-sided inverse of
j|j(L). In fact ζ ◦ j|j(L) = f ◦ ϑ ◦ j|j(L) = f .
We define a partial order on H by setting

(H,ψ) ≤ (H ′, ψ′) if and only if H ⊆ H ′ and ψ′|H = ψ.

It is easy to check that (H,≤) is an inductive set. Hence, by Zorn’s Lemma, it has a
maximal element, say (H0, ψ0). We will prove that H0 =M . Assume that H0 &M
and let x ∈M \H0 so that H0 & H0 +Rx. Set

J = {a ∈ R | ax ∈ H0} .

J is a left ideal of R. In fact, let a, a1, a2 ∈ J and let r ∈ R. Since a1, a2 ∈ J , we
have that a1x ∈ H0 and a2x ∈ H0, from which we deduce that

(a1 − a2) x = a1x− a2x ∈ H0

and hence a1 − a2 ∈ J . Moreover a ∈ J means that ax ∈ H0, from which we get

(ra)x = r (ax) ∈ H0

which means that ra ∈ J . Let us consider the map χ : J → E defined by setting

(3.1) χ (a) = ψ0 (ax) for every a ∈ J .

χ is an R-module homomorphism. In fact let a, a1, a2 ∈ J and let r ∈ R. We
compute

χ ((a1 + a2)) = ψ0 ((a1 + a2)x) = ψ0 (a1x+ a2x) = ψ0 (a1x)+ψ0 (a2x) = χ (a1)+χ (a2)

and
χ (ra) = ψ0 ((ra)x) = ψ0 (r (ax))

ψ0isR-homo
= rψ0 (ax) = rχ (a) .

By assumption there exists a left R-module homomorphism λ : R → E such that
λ ◦ α = χ where α : J → R is the canonical inclusion.

Let us define a map ψ̂0 : H0 +Rx→ E by setting

ψ̂0 (h+ rx) = ψ0 (h) + λ (r) .

ψ̂0 is well defined. In fact, assume that h+ rx = h′ + r′x. Then

h− h′ = (r′ − r)x ∈ H0 ∩Rx.

This means that (r′ − r) ∈ J so that

ψ0 (h)− ψ0 (h
′) = ψ0 (h− h′) = ψ0 ((r

′ − r)x) =

(3.1)
= χ (r′ − r) = λ ◦ α (r′ − r) = λ (r′ − r) = λ (r′)− λ (r)

Thus ψ̂0 is well defined. It is easy to check that ψ̂0 is a left R-module homomorphism.
Since ψ̂0|H0

= ψ0 this contradicts the maximality of (H0, ψ0).
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Definition 3.7. Let R be a commutative ring. An element a ∈ R is said to be a
zero-divisor if there exists an element b ∈ R, b ̸= 0 such that a · b = 0.

Remark 3.8. The element 0 is always a zero-divisor. Any zero-divisor different
from 0 is called non trivial zero-divisor.

Examples 3.9. 1) In the commutative ring Z6 the unique non trivial zero-divisors
are 2 + 6Z , 3 + 6Z and 4 + 6Z.

2) A commutative ring D is a domain if and only if it has no non trivial zero-
divisor.

Definition 3.10. Let E be a module over a commutative ring R. E is said to be
divisible if, for any r ∈ R, r not a zero-divisor, we have rE = E i.e. for every x ∈ E
there is an element x′ ∈ E such that rx′ = x.

Example 3.11. Let D be a commutative domain and let Q = Q (D) be its ring of
quotients. Then Q is a divisible D-module. In fact, for every d ∈ D, d ̸= 0 and for
every q ∈ Q, one has

q = d

(
1

d
q

)
.

Proposition 3.12. Let R be a commutative ring, Let E be an R-module and let
(Ei)i∈I be a family of R-modules. Then

1) E is divisible if and only if any quotient of E is divisible.

2)
⊕
i∈I
Ei is divisible ⇔ Ei is divisible for any i ∈ I ⇔

∏
i∈I
Ei is divisible.

Proof. 1) Let L be a submodule of E and let r ∈ R be a non-zero divisor. Let
y ∈ E/L. Then there exists an element x ∈ E such that y = x + L. Since E is
divisible, there exists an element x′ ∈ E such that rx′ = x. Then we have

r (x′ + L) = (rx′) + L = x+ L.

2) Assume that Ei is divisible for any i ∈ I, let x ∈
∏
i∈I
Ei and let r ∈ R be

a non-zero divisor. Then, for every i ∈ I, there is an element xi ∈ Ei such that
x = (xi)i∈I . Since Ei is divisible, for every i ∈ I there exists an element x′i ∈ Ei
such that rx′i = xi. Let x

′ = (x′i)i∈I . Then rx
′ = r (x′i)i∈I = (rx′i)i∈I = (xi)i∈I = x.

Assume now that x ∈
⊕
i∈I
Ei and set x′i = 0 if i /∈ Supp (x) while, if i ∈ Supp (x),

let x′i ∈ Ei be such that rx′i = xi. Let x
′ = (x′i)i∈I . Then Supp (x

′) = Supp (x) and
hence

x′ ∈
⊕
i∈I
Ei. Moreover we have rx′ = r (x′i)i∈I = (rx′i)i∈I = (xi)i∈I = x. . This

shows that also
⊕
i∈I
Ei is divisible.
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Assume now that
∏
i∈I
Ei is divisible and consider the canonical projection πj :∏

i∈I
Ei → Ej. Since πj is surjective, we deduce that Ej is isomorphic to a quotient of∏

i∈I
Ei and hence, by 1), we get that Ej is divisible.

In the case when
⊕
i∈I
Ei is divisible, since the canonical projection π

′
j :
⊕
i∈I
Ei → Ej

is still surjective, the same proof applies.

Definitions 3.13. Let D be a commutative domain and let M be a D-module. An
element x ∈ M is called a torsion element if there exists an d ∈ D, d ̸= 0 such that
dx = 0.

We set

t (M) = {x ∈M | x is a torsion element} .

We say that M is a torsion module if t (M) = M and that M is a torsion-free
module if t (M) = {0}.

Exercise 3.14. Let D be a commutative domain and let M be an D-module. Show
that

1) t (M) is a submodule of M.

2) t (M) is the largest torsion submodule of M .

3) M/t (M) is a torsion-free module.

Proposition 3.15. Let T be a torsion abelian group and let P be the set of prime
natural numbers. For each p ∈ P set

Tp =
{
x ∈ T | there is an h ∈ N such that phx = 0

}
.

Then Tp is a subgroup of T and

T =
·⊕

p∈P

Tp.

Proof. Let p ∈ P and let x, x′ ∈ Tp. Then there exist h, h′ ∈ N such that phx = 0
and ph

′
x′ = 0. Then we get

ph+h
′
(x− x′) = ph+h

′
x− ph+h

′
x′ = ph

′ (
phx
)
− ph

(
ph

′
x′
)
= 0.

Since 0 ∈ Tp, we conclude that Tp is a subgroup of T .
Let us prove that

T =
∑
p∈P

Tp.
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Let x ∈ T . Then there is an element n ∈ N, n ̸= 0, such that nx = 0. If n = 1, then
x = 0 and there is nothing to prove. Otherwise can write

n = ph11 · · · · · phss for suitable s ∈ N, s ≥ 1, h1, . . . hs ∈ N,
where h1, . . . , hs ≥ 1 and p1, . . . , ps ∈ P are distinct prime numbers.

For each i = 1, . . . s, we set qi =
n

p
hi
i

. Then we get that MCD (q1, . . . , qs) = 1 and

hence, there exist λ1, . . . λs ∈ Z such that

1 = λ1q1 + . . .+ λsqs.

Note that, for each i = 1, . . . s, we have

phii (λiqix) = λip
hi
i

n

phii
x = λinx = 0

and hence we deduce that λiqix ∈ Tpi . Moreover we get

x = 1 · x = (λ1q1 + . . .+ λsqs)x = λ1q1x+ . . .+ λsqsx ∈
∑
p∈P

Tp.

Let us prove that, for each q ∈ P ,

Tq ∩
∑

p∈P\{q}

Tp = {0} .

Let x ∈ Tq∩
∑

p∈P\{q} Tp. Then there exists an s ∈ N, s ≥ 1 and, for each i = 1, . . . s,

an element pi ∈ P\ {q} and an element xi ∈ Tpi such that

x = x1 + . . .+ xs.

Since xi ∈ Tpi , there exists an hi ∈ N such that phii xi = 0. Moreover, since x ∈ Tq,
there exists an h ∈ N such that qhx = 0. Let n = ph11 · · · · · phss and, for each i, let
qi =

n

p
hi
i

Then we get that

nx = n (x1 + . . .+ xs) = q1p
h1
1 x1 + . . .+ qsp

hs
s xs = 0.

Moreover, since each pi ∈ P\ {q} we have that MCD
(
n, qh

)
= 1. Therefore there

exist λ, µ ∈ Z such that 1 = λn+ µqh. We obtain that

x = 1 · x =
(
λn+ µqh

)
· x = λnx+ µqhx = 0.

Example 3.16. Q/Z is a torsion abelian group. In fact, for every q ∈ Q, there
exist m,n ∈ Z, n > 0 such that q = m

n
. Then

n (q + Z) =
(
n
m

n

)
+ Z = m+ Z = Z.
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Moreover, for each p ∈ P, we have

(Q/Z)p =
{
q + Z ∈ Q/Z | there exists an h ∈ N such that ph (q + Z) = 0 + Z

}
=

Exercise
=

{
m

ph
+ Z | m ∈ Z and h ∈ N

}
.

The group (Q/Z)p is usually denoted by Z (p∞) and it is called the Prufer p-group.
By Proposition 3.15, we have that

Q/Z =
⊕
p∈P

Z (p∞) .

Exercise 3.17. Let p ∈ P . For each h ∈ N, h ≥ 1,let
⟨

1
ph

+ Z
⟩

be the cyclic

subgroup of Z (p∞) spanned by 1
ph

+ Z. Show that⟨
1

p
+ Z

⟩
⊆ . . . ⊆

⟨
1

ph
+ Z

⟩
⊆
⟨

1

ph+1
+ Z

⟩
⊆ . . . ⊆

and that

Z (p∞) =
∪

h∈N,h≥1

⟨
1

ph
+ Z

⟩
.

Proposition 3.18. Let D be a commutative domain and let E be a torsion-free
divisible R-module. Then E is an injective module.

Proof. We will apply Theorem 3.6. Thus let I be an ideal of D and let i : I → D
be the canonical inclusion. Let f : I → E be an homomorphism. We seek an
homomorphism f : D → E such that f ◦ i = f . If f = 0 we just set f = 0. If
f ̸= 0, there exists an element a ∈ I such that f (a) ̸= 0. Then we get that a ̸= 0
and hence, since E is divisible, there exists an element x ∈ E such that f (a) = ax.
Let f = µx : D → E i.e. f (d) = dx for every d ∈ D. Let us check that f ◦ i = f .
Thus let b ∈ I and let us prove that(

f ◦ i
)
(b) = f (b) .

If b = 0, there is nothing to prove. Thus let us assume that b ̸= 0. Then f (b) ∈ E =
bE and hence there is an element xb ∈ E such that f (b) = bxb. We compute

bf (a) = f (ba) = f (ab) = af (b) = abxb.

Therefore we obtain that bf (a) = baxb i.e.

b (f (a)− axb) = 0.

Since b ̸= 0 and D is a domain, this implies that f (a)−axb = 0 i.e. that f (a) = axb.
Since we have also that f (a) = ax, we deduce that

ax = axb
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and since a ̸= 0 and D is a domain, we infer that x = xb. Then we finally obtain
that (

f ◦ i
)
(b) = f (b) = bx = bxb = f (b) .

Corollary 3.19. Let D be a domain. Then the ring of quotient Q (D) of D is an
injective D-module.

Proof. By Example 3.11, we have that Q (D) is a divisible D-module. Since Q (D)
is a domain, it is in particular a torsion-free D-module. Thus,by Proposition 3.18,
Q (D) is an injective D-module.

Proposition 3.20. Let R be commutative ring. Every injective R-module is divisi-
ble.

Proof. Let E be an injective R-module and let a ∈ R be a non-zero divisor. We have
to prove that aE = E. Thus let x ∈ E and let us define a map φ : (a) = Ra → E
by setting φ (ra) = rx. Let us check that φ is well-defined. Assume that r, r′ ∈ R
and that ra = r′a. This implies that (r − r′) a = 0 and hence, since a is not a zero-
divisor, that (r − r′) = 0 i.e. r = r′ so that rx = r′x. It is easy to check that φ is
an R-module homomorphism. Since E is injective, φ extends to an homomorphism
φ : R → E. Let y = φ (1). We have

ay = aφ (1) = φ (a) = φ (a) = x.

Proposition 3.21. Let D be a principal ideal domain and let E be an D-module.
Then E is injective if and only if E is divisible.

Proof. In view of Proposition 3.20 we have only to prove that every divisible module
is injective. Thus let E be a divisible D-module. We will prove that E is injective
by using Baer’s criterion (3.6). Thus let I be an ideal of D and let f : I → E be
an D-module homomorphism. Since D is a principal ideal domain, there exists an
a ∈ D such that I = (a) = Ra. If a = 0, then f is the zero homomorphism and
hence can be trivially extended to R. If a ̸= 0 then a is not a zero-divisor in D.
Since E is divisible, there exists an y ∈ E such that

ay = f (a) .

Let us consider the homomorphism µy : D → E which is defined by setting µy (d) =
dy for every r ∈ D. Then, for every r ∈ D we have:

µy (ra) = ray = rf (a) = f (ra) .

Therefore µy : R → E is an homomorphism which extends f .
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Example 3.22. The abelian groups Q,Q/Z,Z (p∞) are all divisible groups and
hence injectives. In fact Q is divisible by Example 3.11. Hence Q/Z is divisible
by Proposition 3.12 and Z (p∞) is divisible by Propositions 3.15 and 3.12.

Exercise 3.23. Prove that the abelian groups R and R/Z are injectives. Prove also
that t (R/Z) = Q/Z. Deduce that there exists a subgroup H of R which contains Z
such that

R/Z = Q/Z
·
⊕H/Z

and that H/Z is torsion free.

Theorem 3.24. Every abelian group can be embedded in an injective abelian group.

Proof. Let G be an abelian group. Then, by Proposition 2.2, there is a surjective
homomorphism h : Z(G) → G and hence we have that

G ∼= Z(G)/L.

. Let L = Ker (h). Then the canonical inclusion i : Z(G) → Q(G) induces an injective

homomorphism h̃ : Z(G)/L→ Q(G)/L and hence we get an injective homomorphism
φ : G → Q(G)/L. By Example 3.11, Q is divisible and hence, by Proposition 3.12
also Q(G) and Q(G)/L are divisible. Then we can apply Proposition 3.21 to infer
that Q(G)/L is an injective abelian group.

3.25. Let R be any ring and let G be an abelian group. Then we can consider
the abelian group HomZ (R,G). This abelian group can be endowed with a left R-
module structure as follows. For every a ∈ R and f ∈ HomZ (R,G), consider the
map

ga : R → G defined by setting ga (r) = f (ra) for every r ∈ R.

Let us check that ga ∈ HomZ (R,G). Let r1 and r2 ∈ R and let us compute

ga (r1 + r2) = f ((r1 + r2) a) = f (r1a+ r2a) = f (r1a) + f (r2a) = ga (r1) + ga (r2) .

Then we set

(3.2) a · f = ga which means that (a · f) (r) = f (ra) for every r ∈ R.

Let us check that this defines a left R-module structure on HomZ (R,G). Thus let
a, b, a1, a2 ∈ R and f, f1, f2 ∈ HomZ (R,G). For every r ∈ R we compute

[a · (f1 + f2)] (r) = (f1 + f2) (ra) = f1 (ra) + f2 (ra) =(3.3)

= (a · f1) (r) + (a · f2) (r) = [(a · f1 + (a · f2))] (r) ,

[(a1 + a2) · f ] (r) = f (r (a1 + a2)) = f (ra1 + ra2) =(3.4)

= f (ra1) + f (ra2) = (a1 · f) (r) + (a2 · f) (r) = [(a1 · f) + (a2 · f)] (r)

and

(3.5) [(ab) · f ] (r) = f (rab) = (b · f) (ra) = [a · (b · f)] (r) .

(3.3) entails that a · (f1 + f2) = (a · f1 + (a · f2)), (3.4) entails that (a1 + a2) · f =
(a1 · f) + (a2 · f) and finally (3.5) entails that (ab) · f = a · (b · f).
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Proposition 3.26. Let R be a ring and let E be an injective abelian group. Then
HomZ (R,E) is an injective left R-module.

Proof. Let 0 → L
j−→ M be an injective R-module homomorphism and let f :

L → HomZ (R,E) be a left R-module homomorphism. We seek a left R-module
homomorphism f : M → HomZ (R,E) such that f ◦ j = f . First of all we consider
the map φ : L → E defined by setting φ (a) = f (a) (1R) for every a ∈ L. Let us
check that φ is an abelian group homomorphism. Let a1, a2 ∈ L and let us compute

φ (a1 + a2) = f (a1) (1R) + f (a2) (1R)
def+inHomZ(R,E)

= [f (a1) + f (a2)] (1R)
f isanhomo

=

= f (a1 + a2) (1R) = φ (a1 + a2) .

Since E is an injective abelian group,there is an abelian group homomorphism φ :
M → E such that φ ◦ j = φ. Now, for every m ∈M let us consider the map

fm : R → E defined by setting fm (a) = φ (am) for every a ∈ R.

Let us check that fm ∈ HomZ (R,E). Let a1, a2 ∈ R. We have

fm (a1 + a2) = φ ((a1 + a2)m) = φ (a1m+ a2m)
φisgrouphomo

=

= φ (a1m) + φ (a2m) = fm (a1) + fm (a2) .

Hence fm ∈ HomZ (R,E). Now we consider the map

f :M → HomZ (R,E) defined by setting f (m) = fm for every m ∈M .

This means that, for every m ∈M and a ∈ R, we have[
f (m)

]
(a) = φ (am) .

Let us check that f is a left R-module homomorphism. Let x, x1, x2 ∈ M and let
r ∈ R. For every a ∈ R we compute[

f (x1 + x2)
]
(a) = φ (a (x1 + x2)) = φ (ax1 + ax2)

φisgrouphomo
=(3.6)

= φ (ax1) + φ (ax2) = f (x1) (a) + f (x2) (a)
def+inHomZ(R,E)

=

=
[
f (x1) + f (x2)

]
(a)

and

(3.7)
[
f (rx)

]
(a) = φ (a (rx)) = φ ((ar) x) =

[
f (x)

]
(ar)

(3.2)
=
[
r · f (x)

]
(a) .

(3.6) entails that f (x1 + x2) = f (x1) + f (x2), while (3.7) entails f (rx) = r · f (x).
Therefore we deduce that f is a left R-module homomorphism.

It remains to check that f ◦ j = f . Thus let y ∈ L and, for every a ∈ R, let us
compute[(
f ◦ j

)
(y)
]
(a) = f (j (y)) (a) = φ (aj (y)) = φ (j (ay)) = (φ ◦ j) (ay) = φ (y) = [f (ay)] (1R)

f isRmodmorph
= [a · f (y)] (1R)

(3.2)
= f (y) (a1R) = f (y) (a) .

This implies that
(
f ◦ j

)
(y) = f (y) for every y ∈ L and hence that f ◦ j = f .
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Lemma 3.27. Let M be a left R-module. Then the map χ : M → HomZ (R,M) ,
defined by setting, using the notations of Proposition 2.2,

χ (x) = µx for every x ∈M,

is an injective left R-module homomorphism.

Proof. Let x, x1, x2 ∈M and a ∈ R. For every r ∈ R we have

[χ (x1 + x2)] (r) = hx1+x2 (r) = r (x1 + x2) = rx1 + rx2 = hx1 (r) + hx2 (r)

= [hx1 + hx2 ] (r) = [χ (x1) + χ (x2)] (r)

and

[χ (ax)] (r) = hax (r) = r (ax) = (ra) x = hx (ar) = [a · hx] (r) = [a · χ (x)] (r) .

Moreover we have
χ (x) (1R) = hx (1R) = 1Rx = x

so that, if x ̸= 0, we infer that χ (x) ̸= 0.

Theorem 3.28. Let R be a ring. Then any left R-module can be embedded in an
injective left R-module.

Proof. Let M be a left R-module. We seek an injective left R-homomorphism φ :
M → H where H is an injective left R-module. By Theorem 3.24, there is an
injective abelian group homomorphism i from the abelian group M to an injective
abelian group E:

0 →M
i→ E.

By Proposition 1.91, we know that HomZ (R, i) : HomZ (R,M) → HomZ (R,E) is
an injective group homomorphism. Let us check that φ = HomZ (R, i) is a left R-
module homomorphism. Thus let r ∈ R and f ∈ HomZ (R,M). For every a ∈ R we
compute

[φ (rf)] (a) = (i ◦ rf) (a) = i [(r · f) (a)] (3.2)
= i (f (ar)) = (i ◦ f) (ar) = [φ (f)] (ar) =

(3.2)
= [r · φ (f)] (a) .

This implies that φ (rf) = r ·φ (f) and hence φ is a left R-module homomorphism.
By Proposition 3.26, HomZ (R,E) is an injective left R-module. By Lemma 3.27,
we conclude.

Proposition 3.29. Let E be a left R-module. Then the following statements are
equivalent

(a) RE is injective.

(b) Every short exact sequence of the form 0 → E
f−→M

g−→ N → 0 splits.
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(c) For every injective left R-module homomorphism f : E → M , f (E) is a direct
summand of M .

Proof. (a) ⇒ (b) . Since E is injective, there exists an homomorphism p : M → E
such that p ◦ f = IdE and hence, by Theorem 1.84, the given short exact sequence
splits.

(b) ⇒ (c) . Let f : E → M be an injective left R-module homomorphism. Then
we can consider the short exact sequence

0 → E
f−→M

pf(E)−→ M/f (E) → 0.

By assumption (b), this sequence splits and hence, by Theorem 1.84, there is a
submodule X of M such that

M = f (E)
·
⊕X.

(c) ⇒ (a) . By Theorem 3.28, there is an injective left R-module homomorphism
φ : E → H where H is an injective left R-module. In view of assumption (c), there
is a submodule X of H such that

H = φ (E)
·
⊕X.

By Corollary 3.5, we deduce that φ (E) is an injective left R-module. Since φ is an
injective homomorphism, we deduce that E ∼= φ (E) and hence E is injective.

Definition 3.30. Let L be a submodule of a left R-module M . We say that L is
essential in M if, for every non-zero submodule H of M , H ∩ L ̸= {0}.

Proposition 3.31. Let L be a submodule of a left R-module M . Then L is essential
in M if and only if, for every x ∈M, x ̸= 0, there is an r ∈ R such that 0 ̸= rx ∈ L.

Proof. Exercise.

Examples 3.32. Z is essenzial in the Z-module Q and
⟨

1
p
+ Z

⟩
is essential in the

Z-module Z (p∞).

Proposition 3.33. Let (Mλ)λ∈Λ be a family of left R-modules and assume that, for
every λ ∈ Λ, Lλ is an essential submodule of Mλ. Then⊕

λ∈Λ

Lλ is an essential submodule of
⊕
λ∈Λ

Mλ.

Proof. Let x ∈
⊕
λ∈Λ

Mλ, x ̸= 0. Then Supp (x) is a finite nonempty subset F of

Λ. By induction on n = |F | , we will prove that there is an r ∈ R such that
0 ̸= rx ∈

⊕
λ∈Λ

Lλ. If n = 1, then F = {λ1} for some λ1 ∈ Λ. Then x = ελ1 (xλ1)
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where xλ1 ∈ Mλ1 . Since 0 ̸= xλ1 and Lλ1 is essential in Mλ1 there exists an r ∈ R
such that 0 ̸= r · xλ1 ∈ Lλ1 . Hence we get

0 ̸= ελ1 (r · xλ1) ∈ ελ1 (Lλ1) ∈
⊕
λ∈Λ

Lλ

and since
r · x = r · ελ1 (xλ1) = ελ1 (r · xλ1)

we conclude.
Let us assume that the statement hold for all k ∈ N, k ≥ 1 and k ≤ n for some

n ∈ N, n ≥ 1, and let us prove it for n+ 1. Let λ1 ∈ F. Then there exists an r ∈ R
such that 0 ̸= rxλ1 ∈ Lλ1 . Let us consider rx − rελ1 (xλ1). If rx − rελ1 (xλ1) = 0,
then 0 ̸= rx = rελ1 (xλ1) ∈ ελ1 (Lλ1) ∈

⊕
λ∈Λ

Lλ. Otherwise 0 ̸= rx − rxλ1 and

Supp (rx− rελ1 (xλ1)) ⊆ Supp (x) \ {λ1} so that |Supp (rx− rxλ1)| < |F | = n + 1.
Thus there exists an s ∈ R such that

(3.8) 0 ̸= s (rx− rελ1 (xλ1)) ∈
⊕

λ∈Supp(x)\{λ1}

Lλ.

Then
srx = srx− srελ1 (xλ1) + srελ1 (xλ1) ∈

⊕
λ∈Supp(x)

Lλ.

Assume that srx = 0. Then from (3.8) we would get

0 ̸= −srελ1 (xλ1) ∈
⊕

λ∈Supp(x)\{λ1}

Lλ

which is a contradiction. Therefore 0 ̸= rx ∈
⊕

λ∈Supp(x)
Lλ.

Proposition 3.34. Let L be a submodule of a left R-moduleM . Let H be a submod-

ule of M maximal with respect to the property L ∩H = {0}. Then L+H = L
·
⊕H

is essential in M .

Proof. Let x ∈ M such that (L+H) ∩ Rx = {0}. Let y ∈ L ∩ (H +Rx). Then
there exists an element h ∈ H and an element r ∈ R such that y = h + rx. Then
we get

rx = y − h ∈ (L+H) ∩Rx = {0}

and hence we deduce that rx = y − h = 0 so that y = h ∈ L ∩H = {0}. Thus we
obtain that L∩ (H +Rx) = {0}. By the maximality property of H we deduce that
Rx ⊆ H. Hence we obtain

Rx ⊆ H ⊆ (L+H) ∩Rx = {0}

and we deduce that x = 0.
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Proposition 3.35. Let A,B be submodules of a left R-module M and assume that
A ⊆ B. Then the following assertions are equivalent.

(a) A is an essential submodule of B and B is an essential submodule of M.

(b) A is an essential submodule of M .

Proof. (a) ⇒ (b). Let x ∈ M, x ̸= 0. Since B is essential in M, there is an r ∈ R
such that 0 ̸= rx ∈ B. Since A is essential in B, there exists an s ∈ R such that
0 ̸= srx ∈ A.

(b) ⇒ (a) . It is trivial.

Definitions 3.36. Let M be a left R-module. An extension of M is a pair (H, j)
where H is a left R-module and j :M → H is an injective left R-module homomor-
phism.

• An extension (H, j) of M is called proper whenever j (M) & H.

• An extension (H, j) of M is called injective whenever H is an injective left
R-module.

• An extension (H, j) of M is called essential whenever j (M) is essential in H.

Exercise 3.37. Let L be a submodule of a left R-module M and let f : M → M ′

be an inective homomorphism. Show that L is an essential submodule of M if and
only if f (L) is an essential submodule of f (M).

Proposition 3.38. Let j : M → H and η : H → H ′ be injective homomorphisms
of left R-modules. Assume that j (M) is an essential submodule of H. Then the
following assertions are equivalent:

(a) η ◦ j (M) is an essential submodule of H ′.

(c) η (H) is an essential submodule of H ′.

Proof. Since η is injective, η ◦ j (M) is essential in η (H). The conclusion follows by
Proposition 3.35.

Definition 3.39. Let j :M → H be an injective homomorphism of left R-modules.
(H, j) is said to be a maximal essential extension of M if

1) (H, j) is an essential extension of M i.e. j (M) is an essential submodule of H,

2) if (H ′, η) is an essential extension of H, i.e. if η : H → H ′ is an injective
homomorphism of left R-modules such that η (H) is an essential submodule of
H ′, then η (H) = H ′.
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Remark 3.40. Let (H, j) be an essential extension of M and let (H ′, η)be an ex-
tension of H. In view of Proposition 3.38 (H ′, η) is an essential extension of H if
and ony if η ◦ j (M) is an essential submodule of H ′.

Proposition 3.41. Let M be a left R-module, let (N, j) be an essential extension
of M and let (E, i) be an injective extension of M . Then there exists an injective
homomorphism α : N → E such that α ◦ j = i.

Proof. Since E is injective, there is a left R-module homomorphism α : N → E
such that α ◦ j = i. Let y ∈ Ker (α) ∩ j (M). Then there is an x ∈ M such that
j (x) = y and from y ∈ Ker (α) we infer that

0 = α (y) = α (j (x)) = (α ◦ j) (x) = i (x) .

Since i is injective this implies that x = 0 and hence y = j (x) = j (0) = 0. Thus
we deduce that Ker (α)∩ j (M) = {0}. Since j (M) is an essential submodule of N ,
this implies that Ker (α) = {0} i.e. α is injective.

Proposition 3.42. Let M be a left R-module and and let (E, j) be an injective
extension of M . Then E contains a submodule H such that j (M) ⊆ H and

(
H, j|H

)
is a maximal essential extension of M .

Proof. Let Ω = {K | j (M) is an essential submodule of K and K ≤ RE}. Clearly
Ω ̸= ∅ since j (M) ∈ Ω. Now (Ω,⊆) is an inductive partially ordered set. Hence,
by Zorn’s Lemma, it has a maximal element. Let H be a maximal element for
(Ω,⊆). Then

(
H, j|H

)
is an essential extension of M . Let us prove that

(
H, j|H

)
is a maximal essential extension of M . Let i : H → E be the canonical inclusion.
Then i (H) = H and i ◦ j|H = j. Hence we have

(3.9) i
(
j|H (M)

)
= j (M) is an essential in i (H) = H.

Let η : H → H ′ be an injective homomorphism of left R-modules such that η (H) is
an essential submodule of H ′. We have to prove that η (H) = H ′.

By Proposition 3.41, there is an injective homomorphism α : H ′ → E such
that α ◦ η = i. Therefore since η (H) is an essential submodule of H ′ and α is
injective, we deduce that α (η (H)) is an essential in α (H ′) . From (3.9), we know
that j (M) = i

(
j|H (M)

)
is an essential in H = i (H) = α ◦ η (H) = α (η (H)).

Since H = α (η (H)) is an essential in α (H ′) , by Proposition 3.35, we get that
j (M) is essential in α (H ′) so that α (H ′) ∈ Ω. From H = α (η (H)) ⊆ α (H ′) , by
the maximality of H we get that H = α (H ′) . As H = α (η (H)) , we obtain that
α (η (H)) = α (H ′) which implies, in view of the injectivity of α, that η (H) = H ′.

Theorem 3.43. Let E be a left R-module. Then E is injective if and only if E has
no proper essential extension.

Proof. Assume that E is injective. Let j : E → H be an injective homomorphism
of left R-modules and suppose that j (E) is essential in H. We will prove that
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j (E) = H. Since E is injective, by Proposition 3.29, there is a submodule L of H
such that H = j (E) ⊕ L. Since j (E) is essential in H and j (E) ∩ L = {0}, we
deduce that L = {0}. Hence H = j (E).

Conversely, assume that E has no proper essential extension. Let i : E →M be
an injective homomorphism. We will prove that i splits. Assume that i (E) $ M .
By Zorn’s Lemma, there exists a submodule H of M maximal with respect to the
property i (E) ∩ H = {0}. If H = {0} then, for any L ≤ M with L ̸= {0}, we
would get that i (E) ∩ L ̸= {0} and hence i (E) would be essential in M which is
a contradiction since i (E) $ M . Thus H ̸= {0}. If i (E) + H = M we would get
i (E)⊕H =M . Therefore we can assume that i (E) +H $M . We deduce that

i (E) ∼=
i (E)

i (E) ∩H
∼=
i (E) +H

H
$
M

H
.

Let j : i (E) → i(E)+H
H

be the composition of the displayed isomorphisms . Then
j ◦ i (E) $ M

H
. Thus there exists a submodule Y of M such that H $ Y ⊆M and(

i (E) +H

H

)
∩ Y

H
= {0} =

H

H
i.e.

(i (E) +H) ∩ Y = H.

Thus we infer that (i (E) ∩ Y ) ⊆ (i (E) +H) ∩ Y = H and hence (i (E) ∩ Y ) ⊆
(i (E) ∩H) = {0}. Since H $ Y ⊆ M this contradicts the maximality of H.
Therefore we get that i (E) +H =M and hence i (E)⊕H =M .

Definition 3.44. Let i :M → E be an injective homomorphism of left R-modules.
(E, i) is said to be a minimal injective extension of M if

1) E is an injective left R-module,

2) for any injective homomorphism i′ : M → E ′ where E ′ is an injective left R-
module, there exists an injective homomorphism χ : E → E ′ such that χ◦i = i′.

Proposition 3.45. Let i : M → E be an injective left R-module homomorphism.
Then the following assertions are equivalent.

(a) (E, i) is an injective and essential extension of M .

(b) (E, i) is a maximal essential extension of M .

(c) (E, i) is a minimal injective extension of M .

Proof. (a) ⇒ (b) . Let η : E → H be an injective homomorphism of left R-modules
and assume that η (E) is essential in H. Then, by Theorem 3.43, we have that η is
an isomorphism.

(b) ⇒ (a) . Let us prove that E is injective. By Theorem 3.43, this is equivalent
to prove that E has no proper essential extension. Let η : E → E ′ be an injective
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homomorphism and assume that η (E) is essential in E ′. Since (E, i) is a maximal
essential extension of M , we deduce that η is an isomorphism.

(a) ⇒ (c) . Let i′ : M → E ′ an injective homomorphism and assume that E ′

is injective. Then, by Proposition 3.41, there exists an injective left R-module
homomorphism χ : E → E ′ such that χ ◦ i′ = i.

(c) ⇒ (a) . By Proposition 3.42, E contains a submodule H such that i (M) ⊆ H
and

(
H, i|H

)
is a maximal essential extension of M . Since we already proved that

(b) ⇒ (a) , we know that H is injective and hence
(
H, i|H

)
is an injective (and

essential) extension of M . Then, by (c), there exists an injective homomorphism
χ : E → H such that χ ◦ i =.i|H . Since i|H (M) is essential in H and i|H (M) =
χ◦ i (M) ⊆ χ (E), by Proposition 3.35 we deduce that χ◦ i (M) is essential in χ (E).

Since χ is injective, we deduce that i (M) is essential in E.

Theorem 3.46. LetM be a left R-module. Then there exists an injective homomor-
phism of left R-modules i : M → E such that (E, i) fulfills the following equivalent
conditions:

(a) (E, i) is an injective and essential extension of M .

(b) (E, i) is a maximal essential extension of M .

(c) (E, i) is a minimal injective extension of M .

Moreover if both (E, i) and (E ′, i′) fulfill these conditions, then there exists an
homomorphism α : E → E ′ such that α ◦ i = i′. Furthermore α is an isomorphism.

Proof. In view of Proposition 3.45, we know that conditions (a) , (b) and (c) are
equivalent. By Theorem 3.28, there exists an injective left R-module homomorphism
i :M → I where I is injective. By Proposition 3.42, I contains a submodule H such
that i (M) ⊆ H and

(
i|H , H

)
is a maximal essential extension of M .

Assume now that both (E, i) and (E ′, i′) fulfill above conditions. Since (E, i) is a
minimal injective extension of M, there exists an injective homomorphism α : E →
E ′ such that α ◦ i = i′. Then α ◦ i (M) = i′ (M) is essential in E ′ and being (E, i) a
maximal essential extension of M, we get that α (E) = E ′.

Definition 3.47. Let M be a left R-module. A pair (E, i) which satisfies the equiv-
alent conditions of Theorem 3.46 is called an injective envelope of M . An injective
envelope of M will also be denoted simply by ER (M) or even by E (M).

Exercise 3.48. Let L be an essential submodule of a left R-module M . Show that
E (L) = E (M).

Examples 3.49.

1) EZ (Z) = Q. In fact, by Example 3.22, Q is an injective abelian group. Let us
prove that Z is essential in Q. Let q ∈ Q, q ̸= 0. Write q = m

n
where m,n ∈ Z

and m,n ̸= 0. Then nq = m ∈ Z and m ̸= 0.
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2) EZ (Z/pZ) = Z (p∞). In fact, by Example 3.22, Z (p∞) is an injective abelian

group. Let H =
⟨

1
p
+ Z

⟩
. Then H is an essential submodule of Z (p∞). In

fact, if x ∈ Z (p∞) and x ̸= 0 there exist m ∈ Z, h ∈ N such that

x =
m

ph
+ Z where h > 0 and (m, p) = 1.

Then (
ph−1

)
x =

m

p
+ Z ̸= 0 + Z.

In fact if m
p
∈ Z, then there is an a ∈ Z such that m = ap which contradicts

that (m, p) = 1. Since o
(

1
p
+ Z

)
= p we get that Z/pZ ∼= H.

Exercise 3.50. Let D be a commutative domain. Show that ED (D) = Q (D).



Chapter 4

Generators and Cogenerators

Notation 4.1. In the following we will denote by R-Mod the class of all left R-
modules.

Definition 4.2. Let R be a ring. A left R-module RQ is called a generator of R-
Mod if, given R-module homomorphisms f, g : M → N with f ̸= g, there is a left
R-module homomorphism h : Q→M such that

f ◦ h ̸= g ◦ h.

Proposition 4.3. Let Q be a left R-module. The following assertions are equivalent:

(a) Q is a generator of R-Mod.

(b) For every left R-module M we have that

M =
∑

h∈HomR(Q,M)

Im (h)

(c) For every left R-module M, there exists a nonempty set I and a surjective R-
module homomorphism

Q(I) →M → 0.

Proof. Let us consider Q(HomR(Q,M)) =
⊕

h∈HomR(Q,M)

Qh where Qh = Q for every

h ∈ HomR (Q,M). Let φ = ∇ (h)h∈HomR(Q,M) : Q
(HomR(Q,M)) → M . We know (cf.

Proposition 1.64) that

Im (φ) =
∑

h∈HomR(Q,M)

Im (h)

(a) ⇒ (b) . Let us prove that φ is surjective. Let T = Im (φ) and let us assume that
T $ M . Then M/T ̸= {0}. Let p = pT : M → M/T be the canonical projection.
Then p ̸= 0 and hence there exists a left R-module homomorphism χ : Q→M such
that p ◦ χ ̸= 0 ◦ χ = 0. Since p ◦ χ ̸= 0 we get that

Im (χ) * Ker (p) = T = Im (φ) =
∑

h∈HomR(Q,M)

Im (h)
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which is a contradiction.
(b) ⇒ (c) . Let I = HomR (Q,M) and let φ = ∇ (h)h∈HomR(Q,M). Then

Im (φ) =
∑

h∈HomR(Q,M)

Im (h) =M.

(c) ⇒ (a).Let f, g : M → N be homomorphisms of left R-modules with f ̸=
g. By assumption (c), there exists a nonempty set I and a surjective R-module
homomorphism

p : Q(I) →M.

Since p is surjective, from f ̸= g we infer that f ◦ p ̸= g ◦ p and hence, there exists
an i0 ∈ I such that

f ◦ p ◦ εi0 ̸= g ◦ p ◦ εi0 .

Set h = p ◦ εi0 : Q→M . Then f ◦ h ̸= g ◦ h.

Corollary 4.4. RR is a generator of R-Mod.

Proof. It follows by Propositions 2.2 and 4.3.

Exercise 4.5. Let RQ be a left R-module and assume that there is a surjective left
R-module homomorphism p : RQ → RR. Show that RQ is a generator of R-Mod.
Deduce from this, that if RL is a left R-module, then the left R-module RR ⊕ RL is
a generator of R-Mod.

Exercise 4.6. Let RQ be a generator of R-Mod. Show that there is an n ∈ N, n ≥ 1
and a a surjective left R-module homomorphism p : RQ

n → RR.

Definition 4.7. Let R be a ring. A left R-module RK is called a cogenerator of
R-Mod if, given R-module homomorphisms f, g :M → N with f ̸= g, there is a left
R-module homomorphism h : N → K such that

h ◦ f ̸= h ◦ g.

Proposition 4.8. Let K be a left R-module. The following assertions are equivalent:

(a) K is a cogenerator of R-Mod.

(b) For every left R-module M we have that∩
f∈HomR(M,K)

Ker (f) = {0} .

.

(c) For every left R-module M, there exists a nonempty set I and an injective R-
module homomorphism

0 →M → KI .
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Proof. Let us consider KHomR(M,K) =
⊕

h∈HomR(M,K)

Kh where Kh = K for every

h ∈ HomR (M,K). Let ψ = ∆(h)h∈HomR(M,K) : M → KHomR(M,K). We know (cf.
1.46) that

Ker (ψ) =
∩

f∈HomR(M,K)

Ker (f)

(a) ⇒ (b). Let M be a left R-module and let x ∈M,x ̸= 0. Let i : Rx→M be the
canonical inclusion. Then i ̸= 0. Hence there exists a morphism h : M → K such
that h ◦ i ̸= h ◦ 0 = 0. Clearly h ◦ i ̸= 0 infers that h (x) ̸= 0. We deduce that∩

f∈HomR(M,K)

Ker (f) = {0} .

(b) ⇒ (c) . Since

Ker (ψ) =
∩
x∈M

Ker (fx) = {0} ,

ψ :M → KHomR(M,K) is injective.
(c) ⇒ (a). Let f, g :M → N with f ̸= g be left R-module homomorphisms and

let φ : N → KI be an injective R-module homomorphism. Since φ is injective, from
f ̸= g we get that φ ◦ f ̸= φ ◦ g. This implies that there is an i0 ∈ I such that πi0◦
φ ◦ f ̸= πi0 ◦ φ ◦ g where πi0 : KI → K denotes the i0-th canonical projection. Let
h = πi0 ◦ φ : N → K. Then h ◦ f ̸= h ◦ g.

Definition 4.9. Let RS be a left R-module. We say that RS is a simple left R-
module if

1) S ̸= {0} ,

2) the only submodules of RS are S and {0} .

Proposition 4.10. Let RS be a left R-module. Then the following statement are
equivalent.

(a) RS is simple.

(b) S ̸= {0} and, for any x ∈ S, x ̸= 0, Rx = S.

Proof. (a) ⇒ (b) . Let x ∈ S, x ̸= 0. Then 0 ̸= x ∈ Rx so that Rx ̸= {0}. Therefore
we infer that Rx = S.

(b) ⇒ (a) . Let L be a non-zero submodule of S. Then there is an x ∈ L such
that x ̸= 0 and hence we get that S = Rx ⊆ L so that L = S.

Proposition 4.11. A cyclic left R-module Rx is simple if and only if AnnR (x) is
a left maximal ideal of R.
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Proof. We know that the map hx : R → Rx defined by setting hx (a) = ax for
every r ∈ R, is a surjective left R-module homomorphism and Ker (hx) = AnnR (x)

so that we have that φ = ĥx : R
AnnR(x)

→ Rx is an isomorphism. Therefore Rx is

simple if and only if R
AnnR(x)

is simple i.e. there are no proper left ideals I of R which

properly contain AnnR (x).

Corollary 4.12. Let RS be a left R-module. Then RS is simple if and only if RS
is isomorphic to R

m
where m is a left maximal ideal of R.

Proof. Assume that RS is simple and let x ∈ S, x ̸= 0. Then, by Proposition 4.10,
Rx = S is simple so that, by Proposition 4.11, AnnR (x) is a left maximal ideal of
R. Conversely assume that RS is isomorphic to R

m
where m is a left maximal ideal

of R and let x = 1 + m. Then Rx = R
m
and AnnR (x) = m. Thus, by Proposition

4.11, Rx is simple.

4.13. Let R be a ring and let M be the set of maximal left ideals of R. We define
an equivalence relation on M by setting

m1 ∼ m2 ⇔
R

m1

∼=
R

m2

as left R-modules.

We denote by Ω a set of representatives of the equivalence classes of M with respect
to ∼. Clearly, by Corollary 4.12,

S =

{
R

m
| m ∈ Ω

}
is a set of representatives of the isomorphism classes of simple left R-modules.

Theorem 4.14. Let R be a ring. Then

K =
⊕
m∈Ω

E

(
R

m

)
is a cogenerator of R-Mod.

Proof. Let M be a left R-module and let 0 ̸= x ∈M . Let

E = {L | L ≤R M and x /∈ L} .

Since 0 ̸= x ∈ M we have that {0} ∈ E and hence E ̸= ∅. It is easy to prove that
(E ,⊆) is an inductive set. Let L0 be a maximal element in (E ,⊆). Set

x = x+ L0 ∈
Rx+ L0

L0

.

Then

Rx =
Rx+ L0

L0

.
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Rx is a simple left R-module.
Let H $ Rx be a proper submodule of Rx. Then there is a submodule H of

Rx+ L0 such that

L0 ⊆ H $ Rx+ L0 and H =
H

L0

.

Now L0 ⊆ H $ Rx+L0 implies that x /∈ H. Hence, by the maximality property of
L0, we deduce that L0 = H so that H = {0}.

By 1) and Proposition 4.11, there is an m ∈ Ω such that m = AnnR (x). Hence
we have an injective left R-module homomorphism χ : Rx→ E

(
R
m

)
.

Let i : Rx → M
L0

be the canonical inclusion. Since E
(
R
m

)
is injective, χ extends

to a left R-module homomorphism η : M
L0

→ E
(
R
m

)
.

Let p = pL0 : M → M
L0

be the canonical projection and let im : E
(
R
m

)
→ K be

the canonical injection and set

f = im ◦ η ◦ p :M → K.

Then
f (x) = im (η (x+ L0)) = im (χ (x+ L0)) ̸= 0.

The conclusion now follows in view of Proposition 4.8.

Lemma 4.15. Let K be a cogenerator of R-Mod and let χ : K → U be an injective
R-module homomorphism. Then U is a cogenerator of R-Mod.

Proof. Let M be a left R-module and let x ∈M,x ̸= 0. Since K is a cogenerator of
R-Mod, By Proposition 4.8, there exists a left R-module homomorphism fx :M →
K such that fx (x) ̸= 0. Since χ : K → U is an injective R-module homomorphism,
we have that (χ ◦ fx) (x) ̸= 0 and χ◦fx :M → U is a left R-module homomorphism.
We conclude by Proposition 4.8.

Proposition 4.16. The left R-module E = E

(⊕
m∈Ω

R
m

)
is an injective cogenerator

of R-mod.

Proof. Let i :
⊕
m∈Ω

R
m

→
⊕
m∈Ω

E
(
R
m

)
and j :

⊕
m∈Ω

R
m

→ E

(⊕
m∈Ω

R
m

)
be the canoni-

cal inclusions. Since E is injective, there is a left R-module homomorphism χ :⊕
m∈Ω

E
(
R
m

)
→ E such that χ ◦ i = j. Thus Ker (χ) ∩ Im (i) = {0}. By Proposi-

tion 3.33, Im (i) is essential in
⊕
m∈Ω

E
(
R
m

)
so that χ is injective. Apply now Lemma

4.15.

Remark 4.17. It is very well known that there exists a unique minimal injective
cogenerator M in the category of modules over a ring R with 1. It is very tempting
to think that the uniqueness holds in general when the injectivity property is dropped
[see, e.g., C. C. Faith, Algebra, I. Rings, modules and categories, corrected reprint,
Proposition 3.55, Springer, Berlin, 1981; F. W. Anderson and K. R. Fuller, Rings
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and categories of modules, see pp. 211, 216, Exercise 14, Springer, New York,
1974.].

In the paper by Barbara Osofsky, ”Minimal cogenerators need not be unique”,
Comm. Algebra 19 (1991), no. 7, 2071–2080, two counterexamples are presented.
In the first one, an arbitrarily large cardinal number of nonisomorphic cogenerators
which embed in every cogenerator is obtained. In the second one it is shown that
even a commutative ring need not have a unique minimal cogenerator.



Chapter 5

2× 2 Matrix Ring

Let k be a field and let R = M2 (k) be the ring of 2 × 2 matrices over R. Let eij
be the matrix with all zero entries except for (i, j) where the entry is 1k. A simple
calculation show that

Re11 = ke11 + ke21 = Re21 and Re12 = ke12 + ke22 = Re22.

Set
I1 = Re11 and I2 = Re22

AnnR (e11) = ke12 + ke22 = I2

AnnR (e12) = ke12 + ke22 = I2

AnnR (e21) = ke11 + ke21 = I1

AnnR (e22) = ke11 + ke21 = I1.

Therefore we have

R

I2
=

R

AnnR (e11)
∼= Re11 = I1(5.1)

R

I2
=

R

AnnR (e12)
∼= Re12 = I2(5.2)

R

I1
=

R

AnnR (e21)
∼= Re21 = I1(5.3)

R

I1
=

R

AnnR (e22)
∼= Re22 = I2.(5.4)

This implies that

(5.5) I1 = Re11 ∼=
R

I2
∼= Re12 = I2.

Proposition 5.1.

1) Both I1 and I2 are left simple modules and I1 ∼= I2.
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2) Both I1 and I2 are left maximal ideals of R.

3) Let λ ∈ k, λ ̸= 0. Set xλ = e11 + λe12 and Iλ = Rxλ. Then Iλ is a left maximal
ideal of R and R

Iλ
∼= I2.

Moreover Iλ is also a simple left R-module and Iλ ∼= R
I2

∼= I1.

4) For every maximal ideal M of R with M ̸= I1 and M ̸= I2, there exists a
λ ∈ K,λ ̸= 0, such that M = Iλ.

5) If λ, λ′ ∈ k, λ ̸= 0 ̸= λ′and λ ̸= λ′ then Iλ ̸= Iλ′.

6) Every simple left module is isomorphic to I1.

Proof. 1) Let x ∈ I1, x ̸= 0. Then

x = λ11e11 + λ21e21 where λ11, λ21 ∈ k.

Case λ11 ̸= 0. Then
e11 = (λ11)

−1 e11x ∈ Rx

and hence I1 = Re11 ⊆ Rx so that Rx = I1.
Case λ11 = 0 and λ21 ̸= 0. Then

e21 = (λ21)
−1 e22x ∈ Rx

and hence I1 = Re21 ⊆ Rx so that Rx = I1.
2). It follows from 1) in view of Proposition 4.11.
3) Let λ ∈ k, λ ̸= 0. Let us prove that Iλ a left maximal ideal of R. We have

yλ = e21 + λe22 = e21xλ ∈ Rxλ and xλ = e11 + λe12 = e12yλ ∈ Ryλ

and hence
Rxλ = Ryλ.

Now I2 * Iλ, otherwise e22 ∈ Iλ and hence also e21 = yλ − λe22 ∈ Iλ. Thus
R = Re21 +Re22 ⊆ Iλ so that R = Rxλ and hence det (xλ) ̸= 0. Since det (xλ) = 0,
this is a contradiction. Since I2 is simple, we get that Iλ ∩ I2 = {0}. On the other
hand xλ and yλ are linearly independent. In fact αxλ = βyλ writes as

αe11 + αλe12 = βe21 + βλe22

from which it follows that α = 0 = β. Hence dimk (Iλ + I2) = dimk

(
Iλ
·
⊕ I2

)
=

dimk (Iλ) + dimk (I2) ≥ 4 which implies that Iλ
·
⊕ I2 = R and dimk (Iλ) = 2. In

particular we get that (xλ, yλ) is a basis for Iλ. Moreover we have

R

Iλ
∼= I2
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is a simple left R-module whence Iλ is a left maximal ideal of R. Furthermore, since

Iλ ∼=
R

I2
∼= I1

we obtain that Iλ is also a simple left R-module.
4) Let M be a left maximal ideal of R and assume that M ̸= I1 and also

M ̸= I2. Then I2 * M and hence, since I2 is a simple left R-module, we deduce
that M ∩ I2 = {0}. Clearly we also have M + I2 = R. Thus we deduce that

R =M
·
⊕ I2.

Therefore there exist m ∈M,λ11, λ22 ∈ k such that

(5.6) e11 = m+ λ12e12 + λ22e22.

By multiplying (5.6) on the left by e12 we get

0 = e12m+ λ22e12.

Assume that λ22 ̸= 0. Then we obtain

e12 = −λ−122 e12m ∈M

so that I2 = Re12 ⊆M , a contradiction. Therefore λ22 = 0 and (5.6) rewrites as

e11 = m+ λ12e12.

Clearly λ12 ̸= 0 otherwise we would have e11 = m ∈ M and hence I1 = Re11 ⊆ M ,
a contradiction. Hence we obtain

m = e11 − λ12e12 = xλ where λ = −λ12 ̸= 0.

From 3) we know that Rm = Rxλ is a left maximal ideal of R. Since Rxλ = Rm ⊆
M, we conclude that M = Rxλ.

5) Assume that Iλ = Iλ′ . Then there exists t, s ∈ k such that

xλ = txλ′ + syλ′ i.e.

e11 + λe12 = te11 + tλ′e12 + se21 + sλe22

which implies s = 0, t = 1 and λ = λ′.
6) Let S be a left simple module and let 0 ̸= x ∈ S. Then S = Rx ∼= R/AnnR (x)

and AnnR (x) is a left maximal ideal of R. Hence, in view of 2) and 4) we have
AnnR (x) ∈ {I1, I2, Iλ | λ ∈ k, λ ̸= 0} . If AnnR (x) = Iλ for some λ ∈ k, λ ̸= 0, then,
in view of 3) and (5.5)we have that R

Iλ
∼= I2 ∼= I1. If AnnR (x) = I1, then, by (5.3)

R/I1 ∼= I1.If AnnR (x) = I2, then, by (5.1) R/I2 ∼= I1.



Chapter 6

Tensor Product and bimodules

6.1 Tensor Product 1

Definition 6.1. Let R be a ring. Let MR be a right R-module and let RN be a
left R-module. Given an abelian group G, a map β : M × N → G is said to be
R-balanced if

1) β ((x1 + x2, y)) = β ((x1, y)) + β ((x2, y)) for every x1, x2 ∈M and y ∈ N ;

2) β ((x, y1 + y2)) = β ((x, y1)) + β ((x, y2)) for every x ∈M and y1, y2 ∈ N ;

3) β ((xr, y)) = β ((x, ry)) for every x ∈M, r ∈ R, y ∈ N.

Definition 6.2. Let R be a ring. Let MR be a right R-module and let RN be a left
R-module. A pair (T, τ) is called a tensor product of MR and RN if

T1) T is an abelian group;

T2) τ :M ×N → T is an R-balanced map;

T3) for every abelian group G and every R-balanced map β : M × N → G there
exists a unique abelian group homomorphism f : T → G such that f ◦ τ = β.

Theorem 6.3. Let R be a ring. Let MR be a right R-module and let RN be a left
R-module. Assume that both (T, τ) and (T ′, τ ′) are tensor products of MR and RN .
Then there is a unique abelian group homomorphism α : T → T ′ such that α◦τ = τ ′.
Moreover α is an isomorphism.

Proof. Since (T, τ) is a tensor product of MR and RN and τ ′ : M × N → T ′ is an
R-balanced map, there is a unique abelian group homomorphism α : T → T ′ such
that α ◦ τ = τ ′.

Since (T ′, τ ′) is a tensor product of MR and RN and τ : M × N → T is an
R-balanced map, there is a unique abelian group homomorphism α′ : T ′ → T such
that α′ ◦ τ ′ = τ . Therefore we obtain that

α′ ◦ α ◦ τ = α′ ◦ τ ′ = τ and α ◦ α′ ◦ τ ′ = α ◦ τ = τ ′.

68



6.1. TENSOR PRODUCT 1 69

Since both IdT : T → T and (α′ ◦ α) : T → T are abelian group homomorphisms
such that

IdT ◦ τ = τ and (α′ ◦ α) ◦ τ = τ,

and since (T, τ) is a tensor product of MR and RN, in view of property T3) we
deduce that IdT = α′ ◦ α.

Since both IdT ′ : T ′ → T ′ and (α ◦ α′) : T ′ → T ′ are abelian group homomor-
phisms such that

IdT ′ ◦ τ ′ = τ ′ and (α ◦ α′) ◦ τ ′ = τ ′,

and since (T ′, τ ′) is a tensor product of MR and RN, in view of property T3) we
deduce that IdT ′ = α ◦ α′.

6.4. Let us consider the abelian group

Z(M×N) =
⊕

(x,y)∈M×N

Z(x,y) where Z(x,y) = Z for every (x, y) ∈M ×N

and, for every (x, y) ∈M×N , let ε(x,y) : Z(x,y) → Z(M×N) be the canonical injection.
For every x ∈M and y ∈ N let us set

(̂x, y) = ε(x,y) (1Z)

so that

(̂x, y) :M ×N → Z and (̂x, y) ((t, s)) =

{
1Z whenever (x, y) = (t, s)
0Z whenever (x, y) ̸= (t, s)

.

Recall that Z(M×N) is an abelian group where the addition is defined by setting

(f + g) ((m,n)) = f ((m.n)) + g ((m.n)) for every (m,n) ∈M ×N .

Let L be the subgroup of Z(M×N) generated by all elements of the form

̂(x1 + x2, y)− (̂x1, y)− (̂x2, y) for all x1, x2 ∈M, y ∈ N ;

̂(x, y1 + y2)− (̂x, y1)− (̂x, y2) for all x ∈M, y1, y2 ∈ N ;

(̂xr, y)− (̂x, ry) for all x ∈M, r ∈ R, y ∈ N .

Then in Z(M×N)

L
we have the following equalities[

̂(x1 + x2, y) + L
]
=
[
(̂x1, y) + L

]
+
[
(̂x2, y) + L

]
for all x1, x2 ∈M, y ∈ N ;(6.1) [

̂(x, y1 + y2) + L
]
=
[
(̂x, y1) + L

]
+
[
(̂x, y2) + L

]
for all x ∈M, y1, y2 ∈ N ;(6.2) [

(̂xr, y) + L
]
=
[
(̂x, ry) + L

]
for all x ∈M, r ∈ R, y ∈ N .(6.3)
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We set

x⊗R y = (̂x, y) + L ∈ Z(M×N)

L
for every (x, y) ∈M ×N .

With this notations, from (6.1) , (6.2) and (6.3) rewrite as

(x1 + x2)⊗R y = x1 ⊗R y + x2 ⊗R y for all x1, x2 ∈M, y ∈ N ;(6.4)

x⊗R (y1 + y2) = x⊗R y1 + x⊗R y2 for all x ∈M, y1, y2 ∈ N ;(6.5)

xr ⊗R y = x⊗R ry for all x ∈M, r ∈ R, y ∈ N .(6.6)

Set

T =
Z(M×N)

L
and let τ :M ×N → T be the map defined by setting

τ ((x, y)) = x⊗R y for every (x, y) ∈M ×N .

Theorem 6.5. Let R be a ring. Let MR be a right R-module and let RN be a left
R-module. Using the notations introduced in (6.4),the pair (T, τ) is a tensor product
of MR and RN .

Proof. First of all let us prove that τ :M ×N → T is an R-balanced map. We have

τ ((x1 + x2, y)) = (x1 + x2)⊗R y
(6.4)
= x1 ⊗R y + x2 ⊗R y = τ ((x1, y)) + τ ((x2, y))

for all x1, x2 ∈M, y ∈ N,

τ ((x, y1 + y2)) = x⊗R (y1 + y2)
(6.5)
= x⊗R y1 + x⊗R y2 = τ ((x, y1)) + τ ((x, y2))

for all x ∈M, y1, y2 ∈ N and

τ ((xr, y)) = xr ⊗R y = x⊗R ry = τ ((xr, ry))

for all x ∈M, r ∈ R, y ∈ N .
Let i :M ×N → Z(M×N) be the map defined by setting i ((x, y)) = ε(x,y) (1Z) =

(̂x, y). Recall that, by Proposition 2.3,
(
Z(M×N), i

)
is a free Z-module with basis

M ×N .
Let now β : M × N → G be an R-balanced map. Since

(
Z(M×N), i

)
is a free

Z-module, there exists a unique abelian group homomorphism h : Z(M×N) → G such
that h ◦ i = β. Let us compute

h
(

̂(x1 + x2, y)
)

= (h ◦ i) ((x1 + x2, y)) = β ((x1 + x2, y))
βisbalanc

= β ((x1, y)) + β ((x2, y)) =

= (h ◦ i) ((x1, y)) + (h ◦ i) ((x2, y)) = h
(
(̂x1, y)

)
+ h

(
(̂x2, y)

)
which means that

(6.7) ̂(x1 + x2, y)− (̂x1, y)− (̂x2, y) ∈ Ker (h) ;
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h
(

̂(x, y1 + y2)
)

= (h ◦ i) ((x, y1 + y2)) = β ((x, y1 + y2))
βisbalanc

= β ((x, y1)) + β ((x, y2)) =

= (h ◦ i) ((x, y1)) + (h ◦ i) ((x, y2)) = h
(
(̂x, y1)

)
+ h

(
(̂x, y2)

)
which means that

(6.8) ̂(x, y1 + y2)− (̂x, y1)− (̂x, y2) ∈ Ker (h) ;

h
(
(̂xr, y)

)
= (h ◦ i) ((xr, y)) = β ((xr, y))

βisbalanc
= β ((x, ry))

= (h ◦ i) ((x, ry)) = h
(
(̂x, ry)

)
which means that

(6.9) (̂xr, y)− (̂x, ry) ∈ Ker (h) .

From (6.7) , (6.8) and (6.9), we deduce that L ⊆ Ker (h). Hence, by the Funda-
mental Theorem of Quotient Groups, there exists a unique group homomorphism
h : T = Z(M×N)

L
→ G such that h ◦ pL = h. Note that pL ◦ i = τ so that

h ◦ τ = h ◦ pL ◦ i = h ◦ i = β.

Let us prove that f = h is unique. Let f ′ : T → G be a group homomorphism
such that f ′ ◦ τ = β. Then we have

f ′ ◦ pL ◦ i = f ′ ◦ τ = β = h ◦ pL ◦ i

Since there is a unique group homomorphism h : Z(M×N) → G such that h ◦ i = β
we infer that

f ′ ◦ pL = h = h ◦ pL.
Since pL is surjective, this implies that f ′ = h.

Notation 6.6. In view of Theorem 6.5, we know that for

T =
Z(M×N)

L
and τ :M ×N → T the map defined by setting

τ ((x, y)) = x⊗R y for every (x, y) ∈M ×N .

(T, τ) is a tensor product of MR and RN . Moreover, by Theorem 6.3, such a pair is
essentially unique. We will denote it by (M ⊗R N, τ), or even by M ⊗R N , if there
is no risk of confusion. Given (x, y) ∈M ×N, sometimes we will simply write x⊗y
instead of x⊗R y.

Exercise 6.7. Let MR be a right R-module and let RN be a left R-module. Show
that, for any m ∈ Z, x ∈M, y ∈ N we have

m (x⊗ y) = (mx)⊗ y = x⊗ (my)
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Proposition 6.8. Let MR be a right R-module and let RN be a left R-module. Then
any element of M ⊗R N can be written as

n∑
i=1

xi ⊗ yi where n ∈ N, n ≥ 1 and , x1, . . . , xn ∈M, y1, . . . , yn ∈ N.

In particular the elements of type x⊗R y, x ∈ M, y ∈ N, for a system of generators
of the abelian group M ⊗R N .

Proof. Let w ∈ Z(M×N) =
⊕

(x,y)∈M×N Z(x,y). By Lemma 1.40 we have

w =
∑

(x,y)∈M×N

ε(x,y)
(
π(x,y) (w)

)
.

For every (x, y) ∈M ×N , set m(x,y) = π(x,y) (w) ∈ Z. Then we have

w =
∑

(x,y)∈Supp(w)

ε(x,y)
(
m(x,y)

)
=

∑
(x,y)∈Supp(w)

m(x,y)ε(x,y) (1Z) =
∑

(x,y)∈Supp(w)

m(x,y)(̂x, y) .

Therefore there exist n ∈ N, n ≥ 1 and x1, . . . , xn ∈M, y1, . . . , yn ∈ N,m1, . . . ,mn ∈
Z such that

w =
n∑
i=1

mi(̂xi, yi) .

Hence in Z(M×N)/L we have

w + L =
n∑
i=1

mi(̂xi, yi) + L =
n∑
i=1

mi

[
(̂xi, yi) + L

]
=

n∑
i=1

mi (xi ⊗ yi)
Ex.6.7
=

=
n∑
i=1

(mixi)⊗ yi =
n∑
i=1

ti ⊗ yi where ti = mixi ∈M.

Remarks 6.9. Let MR be a right R-module and let RN be a left R-module.

1) Let G be an abelian group, To give an abelian group homomorphism f : M ⊗R

N → G, it is enough to give an R-balanced map β :M ×N → G.

2) In view of Proposition 6.8, if f and g :M⊗RN → G are group homomorphisms,
we have that f = g if and only if f (x⊗R y) = g (x⊗R y) for all x ∈ M and
y ∈ N .

Lemma 6.10. Let MR be a right R-module and let RN be a left R-module. Then,
for every x ∈M and y ∈ N we have

x⊗R 0 = 0 and 0⊗R y = 0.
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Proof. Let x ∈M . We have:

x⊗R 0 = x⊗R (0 + 0)
(6.5)
= x⊗R 0 + x⊗R 0

so that we get
x⊗R 0 = x⊗R 0 + x⊗R 0.

Since M ⊗R N is a group, we deduce that x⊗R 0 = 0. The other equality is proved
in an analogous way.

Lemma 6.11. Let f : L→ L′ be a right R-module homomorphism and let g :M →
M ′ a left R-module homomorphism. The map

β : L×M → L′⊗RM
′ defined by setting β ((x, y)) = f (x)⊗Rg (y) for every x ∈ L and y ∈M .

is R-balanced.

Proof. Let x, x1, x2 ∈ L, y, y1, y2 ∈M and r ∈ R. We compute

β ((x1 + x2, y)) = f (x1 + x2)⊗R g (y) = [f (x1) + f (x2)]⊗R g (y)
(6.4)
=

= f (x1)⊗R g (y) + f (x2)⊗R g (y) = β ((x1, y)) + β ((x2, y)) .

β ((x, y1 + y2)) = f (x)⊗R g (y1 + y2) = f (x)⊗R [g (y1) + g (y2)])
(6.5)
=

= f (x)⊗R g (y1) + f (x)⊗R g (y2) = β ((x, y1)) + β ((x, y2))

β ((xr, y))) = f (xr)⊗ g (y) = f (x) r ⊗ g (y)
(6.6)
= f (x)⊗ rg (y) = f (x)⊗ g (ry) =

= β ((x, ry)) .

Notation 6.12. Let f : L→ L′ be a right R-module homomorphism and let g :M →
M ′ a left R-module homomorphism. By Lemma 6.11, the map β : L×M → L′⊗RM

′

defined by setting β ((x, y)) = f (x) ⊗R g (y) is R-balanced. Therefore there is a
unique group homomorphism, which will be denoted by f ⊗R g , or simply by f ⊗ g,
such that

f⊗Rg : L⊗RM → L′⊗RM
′ and (f ⊗R g) (x⊗ y) = f (x)⊗Rg (y) for every x ∈ L and y ∈M .

If f = IdL, the notation L⊗R g will be also used. Similarly if f = IdM .

Lemma 6.13. Let f : L→ L′ and f ′ : L′ → L′′ be right R-module homomorphisms
and let g :M →M ′ and g′ :M ′ →M ′′ be left R-module homomorphisms. Then

(f ′ ◦ f)⊗R (g′ ◦ g) = (f ′ ⊗R g
′) ◦ (f ⊗R g) .

Proof. Let x ∈ L and y ∈M. We compute

[(f ′ ◦ f)⊗R (g′ ◦ g)] (x⊗ y) = [(f ′ ◦ f) (x)]⊗ [(g′ ◦ g) (y)] = f ′ (f (x))⊗ g′ (g (y)) =

= (f ′ ⊗R g
′) (f (x)⊗ g (y)) = [(f ′ ⊗R g

′) ◦ (f ⊗R g)] (x⊗ y) .

In view of 2) in Remarks 6.9, we conclude.
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Proposition 6.14. Let

RM
′ f−→ RM

g−→ RM
′′ → 0

be an exact sequence of left R-modules and left R-modules homomorphism. Then,
for every right R-module LR, the sequence of abelian groups

L⊗RM
′ L⊗Rf−→ L⊗RM

L⊗Rg−→ L⊗RM
′′ → 0

is exact.

Proof. Let x ∈ L and y′′ ∈ M ′′. Since g is surjective there exists an y ∈ M such
that g (y) = y′′. Then

(L⊗R g) (x⊗ y) = x⊗ g (y) = x⊗ y′′.

In view of Proposition 6.8, we conclude that L ⊗R g is surjective .By Lemma 6.13,
we have that

(L⊗R g) ◦ (L⊗R f) = L⊗R (f ◦ g) = L⊗R 0 = 0.

Therefore Im (L⊗R f) ⊆ Ker (L⊗R g). Let p : L⊗RM → L⊗RM
Im(L⊗Rf)

be the canonical
projection. Then, By the Fundamental Theorem for Quotient Modules 1.20, there
exists a unique Z-module homomorphism

g :
L⊗RM

Im (L⊗R f)
→ L⊗RM

′′

such that g ◦ p = L ⊗R g. Moreover g is injective if and only if Im (L⊗R f) =
Ker (L⊗R g). To this aim, we will construct a group homomorphism q : L⊗RM

′′ →
L⊗RM

Im(L⊗Rf)
which will be a left inverse of g. Let us consider the map

β : L×M ′′ → L⊗RM

Im (L⊗R f)
defined by setting , for every (x, y′′) ∈ L×M ′′

β ((x, y′′)) = (x⊗ y) + Im (L⊗R f) where y ∈M and g (y) = y′′.

β is well defined. In fact, assume that y1,y2 ∈ M and g (y1) = g (y2) = y′′. Then
y1 − y2 ∈ Ker (g) = Im (f) so that there is an m ∈ M such that f (m) = y1 − y2.
Thus we get

x⊗ y1 − x⊗ y2 = x⊗ (y1 − y2) = x⊗ f (m) =

= (L⊗R f) (x⊗m) ∈ Im (L⊗R f)

so that

x⊗ y1 + Im (L⊗R f) = x⊗ y2 + Im (L⊗R f) .
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β is balanced. Let x, x1, x2 ∈ L, y′′, y′′1 , y
′′
2 ∈ M ′′ and r ∈ R. Let y, y1, y2 ∈ M

such that g (y) = y′′, g (y1) = y′′1 , g (y2) = y′′2 . Then g (yr) = g (y) r = y′′r and
g (y1 + y2) = g (y1) + g (y2) so that we have

β ((x1 + x2, y
′′)) = (x1 + x2)⊗ y + Im (L⊗R f) =

(6.4)
= = [x1 ⊗ y + x2 ⊗ y] + Im (L⊗R f)

= [x1 ⊗ y + Im (L⊗R f)] + [x2 ⊗ y + Im (L⊗R f)] = β ((x1, y)) + β ((x2, y)) .

β ((x, y′′1 + y′′2)) = [x⊗ (y1 + y2)] + Im (L⊗R f)
(6.5)
= [x⊗ y1 + x⊗ y2] + Im (L⊗R f)

= [x⊗ y1 + Im (L⊗R f)] + [x⊗ y2 + Im (L⊗R f)] = β ((x, y′′1)) + β ((x, y′′2))

β ((xr, y′′))) = xr ⊗ y + Im (L⊗R f) =
(6.6)
= x⊗ ry + Im (L⊗R f) = β ((x, ry′′)) .

Therefore there is a group homomorphism

q : L⊗M ′′ → L⊗RM

Im (L⊗R f)
such that, for every (x, y′′) ∈ L×M ′′

q (x⊗ y′′) = (x⊗ y) + Im (L⊗R f) where y ∈M and g (y) = y′′.

For every x ∈ L and y ∈M , we compute

(q ◦ g) [(x⊗ y) + Im (L⊗R f)] = (q ◦ g ◦ p) (x⊗ y) = q (x⊗ g (y)) = x⊗ y.

Proposition 6.15. Let L be a right R-module and let (Mi)i∈I be a family of left

R-modules. Let τ : L×
(⊕
i∈I
Mi

)
→
⊕
i∈I

(L⊗RMi) be the map defined by setting

τ
((
x, (yi)i∈I

))
= (x⊗ yi)i∈I for every x ∈ L and (yi)i∈I ∈

⊕
i∈I

Mi.

Then τ is R-balanced and

(⊕
i∈I

(L⊗RMi) , τ

)
= L⊗R

(⊕
i∈I
Mi

)
.

Proof. Let x, x1, x2 ∈ L, (yi)i∈I , (zi)i∈I ∈
⊕
i∈I
Mi and r ∈ R. We compute

τ
(
(x1 + x2) , (yi)i∈I

)
= ((x1 + x2)⊗ yi)i∈I

(6.4)
= (x1 ⊗ yi + x2 ⊗ yi)i∈I =

= (x1 ⊗ yi)i∈I + (x2 ⊗ yi)i∈I = τ
((
x1, (yi)i∈I

))
+ τ

((
x2, (yi)i∈I

))
τ
((
x, (yi)i∈I + (zi)i∈I

))
= τ

((
x, (yi + zi)i∈I

))
= (x⊗ (yi + zi))i∈I

(6.5)
=

= (x⊗ yi + x⊗ zi)i∈I = (x⊗ yi)i∈I + (x⊗ zi)i∈I = τ
((
x, (yi)i∈I

))
+ τ

((
x, (zi)i∈I

))
τ
((
xr, (yi)i∈I

))
= ((xr)⊗ yi)i∈I

(6.6)
= (x⊗ ryi)i∈I = τ

((
x, (ryi)i∈I

))
= τ

((
x, r (yi)i∈I

))
.

Hence τ is R-balanced. Let now β : L×
(⊕
i∈I
Mi

)
→ G be an R-balanced map. We

have to show that there exists a group homomorphism f :
⊕
i∈I

(L⊗RMi) → G such
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that f ◦ τ = β and moreover this f is unique w.r.t. this property. Let εj : Mj →⊕
i∈I
Mi denote the jth canonical injection. First of all let us show that the map

β ◦ (L× εi) : L×Mi → G

is R-balanced. Let x, x1, x2 ∈ L, y, y1, y2 ∈Mi and r ∈ R. We compute

[β ◦ (L× εi)] ((x1 + x2, y)) = β ((x1 + x2, εi (y))) = β ((x1, εi (y))) + β ((x2, εi (y))) =

= [β ◦ (L× εi)] [(x1, y) + (x2, y)] .

[β ◦ (L× εi)] ((x, y1 + y2)) = β ((x, εi (y1 + y2))) = β ((x, εi (y1) + εi (y2)))

== β ((x, εi (y1))) + β ((x, εi (y2))) .

= [β ◦ (L× εi)] ((x, y1)) + [β ◦ (L× εi)] ((x, y2))

[β ◦ (L× εi)] (xr, y)) = β ((xr, εi (y))) = β ((x, rεi (y))) = β ((x, rεi (ry))) =

= [β ◦ (L× εi)] ((x, ry)) .

Hence there exists a unique group homomorphism fi : L⊗RMi → G such that

fi (x⊗ y) = β ((x, εi (y)))

for every x ∈ L and y ∈ Mi. By the universal property of the direct sum, we can
consider f = ∇ (f)i∈I :

⊕
i∈I

(L⊗RMi) → G. We have

(f ◦ τ)
((
x, (yi)i∈I

))
= f

(
(x⊗ yi)i∈I

)
=
∑
i∈I

β ((x, εi (yi))) = β

((
x,
∑
i∈I

εi (yi)

))
=

= β
((
x, (yi)i∈I

))
Let now f ′ :

⊕
i∈I

(L⊗RMi) → G be another group homomorphism such that f ′ ◦ τ =

β. For every j ∈ I, let ε′j : (L⊗RMj) →
⊕
i∈I

(L⊗RMi) denote the j-th canonical

injection. Note that for every j ∈ I, x ∈ L and yj ∈Mj(
(x⊗ (yjδij))i∈I

)
j

= x⊗ yj and(
(x⊗ (yjδij))i∈I

)
i

= x⊗ 0 = 0 for i ̸= j.

Thus we deduce that
ε′j (x⊗ yj) = (x⊗ (yjδij))i∈I

and hence we get

[τ ◦ (L× εj)] ((x, yj)) = τ ((x, εj (yj))) = τ
((
x, (yjδij)i∈I

))
= (x⊗ (yjδij))i∈I = ε′j (x⊗ yj)

For every x ∈ L and yj ∈Mj, we have(
f ′ ◦ ε′j

)
(x⊗ yj) = f ′

(
ε′j (x⊗ yj)

)
= f ′ [τ ◦ (L× εj)] ((x, yj)) =

= [f ′ ◦ τ ◦ (L× εj)] ((x, yj)) = [β ◦ (L× εj)] ((x, yj)) = [f ◦ τ ◦ (L× εj)] ((x, yj)) =

= f [τ ◦ (L× εj)] ((x, yj)) == fε′j (x⊗ yj) =
(
f ◦ ε′j

)
(x⊗ yj) .

We deduce that f ′ ◦ ε′j = f ◦ ε′j for every j ∈ I. In view of the universal property of
the direct sum, we conclude.
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Proposition 6.16. Let L be a right R-module and let (Mi)i∈I be a family of left

R-modules. Let τ : L×
(⊕
i∈I
Mi

)
→
⊕
i∈I

(L⊗RMi) be the map defined by setting

τ
((
x, (yi)i∈I

))
= (x⊗ yi)i∈I for every x ∈ L and (yi)i∈I ∈

⊕
i∈I

Mi.

Then τ is R-balanced so that there is a group homomorphism φ : L⊗R

(⊕
i∈I
Mi

)
→⊕

i∈I
(L⊗RMi) such that

φ
(
x⊗R (yi)i∈I

)
= (x⊗ yi)i∈I for every x ∈ L and (yi)i∈I ∈

⊕
i∈I

Mi.

φ is an isomorphism.

Proof. By prposition 6.15, we know that τ is R-balanced. Let εj : Mj →
⊕
i∈I
Mi

denote the jth canonical injection and let ψj = L⊗R εj : L⊗RMj → L⊗R

(⊕
i∈I
Mi

)
.

Set ψ = ∇ (L⊗R εi)i∈I :
⊕
i∈I

(L⊗RMi) → L⊗R

(⊕
i∈I
Mi

)
. Let us prove that ψ is a

two-sided inverse of φ. We have

(ψ ◦ φ)
(
x⊗R (yi)i∈I

)
= ψ

(
(x⊗ yi)i∈I

)
=
∑
i∈I

ψi (x⊗ yi) =
∑
i∈I

(x⊗ εi (yi))
(6.5)
=

= x⊗
∑
i∈I

εi (yi) = x⊗R (yi)i∈I .

By 2) in Remarks 6.9, we conclude that ψ ◦ φ = Id
L⊗R

(⊕
i∈I

Mi

). Let now j ∈ I and

let ε′j : (L⊗RMj) →
⊕
i∈I

(L⊗RMi) denote the jth canonical injection. Note that

for every j ∈ I, x ∈ L and yj ∈Mj(
(x⊗ (yjδij))i∈I

)
j

= x⊗ yj and(
(x⊗ (yjδij))i∈I

)
i

= x⊗ 0 = 0 for i ̸= j.

Thus we deduce that

ε′j (x⊗ yj) = (x⊗ (yjδij))i∈I

Let us compute(
φ ◦ ψ ◦ ε′j

)
(x⊗ yj) = (φ ◦ ψj) (x⊗ yj) = φ (x⊗ εj (yj)) = φ

(
x⊗ (yjδij)i∈I

)
=

= (x⊗ (yjδij))i∈I = ε′j (x⊗ yj) .



78 CHAPTER 6. TENSOR PRODUCT AND BIMODULES

By 2) in Remarks 6.9 we deduce that

φ ◦ ψ ◦ ε′j = ε′j

for every j ∈ I. By the universal property of the direct sum, this implies that
φ ◦ ψ = Id⊕

i∈I
(L⊗RMi).

6.2 Bimodules

Definition 6.17. Let A and R be rings. An A-R-bimodule (left A-module - right
R-module) is a tern

(
M, AµM , µ

R
M

)
where

(
M, AµM

)
is a left A-module,

(
M,µRM

)
is

a right R-module and

a · (x · r) = (a · x) · r for every a ∈ A, x ∈M, r ∈ R.

We will use the notation AMR to denote the A-R bimodule
(
M, AµM , µ

R
M

)
.

6.18. We have seen in 1.7 that any abelian group M is a left End(M) module where

f · x = f (x) for every f ∈ End(M) and x ∈M.

Also, M is a right End(M)op-right module When we regard M as a right End(M)op-
module, using the convention introduced in 1.2, we write

x · f for every f ∈ End(M)op and x ∈M.

Now we have

(6.10) (x · f) · g = x ·
(
f ·End(M)op g

)
= x ·

(
g ·End(M) f

)
= x (g ◦ f) = g (f (x)) .

For this reason, when considering f ∈ End(M)op, we prefer to write

(x) f

instead of f (x). In this way (6.10) rewrites as

(x · f) · g = ((x) f) g = (x)
(
f ·End(M)op g

)
.

Let now M be a left module over a ring A and let M denote the abelian group
underlying M . We denote by End (AM) or AEnd (M) the subring of End

(
M
)op

defined by

End (AM) =
{
f ∈ End

(
M
)op | f is a left A-module homomorphism

}
.

Then M is an A-EndA (M)-bimodule. In fact, for every a ∈ A, x ∈ M and f ∈
EndA (M) we have

(a · x) · f = (a · x) f f isomorph
= a · [(x) f ] = a · (x · f) .
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Similarly, let M be a right module over a ring R and let M denote the abelian group
underlyingM . We denote by End (MR) or EndR (M)the subring of End

(
M
)
defined

by

End (MR) =
{
f ∈ End

(
M
)
| f is a right R-module homomorphism

}
.

Then M is an End (MR)-R-bimodule. In fact, for every f ∈ End (MR) , x ∈M and
r ∈ R we have

(f · x) · r = (f (x)) · r f isomorph
= f (xr) = f (x · r) = f · (x · r) .

Notation 6.19. To be consistent with 6.18, from now on, if f :M → L is
a left A-module homomorphism, we will write

(x) f

instead of f (x), for every x ∈M.

6.20. Let A be a commutative ring and let M be a left A-module. Then M has a
right A-module structure defined by setting

x · a = a · x for every a ∈ A and x ∈M.

M endowed with its left A-module structure and with this right A-module structure
becomes an A-A-bimodule. In fact we have

a·(x · b) = a·(b · x) = (a · b)·x = (b · a)·x = b·(a · x) = (a · x)·b for every a, b ∈ A and x ∈M .

This particular A-bimodule structure will be called symmetrical A-bimodule struc-
ture. In the particular case when A is a commutative ring, symmetric A-modules
are often called just A-modules. If A = k is a field, a symmetric k-k-bimodule is
simply called a vector space.

Exercise 6.21. Let k be a field. Are all k-k-bimodule structure over k symmetrical?

Exercise 6.22. Let k be a field and let V be vector space over k of dimension 2.
Let us consider V as a right k-module. Then V has a natural structure of End (Vk)-
k-bimodule. Fix a basis (e1, e2) of Vk. For each Λ ∈ End (Vk) write

Λ (e1) = e1Λ11 + e2Λ21

Λ (e2) = e1Λ12 + e2Λ22

and set

F (Λ) =

(
Λ11 Λ12

Λ21 Λ22

)
.

Show that the assignment Λ 7→ F (Λ) yields a ring isomorphism F : End (Vk) →
M2 (k) . Show also that End(Vk)V is simple.
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Remark 6.23. By Remark 1.3 every abelian group is a left Z-module and hence a
symmetrical Z-bimodule. Let now MR be a right R-module. Since M is an abelian
group, M can be considered as a left Z-module. Let us check that indeed M is a
Z-R-bimodule. In fact, given n ∈ Z, x ∈M, r ∈ R, we have

n · (x · r) = n (x · r) By6inProposition1.6
= nx · r = (n · x) · r.

Definition 6.24. Let L and M be A-R-bimodules. An A-R-bimodules homomor-
phism from L to M is a map f : L → M which is both a left A-modules homomor-
phism and a right R-module homomorphism. In this case we write f : ALR → AMR.

Exercise 6.25. (A (Mi)R)i∈I be a family of A-R-bimodules. Show that
∏
i∈I
Mi and⊕

i∈I
Mi, endowed with their left A-module structure and their right R-module structure

are A-R-bimodules.

6.26. Let ALR be an A-R-bimodule and let BMR be a B-R-bimodule. For every
a ∈ A, b ∈ B and f ∈ HomR (LR,MR) we can consider the maps

fa : L→M defined by setting fa (x) = f (a · x) for every x ∈ L,

bf : L→M defined by setting bf (x) = b · f (x) for every x ∈ L.

Proposition 6.27. By means of the notations introduced in 6.26, for every a ∈
A, b ∈ B and f ∈ HomR (LR,MR), the maps fa and bf are right R-module homo-
morphism.

Proof. Let x, x1, x2 ∈ L and r ∈ R : We compute

fa (x1 + x2) = f (a · x1 + a · x2) = f (a · x1) + f (a · x2) = fa (x1) + fa (x2)

fa (x · r) = f (a · (x · r)) = f ((a · x) · r) = f (a · x) · r = fa (x) · r
bf (x1 + x2) = f (x1 + x2) = b · [f (x1) + f (x2)] = b · f (x1) + b · f (x2) = bf (x1) + bf (x2)

bf (x · r) = b · f (x · r) = b · [f (x) · r] = [b · f (x)] r = bf (x) · r.

Proposition 6.28. Let ALR be an A-R-bimodule and let BMR be a B-R-bimodule.
The abelian group HomR (LR,MR) has a natural structure of B-A-bimodule defined
by setting, in the notations of Proposition 6.27,

f · a = fa and b · f = bf for every a ∈ A, b ∈ B and f ∈ HomR (LR,MR) .

Proof. Let f, g ∈ HomR (LR,MR) , a, a
′ ∈ A, b, b′ ∈ B. For every x ∈ L, we compute

[(f + g) · a] (x) = (f + g) (a · x) = f (a · x) + g (a · x) = (f · a) (x) + (g · a) (x) =
= [(f · a) + (g · a)] (x)

[f · (a+ a′)] (x) = f ((a+ a′) · x) = f (a · x+ a′ · x) = f (a · x) + f (a′ · x) =
= (f · a) (x) + (f · a′) (x) == [(f · a) + (f · a′)] (x)

[(f · a) · a′] (x) = (f · a) (a′ · x) = f (a · (a′ · x)) = f ((a · a′) x) = [f · (a · a′)] (x)
(f · 1A) (x) = f (1a · x) = f (x) .
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From this equalities we deduce that

(f + g) · a = (f · a) + (g · a)
f · (a+ a′) = (f · a) + (f · a′)

f · 1A = f

and hence HomR (LR,MR) becomes a right A-module. Similarly, we calculate

[b · (f + g)] (x) = b · [(f + g) (x)] = b · f (x) + g (x) = b · f (x) + b · g (x) =
= (b · f) (x) + (b · g) (x) = [(b · f) + (b · g)] (x)

[(b+ b′) · f ] (x) = (b+ b′) · f (x) = b · f (x) + b′ · f (x) = (b · f) (x) + (b′ · f) (x) =
= [(b · f) + (b′ · f)] (x)

[b · (b′ · f)] (x) = b · [(b′ · f) (x)] = b · [b′ · f (x)] = (b · b′) f (x) = [(b · b′) · f ] (x) .

From this equalities we deduce that

b · (f + g) = b · f + b · g
(b+ b′) · f = (b · f) + (b′ · f)
b · (b′ · f) = (b · b′) · f

and hence HomR (LR,MR) becomes a left B-module. Finally we have

[b · (f · a)] (x) = b · [(f · a) (x)] = b · f (a · x) = (b · f) (a · x) = [(b · f) · a] (x)

which implies that
b · (f · a) = (b · f) · a.

From this we deduce that HomR (LR,MR) is a B-A-bimodule.

Proposition 6.29. Let AMR be an A-R-bimodule. The map

ρM : HomR (R,M) → M
f 7→ f (1R)

is an isomorphism of A-R-bimodules whose inverse is the map

ρ′M : M → HomR (R,M)
x 7→ (r 7→ x · r) .

Proof. It is easy to check that ρM is a group homomorphism. Let x ∈ M and let
ρx : R →M be the map defined by setting

ρx (r) = x · r.

Let r, s ∈ R. We compute

ρx (r · s) = x · (r · s) = (x · r) · s = ρx (r) · s.
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Thus we deduce that ρ′M is well defined. Let f ∈ HomR (R,M), r ∈ R and x ∈ M .
We have

[(ρ′M ◦ ρM) (f)] (r) = [ρ′M (ρM (f))] (r) = ρM (f) · r = f (1R) · r = f (r)

and
(ρM ◦ ρ′M) (x) = [ρ′M (x)] (1R) = x · 1R = x.

Now let r ∈ R, f ∈ HomR (R,M) , a ∈ A. We have

ρM (a · f · r) = (a · f · r) (1R) = a · f (r · 1R) = a · f (r) = a · f (1R · r) =
= a · f (1R) · r = a · ρM (f) · r.

6.3 Tensor Product 2

6.30. Let A and R be rings and let AMR =
(
M, AµM , µ

R
M

)
be an A-R-bimodule.

Given a left R-module RN , we want to endow the abelian group M ⊗RN with a left
A-module structure. For this purpose, for any a ∈ A, we consider the map

αa :M ×N →M ⊗R N

defined by setting
αa ((x, y)) = (ax)⊗ y.

Lemma 6.31. By using assumptions and notations of 6.30, the map αa :M×N →
M ⊗R N is R-balanced.

Proof. Let x, x1, x2 ∈M, y, y1, y2 ∈ N and r ∈ R. We compute

αa ((x1 + x2, y)) = [a (x1 + x2)]⊗ y = (ax1 + ax2)⊗ y
(6.4)
= (ax1)⊗ y + (ax2)⊗ y =

= αa ((x1, y)) + αa ((x2, y)) .

αa ((x, y1 + y2)) = (ax)⊗ (y1 + y2)
(6.5)
= (ax)⊗ y1 + (ax)⊗ y2 = αa ((x, y1)) + αa ((x, y2)) .

αa ((xr, y)) = [a (xr)]⊗ y
defbim
= [(ax) r]⊗ y

(6.6)
= (ax)⊗ ry = α ((x, ry)) .

6.32. In view of Lemma 6.31, for every a ∈ A, there is a group homomorphism
σa :M ⊗R N →M ⊗R N such that σa ◦ τ = αa.

Proposition 6.33. By using assumptions and notations of 6.30 and of 6.32, the
map

σ : A→ End (M ⊗R N)

defined by setting

σ (a) = σa for every a ∈ A, i.e.

σ (a) (x⊗ y) = (ax)⊗ y for every x ∈M and y ∈ N,

is a ring homomorphism.
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Proof. Let a, b ∈ A. Then, for every x ∈M and y ∈ N we have

σ (a+ b) (x⊗ y) = [(a+ b) x]⊗ y = (ax+ bx)⊗ y
(6.4)
= (ax)⊗ y + (bx)⊗ y =

= σ (a) (x⊗ y) + σ (b) (x⊗ y)
def+inEnd

= [σ (a) + σ (b)] (x⊗ y)

σ (1A) (x⊗ y) = (1Ax)⊗ y = x⊗ y

σ (a ·A b) (x⊗ y) = [(a ·A b) x]⊗ y = [a (bx)]⊗ y = σ (a) (bx⊗ y) =

= σ (a) (σ (b) (x⊗ y)) = [σ (a) ◦ σ (b)] (x⊗ y) .

In view of 2) in Remarks 6.9 we deduce that

σ (a+ b) = σ (a) + σ (b) , σ (1A) = IdM⊗RN , σ (a ·A b) = σ (a) ◦ σ (b) .

Hence σ is a ring homomorphism.

6.34. Let A and R be rings, let AMR =
(
M, AµM , µ

R
M

)
be an A-R-bimodule and

let RN be a left R-module. By Proposition 6.33, in view of Theorem 1.8, the group
M ⊗R N becomes a left A-module by setting

a (x⊗ y) = (ax)⊗ y for every a ∈ A and x ∈M, y ∈ N .

In an analogous way, one can prove that if RNB =
(
N, RµN , µ

B
N

)
is an R-B-bimodule,

the group M ⊗R N becomes a right B-module by setting

(x⊗ y) b = x⊗ (yb) for every a ∈ A and x ∈M, y ∈ N .

Proposition 6.35. Let A and R be rings, let AMR =
(
M, AµM , µ

R
M

)
be an A-R-

bimodule and let RNB =
(
N, RµN , µ

B
N

)
be an R-B-bimodule. With respect to the

left A-module structure and to the right B-module structure described in 6.34, the
abelian group M ⊗R N becomes an A-B-bimodule.

Proof. Let a ∈ A, b ∈ B and z ∈M ⊗R N . We have to prove that

(az) b = a (zb) .

In view of Proposition 6.8, it is enough to prove that

[a (x⊗ y)] b = a [(x⊗ y) b] .

We compute

[a (x⊗ y)] b = [(ax)⊗ y] b = (ax)⊗ (yb) = a [x (yb)] = a [(x⊗ y) b] .
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Proposition 6.36. Let A and R be rings, let AMR =
(
M, AµM , µ

R
M

)
be an A-R-

bimodule, let RN be a left R-module and let L be a right A-module. To give a left
A-module homomorphism

f : A (M ⊗R N) → AL

one has to give an R-balanced map β :M ×N → L such that

(6.11) β ((ax, y)) = aβ ((x, y)) for every x ∈M and y ∈ N.

Proof. Let β :M×N → L be an R-balanced map such that (6.11) is fulfilled. Then
there exist a group homomorphism f :M ⊗R N → L such that

(x⊗ y) f = β ((x, y)) .

Let us check that f is a right A-module homomorphism. Let a ∈ A and z ∈M⊗RN .
We have to prove that

(az) f = a ((z) f) .

In view of Proposition 6.8, it is enough to prove that

(a (x⊗ y)) f = a [(x⊗ y) f ] for every x ∈M and y ∈ N .

We have

(a (x⊗ y)) f = ((ax)⊗ y) f = β ((ax, y)) = aβ ((x, y)) = af (x⊗ y) .

The converse is trivial.

6.37. In the particular case when A is a commutative ring and we consider (sym-
metric) A-bimodules, we have

a (x⊗A y) = (ax)⊗A y = (xa)⊗A y = x⊗A ay = x⊗A (ya) = (x⊗A y) a

for every a ∈ A, x ∈M, y ∈ N.

In this case (6.11) rewrites as

β ((ax, y)) = β ((x, ya)) = aβ ((x, y)) for every a ∈ A, x ∈M, y ∈ N.

In this case β is called A-bilinear map.

Definition 6.38. Let A be a commutative ring and let M and N and L be (sym-
metric) A-bimodules. A map β :M ×N → L is said to be A-bilinear if

1) β ((x1 + x2, y)) = β ((x1, y)) + β ((x2, y)) for every x1, x2 ∈M and y ∈ N ;

2) β ((x, y1 + y2)) = β ((x, y1)) + β ((x, y2)) for every x ∈M and y1, y2 ∈ N ;

3) β ((ax, y)) = β ((x, ya)) = aβ ((x, y)) for every x ∈M, r ∈ A, y ∈ N

Proposition 6.39. Let A be a commutative ring. Any A-bilinear map is A-balanced.
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Proof. Let M,N,L be symmetric A-bimodules and let β : M × N → L be an
A-bilinear map. Since we are considering symmetric A-bimodules, we have:

β ((xa, y)) = β ((ax, y)) = β ((x, ya)) = β ((x, ay))

for every x ∈M, y ∈ N, a ∈ A.

Proposition 6.40. Let f : ALR → AMR and g : RWB → RZB be bimodule homo-
morphism. Then f ⊗R g : A (L⊗RW )B → A (M ⊗R Z)B is a bimodule homomor-
phism.

Proof. For every n ∈ N, n ≥ 1, x1, . . . , xn ∈ L,w1, . . . , wn ∈ W,a ∈ A, b ∈ B we
have:

(f ⊗R g)

[
a

(
n∑
i=1

xi ⊗ wi

)
b

]
= (f ⊗R g)

(
n∑
i=1

(axi)⊗ (wib)

)
=

=
n∑
i=1

f (axi)⊗ g (wib) =
n∑
i=1

[af (xi)]⊗ [g (wi) b] = a

(
n∑
i=1

f (xi)⊗ g (wi)

)
b

6.41. Let ALR be an A- R-bimodule and let (R (Mi)B)i∈I be a family of R-B-
bimodules. Then, by Exercise 6.25,

⊕
i∈I
Mi is an R-B-bimodule and .

⊕
i∈I

(L⊗RMi)

is an A- B-bimodule. By Proposition 6.16,there is a group isomorphism φ : L ⊗R(⊕
i∈I
Mi

)
→
⊕
i∈I

(L⊗RMi) such that

φ
(
x⊗R (yi)i∈I

)
= (x⊗R yi)i∈I for every x ∈ L and (yi)i∈I ∈

⊕
i∈I

Mi.

is an isomorphism.

Proposition 6.42. By means of the notations of 6.41, the map φ : L⊗R

(⊕
i∈I
Mi

)
→⊕

i∈I
(L⊗RMi) is an isomorphism of A- B-bimodules.

Proof. For every x ∈ L, (yi)i∈I ∈
⊕
i∈I
Mi, a ∈ A, b ∈ B, we have:

φ
(
a ·
[
x⊗R (yi)i∈I

])
= φ

(
(a · x)⊗R (yi)i∈I

)
= ((a · x)⊗R yi)i∈I = a · (x⊗R yi)i∈I =

= aφ
(
x⊗R (yi)i∈I

)
φ
([
x⊗R (yi)i∈I

]
· b
)

= φ
(
x⊗R

[
(yi)i∈I · b

])
= φ

(
x⊗R

[
(yi · b)i∈I

])
= (x⊗R (yi · b))i∈I =

= (x⊗R yi)i∈I · b = φ
(
x⊗R (yi)i∈I

)
· b

In view of Proposition 6.8, we conclude.
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Proposition 6.43. Let A be a ring and let AM be a left A-module. Then there is
defines an isomorphism of left A-modules

µ = µM : A (A⊗AM) → AM

which satifies
µ (a⊗ x) = a · x for every a ∈ A and x ∈M.

Proof. Let β : A×M →M be the map defined by setting

β ((a, x)) = a · x for every a ∈ A and x ∈M .

β is A-balanced. In fact, given a, b, a1, a2 ∈ A, x, x1, x2 ∈M we have

β (((a1 + a2) , x)) = (a1 + a2) · x = a1 · x+ a2 · x = β ((a1, x)) + β ((a2, x))

β ((a, x1 + x2)) = a · (x1 + x2) = a · x1 + a · x2 = β ((a, x1)) + β ((a, x2))

β ((ab, x)) = (a · b) · x = a · (b · x) = β ((a, bx)) .

Moreover β fulfills (6.11). In fact, we have

a · β ((b, x)) = a · (b · x) = β ((a · b, x)) for every a, b ∈ A and x ∈M .

Let us prove that µ is an isomorphism. Since ((1A ⊗ x))µ = x, µ is clearly surjective.
Let x ∈ Ker (µ). Then there exists n ∈ N, n ≥ 1, a1, . . . , an ∈ A and x1, . . . , xn ∈M
such that

x =
n∑
i=1

ai ⊗ xi and 0 = (x)µ =
n∑
i=1

aixi

so that

x =
n∑
i=1

ai ⊗ xi =
n∑
i=1

1A ⊗ aixi = 1A ⊗
n∑
i=1

aixi = 1A ⊗ 0 = 0.

Definition 6.44. Let A be a ring. A right A-module LA is said to be flat if, for
any short exact sequence of left A-module homomorphism

0 → AM
′ f−→ AM

g−→ AM
′′ → 0

the sequence

0 → L⊗AM
′ L⊗Af−→ L⊗AM

L⊗Ag−→ L⊗AM
′′ → 0

is exact.

In view of Proposition 6.14, we have:

Proposition 6.45. A right A-module LA is flat if and only if, for every injective left
A-module homomorphism f : AM

′ → AM, the homomorphism L⊗A f is injective.
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Remark 6.46. Not every right A-module is, in general, flat. In fact consider the
exact sequence of Z-modules:

0 → 2Z i−→ Z p−→ Z/2Z → 0

where i is the canonical injection and p is the canonical projection. Then

Z/2Z⊗i : Z/2Z⊗2Z → Z/2Z⊗ Z

is not injective. In fact, for every a, b ∈ Z, we have

(Z/2Z⊗i) ((a+ 2Z)⊗ 2b) = (a+ 2Z)⊗ 2b = (a+ 2Z) 2⊗ b = (2a+ 2Z)⊗ b = 0

and hence (Z/2Z⊗i) = 0. On the other hand 2Z ∼= Z and hence Z/2Z⊗2Z ∼=
Z/2Z⊗Z ∼= Z/2Z ̸= 0.

Lemma 6.47. Let (fi : N
′
i → Ni)i∈I be a family of right A-module homomorphisms.

Then the homomorphism⊕
i∈I
fi :

⊕
i∈I
N ′i →

⊕
i∈I
Ni

(x′i)i∈I 7−→ (f (x′i))i∈I

is injective if and only if fi : N
′
i → Ni is injective for every i ∈ I.

Proof. Exercise.

Proposition 6.48. Let (Li)i∈I be a family of right A-modules. Then
⊕
i∈I
Li is flat if

and only if Li is flat, for every i ∈ I.

Proof. Let f : AM
′ → AM be an injective left A-module homomorphism. Let us

consider the isomorphism of Proposition 6.16, φM :

(⊕
i∈I
Li

)
⊗AM →

⊕
i∈I

(Li ⊗AM)

where

φ
(
(yi)i∈I ⊗A x

)
= for every (yi)i∈I ∈

⊕
i∈I

Li and x ∈M.

Then the diagram (⊕
i∈I
Li

)
⊗AM

′ φM′

−→
⊕
i∈I

(Li ⊗AM
′)(⊕

i∈I
Li

)
⊗A f ↓ ↓

⊕
i∈I

(Li ⊗A f)(⊕
i∈I
Li

)
⊗AM

φM

−→
⊕
i∈I

(Li ⊗AM)
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is commutative. In fact for every (yi)i∈I ∈
⊕
i∈I
Li and x

′ ∈M ′ we have[⊕
i∈I

(Li ⊗A f)

]
◦ φM ′ (

(yi)i∈I ⊗A x
′) = [⊕

i∈I

(Li ⊗A f)

] (
(yi ⊗ x′)i∈I

)
=

= (yi ⊗ f (x′))i∈I = φM
(
(yi)i∈I ⊗A f (x

′)
)
= φM

([(⊕
i∈I

Li

)
⊗A f

] (
(yi)i∈I ⊗A x

′)) =

=

[
φM ◦

((⊕
i∈I

Li

)
⊗A f

)](
(yi)i∈I ⊗A x

′) .
Hence

(⊕
i∈I
Li

)
⊗A f is injective if and only if

⊕
i∈I

(Li ⊗A f) is injective. By Lemma

6.47
⊕
i∈I

(Li ⊗A f) is injective if and only if Li ⊗A f is injective, for every i ∈ I.

Lemma 6.49. Let A be a ring. Then the right module AA is flat.

Proof. Let f : AM
′ → AM be an injective left A-module homomorphism. Let us

consider the isomorphism of Proposition 6.43

µM : A⊗AM → M
a⊗A x 7−→ a · x .

Then the diagram

A⊗AM
′ A⊗Af−→ A⊗AM

µM
′ ↓ ↓ µM

M ′ f−→ M

is commutative. In fact, for every a ∈ A, x′ ∈M ′ we have(
f ◦ µM ′

)
(a⊗ x′) = f (a · x′) = a·f (x′) = µM (a⊗ f (x′)) =

(
µM ◦ (A⊗A f)

)
(a⊗ x′) .

Since f is injective, we deduce that also A⊗A f is injective.

Proposition 6.50. Every projective right A-module PA is flat.

Proof. By Proposition 2.17, PA is a direct summand of a free right A module A
(X)
A .

By Lemma 6.49 and Proposition 6.48, the right A module A
(X)
A is flat so that, by

Proposition 6.48, PA is flat.

Corollary 6.51. Every vector space over a field k is flat.

Lemma 6.52. Let us consider the commutative diagram

M ′ f→ M
g→ M ′′ → 0

↓ φ ↓∼= ψ

N ′
j→ N

h→ N ′′ → 0
↓
0
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where φ is a surjective homomorphism and ψ is an isomorphism of right A-modules.
Then there exists a right A-module homomorphism ζ : M ′′ → N ′′ such that the
diagram

M ′ f→ M
g→ M ′′ → 0

↓ φ ↓∼= ψ ↓ ζ
N ′

j→ N
h→ N ′′ → 0

↓
0

is commutative. Moreover ζ is an isomorphism.

Proof. Let us define ζ :M ′′ → N ′′ by setting

ζ (x′′) = h (ψ (x)) where x ∈M and g (x) = x′′.

Let us check that ζ is well-defined. Let x and x ∈ M such that g (x) = x′′ = g (x).
Then x− x ∈ Ker (g) = Im (f) and hence there exists an element x′ ∈M ′ such that
x− x = f (x′). We compute

(h ◦ ψ) (x− x) = (h ◦ ψ) (f (x′)) = (h ◦ ψ ◦ f) (x′) = (h ◦ j ◦ ψ) (x′) = (h ◦ 0) (x′) = 0.

We deduce that (h ◦ ψ) (x) = (h ◦ ψ) (x) and hence ζ is well defined. Moreover, by
construction we have

ζ ◦ g = h ◦ ψ.

Since g is surjective and h◦ψ is a right A-module homomorphism, we deduce (exer-
cise) that ζ is a right A-module homomorphism. Moreover since h ◦ ψ is surjective,
also ζ is surjective. Let us prove that ζ is injective. Let x′′ ∈ M ′′ be such that
ζ (x′′) = 0. Then there exists an x ∈M such that g (x) = x′′ so that

0 = ζ (g (x)) = h ◦ ψ (x) .

Hence ψ (x) ∈ Ker (h) = Im (j) so that there exists an y′ ∈ N ′ such that ψ (x) =
j (y′) . Since φ is surjective, there is an x′ ∈ M ′ such that y′ = φ (x′). We deduce
that

ψ (x) = j (y′) = j (φ (x′)) = ψ (f (x′)) .

Since ψ is injective, this implies that x = f (x′) so that x′′ = g (x) = g (f (x′)) =
0.

6.53. Let LA be a right A-module and let I be a right ideal of A. We set

L · I = {
n∑
i=1

xiai | n ∈ N, n ≥ 1, x1, . . . , xn ∈ L, a1, . . . , an ∈ I}.

Clearly L · I is a right A-submodule of L.
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Proposition 6.54. Let LA be a right A-module and let I be a two-sided ideal of A.
Then the map

ζ : L⊗A
A
I

→ L
L·I

x⊗ (a+ I) 7→ xa+ L · I
is well-defined and is an isomorphism of right A-modules.

Proof. Let us consider the isomorphism µL : L ⊗A A → L of Proposition 6.43. Let
i : I → A be the canonical inclusion and p : A → A/I the canonical projection.
Then we have

Im
(
µL ◦ (L⊗A i)

)
= {

n∑
i=1

xiai | n ∈ N, n ≥ 1, x1, . . . , xn ∈ L, a1, . . . , an ∈ I} = L·I.

Let φ be the corestriction of µL ◦ (L⊗A i) to L · I and let j : LI → L and be the
canonical inclusion. Then we have a commutative diagram h : L → L/LI is the
canonical projection. By Lemma 6.52, there exists an isomorphism ζ : L⊗AA/L⊗A

I → L/LI such that the diagram

L⊗A I
L⊗Ai→ L⊗A A

L⊗Ap→ L⊗A (A/I) → 0
↓ φ ↓∼= µL ↓ ζ
LI

j→ L
h→ L/LI → 0

↓
0

is commutative so that we have

ζ (x⊗ (a+ I)) = ζ (L⊗A p) (x⊗ a) = hµL (x⊗ a) = xa+ LI.

6.55. Let AMR be a bimodule. Let L be a right A-module and let N be a right
R-module. For every ξ ∈ HomR (L⊗AM,N) and for every x ∈ L we consider the
map

ξx : M −→ N
m 7−→ ξ (x⊗m)

.

Proposition 6.56. In the notations of 6.55,

1) the map ξx :M → N is a right R-module homomorphism.

2) For every x, x′ ∈ L and a ∈ A we have that, in the right A-module HomR (AMR, NR) :

(6.12) ξx+x′ = ξx + ξx′ and ξx·a = ξx · a.

3) the map
Λξ : L −→ HomR (M,N)

x 7−→ ξx

is a right A-module homomorphism.
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4) given ξ′ ∈ HomR (L⊗AM,N) we have that, in the abelian group HomR (M,N)

(6.13) (ξ + ξ′)x = ξx + ξ′x.

5) given ξ′ ∈ HomR (L⊗AM,N) we have that, in the abelian group HomA (L,HomR (M,N))

(6.14) Λξ+ξ′ = Λξ + Λξ′ .

Proof. 1) Let m,m′ ∈M and let r ∈ R. We compute

ξx (m+m′) = ξ (x⊗ (m+m′))
(6.5)
= ξ (x⊗m+ x⊗m′) =

= ξ (x⊗m) + ξ (x⊗m′) = ξx (m) + ξx (m
′) ,

ξx (m · r) = ξ (x⊗m · r) 6.34
= ξ ((x⊗m) · r) ξmorphR-mod

= ξ (x⊗m) · r = ξx (m) · r.

2) Let x, x′ ∈ L and let a ∈ A. For every m ∈M we compute

ξx+x′ (m) = ξ (x+ x′ ⊗m)
(6.4)
= ξ (x⊗m+ x′ ⊗m) = ξ (x⊗m) + ξ (x′ ⊗m) =

= ξx (m) + ξx′ (m) = (ξx + ξx′) (m) ,

ξx·a (m) = ξ (x · a⊗m)
(6.3)
= ξ (x⊗ a ·m) = ξx (a ·m)

Prop6.28
= (ξx · a) (m) .

3) Let x, x′ ∈ L and let a ∈ A. In view of (6.12) we have

Λξ (x+ x′) = ξx+x′ = ξx + ξx′ = Λξ (x) + Λξ (x
′) ,

Λξ (x · a) = ξx·a = ξx · a = Λξ (x) · a.

4) For every m ∈M, we compute

(ξ + ξ′)x (m) = (ξ + ξ′) (x⊗m) = ξ (x⊗m)+ξ′ (x⊗m) = ξx (m)+ξ′x (m) = (ξx + ξ′x) (m) .

5) For every x ∈ L, we compute

Λξ+ξ′ (x) = (ξ + ξ′)x
(6.13)
= ξx + ξ′x = Λξ (x) + Λξ′ (x) = (Λξ + Λξ′) (x) .

6.57. Let AMR be a bimodule. Let L be a right A-module and let N be a right
R-module. For every ζ ∈ HomA (LA,HomR (AMR, N)), we consider the map

βζ : L×M −→ N
(x,m) 7−→ ζ (x) (m)

.

Proposition 6.58. In the notations of 6.57, the map βζ : L × M −→ N is A-
balanced and it satisfies βζ ((x,m · r)) = βζ ((x,m)) · r for every x ∈ L, m ∈M and
r ∈ R. Therefore by Proposition 6.36, there exists a left R-module hoomorphism
Γζ : L⊗AM → N such that

Γζ (x⊗m) = ζ (x) (m) for every x ∈ L and m ∈M.
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Proof. Let x, x′ ∈ L,m,m′ ∈M,a ∈ A, r ∈ R. We compute

βζ ((x+ x′,m)) = ζ (x+ x′) (m)
ζisgrouphom

= [ζ (x) + ζ (x′)] (m) =

= ζ (x) (m) + ζ (x′) (m) = βζ ((x,m)) + βζ ((x
′,m))

βζ ((x,m+m′)) = ζ (x) (m+m′)
ζ(x)isanhomom

= ζ (x) (m) + ζ (x) (m′) =

= βζ ((x,m)) + βζ ((x,m
′))

βζ ((x · a,m)) = ζ (x · a) (m)
ζisA-lin
= [ζ (x) · a] (m)

Prop6.28
=

= ζ (x) (a ·m) = βζ ((x, a ·m))

βζ ((x,m · r)) = ζ (x) (m · r) ζ(x)∈HomR(AMR,N)
= [ζ (x) (m)] · r =

= βζ ((x,m)) · r.

Theorem 6.59. Let AMR be a bimodule. For every right A-module L and every
right R-module N , we set

ΛLN : HomR (L⊗AM,N) −→ HomA (L,HomR (M,N))(
L⊗AM

ξ−→ N
)

7−→ Λξ

and
ΓLN : HomA (L,HomR (M,N)) −→ HomR (L⊗AM,N)(

L
ζ−→ HomR (M,N)

)
7−→ Γζ.

Then ξ ∈ HomR (L⊗AM,N) , ζ ∈ HomA (L,HomR (M,N)) , for every x ∈ L and
m ∈M we have[

ΛLN (ξ) (x)
]
[m] = [Λξ (x)] (m) = ξx (m) = ξ (x⊗m)[

ΓLN (ζ)
]
(x⊗m) = Γζ (x⊗m) = ζ (x) (m)

ΛLN is a group isomorphism with inverse ΓLN .

Proof. Let ξ, ξ′ ∈ HomR (L⊗AM,N) . We have

ΛLN (ξ + ξ′) = Λξ+ξ′
(6.14)
= Λξ + Λξ′ = ΛLN (ξ) + ΛLN (ξ′) .

Moreover for every x ∈ L and m ∈M we have[(
ΓLN ◦ ΛLN

)
(ξ)
]
(x⊗m) =

[
ΓLN (Λξ)

]
(x⊗m) = ΓΛξ

(x⊗m) = Λξ (x) (m) =

= ξx (m) = ξ (x⊗m) .

By 2) in Remarks 6.9, we conclude that
(
ΓLN ◦ ΛLN

)
(ξ) = ξ.

Let now ζ ∈ HomA (L,HomR (M,N)). For every x ∈ L and m ∈M , we compute{[(
ΛLN ◦ ΓLN

)
(ζ)
]
(x)
}
(m) =

{[(
ΛLN
)
(Γζ)

]
(x)
}
(m) =

[
ΛΓζ

(x)
]
(f) =

= (Γζ)x (m) = Γζ (x⊗m) = ζ (x) (m) .

This yields that
(
ΛLN ◦ ΓLN

)
(ζ) = ζ.
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Exercise 6.60. In the assumptions and notations of Theorem 6.59, Assume that L
is B-A-bimodule and that N is an S-R-bimodule. Prove that ΛLN is an S-B-bimodule
homomorphism.

Theorem 6.61. In the assumptions and notations of Theorem 6.59, let f ∈ HomA (L2, L1)
and g ∈ HomR (N1, N2). Then the following diagram is commutative.

HomR (L1 ⊗AM,N1)
Λ
L1
N1−→ HomA (L1,HomR (M,N1))

HomR (f ⊗AM, g) ↓ ↓ HomA (f,HomR (M, g))

HomR (L2 ⊗AM,N2)
Λ
L2
N2−→ HomA (L2,HomR (M,N2))

Proof. Let ξ ∈ HomR (L1 ⊗AM,N1) . Note that HomR (f ⊗AM, g) (ξ) = g ◦ ξ ◦
(f ⊗AM). Also if ζ ∈ HomA (L1,HomR (M,N1)) , we have that HomA (f,HomR (M, g)) (ζ) =
HomR (M, g) ◦ ζ ◦ f.

For every x ∈ L2 and m ∈M , we calculate:[{[
ΛL2
N2

◦ HomR (f ⊗AM, g)
]
(ξ)
}
(x)
]
(m) =

{[
ΛL2
N2

(g ◦ ξ ◦ (f ⊗AM))
]
(x)
}
(m) =

= [g ◦ ξ ◦ (f ⊗AM)] (x⊗m) = [g ◦ ξ ◦ (f ⊗AM)] (x⊗m) = (g ◦ ξ) (f (x)⊗m)[{[
HomA (f,HomR (M, g)) ◦ ΛL1

N1

]
(ξ)
}
(x)
]
(m) =

{[
HomR (M, g) ◦ ΛL1

N1
(ξ) ◦ f

]
(x)
}
(m) =

=
[
HomR (M, g)

(
ξf(x)

)]
(m) =

(
g ◦ ξf(x)

)
(m) = g (ξ (f (x)⊗m)) = (g ◦ ξ) (f (x)⊗m) .



Chapter 7

Homology

7.1 Categories and Functors

Definition 7.1. A category C consists of:

1) a class of objects denoted by Ob (C).

2) for every C1, C2 ∈ Ob (C) a set HomC (C1, C2), called the set of morphisms
from C1 to C2

3) for every C1, C2, C3 ∈ Ob (C) there is a map

◦ : HomC(C1, C2)× HomC (C2, C3) −→ HomC (C1, C3)
(f, g) 7−→ g ◦ f called the composite of g and f

satisfying the following conditions:

1) if (C1, C2) ̸= (C3, C4), HomC (C1, C2) ∩ HomC (C3, C4) = ∅;

2) if h ∈ HomC (C3, C4), h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

3) for every C ∈ C, there exists IdC ∈ HomC (C,C) such that for every f ∈
HomC (C,C

′), f ◦ IdC = f = IdC′ ◦ f .

We also write f : C1 → C2 or C1
f−→ C2 instead of f ∈ HomC (C1, C2).

Moreover if C ∈ Ob (C), we will simply write C ∈ C.

Example 7.2. Sets, together with functions between sets, form the category Sets.
For every algebraic structure you can consider its category: take sets endowed with
that algebraic structure as objects and take morphisms between two objects as mor-
phisms. In this way, you obtain the category of groups, Grps, of rings, Rings, of
right R-modules, Mod-R and so on.

Definition 7.3. A category is called small if the class of its objects is a set; discrete
if, given two objects C1, C2, if C1 = C2 then HomC (C1, C2) = {IdC1}, if C1 ̸= C2

then HomC (C1, C2) = ∅. Let C be a category. The opposite category of a category
C is the category C◦ where Ob (C◦) =Ob(C) and HomC◦ (C1, C2) = HomC (C2, C1).

94
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Definition 7.4. A subcategory D of a category C is a category such that Ob (D) ⊆
Ob (C) and for every D1, D2 ∈ D, HomD (D1, D2) ⊆ HomC (D1, D2). When the
inclusion is an equality, D is called full subcategory of C.

Definition 7.5. Let C be a category. A morphism C1
f−→ C2 is an isomorphism if

there exists a morphism C2
g−→ C1 such that f ◦ g = IdC2 and g ◦ f = IdC1.

Remark 7.6. Let f : C1 → C2 be an isomorphism in a category C and let g, g′ :
C2 → C1 be such that f ◦ g = IdC2 = f ◦ g′ and g ◦ f = IdC1 = g′ ◦ f. Then we have

g′ = g′ ◦ IdC2 = g′ ◦ (f ◦ g) = (g′ ◦ f) ◦ g = IdC1 ◦ g = g.

Hence there exists a unique morphism g : C2 → C1 be such that f ◦ g = IdC2 and
g ◦ f = IdC1. This unique morphism will be denoted by f−1.

Definition 7.7. Let A,B ∈ C and f : A −→ B, then

• f is a monomorphism if, for every g1, g2 : C −→ A such that f ◦ g1 = f ◦ g2,
we have g1 = g2;

• f is an epimorphism if, for every g1, g2 : B −→ C such that g1 ◦ f = g2 ◦ f,
we have g1 = g2.

Proposition 7.8. Let A,B ∈ C and let f : A −→ B. If f is an isomorphism then
f is a monomorphism and an epimorphism.

Proof. Since f is an isomorphism, there exists a morphism f−1 which is a two-sided
inverse of f. First we prove that f is a monomorphism. Let g1, g2 : C −→ A be a
morphism such that f ◦ g1 = f ◦ g2. Then, by composing to the left with f−1 we get
f−1 ◦ f ◦ g1 = f−1 ◦ f ◦ g2 and thus g1 = g2, i.e. f is a monomorphism. Now we want
to prove that f is an epimorphism. Let g1, g2 : B −→ C such that g1 ◦ f = g2 ◦ f.
By composing to the right with f−1 we get g1 ◦ f ◦ f−1 = g2 ◦ f ◦ f−1 from which
follows g1 = g2, i.e. f is an epimorphism.

Exercise 7.9. Let f : A −→ B and g : B −→ C be morphisms in a category C .
Then

• if both f and g are monomorphisms, also g ◦ f is a monomorphism;

• if both f and g are epimorphisms, also g ◦ f is an epimorphism.

Remark 7.10. The converse of Proposition 7.8 doesn’t hold in general, such as
in the case of the inclusion Z → Q in the category of rings. In fact, let C be the
category of rings, let

i : Z −→ Q
be the canonical inclusion and let h1, h2 : Q −→ A be such that

Z i // Q
h1 //
h2

// A
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h1 ◦ i = h2 ◦ i. We will prove that h1 = h2. Let m ∈ Z and let n ∈ N, n ̸= 0. Since
hj is a morphism of rings for j = 1, 2, we have that

1A = hj (1) = hj

(n
n

)
= hj (n)hj

(
1

n

)
and also

1A = hj (1) = hj

(n
n

)
= hj

(
1

n

)
hj (n)

so that

hj

(
1

n

)
= hj (n)

−1 .

Moreover we have
hj (n) = nhj (1) = n1A.

Therefore we get

h1

(m
n

)
= mh1

(
1

n

)
= mh1 (n)

−1 = mh2 (n)
−1 = mh2

(
1

n

)
= h2

(m
n

)
that is h1 = h2 so that i is an epimorphism. Now, let g1, g2 : R −→ Z

R
g1 //
g2

// Z i // Q

be such that i ◦ g1 = i ◦ g2. Then g1 = g2 i.e. i is also a monomorphism. Note that
i is not an isomorphism: a non-zero group morphism

f : Q −→ Z

does not exists since Q is divisible but Z is not. In fact, assume there exists a group
morphism

f : D −→ Z
where D is divisible. By definition of divisible group, for every n ∈ N, nD = D.
Since f is a group morphism, f (D) ⊆ Z and thus f (D) = tZ for some t ∈ N \ {0}.
Since f is a group morphism and D is divisible we have that

nf (D) = f (nD) = f (D) = tZ

and therefore
ntZ =tZ.

In particular, for every n ∈ N, there exists yn ∈ Z such that

t = ntyn.

For n = 2 we get
t = 2ty2

and thus
1 = 2y2

contradiction since 2 is not invertible in Z.
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Proposition 7.11. Let A be a ring and let f : L → M be a morphism in Mod-A.
Then

1) f is injective ⇔ f is a monomorphism in Mod-A.

2) f is surjective ⇔ f is an epimorphism in Mod-A.

3) f is an isomorphism ⇔ f is an isomorphism inMod-A.⇔ f is both a monomor-
phism and an epimorphism in Mod-A.

Proof. 1) ⇒ . It is trivial.
1) ⇐ . Let x ∈ L such that x ̸= 0. Let us consider the morphism in Mod-A

(Proposition 2.2)

hx : AA → LA defined by setting hx (a) = xa for every a ∈ A.

Then

hx (1) = x ̸= 0 = 0 (x)

where 0 denotes the zero morphism from A to M . Since f is a monomorphism in
Mod-A, we get

f ◦ hx ̸= f ◦ 0.

It is easy to see that this implies

(f ◦ hx) (1) ̸= 0.

Since (f ◦ hx) (1) = f (x) we conclude.
2) ⇒ . It is trivial.
2) ⇐ . Let p : M → M/Im (f) be the canonical projection. We have to prove

that M = Im (f) i.e. that p = 0 where 0 :M →M/Im (f) is the zero morphism.
Since p ◦ f = 0 ◦ f and since f is an epimorphism in Mod-A, we get that p = 0.
3) It follows easily from 1) and 2).

Notations 7.12. Let A be a ring. In view of the foregoing, from now on

• an injective homomorphism f of right (left) A-modules will also be called a
monomorphism. We will also say that f is mono, for short.

• a surjective homomorphism of right (left) A-modules will also be called an
epimorphism. We will also say that f is mono, for short.

• a bijective homomorphism of right (left) A-modules will also be called an iso-
morphism. We will also say that f is iso, for short.

Definition 7.13. Let C and D be categories. A covariant functor F : C → D
between C and D consists of
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1) a collection of objects of D
(F (C))C∈C

2) a collection of morphisms in D

(F (f) : F (C1) −→ F (C2))f∈HomC(C1,C2)
for every C1, C2 ∈ C

such that
F (IdC) = IdF (C) and F (g ◦ f) = F (g) ◦ F (f)

for every morphism f ∈ HomC (C1, C2) and g ∈ HomC (C2, C3).

Definition 7.14. Let C and D be categories. A contravariant functor F : C → D
between C and D consists of

1) a collection of objects of D (F (C))C∈C

2) a collection of morphisms in D

(F (f) : F (C2) −→ F (C1))f∈HomC(C1,C2)
for every C1, C2 ∈ C

such that
F (IdC) = IdF (C) and F (g ◦ f) = F (f) ◦ F (g) .

for every morphism f ∈ HomC (C1, C2) and g ∈ HomC (C2, C3)..

Examples 7.15.

Let ALR be an A-R-bimodule. Then we can consider the following functors.

1) The covariant functor HomR (ALR,−) :Mod-R →Mod-A defined by setting

HomR (ALR,−) (MR) = HomR (ALR,MR) and HomR (ALR,−) (f) = HomR (ALR, f)

for every MR ∈Mod-R and f morphism in Mod-R.

2) The covariant functor −⊗A ALR :Mod-A→Mod-R defined by setting

(−⊗A ALR) (MA) =MA ⊗A ALR and (−⊗A ALR) (f) = f ⊗A ALR

for every MA ∈Mod-A and f morphism in Mod-A.

3) The contravariantvariant functor HomR (−, ALR) :Mod-R → A-Mod defined by
setting

HomR (−, ALR) (MR) = HomR (MR, ALR) and HomR (−, ALR) (f) = HomR (f, ALR)

for every MR ∈Mod-R and f morphism in Mod-R.
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Lemma 7.16. Let F : C1 → C2 and G : C2 → C3, be functors. For every C ∈ C1 we
set

GF (C) = G (F (C))

and for every morphism f : C1 → C2 we set

GF (f) = G (F (f)) .

This gives rise to a functor GF = G ◦ F : C1 → C3 which is

1) covariant whenever both F and G are covariant,

2) covariant whenever both F and G are contravariant,

3) contravariant whenever F is covariant and G is contravariant,

4) contravariant whenever F is contravariant and G is covariant.

Proof. Exercise.

Definitions 7.17. Given two covariant functors C
F

⇒
G

D, a functorial morphism

(or natural transformation) α : F → G is a collection of morphims in D, for every

C ∈ C, by a morphism
(
F (C)

αC−→ G (C)
)
C∈C

such that, for every C1
f−→ C2,

αC2 ◦ F (f) = G (f) ◦ αC1

i.e. the following diagram

F (C1)
ϕC1 //

F (f)
��

G (C1)

G(f)
��

F (C2) ϕC2

// G (C2)

	

is commutative. α is called a functorial isomorphism (or natural equivalence) if,
for every C ∈ C, αC is an isomorphism in D. In this case the functors are called
isomorphic and we write F ∼= G.

Exercise 7.18. Let α : F → G be a functorial isomorphism. Show that the collection
β =

(
(αC)

−1)
C∈C is a functorial isomorphism from G to F .

Notation 7.19. Let α : F → G be a functorial isomorphism. Then the functorial
isomorphism β in Exercise 7.18 will be denoted by α−1.

Examples 7.20. Let AMR and AM
′
R be A-R-bimodules and let f : AMR → AM

′
R

be a morphism of A-R-bimodules i.e. f is both a left A-modules and also a right
R-modules homomorphism. Then

HomR (f, -) : HomR (AM
′
R, -) −→ HomR (AMR, -)

and
-⊗A f : -⊗AM −→ -⊗AM

′

are functorial morphisms (Exercise).
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Definitions 7.21. Let F : C → D We say that

• F is an equivalence of categories if there is a functor G : D → C such that
FG ∼= IdD and GF ∼= IdC. In this case we also say that (F,G) is an equiva-
lence of categories.

• F is an isomorphism of categories if there is a functor G : D → C such
that FG = IdD and GF = IdC. In this case we also say that (F,G) is an
isomorphism of categories .

Definitions 7.22. Two categories C and D are called

• equivalent if there exist fuctors F : C → D and G : D → C such that (F,G) is
an equivalence of categories.

• isomorphic if there exist fuctors F : C → D and G : D → C such that (F,G)
is an isomorphism of categories.

7.2 Snake Lemma

Lemma 7.23 (Snake Lemma). Let A be a ring and let

L
ϵ //

α
��

M
π //

β
��

N //

γ
��

0

0 // L′
ϵ′

//M ′
π′

// N ′

be a commutative diagram in Mod-A with exact rows.

1) Then there exist right A-module homomorphisms ϵ⋆, π⋆, ϵ
′
⋆, π

′
⋆ such that the

diagram
0

��

0

��

0

��
kerα

ϵ⋆ //

iα
��

ker β
π⋆ //

iβ
��

ker γ

iγ
��

L ϵ //

α
��

M π //

β
��

N //

γ
��

0

0 // L′
ϵ′ //

pα
��

M ′ π′
//

pβ
��

N ′

pγ
��

cokerα
ϵ′⋆ //

��

cokerβ
π′
⋆ //

��

coker γ

��
0 0 0 .
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is commutative and exact. They are uniquely defined by the following equali-
ties:

(7.1) iβ ◦ ϵ∗ = ϵ|Ker(α) = ϵ ◦ iα

(7.2) iγ ◦ π∗ = π ◦ iβ

(7.3) ϵ′∗ ◦ pα = pβ ◦ ε′

(7.4) π′∗ ◦ pβ = pγ ◦ π′.

2) There exists a right A-module homomorphism ω : Ker (γ) −→Coker (α) such
that the sequence

Ker (α)
ϵ∗−→ Ker (β)

π∗−→ Ker (γ)
ω−→ Coker (α)

ϵ′∗−→ Coker (β)
π′
∗−→ Coker (γ)

is exact.

3) If ϵ is mono, ϵ⋆ is also mono and if π′ is epi, so is π′⋆.

Proof. 1) Construction of the homomorphisms ϵ⋆, π⋆, ϵ
′
⋆, π

′
⋆.

ϵ∗) Let x ∈ Ker (α). Then α (x) = 0 and hence 0 = ϵ′α (x) = βϵ (x) so that
ϵ (x) ∈ Ker (β) . Therefore we get ϵ (Ker (α)) ⊆ Ker (β) and we can set

ϵ∗ =
(
ϵ|Ker(α)

)|Ker(β)
.

It follows that

iβ ◦ ϵ∗ = iβ ◦
(
ϵ|Ker(α)

)|Ker(β)
= ϵ|Ker(α) = ϵ ◦ iα.

π∗) Let m ∈ Ker (β). Then 0 = β (m) and hence 0 = π′β (m) = γπ (m) so that
π (m) ∈ Kerγ. Therefore we get π (Ker (β)) ⊆ Ker (γ) and we can set

π∗ =
(
π|Ker(β)

)|Ker(γ)
.

It follows that

iγ ◦ π∗ = iγ ◦
(
π|Ker(β)

)|Ker(γ)
= π|Ker(β) = π ◦ iβ.

ϵ′∗) We have pβ ◦ ε′ ◦ α = pβ ◦ β ◦ ε = 0 so that (pβ ◦ ε′) (Im (α)) = 0. Hence,
by the Fundamental Theorem for Quotient Modules 1.20, there exists a unique
homomorphism ϵ′∗ :Coker (α) =

L′

Im(α)
→Coker (β) = M ′

Im(β)
such that

ϵ′∗ ◦ pα = pβ ◦ ε′

i.e. ϵ′∗ (x
′ + Im (α)) = ϵ′ (x′) + Im (β) for every x′ ∈ L′.
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π′∗) We have pγ ◦ π′ ◦ β = pγ ◦ γ ◦ π = 0 so that (pγ ◦ π′) (Im (β)) = 0. Hence,
by the Fundamental Theorem for Quotient Modules 1.20, there exists a unique
homomorphism π′∗ :Coker (β) =

M ′

Im(β)
−→Coker (γ) = N ′

Im(γ)
such that

π′∗ ◦ pβ = pγ ◦ π′

i.e. π′∗ (m
′ + Im (β)) = π′ (m′) + Im (γ) for every m′ ∈M ′.

2) The diagram is commutative. It follows from (7.1) , (7.2) , (7.3) and (7.4).
3) The diagram is exact.
3a) Im (ϵ⋆) ⊆ Ker (π∗). We have iγ ◦ π∗ ◦ ϵ⋆ = π ◦ ϵ ◦ iα = 0 ◦ iα = 0. Since iγ is

mono we get that π∗ ◦ ϵ⋆ = 0.
3b)Ker (π∗) ⊆ Im (ϵ⋆). Letm ∈ Ker (π∗). Thenm ∈ Ker (β) and 0 = iγπ∗ (m) =

πiβ (m) . Thus iβ (m) ∈ Ker (π) = Im (ϵ) and hence there is an x ∈ L such that
iβ (m) = ϵ (x) . Then

0 = β (iβ (m)) = β (ϵ (x)) = ϵ′ (α (x)) .

Since ϵ′ is mono we deduce that α (x) = 0 i.e. x ∈ Ker (α) and hence x = iα (x).
Thus iβ (m) = ϵ (iα (x)) = iβ (ϵ∗ (x)). Since iβ is mono, we deduce that m = ϵ∗ (x).

3c) Im (ϵ′⋆) ⊆ Ker (π′∗).

Im (ϵ′⋆) = Im (ϵ′⋆ ◦ pα) = Im (pβ ◦ ε′) .

Since
π′∗ ◦ pβ ◦ ε′ = pγ ◦ π′ ◦ ε′ = pγ ◦ 0 = 0

we get
Im (ϵ′⋆) = Im (pβ ◦ ε′) ⊆ Ker (π′∗) .

3d) Ker (π′∗) ⊆ Im (ϵ′⋆). Let m
′+Im (β) = pβ (m

′) ∈ Ker (π′∗) , i.e. m
′+Im (β) ∈

M ′/Im (β) and 0 + Im (γ) = π′∗ (m
′ + Im (β)) = π′∗pβ (m

′) = pγπ
′ (m′) i.e. π′ (m′) ∈

Im (γ) so that there exists a y ∈ N such that

π′ (m′) = γ (y) .

Moreover, since π is epi, there exists m ∈M such that

y = π (m)

so that
π′ (m′) = γ (y) = γ (π (m)) = π′ (β (m)) .

Hence m′ − β (m) ∈ Ker (π′) = Im (ϵ′) and hence there exists x′ ∈ L′ such that

m′ − β (m) = ϵ′ (x′) .

Thus we have
pβ (m

′) = pβ (ϵ
′ (x′)) = ϵ′∗ (pα (x

′)) ∈ Im (ϵ′∗) .
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4) 4a) Construction of ω. Let y ∈ Ker (γ). Since π is epi, there exists an
m ∈ M such that iγ (y) = π (m). We have 0 = γ (iγ (y)) = γ (π (m)) = π′ (β (m)),
i.e. β (m) ∈ Ker (π′) = Im (ϵ′). Hence there exists an element x′ ∈ L′ such that
ϵ′ (x′) = β (m). We set

ω (y) = x′ + Im (α)

4b) ω is well-defined. Let m ∈ M such that π (m) = iγ (y) and let x′ ∈ L′ such
that ϵ′ (x′) = β (m). Then we have

π (m) = π (m) i.e. m−m ∈ Ker (π) = Im (ϵ) .

Thus there exists an x ∈ L such that

(7.5) ϵ (x) = m−m.

On the other hand we have

(7.6) ϵ′ (x′ − x′) = ϵ′ (x)− ϵ′ (x′) = β (m)− β (m) = β (m−m) .

Thus from (7.5) and (7.6) we deduce that

ϵ′ (x′ − x′) = β (m−m) = β (ϵ (x)) = ϵ′ (α (x)) .

Since ϵ′ is mono we get x′ − x′ = α (x) so that

x′ + Im (α) = x′ + Im (α) .

4c) ω is a homomomorphism. Let y1, y2 ∈ Ker (γ). Since π is epi, there exist
m1,m2 ∈ M such that iγ (y1) = π (m1)and iγ (y2) = π (m2) . By 4a) there exist
x′1, x

′
2 ∈ L′ such that β (m1) = ϵ′ (x′1) and β (m2) = ϵ′ (x′2). Since π and β and ϵ′ are

homomorphisms we have that

π (m1 +m2) = π (m1) + π (m2) = y1 + y2 and

β (m1 +m2) = β (m1) + β (m2) = ϵ′ (x′1) + ϵ′ (x′2) = ϵ′ (x′1 + x′2) .

Therefore, by definition of ω, we have

ω (y1 + y2) = (x′1 + x′2) + Im (α)

= (x′1 + Im (α)) + (x′2 + Im (α))

= ω (y1) + ω (y2) .

Let now y ∈ Ker (γ) and a ∈ A. Since π is epi, there exists an m ∈ M such that
iγ (y) = π (m). By 4a) there exists an element x′ ∈ L′ such that β (m) = ϵ′ (x′) .
Since π and β and ϵ′ are homomorphisms we have that

π (m · a) = π (m) · a = y · a and β (m · a) = β (m) · a = ϵ′ (x′) · a = ϵ′ (x′ · a) .
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Therefore, by definition of ω, we have

ω (y · a) = x′ · a+ Im (α)

= (x′ + Im (α)) · a
= ω (y) · a.

5) The sequence is exact. In view of 3) we need to prove the following.
5a) Im (π⋆) ⊆ Ker (ω). Let y ∈ Im (π⋆). Then there exists an m ∈ Ker (β) such

that y = π⋆ (m) and hence iγ (y) = iγπ⋆ (m) = π (iβ (m)). Then, by 4), there exists
an x′ ∈ L′ with ϵ′ (x′) = β (iβ (m)) = 0. We deduce that x′ ∈ Ker (ϵ′). Since ϵ′ is
mono, we get x′ = 0 so that

ω (y) = x′ + Im (α) = 0 + Im (α)

and hence y ∈ Ker (ω).
5b) Ker (ω) ⊆ Im (π⋆). Let y ∈ Ker (ω). Then y ∈ Ker (γ) and hence, by 4),

there is an m ∈M such that π (m) = iγ (y) , and an x′ ∈ L′ such that β (m) = ϵ′ (x′)
and we have

0 + Im (α) = ω (y) = x′ + Im (α)

i.e. x′ ∈ Im (α) . Hence there exists x ∈ L such that x′ = α (x) . Then we have

β (m) = ϵ′ (x′) = ϵ′ (α (x)) = β (ϵ (x))

that is m − ϵ (x) ∈ Ker (β) . Since πϵ = 0 we get iγ (y) = π (m) = π (m− ϵ (x)) =
π (iβ (m− ϵ (x))) = iγπ∗ (m− ϵ (x)), and hence y = π∗ (m− ϵ (x)) ∈ Im (π⋆).

5c) Im (ω) ⊆ Ker (ϵ′⋆). Let w ∈ Im (ω). Then there exists y ∈ Ker (γ) with
ω (y) = w. By 4) there is an m ∈M such that π (m) = iγ (y) and there is an x′ ∈ L′

with ϵ′ (x′) = β (m) and

w = ω (y) = x′ + Im (α) = πα (x
′) .

Hence
ϵ′∗ (w) = ϵ′∗ (πα (x

′)) = pβ (ϵ
′ (x′)) = pβ (β (m)) = 0 + Im (β) ,

i.e. x′ + Im (α) ∈ Ker (ϵ′⋆).
5d) Ker (ϵ′⋆) ⊆ Im (ω). Let z ∈ Ker (ϵ′⋆). Then there is an x′ ∈ L′ such that

z = x′ + Im (α) = pα (x
′) and

0 + Im (β) = ϵ′⋆ (z) = ϵ′⋆ (pα (x
′)) = pβ (ϵ

′ (x′)) .

Therefore ϵ′ (x′) ∈ Im (β) so that there exists an m ∈ M such that β (m) = ϵ′ (x′).
Let y = π (m). Then, we have

γ (y) = γ (π (m)) = π′ (β (m)) = π′ (ϵ′ (x)) = 0.

Therefore y ∈ Ker (γ) and,by definition ω, we have

ω (y) = x′ + Im (α)

so that z = x′ + Im (α) = ω (y) ∈ Im (ω).
6) If ϵ is mono then ϵ∗ is also mono. It follows from iβ ◦ ϵ∗ = ϵ ◦ iα.
7) If π′ is epi then π′∗ is also epi. It follows from π′∗ ◦ pβ = pγ ◦ π′.
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7.3 Chain Complexes

Definitions 7.24. A chain complex of right A-modules is a a pair
(
C•, d

C•
•
)
=(

(Cn)n∈Z ,
(
dC•
n

)
n∈Z

)
where each Cn is a right A-module, dC•

n : Cn → Cn−1 is a right

A-modules homomorphism and dC•
n ◦ dC•

n+1 = 0 for every n ∈ Z. For each n ∈ Z

• dC•
• =

(
dC•
n

)
n∈Z is called the differential operator of the chain complex,

• Zn (C•) := Ker
(
dC•
n

)
is called the n-th cycle of the chain complex ,

• Bn (C•) := Im
(
dC•
n+1

)
is called the n-th boundary of the chain complex ,

• Bn (C•) ⊆ Zn (C•) and Hn (C•) :=
Ker(dC•

n )
Im(dC•

n+1)
= Zn(C•)

Bn(C•)
is called the n-th homol-

ogy module of the chain complex.

We will denote by

• iZn : Zn (C•) → Cn the canonical inclusion and by pZn : Cn → Cn/Zn (C•) the
canonical projection;

• iBn : Bn (C•) → Cn the canonical inclusion and by pBn : Cn → Cn/Bn (C•) the
canonical projection;

• jBn : Bn (C•) → Zn (C•) the canonical inclusion and by qBn : Zn (C•) →
Zn (C•) /Bn (C•) = Hn (C•) the canonical projection.

• jHn : Hn (C•) → Cn/Bn (C•) the canonical inclusion.

Clearly we have

(7.7) jHn ◦ qBn = pBn ◦ iZn .

Whenever needed, we will write Zn (C•) and Bn (C•) in the above subscripts.

Definition 7.25. Given chain complexes
(
C•, d

C•
•
)
and

(
D•, d

D•
•
)
, a morphism of

chain complexes of rightA-modules φ• = (φn)n∈Z :
(
C•, d

C•
•
)
=
(
(Cn)n∈Z ,

(
dC•
n

)
n∈Z

)
−→(

D•, d
D•
•
)
=
(
(Dn)n∈Z ,

(
dD•
n

)
n∈Z

)
consists of a family of right A-modules homomor-

phisms (φn : Cn −→ Dn)n∈Z such that the following diagram is commutative

Cn+1
φn+1 //

dC•
n+1

��

Dn+1

dD•
n+1

��
Cn φn

// Dn.

i.e. dD•
n+1 ◦ φn+1 = φn ◦ dC•

n+1, for every n ∈ Z.
We will simply write φ instead of φ• whenever no risk of confusion

will arise.
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Notation 7.26. We will denote by Ch (Mod-A) the category of chain complexes.
Obviously the objects are chain complexes of right A-modules and morphisms are
just morphism of chain complexes of right A-modules.

Lemma 7.27. Let
(
C•, d

C•
•
)
be a chain complex and let n ∈ Z. Then the map

d̂C•
n : Coker

(
dC•
n+1

)
= Cn

Im(dC•
n+1)

−→ Ker
(
dC•
n−1
)

xn + Im
(
dC•
n+1

)
7−→ dn (xn)

.

is well-defined and is a right A-modules homomorphism. It is uniquely defined by

(7.8) iZn−1(C•) ◦ d̂C•
n ◦ pBn(C•) = dC•

n

Moreover we have

Ker
(
d̂C•
n

)
= Hn (C•) and Coker

(
d̂C•
n

)
= Hn−1 (C•) .

Proof. Since dC•
n ◦ dC•

n+1 = 0,we have that Im
(
dC•
n+1

)
⊆ Ker

(
dC•
n

)
. Then, by the Fun-

damental Theorem for Quotient Modules 1.20, there exists a unique homomorphism(
dC•
n

)
:

Cn

Im
(
dC•
n+1

) → Cn−1

such that
dC•
n ◦ pBn(C•) = dC•

n i.e.

dC•
n

(
xn + Im

(
dC•
n+1

))
= dC•

n (xn) for every xn ∈ Cn.

Since dC•
n−1 ◦ dC•

n = 0 we have that Im
(
dC•
n

)
= Im

(
dC•
n

)
⊆ Ker

(
dC•
n−1
)
and we

can set

d̂C•
n =

(
dC•
n

)|Ker(dC•
n−1)

:
Cn

Im
(
dC•
n+1

) → Ker
(
dC•
n−1
)
i.e.

iZn−1(C•) ◦ d̂C•
n = dC•

n

so that
iZn−1(C•) ◦ d̂C•

n ◦ pBn(C•) = dC•
n .

We have

Ker
(
d̂C•
n

)
=
{
cn +Bn (C•) | dC•

n (cn) = 0
}

=
{
cn +Bn (C•) | cn ∈ Ker

(
dC•
n

)
= Zn (C•)

}
=
Zn (C•)

Bn (C•)
= Hn (C•)

and

Coker
(
d̂C•
n

)
=

Ker
(
dC•
n−1
)

Im (dC•
n (C•))

=
Zn−1 (C•)

Bn−1 (C•)
= Hn−1 (C•) .
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7.28. Let φ• :
(
C•, d

C•
•
)
−→

(
D•, d

D•
•
)
be a morphism of complexes We can consider

the following morphisms

1) A morphism between kernels of the differential operators= cycles.

Since dD•
n−1 ◦ φn−1 = φn−2 ◦ dC•

n−1, we have that(
dD•
n−1 ◦ φn−1

) (
Ker

(
dC•
n−1
))

=
(
φn−2 ◦ dC•

n−1
) (

Ker
(
dC•
n−1
))

= 0

so that

(7.9) φn−1
(
Ker

(
dC•
n−1
))

⊆ Ker
(
dD•
n−1
)

and we can consider

Λn (φ) =
(
(φn−1)|Zn−1(C•)

)|Zn−1(D•)

: Zn−1 (C•) = Ker
(
dC•
n−1
)

−→ Ker
(
dD•
n−1
)
= Zn−1 (D•)

cn−1 7−→ φn−1 (cn−1) .

so that

(7.10) iZn−1(D•) ◦ Λn (φ) = φn−1 ◦ iZn−1(C•)

2) A morphism between cokernels of the differential operators.

Since dD•
n+1 ◦ φn+1 = φn ◦ dC•

n+1, we have that

φn (Bn (C•)) = φn
(
Im
(
dC•
n+1

))
= φnd

C•
n+1 (Cn+1)

=
(
dD•
n+1 ◦ φn+1

)
(Cn+1) ⊆ Im

(
dD•
n+1

)
= Bn (D•)

so that
pBn(D•) (φn (Bn (C•))) = 0

Then, by the Fundamental Theorem for Quotient Modules 1.20, there exists a
unique homomorphism

Γn (φ) :
Cn

Bn (C•)
= Coker

(
dC•
n+1

)
−→ Coker

(
dD•
n+1

)
=

Dn

Bn (D•)

such that

(7.11) Γn (φ) ◦ pBn(C•) = pBn(D•) ◦ φn

i.e.

Γn (φ) :
Cn

Bn(C•)
= Coker

(
dC•
n+1

)
−→ Coker

(
dD•
n+1

)
= Dn

Bn(D•)

cn +Bn (C•) 7−→ φn (cn) +Bn (D•) .

3) A morphism between the homology modules.
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We have that

Γn (φ)

(
Zn (C•)

Bn (C•)

)
=

(
Γn (φ) ◦ pBn(C•)

)
(Zn (C•)) =

(
pBn(D•) ◦ φn

)
(Zn (C•)) =

= pBn(D•) (φn (Zn (C•)))
(7.9)

⊆ pBn(D•) (Zn (D•))

=
Zn (D•)

Bn (D•)
= Hn (D•) .

Therefore we can consider

Hn (φ) =

(
(Γn (φ))|Zn(C•)

Bn(C•)

)|Zn(D•)
Bn(D•)

i.e.
Hn (φ) :

Zn(C•)
Bn(C•)

= Hn (C•) −→ Hn (D•) =
Zn(D•)
Bn(D•)

zn +Bn (C•) 7−→ φn (zn) +Bn (D•) .

We have

(7.12) jHn(D•) ◦Hn (φ) = Γn (φ) ◦ jHn (C•)

and

jHn(D•) ◦Hn (φ) ◦ qBn(C•)
(7.12)
=

= Γn (φ) ◦ jHn(C•) ◦ qBn(C•) =

(7.7)
= Γn (φ) ◦ pBn(C•) ◦ iZn(C•)

(7.11)
= pBn(D•) ◦ φn ◦ iZn(C•)

so that we get

(7.13) jHn(D•) ◦Hn (φ) ◦ qBn(C•) = pBn(D•) ◦ φn ◦ iZn(C•)

Moreover we have

jHn−1(D•) ◦Hn−1 (φ) ◦ qBn−1(C•)
(7.13)
= pBn−1(D•) ◦ φn−1 ◦ iZn−1(C•)

(7.10)
=

= pBn−1(D•) ◦ iZn−1(D•) ◦ Λn (φ) =
(7.7)
= jHn−1(D•) ◦ qBn−1(D•) ◦ Λn (φ) .

Since jHn−1(D•) is mono, we deduce that

(7.14) Hn−1 (φ) ◦ qBn−1(C•) = qBn−1(D•) ◦ Λn (φ) .

Proposition 7.29. In the notations of 7.28, we have that

(7.15) Λn (φ) ◦ d̂C•
n = d̂D•

n ◦ Γn (φ)
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i.e. the following diagram is commutative:

Cn

Bn(C•)

Γn(φ) //

d̂C•
n

��

Dn

Bn(D•)

d̂D•
n

��
Zn−1 (C•)

Λn(φ)
// Zn−1 (D•) ,

We have also the commutative diagram

Cn
φn //

dC•
n

��

pBn(C•)

((QQ
QQQ

QQQ
QQQ

QQQ
Q Dn

pBn(D•)

vvlll
lll

lll
lll

lll

dD•
n

��

Coker
(
dC•
n+1

)
= Cn

Bn(C•)

Γn(φ) //

d̂C•
n

��

Dn

Bn(D•)
= Coker

(
dD•
n+1

)
d̂D•
n

��

Ker
(
dC•
n−1
)
= Zn−1 (C•)

iZn−1(C•)

vvlll
lll

lll
lll

ll Λn(ϕ)
// Zn−1 (D•) = Ker

(
dD•
n−1
)

iZn−1(D•)

((RR
RRR

RRR
RRR

RRR

Cn−1 φn−1

// Dn−1.

.

Proof. We have

iZn−1(D•) ◦ Λn (φ) ◦ d̂C•
n ◦ pBn(C•)

(7.10)
= φn−1 ◦ iZn−1(C•) ◦ d̂C•

n ◦ pBn(C•)
(7.8)
= φn−1 ◦ dC•

n

= dD•
n ◦ φn

(7.8)
= iZn−1(D•) ◦ d̂D•

n ◦ pBn(D•) ◦ φn
(7.11)
= iZn−1(D•) ◦ d̂D•

n ◦ Γn (φ) ◦ pBn(C•).

Since iZn−1(D•) is mono and pBn(C•) is epi, we get

Λn (φ) ◦ d̂C•
n = d̂D•

n ◦ Γn (φ) .

dD•
n Γn (φ) ◦ pBn(C•) = pBn(D•) ◦ φn = dD•

n (φn (cn) +Bn (D•))

= dD•
n (φn (cn)) .

The last diagram is commutative in view of (7.8)

iZn−1(C•) ◦ d̂C•
n ◦ pBn(C•) = dC•

n ,

(7.11)
Γn (φ) ◦ pBn(C•) = pBn(D•) ◦ φn,

(7.10)

Zn−1(D•) ◦ Λn (φ) = φn−1 ◦ iZn−1(C•)

and (7.15)

Λn (φ) ◦ d̂C•
n = d̂D•

n ◦ Γn (φ) .
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Lemma 7.30. Let C•
φ−→ D•

ψ−→ E• be morphisms of complexes, then ψ◦φ, defined
by setting (ψ ◦ φ)n = ψn ◦ φn for every n ∈ Z, is also a morphism of complexes and
for every n ∈ Z the following equalities hold.

(7.16) Λn (ψ ◦ φ) = Λn (ψ) ◦ Λn (φ) .

(7.17) Γn (ψ ◦ φ) = Γn (ψ) ◦ Γn (φ) .

(7.18) Hn (ψ ◦ φ) = Hn (ψ) ◦Hn (φ) .

so that we get obviously defined functors

Hn : Ch (Mod-A) →Mod-A.

Proof. For every n ∈ Z we have

dE•
n ◦(ψ ◦ φ)n = dE•

n ◦ψn◦φn = ψn−1◦dD•
n ◦φn = ψn−1◦φn−1◦dD•

n
◦dC•

n = (ψ ◦ φ)n−1◦d
C•
n

and hence we deduce that ψ ◦ φ is a morphism of complexes.
1) Let us prove (7.16).
We compute

iZn−1(E•) ◦ Λn (ψ ◦ φ) (7.10)
= (ψn−1 ◦ φn−1) ◦ iZn−1(C•)

(7.10)
= ψn−1 ◦ iZn−1(D•) ◦ Λn (φ) =

(7.10)
= iZn−1(E•) ◦ Λn (ψ) ◦ Λn (φ) .

Since iZn−1(E•) is mono, we obtain(7.16).
2) Let us prove (7.17).
We compute

Γn (ψ ◦ φ) ◦ pBn(C•)
(7.11)
= pBn(E•) ◦ (ψn ◦ φn)

(7.11)
= Γn (ψ) ◦ pBn(D•) ◦ φn =

(7.11)
= Γn (ψ) ◦ Γn (φ) ◦ pBn(C•).

Since pBn(C•) is epi, we obtain (7.17).
3) Let us prove (7.18).

jHn(E•) ◦Hn (ψ) ◦Hn (φ) ◦ qBn(C•)
(7.12)
= Γn (ψ) ◦ jHn(D•) ◦Hn (φ) ◦ qBn(C•)

(7.12)
=

= Γn (ψ) ◦ Γn (φ) ◦ jHn(C•) ◦ qBn(C•)
(7.7)
= Γn (ψ) ◦ Γn (φ) ◦ pBn(C•) ◦ iZn(C•) =

(7.11)
= Γn (ψ) ◦ pBn(D•) ◦ φn ◦ iZn(C•)

(7.11)
= pn(E•) ◦ ψn ◦ φn ◦ iZn(C•) =

= pn(E•) ◦ (ψn ◦ φn) ◦ iZn(C•) = pn(E•) ◦ (ψ ◦ φ)n ◦ iZn(C•)
(7.13)
=

= jHn (E•) ◦Hn (ψ ◦ φ) ◦ qBn(C•).

Since jHn (E•) is mono and qBn(C•) is epi, we get Hn (ψ ◦ φ) = Hn (ψ) ◦Hn (φ) .
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Definition 7.31. Let φ• = (φn)n∈Z :
(
C•, d

C•
•
)
−→

(
D•, d

D•
•
)
and ψ• = (ψn)n∈Z :(

D•, d
D•
•
)
−→

(
E•, d

E•
•
)
morphisms of complexes. We say that

0 → C•
φ•−→ D•

ψ•−→ E• → 0

is an exact sequence of complexes if, for every n ∈ Z, the sequence

0 → Cn
φn−→ Dn

ψn−→ En → 0 is exact.

Theorem 7.32. Let 0 −→ C•
φ•−→ D•

ψ•−→ E• −→ 0 be an exact sequence of
complexes of right A-modules. Then, for every n ∈ Z, there exists a morphism
Hn (E•)

ωn−→ Hn−1 (C•) such that the sequence

. . . .→ Hn (C•)
Hn(φ•)−→ Hn (D•)

Hn(ψ•)−→ Hn (E•)
ωn−→ Hn−1 (C•)

Hn−1(φ•)−→ Hn−1 (D•)
Hn−1(ψ•)−→ Hn−1 (E•) . . . .

is exact.

Proof. Let n ∈ Z and let us consider the following diagram:

Cn

Bn(C•)

Γn(φ) //

d̂C•
n

��

Dn

Bn(D•)

Γn(ψ) //

d̂D•
n

��

En

Bn(E•)

d̂E•
n

��

// 0

0 // Zn−1 (C•)
Λn(φ)

// Zn−1 (D•)
Λn(ψ)

// Zn−1 (E•)

.

In view of (7.15), this diagram is commutative. Let us prove that the rows are exact.
1) Γn (ψ) is epi. By (7.11) we have

Γn (ψ) ◦ pBn(D•) = pBn(E•) ◦ ψn.

Since ψn and pBn(D•) are epi, so is Γn (ψ).
2) Λn (φ) is mono. By (7.10) we have

iZn−1(D•) ◦ Λn (φ•) = φn−1 ◦ iZn−1(C•)

Since φn−1 and iZn−1(C•) are mono, so is Λn (φ).
3) Im (Γn (φ)) ⊆ Ker (Γn (ψ)). We have

Γn (ψ•) ◦ Γn (φ•) ◦ pBn(C•)
(7.17)
= Γn ((ψ ◦ φ)•) ◦ pBn(C•)

(7.11)
= pBn(E•) ◦ (ψ ◦ φ)n =

= pBn(E•) ◦ ψn ◦ φn = 0.

Since pBn(C•) is epiwe get that Γn (ψ) ◦ Γn (φ) = 0.
4) Ker (Γn (ψ)) ⊆ Im (Γn (φ)) .
Let xn +Bn (D•) ∈ Ker (Γn (ψ)), then

0 = Γn (ψ) (xn +Bn (D•))
(7.11)
=
(
Γn (ψ) ◦ pBn(D•)

)
(xn) =

(
pBn(E•) ◦ ψn

)
(xn) = ψn (xn)+Bn (E•) ,



112 CHAPTER 7. HOMOLOGY

i.e. ψn (xn) ∈ Bn (E•) = Im
(
dE•
n+1

)
. Thus there exists en+1 ∈ En+1 such that

ψn (xn) = dE•
n+1 (en+1) .

Since ψn+1 is epi, there exists yn+1 ∈ Dn+1 such that ψn+1 (yn+1) = en+1; we have

ψn (xn) = dE•
n+1 (en+1) = dE•

n+1 (ψn+1 (yn+1)) = ψn
(
dD•
n+1 (yn+1)

)
,

i.e. xn − dD•
n+1 (yn+1) ∈ Ker (ψn) ⊆ Im (φn). Hence there exists cn ∈ Cn such that

φn (cn) = xn − dD•
n+1 (yn+1) so that

Im (Γn (φ)) ∋ Γn (φ) (cn) = φn (cn)+Bn (D•) = xn−dD•
n+1 (yn+1)+Bn (D•) = xn+Bn (D•) .

5) Im (Λn (φ)) ⊆ Ker (Λn (ψ)) .We have

iZn−1(E•) ◦Λn (ψ)◦Λn (φ)
(7.16)
= iZn−1(E•) ◦Λn (ψ ◦ φ) (7.10)

= (ψn−1 ◦ φn−1)◦ iZn−1(C•) = 0

Since iZn−1(E•) is mono, we deduce that Λn (ψ) ◦ Λn (φ) = 0.
6) Ker (Λn (ψ)) ⊆ Im (Λn (φ)). Let xn−1 ∈ Ker (Λn (ψ)), then

0 =
(
iZn−1(E•) ◦ Λn (ψ)

)
(xn−1)

(7.10)
=
(
ψn−1 ◦ iZn−1(D•)

)
(xn−1) ,

i.e. iZn−1(D•) (xn−1) ∈ Ker (ψn−1) = Im (φn−1). Then there exists cn−1 ∈ Cn−1 such
that iZn−1(D•) (xn−1) = φn−1 (cn−1). Now we have prove that cn−1 ∈ Zn−1 (C•). We
have

φn−2
(
dC•
n−1 (cn−1)

)
= dD•

n−1 (φn−1 (cn−1)) = dD•
n−1 (xn−1)

xn−1∈Zn−1(D•)
= 0

As φn−2 is mono, we deduce that dC•
n−1 (cn−1) = 0 so that cn−1 ∈ Zn−1 (C•). Hence

we can write

iZn−1(D•) (xn−1) = φn−1 (cn−1) = φn−1
(
iZn−1(C•) (cn−1)

) (7.10)
=
(
iZn−1(D•) ◦ Λn (φ)

)
(cn−1) =

= iZn−1(D•) (Λn (φ) (cn−1)) .

Since iZn−1(D•) is mono, we deduce that

xn−1 = Λn (φ) (cn−1) ∈ Λn (φ•) .

Since the diagram is commutative and exact, it satisfies conditions of Snake
Lemma 7.23. Now recall that, by Lemma 7.27, we have

Ker
(
d̂C•
n

)
= Hn (C•) and Coker

(
d̂C•
n

)
= Hn−1 (C•) .

Recall also that, by formula (7.12) we have that

jHn(D•) ◦Hn (φ) = Γn (φ) ◦ jHn (C•)
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and by formula (7.14) we have that

Hn−1 (φ•) ◦ qBn−1(C•) = qBn−1(D•) ◦ Λn (φ•) .

Hence, in view of the uniqueness of the homomorphisms involved in the statement
of Snake Lemma 7.23, we have the following commutative and exact diagram.

Hn (C•)
Hn(φ) //

jHn(C•)

��

Hn (D•)
Hn(ψ) //

jHn(D•)

��

Hn (E•)

jHn(E•)

��
Cn

Bn(C•)

Γn(φ) //

d̂C•
n

��

Dn

Bn(D•)

Γn(ψ) //

d̂D•
n

��

En

Bn(E•)
//

d̂E•
n

��

0

0 // Zn−1 (C•)
Λn(φ) //

qHn−1(C•)

��

Zn−1 (D•)
Λn(ψ) //

qHn−1(D•)

��

Zn−1 (E•)

qHn−1(E•)

��
Hn−1 (C•)

Hn−1(φ) // Hn−1 (D•)
Hn−1(ψ) // Hn−1 (E•)

Moreover there exists an homomorphism ωn : Ker
(
d̂E•
n

)
= Hn (E•) → Coker

(
d̂C•
n

)
=

Hn−1 (C•) such that the sequence

. . . .→ Hn (C•)
Hn(φ)−→ Hn (D•)

Hn(ψ)−→ Hn (E•)
ωn−→ Hn−1 (C•)

Hn−1(φ)−→ Hn−1 (D•)
Hn−1(ψ)−→ Hn−1 (E•) . . . .

is exact.

Remark 7.33. Note that

ωn (en +Bn (E•))
def
= cn−1 + Im

(
d̂C•
n

)
= cn−1 +Bn−1 (C•) .

where en +Bn (E•) = Γn (ψ) (xn +Bn (D•)) and d̂D•
n (xn +Bn (D•)) = Λn (φ) (cn−1) .

and hence

ωn (en +Bn (E•)) = cn−1 +Bn−1 (C•) .

where en = ψn (xn) and dD•
n (xn) = φn (cn−1) with cn−1 ∈ Zn (C•) .

7.4 Homotopies

Definition 7.34. Let φ•, ψ• :
(
C•, d

C•
•
)
−→

(
D•, d

D•
•
)
be morphisms of complexes.

A homotopy Σ between φ and ψ consists of a family of homomorphisms (Σn : Cn −→ Dn+1)n∈Z
such that

φn − ψn = dD•
n+1 ◦ Σn + Σn−1 ◦ dC•

n .



114 CHAPTER 7. HOMOLOGY

Cn
Σn //

dC•
n

��

φn

##H
HH

HH
HH

HH

ψn ##H
HH

HH
HH

HH
Dn+1

dD•
n+1

��
Cn−1 Σn−1

// Dn

If there is a homotopy between φ• and ψ• we say that φ• is homotopic to ψ• and we
write φ• ≃ ψ•.

Theorem 7.35. If φ•, ψ• : C• −→ D• are homotopic, then Hn (φ•) = Hn (ψ•) .

Proof. Let Σ : φ −→ ψ be the homotopy between φ and ψ. Then, for every n ∈ Z,
we compute:

jHn(D•) ◦Hn (φ) ◦ qBn(C•)
(7.13)
= pBn(D•) ◦ φn ◦ iZn(C•)

= pBn(D•) ◦
(
ψn + dD•

n+1 ◦ Σn + Σn−1 ◦ dC•
n

)
◦ iZn(C•) =

=
(
pBn(D•) ◦ ψn + pBn(D•) ◦ dD•

n+1 ◦ Σn + pBn(D•) ◦ Σn−1 ◦ dC•
n

)
◦ iZn(C•) =

pBn(D•)◦d
D•
n+1=0

= pBn(D•) ◦ ψn ◦ iZn(C•) + pBn(D•) ◦ Σn−1 ◦ dC•
n ◦ iZn(C•)

dC•
n ◦iZn(C•)=0

=

= pBn(D•) ◦ ψn ◦ iZn(C•) =
(7.13)
= jHn(D•) ◦Hn (ψ) ◦ qBn(C•)

Since jHn(D•) is mono and qBn(C•) is epi, we get Hn (φ•) = Hn (ψ•).

Proposition 7.36. The homotopy relation ≃ is an equivalence relation.

Proof. Clearly the relation is reflexive (with Σn = 0) and symmetric (with Σ′n =

−Σn). Now we prove that it is also transitive: let φ
Σ−→ ψ

Θ−→ χ be two homotopies.
Then φn−ψn = dD•

n+1 ◦Σn+Σn−1 ◦ dC•
n and ψn−χn = dD•

n+1 ◦Θn+Θn−1 ◦ dC•
n . Then

we have

φn − χn = (φn − ψn) + (ψn − χn) = dD•
n+1 ◦ (Σn +Θn) + (Σn−1 +Θn−1) ◦ dC•

n .

Thus Σ + Θ is a homotopy between φ and χ where (Σ + Θ)n = Σn +Θn.

Lemma 7.37. Let C•
φ,ψ−→ D•

φ′,ψ′
−→ E• be morphisms of complexes.

1) If φ ≃ ψ then φ′ ◦ φ ≃ φ′ ◦ ψ.

2) If φ′ ≃ ψ′ then φ′ ◦ ψ ≃ ψ′ ◦ ψ.

3) If φ ≃ ψ and φ′ ≃ ψ′ then φ′ ◦ φ ≃ ψ′ ◦ ψ.

Proof. 1) Let us denote by Σ the homotopy between φ and ψ. Then we have

φ′n ◦ φn − φ′n ◦ ψn = φ′n ◦ (φn − ψn)

= φ′n ◦ dD•
n+1 ◦ Σn + φ′n ◦ Σn−1 ◦ dC•

n

= dE•
n+1 ◦ φ′n+1 ◦ Σn + φ′n ◦ Σn−1 ◦ dC•

n
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since φ′• is a morphism of complexes; then φ′• ◦ Σ determines a homotopy between
(φ′ ◦ φ)• and (φ′ ◦ ψ)•, where (φ′ ◦ Σ)n = φ′n+1 ◦ Σn.

2) Let Θ be the homotopy between φ′ and ψ′. Then we have

φ′n ◦ ψn − ψ′n ◦ ψn = (φ′n − ψ′n) ◦ ψn
= dE•

n+1 ◦Θn ◦ ψn +Θn−1 ◦ dD•
n ◦ ψn

= dE•
n+1 ◦Θn ◦ ψn +Θn−1 ◦ ψn−1 ◦ dC•

n

since ψ is a morphism of complexes. Thus Θ ◦ ψ determines a homotopy between
φ′ ◦ ψ and ψ′ ◦ ψ, where (Θ ◦ ψ)n = Θn ◦ ψn.

3) If φ ≃ ψ and φ′ ≃ ψ′, by 1) and 2) we have φ′ ◦ φ ≃ φ′ ◦ ψ and φ′ ◦ ψ ≃
ψ′ ◦ψ. Since the homotopy relation is an equivalence relation, by transitivity we get
φ′ ◦ φ ≃ ψ′ ◦ ψ.

Definition 7.38. Let A and B be rings. Any functor F : Mod-A −→ Mod-B is
called additive if it satisfies

F (f + g) = F (f) + F (g)

for every f, g :M →M ′.

Exercise 7.39. Let F : Mod-A −→ Mod-B be an additive functor and let 0M,M ′ :
M → M ′ the zero homomorphism. Show that F (0M,M ′) = 0F (M),F (M ′) if F is
covariant while F (0M,M ′) = 0F (M ′),F (M) if F is contravariant.

Exercise 7.40. Prove that all examples in 7.15 are additive.

Lemma 7.41. Let F :Mod-A −→Mod-B be an additive covariant functor and let(
C•, d

C•
•
)
be a chain complex in Mod-A. For every n ∈ Z, set

(F (C•))n = F (Cn) and dF (C•)
n = F

(
dC•
n

)
for every n ∈ Z.

Then
(
F (C•) , d

F (C•)
•

)
is a chain complex in Mod-B. Moreover if φ• :

(
C•, d

C•
•
)
→(

D•, d
D•
•
)
is a morphism of chain complexes in Mod-A, for every n ∈ Z, set

F (φ•)n = F (φn) .

Then F (φ•) :
(
F (C•) , d

F (C•)
•

)
→
(
F (D•) , d

F (D•)
•

)
is a morphism of chain com-

plexes.

Proof. For every n ∈ Z, we have

F
(
dC•
n−1
)
◦ F

(
dC•
n

)
= F

(
dC•
n−1 ◦ dC•

n

)
= F (0) = 0

and also

d
F (D•)
n+1 ◦ F (φn+1) = F

(
dD•
n+1

)
◦ F (φn+1) = F

(
dD•
n+1 ◦ φn+1

)
= F

(
φn ◦ dC•

n+1

)
=

= F (φn) ◦ F
(
dC•
n+1

)
= F (φn) ◦ dF (C•)

n+1 .
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Exercise 7.42. In the notations of Lemma 7.41, assume that also ψ• :
(
D•, d

D•
•
)
→(

E•, d
E•
•
)
is a morphism of chain complexes in Mod-A. Show that

(7.19) F (ψ• ◦ φ•) = F (ψ•) ◦ F (φ•) .

Lemma 7.43. Let F : Mod-A −→ Mod-B be an additive covariant functor and
let φ• ≃ ψ• be homotopic chain complex morphisms. Then F (φ•) ≃ F (ψ•). In
particular Hn (F (φ•)) = Hn (F (ψ•)).

Proof. Let φ•, ψ• : C• −→ D• be the morphisms of chain complexes and let Σ :
φ• −→ ψ• be an homotopy between φ• and ψ•. Thus φn−ψn = dD•

n+1◦Σn+Σn−1◦dC•
n .

By applying F to this relation we get

F (φn)− F (ψn) = F
(
dD•
n+1

)
◦ F (Σn) + F (Σn−1) ◦ F

(
dC•
n

)
= d

F (D•)
n+1 ◦ F (Σn) + F (Σn−1) ◦ dF (C•)

n .

Hence F (φ) ≃ F (ψ) via the homotopy F (Σ) : F (φ) −→ F (ψ) where (F (Σ))n =
F (Σn) for every n ∈ Z.

The last assertion follows in view of Theorem 7.35.

Example 7.44. In general Hn (φ•) = Hn (ψ•) does not imply φ• ≃ ψ•. For instance,
consider two complexes C• and D• and the morphism φ• between them:

. . . // 0 //

��

C1 = Z 2• //

φ1=IdZ
��

C0 = Z //

��

0 //

��

. . .

. . . // 0 // D1 = Z // D0 = 0 // 0 // . . . .

Since all the compositions φn−1 ◦ dC•
n and dD•

n ◦ φn are zero, φ• is a morphism of
complexes. We have Hn (D•) = 0 for every n ̸= 1 and H1 (C•) = 0, thus Hn (φ) = 0
for every n, that is Hn (φ•) = Hn (0), but φ• ̸≃ 0. In fact assume φ• ≃ 0. Then, for
any additive functor F , we get F (φ•) ≃ F (0) = 0. Let F be the functor − ⊗Z

Z
2Z .

By applying F and considering that Z⊗ Z
2Z

∼= Z
2Z , the diagram becomes

. . . // 0 //

��

F (C1) =
Z
2Z

0 //

F (φ1)=Id Z
2Z

��

F (C0) =
Z
2Z

//

��

0 //

��

. . .

. . . // 0 // F (D1) =
Z
2Z

// F (D0) = 0 // 0 // . . .

.

In particular H1 (F (C•)) = Z
2Z = H1 (F (D•)) and H1 (F (φ)) = Id Z

2Z
, from which

we deduce F (φ•) ̸≃ 0 and thus φ• ̸≃ 0.

7.5 Projective resolutions

Definitions 7.45. A chain complex
(
C•, d

C•
•
)
is called
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• positive if Cn = 0 for every n ≤ −1,

• acyclic positive if if Cn = 0 for every n ≤ −1 and Hn (C•) = 0 i.e. Im
(
dC•
n+1

)
=

Ker
(
dC•
n

)
for every n ≥ 1,

• projective if Cn is projective for every n ∈ Z.

Remark 7.46. An acyclic positive chain complex is a chain complex of the form

. . . −→ C2

dC•
2−→ C1

dC•
1−→ C0 −→ 0,

with Zn (C•) = Bn (C•) for every n ≥ 1. The sequence is not exact since dC•
1 is not

epi, but we can consider the following exact sequence

. . . −→ C2

dC•
2−→ C1

dC•
1−→ C0

π−→ C0

B0 (C•)
= H0 (C•) −→ 0.

Definition 7.47. Let M be a right A-module and let
(
C•, d

C•
•
)
be an acyclic positive

projective chain complex with Co

B0(C•)
∼= M . Then

(
C•, d

C•
•
)
is called a projective

resolution of M and we have

. . . −→ C2

dC•
2−→ C1

dC•
1−→ C0

π−→M −→ 0.

Lemma 7.48. Every module is epimorphic image of a projective module.

Proof. It follow by Proposition 2.2 and Proposition 2.16.

Proposition 7.49. Every right A-module admits a projective resolution.

Proof. LetM be a right A-module. By Lemma 7.48, every module is an epimorphic
image of a projective module, i.e. there exists an epimorphism φ0 : P0 −→ M
with P0 projective. We construct the complex recursively. Let us consider Ker (φ0)
and let i0 : Ker (φ0) → P0 be the canonical inclusion. By Lemma 7.48 there is a
projective module P1 and an epimorphism φ1 : P1 → Ker (φ0). Let us set

dP•
1 = i0 ◦ φ1.

Then
Im
(
dP•
1

)
= Ker (φ0) .

Let us consider Ker
(
dP•
1

)
and let i1 : Ker

(
dP•
1

)
→ P1 be the canonical inclusion.

By Lemma 7.48 there is a projective module P2 and an epimorphism φ2 : P2 →
Ker

(
dP•
1

)
. Let us set

dP•
2 = i1 ◦ φ2.

Then
Im
(
dP•
2

)
= Ker

(
dP•
1

)
.
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Assume that, for some n ∈ N, n ≥ 2 we have P0, . . . , Pn projective modules and
dP•
1 , . . . , d

P•
n such that

Im
(
dP•
i

)
= Ker

(
dP•
i−1
)
for every i = 2, . . . , n

By Lemma 7.48, there exists a projective module Pn+1 and an epimorphism φn+1 :
Pn+1 −→ Ker

(
dP•
n

)
. Set

dP•
n+1 = φn+1 ◦ in

where in is the canonical inclusion of Ker
(
dP•
n

)
in Pn. Then

Im
(
dP•
n+1

)
= Ker

(
dP•
n

)
.

Pn+1

dP•
n+1 //

φn+1 %%JJ
JJ

JJ
JJ

J
Pn

dP•
n // Pn−1

Ker
(
dP•
n

) in

::uuuuuuuuu

Thus, in this way we construct an acyclic, positive and projective complex. Moreover
P0

B0(P•)
= P0

Im(φ1)
= P0

Ker(φ0)
=M .

Theorem 7.50 (Lifting Theorem for Chain Complexes). Let
(
P•, d

P•
•
)
be a positive

projective chain complex, let
(
D•, d

D•
•
)
be an acyclic positive complex and let φ :

H0 (P•) −→ H0 (D•) be a morphism in Mod-A. Then there exists a morphism of
chain complexes φ• :

(
P•, d

P•
•
)
−→

(
D•, d

D•
•
)
such that H0 (φ•) = φ. Moreover,

if ψ• :
(
P•, d

P•
•
)
−→

(
D•, d

D•
•
)
also satisfies H0 (ψ•) = φ, we have φ• ≃ ψ•. In

particular Hn (φ•) only depends on φ.

Proof. We have the following situation where πP = pB0(P•) and πD = pB0(D•)

. . . // P2

dP•
2 // P1

dP•
1 // P0

πP // H0 (P•)

φ

��

// 0

. . . // D2

dD•
2 // D1

dD•
1 // D0

πD // H0 (D•) // 0.

Existence of φ•. Since P0 is projective, there exists φ0 : P0 −→ D0 such that

(7.20) πD ◦ φ0 = φ ◦ πP .

Since Im
(
dP•
1

)
= Ker (πP ), by composing to the right with dP•

1 , we get

πD ◦ φ0 ◦ dP•
1 = φ ◦ πP ◦ dP•

1 = 0
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hence we have that Im
(
φ0 ◦ dP•

1

)
⊆ Ker (πD) = Im

(
dD•
1

)
= B0 (D•). Since P1 is

projective there is a morphism φ1 : P1 → D1

P1

(φ0◦dP•
1 )

|B0(D•)

��

φ1

||y
y
y
y
y
y
y
y
y

D1
(dD•

1 )
|B0(D•)

// B0 (D•) // 0,

such that (
dD•
1

)|B0(D•) ◦ φ1 =
(
φ0 ◦ dP•

1

)|B0(D•)

so that

dD•
1 ◦ φ1 = iB0(D•) ◦

(
dD•
1

)|B0(D•) ◦ φ1 = iB0(D•) ◦
(
φ0 ◦ dP•

1

)|B0(D•)
= φ0 ◦ dP•

1 .

Proceeding recursively we construct φ• using the acyclicity of D• which allows
us to reiterate the process. Namely assume that for some n ∈ N, n ≥ 1

φn : Pn → Dn

is constructed so that
dD•
n ◦ φn = φn−1 ◦ dP•

n .

Then we have
dD•
n ◦ φn ◦ dP•

n+1 = φn−1 ◦ dP•
n ◦ dP•

n+1 = 0

so that Im
(
φn ◦ dP•

n+1

)
⊆ Ker

(
dD•
n

)
= Im

(
dD•
n+1

)
= Bn (D•). Since Pn+1 is projec-

tive, there exists a morphism φn+1 : Pn+1 → Dn+1 such that(
dD•
n+1

)|Bn(D•) ◦ φn+1 =
(
φn ◦ dP•

n+1

)|Bn(D•)

so that

dD•
n+1 ◦ φn+1 = iBn(D•) ◦

(
dD•
n+1

)|Bn(D•) ◦ φn+1 = iBn(D•) ◦
(
φn ◦ dP•

n+1

)|Bn(D•)
=

= φn ◦ dP•
n+1.

Pn+1

(φn◦dP•
n+1)

|Bn(D•)

��

φn+1

{{x
x
x
x
x
x
x
x
x
x

Dn+1
(dD•

n+1)
|Bn(D•)

// Bn (D•) // 0,

Now we prove that H0 (φ•) = φ. Note that, since dD•
0 = 0 and dP•

0 = 0 we have
that Z0 (D•) = Ker

(
dD•
0

)
= D0 and Z0 (P•) = Ker

(
dP•
0

)
= P0. Thus iZ0(P•) = IdP0
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, qB0(P•) = πP : P0 = Z0 (P•) → Z0 (P•) /B0 (P•) = H0 (P•) and jH0(D•) = IdH0(D•) :
H0 (D•) → D0/B0 (D•). Therefore we have

H0 (φ•) ◦ πP = jH0(D•) ◦H0 (φ•) ◦ qB0(P•)
(7.13)
= pB0(D•) ◦ φ0 ◦ iZ0(P•) =

= πD ◦ φ0 ◦ iZ0(P•)
(7.20)
= φ ◦ πP ◦ iZ0(P•) = φ ◦ πP

so that
H0 (φ•) ◦ πP = φ ◦ πP

and since πP is epi we get
H0 (φ•) = φ.

Uniqueness up to homotopies. Let ψ• be another lifting of φ i.e. ψ• :(
P•, d

P•
•
)
−→

(
D•, d

D•
•
)
is a chain complex morphism such that H0 (ψ•) = ψ. We

look for a homotopy Σ : ψ −→ φ. Now for every n ≤ −1 we have Pn = 0 and hence
φn = 0, ψn = 0 and Σn = 0 for every n ≤ −1. Thus Σ0 : P0 −→ D1 must satisfy

ψ0 − φ0 = dD•
1 ◦ Σ0 + Σ−1 ◦ dP•

0 = dD•
1 ◦ Σ0.

On the other hand we have

φ ◦πP = H0 (ψ•) ◦πP = jH0(D•) ◦H0 (ψ•) ◦ qB0(P•)
(7.13)
= pB0(D•) ◦ψ0 ◦ iZ0(P•) = πD ◦ψ0

so that we get

(7.21) φ ◦ πP = πD ◦ ψ0.

We compute

πD ◦ (ψ0 − φ0) = πD ◦ ψ0 − πD ◦ φ0
(7.21)(7.20)

= φ ◦ πP − φ ◦ πP = 0.

Thus we deduce that Im (ψ0 − φ0) ⊆ Ker (πD) = Im
(
dD•
1

)
= B0 (D•) and since P0

is projective there exists
Σ0 : P0 → D1

such that (
dD•
1

)|B0(D•) ◦ Σ0 = (ψ0 − φ0)
|B0(D•)

so that

dD•
1 ◦ Σ0 = iB0(D•) ◦

(
dD•
1

)|B0(D•) ◦ Σ0 = iB0(D•) ◦ (ψ0 − φ0)
|B0(D•) = ψ0 − φ0,

P0

(ψ0−φ0)
|B0(D•)

��

Σ0

||y
y
y
y
y
y
y
y
y

D1
(dD•

1 )
|B0(D•)

// B0 (D•) // 0,
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Recursively assume that, for some n ∈ N, there exists Σn−1 : Pn−1 → Dn and
Σn : Pn → Dn+1such that

ψn − φn = dD•
n+1 ◦ Σn + Σn−1 ◦ dP•

n .

We look for a Σn+1 : Pn+1 → Dn+2 such that

ψn+1 − φn+1 = dD•
n+2 ◦ Σn+1 + Σn ◦ dP•

n+1.

We have

dD•
n+1 ◦

(
ψn+1 − φn+1 − Σn ◦ dP•

n+1

)
= dD•

n+1 ◦ ψn+1 − dD•
n+1 ◦ φn+1 − dD•

n+1 ◦ Σn ◦ dP•
n+1 =

= ψn ◦ dP•
n+1 − φn ◦ dP•

n+1 −
[
ψn − φn − Σn−1 ◦ dP•

n

]
◦ dP•

n+1 =

= 0

Then we get

Im
(
ψn+1 − φn+1 − Σn ◦ dP•

n+1

)
⊆ Ker

(
dD•
n+1

)
= Im

(
dD•
n+2

)
= Bn+1 (D•)

Thus, since Pn+1 is projective, there exists Σn+1 : Pn+1 → Dn+2 such that(
dD•
n+2

)|Bn+2(D•) ◦ Σn+1 =
(
ψn+1 − φn+1 − Σn ◦ dP•

n+1

)|Bn+1(D•)

so that(
dD•
n+2

)
◦ Σn+1 = iBn+2(D•) ◦

(
dD•
n+2

)|Bn+2(D•) ◦ Σn+1 =

= iBn+2(D•) ◦
(
ψn+1 − φn+1 − Σn ◦ dP•

n+1

)|Bn+1(D•)
= ψn+1 − φn+1 − Σn ◦ dP•

n+1

i.e.

ψn+1 − φn+1 =
(
dD•
n+2

)
◦ Σn+1 + Σn ◦ dP•

n+1.

Pn+1

(ψn+1−φn+1−Σn◦dP•
n+1)

|Bn+1(D•)

��

Σn+1

{{v
v
v
v
v
v
v
v
v
v

Dn+2
(dD•

n+2)
|Bn+2(D•)

// Bn+1 (D•) // 0,

Definition 7.51. In the notations and assumptions of Theorem 7.50, any morphism
of chain complexes φ• :

(
P•, d

P•
•
)
−→

(
D•, d

D•
•
)
such that H0 (φ•) = φ will be called

a lifting of φ.



122 CHAPTER 7. HOMOLOGY

Lemma 7.52. Let M
φ−→M ′ φ′

−→M ′′ be morphisms in Mod-A and let
(
P•, d

P•
•
)
be

a projective resolution of M ,
(
P ′•, d

P ′
•
•

)
a projective resolution of M ′ and

(
P ′′• , d

P ′′
•
•

)
a projective resolution of M ′′. If φ• :

(
P•, d

P•
•
)
−→

(
P ′•, d

P ′
•
•

)
is a lifting of φ and

φ′• :
(
P ′•, d

P ′
•
•

)
−→

(
P ′′• , d

P ′′
•
•

)
is a lifting of φ′, then

φ′• ◦ φ• :
(
P•, d

P•
•
)
−→

(
P ′′• , d

P ′′
•
•

)
is a lifting of φ′ ◦ φ.

Proof. By Lemma 7.30 we know that φ′•◦φ• :
(
P•, d

P•
•
)
−→

(
P ′′• , d

P ′′
•
•

)
is a morphism

of chain complexes. Moreover, for every n ∈ Z, we have

Hn (φ
′
• ◦ φ•)

(7.18)
= Hn (φ

′
•) ◦Hn (φ•) .

In particular, for n = 0, we get

H0 (φ
′
• ◦ φ•) = H0 (φ

′
•) ◦H0 (φ•) = φ′ ◦ φ.

Theorem 7.53. Let P• and Q• be projective resolution of a right A-module M . In
view of Theorem 7.50, we can consider the liftings φ• : P• −→ Q• and ψ• : Q• −→ P•
of IdM . Then

1) φ• ◦ ψ• ≃ IdQ• and ψ• ◦ φ• ≃ IdP•.

2) Hn (φ•) : Hn (P•) → Hn (Q•) is an isomorphism with inverse Hn (ψ•), for every
n ∈ N.

Proof. 1) In view of Lemma 7.52, φ•◦ψ• : Q• −→ Q• is a lifting of IdM ◦IdM = IdM .
Since also IdQ• is a lifting of IdM , we deduce, in view of Theorem 7.50, that

(7.22) φ• ◦ ψ• ≃ IdQ• .

In a similar way we get also that

(7.23) ψ• ◦ φ• ≃ IdP• .

2) For every n ∈ N, we have

Hn (φ•) ◦Hn (ψ•)
(7.18)
= Hn (φ• ◦ ψ•)

(7.22)
= Hn (IdQ•) = IdHn(Q•)

and

Hn (ψ•) ◦Hn (φ•)
(7.18)
= Hn (ψ• ◦ φ•)

(7.23)
= Hn (IdP•) = IdHn(P•).
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7.6 Left Derived functors

Remark 7.54. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
covariant functor, e.g. T = − ⊗ ALR where ALR is an A-R-bimodule. Let M
be a right A-module and let P• −→ M −→ 0 be a projective resolution of M in
Mod-A. By applying T we get, in view of By Lemma 7.41, a chain complex with(
T (P•) , d

T (P•)
•

)
, which, in general, is no longer acyclic i.e. Hn (T (P•)) is not

necessarily zero for every n ≥ 1.

Notations 7.55. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
covariant functor. Let n ∈ N. Let M ∈ Mod-A and let

(
P•, d

P•
•
)
be a projective

resolution of M in Mod-A. We set(
LP•T

)
n
(M) = Hn (T (P•)) .

Let φ :M →M ′ be a morphism in Mod-A and let
(
P ′•, d

P ′
•
•

)
be a projective resolu-

tion of M ′. Let φ• :
(
P•, d

P•
•
)
→
(
P ′•, d

P ′
•
•

)
be a lifting of φ (see Theorem 7.50). We

set (
LP•P ′

•T
)
n
(φ) = Hn (T (φ•))

Proposition 7.56. In the assumptions and notations of 7.55, for every n ∈ N, we
have that

1)
(
LP•P ′

•T
)
n
(φ) is well-defined i.e. does not depend on the lifting φ• of φ,

2) If M
φ−→ M ′ φ′

−→ M ′′ are morphisms in Mod-A and
(
P ′′• , d

P ′′
•
•

)
is a projective

resolution of M ′′, then(
LP•P ′′

• T
)
n
(φ′ ◦ φ) =

[(
LP

′
•P

′′
• T
)
n
(φ′)

]
◦
[(
LP•P ′

•T
)
n
(φ)
]
,

3)
(
LP•P•T

)
n
(IdM) = IdLP•

n T (M)

Proof. 1) Let ψ• be another lifting of φ. Then, by Theorem 7.50 φ• ≃ ψ•. Then, by
Lemma 7.43, T (φ•) ≃ T (ψ•) and hence Hn (T (φ•)) = Hn (T (ψ•)) .

2) Let φ• :
(
P•, d

P•
•
)
→
(
P ′•, d

P ′
•
•

)
be a lifting of φ and let φ′• :

(
P ′•, d

P ′
•
•

)
→(

P ′′• , d
P ′′
•
•

)
be a lifting of φ′. Thus we get[(
LP

′
•P

′′
• T
)
n
(φ′)

]
◦
[(
LP•P ′

•T
)
n
(φ)
]
= Hn (T (φ′•)) ◦Hn (T (ψ′•)) =

(7.18)
= Hn (T (φ′•) ◦ T (φ′•))

(7.19)
= Hn (T (φ′• ◦ φ•)) =

Lemma7.52
= Hn (T ((φ′ ◦ φ)•)) =

(
LP•P ′′

• T
)
n
(φ′ ◦ φ)
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3) Since IdP• is a lifting of IdM , we have(
LP•P•T

)
n
(IdM) = Hn (T (IdP•)) = Hn

(
IdT (P•)

)
.

SinceHn

(
IdT (P•)

)
= IdHn(T (P•)) (exercise) we obtain that

(
LP•P•T

)
n
(IdM) = IdHn(T (P•)) =

Id(LP•T )n(M).

Lemma 7.57. Let A and R be rings, and let T : Mod-A → Mod-R be an additive
covariant functor. Let

(
P•, d

P•
•
)
and

(
Q•, d

Q•
•
)
be projective resolutions of M in

Mod-A. Let αP•Q• :
(
P•, d

P•
•
)
→
(
Q•, d

Q•
•
)
be a lifting of IdM and let αQ•P• :(

Q•, d
Q•
•
)
→
(
P•, d

P•
•
)
be a lifting of IdM (see Theorem 7.50). Then

Hn (T (αP•Q•)) =
(
LP•Q•T

)
n
(IdM) and Hn (T (αQ•P•)) =

(
LQ•P•T

)
n
(IdM)

are mutual inverse and hence they determine an isomorphism between Hn (T (P•)) =(
LP•T

)
n
(M) and Hn (T (Q•)) =

(
LQ•T

)
n
(M) .

Proof. By Theorem 7.53, we have that αQ•P• ◦ αP•Q• ≃ IdP• and thus

T (αQ•P•) ◦ T (αP•Q•)
Exercise7.42

= T (αQ•P• ◦ αP•Q•)
Lemma7.43≃ T (IdP•) = IdT (P•)

Then we get

IdHn(T (P•)) = Hn

(
IdT (P•)

)
= Hn (T (αQ•P•) ◦ T (αP•Q•))

(7.18)
= Hn (T (αQ•P•)) ◦Hn (T (αP•Q•))

=
(
LQ•P•T

)
n
(IdM) ◦

(
LP•Q•T

)
n
(IdM) .

Similarly we also have

T (αP•Q•) ◦ T (αQ•P•) = IdT (Q•)

and

IdHn(T (Q•)) =
(
LP•Q•T

)
n
(IdM) ◦

(
LQ•P•T

)
n
(IdM)

so thatHn (T (αQ•P•)) andHn (T (αP•Q•)) determine an isomorphism betweenHn (T (P•)) =(
LP•
n T
)
(M) and Hn (T (Q•)) =

(
LQ•
n T

)
(M).

Lemma 7.58. Let A and R be rings, and let T : Mod-A → Mod-R be an additive
covariant functor. Let φ : M −→ M ′ be a morphism in Mod-A, let

(
P•, d

P•
•
)

and
(
Q•, d

Q•
•
)
be projective resolutions of M and let

(
P ′•, d

P ′
•
•

)
and

(
Q′•, d

Q′
•
•

)
be

projective resolutions of M ′. Then we have[(
LQ•Q′

•T
)
n
(φ)
]
◦
[(
LP•Q•T

)
n
(IdM)

]
=
[(
LP

′
•Q

′
•T
)
n
(IdM ′)

]
◦
[(
LP•P ′

•T
)
n
(φ)
]
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Proof. Let φ• : P• → P ′• be a lifting of φ. Then, in the notation of Lemma 7.57 and
in view of Lemma 7.52, we have that

αP ′
•Q

′
• ◦ φ• ◦ αQ•P• :

(
Q•, d

Q•
•
)
→
(
Q′•, d

Q′
•
•

)
is also a lifting of φ. Therefore, for every n ∈ N, we have(

LQ•Q′
•T
)
n
(φ) = Hn (T (αP ′

•Q
′
• ◦ φ• ◦ αQ•P•))

Now, by Exercise7.42, we have

T (αP ′
•Q

′
• ◦ φ• ◦ αQ•P•) = T (αP ′

•Q
′
•) ◦ T (φ•) ◦ T (αQ•P•)

and, by Lemma 7.30, we know that

Hn (T (αP ′
•Q

′
•) ◦ T (φ•) ◦ T (αQ•P•)) = Hn (T (αP ′

•Q
′
•)) ◦Hn (T (φ•)) ◦Hn (T (αQ•P•)) .

Thus we deduce that(
LQ•Q′

•T
)
n
(φ) = Hn (T (αP ′

•Q
′
• ◦ φ• ◦ αQ•P•)) = Hn (T (αP ′

•Q
′
•))◦Hn (T (φ•))◦Hn (T (αQ•P•)) .

Thus we obtain(
LQ•Q′

•T
)
n
(φ) =

[(
LP

′
•Q

′
•T
)
n
(IdM ′)

]
◦
[(
LP•P ′

•T
)
n
(φ)
]
◦
[(
LQ•P•T

)
n
(IdM)

]
By Lemma 7.57 we know that

(
LP•Q•T

)
n
(IdM) is the two-sided inverse of

(
LQ•P•T

)
n
(IdM) ,

so that we get

[(
LQ•Q′

•T
)
n
(φ)
]
◦
[(
LP•Q•T

)
n
(IdM)

]
=
[(
LP

′
•Q

′
•T
)
n
(IdM)

]
◦
[(
LP•P ′

•T
)
n
(φ)
]

Notations 7.59. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
covariant functor. By Lemma 7.57 and Lemma 7.58 we can omit the projective
resolutions and set

LnT (M) =
(
LP•T

)
n
(M) = Hn (T (P•)) .

for every M ∈Mod-A and

LnT (φ) =
(
LP•P ′

•T
)
n
(φ) = Hn (T (φ•))

for every left R-module homomorphism φ :M →M ′.

Remark 7.60. Clearly LnT (M) and LnT (φ) are defined only up to ”well-behaved”
isomorphisms.
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Proposition 7.61. In the notations of 7.59, the assignment M 7→ LnT (M) and
φ 7→ LnT (φ) gives rise to a covariant functor LnT :Mod-A→Mod-R.

Proof. By Proposition 7.56, we have(
LP•P”•T

)
n
(φ′ ◦ φ) =

[(
LP

′
•P

′′
• T
)
n
(φ′)

]
◦
[(
LP•P ′

•T
)
n
(φ)
]
,

and (
LP•P•
n T

)
(IdM) = IdLP•

n T (M).

Definition 7.62. The functor LnT in Proposition 7.61 is called n-th left derived
functor of T.

Lemma 7.63. Let us consider the following diagram with exact rows, where P ′and
P ′′ are projective modules, i : P ′ → P ′⊕P” is the canonical injection and p : P ′⊕P”
→ P” is the canonical projection,

0 // P ′

π′

��

i // P ′ ⊕ P ′′
p // P ′′

π′′

��

// 0

0 //M ′

��

α′
//M

α′′
//M ′′

��

// 0

0 0

.

Then there is an epimorphism P ′ ⊕ P ′′
π−→M such that the diagram

0 // P ′0

π′

��

i // P ′0 ⊕ P ′′0

π

���
�
�

p // P ′′0

π′′

��

// 0

0 //M ′

��

α′
//M

��

α′′
//M ′′

��

// 0

0 0 0 ,

is commutative.

Proof. Since P ′′ is projective and α′′ is epi, there exists β : P ′′ →M such that

α ◦ β = π′′

P ′′

β

}}zz
zz
zz
zz

π′′

��
M

α′′
//M ′′;



7.6. LEFT DERIVED FUNCTORS 127

Let us set
π = ∇ (α′ ◦ π′, β)

i.e.
π ((y′, y′′)) := α′ (π′ (y′)) + β (y′′) for all y′ ∈ P ′ and y′′ ∈ P ′′.

Then we have
π ◦ i = α′ ◦ π′

so that the right-hand square is commutative. In the left-hand one we have

α′′ (π ((y′, y′′))) = α′′ (α′ (π′ (y′)) + β (y′′)) = α′′ (α′ (π′ (y′))) + α′′ (β (y′′))

= α′′ (β (y′′)) = π′′ (y′′) = π′′ (π ((y′, y′′))) for all y′ ∈ P ′ and y′′ ∈ P ′′.

Let us prove that π is surjective. Let x ∈ M , then α′′ (x) ∈ M ′′ and since π′′

is surjective there exists y′′ ∈ P ′′ such that α′′ (x) = π′′ (y′′) = α′′ (β (y′′)). Then
x−β (y′′) ∈ Ker (α′′) = Im (α′) so that there exists x′ ∈M ′ with α′ (x′) = x−β (y′′).
Since π′ is surjective there exists y′ ∈ P ′ such that π′ (y′) = x′. We get π ((y′, y′′)) =
α′ (π′ (y′)) + β (y′′) = α′ (x′) + β (y′′) = x.

Theorem 7.64 (Horseshoe Lemma). Let A be a ring, let

0 −→M ′ α′
−→M

α′′
−→M ′′ −→ 0

be an exact sequence in Mod-A. Let
(
P ′•, d

P ′
•
•

)
be a projective resolution of M ′

0 and

let
(
P ′′• , d

P ′′
•
•

)
be a proiective resolution of M ′′

. For every n ∈ Z set

Pn = P ′n ⊕ P ′′n .

Then

1) the modules Pn give rise to a projective resolution
(
P•, d

P•
•
)
of M ;

2) for every n ∈ Z, let in: : P ′n → P ′n ⊕ P ′′n be the canonical inclusion and let
pn : P ′n ⊕ P ′′n → P ′′n be the canonical projection. Then

i• = (in)n∈N :
(
P ′•, d

P ′
•
•

)
→
(
P•, d

P•
•
)

and
p• = (pn)n∈N :

(
P•, d

P•
•
)
→
(
P ′′• , d

P ′′
•
•

)
are morphism of chain complexes;

3) i• is a lifting of α′ and p• is a lifting of α′′;

4) the sequence

0 −→
(
P ′•, d

P ′
•
•

)
i•−→
(
P•, d

P•
•
) p•−→

(
P ′′• , d

P ′′
•
•

)
−→ 0

is exact.
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Proof. Since
(
P ′•, d

P ′
•
•

)
is a projective resolution ofM ′

0 and
(
P ′′• , d

P ′′
•
•

)
is a proiective

resolution of M ′′
. we have epimorhisms

π′0 : P
′
0 →M ′

0, π
′′
0 : P ′′0 →M ′′.

such that the sequences

P ′1
d
P ′
•

1−→ P ′0
π′
0−→M ′

0 → 0

P ′′1
d
P ′′
•

1−→ P ′′0
π′′
0−→M ′′ → 0

are exact. Then, by Lemma 7.63, there exists an epimorphism P ′ ⊕ P ′′
π0−→ M

such that the diagram

0 → P ′0
i0−→ P ′0 ⊕ P ′′0

p0−→ P ′′0 → 0
π′0 ↓ π0 ↓ π′′0 ↓

0 → M ′ α′
−→ M

α′′
−→ M ′′ → 0

↓ ↓ ↓
0 0 0

is commutative and exact. Then assumptions of Snake Lemma 7.23 are fulfilled so
that the sequence

0 −→ Ker (π′0)
α′
0−→ Ker (π0)

α′′
0−→ Ker (π′′0) −→ Coker (π′0) = {0}

is exact. Let

j′0 : Ker (π′0) → P ′0
j0 : Ker (π0) → P0

j′′0 : Ker (π′′0) → P ′′0

be the canonical inclusions. Recall that α′0 and α′′0 are uniquely defined by

j0 ◦ α′0 = i0 ◦ j′0(7.24)

j′′0 ◦ α′′0 = p0 ◦ j0.(7.25)

Therefore we get the commutative and exact diagram:

0 → Ker (π′0)
α′
0−→ Ker (π0)

α′′
0−→ Ker (π′′0) → 0

j′0 ↓ j0 ↓ j′′0 ↓
0 → P ′0

i0−→ P ′0 ⊕ P ′′0
p0−→ P ′′0 → 0

π′0 ↓ π0 ↓ π′′0 ↓
0 → M ′ α′

−→ M
α′′
−→ M ′′ → 0

↓ ↓ ↓
0 0 0

.
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Since
(
P ′•, d

P ′
•
•

)
is a projective resolution of M ′

0 and
(
P ′′• , d

P ′′
•
•

)
is a proiective

resolution of M ′′
. we have that Ker (π′0) = Im

(
d
P ′
•

1

)
and Ker (π′′0) = Im

(
d
P ′′
•

1

)
. Let

π′1 =
(
d
P ′
•

1

)|Im(dP ′
•

1

)
and π′′1 =

(
d
P ′′
•

1

)Im(dP ′′
•

1

)

Then, by Lemma 7.63, there exists an epimorphism P ′1⊕ P ′′1
π1−→ Ker (π0) such

that the diagram

0 → P ′1
i1−→ P ′1 ⊕ P ′′1

p1−→ P ′′1 → 0
π′1 ↓ π1 ↓ π′′1 ↓

0 → Ker (π′0)
α′
0−→ Ker (π0)

α′′
0−→ Ker (π′′0) → 0

↓ ↓ ↓
0 0 0

is commutative and exact. By Snake Lemma 7.23, we get the exact sequence

0 −→ Ker (π′1) = Ker
(
d
P ′
•

1

)
α′
1−→ Ker (π1)

α′′
1−→ Ker (π′′1) = Ker

(
d
P ′′
•

1

)
−→ Coker (π′1) = 0.

Let

j′1 : Ker (π′1) → P ′1
j1 : Ker (π1) → P1

j′′1 : Ker (π′′1) → P ′′1

be the canonical inclusions. Recall that α′1 and α′′1 are uniquely defined by

j1 ◦ α′1 = i1 ◦ j′1(7.26)

j′′1 ◦ α′′1 = p1 ◦ j1.(7.27)

Now we get

i0 ◦ dP
′
•

1 = i0 ◦ j′0 ◦ π′1
(7.24)
= j0 ◦ α′0 ◦ π′1 = j0 ◦ π1 ◦ i1

p0 ◦ j0 ◦ π1
(7.25)
= j′′0 ◦ α′′0 ◦ π1 = j′′0 ◦ π′′1 ◦ p1

and hence the exact commutative diagram

0 → P ′1
i1−→ P ′1 ⊕ P ′′1

p1−→ P ′′1 → 0

d
P ′
•

1 = j′0 ◦ π′1 ↓ j0 ◦ π1 ↓ j′′0 ◦ π′′1 = d
P ′′
•

1 ↓
0 → P ′0

i0−→ P ′0 ⊕ P ′′0
p0−→ P ′′0 → 0

π′0 ↓ π0 ↓ π′′0 ↓
0 → M ′ α′

−→ M
α′′
−→ M ′′ → 0

↓ ↓ ↓
0 0 0

.
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We set

dP•
1 = j0 ◦ π1.

Since j0 is mono, note that,

Ker
(
dP•
1

)
= Ker (π1)

so that we have the exact sequence

0 −→ Ker (π′1) = Ker
(
d
P ′
•

1

)
α′
1−→ Ker (π1) = Ker

(
dP•
1

) α′′
1−→ Ker (π′′1) = Ker

(
d
P ′′
•

1

)
−→ 0.

and we can consider the diagram

0 → P ′2
i2−→ P ′2 ⊕ P ′′2

p2−→ P ′′2 → 0
π′2 ↓ π′′2 ↓

0 → Im
(
d
P ′
•

2

)
= Ker

(
d
P ′
•

1

)
α′
1−→ Ker

(
dP•
1

) α′′
1−→ Im

(
d
P ′′
•

2

)
= Ker

(
d
P ′′
•

1

)
−→ 0

↓ ↓
0 0

.

Then, by Lemma 7.63, there exists an epimorphism π2 : P2 = P ′2 ⊕ P ′′2 →
Ker

(
dP•
1

)
such that the diagram

0 → P ′2
i2−→ P ′2 ⊕ P ′′2

p2−→ P ′′2 → 0
π′2 ↓ π2 ↓ π′′2 ↓

0 → Im
(
d
P ′
•

2

)
= Ker

(
d
P ′
•

1

)
α′
1−→ Ker

(
dP•
1

) α′′
1−→ Im

(
d
P ′′
•

2

)
= Ker

(
d
P ′′
•

1

)
−→ 0

↓ ↓ ↓
0 0 0

.

is commutative and exact. Then by Snake Lemma 7.23, we get the exact sequence

0 −→ Ker (π′2) = Ker
(
d
P ′
•

2

)
α′
2−→ Ker (π2)

α′′
2−→ Ker (π′′2) = Ker

(
d
P ′′
•

2

)
−→ Coker (π′2) = 0.

Let

j′2 : Ker (π′2) → P ′2
j2 : Ker (π2) → P2

j′′2 : Ker (π′′2) → P ′′2

be the canonical inclusions. Recall that α′2 and α′′2 are uniquely defined by

j2 ◦ α′2 = i2 ◦ j′2(7.28)

j′′2 ◦ α′′2 = p2 ◦ j2.(7.29)
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Now we get

i1 ◦ dP
′
•

2 = i1 ◦ j′1 ◦ π′2
(7.26)
= j1 ◦ α′1 ◦ π′2 = j1 ◦ π2 ◦ i2

p1 ◦ j1 ◦ π2
(7.27)
= j′′1 ◦ α′′1 ◦ π2 = j′′1 ◦ π′′2 ◦ p2

and hence the exact commutative diagram

0 → P ′2
i2−→ P ′2 ⊕ P ′′2

p2−→ P ′′2 → 0

d
P ′
•

2 = j′1 ◦ π′2 ↓ j1 ◦ π2 ↓ j′′1 ◦ π′′2 = d
P ′′
•

2 ↓
0 → P ′1

i1−→ P ′1 ⊕ P ′′1
p1−→ P ′′1 → 0

π′1 ↓ π1 ↓ π′′1 ↓
0 → Im

(
d
P ′
•

2

)
= Ker

(
d
P ′
•

1

)
α′
1−→ Ker

(
dP•
1

) α′′
1−→ Im

(
d
P ′′
•

2

)
= Ker

(
d
P ′′
•

1

)
−→ 0

↓ ↓ ↓
0 0 0

.

We set

dP•
2 = j1 ◦ π2.

By induction assume that, for some n ≥ 2 we have for all t = 1, . . . , n

dP•
t : Pt = P ′t ⊕ P ′′t → Pt−1 = P ′t−1 ⊕ P ′′t−1

such that the diagrams

0 → P ′t
it−→ P ′t ⊕ P ′′t

pt−→ P ′′t → 0

d
P ′
•
t ↓ dP•

t ↓ d
P ′′
•
t ↓

0 → P ′t−1
it−1−→ P ′t−1 ⊕ P ′′t−1

pt−1−→ P ′′t−1 → 0

d
P ′
•
t−1 ↓ dP•

t−1 ↓ d
P ′′
•
t−2 ↓

0 → P ′t−2
it−2−→ P ′t−2 ⊕ P ′′t−2

pt−1−→ P ′′t−2 → 0
↓ ↓ ↓

are commutative and exact. For every t, let

j′t−1 : Ker
(
d
P ′
•
t−1

)
→ P ′t−1

jt−1 : Ker
(
dP•
t−1
)
→ Pt−1

j′′t−1 : Ker
(
d
P ′′
•
t−1

)
→ P ′′t−1

denote the canonical inclusions. Let

π′t =
(
d
P ′
•
t

)|Im(dP ′
•

t

)
, πt =

(
dP•
t

)|Im(dP•
t )

and π′′t =
(
d
P ′′
•
t

)|Im(dP ′′
•

t

)
.
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For every t ≥ 2, we have that

Im
(
d
P ′
•
t

)
= Ker

(
d
P ′
•
t−1

)
, Im

(
dP•
t

)
= Ker

(
dP•
t−1
)
, Im

(
d
P ′′
•
t

)
= Ker

(
d
P ′′
•
t−1

)
and hence

(7.30) j′t−1 ◦ π′t = d
P ′
•
t , jt−1 ◦ πt = dP•

t and j′′t−1 ◦ π′′t = d
P ′′
•
t

Now, by applying Snake Lemma 7.23 to the commutative and exact diagram

0 → P ′n−1
in−1−→ P ′n−1 ⊕ P ′′n−1

pn−1−→ P ′′n−1 → 0

d
P ′
•
n−1 ↓ dP•

n−1 ↓ d
P ′′
•
n−1 ↓

0 → P ′n−2
in−2−→ P ′n−2 ⊕ P ′′n−2

pn−2−→ P ′′n−2 → 0

.

we get the exact sequence

0 → Ker
(
d
P ′
•
n−1

)
α′
n−1→ Ker

(
dP•
n−1
) α′′

n−1→ Ker
(
d
P ′′
•
n−1

)
where α′n−1 and α′′n−1 are canonically defined by

jn−1 ◦ α′n−1 = in−1 ◦ j′n−1(7.31)

j′′n−1 ◦ α′′n−1 = pn−1 ◦ jn−1.(7.32)

Since n ≥ 2

Im
(
dP

′
•
n

)
= Ker

(
d
P ′
•
n−1

)
, Im

(
dP•
n

)
= Ker

(
dP•
n−1
)
, Im

(
dP

′′
•
n

)
= Ker

(
d
P ′′
•
n−1

)
we can consider the diagram

0 → P ′n
in−→ P ′n ⊕ P ′′n

pn−→ P ′′n → 0
π′n ↓ πn ↓ π′′n ↓

0 → Im
(
d
P ′
•
n

)
α′
n−1−→ Im

(
dP•
n

) α′′
n−1−→ Im

(
d
P ′′
•
n

)
↓ ↓ ↓
0 0 0

Note that this diagram is commutative. In fact we have

jn−1 ◦ α′n−1 ◦ π′n
(7.31)
= in−1 ◦ j′n−1 ◦ π′n = in−1 ◦ dP

′
•
n = dP•

n ◦ in = jn−1 ◦ πn ◦ in

so that, since jn−1 is mono, we get

α′n−1 ◦ π′n = πn ◦ in.

We also have

j′′n−1 ◦ α′′n−1 ◦ πn
(7.32)
= pn−1 ◦ jn−1 ◦ πn = pn−1 ◦ dP•

n = dP
′′
•
n ◦ pn = j′′n−1 ◦ π′′n ◦ pn
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so that, since j′′n−1 is mono, we get

α′′n−1 ◦ πn = π′′n ◦ pn.

Note that this implies that α′′n−1 is epi so that we have the commutative and exact
diagram

(7.33)

0 → P ′n
in−→ P ′n ⊕ P ′′n

pn−→ P ′′n → 0
π′n ↓ πn ↓ π′′n ↓

0 → Im
(
d
P ′
•
n

)
α′
n−1−→ Im

(
dP•
n

) α′′
n−1−→ Im

(
d
P ′′
•
n

)
→ 0

↓ ↓ ↓
0 0 0

.

By applying Snake Lemma 7.23 to the diagram (7.33), we get the exact sequence

0 → Ker (π′n) = Ker
(
dP

′
•
n

)
α′
n→ Ker (πn) = Ker

(
dP•
n

) α′′
n→ Ker (π′′n) = Ker

(
dP

′′
•
n

)
→ 0

where α′n and α′′n are uniquely defined by

jn ◦ α′n = in ◦ j′n(7.34)

j′′n ◦ α′′n = pn ◦ jn.(7.35)

Now we can consider the diagram

0 → P ′n+1

in+1−→ P ′n+1 ⊕ P ′′n+1

pn+1−→ P ′′n+1 → 0
π′n+1 ↓ π′′n+1 ↓

0 → Im
(
d
P ′
•
n+1

)
= Ker

(
d
P ′
•
n

)
α′
n−→ Ker

(
dP•
n

) α′′
n−→ Im

(
d
P ′′
•
n+1

)
= Ker

(
d
P ′′
•
n

)
→ 0

↓ ↓ ↓
0 0 0

Then, by Lemma 7.63, there exists an epimorphism πn+1 : Pn+1 = P ′n+1 ⊕ P ′′n+1 →
Ker

(
dP•
n

)
such that the diagram

0 → P ′n+1

in+1−→ P ′n+1 ⊕ P ′′n+1

pn+1−→ P ′′n+1 → 0
π′n+1 ↓ πn+1 ↓ π′′n+1 ↓

0 → Im
(
d
P ′
•
n+1

)
= Ker

(
d
P ′
•
n

)
α′
n−→ Ker

(
dP•
n

) α′′
n−→ Im

(
d
P ′′
•
n+1

)
= Ker

(
d
P ′′
•
n

)
→ 0

↓ ↓ ↓
0 0 0

is commutative and exact.



134 CHAPTER 7. HOMOLOGY

Now we get

in ◦ dP
′
•
n+1 = in ◦ j′n ◦ π′n+1

(7.34)
= jn ◦ α′n ◦ π′n+1 = jn ◦ πn+1 ◦ in+1

pn ◦ jn ◦ πn+1
(7.35)
= j′′n ◦ α′′n ◦ πn+1 = j′′n ◦ π′′n+1 ◦ pn+1

and hence the commutative diagram

0 → P ′n+1

in+1−→ P ′n+1 ⊕ P ′′n+1

pn+1−→ P ′′n+1 → 0

d
P ′
•
n+1 = j′n ◦ π′n+1 ↓ jn ◦ πn+1 ↓ j′′n ◦ π′′n+1 = d

P ′′
•
n+1 ↓

0 → P ′n
in−→ P ′n ⊕ P ′′n

pn−→ P ′′n → 0

d
P ′
•
n ↓ dP•

n ↓ d
P ′′
•
n ↓

0 → P ′n−1
in−1−→ P ′n−1 ⊕ P ′′n−1 −→ P ′′n−1 → 0

We set

dP•
n+1 = jn ◦ πn+1.

Note that, since πn+1. is epi,

Im
(
dP•
n+1

)
= Im (jn) = Ker

(
dP•
n

)
.

Remark 7.65. The previous Theorem is called ”Horseshoe Lemma” because we have
to complete the horseshoe-shaped diagram

0
↓

· · · → P ′2 → P ′1 → P ′0 → M ′ → 0
↓
M
↓

· · · → P ′′2 → P ′′1 → P ′′0 → M ′′ → 0
↓
0

.

Lemma 7.66. Let A and R be rings, let T : Mod-A → Mod-R be an additive

covariant functor and let 0 → L
f−→ M

g−→ N → 0 be a split exact sequence in
Mod-A. Then the sequence

0 → T (L)
T (f)−→ T (M)

T (g)−→ T (N) → 0

is split exact.
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Proof. By Theorem 1.84, there exists an R-module homomorphism p :M → L and
an R-module homomorphism s : N →M such that

p ◦ f = IdL, g ◦ s = IdN and IdM = f ◦ p+ s ◦ g.

By applying T we get

T (p)◦T (f) = IdT (L), T (g)◦T (s) = IdT (N) and IdT (M) = T (f)◦T (p)+T (s)◦T (g) .

By applying Theorem 1.84 once more, we get that the sequence

0 → T (L)
T (f)−→ T (M)

T (g)−→ T (N) → 0

is split exact.

Theorem 7.67. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
covariant functor. Let

0 −→M ′ α′
−→M

α′′
−→M ′′ −→ 0

be an exact sequence in Mod-A. For every n ≥ 1 there exists a (connection) mor-
phism LnT (M ′′)

ωn−→ Ln−1T (M ′) in Mod-R such that the sequence in Mod-R

. . . −→ Ln+1T (M ′′)
ωn+1−→ LnT (M ′)

LnT (α′)−→ LnT (M)
LnT (α′′)−→ LnT (M ′′) −→ . . .

. . . −→ L1T (M ′′)
ω1−→ L0T (M ′)

L0T (α′)−→ L0T (M)
L0T (α′′)−→ L0T (M ′′) −→ 0

is exact.

Proof. By Theorem 7.64 there are projective resolutions P ′•, P• := P ′• ⊕ P ′′• and P ′′•
respectively of M ′, M and M ′′, and morphism of chain complexes

i• = (in)n∈N :
(
P ′•, d

P ′
•
•

)
→
(
P•, d

P•
•
)

and
p• = (pn)n∈N :

(
P•, d

P•
•
)
→
(
P ′′• , d

P ′′
•
•

)
such that i• is a lifting of α′ and p• is a lifting of α′′ and the sequence

0 −→
(
P ′•, d

P ′
•
•

)
i•−→
(
P•, d

P•
•
) p•−→

(
P ′′• , d

P ′′
•
•

)
−→ 0

is split exact. Then, By Lemma 7.66, the sequence

0 −→ T (P ′•)
T (i•)−→ T (P•)

T (p•)−→ T (P ′′• ) −→ 0

is split exact. Then we can apply Theorem 7.32 and get that for every n ∈ Z, there
exists a morphism Hn (T (P ′′• ))

ωn−→ Hn−1 (T (P ′•)) such that the sequence

. . . .→ HnT (P ′•)
Hn(T (i•))−→ Hn (T (P•))

Hn(T (p•))−→ Hn (T (P ′′• ))
ωn−→ Hn−1T (P ′•)

Hn−1(T (i•))−→ Hn−1 (T (P•))
Hn−1(T (p•))−→ Hn−1 (T (P ′′• )) . . . .
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is exact. Then we have
1) Since P ′•, P• := P ′• ⊕ P ′′• and P ′′• are projective resolutions of M ′, M and M

respectively, then

HnT (P ′•) = LnT (M ′) , HnT (P•) = LnT (M) , Hn (T (P ′′• )) = LnT (M ′′) .

2) Since i• is a lifting of α′ and p• is a lifting of α′′, then

LnT (α′) = Hn (T (i•)) and LnT (α′′) = Hn (T (p•)) .

Proposition 7.68. Let A and R be rings, let T :Mod-A→Mod-R be an additive
covariant functor and let P be a projective module. Then LnT (P ) = 0 for every
n > 0 and L0T (P ) = T (P ).

Proof. Clearly, a projective resolution of P is given by P0 = P and Pn = 0 for every

n ̸= 0. In fact
Ker(dP•

0 )
Im(dP•

1 )
= P0

{0} = P = H0 (P•) . By applying T to this resolution we

get that LnT (P ) = Hn (T (P•)) is always 0 whenever n ̸= 0 and equal to
KerT(dP•

0 )
ImT(dP•

1 )
=

T (P ) for n = 0.

Definition 7.69. Let A and R be rings, and let T : Mod-A → Mod-R be an
additive covariant functor. T is said to be right exact if, for every exact sequence

M ′ α′
−→ M

α′′
−→ M ′′ −→ 0, the sequence T (M ′)

T (α′)−→ T (M)
T (α′′)−→ T (M ′′) −→ 0 is

also exact.

Proposition 7.70. Let A and R be rings, let T :Mod-A→Mod-R be an additive
covariant functor. Then the following statements are equivalent:

(a) T is right exact.

(b) For every exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0, the sequence
T (M ′) −→ T (M) −→ T (M ′′) −→ 0 is exact.

Proof. (a) ⇒ (b). It is trivial.

(b) ⇒ (a). Let M ′ α′
−→ M

α′′
−→ M ′′ −→ 0 be an exact sequence and consider the

commutative and exact diagram

0

""E
EE

EE
EE

E

kerα′

##G
GG

GG
GG

GG

M ′ α′
//

p !!D
DD

DD
DD

D M
α′′

//M ′′ // 0

M ′

kerα′

α̃′

=={{{{{{{{

!!C
CC

CC
CC

C

0

=={{{{{{{{{
0,
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Then

0 −→ Ker (α′)
i−→M ′ p−→ M ′

Ker (α′)
−→ 0

and

0 −→ M ′

Ker (α′)

α′
−→M

α′′
−→M ′′ −→ 0

are exact. Hence we get the following exact sequences:

T (Ker (α′))
T (i)−→ T (M ′)

T (p)−→ T

(
M ′

Ker (α′)

)
−→ 0,

T

(
M ′

Ker (α′)

)
T(α′)
−→ T (M)

T (α′′)−→ T (M ′′) −→ 0.

Since T is a functor, we have that T
(
α′
)
◦T (p) = T

(
α′ ◦ p

)
= T (α′) . Moreover we

have

Im (T (α′)) = Im
(
T
(
α′
)
◦ T (p)

) T (p)isepi
= Im

(
T
(
α′
))

= Ker (T (α′′)) .

Thus we obtain the following commutative and exact diagram

T (kerα′)

&&LL
LLL

LLL
LL

T (M ′)
T (α′) //__________

T (p) %%KK
KK

KK
KK

K
T (M)

T (α′′)// T (M ′′) // 0

T
(

M ′

kerα′

) T(α̃′)

99sssssssss

%%LL
LLL

LLL
LLL

0

.

Proposition 7.71. Let A and R be rings, and let T : Mod-A → Mod-R be an
additive right exact covariant functor. Then L0T and T are isomorphic.

Proof. Let M ∈ Mod-A and let
(
P•, d

P•
•
)
be a projective resolution of M . Then

from the exact sequence

P1

dP•
1−→ P0

π−→M −→ 0

we deduce that

T (P1)
T(dP•

1 )
−→ T (P0)

T (π)−→ T (M) −→ 0

is exact. In particular Im
(
T
(
dP•
1

))
= Ker (T (π)) . Note that P0

dP•
0−→ 0, so that

T (P0)
T(dP•

0 )
−→ 0 and hence Ker

(
T
(
dP•
0

))
= T (P0). Thus we get

L0T (M) = H0 (T (P•)) =
Ker

(
T
(
dP•
0

))
Im
(
T
(
dP•
1

)) =
T (P0)

Ker (T (π))
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and therefore

L0T (M) =
T (P0)

Ker (T (π))
≃ T (M)

that is L0T ≃ T.

Corollary 7.72. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
right exact covariant functor. Then the sequence

. . . −→ Ln+1T (M ′′)
ωn+1−→ LnT (M ′)

LnT (α′)−→ LnT (M)
LnT (α′′)−→ LnT (M ′′) −→ . . .

. . . −→ L1T (M ′′)
ω1−→ T (M ′)

T (α′)−→ T (M)
T (α′′)−→ T (M ′′) −→ 0

is exact.

Proof. Apply Theorem 7.67 and Proposition 7.71.

7.73. Let ANR be an A-R-bimodule and let T = − ⊗A N : Mod − A → Mod − R.
Then by Proposition 6.14 and Exercise 7.40,T is an additive right exact functor.
For every n ∈ N, we set

TorAn (−, N) = LnT.

Then, by Corollary 7.72, we have the exact sequence

· · · −→ TorA2 (M ′′, N)
ω2−→ TorA1 (M ′, N)

TorA1 (α′,N)
−→ TorA1 (M,N)

TorA1 (α′′,N)
−→ TorA1 (M ′′, N)

ω1−→
ω1−→M ′ ⊗A N

α′⊗AN−→ M ⊗A N
α′′⊗AN−→ M ′′ ⊗A N −→ 0

Proposition 7.74. Let T :Mod−A→Mod−R be a right exact additive covariant
functor and let

(
P•, d

P•
•
)
be a projective resolution ofM inMod-A. Let n ∈ N, n ≥ 2,

let Kn = Ker
(
dP•
n−1
)
and let µ : Kn → Pn−1 be the canonical injection. Then

LnT (M) ∼= Ker (T (µ)).

Proof. Let

φn =
(
dP•
n

)|Im(dP•
n )

.

Since n ≥ 2 we have that

Im
(
dP•
n

)
= Ker

(
dP•
n−1
)
= Kn

so that

φn ◦ µ = dP•
n

In particular we have that the sequence

. . . −→ Pn+1

dP•
n+1−→ Pn

φn−→ Kn −→ 0
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is exact. Then, by applying the right exact functor T , we get the following exact
diagram

T (Pn+1)
T(dP•

n+1)−→ T (Pn)
T (φn)−→ T (Kn) → 0

↓ T
(
dP•
n

)
↓ T (µ) ↓

0 → 0 −→ T (Pn−1)
T(IdPn−1)=IdT(Pn−1)−→ T (Pn−1)

↓
0

Then we can apply the Snake Lemma 7.23, from which we deduce that the following
sequence is exact

T (Pn+1)
f−→ Ker

(
T
(
dP•
n

)) g−→ Ker (T (µ)) −→ Coker (0) = 0.

Here

f =
(
T
(
dP•
n+1

))|Ker(T(dP•
n ))

and g =
(
T (φn)|Ker(T(dP•

n ))

)|Ker(T (µ))

so that

Ker (g) = Im (f) = Im
(
T
(
dP•
n+1

))
Thus we get

Ker (T (µ)) ∼=
Ker

(
T
(
dP•
n

))
Im
(
T
(
dP•
n+1

)) = Hn (T (P•)) = LnT (M) .

7.7 Cochain Complexes and Right Derived Func-

tors

Definitions 7.75. A cochain complex of right A-modules is a a pair (C•, d•C•) =(
(Cn)n∈Z , (d

n
C•)n∈Z

)
where each Cn is a right A-module, dnC• : Cn → Cn+1 is a right

A-modules homomorphism and dn+1
C• ◦ dnC• = 0 for every n ∈ Z. For each n ∈ Z

• (d•C•) = (dnC•)n∈Z is called the differential operator of the cochain complex,

• Zn (C•) := Ker (dnC•) is called the n-th cococycle of the cochain complex ,

• Bn (C•) := Im
(
dn−1C•

)
is called the n-th coboundary of the cochain complex ,

• Bn (C•) ⊆ Zn (C•) and Hn (C•) :=
Ker(dnC•)
Im(dnC•)

= Zn(C•)
Bn(C•)

is called the n-th coho-

mology module of the cochain complex.
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Definition 7.76. Given cochain complexes (C•, d•C•) and (D•, d•D•), a morphism of
cochain complexes of rightA-modules φ• = (φn)n∈Z : (C•, d•C•) =

(
(Cn)n∈Z , (d

n
C•)n∈Z

)
−→

(D•, d•D•) =
(
(Dn)n∈Z , (d

n
D•)n∈Z

)
consists of a family of right A-modules homomor-

phisms (φn : Cn −→ Dn)n∈Z such that dnD• ◦ φn = φn+1 ◦ dnC•, for every n ∈ Z.

Definition 7.77. Let φ• , ψ· : (C• , d·C• ) −→ (D• , d·D• ) be morphisms of cocom-
plexes. A homotopy ∆ between φ· and ψ· consists of a family of homomorphisms
(∆n : Cn −→ Dn−1)n∈Z such that

φn − ψn = dn−1D· ◦∆n +∆n+1 ◦ dnC· .

If there is a homotopy between φ· and ψ· we say that φ· is homotopic to ψ· and we
write φ· ≃ ψ·.

Notation 7.78. We will denote by Coch (Mod-A) the category of cochain com-
plexes. Obviously the objects are cochain complexes of right A-modules and mor-
phisms are just morphism of cochain complexes of right A-modules.

Theorem 7.79. The assignments(
(Cn)n∈Z ,

(
dC•
n

)
n∈Z

)
7→

(
(C−n)n∈Z ,

(
dC•
−n
)
n∈Z

)
(φn)n∈Z 7→ (φ−n)n∈Z

define a covariant functor F : Ch (Mod-A) → Coch (Mod-A) which is an iso-
morphism of categories. The inverse of F is the functor G : Coch (Mod-A) →
Ch (Mod-A) defined by setting

G
(
(Cn)n∈Z , (d

n
C•)n∈Z

)
=

(
C−n

)
n∈Z ,

(
d−nC•

)
n∈Z for every

(
(Cn)n∈Z , (d

n
C•)n∈Z

)
∈ Coch (Mod-A)

G
(
(φn)n∈Z

)
=

(
φ−n

)
n∈Z for every morphism (φn)n∈Z in Coch (Mod-A) .

Moreover, for every n ∈ Z, we have

Hn ◦ F = H−n

Hn ◦G = H−n.

Proof. We have

Hn (F ((C•))) =
Ker

(
dnF (C•)

)
Im
(
dn−1F (C•)

) =
Ker

(
dC•
−n
)

Im
(
dC•
−n+1

) = H−n (C•) .

Theorem 7.80. Let 0 −→ C•
φ•
−→ D•

ψ•
−→ E• −→ 0 be an exact sequence of cochain

complexes of right A-modules. Then, for every n ∈ Z, there exists a morphism

Hn (E•)
ωn

−→ Hn+1 (C•) such that the sequence

. . . .→ Hn (C•)
Hn(φ•)−→ Hn (D•)

Hn(ψ•)−→ Hn (E•)
ωn

−→ Hn+1 (C•)
Hn+1(φ•)−→ Hn+1 (D•)

Hn+1(ψ•)−→ Hn+1 (E•) . . . .

is exact.
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Definitions 7.81. A cochain complex (C•, d•C•) is called

1) positive if Cn = 0 for every n ≤ −1.

2) acyclic positive if it is positive and Hn (C•) = 0 for every n ≥ 1.

3) injective if Cn is injective for every n.

Definition 7.82. An injective resolution of a right A-module M is an acyclic

positive and injective cochain complex (E•, d•E•) such that H0 (E•) =
Ker(d0E•)
Im(d−1

E•)
=

Ker (d0E•) ∼= M so that the sequence

0 −→M −→ E0 d0
E•−→ E1 d1

E•−→ E2 d2
E•−→ · · ·

is exact.

Proposition 7.83. Every right A-module admits an injective resolution.

Proof. Follow the same pattern of Proposition 7.49, using Theorem 3.28.

Theorem 7.84 (Lifting Theorem for Cochain Complexes). Let (C•, d•C•) be an
acyclic positive cochain complex, let (E•, d•E•) be an injective positive cochain com-
plex and let φ : H0 (C•) −→ H0 (E•) be a morphism in Mod-A. Then there exists a
morphism of cochain complexes φ• : (C•, d•C•) −→ (E•, d•E•) such that H0 (φ•) = φ.
Moreover, if ψ• : (C•, d•C•) −→ (E•, d•E•) also satisfies H0 (ψ

•) = φ, we have
φ• ≃ ψ•. In particular Hn (φ•) only depends on φ.

Definition 7.85. In the notations and assumptions of Theorem 7.84, any morphism
of cochain complexes φ• : (C•, d•C•) −→ (E•, d•E•) such that H0 (φ•) = φ will be called
a lifting of φ.

Theorem 7.86. Let (E•, d•E•) and (G•, d•G•) be injective resolution of a right A-
module M . In view of Theorem 7.84, we can consider the liftings φ• : E• −→ G
and ψ• : G• −→ E• of IdM . Then

1) φ• ◦ ψ• ≃ IdG· and ψ• ◦ φ• ≃ IdE•.

2) Hn (φ•) : Hn (E•) → Hn (G•) is an isomorphism with inverse Hn (ψ•), for every
n ∈ N.

7.87. Let A and R be rings, and let T :Mod-A→Mod-R be an additive covariant
functor. By applying T to an acyclic positive injective resolution (E•, d•E•) of M ∈
Mod-A , we set

(RE•T )n (M) = Hn (T (E•)) .

Let φ :M →M be a morphism in Mod-A and let
(
E
•
, d•

E
•

)
be a projective resolu-

tion of M. Let φ• : (E•, d•E•) →
(
E
•
, d•

E
•

)
be a lifting of φ (see Theorem 7.84). We

set
(RE•E

•T )n (φ) = Hn (T (φ•))

One can prove a suitable version of Lemma 7.57:
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Lemma 7.88. Let A and R be rings, and let T : Mod-A → Mod-R be an additive
covariant functor. Let (E•, d•E•) and (F •, d•F •) be injective resolutions of M in Mod-
A. Let αE•F • : (E•, d•E•) → (F •, d•F •) be a lifting of IdM and let αF •E• : (F •, d•F •) →
(E•, d•E•) be a lifting of IdM (see Theorem 7.50). Then

Hn (T (αE•F •)) = (RE•F •T )n (IdM) and Hn (T (αF •E•)) = (RF •E•T )n (IdM)

determine an isomorphism between Hn (T (E•)) = (RE•T )n (M) and Hn (T (F •)) =
(RF •T )n (M) .

and a suitable version of Lemma 7.58:

Lemma 7.89. Let A and R be rings, and let T : Mod-A → Mod-R be an additive
covariant functor. Let φ : M −→ M be a morphism in Mod-A, let (E•, d•E•) and

(F •, d•F •) be injective resolutions of M and let
(
E
•
, d•

E
•

)
and

(
F
•
, d•

F
•

)
be injective

resolutions of M . Then we have

[(RF •F
•T )n (φ)] ◦ [(RE•F •T )n (IdM)] = [(RE

•
F

•T )n (IdM ′)] ◦ [(RE•E
•T )n (φ)] .

Notations 7.90. Let A and R be rings, and let T : Mod-A → Mod-R be an addi-
tive covariant functor. By Lemma 7.88 and Lemma 7.89 we can omit the injective
resolutions and set

RnT (M) = (RE•T )n (M) = Hn (T (E•)) .

for every M ∈Mod-A

RnT (φ) = (RE•E
•T )n (φ) = Hn (T (φ•)) .

In this way we get a functor RnT :Mod-A→Mod-R.

Definition 7.91. The functor RnT :Mod-A→Mod-R is called n-th right derived
functor of T.

Theorem 7.92. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
covariant functor. Let

0 −→M ′ α′
−→M

α′′
−→M ′′ −→ 0

be an exact sequence in Mod-A. For every n ≥ 0 there exists a (connection) mor-

phism Rn−1T (M ′′)
ωn

−→ RnT (M ′) in Mod-R such that the sequence in Mod-R

0 −→ R0T (M ′)
R0T (α′)−→ R0T (M)

R0T (α′′)−→ R0T (M ′′)
ω1

−→ R1T (M ′) −→ . . .

. . . −→ RnT (M ′)
RnT (α′)−→ RnT (M)

RnT (α′′)−→ RnT (M ′′)
ωn

−→ Rn+1T (M ′) −→ . . .

is exact.
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Proposition 7.93. Let A and R be rings, let T :Mod-A→Mod-R be an additive
covariant functor and let E be an injective right A-module. Then RnT (E) = 0 for
every n > 0 and R0T (E) = T (E).

Definition 7.94. Let A and R be rings, and let T : Mod-A → Mod-R be an
additive covariant functor. T is said to be left exact if, for every exact sequence

0 → M ′ α′
−→ M

α′′
−→ M ′′, the sequence 0 → T (M ′)

T (α′)−→ T (M)
T (α′′)−→ T (M ′′) is also

exact.

Proposition 7.95. Let A and R be rings, and let T : Mod-A → Mod-R be an
additive left exact covariant functor. Then R0T and T are isomorphic.

Corollary 7.96. Let A and R be rings, and let T :Mod-A→Mod-R be an additive
left exact covariant functor. Then the sequence

0 −→ T (M ′)
T (α′)−→ T (M)

T (α′′)−→ T (M ′′)
ω1

−→ R1T (M ′) −→ . . .

. . . −→ RnT (M ′)
RnT (α′)−→ RnT (M)

RnT (α′′)−→ RnT (M ′′)
ωn

−→ Rn+1T (M ′) −→ . . .

is exact.

7.97. Let ANR be an A-R-bimodule and let T = HomA (ANR,−) : Mod-A → Mod-
R. Then by Proposition 1.91 and Exercise 7.40,T is an additive left exact functor.
For every n ∈ N, we set

ExtnA (N,−) = RnT.

Then, by Corollary 7.96, we have the exact sequence

0 −→ HomA (ANR,M
′)

HomA(ANR,α
′)−→ HomA (ANR,M)

HomA(ANR,α
′′)−→

HomA (ANR,M
′′)

ω1

−→ Ext1A (ANR,M
′) −→ . . .

. . . −→ ExtnA (ANR,M
′)

ExtA(ANR,α
′)−→ ExtnA (ANR,M)

ExtA(ANR,α
′′)−→

ExtnA (ANR,M
′′)

ωn

−→ Extn+1
A (ANR,M

′) −→ . . .

7.98. Let us consider an additive contravariant functor W : Mod-A → Mod-R.
The right derived functors RnW are obtained as right derived functors of the co-
variant functor W ′ : (Mod− A)opp → Mod-R. In order to compute RnW (M) we
consider a projective resolution

(
P•, d

P•
•
)
of M in Mod-A, form the cochain complex(

WP•, d
WP•
•

)
and take the cohomology

RnW (M) = Hn (WP•)

for every n ∈ N.
Analogously we obtain the left derived functors of contravariant functors via in-

jective resolutions.
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Definition 7.99. Let A and R be rings, and let W : Mod-A → Mod-R be an
additive contravariant functor. W is said to be left exact if, for every exact sequence

M ′ α′
−→M

α′′
−→M ′′ −→ 0, the sequence 0 −→ W (M ′′)

W (α′′)−→ W (M)
W (α′)−→ W (M ′)is

also exact.

Example 7.100. Let ANR be an A-R-bimodule and letW = HomR (−, ANR) :Mod-
R →Mod−A. Then by Proposition 1.91 and Exercise 7.40,W is a left exact additive
contravariant functor. The right derived functor of W are denoted by ExtnR (−, NR).

7.101. Analogously one defines right-exactness. Results similar to Proposition 7.68,
Proposition 7.71 and Proposition 7.74 may be proved.



Chapter 8

Semisimple modules and Jacobson
radical

8.1. Throught this chapter R will denote a ring.

Definition 8.2. Let MR be a right R-module. MR is said to be semisimple if there
is a family (Sλ)λ∈Λ of right simple R-submodules such that

M =
·⊕

λ∈Λ

Sλ.

Exercise 8.3. Let (Sλ)λ∈Λ be a family of right simple R-modules and assume that
MR

∼=
⊕
λ∈Λ

Sλ. Prove that MR is semisimple.

Lemma 8.4. Let MR be a right R-module and let (Sλ)λ∈Λ be a family of right simple
R-submodules such that

M =
∑
λ∈Λ

Sλ.

Then for each submodule L of M, there exists a subset Γ ⊆ Λ such that

M = L⊕
·⊕

γ∈Γ

Sγ.

In particular, M is semisimple.

Proof. Let us assume that L $M . Let

E =

{
Γ ⊆ Λ |

∑
γ∈Γ

Sγ =
·⊕

γ∈Γ

Sγ and L ∩
∑
γ∈Γ

Sγ = {0}

}
.

Then E ≠ ∅. In fact, since L $ M there is at least a γ ∈ Λ such that Sγ * L so
that L ∩ Sγ = {0}. Let us prove that (E ,⊆) is inductive. Let (Γi)i∈I be a chain in
E and let

Γ =
∪
i∈I

Γi.

145
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We want to prove that Γ ∈ E . First of all, let us prove that
∑

γ∈Γ Sγ =
⊕
γ∈Γ

Sγ.

Assume that
∑

γ∈Γ Sγ ̸=
⊕
γ∈Γ

Sγ. Then there is a γ0 ∈ Γ such that

Sγ0 ∩
∑

γ∈Γr{γ0}

Sγ ̸= {0}

i.e.

(8.1) Sγ0 ⊆
∑

γ∈Γr{γ0}

Sγ.

Since Γ =
∪
i∈I

Γi, there is an i0 ∈ I such that γ0 ∈ Γi0 and for every i ∈ I we have

either Γi0 ⊆ Γi or Γi ⊆ Γi0 . Therefore

Γ =
∪
i∈I

Γi0
⊆Γi

Γi ∪
∪
i∈I

Γi⊆Γi0

Γi =
∪
i∈I

Γi0
⊆Γi

Γi ∪ Γi0 =
∪
i∈I

Γi0
⊆Γi

Γi

where, in the last equality we have used that

Γi0 ⊆
∪
i∈I

Γi0
⊆Γi

Γi.

Moreover
Γr {γ0} =

∪
i∈I

Γi0
⊆Γi

(Γi r {γ0}) .

Let 0 ̸= xγ0 ∈ Sγ0 . Then xγ0 ∈ Sγ0
(8.1)

⊆
∑

γ∈Γr{γ0} Sγ. Hence there is an n ∈ N, n ≥
1, elements γ1, . . . , γn ∈ Γr {γ0} and elements xγ1 ∈ Sγ1 , . . . , xγn ∈ Sγn such that

xγ0 = xγ1 + . . .+ xγn .

Since γ1, . . . , γn ∈ Γr{γ0}, for every t = 1, . . . , n there is a set Γit such that Γi0 ⊆ Γit
and γt ∈ Γit r {γ0}. Let 1 ≤ u ≤ n be such that Γit ⊆ Γiu for every t = 1, . . . , n.
Then γ0 ∈ Γi0 ⊆ Γiu and γ1, . . . , γn ∈ Γiu r {γ0} so that

(8.2) 0 ̸= xγ0 = xγ1 + . . .+ xγn ∈
∑

γ∈Γiur{γ0}

Sγ.

Since Γiu ∈ E we know that ∑
γ∈Γiu

Sγ =
·⊕

γ∈Γiu

Sγ

and since γ0 ∈ Γiu we deduce that

Sγ0 ∩
∑

γ∈Γiur{γ0}

Sγ = {0}
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which contradicts (8.2).
Let us prove that L∩

∑
γ∈Γ Sγ = {0} . Assume that 0 ̸= x ∈ L∩

∑
γ∈Γ Sγ. Then

there is an n ∈ N, n ≥ 1, elements γ1, . . . , γn ∈ Γ and elements xγ1 ∈ Sγ1 , . . . , xγn ∈
Sγn such that

x = xγ1 + . . .+ xγn .

Since γ1, . . . , γn ∈ Γ, for every t = 1, . . . , n there is a set Γit such that Γi0 ⊆ Γit
and γt ∈ Γit . Let 1 ≤ u ≤ n be such that Γit ⊆ Γiu for every t = 1, . . . , n. Then
γ1, . . . , γn ∈ Γiu so that

0 ̸= x = xγ1 + . . .+ xγn ∈
∑
γ∈Γiu

Sγ.

and we deduce that
L ∩

∑
γ∈Γiu

Sγ ̸= {0}

which contradicts the fact that Γiu ∈ E .
Therefore Γ ∈ E and clearly Γ is an upper bound of the chain (Γi)i∈I . Thus

(E ,⊆) is inductive. By Zorn’s Lemma, there is a maximal element Γ0 ∈ E . Then∑
γ∈Γ0

Sγ =
·⊕

γ∈Γ0

Sγ and L ∩
∑
γ∈Γ0

Sγ = {0} .

Let us prove that M = L+
∑

γ∈Γ0
Sγ. Let λ ∈ Λ such that

Sλ * L+
∑
γ∈Γ0

Sγ .

Then Sλ *
∑

γ∈Γ0
Sγ i.e.

(8.3) Sλ ∩
∑
γ∈Γ0

Sγ = {0} .

Let Ξ = Γ0 ∪ {λ} and let us prove that Ξ ∈ E .
First of all, let us prove that ∑

γ∈Ξ

Sγ =
·⊕

γ∈Ξ

Sγ

i.e. that, for every ξ ∈ Ξ,

Sξ ∩
∑

γ∈Ξ\{ξ}

Sγ = {0}

We already know this for ξ = λ in view of (8.3) . Assume that ξ ∈ Γ0 and let

x ∈ Sξ ∩

 ∑
γ∈Γ0\{ξ}

Sγ + Sλ

 .
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Then there is an n ∈ N, n ≥ 1, elements γ1, . . . , γn ∈ Γ0\ {ξ} and elements xγ1 ∈
Sγ1 , . . . , xγn ∈ Sγn and an element xλ ∈ Sλ such that

x = xγ1 + . . .+ xγn + xλ.

Then

x− (xγ1 + . . .+ xγn) = xλ ∈
∑
γ∈Γ0

Sγ ∩ Sλ
(8.3)
= {0}

and we deduce that

x = xγ1 + . . .+ xγn ∈ Sξ ∩
∑

γ∈Γ0\{ξ}

Sγ = {0} as Γ0 ∈ E .

Let us prove that

L ∩
∑
γ∈Ξ

Sγ = {0} .

If
L ∩

∑
γ∈Ξ

Sγ ̸= {0}

then there is an element
0 ̸= x ∈ L ∩

∑
γ∈Ξ

Sγ.

Write
x = xΓ0 + xλ where xΓ0 ∈

∑
γ∈Γ0

Sγ and xλ ∈ Sλ.

Then
xλ = x− xΓ0 ∈ L+

∑
γ∈Γ0

Sγ

and from Sλ * L+
∑

γ∈Γ0
Sγ we deduce that xλ = 0. Hence

x = xΓ0 ∈ L ∩
∑
γ∈Γ0

Sγ = {0} .

Therefore x = xΓ0 + xλ = 0. Contradiction.
We conclude that Ξ ∈ E and Γ0 < Ξ which contradicts the maximality of Γ0.

Corollary 8.5. Let MR be semisimple right R-module and let (Sλ)λ∈Λ be a family
of right simple R-submodules such that

MR =
·⊕

λ∈Λ

Sλ.

Let L be a submodule of MR. Then there is a subset Ξ of Λ such that

L ∼=
⊕
ξ∈Ξ

Sξ and M/L ∼=
⊕
λ∈Λ\Ξ

Sλ.

In particular L and M/L are semisimple.
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Proof. By Lemma 8.4, there exists a subset Γ ⊆ Λ such that

M = L⊕
·⊕

γ∈Γ

Sγ.

Then

L ∼= M/
·⊕

γ∈Γ

Sγ and M/L ∼=
·⊕

γ∈Γ

Sγ

Since

M =
·⊕

γ∈Γ

Sγ ⊕
·⊕

λ∈Λ\Γ

Sλ

we get

L ∼= M/

·⊕
γ∈Γ

Sγ ∼=
·⊕

λ∈Λ\Γ

Sλ.

Theorem 8.6. Let MR be a right R-module. Then the following statements are
equivalent;

(a) M is semisimple.

(b) M is a sum of a family of simple submodules.

(c) M is the sum of all its simple submodules.

(d) Every submodule of M is a direct summand of M .

(e) Every short exact sequence

0 → L
f−→M

g−→ N → 0

splits.

Proof. (a) ⇒ (b) ⇒ (c) is trivial.
(c) ⇒ (a) and (c) ⇒ (d) . They follow by Lemma 8.4.
(d) ⇔ (e) It follows by Theorem 1.84.
(d) ⇒ (c).
Let L be a submodule of a left R-module M . First of all let us prove that every

submodule H of L is a direct summand of L. In fact, by assumption, there is a
submodule K of M such that

M = H ⊕K

so that (exercise)
L = H ⊕ (K ∩ L) .
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Let us prove that every non-zero submodule L of MR contains a simple submodule.
Since L ̸= {0}, there is an x ∈ L, x ̸= 0. Let V ≤ LR be a submodule maximal with
respect to the property x /∈ V . Let U/V be a non-zero submodule of R (x+ V ).
Since V $ U we get that x ∈ V so that

U/V = R (x+ V ) .

Therefore R (x+ V ) is simple. By the foregoing, there is a submodule W of L such
that

L = V ⊕W .

Since W ∼= V/L, we deduce that W has a simple submodule.

Definition 8.7. A ring R is said to be right semisimple if the right R-module RR

is semisimple.

Theorem 8.8. Let R be a ring. The following statements are equivalent.

(a) Every right R-module is semisimple.

(b) Every short exact sequence

0 → L
f−→M

g−→ N → 0

splits.

(c) Every right R-module is projective.

(d) Every right R-module is injective.

(e) R is right semisimple i.e. RR is semisimple.

(f) RR is a sum of a family of simple right ideals.

(g) RR is a sum of a finite family of simple right ideals.

(h) RR is a direct sum of a finite family of simple right ideals.

Proof. (a) ⇐⇒ (b) . It follows by Theorem 8.6.
(b) ⇐⇒ (c) . It follows by Proposition 2.17.
(b) ⇐⇒ (d) . It follows by Proposition 3.29.
(e) ⇐⇒ (f) . It follows by Theorem 8.6.
(f) ⇒ (g) . Let (Sλ)λ∈Λ be a family of right simple R-modules such that RR =∑
λ∈Λ Sλ. Then there is a finite subset F ⊆ Λ and elements xλ ∈ Sλ, λ ∈ F, such

that

1 =
∑
λ∈F

xλ.
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Then
RR = 1 ·R ⊆

∑
λ∈F

Sλ.

(g) ⇒ (f) . It is trivial.
(g) ⇒ (h) . It follows by Proposition 2.17.
(h) ⇒ (g) . It is trivial
(a) ⇒ (e). It is trivial.
(e) ⇒ (a) . LetMR be a right R-module. By Proposition 2.2, there is an epimor-

phism
h : RR

(M) →M.

Since RR is semisimple, RR
(M) is semisimple so that, by Corollary 8.5,M is semisim-

ple too.

Theorem 8.9. Let D be a division ring and let n ∈ N, n ≥ 1. Let R = Mn (D) .
Then

1) There is, up to isomorphism, only one simple right R-module VR and RR
∼=

(VR)
n .

2) R is right semisimple.

1’) There is, up to isomorphism, only one simple left R-module RW and RR ∼=
(RW )n.

2’) R is left semisimple.

Proof. 1) Let eij be the matrix with all zero entries except for (i, j) where the entry
is 1D. For any matrix A ∈Mn (D) let Ai denote its i-th row and Ai its i-th column.
Set

Si = eiiR.

Since
eiiehk = δiheik

we have that

Si =
n∑
k=1

eikD = {A ∈Mn (D) | At = 0 for every t ̸= i} .

Then Si is a right R-module and

R = S1

·
⊕ . . .

·
⊕ Sn.

Let us check that Si is a simple right R-module. Let x ̸= 0, x ∈ Si. Then there exist
element dk, k = 1, . . . , n such that

x =
n∑
k=1

eikdk
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and since x ̸= 0 there is at least a w ∈ {1, . . . , n} such that dw ̸= 0. For every
t ∈ {1, . . . , n}, let

rt = d−1w ewt.

Then

xrt =
n∑
k=1

eikdkd
−1
w ewt = eit.

Therefore xR ⊇ Si and hence Si is simple.
Let us check that, for every j ∈ {1, . . . , n}, Si ∼= Sj. Let us consider the homo-

morphism
µij : RR → RR

defined by setting
µij (r) = eji · r.

Then

µij (Si) = µij

(
n∑
k=1

eikD

)
= eji ·

(
n∑
k=1

eikD

)
=

n∑
k=1

ejkD = Sj.

Since Si is simpe, this implies that Si ∼= Sj.
Let now S be a simple right R-module and let x ∈ S, x ̸= 0. Then the epimor-

phism
hx : R −→ xR = S

r 7−→ xr

is non-zero. Since R = S1 ⊕ . . . ⊕ Sn, this implies tht there is a j, 1 ≤ j ≤ n, such
that hx (Sj) ̸= {0}. Since Sj and S are both simple, this implies that hx|Sj

: Sj :→ S
is an isomorphism.

2) It is now trivial.
1’) It can be proved in an analogous way working on the left instead of the right

side.

Lemma 8.10. Let R be a ring and let M and M ′ be simple right R-module. Let
f :M →M ′ be a left R-module homomorphism and assume that f ̸= 0. Then

1) If M is simple, f is a is monomorphism.

2) If M ′ is simple, then f is an epimorphism.

3) If both M and M ′ are simple, then f is an isomorphism.

Proof. Since f ̸= 0, then Ker(f) $ M and {0} $ Im(f) ⊆ M ′. Thus M simple
implies Ker(f) = {0} while m′ simple implies Im(f) = M ′.

Lemma 8.11. (Schur’s Lemma) Let R be a ring and let SR be a simple right
R-module. Then D = End(SR) is a division ring.

Proof. Let f ∈ D, f ̸= 0. Then, by Lemma 8.10, f is an isomorphism.
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Lemma 8.12. Let R be a ring, let SR be a simple right R-module and let n ∈ N, n ≥
1. Then

EndR (SnR)
∼= Mn (D)

where D = End(SR).

Proof. For every 1 ≤ h, k ≤ n let ih : S → Sn be the h-th canonical injection and
let pk : S

n → S be the k-th canonical projection. Let

φ : EndR (SnR) →Mn (D)

be the map defined by setting

φ (f) =
m∑

h,k=1

(ph ◦ f ◦ ik) ehk for every f ∈ EndR (SnR)

Let us check that φ is a ring homomorphism. Let f, g ∈ EndR (SnR) . Then

φ (f ◦ g) = φ (f) · φ (g) .

φ (f ◦ g) =
m∑

h,k=1

(ph ◦ f ◦ g ◦ ik) ehk =

[
m∑

h,k=1

ph ◦ f ◦

(
n∑
v=1

iv ◦ pv

)
◦ g ◦ ik

]
ehk =

=

(
m∑

h,k,v=1

ph ◦ f ◦ iv ◦ pv ◦ g ◦ ik

)
ehk =

[
m∑

h,v=1

(ph ◦ f ◦ iv) ehv

][
m∑

k,t=1

(pt ◦ g ◦ ik) etk

]
= φ (f) · φ (g) .

The other checkings are straightforward. It is an easy exercise to prove that φ is
bijective.

Theorem 8.13. Let R be a right semisimple ring. Then there exists a k ∈ N, k ≥ 1
and n1, . . . , nk ∈ N, n1, . . . , nk ≥ 1 and division rings D1, . . . , Dk such that

R ∼= Mn1 (D1)× . . .×Mnk
(Dk) as rings.

Proof. By Theorem 8.8, there is a finite set F such that

RR =
·⊕

i∈F

Si

where each Si is simple. For each i ∈ F let

Fi = {j ∈ F | Sj ∼= Si} .

Note that
Si ∼= Sj ⇐⇒ Fi = Fj
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Let

m = |{Fi | i ∈ F}|

and let Fi1 , . . . , Fim be such that

{Fi | i ∈ F} = {Fi1 , . . . , Fim} .

Then

F =
∪
i∈I

Fi = Fi1 ∪ . . . ∪ Fim .

Note that

j ∈ Fit ⇐⇒ Sj ∼= Sit ⇐⇒ Fj = Fit

For every t ∈ {1, . . . , ,m} let nt = |Fit | and let

Σt =
⊕
j∈Fit

Sj ∼= (Sit)
nt .

Note that, t, u ∈ {1, . . . , ,m} and t ̸= u implies that for each j ∈ Fit and for every
h ∈ Fiu , Sj � Sh. Infact j ∈ Fit implies that Fj = Fit and h ∈ Fiu implies that
Fh = Fiu . Now Sj ∼= Sh implies Fj = Fh so that we get Fit = Fj = Fh = Fiu which
implies that t = u. Hence, by Lemma 8.10, we have that

HomR (Sj, Sh) = {0} .

This implies that

HomR (Σt,Σu) = {0}

and hence

R ∼= End (RR) ∼= HomR

(
m⊕
t=1

Σt,

m⊕
t=1

Σt

)
∼= EndR (Σ1)× . . .× EndR (Σt) .

In view of Lemma 8.12, we conclude.

Exercise 8.14. Let R1 and R2 be right semisimple rings. Then R1 × R2 is right
semisimple.

Theorem 8.15. Let R be a ring. Then R is right semisimple if and only if R is
left semisimple.

Proof. Assume that R is right semisimple. By Theorem 8.13, there exists a k ∈
N, k ≥ 1 and n1, . . . , nk ∈ N, n1, . . . , nk ≥ 1 and division rings D1, . . . , Dk such that

R ∼= Mn1 (D1)× . . .×Mnk
(Dk) as rings.

By Theorem 8.9, each Mni
(Di) is a left semisimple ring.
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Lemma 8.16. Let (Li)i∈I be a chain of submodules of a right R-module M . Then

L =
∪
i∈I

Li

is a submodule of M .

Proof. Let x, y ∈ L and let r ∈ R. Then there are i, j ∈ I such that x ∈ Li and
y ∈ Lj. Since (Li)i∈I is a chain, we have that Li ∪ Lj = Lh where h ∈ {i, j} and
hence x− y ∈ Lh ⊆ L. On the other hand rx ∈ Li ⊆ L.

Lemma 8.17 (Generalized Krull’s Lemma). Every non-zero finitely generated right
R-module M has a maximal submodule. In particular any proper right ideal I of R
is contained in a maximal right ideal of R.

Proof. Let M be a non-zero finitely generated right R-module. We set

E = {L | L �M} .

Since {0} �M we have that {0} ∈ E and hence E ̸= ∅. Let us prove that (E ,⊆) is
inductive. Let (Li)i∈I be a chain of elements of E and let

L =
∪
i∈I

Li.

By Lemma 8.16, L is a submodule of M .
Now we claim that L �M . In fact, assume that M = L and let {x1, . . . , xn} be

a set of generators of M . Then, for any i ∈ {1, . . . , n}, there is a ji ∈ I such that
xi ∈ Lij . Since (Li)i∈I is a chain, there is a t ∈ {1, . . . , n} such that

Li1 ∪ . . . ∪ Lin = Lit .

We deduce that
M = x1R + . . .+ xnR ⊆ Lit

and hence we get that M = Lit . Since Lit ∈ E , this is a contradiction. Thus L ∈ E
and L is an upper bound for the chain (Li)i∈I . We deduce that (E ,⊆) is inductive
so that, by Zorn’s Lemma, it has a maximal element. If L0 is a maximal element
of E then L0 is not properly contained in any proper submodule of M i.e. L0 is a
maximal submodule of M .

If I is a proper right ideal of R, then the right R-module R/I is finitely generated
and nozero. Hence it has a maximal submodule L/I. Then L is a maximal right
ideal of R which contains I.

Notations 8.18. Let R be a ring. We set
Ωl = Ωl(R) = {L | L is a maximal left ideal of R}

Ωr = Ωr(R) = {M |M is a maximal right ideal of R}
RS = {S ∈ RM | S is a simple left R-module}
SR = {S ∈ MR | S is a simple right R-module}
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Definition 8.19. A left ideal I of R is called left primitive if there is a simple left
R-module S such that I = AnnR (S).

Exercise 8.20. Every left primitive ideal of R is a two-sided ideal of R.

Notation 8.21. Let Pl={I ≤R R | I is left primitive}

Lemma 8.22. Let R be a ring. Then∩
L∈Ωl

L =
∩
I∈Pl

I.

In particular
∩
L∈Ωl

L is a two-sided ideal of R.

Proof. Let I ∈ Pl and let S be a simple left R-module such that

I = AnnR (S) =
∩
x∈S
x ̸=0

AnnR (x) .

By Proposition 4.10, for every x ∈ S, x ̸= 0 we have that Rx = S and by Proposition
4.11 we get that AnnR (x) is a left maximal ideal of R. This implies that

I ⊇
∩
L∈Ωl

L

so that ∩
I∈Pl

I ⊇
∩
L∈Ωl

L.

On the other hand, if L ∈ Ωl, then

R (1 + L) = R/L

is a simple left R-module and

L = AnnR (1 + L) ⊇ AnnR (R (1 + L)) ∈ Pl

so that
L ⊇

∩
I∈Pl

I

and hence ∩
L∈Ωl

L ⊇
∩
I∈Pl

I.

Theorem 8.23. Let R be a ring. Then∩
L∈Ωl

L =
∩

M∈Ωr

M
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Proof. Let H =
∩

M∈Ωr

M and let us prove that
∩
L∈Ωl

L ⊆ H. Thus let r ∈
∩
L∈Ωl

L and

let M ∈ Ωr. Let us assume that r /∈M . Then

M + rR = R

and hence there is an x ∈M and an s ∈ R such that

1 = x+ rs.

Since, by Lemma 8.22,
∩
L∈Ωl

L is a two-sided ideal of R, we get that rs ∈
∩
L∈Ωl

L. Hence

1 − rs /∈ L for every L ∈ Ωl and hence, by Krull’s Lemma 8.17, R (1− rs) = R.
Then there is an element t ∈ R such that

(8.4) t · (1− rs) = 1.

Then we get

t = 1 + trs.

Since
∩
L∈Ωl

L is a two-sided ideal of R, we know that trs ∈
∩
L∈Ωl

L. Hence 1+ trs /∈ L

for every L ∈ Ωl so that, by Krull’s Lemma, R (1 + trs) = R. Thus there is a v ∈ R
such that

v (1 + trs) = 1.

Then

(8.5) v · t = v (1 + trs) = 1

so that

v = v · 1 (8.4)
= v · t · (1− rs)

(8.5)
= 1− rs

and hence

(8.6) v = 1− rs.

Therefore we get

(1− rs) · t (8.6)
= v · t (8.5)

= 1.

Thus we deduce that

(8.7) (1− rs) · t = 1.

Thus from (8.4) and from (8.7) , we obtain that (1− rs) is invertible in R. Since

1− rs = x ∈M

this is a contradiction.
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Definition 8.24. Let R be a ring. We set

J (R) =
∩
L∈Ωl

L
Theo8.23

=
∩

M∈Ωr

M

J (R) is called the Jacobson radical of R.

Theorem 8.25 (Nakayama’s Lemma). Let I be a right ideal of a ring R. The
following statements are equivalent.

(a) I ⊆ J (R) .

(b) For every finitely generated right R-module M , M =MI implies that M = {0} .

(c) For any submodule L of a right R-module M , if M/L is finitely generated and
L+MI =M , then L =M .

Proof. (a) ⇒ (b). Assume that M ̸= {0} is a finitely generated. By Krull’s Lemma
8.17, M contains a maximal submodule L. Thus we get that S = M/L is a simple
right R-module. By Proposition 4.10, for every x ∈ S, x ̸= 0 we have that xR = S
and by Proposition 4.11 we get that

AnnR (x) = {r ∈ R | x · r = 0}

is a right maximal ideal of R so that

I ⊆ J (R) ⊆ AnnR (x)

and hence
xI = {0} for every x ∈ S, x ̸= 0.

Thus we deduce that SI = {0} i.e.

MI + L

L
=
M

L
· I = {0}

which means that
MI + L = L

i.e. M =MI ⊆ L which contradicts the maximality of L.
(b) ⇒ (c). Since M/L is finitely generated and L+MI =M implies that

M

L
· I =

MI + L

L
=
M

L

we deduce that M/L = {0} i.e. M = L.
(c) ⇒ (a). Assume that I * J (R). Then there is an x ∈ I and a right maximal

ideal L of R such that x /∈ L. This implies that L+ xR = R and hence L+ I = R.
Therefore we get that R/L is finitely generated and L+RI = R. By (b) we deduce
that L = R, a contradiction.
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Proposition 8.26. Let R be a ring. The following statements are equivalent

(a) R has a unique maximal right ideal.

(b) J (R) is a maximal right ideal.

(c) R/J (R) is a division ring.

(a′) R has a unique maximal left ideal.

(b′) J (R) is a maximal left ideal.

Proof. (a) ⇒ (b). It is trivial.
(b) ⇒ (c). Since J (R) is a maximal right ideal the right R-module R/J (R) is

simple. Let R = R/J (R). Then RR is simple and

R = EndR
(
RR

)
.

By Schur’s Lemma 8.11, R is a division ring.
(c) ⇒ (a) Let L be a right maximal ideal of R. Then

L

J (R)
=
{
0 R

J(R)

}
=
J (R)

J (R)

so that L = J (R). Hence R has a unique maximal right ideal.
The equivalences (a′) ⇔ (b′) ⇔ (c) follow by simmetry.

Definition 8.27. A ring R is satisfying the equivalent conditions of Proposition
8.26 is called a local ring.

Proposition 8.28. Let R be a local ring and let J = J (R). Let M be a right
R-module and assume that the elements

x1 +MJ, . . . , xn +MJ

are a set of generators of M/MJ as a vector space over R/J . Then x1, . . . , xn
generate M .

Proof. Let N = x1R + . . .+ xnR. Then

M

MJ
=
N +MJ

MJ

so that M = N +MJ . Since M/MJ is finitely generated, by Nakayama’s Lemma
8.25 we deduce that M = N .



Chapter 9

Chain Conditions.

9.1. Throught this chapter R will denote a ring.

Definitions 9.2. Let M be a right R-module.
We say that

• M satisfies the Ascending Chain Condition (A.C.C.) on submodules if for
every ascending chain

M0 ≤M1 ≤ · · · ≤Mn ≤ · · ·

of submodules of M there is an n ∈ N tale che Mi =Mn for every i ≥ n.

• M satisfies the Maximum Condition on submodules, if every nonempty set of
submodules of M has a maximal element.

Definitions 9.3. Let M be a right R-module.
We say that

• M satisfies the Descending Chain Condition (D.C.C.) on submodules if for
every descending chain

· · · ≤Mn ≤ · · · ≤M1 ≤M0

of submodules of M there is an n ∈ N tale che Mi =Mn for every i ≥ n.

• M satisfies the Minimum Condition on submodules, if every nonempty set of
submodules of M has a minimal element.

Theorem 9.4. LetM be a right R-module. The following statements are equivalent.

(a) M satisfies the Ascending Chain Condition on submodules.

(b) M satisfies the Maximum Condition on submodules..

(c) Every submodule of M is finitely generated.

160
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Proof. (a) ⇒ (b) Let F be a nonempty set of submodules ofM . Since F is nonempty,
then there is a submodule M0 ∈ F . Assume that F has no maximal element. Then,
for each element L ∈ F there is at least an element L′ ∈ F such that L $ L′. For
each L ∈ F we can choose, by the Axiom of Choice, one such L′. Let

f : F −→ F
L 7−→ L′.

By the Recursion Theorem, there is a map fM0 : N → F such that

fM0 (0) =M0 and fM0 (n+ 1) = f (fM0 (n)) = (fM0 (n))
′ .

This implies that
fM0 (n) $ (fM0 (n))

′ for every n ∈ N.
For every n ∈ N, let us set

Mn = fM0 (n) .

Then, for every n ∈ N, we get
Mn $Mn+1

and hence a strictly ascending chain

M0 $M1 $ · · · $Mn $Mn+1 $ · · · $

which contradicts A.C.C..
(b) ⇒ (c) Let L be an R-submodule of M and set

F = {NR ≤ LR | NR is finitely generated} .

Since {0} = 0R ∈ F , we have that F ̸= ∅ so that F has a maximal element N . Let
us show that L = N . Let x ∈ L. Then

N + xR ≤ L and N + xR is finitely generated.

Hence L ∈ F . Since N ≤ L, by the maximality property of N we deduce that

N = N + xR

so that x ∈ N .
(c) ⇒ (a) Let

M0 ≤M1 ≤ · · ·
be a chain of submodules of M . By Lemma 8.16, L = ∪i∈NMi is a submodule of M .
Hence there is an n ∈ N, n ≥ 1 and elements x1, . . . , xn ∈ L such that

L = x1R + . . .+ xnR.

For every i ∈ {1, . . . , n} there is a ji ∈ N such that xi ∈ Lji . Let t = max {j1, . . . , jn}.
Then

L = x1R + . . .+ xnR ⊆Mi1 ∪ . . . ∪Mjn ⊆Mt

so that, for every i ∈ N
Mi ⊆ L ⊆Mt.

This implies that, for every i ≥ t, we have Mi =Mt.
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Definition 9.5. Let MR be a right R-module. We say that MR is noetherian if M
satisfies one of the equivalent conditions of Theorem 9.4.

Definition 9.6. LetMR be a right R-module. We say thatM is finitely cogenerated
if, for every set L of submodules of M tale che∩

L∈L

L = {0}

there is a finite subset F of L such that∩
L∈F

L = {0} .

Definition 9.7. Let MR be a right R-module. We say that M is finitely embedded
if its socle is essential and finitely generated.

Lemma 9.8. Let HR be a semisimple right R-module. HR is finitely cogenerated ⇔
H =

⊕
λ∈F

Sλ where F is a finite set and each Sλ ∈ Sr.

Proof. (⇒). Let (Sλ)λ∈Λ be a family of right R-modules such that

H =
⊕
λ∈Λ

Sλ.

For each γ ∈ Λ set

Hγ =
⊕

λ∈Λ\{γ}

Sλ.

Let x ∈
∩
γ∈Λ

Hγ. Then

Supp (x) ⊆
∩
γ∈Λ

(Λ\ {γ}) = ∅

so that x = 0. Thus we get that ∩
γ∈Λ

Hγ = {0} .

Since H is finitely cogenerated, there is a finite subset F ⊆ Λ such that∩
γ∈F

Hγ = {0} .

Then we have
{0} =

∩
γ∈F

Hγ =
⊕
λ∈Λ\F

Sλ

i.e.
H =

⊕
λ∈F

Sλ.
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(⇐) Assume that H =
⊕
λ∈F

Sλ where F is a finite set and each Sλ ∈ Sr. Let F

be a set of submodules of H such that∩
L∈A

L ̸= {0}

for each finite subset A of F and let us show that∩
L∈F

L ̸= {0}

Let us proceed by induction on |F |. If |F | = 1, then F = {λ} and H = Sλ so that
there is nothing to prove. Let us assume that our statement hold true for some
n ∈ N, n ≥ 1 and let us prove it for n+ 1. Let us fix a λ0 ∈ F and let us write

H = T ⊕ Sλ0 where T =
⊕

λ∈F\{λ0}

Sλ

In the case when, or each finite subset A of F , we have∩
L∈A

(L ∩ T ) ̸= {0}

then, by Induction hypothesis, we get that
∩
L∈F

(L ∩ T ) ̸= {0} and hence
∩
L∈F

L ̸=

{0}. Otherwise there is a finite subset A of of F such that∩
L∈A

(L ∩ T ) = {0} .

Let K =
∩
L∈A

L. Then

{0} ̸= K ∼=
K

K ∩ T
∼=
T +K

T
⊆ H

T
=
T ⊕ Sλ0

T
∼= Sλ0

and hence K ∼= Sλ0 so that K is a simple right submodule of H. We have

∩
L∈F

L =

(∩
L∈F

L

)
∩

(∩
L∈A

L

)
=

(∩
L∈F

L

)
∩K =

∩
L∈F

(L ∩K) .

Since,

L ∩K =
∩

N∈A∪{L}

N ̸= {0}

we deduce that K ⊆ L for every L ∈ F and hence we conclude that∩
L∈F

L ̸= {0} .
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Proposition 9.9. Let MR be a right R-module. The following statements are equiv-
alent.

(a) MR is finitely cogenerated.

(b) MR is finitely embedded.

Proof. (a) ⇒ (b). Let {0} ̸= L be a submodule of MR and let us set

E = {H | {0} ̸= H ⊆ L} .

Clearly L ∈ E so that E ̸= ∅. Let us consider the partially ordered set

(E ,⊇)

and let us prove it is inductive. Let (Hi)i∈I be a chain in (E ,⊇) and let

H =
∩
i∈I

Hi.

Let us show that H ∈ E i.e. that H ̸= {0}. In fact assume that H = {0}. Since MR

is finitely cogenerated, there is a finite subset F ⊆ I such that∩
i∈F

Hi = {0} .

Since (Hi)i∈I is a chain in (E ,⊇), there is an element t ∈ F such that

Hi ⊇ Ht for every i ∈ F

so that
{0} =

∩
i∈F

Hi ⊇ Ht

which yields a contradiction since Ht ∈ E . Thus H ∈ E and H is an upper bound
for the chain (Hi)i∈I in (E ,⊇) . Hence, by Zorn’s Lemma, there is at least a maximal
element, say HL in (E ,⊇). Let us prove that HL is simple. Let 0 ̸= x ∈ HL. Then
{0} ̸= x · R ⊆ HL ⊆ L so that x · R ∈ E and hence, by the maximality property of
HL in (E ,⊇). we get that x ·R = HL. Therefore HL is simple.

Hence every nonzero submodule L ofMR contains a simple right R-module which
implies that Soc (M) is essential in M . Since Soc (M) is a submodule of MR and
MR is finitely cogenerated, also Soc (M) is finitely cogenerated. By Lemma 9.8, we
deduce that Soc (M) =

⊕
λ∈F

Sλ where F is a finite set and each Sλ ∈ Sr.

(b) ⇒ (a). Assume that Soc (M) =
⊕
λ∈F

Sλ where F is a finite set and each

Sλ ∈ Sr. Let F be a set of submodules of M such that∩
L∈F

L = {0} .
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Then we have ∩
L∈F

[Soc (M) ∩ L] = Soc (M) ∩
∩
L∈F

L = {0} .

By Lemma 9.8, we deduce that there is a finite subset A of F such that∩
L∈A

[Soc (M) ∩ L] = {0}

Since Soc (M) =
⊕
λ∈F

Sλ is essential in M, we get that

∩
L∈A

L = {0} .

Theorem 9.10. Let M be a right R-module. The following statements are equiva-
lent.

(a) M satisfies the Descending Chain Condition on submodules.

(b) M satisfies the Minimum Condition on submodules.

(c) Every quotient of M is finitely cogenerated.

Proof. (a) ⇒ (b). It is analogous to (a) ⇒ (b) in Theorem 9.4.
(b) ⇒ (c) Let L be a submodule of MR and let Q be a nonempty set of submodules
of M/L such that ∩

Q∈Q

Q = {0} .

Now, for every Q ∈ Q, there is a submodule LQ ≤M such that

Q =
LQ
L

Let

F =

{∩
Q∈F

LQ | F ⊆Q and F is finite

}
.

Since Q is nonempty, there is a Q ∈ Q. Then LQ =
∩
K∈{Q} LK ∈ F so that F ̸= ∅.

Hence F has a minimal element N . Then there is a finite subset F of Q such that

N =
∩
Q∈F

LQ.

Let K ∈ Q and let FK = F ∪ {K} . Then

∩
H∈FK

LH =

(∩
Q∈F

LQ

)
∩ LK ≤

∩
Q∈F

LQ = N
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By the minimality of N we deduce that

∩
H∈FK

LH =

(∩
Q∈F

LQ

)
∩ LK =

∩
Q∈F

LQ = N for every K ∈ Q.

and hence
N =

∩
Q∈F

LQ ⊆ LK for every K ∈ Q.

Therefore
N =

∩
Q∈F

LQ ⊆
∩
K∈Q

LK ⊆ N =
∩
Q∈F

LQ

so that

{0} =
∩
Q∈Q

LQ
L

=

∩
Q∈Q LQ

L
=

∩
Q∈F LQ

L
=
∩
Q∈F

LQ
L

=
∩
Q∈F

Q.

(c) ⇒ (a) Let
· · · ≤M2 ≤M1 ≤M0

be a decreasing chain of submodules of MR and let

L =
∩
n∈N

Mn.

Then ∩
n∈N

Mn

L
=

∩
n∈NMn

L
= {0} .

Since M/L is finitely cogenerated, there is a finite subset F ⊆ N such that∩
n∈F Mn

L
=
∩
n∈F

Mn

L
= {0} .

Let t = maxF . Then we get

Mt =
∩
n∈F

Mn = L =
∩
n∈N

Mn ⊆Mn for every n ∈ N

so that, for every n ≥ t we get

Mn ≤Mt ≤Mn

i.e. Mn =Mt.

Definition 9.11. Let MR be a right R-module. We say that MR is artinian if M
satisfies one of the equivalent conditions of Theorem 9.10.
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Examples 9.12. 1) Every commutative principal ideal ring R is right and left
noetherian.

3) Note that

Z (p∞) =

{
m

pt
+ Z | m ∈ Z, t ∈ N

}
⊆ Q/Z

is a right (and left) artinian Z-module which is not noehterian. In fact

L (Z (p∞)) = {Z (p∞)} ∪
{⟨

1

pn
+ Z

⟩
| n ∈ N

}
,

which yields the following strictly ascending chain of Z-submodules

{0} =

⟨
1

p0
+ Z

⟩
�
⟨
1

p
+ Z

⟩
�
⟨

1

p2
+ Z

⟩
�
⟨

1

p3
+ Z

⟩
� · · ·

Theorem 9.13. Let
0 → L

f−→M
g−→ N → 0

be a short exact sequence of right R-modules. The following statements are equiva-
lent.

(a) M is right noetherian (artinian).
(b) Both L and N are noetherian (artinian).

Proof. (a) ⇒ (b) Since L ∼= f (L) we may assume that L ≤M . Then every ascending
chain

L0 ≤ L1 ≤ · · · ≤ Ln ≤ · · ·

of submodules of L is an ascending chain of submodules of MR. Thus L is right
noetherian

Let
N0 ≤ N1 ≤ · · · ≤ Nn ≤ · · ·

be an ascending chain of submodules of N . Then

g← (N0) ≤ g← (N1) ≤ · · · ≤ g← (Nn) ≤ · · ·

is an ascending chain of submodules of M . Hence there is a t ∈ N such that
g← (Ni) = g← (Nt) per ogni i ≥ t. Since g is surjective, we infer that

Ni = g [g← (Ni)] = g [g← (Nt)] = Nt

for every i ≥ t.
(b) ⇒ (a) Let

M0 ≤M1 ≤ · · · ≤Mn ≤ · · ·

be an ascending chain of submodules of MR. Then

f← (M0) ≤ f← (M1) ≤ · · · ≤ f← (Mn) ≤ · · ·
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is an ascending chain of submodules of L and

g (M0) ≤ g (M1) ≤ · · · ≤ g (Mn) ≤ · · ·

is an ascending chain of submodules of N . Hence there is a t ∈ N such that

f← (Mi) = f← (Mt) and g (Mi) = g (Mt) for every i ∈ N, i ≥ t.

Let i ≥ t and let us prove that Mi ⊆Mt. We have

Mi ∩ f (L) = f [f← (Mi)] = f [f← (Mt)] =Mt ∩ f (L) ,
Mi + f (L) = Mi +Ker (g) = g← [g (Mi)] = g← [g (Mt)] =Mt +Ker (g) =Mt + f (L) .

Let xi ∈Mi. Then
xi ∈Mi ⊆Mi + f (L) =Mt + f (L)

and hence there are y ∈ L and xt ∈Mt such that

xi = xt + f (y)

so that
f (y) = xi − xt ∈Mi +Mt ⊆Mi.

Thus we get
f (y) ∈Mi ∩ f (L) =Mt ∩ f (L)

and hence
xi = xt + f (y) ∈Mt + (Mt ∩ f (L)) ⊆Mt.

The proof in the artinian case is dual.

Corollary 9.14. Let M1,M2, . . . ,Mn be right R-modules. The following statements
are equivalent.

(a) M1 ⊕M2 ⊕ · · · ⊕Mn is noetherian (artinian).
(b) For every 1 ≤ i ≤ n, Mi is noetherian (artinian).

Proof. Let us consider the short exact sequence

0 →M1
i1−→M1 ⊕M2

p2−→M2 → 0

where i1 is the canonical injection and p2 is the canonical projection. Then, in view
of Theorem 9.13, we deduce that M1 ⊕M2 is noetherian (artinian) if and only if
both M1 and M2 are noetherian (artinian).

Lemma 9.15. Let H be a semisimple right R-module. The following statements
are equivalent.

(a) H is right noetherian.

(b) H is finitely generated.
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(c) H is right artinian.

(d) H is right finitely cogenerated.

(e) H =
⊕
λ∈F

Sλ where F is a finite set and each Sλ ∈ Sr.

Proof. Let (Sλ)λ∈Λ be a family of right R-modules such that

H =
⊕
λ∈Λ

Sλ.

(a) ⇒ (b). It follows by Theorem 9.4.
(b) ⇒ (c) . Let n ∈ N, n ≥ 1 snf let x1, . . . , xn ∈ H such thatH = x1R+. . .+xnR.

For each i ∈ {1, . . . , n} , there is a finite subset Fi ⊆ Λ such that

xi ∈
⊕
λ∈Fi

Sλ.

Let

F =
n∪
i=1

Fi.

Then we get

H = x1R + . . .+ xnR ⊆
⊕
λ∈F

Sλ

and hence
H =

⊕
λ∈F

Sλ.

Since each Sλ is right artinian, by Corollary 9.14, also H is artinian.
(c) ⇒ (d). It follows by Theorem 9.10.
(d) ⇒ (e). It follows by Lemma 9.8.
(e) ⇒ (a). We have

H =
⊕
λ∈F

Sλ.

where F is a finite set and each Sλ ∈ Sr. Since each Sλ is right noetherian, by
Corollary 9.14, also H is right noetherian.

Definition 9.16. The ring R is called right noetherian if RR is noetherian.

Remark 9.17. LetM be a right R-module. Then, by Theorem 9.4, every submodule
of MR is finitely generated . In particular RM is finitely generated. The converse
is, in general, not true. In fact, if R is a ring, then RR is always finitely generated.

Theorem 9.18. Let R be a ring. The following statements are equivalent.
(a) R is right noetherian (artinian)
(b) Every finitely generated right R-module is right noetherian (artinian).
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Proof. (a) ⇒ (b) LetMR be a finitely generated right R-module and let {x1, . . . , xn}
be a finite set of generators of M . For every i ∈ I = {1, . . . , , n} , let us consider the
homomorphism

hxi : R −→ M
r 7−→ xir

and let
h = ∇ (hxi)i∈I : R

n −→M

Then h is an epimorphism. By Corollary 9.14, (RR)
n is right noetherian so that, by

Theorem 9.13, M is right noetherian.
(b) ⇒ (a). Since RR = R1R, we conclude.

Definition 9.19. The ring R is called right artinian if RR is artinian.

Definition 9.20. Let R be a ring and let J = J (R). R is called semiprimary if

• R/J is semisimple

• J is nilpotent, i.e. there is an n ∈ N such that Jn = {0} .

Theorem 9.21. Let R be a right artinian ring. Then R is semiprimary.

Proof. Let

E =

{
n∩
i=1

Li | n ∈ N, Li ∈ Ωr

}
.

Since R is right artinian, E has a minimal element. Let H be a minimal element for
E . Then there exists an h ∈ N and I1, . . . , Ih ∈ Ωr such that

H =
h∩
j=1

Ij.

Let L ∈ Ωr. Then

H ⊇ H ∩ L =
h∩
j=1

Ij ∩ L ∈ E .

By the minimality of H we deduce that H = H ∩ L i.e. H ⊆ L. Therefore we get

H ⊆
∩
L∈Ωr

L = J ⊆ H

i.e.
H = J.

Hence we have an embedding

R

J
=

R
h∩
j=1

Ij

↪→
n∏
j=1

R

Ij
.
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Since, for every j ∈ {1, . . . , n}, R/Ij ∈ Sr, in view of Corollary 8.5, R
J
is semisimple.

Now let us consider the descending chain of (right) ideals of R :

J ≥ J2 ≥ . . . ≥ Jn ≥ . . . .

Since R is right artinian, there is an n ∈ N, n ≥ 1 such that Jk = Jn for every
k ≥ n. Let us assume that Jn ̸= {0} and let

F = {L | L ≤ RR and L · Jn ̸= {0}} .

Then J ∈ F . Therefore F is nonempty and hence it has a minimal element. Let I
be a minimal element of F . Then I · Jn ̸= {0} so that there is an x ∈ I such that

x · Jn ̸= {0} .

Then
(x · J) · Jn = x · Jn+1 = x · Jn ̸= {0} .

Since x · J ⊆ x ·R ⊆ I, by the minimality of I we get x · J = I and hence

x · J = x ·R

so that
(x ·R) · J = x ·R.

Since x ̸= 0 this contradicts Nakayama’s Lemma 8.25.

Proposition 9.22. Let R be a semiprimary ring and let M be a right R-module.
The following statements are equivalent.

(a) M is right noetherian.

(b) M is right artinian.

Proof. Let J = J (R). We know that there is an n ∈ N such that Jn = {0} and
R/J is right semisimple. Let us consider the finite chain of right submodules of M :

M =MJ0 ≥MJ ≥ . . . ≥MJn−1 ≥MJn = {0} .

For every i ∈ {0, . . . , n}, we have that

MJ i−1

MJ i
· J = {0}

so that each MJ i−1/MJ i has a natural structure of right R/J-module defined by
setting

(r + J) · x = r · x for every x ∈ MJ i−1

MJ i
.

Note that, with respect to this structure, a subset of MJ i−1/MJ i is an R/J-
submodule ofMJ i−1/MJ i if and only if it is an R-submodule ofMJ i−1/MJ i. Since
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R/J is semisimple, by Theorem 8.8, MJ i−1/MJ i is a semisimple R/J-module and
hence a semisimple R-module.

By Lemma 9.15 each MJ i−1/MJ i is right noetherian if and only if it is right
artinian.

(a) ⇒ (b). Since M is right noetherian, by Theorem 9.13 each MJ i−1/MJ i is
right noetherian and hence right artinian. Let us show that M is right artinian by
induction on n. Assume that n = 1 i.e. J = {0}. Then M = MJ0/M J

′
is right

artinian. Assume that the statement hold for sum n ∈ N, n ≥ 1 and let us prove it
for n+ 1. Let us set

M ′ =MJ and R′ =
R

Jn−1
.

Then

J ′ = J (R′) = J

(
R

Jn−1

)
=

J

Jn−1

so that
(J ′)

n−1
= {0} .

On the other hand
M ′ · Jn−1 =M · Jn = {0}

and hence M ′ has a natural structure of R′-module. Since M is right noetherian,
by Theorem 9.13, also M ′ is right noetherian. Thus, by Induction we get that M ′ is
right artinian as a right R′-module and hence alos as an R-mdoule. Let us consider
the exact sequence

0 −→MJ −→M −→ M

MJ
−→ 0.

Since both MJ and M/MJ are artinian, by Theorem 9.13 we get that also M is
artinian.

(b) ⇒ (a). It is analogous.

Theorem 9.23 (Hopkins-Levitzki). Let R be a ring and let J = J (R). The follow-
ing statements are equivalent.

(a) R is right artinian

(b) R is right noetherian and semiprimary i.e. J is nilpotent and R/J is semisimple.

Proof. (a) ⇒ (b). By Theorem 9.21, R is semiprimary. Then, by Proposition 9.22
we get that R is right noetherian.

(b) ⇒ (a). It follows by Proposition 9.22.

Examples 9.24. Still MISSING!!!!



Chapter 10

Progenerators and Morita
Equivalence

10.1 Progenerators

10.1. Let A and B be rings and let AMB be an A-B-bimodule. For every a ∈ A, the
map

A
a µ : M → M

x 7→ ax

is a right B-module homomorphism. For every b ∈ B, the map µBb is analogously
defined.

Proposition 10.2. Let A and B be rings and let AMB be an A-B-bimodule. In the
notations of 10.1, the maps

Aµ : A → End (MB)
a 7→ A

a µ
and

µB : B → End (AM)
b 7→ µBb

are ring homomorphism.

Proof. Let a, a′ ∈ A. For every x ∈M we compute(
A
a µ ◦ A

a′µ
)
(x) = A

a µ (a
′x) = a (a′x) = (aa′)x = A

aa′µ (x) .

Definition 10.3. Let A and B be rings. An A-B-bimodule AMB is called faithfully
balanced if the maps µA and Bµ of Proposition 10.2 are ring isomorphism.

Lemma 10.4. Let R be a ring, let MR be a right R-module. For every m ∈M and
f ∈ HomR (M,R) , let m · f denote the map from M into M defined by setting

(m · f) (x) = m · (f (x)) .

Then m · f ∈ EndR (M).

173
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Proof. Let r ∈ R and x ∈M. We have

(m · f) (xr) = m · (f (xr)) = m · [f (x) · r] = [m · (f (x))] · r = (m · f) (x) · r.

Notations 10.5. Let R be a ring and let X and Y be non-empty sets. Then an
X×Y -matrix over R is simply a map Λ : X×Y → R. Then, for each (x, y) ∈ X×Y
we set

Λx,y = Λ ((x, y))

and call it the (x, y) entry of Λ. We will also write

Λ = (Λx,y)(x,y)∈X×Y .

Let x ∈ X and let y ∈ Y . Then

(Λx,y)(x,y)∈{x}×Y is called the x row of Λ and (Λx,y)(x,y)∈X×{y} is called the y column of Λ

The matrix A is said to be row finite (resp. column finite) in case each row (column)
of A has at most finitely many non-zero entries. The set of all X×Y -matrix over R
will be denoted by MX×Y (R) and the subsets of row finite and column finite matrices
by RFMX×Y (R) and CFMX×Y (R) respectively.

Consider the right R-module

F = R(X) =
⊕
x∈X

Rx where, for each x ∈ X, Rx = RR.

For every t ∈ X, let εt : Rt →
⊕
x∈X

Rx be the canonical injection and let et = εt (1).

Let α ∈ Hom−R
(
R(Y ), R(X)

)
and write

α (ey) = (αx,y)x∈X =
∑
x∈X

exαx,y

Then the assignment

α 7→ (αx,y)(x,y)∈X×Y

defines a bijection

Φ : Hom−R
(
R(Y ), R(X)

)
→ CFMX×Y (R) .

When Y = X we have

Φ (α ◦ β) =

(α ◦ β) (ey) = α (β (ey)) = α

(∑
x∈X

exβx,y

)
=
∑
x∈X

α (ex) βx,y =
∑
x∈X

∑
t∈X

etαt,xβx,y =
∑
t∈X

et

(∑
x∈X

αt,xβx,y

)
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so that

Φ (α ◦ β) =

(∑
x∈X

αt,xβx,y

)
(t,y)∈X×X

Hence CFMX×Y (R) inherits a ring structure by setting

Λ · Γ =

(∑
t∈X

Λx,tΓt,y

)
(x,y)∈X×X

Clearly, in this way, Φ becomes a ring isomorphism.

Theorem 10.6. Let R be a ring, let MR be a generator, let A = End (MR) and
B = End (AM). Then the ring homomorphism

µR : R → End (AM)
r 7→ µRr

is an isomorphism i.e. the bimodule AMR is faithfully balanced.

Proof. (First Proof) Since MR is a generator, there exists an n ∈ N, n ≥ 1 and an
epimorphism

π :Mn
R → RR.

For every 1 ≤ t ≤ n let
it :MR →Mn

R

denote the t-th canonical injection and πt = π ◦ it. Since π is surjective there exists
(x1, . . . , xn) ∈Mn

R such that

1R = π ((x1, . . . , xn)) =
n∑
i=1

πi (xi) .

Let r ∈ Ker
(
µR
)
. Then µRr = 0 i.e. xr = 0 for every x ∈M and hence

r = 1R · r =
n∑
i=1

πi (xi) · r =
n∑
i=1

πi (xi · r) = 0

Thus µR is injective.
Let now b ∈ B = End (AM). For every x ∈M we have

(x) b = (x · 1R) b =

(
x ·

n∑
i=1

πi (xi)

)
b =

(
n∑
i=1

x · πi (xi)

)
b =

(
n∑
i=1

(x · πi) (xi)

)
b.

By Lemma 10.4, we have x ·πi (xi) = (x · πi) (xi) and x ·πi ∈ A = EndR (MR). Since
b ∈ B = End (AM) we get

(x) b =

(
n∑
i=1

x · πi (xi)

)
b =

(
n∑
i=1

(x · πi) (xi)

)
b =

(
n∑
i=1

(x · πi) · xi

)
b

= (x · πi) ·
n∑
i=1

(xi) b = x ·

[
πi

(
n∑
i=1

(xi) b

)]
.
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Therefore we deduce that

b = µRr where r = x ·

[
πi

(
n∑
i=1

(xi) b

)]
.

(Second Proof) Since MR is a generator, there exists an n ∈ N, n ≥ 1 and a map

π :Mn
R → RR

which is an epimorphism of right R-modules. Since RR is projective, there is a right
R-module homomorphism

σ : RR →Mn
R

such that
πσ = IdR.

Therefore we get that

(10.1) Mn = Im (σ)⊕X where X = Ker (π) .

Let y1, . . . , yn ∈M be such that

σ (1R) = (y1, . . . , yn) .

Then, for every r ∈ R we have

σ (r) = (y1r, . . . , ynr)

and

(10.2) Im (σ) = (y1, . . . , yn)R = yR where y = (y1, . . . , yn) .

Let r ∈ Ker
(
µR
)
. Then µRr = 0 i.e. xr = 0 for every x ∈ M and hence σ (r) =

(y1r, . . . , ynr) = 0. Since σ is a monomorphism, we deduce that r = 0 and hence µR

is injective.
Let now b ∈ B = End (AM) and let us assume that

z = (y1b, . . . , ynb) /∈ yR = Im (σ) .

In view of (10.1) and of (10.2), there exists an r ∈ R and an x ∈ X, x ̸= 0 such that

z = yr + x.

Let
iX : X →Mn and πX :Mn → X

denote respectively the canonical injection of X and the canonical projection on X
with respect to the decomposition (10.1). We set

α = iXπX :Mn
R →Mn

R.
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Then we have

α (z) = iX (x) = x ̸= 0

and

α (yr) = 0 for every r ∈ R.

For every 1 ≤ t ≤ n let

it :MR →Mn
R and pt :M

n
R →MR

denote the t-th canonical injection and projection. Since 0 ̸= α (z) ∈ Mn
R there

exists an s ∈ {1, . . . , n} such that

0 ̸= psα (z) = psα (y1b, . . . , ynb) = psα

(
n∑
t=1

itpt [(yb)]

)
=

= psα

(
n∑
t=1

it [pt (yb)]

)
=

n∑
t=1

psαit [pt (yb)] .

Since

pt (yb) = ytb = (pt (y)) b

we get

it [pt (yb)] = it [(pt (y)) b]

and since psαit ∈ End (MR) = A and b ∈ B = End (AM) , we deduce that, for every
t ∈ {1, . . . , n} so that

psαit [pt (yb)] = (psαit) [(pt (y)) b] = [(psαit) pt (y)] b

and hence

0 ̸= psα (z) =
n∑
t=1

[(psαit) pt (y)] b =

(
n∑
t=1

(psαit) pt (y)

)
b =

=

(
n∑
t=1

psαit (yt)

)
b =

[
psα

(
n∑
t=1

it (yt)

)]
b =

= [psα (y)] b = [ps (0)] b = 0

which is a contradiction. Therefore we infer that z = (y1b, . . . , ynb) ∈ yR and hence
there exists an r̃ ∈ R such that

z = (y1b, . . . , ynb) = yr̃ = (y1r̃, . . . , ynr̃)

i.e.

(10.3) yib = yir̃ for every 1 ≤ i ≤ n.
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For every x ∈M let us consider the right R-module homomorphism

hx : RR → MR

r 7→ xr

we have

x = hx (1R) = hx [πσ (1R)] = hx (π (y)) = hx

(
π

(
n∑
t=1

(it) (yt)

))
=

=
n∑
t=1

(hxπit) (yt) =
n∑
t=1

axt (yt)

where
axt = hxπit ∈ End (MR) = A for every 1 ≤ t ≤ n.

Since b ∈ B = End (AM), we get

xb =

(
n∑
t=1

axt (yt)

)
b =

n∑
t=1

[axt (yt)] b =
n∑
t=1

axt [(yt) b]
(10.3)
=

n∑
t=1

axt (ytr̃) =

=
n∑
t=1

(axt (yt)) r̃ =

(
n∑
t=1

axt (yt)

)
r̃ = xr̃ = µRr̃ (x) .

Since this holds for every x ∈M , we deduce that

b = µRr̃ = µR (r̃) .

10.7. Let PR be a right R-module. We set

P ∗ = HomR (PR, RR) .

By Proposition 6.28, P ∗ has a natural structure of left R-module defined by setting

(rf) (x) = rf (x) for all r ∈ R, f ∈ P ∗, x ∈ P.

Definition 10.8. Let PR be a right R-module. A dual basis for PR is a pair(
(xi)i∈I , (x

∗
i )i∈I

)
where (xi)i∈I is a family of elements of P and (x∗i )i∈I is a fam-

ily of elements of P ∗ subject to the conditions

P1) For every x ∈ P, x∗i (x) = 0 for almost every i ∈ I, i.e. there is a finite subset
Fx ⊆ I such that x∗i (x) = 0 for every i /∈ Fx.

P2) For every x ∈ P, the following equality holds:

x =
∑
i∈I

xi · x∗i (x) .
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A dual basis is said to be finite whenever I is a finite set.

Theorem 10.9. (Dual Basis Lemma) Let PR be a right R-module. Then

a) PR is projective if and only if it has a dual basis.

b) PR is projective and finitely generated if and only if it has a finite dual basis.

Proof. Let X be a system of generators of P . For every x ∈ P , let

hx : RR → PR defined by setting hx (r) = xr for every r ∈ R.

Then hx is a right R-module homomorphism and, by Proposition 2.2

h = ∇ (hx)x∈X : RR
(X) → P.

is a surjective homomorphism.
Assume that P is projective. Then, by Proposition (2.17), there exists a right

R-module homomorphism γ : P → RR
(P ) such that

h ◦ γ = IdP .

For every x ∈ X let
πx : RR

(X) → RR

denote the xth canonical projection.

(10.4) x = (h ◦ γ) (x) =
∑
y∈X

hy (πy (γ (x))) =
∑
y∈X

y [(πy ◦ γ) (x)] .

For every y ∈ X, set
y∗ = πy ◦ γ

and
Fx = Supp (γ (x)) .

Then, y∗ ∈ P ∗ and for every y /∈ Fx we have

y∗ (x) = πy ◦ γ (x) = 0.

Moreover, from (10.4) we get that

x =
∑
y∈X

y · y∗ (x)

Conversely assume that
(
(xi)i∈I , (x

∗
i )i∈I

)
is a dual basis for PR and let

λ = ∆(x∗i )i∈I : PR → RI
R.
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Since, for every x ∈ P, x∗i (x) = 0 for almost every i ∈ I, we have that Im (λ) ⊆ R
(I)
R

so that we can consider the corestriction γ of λ to R
(I)
R . Now let

χ = ∇ (hxi)i∈I : RR
(I) → P.

For every y ∈ P , we have

(χ ◦ γ) (y) =
∑
i∈I

hxi (πi (γ (x))) =
∑
i∈I

hxi (x
∗
i (y)) =

∑
i∈Ixi

xi · x∗i (y) = y.

Therefore we deduce that
χ ◦ γ = IdP

and hence, in view of Proposition (2.17), PR is projective.

Lemma 10.10. If ((x1, . . . , xn) , (x
∗
1, . . . , x

∗
n)) is a finite dual basis of a finitely gen-

erated projective right R-module PR, then for every ξ ∈ HomR (P,R), using the left
R-module structure of HomR (P,R) enduced by RR, we have

(10.5) ξ =
n∑
i=1

ξ (xi) · x∗i

Thus the left R-module HomR (P,R) is projective and finitely generated with dual
basis ((x∗1, . . . , x

∗
n) , (x̃1, . . . , x̃n)) where, for every i = 1, . . . , n

x̃i (ξ) = ξ (xi) for every ξ ∈ HomR (P,R) .

Proof. For every y ∈ P , we compute[
n∑
i=1

ξ (xi) · x∗i

]
(y) =

n∑
i=1

ξ (xi)·x∗i (y) =
n∑
i=1

ξ [xi · x∗i (y)] = ξ

[
n∑
i=1

xi · x∗i (y)

]
= ξ (y) .

We have to prove that for every i = 1, . . . , n,the map x̃i is left R-linear. In fact we
have

x̃i (rξ) = (rξ) (xi) = r · ξ (xi) = r · x̃i (ξ) .

Proposition 10.11. Let PR be a right R-module. Then the map

ωP : P → HomR (HomR (P,R) , R)
y 7→ ξ 7→ ξ (y)

is well defined and is a right R-module homomorphism. If PR is a finitely generated
projective, then it is an isomorphism. Namely if ((x1, . . . , xn) , (x

∗
1, . . . , x

∗
n)) is a

finite dual basis of PR, then the inverse ζP of ωP is defined by setting

ζP (α) =
n∑
i=1

xi · (x∗i )α for every α ∈ HomR (HomR (P,R) , R) .
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Proof. For every ξ ∈ HomR (P,R) , α ∈ HomR (HomR (P,R) , R) and y ∈ P, we
compute

(ξ) [(ωP ◦ ζP ) (α)] = (ξ) ζP (α) = ξ (ζP (α)) = ξ

(
n∑
i=1

xi · (x∗i )α

)
=

=
n∑
i=1

ξ (xi) · (x∗i )α =

[
n∑
i=1

ξ (xi) · x∗i

]
α

10.5
= (ξ)α

(ζP ◦ ωP ) (y) =
n∑
i=1

xi · [(x∗i )ωP (y)] =
n∑
i=1

xi · x∗i (y) = y.

Proposition 10.12. Let APR be an A-R-bimodule. For every M ∈Mod-R the map

αM : M ⊗R HomR (P,R) → HomR (P,M)
m⊗ f 7→ y 7→ mf (y)

is well defined and is a right A-module homomorphism. If PR is finitely generated
and projective, then αM is an isomorphism. Namely if ((x1, . . . , xn) , (x

∗
1, . . . , x

∗
n)) is

a finite dual basis of PR, then the inverse βM of αM is defined by setting

βM (h) =
n∑
i=1

h (xi)⊗R x
∗
i for every h ∈ HomR (PR,MR) .

In particular

P ⊗R P
∗ = AP ⊗R HomR (P,R)

αP∼= HomR (P, P )

is an isomorphism of A-A-bimodules.
Moreover the collection (αM)M∈Mod-Ryields a functorial isomorphism

HomR (P,−) ∼= −⊗R HomR (P,R) .

Proof. Let m ∈M and f ∈ HomR (P,R). We compute

(βM ◦ αM) (m⊗ f) =
n∑
i=1

[αM (m⊗ f) (xi)]⊗R x
∗
i =

n∑
i=1

mf (xi)⊗R x
∗
i =

= m⊗R

n∑
i=1

f (xi)x
∗
i

10.5
= m⊗R f.

Let now h ∈ HomR (PR,MR) and let us compute, for every y ∈ P

α

(
n∑
i=1

h (xi)⊗R x
∗
i

)
(y) =

n∑
i=1

h (xi) · x∗i (y) =
n∑
i=1

h (xi) · x∗i (y) =

= h

(
n∑
i=1

xi · x∗i (y)

)
= h (y) .
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We deduce that α (
∑n

i=1 h (xi)⊗R x
∗
i ) = h.

[αP (a (z ⊗R ξ) b)] (y) = [αP (az ⊗R ξb)] (y) = az · [(ξb) (y)] = a · z · ξ (b · y)
[a · αP (z ⊗R ξ) · b] (y) = a · [(αP (z ⊗R ξ) · b) (y)] = a · [(αP (z ⊗R ξ)) (b · y)]

= a · [z · ξ (b · y)]

Definition 10.13. A right R-module PR is called a progenerator if it is a finitely
generated projective generator.

Lemma 10.14. Let APR be a faithfully balanced A-R-bimodule. Then the following
are equivalent

(a) PR is a progenerator.

(b) AP is a progenerator.

Proof. Assume that PR is a progenerator. Then we have a two splitting epimorphism
of right R-modules

Rn
R → PR and Pm

R → RR

which give rise, by applying HomR (−, PR) to two splitting monomorphism of left
A-modules

A = HomR (P, P ) → HomR (Rn, P ) ∼= [HomR (R,P )]n
Prop6.29∼= P n

and P
Prop6.29∼= HomR (R,P ) → HomR (Pm, P ) ∼= Am.

Lemma 10.15. Let PR be a progenerator and let RP
∗ = HomR (PR, RR). Then RP

∗

is a progenerator.

Proof. Since PR is a progenerator, we have a two splitting epimorphism of right
R-modules

Rn
R → PR and Pm

R → RR

which give rise, by applying HomR (−, RR) , to two splitting monomorhisms of left
R-modules

P ∗ = HomR (P,R) → HomR (Rn, R) ∼= [HomR (R,R)]n
Prop6.29∼= Rn

and R
Prop6.29∼= HomR (R,R) → HomR (Pm, R) ∼= [HomR (P,R)]m = (P ∗)m .
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Proposition 10.16. Let PR be a progenerator and let A = End (PR). Then both
the bimodules APR and RP

∗
A are faithfully balanced.

Proof. Since PR is a generator, by Theorem 10.6, APR is faithfully balanced. Now, by
Lemma 10.15, RP

∗ is a progenerator. Let B = HomR (P ∗, P ∗) . Then, by Theorem
10.6, RP

∗
B is faithfully balanced. Let us consider the canonical ring homomorphism

µ = µA : A → HomR (P ∗, P ∗) = B
a 7→ µAa :ξ 7→ ξ · a

We will prove that µ is an isomorphism. First of all, note that, for every ξ ∈ P ∗, a ∈
A, y ∈ P we have

(ξ · a) (y) = ξ (a · y) = ξ (a (y)) = (ξ ◦ a) (y)
which entails

(10.6) ξ · a = ξ ◦ a
By Lemma 10.15, RP

∗ is a progenerator and hence, by Proposition 10.12

αP ∗ : HomR (P ∗, R)⊗R P
∗ → HomR (P ∗, P ∗)

f ⊗ ξ 7→ ζ 7→ f (ζ) ξ
.

is an isomorphism. By Proposition 10.11,

ωP : P → HomR (P ∗, R)
y 7→ ξ 7→ ξ (y)

is also an isomorphism. Therefore we have the chain of isomorphisms

HomR (P, P )
α−1
P∼= P ⊗R HomR (P,R) = P ⊗R P

∗ ωP⊗RP
∗

∼=
∼= HomR (P ∗, R)⊗R P

∗
αP∗∼= HomR (P ∗, P ∗) .

Let us prove that αP ∗ ◦ (ωP ⊗R P
∗) ◦

(
α−1P
)
= λ. For any a ∈ A, we have[

αP ∗ ◦ (ωP ⊗R P
∗) ◦

(
α−1P
)]

(a) = [αP ∗ ◦ (ωP ⊗R P
∗)]
(
α−1P
)
(a)

= [αP ∗ ◦ (ωP ⊗R P
∗)]

(
n∑
i=1

a (xi)⊗R x
∗
i

)

= αP ∗

[
n∑
i=1

ωP (a (xi))⊗R x
∗
i

]
so that we get{[

αP ∗ ◦ (ωP ⊗R P
∗) ◦

(
α−1P
)]

(a)
}
(ζ) =

n∑
i=1

[ωP (a (xi)) (ζ)] · x∗i

=
n∑
i=1

ζ (a (xi)) · x∗i =
n∑
i=1

(ζ ◦ a) (xi) · x∗i

(10.5)
= ζ ◦ a (10.6)

= ζ.a

Hence we deduce that µ is an isomorphism.
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Corollary 10.17. Let PR be a progenerator, let A = End (PR). Then both the
bimodules APR and RP

∗
A are faithfully balanced and each of the modules

PR,AP ,RP
∗,P ∗A

is a progenerator.

Proof. By Proposition 10.16, the bimodules APR and RP
∗
A are faithfully balanced.

By Lemma 10.15, RP
∗ is a progenerator. Then, by Lemma 10.14, also AP and P ∗A

are progenerators.

Theorem 10.18. Let PR be a progenerator and let A = End (PR). Then the functor
HomR (APR,−) :Mod-R →Mod-A is an equivalence of categories whose inverse is
the functor −⊗A APR :Mod-A→Mod-R.

Proof. Let M ∈Mod-R and let us consider the evaluation map

νM : HomR (APR,M)⊗A APR → M
f ⊗A y 7→ f (y)

.

It is easy to check that νM is well defined and it is a right R-module homomorphism.
By Proposition (4.3) we know that

M =
∑

h∈HomR(P,M)

Im (h) .

Thus given x ∈M there exists a finite subset Fx ⊆ HomR (P,M) such that

x ∈
∑
h∈Fx

Im (h) .

Thus, for every h ∈ Fx there exists an yh ∈ P such that

x =
∑
h∈Fx

h (yh) = νM

(∑
h∈Fx

h⊗A yh

)
.

Therefore νM is surjective. Assume now that m ∈ N,m ≥ 1, and f1, . . . , fm are
elements in HomR (APR,M) and y1, . . . , ym are elements in P such that

0 = νM

(
m∑
i=1

fi ⊗A yi

)
=

m∑
i=1

fi (yi) .

Let
f = ∇ (f1, . . . , fm) : P

m →M .

and for every 1 ≤ i ≤ m, let ei : P → Pm and pi : P
n → P be the i-th canonical

injection and projection respectively.Then, for every w = (w1, . . . , wm) ∈ Pm we
have that

f (w) = f

[
m∑
i=1

(ei ◦ pi) (w)

]
=

m∑
i=1

(f ◦ ei ◦ pi) (w) =

(
m∑
i=1

fi ◦ pi

)
(w)
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i.e.

(10.7) f =
m∑
i=1

fi ◦ pi

In particular for
y = (y1, . . . , ym)

we have

f (y) =
m∑
i=1

fi (yi) = 0 so that y = (y1, . . . , ym) ∈ Ker (f) .

Since PR is a generator of Mod-R, There exists a surjective right R-module homo-
morphism

χ : P (X) → Ker (f) ⊆ Pm.

For every x ∈ X let
εx : P → P (X) and πx : P

(X) → P

be the canonical injection and projection respectively. Then

χ = ∇ (χx)x∈X where χx = χ ◦ εx ∈ HomR (PR,Ker (f)) .

Since y ∈ Ker (f) , there exist a z ∈ P (X) such that χ (z) = y. Let F = Supp (z).
Then

z =
∑
x∈F

εx (zx) =
∑
x∈F

(εx ◦ πx) (z)

and

y = χ (z) = χ

(∑
x∈F

(εx ◦ πx) (z)

)
=
∑
x∈F

(χ ◦ εx ◦ πx) (z) =

=
∑
x∈F

(χ ◦ εx) (πx (z)) =
∑
x∈F

χx (zx)

where χx = χ ◦ εx ∈ HomR (PR,Ker (f)). Hence we have

(10.8) f ◦ χx = 0

and hence, since pi ◦ χx ∈ End (PR) = A, we get

m∑
i=1

fi ⊗A yi =
m∑
i=1

fi ⊗A pi (y) =
m∑
i=1

fi ⊗A pi

(∑
x∈F

χx (zx)

)
=

=
m∑
i=1

∑
x∈F

fi ⊗A (pi ◦ χx) (zx) =
∑
x∈F

m∑
i=1

fi ⊗A (pi ◦ χx) · zx =
∑
x∈F

m∑
i=1

fi · (pi ◦ χx)⊗A zx =

=
∑
x∈F

(
m∑
i=1

fi ◦ pi

)
◦ χx ⊗A zx

(10.7)
=
∑
x∈F

f ◦ χx ⊗A zx
(10.8)
= 0.
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Let now L ∈Mod-A and let us prove that the natural map

γL : L → HomR (APR, L⊗A APR)
x 7→ y 7→ x⊗A y

.

is an isomorphism. Let us consider the isomorphism of Proposition 6.43

µL : L⊗A A → L
x⊗A a 7−→ x · a .

and the composition of homomorphisms

L
(µL)

−1

∼= L⊗A A
L⊗AβP∼= L⊗A P ⊗R HomR (P,R) =

= L⊗A P ⊗R P
∗
αL⊗AP∼= HomR (P,L⊗A AP )

where βP is as in Proposition 10.12 and αL⊗AP as in Proposition 10.12. For every
x ∈ L and y ∈ P we compute[(

αL⊗AP ◦ (L⊗A βP ) ◦
(
µL
)−1)

(x)
]
(y) = [(αL⊗AP ◦ (L⊗A βP )) (x⊗A 1A)] (y)

=

[
αL⊗AP

(
x⊗A

n∑
i=1

xi ⊗R x
∗
i

)]
(y) =

[
n∑
i=1

αL⊗AP (x⊗A xi ⊗R x
∗
i )

]
(y)

=
n∑
i=1

(x⊗A xi)x
∗
i (y) = x⊗A

n∑
i=1

xix
∗
i (y) = x⊗A y.

Therefore we deduce that γL = αL⊗AP ◦ (L⊗A βP ) ◦
(
µL
)−1

is an isomorphism.

Corollary 10.19. Let PR be a progenerator and let A = End (PR). Then the functor
HomA (P,−) : A-Mod → R-Mod is an equivalence of categories whose inverse is
the functor APR ⊗R − :Mod-A→Mod-R.

Proof. By Corollary 10.17, AP is a progenerator and R = End (AP ). Apply now
Theorem 10.18.

Exercise 10.20. Let n ∈ N, n ≥ 1 and let PR = Rn
R. Then EndR (PR) ∼= Mn (R)

as rings.

Example 10.21. Let n ∈ N, n ≥ 1 and let PR = Rn
R. Then PR is a progenerator

and A = EndR (PR) ∼= Mn (R). Hence, by Theorem 10.18, the functor

HomR (APR,−) :Mod−R →Mod− A ∼= Mod−Mn (R)

is an equivalence of categories whose inverse is the functor − ⊗A APR : Mod-A →
Mod-R.
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Lemma 10.22. Let PR be a progenerator, let A = End (PR) and let us consider the
bimoduleA ((P

∗)∗)R := HomA (P
∗, A) where P ∗ = HomR (P,R). Then the map

Ω : P → HomA (RP
∗,HomR (P,A P ))

x 7→ ξ 7→ (y 7→ x · ξ (y)) .

is well defined and is an isomorphism of A-R-bimodules.

Proof. By Theorem 10.18, for every M ∈Mod-R the evaluation map

νM : HomR (P,M)⊗A P → M
f ⊗A y 7→ f (y)

.

is well defined and it is a right R-module isomorphism. In particular, for M = R
we have that

νR : HomR (APR, R)⊗A APR → R
f ⊗A y 7→ f (y)

is a right R-module isomorphism. Now we have the following chain of isomorphisms

P ∼= HomR (R,P ) ∼= HomR (P ∗ ⊗A P, P ) ∼= HomA (P
∗,HomR (P, P )) = HomA (P

∗, A)

where the first one is ρ′P : P → HomR (R,P ) which is the isomorphism of Prop 6.29,
the second one is HomR (νR, P ) and the third one is ΛP

∗
P of Theorem 6.59. Let us

prove that the composition of these isomorphisms is Ω. Let x, y ∈ P and ξ ∈ P ∗.
We have{[(

ΛP
∗

P ◦ HomR (νR, P ) ◦ ρ′P
)
(x)
]
(ξ)
}
(y) =

{[
ΛP

∗

P (ρ′P (x) ◦ νR)
]
(ξ)
}
(y)

= (ρ′P (x) ◦ νR) (ξ ⊗A y) =

= ρ′P (x) (ξ (y)) = x · ξ (y) = [Ω (x) (ξ)] (y) .

Let us prove that Ω is a homomorphism of A-R-bimodules. Let a ∈ A, r ∈ R, x ∈
P, ξ ∈ P ∗ and y ∈ P . We compute

[(a · Ω (x) · r)] (ξ) (y) = {a · [Ω (x) (r · ξ)]} (y) = a · {[Ω (x) (r · ξ)] (y)}
= a · (x · [(r · ξ) (y)]) = a · (x · [r · ξ (y)])
= (a · x · r) · ξ (y) = [Ω (a · x · r) (ξ)] (y) .

Theorem 10.23. Let PR be a progenerator, let A = End (PR). By Proposition
10.16, the bimodules APR and RP

∗
A = HomR (P,R) are faithfully balanced. Let us

consider the following functors:

H = HomR (P,−) :Mod-R −→Mod-A

T ′ = −⊗R P
∗ :Mod-R −→Mod-A

T = −⊗A PR :Mod-A −→Mod-R

H ′ = HomA (P
∗,−) :Mod-A −→Mod-R.

Then we have functorial isomorphisms

H ∼= T ′ and T ∼= H ′.
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Proof. For every M ∈Mod-R let

αM : M ⊗R HomR (P,R) → HomR (P,M)
m⊗ f 7→ y 7→ mf (y)

.

be the isomorphism of Proposition 10.12. Then the family of maps (αM)M∈Mod−R
gives rise to a functorial isomorphism

α : −⊗R P
∗ −→ HomR (P,−)

between the functorsH and T ′. Similarly consider the progenerator P ∗A = HomR (P,R)
with R ∼= End (P ∗A) and the bimodule A ((P

∗)∗)R := HomA (P
∗, A). For every

L ∈Mod-A let
α′L : L⊗A (P ∗)∗ → HomA (P

∗, L)
x⊗ f 7→ y 7→ xf (y)

.

be the analogous of the isomorphism of Proposition 10.12 for the bimodule RP
∗
A with

P ∗A finitely generated and projective.Then the family of maps (α′L)L∈Mod−A gives rise
to a functorial isomorphism α′ : − ⊗A (P ∗)∗ −→ HomA (P

∗,−) = H ′. By Lemma
10.22, the map

Ω : P → HomA (P
∗,HomR (P, P ) = A)

x 7→ ξ 7→ (y 7→ x · ξ (y)) .

is well defined and is an isomorphism of A-R-bimodules. Hence we conclude that

−⊗A P
−⊗AΩ∼= −⊗A (P ∗)∗

is a functorial isomorphism. In conclusion we have a functorial isomorphism
T = −⊗A P ∼= HomA (P

∗,−) = H ′.

Proposition 10.24. Let AWR be an A-R-bimodule. By means of Proposition 6.28,
for every M ∈Mod-R let us consider the left A-module HomR (M,W ) and for any
L ∈ A-Mod let us consider the right R-module HomR (M,W ). Then the map

ϑ : HomA (AL,HomR (M,W )) → HomR (MR,HomA (L,W ))
f 7→ x 7→ [() f ] (x) : L→W

.

is an isomorphism natural in each variable.

Proof. Consider the map

ζ : HomR (M,HomA (AL,W )) → HomA (L,HomR (M,W ))
h 7→ l 7→ (l)h () : L→ W

.

Let us prove that it is a two-sided inverse of ϑ. For every l ∈ L and x ∈ M ,
f ∈ HomR (M,HomA (L,W )) and h ∈ HomR (M,HomA (L,W )) we have

{[(l) (ζ ◦ ϑ) (f)]} (x) = (l) [ϑ (f) (x)] = [(l) f ] (x)

and
{(l) [(ϑ ◦ ζ) (h)] (x)} = [(l) ζ (h)] (x) = (l)h (x) .

The remaining of the proof is left to the reader.
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Exercise 10.25. The family of isomorphisms (ρM)M∈Mod-R , where

ρM : HomR (R,M) → M
f 7→ f (1R)

is the map of Proposition 6.29, defines a functorial isomorphism ρ : HomR (R,−) →
IdMod-R.

Lemma 10.26. Let F : Mod-R → Mod-A be an additive functor. Assume that
(F,G) is an equivalence of categories via the functorial isomorphisms ω : G ◦ F →
IdMod-R and ω′ : F ◦ G → IdMod-A . Then, for every family (Mi)i∈I in Mod-R we
have that

F

(⊕
i∈I

Mi

)
∼=
⊕
i∈I

F (Mi) .

Proof. By..., F is full and faithful. Let εi :Mi →
⊕

i∈IMi denote the i-th canonical
injection. Let

ϑi = F (ζi) : F (Mi) → L = F (M)

be a family of morphisms in Mod-A. Then there exists a unique morphism

ζ :
⊕
i∈I

Mi →M

such that

ζ ◦ εi = ζi for every i ∈ I.

Thus we get

F (ζ) ◦ F (εi) = F (ζi) = ϑi for every i ∈ I.

Assume that

χ : F

(⊕
i∈I

Mi

)
→ F (M)

is another morphism such that

χ ◦ F (εi) = F (ζi) = ϑi for every i ∈ I.

Then χ = F (ξ) for some ξ :
⊕

i∈IMi →M and, since F is faithful, we get

ξ ◦ εi = ζi for every i ∈ I.

By the unicity of ζ, we conclude.

Let F : Mod-R → Mod-A be an additive functor. Assume that (F,G) is an
equivalence of categories via the functorial isomorphisms ω : G ◦ F → IdMod-R and
ω′ : F ◦G→ IdMod-A By..., F is full and faithful i.e. for every M1,M2 ∈Mod-R,
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the map

FM1
M2

: HomMod-R (M1,M2) = HomR (M1,M2) → HomMod-A (F (M1) , F (M2))

= HomA (F (M1) , F (M2))

defined by setting
FM1
M2

(f) = F (f)

is a group isomorphism. In particular, for M ∈Mod-R,

FM
M : EndR (M) = HomMod-R (M,M) → HomMod-A (F (M) , F (M)) = EndA (F (M))

is a group isomorphism. Let us prove it is a ring homomorphism. Let f, g ∈
EndR (M) . we have

FM
M (f ◦ g) = F (f ◦ g) = F (f) ◦ F (g) = FM

M (f) ◦ FM
M (g) .

Hence F (M) is an EndR (M)-A-bimodule.
Let us consider the particular case of M = RR. Set QA = F (RR). By the

foregoing we have
R ∼= EndA (Q)

so that Q is an R-A-bimodule.
Similar results hold for G. Let PR = G (AA). Then EndR (P ) ∼= A, P is an

A-R-bimodule and, for every M ∈Mod-R, we have the chain of isomorphisms

F (M)
ρ−1
M∼= HomA (A,F (M))

GA
F (M)∼= HomR (G (A) , GF (M))

HomR(G(A),ωM )∼= HomR (G (A) ,M) = HomR (P,M) .

We leave it as an exercise to the reader to prove that this is an isomorphism of right
A-modules. Since ρ,GA

− and HomR (G (A) , ω) are functorial isomorphisms, we get
a functorial isomorphism between the functors F,HomR (P,−) :Mod-R →Mod-A,

φ : F → HomR (P,−) .

By Theorem (G,F ) is an adjunction. Since also (−⊗A P,HomR (P,−)) is an ad-
junction, By Theorem —, we get that G ∼= −⊗A P . In particular G is a right exact
functor. By interchanging the role of F and G, we get that also F is a right exact
functor and since the functors F,HomR (P,−) : Mod-R → Mod-A are isomorphic,
we deduce that even HomR (P,−) is a right exact, and hence an exact, functor.
Hence PR is a projective right R-module. Let M ∈ Mod-R. Then, in Mod-A we
have an exact sequence of the type

A(X) −→ F (M) → 0

which, in view of Lemma 10.26 yields the exact sequence in Mod-R
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P (X) = (G (A))(X) ∼= G
(
A(X)

)
−→ GF (M) ∼= M → 0.

Thus we deduce that PR is also a generator. By symmetry we also get that QA is a
generator. Hence in Mod-A we have an epimorphism of the form

Qn
A −→ AA → 0

which yields the exact sequence in Mod-R

Rn ∼= [GF (R)]n = G (Q)n −→ G (A) → 0

so that we get that PR is also finitely generated. Therefore we obtain the following
theorem.

Theorem 10.27. Let F : Mod-R → Mod-A be an additive functor. Assume that
(F,G) is an equivalence of categories. Set PR = G (AA). Then PR is a progenerator
and we have functorial isomorphisms

F ∼= HomR (P,−) and G ∼= ⊗AP .

Proposition 10.28.

HomA- (E,GB)⊗B F ∼= HomA- (E,GB ⊗B F )

α : HomA- (E,GB)⊗B F → HomA- (E,GB ⊗B F )
f ⊗ x 7→ [y 7→ (y) f ⊗B x]

when

• AE is proj.f.g. or

• BF is proj.f.g.

α is an isomorphism. If BF is proj.f.g. with dual basis ((x1, . . . , xn) , (x
∗
1, . . . , x

∗
n))

,and f ∈ HomA- (E,GB ⊗B F ) , we have

α−1 (f) =
∑
i

∑
t

[e 7→ gt · (yt)x∗i ]⊗B xi

(e) f =
∑
t

gt ⊗B yt

F ⊗B Hom-A (E,B G) ∼= Hom-A (E,F ⊗B G)

β : F ⊗B Hom-A (E,B G) → Hom-A (E,F ⊗B G)
x⊗ f 7→ [y 7→ x⊗B f (y)]

when

• EA is proj.f.g. or
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• FB is proj.f.g.

β is an isomorphism. If FB is proj.f.g. with dual basis ((x1, . . . , xn) , (x
∗
1, . . . , x

∗
n))

,and f ∈ Hom-A (E,F ⊗B G) , we have

β−1 (f) =
∑
i

xi ⊗B

∑
t

[e 7→ x∗i (yt) gt]

f (e) =
∑
t

yt ⊗B gt

Proof. Assume FB is projective and finitely generated. Then, by Proposition 10.11,
we have that

ωF : F → HomB- (Hom-B (F,B) , B) = ∗ (F ∗)
y 7→ ξ 7→ ξ (y)

is a right B-module isomorphism and by Lemma 10.10 F ∗ is a finitely generated
and projective left B-module. Hence, by Proposition 10.12

F ⊗B Hom-A (E,B G) ∼= ∗ (F ∗)⊗B Hom-A (E,B G)
prop10.12∼= HomB- (F

∗,Hom-A (E,B G)) ∼=
Prop10.24∼= Hom-A (E,HomB- (F

∗, G))
prop10.12∼= Hom-A (E,

∗ (F ∗)⊗B G) ∼= Hom-A (E,F ⊗B G) .

Corollary 10.29.

α : HomA- (E,GA)⊗A F → HomA- (E,AGA ⊗A F )
f ⊗ x 7→ [y 7→ (y) f ⊗A x]

α : HomA- (E,AA)⊗A F → HomA- (E,A⊗A F ) ∼= HomA- (E,F )
f ⊗ x 7→ y 7→ (y) f ⊗A x 7→ (y) f · x

α−1 : HomA- (E,F ) ∼= HomA- (E,A⊗A F ) → HomA- (E,A)⊗A F
φ 7→

∑
i [e 7→ 1A · ((e)φ)x∗i ]⊗A xi

α : HomA- (E,AA)⊗A HomA- (GA, A) → HomA- (E,A⊗A HomA- (GA, A)) ∼= HomA- (E,HomA- (GA, A))
∼= HomA- (G⊗A E,A)

f ⊗ g 7→ y 7→ (y) f ⊗A g 7→ (y) f · g
x⊗ y 7→ (x) [(y) f · g] = [x · (y) f ] g

α−1 : HomA- (G⊗A E,A) ∼= HomA- (E,HomA- (GA, A)) ∼= HomA- (E,A⊗A HomA- (GA, A)) → HomA- (E,AA)⊗A HomA- (GA, A)

φ 7→
∑

i [e 7→ 1A · ((e)φ) x∗∗i ]⊗A x
∗
i =∑

i [e 7→ (xi ⊗ e)φ]⊗A x
∗
i
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α : HomA- (E,AA)⊗A HomA- (GA, A) → HomA- (G⊗A E,A)
f ⊗ g 7→ x⊗ y 7→ [x · (y) f ] g

α−1 : HomA- (G⊗A E,A) → HomA- (E,AA)⊗A HomA- (GA, A)
φ 7→

∑
i [e 7→ (xi ⊗ e)φ]⊗A x

∗
i

where ((x1, . . . , xn) , (x
∗
1, . . . , x

∗
n)) is a dual basis for GA

Corollary 10.30. Case A is commutative and we have symmetric modules

α : HomA- (E,AA)⊗A HomA- (GA, A) → HomA- (G⊗A E,A)
f ⊗ g 7→ x⊗ y 7→ g (x) f (y)

α−1 : HomA- (G⊗A E,A) → HomA- (E,AA)⊗A HomA- (GA, A)
φ 7→

∑
i [e 7→ φ (xi ⊗ e)]⊗A x

∗
i

Definition 10.31. Let Z be a commutative ring. A Z-algebra R is called an Azu-
maya algebra over Z if

1) the map
φ : R⊗z R → End-Z (R)∑

ai ⊗Z a
′
i 7→ [x 7→

∑
aixa

′
i]

is an isomorphism

2) ZR is a progenerator.

Proposition 10.32. Let R and S be algebras over a commutative ring Z. Then
R-Mod-S ∼= Mod-(S ⊗Z R

op) via

x · (s⊗ r) = r · x · s

Similarly R-Mod-S ∼= (Sop ⊗Z R)

Proof.

[x · (s⊗ r)] · (s′ ⊗ r′)
?
= x · [(s⊗ r) · (s′ ⊗ r′)]

[x · (s⊗ r)] · (s′ ⊗ r′) = (r · x · s) · (r′ ⊗ s′) = r′ · (r · x · s) · s′ = (r′ · r) · x · (s · s′)

x · [(s⊗ r) · (s′ ⊗ r′)] = x · (s · s′ ⊗ r′ · r) = (r′ · r) · x · (s · s′)

Notation 10.33. Let R be an algebra over a commutative ring Z. We set

Re = R⊗Z R
op and eR = Rop ⊗Z R

Then, by the foregoing we have

eR-Mod ∼= R-Mod-R ∼= Mod-Re.
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Notation 10.34. Let M be a bimodule over a ring R. We set

MR = {x ∈M | rx = xr for every r ∈ R.}

Lemma 10.35. Let M be a bimodule over a ring R. Then the map

φM : HomRe (R,M) = HomR-R (R,M) → MR

f 7→ f (1R)

is an isomorphism.

Proof. Let us consider the isomorphism

ρM : HomR (R,M) → M
f 7→ f (1R)

of Proposition 6.29. Let f ∈ Hom-R (R,M) and assume that f ∈ HomR−R (R,M) .
Then, for every r ∈ R we have

r · f (1R) = f (r) = f (1R) · r

so that f (1R) ∈MR. Conversely, assume that f (1R) ∈MR. Then, for every r ∈ R,
we have

f (r) = f (1R) · r = r · f (1R)

so that for every x ∈ R we have

f (rx) = f (r) · (x) = [r · f (1R)] · x = r · [f (1R) · x] = r · f (x) .

Lemma 10.36.

[Hom-T (SXT ,S YT )]
S = HomS-T (SXT ,S YT )

Proof. Let f ∈ Hom-T (SXT ,S YT ). Then, for every s ∈ S we have, for every x ∈ X

(s · f) (x) = s · f (x) and (f · s) (x) = f (s · x)

so that

s · f = f · s⇐⇒ s · f (x) = f (s · x) for every x ∈ X ⇐⇒ f ∈ HomS-T (SXT ,S YT ) .

Corollary 10.37.

[Hom-S (X,Y )]S = HomS-S (X, Y ) = Hom-Se (X, Y ) = HomeS- (X,Y )
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Proposition 10.38. Let Z be a subring of a ring S which centralize S i.e. z ·s = s·z
for every ∈ Z and s ∈ S. Then MS is a right Z-submodule of M . Let

i :MS →M

be the canonical injection. Then the map

Hom-Z (W, i) : Hom-Z

(
W,MS

)
→ Hom-Z (W,M)

yields an isomorphism

Hom-Z

(
W,MS

) ∼= [Hom-Z (W,M)]S .

Proof. For every s ∈ S, z ∈ Z,m ∈MS we have

s · (z ·m) = (s · z) ·m = m · (s · z) = m · (z · s) = (m · z) · s.

Hom-Z

(
W,MS

) ∼= Hom-Z (W,Hom-Se (S,M)) ∼= Hom-Se (W ⊗Z S,M) = HomS-S (W ⊗Z S,M) =

Lemma10.36
= [Hom-S (W ⊗Z S,M)]S ∼= [Hom-Z (W,HomS (S,M))]S ∼= [Hom-Z (W,M)]S

Lemma 10.39. Let R be an algebra over a commutative ring Z and let S be a
Z-subalgebra of R. Then the map

Θ : RS ⊗Z R → (R⊗Z R)
S

a⊗Z b 7→ a⊗Z b

is well defined and it is an isomorphism of S-S-bimodules.

Proof. By Lemma 10.35 the map

ϑ : HomeS (S,R) = HomS-S (S,R) → RS

f 7→ f (1S)

is an isomorphism. By Lemma 10.36

[Hom-T (SXT ,S YT )]
S = HomS-T (SXT ,S YT )

(Hom-S (S,R⊗Z R))
S 10.36

= HomS-S (S,R⊗Z R)

Since ZR is projective and f.g., by Proposition 10.28, we have that

α : HomA- (E,GB)⊗B F → HomA- (E,GB ⊗B F )
f ⊗ x 7→ [y 7→ (y) f ⊗B x]

α : HomeS- (S,R)⊗Z R → HomeS- (S,R⊗Z R)
f ⊗ x 7→ [y 7→ (y) f ⊗B x]
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is an isomorfism. Therefore we deduce that

RS ⊗Z R
10.35∼= HomeS- (S,R)⊗Z R

10.28∼= HomeS- (S,R⊗Z R) = HomS-S (S,R⊗Z R) =
10.36
= (Hom-S (S,R⊗Z R))

S ∼= (R⊗Z R)
S .

Excplicitely let ∑
at ⊗Z rt where at ∈ RS for every t.

Then we have[∑
at ⊗Z rt

]
7→
[∑︷︸︸︷

at ⊗Zrt

]
7→
[
s 7→

∑
sat ⊗Z rt

]
7→
[∑

at ⊗Z rt

]
.

Lemma 10.40. Let R be an Azumaya algebra over the commutative ring Z and let

S be a Z-subalgebra of R. Then the map

χ : RS ⊗Z R → HomS- (R,R)∑
at ⊗Z bt 7→ [x 7→

∑
at · x · bt]

is well defined and it is an isomorphism.

Proof. By Lemma 10.39 we have that the map

Θ : RS ⊗Z R → (R⊗Z R)
S

a⊗Z b 7→ a⊗Z b

gis well defined and it is an isomorphism of S-S-bimodules. Now, by definition of
Azumaya algebra we have that the map

φ : R⊗z R → EndZ (R)∑
ai ⊗Z a

′
i 7→ [x 7→

∑
aixa

′
i]

is an isomorphism of S-bimodules. Therefore we deduce that

(R⊗Z R)
S

defAzumaya∼= (End-Z (R))
S

Lem10.36∼= HomS-Z (R,R)
Z⊆S+Zcomm∼= HomS- (R,R)

[Hom-T (SXT ,S YT )]
S = HomS-T (SXT ,S YT )

Lemma 10.41. Let R be an Azumaya algebra over the commutative ring Z and let

S be a Z-subalgebra of R. Assume SR f.g. projective. Then the map

Ω : R⊗S R → Hom-Z

(
RS, R

)
a⊗S b 7→ [α 7→ aαb]

is well defined and it is an isomorphism.
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Proof.

Hom-Z

(
RS, R

) ∼= Hom-Z

(
RS,Hom-R (R,R)

) ∼= Hom-R

(
RS ⊗Z R,R

) Lem10.40∼= Hom-R (HomS- (R,R) , R) ∼=
SRf.g.proj+Prop10.12∼= Hom-R (∗R⊗S R,R) ∼= Hom-S (

∗R,Hom-R (R,R)) ∼= Hom-S (
∗R,R) ∼= R⊗S (

∗R)∗ ∼=
∼= R⊗S R

Lemma 10.42. Let R be an Azumaya algebra over the commutative ring Z and let
S be a Z-subalgebra of R. Assume SR f.g. projective. Then the map

Ψ : R⊗S R⊗S R → Hom-Z

(
RS ⊗Z R

S, R
)

a⊗S b⊗S c 7→ [α⊗Z β 7→ aαbβc]

is well defined and it is an isomorphism.

R⊗S R⊗S R ∼= Hom-Z

(
RS ⊗Z R

S, R
)

Proof. ...

(R⊗S R)⊗S R
Lem10.41∼= Hom-Z

(
RS, R

)
⊗S R

SRf.g.proj+Prop10.12∼=

∼= Hom-Z

(
RS, R⊗S R

) Lem10.41∼= Hom-Z

(
RS,Hom-Z

(
RS, R

)) ∼= Hom-Z

(
RS ⊗Z R

S, R
)

Hom-Z

(
RS ⊗Z R

S, R
) ∼= Hom-Z

(
RS,Hom-Z

(
RS, R

)) Lem10.41∼= Hom-Z

(
RS, R⊗S R

) ∼=
SRf.g.proj+Prop10.12∼= Hom-Z

(
RS, R

)
⊗S R

Lem10.41∼= (R⊗S R)⊗S R

Lemma 10.43. Let R be an Azumaya algebra over the commutative ring Z and let
S be a Z-subalgebra of R. Assume SR f.g. projective. Then the map

Γ : (R⊗S R)
S → End

-Z

(
RS
)

a⊗S b 7→ [α 7→ aαb]

is well defined and it is an isomorphism.

(R⊗S R)
S ∼= End

-Z

(
RS
)

Proof.

(R⊗S R)
S

Lem10.41∼=
[
Hom-Z

(
RS, R

)]S Pro10.38∼= Hom
-Z

(
RS, RS

)
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Lemma 10.44. Let R be an Azumaya algebra over the commutative ring Z and let
S be a Z-subalgebra of R. Assume SR f.g. projective. Then the map

Ξ : (R⊗S R⊗S R)
S → Hom

-Z

(
RS ⊗Z R

S, RS
)

a⊗S b⊗S c 7→ [α⊗Z β 7→ aαbβc]

is well defined and it is an isomorphism.

(R⊗S R⊗S R)
S ∼= Hom

-Z

(
RS ⊗Z R

S, RS
)

Proof. (R⊗S R⊗S R)
S

Lem10.42∼=
[
Hom-Z

(
RS ⊗Z R

S, R
)]S Pro10.38∼= Hom-Z

(
RS ⊗Z R

S, RS
)

Hom-Z

(
W,MS

) ∼= [Hom-Z (W,M)]S .

Notation 10.45. Let S be a subring of a ring R. We define on R⊗SR an R-coring
structure by setting

∆(a⊗S b) = (a⊗S 1R)⊗R (1R ⊗S b)

and

ε (a⊗S b) = ab.

Lemma 10.46. Let S be a subring of a ring R. Then for every M ∈ R-Mod-R, we
have

Ψ : HomR−Mod−R (R⊗S R,M) → MS

f 7→ f (1R ⊗S 1R)

is an isomorphism of S-S-bimodules.

HomR−Mod−R (R⊗S R,M) ∼= MS

so that

EndR-cor (R⊗S R) ∼= (R⊗S R)
S ∩Gr (R⊗S R)

Proposition 10.47. Let R be an Azumaya algebra over the commutative ring Z
and let S be a Z-subalgebra of R. Assume SR f.g. projective. Then

Γ : HomR−Mod−R (R⊗S R,R⊗S R) → End
-Z

(
RS
)

f 7→ [α 7→
∑
aiαbi]

where f (1R ⊗S 1R) =
∑

ai⊗Sbi

induces an isomorphism

EndR-cor (R⊗S R) ∼= EndZ-alg
(
RS
)
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Proof. Let f ∈ HomR−Mod−R (R⊗S R,R⊗S R). Then f ∈ EndR-cor (R⊗S R) if
and only if

∆ ◦ f = (f ⊗S f) ◦∆.
Let

Λ : HomR−Mod−R (R⊗S R,R⊗S R⊗R R⊗S R) → Hom
-Z

(
RS ⊗Z R

S, RS
)

h 7→ [α⊗Z β 7→
∑
ai · α · bi,j · ci,j,k · β · di,j,k]

where h (1R ⊗S 1R) =
∑

ai ⊗S bi,j ⊗R ci,j,k ⊗S di,j,k

Then ∆ ◦ f = (f ⊗S f) ◦∆ if and only if

Λ (∆ ◦ f) = Λ ((f ⊗S f) ◦∆) .

Let
f (1R ⊗S 1R) =

∑
ai ⊗S bi.

Then
(∆ ◦ f) (1R ⊗S 1R) =

∑
ai ⊗S 1R ⊗R 1R ⊗S bi

so that
[Λ (∆ ◦ f)] (α⊗Z β) =

∑
ai · (α · β) · bi = Γ (f) ((α · β))

and

[(f ⊗S f) ◦∆] (1R ⊗S 1R) = f (1R ⊗S 1R)⊗Rf (1R ⊗S 1R) =
∑

ai⊗Sbi⊗R

∑
aj⊗Sbj

so that

[Λ ((f ⊗S f) ◦∆)] (α⊗Z β) =
∑
i

∑
j

ai · α · bi · aj · β · bj = Γ (f) (α) · Γ (f) (β)

Therefore Λ (∆ ◦ f) = Λ ((f ⊗S f) ◦∆) if and only if

Γ (f) ((α · β)) = Γ (f) (α) · Γ (f) (β) for every α, β ∈ RS.

10.2 Frobenius

Lemma 10.48. Let R be a ring. Assume that PR is projective and finitely generated.
Let P ∗ = HomR (PR, RR) and regard it has a left R-module via

(r · f) (x) = r · f (x) .

Let P ∗∗ = HomR (RP
∗,RR) which is a right R-module via

(f) (α · r) = [(f) (α)] · r

and let ω = ωP : P → P ∗∗ the map defined by ω (x) = x̃ where

(f) x̃ = f (x) for every f ∈ P ∗.

Then ω is well-defined and it is an isomorphism of right R-modules.
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Proof. Let x ∈ P . Then

(r · f) x̃ = (r · f) (x) = r · f (x) = r · [(f) x̃]

which means that x̃ ∈ HomR (RP
∗,RR). Let us check that ω is right R-linear. Let

f ∈ P ∗

(f) [ω (x · r)] = (f) [ω (x) · r]
(f) [ω (x · r)] = f (x · r) = f (x) · r = (f) (x̃ · r) = (f) [ω (x) · r] .

Let ((x1, . . . , xn) , (x
∗
1, . . . , x

∗
n)) be a finite dual basis for P . Let us check that ω is

injective. Let 0 ̸= x ∈ P. Then

x =
∑

xi · x∗i (x) .

Hence there exists an i such that x∗i (x) ̸= 0. Hence (x∗i ) x̃ = x∗i (x) ̸= 0. Let us check
that ω is surjective. Let α ∈ P ∗∗. By lemma 10.10, the left R-module HomR (P,R) is
projective and finitely generated with dual basis ((x∗1, . . . , x

∗
n) , (x̃1, . . . , x̃n)). Hence

α =
∑

x̃i · [(x∗i )α] =
[∑

xi · (x∗i )α
]
ω.

10.49. Let R be a commutative ring and let A be an R-algebra i.e. there is a ring
morphism η : R → A such that Im(η) ⊆ Z (A) where Z (A) denotes the center of
A. In this case we will write also morphism of left A-modules on the
left.The abelian group HomR (AR, RR) has a structure of right A-module defined by
setting

(f · a) (x) = f (ax) .

The abelian group HomR (RA,RR) has a structure of left A-module defined by setting

(a · f) (x) = f (xa) .

Since A is a symmetrical R-bimodule we have that HomR (AR, RR) = HomR (RA,RR).
We set A∨ = HomR (AR, RR) = HomR (RA,RR). Then A

∨ is a left and also a right
A-module. Let us check that it is indeed an A-A-bimodule. In fact we have

[a · (f · b)] (x) = (f · b) (x · a) = f (b · (x · a)) = f ((b · x) · a) = (a · f) (b · x) = [(a · f) · b] (x) .

Note that the induced R-R-bimodule structure on A∨ makes it a symmetrical R-
bimodule.

Corollary 10.50. Let A be an algebra over a commutative ring R. Then, in the
notations of 10.49 and Lemma 10.48, let

A∨∨ = HomR (RA
∨,RR)

endowed the left A-module structure defined by

(f) (a · α) = (f · a)α for every a ∈ A,α ∈ A∨∨, f ∈ A∨.

Then ω = ωA : AA→ AA
∗∗ = A∨∨ is an isomorphism of left A-modules.
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Proof. By Lemma 10.48 we have only to prove that ω is a morphism of left A-
modules.

Let a, x ∈ A, f ∈ A∨. We have

[a · ω (x)] (f) = ω (x) (f · a) = (f · a) (x) = f (a · x) = [ω (a · x)] (f) .

10.51. Let φ : AA → A∨A be an isomorphism of right A-modules. Then φ : RA →
RA
∨ is also a left R-modules homomorphism so that we can consider

HomR (φ,RR) : HomR (RA
∨,RR) → HomR (RA,RR)

which is a group isomorphism. Let us check it is a left A-modules isomorphism. For
every x, a ∈ A, f ∈ HomR (RA

∨,RR), we have

[HomR (φ,RR) (a · f)] (x) = [(a · f) ◦ φ] (x) = (a · f) (φ (x)) = f [φ (x) · a] φisrightA−modules=

= f (φ (x · a)) = [a · (φ ◦ f)] (x) = (a · [HomR (φ,RR) (f)]) (x)

so that
HomR (φ,RR) : AA

∗∗ = A∨∨ → HomR (RA,RR) = AA
∨

is an isomorphism of left A-modules. Since ω = ωA : AA → AA
∗∗ = A∨∨ is also an

isomorphism of left A-modules, we get that

ζ = HomR (φ,RR) ◦ ωA : AA→ AA
∨

is an isomorphism of left A-modules. We have

ζ (1) = HomR (φ,RR)
(
1̃
)
= 1̃ ◦ φ

so that, for every a ∈ A, we get

[ζ (1)] (a) =
[
1̃ ◦ φ

]
(a) = φ (a) (1) = φ (1 · a) (1) φisrightA−modules= [φ (1) · a] (1) = φ (1) (a · 1) = φ (1) (a) .

Thus we deduce that
ζ (1) = φ (1) .


