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Chapter 1

Algebras and Coalgebras

1.1. Let k be a commutative ring. If not stated otherwise, by the word k-module we
mean a symmetric k-module. Whenever k is a field, the word vector space substitutes
the word k-module. A k-homomorphism between k-modules will be also called a k-
linear map. Homy, (M, N) or even Hom (M, N) the group of k-linear maps.

1.2. The tensor product over k will be denoted by ®j or even by & if there is no
risk of confusion. For a k-module M we denote by M™ the n-th tensor power of M
and for a morphism f : M — N of k-modules, we will denote by f™ the n-th tensor
power of f. Also, for any k-module W, f @ W will denote the morphism f & Idy .
a similar convention holds for W & f.

1.3. Given a k-module M, we denote by ly; the obvious isomorphism Iy : k®@x M —

M
Iy (t@x)=1t-x for everyt € k,x € M.

The morphism ry - M @ k — M is similarly defined. The identity on M will be
denoted by In; or even more simply by I or M. Observe that both Iy, and ry; give
rise to functorial isomorphisms. In fact iof f: M — N 1is a k-linear map we have

(1.1) foly=Inyo(k® f) and fory=ryo(f®k).
Moreover
(1.2) oy =y @N  rygyn =M Q@ry and MQIy=ry N

We will also denote by Tyn : M @ N — N ® M the usual flip. Note that if
f:M— M and g: N — N’ are k-linear maps, then

(1.3) TN o (f®g)=(9® f)oTun

Notation 1.4. Let R be a ring and let X be a non empty set. For each x € X let
e, be the element of R defined by

e (r) =1g and e: (y) = 0g for every y € X,y # x.



Then every element o € RYX) can be uniquely written, using the left R-module

structure of R, as
a= Z a(x)e,.

z€Supp(a)

From now on, for every r € X, we will write v instead of e,.
Definition 1.5. Let k be a commutative ring. A k-algebra is a couple (A, u) where
e A isaring
o u:k — A is a morphism of rings such that
I (u) € Z (A)
where Z (A) denotes the center of A.

Definition 1.6. Let k be a commutative ring. A k-algebra is a triple (A, m,u)
where

e A is k-module
e m: AR, A— A is a morphism of k-modules

e u:k— A isa morphism of k-modules

such that the following diagrams are commutative:

AQAQ A, A0 A koA A< Agk
e | et
A A—1 m AR A

Exercise 1.7. Proof that Definition I and Definition @ are equivalent.

Definition 1.8. Let (A, ma,us) and (B, mp,up) be k-algebras. A k-linear map
f:A— B s called a morphism of algebras if it is a morphism of rings i.e.

foma=mpo(f®f) and foup=rwuy

Example 1.9. Let R be a ring and let (M,-, 1) be a monoid. On the abelian
group RM) = {a: M — R | Sup () is finite} we define a multiplication by setting,
for every o, B € RM) and for every x € M :



6 CHAPTER 1. ALGEBRAS AND COALGEBRAS

In this way R™) becomes a ring which is usually denoted by RM or by R[M] and
is called the monoid ring of M over the ring R. Using the notations introduced
n [[4, this product is uniquely defined by setting

T y=xy
for every x,y € M. In particular the identity 1gy of RM is

Let S be a non empty set and let M = (N(S),+,O). Then RM is the ring of
polynomaals in S over R.

Whenever R = k is a commutative ring, the monoid ring kM of M over k is a
k-algebra. The ring homomorphism u : k — kM 1is defined by setting:

u(a) =aly for every a € k.

Definition 1.10. Let k be a commutative ring. A k-coalgebra is a triple (C, A, ¢)
where

e (' is a k-module
o A:(C — C®yC is a morphism of k-modules

o ¢:C — k is a morphism of k-modules

such that the following diagrams are commutative:

l71 -1

C 2 .00C EoC<—C " c—"“ cak
A\L lC@A g

AGC e®C \i/ C®e
CoC-LowcwC C®C

1.e. the following equalities hold:

(1.4) (ARC)oA=(C®RA)oA (coassociativity)

(1.5) lco(e®C)oA=1=rco(C®e)oA (counitarity).

Exercise 1.11. Let (C, A, €) be a coalgebra. Prove that the map A is injective while
the map ¢ is surjective whenever k is a field .

Example 1.12. Let S be a semigroup with zero element z, i.e..s-z = z = z-s for
every s € S. We denote S\ {z} by S* Assume also that S has local identities i.e.
S contains a subset E of nonzero orthogonal idempotents such that for each s € S*
there exists es and €/, in E with ess = s = sel,. Moreover assume that S is locally
finite i.e., for every s € S* the set



{(z,y) € 5" x 5" [z -y =s}

is finite.
Let k be a commutative ring and let C (S, k) be the k-module k57 endowed with
the coalgebra structure defined by setting

A(s) = Z Qv for every s € S*

(t,v)€S* x5
tv=s
and
e(s) = 0 for every s ¢ E
e(s) =1 for every s € E
Note that
Z e(t)v = Z e(e)v=-c(es)s=s.
(t,w)eS* xS* (e;,v)eExS*
tv=s [

The symmetrical equality is proved similarly. We call this the semegroup coalge-
bra of S with coefficients in k.

Let us consider now some particular cases.

1) Let S = (N,+) U {z}. Then C(S,k) = @ kn and A(n) = >, i® j.

neN i+j=n

Moreover we have £(n) = 0 if n # 0 and €(0) = 1. This coalgebra is called the
divided power coalgebra.

2) Let < be a reflexive and transitive binary relation on a non empty set X.

Assume that (X, <) is locally finite i.e. that the set
{tle<t<y}
is finite, for every x,y € X and set
Xs={(r,y) e X x X |2 <y}U{z} where 2 ¢ X x X.
Then X< is a semigroup with zero element z whenever we define
(z,y) - (a"y) =2  whenevery#a’  and  (2,y) (y,9) = (z.¥).

Here E = {(z,z) | x € X} is a set of local identities and we have

Ay) =Y (@te(ty) and  e((,9)) = boye

z<t<y

This is called the incidence coalgebra of (X, <).
2a) Consider the particular case when < coincides with = . Then X< = EU{z}
and we have

A((z,2)) = (x,2) ® (z,x) and e ((z,x)) = 1.
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By identifying E with X we obtain the grouplike coalgebra over the set X.
2b) Another particular case is when the set X = {1,...,n}is finite and < is the

usual order on X
X=={(i,j) e X x X | i <j}u{z}

and we have

A ) =Y e (t]) and (G )) =6y

i<t<j

2c¢) Finally consider the case when the set X = {1,...,n}is finite and < is the
the trivial order 1.e.
X==(XxX)U{z}
and we have

A((i,5) =) (0@ (t)) and £((i,])) = bi;.

t=1

This coalgebra is usually denoted by M (n, k) and is called the matrix coalgebra.

3) Let now ' = (V (I'), A(T"), s,t) be an oriented graph. This means that V (I")
and A (') are nonempty sets and s,t : A(I') — V (I') are maps. The elements of
V(T') are usually called vertices and the elements of A(T") are called arrows of T’
For a given arrow a € A (I") the vertex s (a) is called the source of a while the vertix
t (a) is called the target of a. The picture

s(a) 5 t(a)

means that a is an arrow with source s(a) and target t(a). Let n € N, n > 1.
A path of length n in ' is an n-tuple o = (aq, ..., a,).where each a; € A (') and
t(a;) = s(ay1) for every i = 1,...,n — 1. In this case we set s(a) = s(ay) and
t(a) = t(ay). Let D, (T') be the set of paths of I' of length n. For n = 0 set
Dy (I') = V (I') where, for each x € V (I'), we set s(x) = t(x) = x.We call the
elements of Dqy (I') paths of length 0. Let

D)= Da(D)

and set

S(T)=D(([T)u{z} wherez¢ D(I).

S (T) becomes a semigroup with zero element z by setting, for given a = (aq, ..., a,),B0 =
(bl,...,bm) and v € DO (F) = V(F)

a-fB=(a,...,an,b1,...,by) whenevert(a,)=s(by) anda-B =z otherwise
and

v-a = « wheneverv=s(a) andv-a =z otherwise;

a-v = a whenevert(a)=v anda-v==z otherwise.



The set of local identities is clearly Do (I') = V (I'). Note that S (') is locally finite
i.e. that

{(B,7) e DIT) x DI) [ B-7=a}
is a finite set, for every a € D (I'). Given o € D (T') = (S (I'))" we get

Ala) = Z B &y and

BiyeD(I)
Bry=a

e(y) = 1 if~ haslength 0 and e (v) = 0 otherwise.
This particular coalgebra is called path coalgebra of the oriented graph I'.

Definition 1.13. Let (C,A,¢) be a coalgebra. We define, by recursion, a sequence
(An),>1 by setting

A=A and A, =(A®C" ") oA, foreveryneN,n>2
Notation 1.14. For any k-module M and any k-linear map f: L — N we set
M@ f=f=feoM
Lemma 1.15. Let (C,A,¢€) be a coalgebra. Then
A, = (C’t®A®Cm_1_t) oA,_1 foreveryn,t eNn>2 and0<t<n-—1.

Proof. We proceed by induction on n. For n = 2 we have to prove that Ay, =
(A ® C') oA which holds in view of the given definition and that Ay = (C ®@ A)o A
which holds in view of the coassociativity of A. Let us assume that the statement
holds true for some n € N,n > 2 and let us prove it for n + 1. We proceed by
induction on ¢t. For ¢t = 0 we have to prove that A, ; = (A ® C™") o A,, which holds
in view of the given definition. Let t € N;1 <t < n and let us assume that the
equality hold for ¢ — 1. Then
(Ct ® A ® Cm—l—l—l—t) o An
= (C"®A®C" ") oA,
nduct. onpand?=1 (Ot g A €7 o (CT @ A @ C ) 0 A,
=(C"T'RCRA®C" ) o (C"'@ARC™ ) oA,y
= (C"'@[(C®A) o Al®@C" ") 0 A,y
= (C"'R[(A®C) o Al®C™ ) o A,y
— (Ct—l ® A ® C ® Cn—t) o (Ct—l ® A ® Cm—t) o An—l

induct. ongandt’:t—l (Ct_l 9 A® Cn+1_t> o An
_ (Ct—l RA® Cm-i—l—l—(t—l)) o An

induct. on ¢t
= An—i—l
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Lemma 1.16. Let (C, A ¢) be a coalgebra. Then
A, = (A, 1®@C)oA  for everyn > 2

Proof. We proceed by induction on n. For n = 2 we have to prove that A, =
(A1 ® C)oA which holds in view of the given definition. Let us assume the statement
holds for some n € N,n > 2 and let us prove it for n + 1.

We have

An+1 déf. (A ® Cn) o An induct.gssumpt. (A Q Cm) o (Anfl ® C) oA
def

(ARC"™ ' ®C)o (A1 ®@C)oA=([(ARC™ ) oA, 1| ®C)oAZ
(A, ® C)oA.

Theorem 1.17. Let (C,A,¢€) be a coalgebra. Then

A, = (C’m®A¢®Cn%*m)oAn,i for everyn,iimeNn>21<i<n-—1
and 0 <m <n—i.

Proof. Let us fix an n € N;n > 2 and let us prove the statement by induction on ¢
where 1 <7 <n — 1. For i« = 1 we have to prove that

A, = (C’m QAR C’”’l’m) oA, 1 forevery 0 <m<n-—1

which holds true in view of Lemma ICT3. Let us assume that the statement holds
for some 7,1 < i < n — 2 and let us prove it for 7« + 1. We have, for every 0 < m <
n—({+1)<n—i

A, MR (O @ A @ CE) 0 A,
FEE(CM @A @ CTTTM) o (CTRAQCTTTI M 0 A,y
=(C"RARCRC™ ™Mo (C"RARC™ ™) o Ay
= (C"R[(A®@C)o A]@C™ ™) 0 A,y =
FEER (O™ @ Agyy ® O 0 ALy,
Note that, by induction assumption, actually all the first equality holds for every

0 < m < n —i while, in the second one we have to restrict to 0 < m <n — (i + 1)
in order to apply I3 for n — ¢ which forces 0 < m <n —i — 1. O

Notation 1.18. (Sweedler’s Sigma Notation) Let (C, A, ) be a coalgebra. For a
giwen ¢ € C'" we have

Ne
A(e) = ZC“ ® co;  where n. € Non. > 1,c¢14,c0i € C' for everyi=1,...n,.
i=1
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We adopt the notation

=) e @)
A(e) = ch ® ¢y

or even

where the index 1 is suppressed.
Note that, using this notation, equalities in and in [ become respectively

(1.6) Z (c1); ® (c1)y ® 2 = ZCI ® (c2); ® (2),

and

(1.7) Y ele)ea=c=) cel(e).

Notation 1.19. More generally, for any n € N, n > 1 we write

c):ch®...®cn+1.

Using this notation, equality A gives rise to

201®02®C3:Z(01) g Qo = ZC1® C2); ® (c2),

Since, from Theorem [[LT1, we have that Ay, 1, = (C*® A, @ C""*) o A, for every
a,m,neNm,n>1, and 0 < a <n, we obtain that
Y@@ i =
=) a®...®c® (Car1); @ (Cart) sy @ Casa - @ Cug

for everya e N1 <a<n-—1

and
ch®...®cm+n+1 = (01)1®~-(01)m+1®02-~®0n+1

ch®---®cm+n:Cl®-'-®Cn®(cn+1>1®---(cn+l)m+1

Proposition 1.20. Let (C,A,e) be a coalgebra, let n,i € N, i > 1,n > i. Let
f:C" — C and g : C"t — C be k-homomorphisms. Then for every t € N,
2<t<n+1 we have

Zg(cl®"'®Ct71®f(ct®"'®Ct+i)®ct+i+1"'®cn+i+l>
29(01 R Cp ®f((0t)1®"'®(6t)i+1) ®Ct+1"'®cn+l)‘

Proof. Set
f=FfoA.
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Since t—1 < (n + i) —i = n, we can apply Theorem T4 to the case when "n” = n+i
and 7" =iand "m” =t—1to get Apyy = (C7' @ A; @ CFI= =)o A,y =
(C7 1@ A; @ C" 1) o A, so that

ZQ (Cl Q- ® i ®T(Ct) DcCt41+ @ Cn—l—l)

= 9(Z(Cl®“'®Ct—1®?(ct)®Ct+1"'®0n+1>>
— o (¢ 0O 04,] (0

— [g ° (Ct—l ® f ® On—t+1) o (Ot—l ® Az ® Cn—t+1) o An} (C)
_ [g o (C«t—l ®f® Cm—t+1) ° An—i—i] (c)

]

Notation 1.21. Let (C,A,e) be a coalgebra. In the sequel, for any ¢ € C and
i,7 € Nyi, j > 1, we will write c;; instead of (ci)j e.g. c1, instead of (¢1),.

Exercise 1.22. Let (C,A,¢) be a coalgebra. Prove that, for any ¢ € C, we have

Z e(cr)e(er) ez =c.

Definition 1.23. Let (C,A,¢) be a coalgebra and let 7 : C @ C — C @ C be the
usual flip. We say that the coalgebra C' is cocommutative if o A = A i.e. if

ch®622202®01 for every c € C.

Examples 1.24. The coalgebra in example 2a) is always cocommutative, while the
coalgebra in example 2b) is, in general, not cocommutative. A typical ezample of not
cocommutative coalgebra is the path coalgebra of the oriented graph

do di da dp
€) —> €] —> €y —> €3 €y — Cpigce
In fact we have
A(d) =e;®@d;+d; ®e;q  for every i € N.

Definition 1.25. Let (C,A¢,ec) and (D, Ap,ep) be coalgebras. A k-linear map
¢ : C = D will be called a morphism of coalgebras if the following diagrams are
commutative:

i.e. if
(90®S0)OAC:ADOSD and EDOY =¢€¢

Which can be rewritten as

Zcp (c1)®p(c) = ng (), ®¢(c)y, and ep(p(c)) =¢ec(c) foreveryce C.
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1.26. We will denote by Coalgy the category of coalgebras over the ring k. Note
that k can be equipped by the structure of a coalgebra by setting

Ak:rlglzlgl:k%k®k 1.e. Ak<a):a®1:1®a fO'l"@'U@T’yCLEk
and e =1dy : k — k i er(a) =a for everya € k.

Note that, given any coalgebra (C, Ac,ec), ec : C — k is a coalgebra morphism. In
fact we have
(ec®ec)oAg=r;"0ec and e,oec = ec.

Moreover ¢ is unique with respect to this property: given a coalgebra morphism
a: C — k we get that o = e, o v = e¢. Hence we can claim that (k, Ag,er) is a
final object for the category Coalgy.

Theorem 1.27. Let (C,Ac,ec) and (D, Ap,ep) be coalgebras.
Then (C ® D, Acgp,ccep) is a coalgebra where

(1.8) Acgp = (C®@71cp® D)o (Ac®Ap) and ecep =lpo(ec ®ep).

Here Top: C® D — D ® C denotes the usual flip. Moreover the map
po:C®D — C defined by setting pc (c® d) = cep (d)

1s a morphism of coalgebras.

Proof. We compute

[((C ® D) ® Acep) © Acep] (c® d)
= [((Co®D)@C®Tcpr®D)o((CRD)®(Ac®Ap))] D (1 ®di ®cy ® dy)

= ch®d1®021®d21®622®d22:Zch®d11®012®d12®02®d2

= [(Acgp ® C® D) (Z a®d®c® dz)
= [(Acep ® C'® D)o Acgp] (c®d)

and
llcep © (ecep ® C ® D) o Aggp] (c® d) =
=leon [l [ Y (cc () @ ep ()| © e 9 do
=Y cole)ea®ep(d)d =cad
=Y iz (e) @ diep (ds)

= TcgD © [Z 1 X d1 X T o (80 (CQ) & Ep (dz))]
[rcep 0 (C® D ®ecap) 0o Acep| (c@d) .

The last statement is left as an exercise to the reader. O
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Proposition 1.28. Let C' and D be cocommutative coalgebras. Then the tensor
product C'®@ D 1is the product of C' and D in the full subcategory CoCoalgy of co-
commutative coalgebras.

Proof. Let ¢ : L — C and ¥ : L — D be coalgebra morphisms where L is a
cocommutative coalgebra. Set ( = (¢ ® ¥) o Ar. Then ( is a coalgebra morphism.
In fact, for any x € L we have

th ® T1, @ T2, Q@ T, = ZI1®$2®9€3®$4 = ZI1®1’21 X T2, @ T3
Leocomm Zacl ® T, @ Ty, @ T3 = le RT3 Ty @ Ty = th ® X, ® 1, ® T2,
so that we obtain
(1.9) th R Ty QO T1, @ Xg, = th X T1, @ T2, ® T,
and hence
Acep () () = > @ (11), @ (22), @ ¢ (1), @ (w2),
= Y (@) @Y (12,) @ (21,) © ¢ (22,)
= D o(@) ® ¢ (21,) ® ¢ (w2,) ® ¢ (w2,)
= D ()@ ().

Moreover we have
econ (C () = D ecl(p (@) ep (¥ () =Y ec(p (1)) - ep (¥ (x2))
= ZEL (x1)er (x2) =€, (Z TiE] (mg)) =er(x).

We compute

pc(C(z)) = pc (Zso 1) ® 9 ( 1’2) D p(@)en( = p(a1)er (z2)
= ¢ (X men (@) =),

In a similar way, one gets pp (¢ (z)) = ¢ (z).

Now we have to prove that ( is unique with respect to this property. Thus let
X : L - C ® D be a morphism of coalgebras such that pc o x = ¢ and pp o x = 1.
Note that, given ¢ € C' and d € D, we have

cRd= Z c1® dl) oD (Cz X d2) = Z (015D (d2) & d150 (02))

D cocomm Z ClED dl) R d250 62 ch c1® dl) ®pD (CQ &® d2)
= (pc ®pD) (AC@)D (C ® d))
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and hence we get that (pc ® pp) © Acgp = Iogp. From this we obtain

X = Icgpox = (pc®pp)oAcgpoXx = (pc®@pp)o(x®x)oAL =
= (pcox®ppox)oAL=(p®¢Y)oAL=C(.

O

1.29. Let (C,A¢,ec) be a coalgebra. We denote by C°P the coalgebra defined by
setting:
= Aceor =T0 A and eceor = ¢

Clearly C' is cocommutative if and only iof C' = C°P.
Exercise 1.30. Check that (C°P, Aceor Eceor) is indeed a coalgebra.

Assumption 1.31. From now on we will assume that k is a field. This
will imply, in particular, that, given a subspace W; of a k-vector space V;, 5 = 1,2,
we can identify W1 @ Wy with a subspace of Vi @ V5.

Definition 1.32. Let (C, A¢,ec) be a coalgebra and let D be a k-subspace of C. D
is called a subcoalgebra of C' if Ac (D) C D ® D. Note that D becomes a coalgebra
by setting Ap = (A|D)|D®D and ep = ec|p. Moreover the inclusion map ip : D — C
becomes a morphism of coalgebras.

Definitions 1.33. Let (C, A¢c,ec) be a coalgebra and let I be a k-subspace of C. T
15 called

e a right coideal of C'if A(I) C I ® C,
e a left coideal of Cif A(I) CC® I,

e a (two-sided) coideal of Cif A(I) CI®C+C®I and ec (I) = {0}.

Exercise 1.34. Let f: C — D be a coalgebra morphism. Then Im (f) is a subcoal-
gebra of D and Ker(f) is a coideal of C. (Use Lemma I21).

Theorem 1.35. (The Fundamental Theorem of the Quotient Coalgebra)
Let (C,Ac,ec) be a coalgebra, let I be a coideal of C.and let p=p;: C — C/I be
the canonical projection. Then C'/I can be endowed by a unique coalgebra structure
(called quotient coalgebra) such that p becomes a coalgebra morphism. Moreover
given any coalgebra morphism f : C — D such that I C Ker (f), there exists a
unique coalgebra morphism f : C/I — D such that f = fop.

Proof. Since A¢ (1) C IC+CRI Lemni(m)l(er(p ® p) we deduce that I CKer((p®p) o Ap),

so that there exists a unique linear map A : C/I — (C/I) ® (C/I) such that
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Aop=(p®p)oAc and we have

(A@C/I)oAop = (A®C/I)o[(p®@p)oAd]
([Aep]®@p)olAc=([(p@p) oA ®p) oA

= (pRpep)o(Ac®@C)oAc=(p@p@p)o(C®Ag)oAc
= (pe[(pepold)olc=(pe[Aop])oAc

- (C/I®A) p®p)OAC]:(C/I®Z)oZop.

Since p is surjective, we get that (A® Ic/r) o A = (C/I ® A) o A. Analogously,
since e¢ (1) = 0, there exists a unique map  : C'/I — k such that € o p = e¢ and
we have

loyroE®C/I)oAop = loyo(E®C/I)o(p@p)oAc
= leyro(ec®@p)oAg=leyro(k@p)o(ec®C)oAc
= polco(Ec®C)OAC:p

Since p is surjective, we get lc/r o (E® C/I)o A = C/I. In a similar way one
proves that rcyy o (C/1 ® €) o A = C/I. Therefore (C/I,A,Z) is a coalgebra. Note
that p becomes automatically a coalgebra morphism.

Let now f : C'— D be a coalgebra morphism such that I CKer(f). Then there
exists a unique k-linear map f : C/I — D such that fop = f. Let us check that f
is a coalgebra morphism. Indeed we have

(fofloAop = (f@[f)o(p@p)oAc=(f®f)oAc
= ADof:(ADof)op

and
gDofop:esDof:eC:Eop

and since p is surjective, we conclude. O

Notation 1.36. For every k-vector space V. we will denote by V* the dual of V
i.e. V* = Homy (V k). We will also denote by w = wy : V. — V** the canonical
morphism defined by setting w (x) = T where T = ev, : V* — k is the evaluation in
x: evg, (f) = f(x) for every f € V*.

Lemma 1.37. For any vector space V, wy : V. — V** is a monomorphism. More-
over, for any o € V** and for any finite subset F' = {&,...,&.} of V*, there exists
an element x € V' such that

(&) =& (r)=2(&).

Proof. Let x € Vo # 0. Then there exists a k-linear morphism ¢ : V' — k such
that £(x) # 0 so that 7(§) = &(z) # 0. We deduce that wy (x) = = # 0.



17

Let now a € V** and let F = {&,...,&,} be a finite subset of V*. Set U =
{(&1(x),...,& () | x € V} C k™. Assume that

:(a(€1>77@<€n>>€kn\[]

Then there exists a k-linear map ¢ : k* — k such that ¢ (U) = {0} and { (y) # 0.
Let eq,...,e, be the canonical basis of k™ and let # : V' — k be the linear map

defined by
0= & ()
i=1

Then we have

0 (z) ZZ& () € () =C<Z§i (iv)ez) =C((& (@), & (2))) =0 forevery z €V

and hence 6 = 0. Therefore we deduce that

0 = a(®)=a (Z&-c <ei>) =Y a(&)¢(e)=¢ (Za(&) )

i=1 =1

= (((a(&),...,a(&))) = C(y) # 0. Contradiction.
]

Proposition 1.38. Let V and W be k-vector spaces. Then, for every v* € V* w* €
W*, the assignment v@w — v* (v) w* (w) defines a k-linear map Ay o : VOW — k.
Moreover the assignment v* @ w* — Ay« » defines an injective k-linear map

which is also bijective whenever W has finite dimension.

Proof. 1t is easy to check that the map I'y«,«V x W — k defined by setting
Lyps e ((v,w)) = v* (v) w* (w) is bilinear. Thus we can consider the map I' : V* x
W* — (V@ W) defined by setting I' ((v*, w*)) = Ay . Even this map is bilinear
so that it gives rise to the k-linear map A. Let us prove that A is injective. Let
ne€N,n>1 andletv],...,v; € V*and wi,...,w; € W* such that the element

Zv ®@w; # 0in V* @ W*. We can assume w.l.o.g. that vj,..., v} are linearly

mdependent and that wi # 0. By expanding F = {v],...,v%} to a basis of V, we
can construct a k-linear map « : V* — k such that a(v}) = 1 and « (v]*) = 0 for
every j = 2,...n. In view of Lemma =310 there exists a v € V such that

a()=v(v) foreveryi=1,...n.
Therefore we get

vi (v) =1 and v} (v) =0 forevery j=2,...n
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Since wj # 0 there exists a w € W such that w} (w) # 0. Thus we obtain
A(va@w?) VR w) Zv = v} (v)w] (w) = wj (w) #0
i=1

and hence we deduce that A (Z v @ wy > # 0.

Assume now that dim (W) < oo and let wy,...w,, be a basis of W and let
wi, ... w denote the dual basis of W*. Let £ € (V@ W)™ and let & € V* be
defined by setting &; (v) = £ (v ® w;), for every v € V. Then, for every v € V and
j=1,...m we have

A(Zfi@@w;‘)(v@w] Z& w; = (v) =& (v @ wy)

and hence we deduce that A (Z & ® wf) =¢. O
i=1

Proposition 1.39. The k-linear maps Ayw give rise to a functorial morphism
A: (=)@ (=) = (—=®—)". Moreover for given vector spaces U,V, W, we have

(Avvew) o (U* @ Avw) = Apgvw o (Apy @ W¥).
Proof. Let a: U — V and B : T — W be k-linear maps. We have to prove that
Ayro(a”® ) = (a®B) o Avw.
For given v* € V* w* € W* uw € U and t € T' we compute

([Avro(a® @ 7)) (v" @ w)) (u@t) = [Aur (o (v) ® 57 (w"))] (u® )

[AUT(( o) @ (wo f))] (uet) = [(v" o) (u)] [(w" o B) (1))
v* (a(u)) w (B (1) = [Avw (v @ w")] (o (u) @ B (t))
= ([Avw (v ®w*) (@@ p)) (uet)=[(a®B) (Avw (" @w"))] (uet)

o (a
= ([(a® B)" o Ayw] (v @ w")) (u@ t)
Let now v* e U*,v* e V* w* e W* and u e U,v € V,w € W. We have

{[(Avvew) o (U@ Ayw)] (u" @v" @ w")} (u®v @ w)
= [(Avvew) (u" @ Ay )] (u®v@w) =u* (u) Ay e (VW)
= u" (u)v" (v)w* (w) = Ay (U@ V) W (W)
= [(Avgvw) (Ao @ w )] (u®@vRuw)
= {[Avgvw o (Apy @ W] (v @ v @uw")} (u®@vw).
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Proposition 1.40. Let (A,m,u) be a finite dimensional algebra. Then A* =
Homy, (A, k) has a natural coalgebra structure defined by setting

evy

A-L
Apet A" 25 (A A) D A0 A and ew: AT S Yk
This coalgebra is called the dual coalgebra of the algebra A.

Proof. Let a: U — V and B : T — W be k-linear maps between finite dimensional
vector spaces. Note that, by Proposition =39, we have

(1.10) (@ ® ) oAy, = Agpo(a®p)
and
(1.11) (Agy @ W*) o Ajgyw = (U © AVY) (Agvew)

We compute
(Ags @ A¥) o Ay = ( AAom)@A*} (AATlem*)

[
( AA®A*) (m* ® A") oAAAom

= (A (A AA®A*) OAA®AA (m® A) o

= (A AA®A*)OAA®AAO[mO(m®A)]

= (Aau® A7) o Ajgaa0[mo(A@m)]

= (Aga @A) o Ajgaa0(A@m) om’
= (A*®AZ,A)OAZ,IA@)AO(A@m)*Om*
(A" @ ALl o (A" ®@m*) o ALl om®
:[A*@(AZ}Aom*)}oA aom’=(A"®Ax) oAy

IIE

and
la= 0 (4 ® A*) 0 Aye = 4= o ((ev1) ou* ® A*) o Ayl om”
= lar0(evy ® AY) o (u* @ A*) o Ayl om* =
= [ 4 o(evl®A*)oA;’}40(u®A)*om* =l o(evl®A*)oA,;}40[mo(u®A)]*
=l 0 (ev; ® A*) o A,;i‘ o(la)"

Now we have A,;lA (a*ols) =1dy ® a* in fact

MNa(ldp®@a")(z®a) = x-a"(a) =a" (za) =(a"oly) (z®a)

for every v € k and a € A.
It follows that
[1a= 0 (ev1 @ A%) 0 Ay 0 (1a4)"] (a¥) = [la- o (evy @ A)] (A (a0 14))
= [laro(ev; @ A")| (Idp ® a*) = lg« (1 ® a*) = a*

A similar proof showes that 74+ 0 (A* @ £4+) 0 A g = 4= O

a
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1.41. Let (A,m,u) be a finite dimensional algebra and let f € A*. Then
Age (f) = Agl0om™( Zf1®f2

where Y f1 @ fa is uniquely determined by

Aaa (Z fi® f2) =m"(f)

i.e. for every a,b e A

Aaa (Zf1®f2> (a®b)=m"(f)(a®0b)

AAA(Zf1®f2> Zfl

m* (f)(a®b) = f(m(a®b)) = f(ab)
we conclude that > fi ® fa is uniquely determined by

(1.12) Z fi(a) fa(b) = f(ab)  for every a,b € A.

Moreover

since

and

eas (f) = (evy, o) (f) = (fou) (1x) = f (1)

Exercise 1.42. Let M be a finite monoid and let kM the monoid algebra over M.
Then in (kM)" we can consider the so called ”dual basis” (x*),.,, where x* is defined
by setting v* (y) = 0uy. Let A = Ayan+ and let us compute A (x*). Accordingly to
(C) we have:

A(z") = Zfl ® fo  such that
Zfl (y) f2(2) = 2" (yz) foreveryy,z€ M

Since x* (yz) = 1 if and only if yz = x and z* (yz) = 0 otherwise, and since
> stem 8T @ t* has the property that
st=x

D st (z) = vy (2)=1 ifyz=2z and

Z s*(y)t* (z) = 0 otherwise.

s,;teM
st=x

We conclude that

= E TRt
s,teM
st=x

A computation on £* reveals that (kM)" is just the coalgebra of the semigroup M as
itroduced in Example [CI2.
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Exercise 1.43. Prove that for A = M, (k), the algebra of the n X n matrices,
A* = M€ (n, k).

Exercise 1.44. Prove that for an oriented finite graph I, the dual coalgebra of the
path algebra of I is the path coalgebra of T'.

1.45. Let (C,A,¢e) be a k-coalgebra and let (A, m,u) be a k-algebra. Then
Homy (C, A)

is always an algebra, called convolution algebra. The multiplication % of this algebra
is defined by setting, for every f,g € Homy (C, A) and ¢ € C

(1.13) (fxg) (€)= fler)-g(c2)

Proposition 1.46. Let (C,A,¢) be a k-coalgebra and let (A, m,u) be a k-algebra.
Then Homy, (C, A), with respect to the product defined in (II3) becomes an algebra
whose identity is u o €.

Proof. Let f,g,h € Homy (C, A) . For every ¢ € C, we calculate
(Fxg)xh)(e) = D (frg)(e)-h(ea) =Y (flen) g(er)) hlc) =
= D fle)-gles) hien) =Y fle)-(gxh)(c)
= (f=x(gxh))(c)
and
(f* (woe) (@) =S fle) w(1) = f (Y (@) 1a=f(e),
Thus we get that f x (uoe) = f. A similar proof shows that (uwoe)* f = f. O

Proposition 1.47. Let ¢ : Cy — C} be a morphism of k-coalgebras and let ¢ : Ay —
Ay be a morphism of k-algebras. Then Hom (¢,v) : Hom (C4, A;) — Hom (Cy, As)
15 an algebra morphism.

Proof. Let f,g € Hom (Cy, A;). Then Hom (p,¢) (f*g) = ¥ o (f xg) o ¢ and we
have

[Hom (i2,) (f * )} (¢) = [Wo (f + g) o ] (¢) = | I D (s (€))

Pt [N F ) g (e ()| Jalg":““"h Z (S e le) ¥ (g
(o fop)+(Wogop)(c)=Hom(p,v) (f)* Hom (¢,0) (9)] (¢)

AS)
—~
)

™)

~—

~—

~—
I

and

Hom (QO,Q/J) (uAl o 501) = o (UA1 © 501) oY= (¢ © uAl) © (501 © 90) -
1alg.morph,pcoalg.morph
= UA, O EC,
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Example 1.48. In particular, we can consider the case when A = k. In this case
Homy (C, A) = C* and, in view of Proposition [[.Z1 the assignment C' — C* and
f = f* defines a covariant functor * : Coalg;, — Algy.

Exercise 1.49. Prove that for the divided power coalgebra C (see example 1) in
Ezxample TI8) C* is isomorphic to the formal power series ring k [[X]].

Definition 1.50. Let (C,A,¢) be a k-coalgebra and let g € C. The element g is
called a grouplike element if g # 0 and A (g) = g ® g. We will denote by G (C') the
set of grouplike elements of C.

Lemma 1.51. Let (C, A, ¢) be a k-coalgebra and let g € C' such that A (g) = g®g.
Then
g#0<=¢c(g9) =1

Proof. Since A (g) = g ® g we get that ¢ = £(g)g. From g # 0 we deduce that
e(g) =1 O

Proposition 1.52. Let A be a finite dimensional algebra. Then
G (A*) = Alg (A k)
where Alg (A, k) is the set of algebra morphisms from A to k.
Proof. Let f € A*. Then Aa- (f) =Y. f1 ® fa is uniquely determined by

Z fi(a) f2(b) = f (ab) for every a,b € A.

Hence Aa- (f) = f @ f if and only if f (a) f (b) = f (ab) for every a,b € A. Since
ea- (f) = f (1), we conclude. O

Example 1.53. Let us consider the matriz coalgebra M (n, k). Then M€ (n, k) =
(M, (k)" so that, by Proposition A2,

G (M€ (n,k)) = Alg (M, (k) ,k) .

Let o : M, (k) — k be an algebra morphism. Then Ker(yp) = {0} which is impossible
if n > 1. Hence we deduce that G (MC (n,k)) is empty.

Theorem 1.54. Let (C, A, ¢€) be a k-coalgebra and assume that G (C') is nonempty.
Then the set G (C) is a linearly independent subset of C.

Proof. Assume that G (C) is not linearly independent. Since any grouplike element
is linearly independent, there exists an n € N, n > 1 such that any subset of n
elements in G (C) is linearly independent but there is a subset {g1,...,9n, gni1}s
consisting of n + 1 distinct elements of G (C'), which is not linearly independent.
Hence there exists Ay, ...\, € k such that

Ont1 = Ag1 + ...+ Apgn.
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By applying A we get

Ins1 ® gns1 = > _Nigi ® gi
i=1

and hence . . .
D Mg ®Y Ags =) Ngi @i
t=1 s=1 i=1
so that . .
D AAg ®g:=> Nigi®gi
t,s=1 i=1

Then, since the set {g; ® g5 | t,s = 1,...,n} is linearly independent, for any ¢, s with
t # s we get that M\, = 0. This forces, by a possible renumbering of g1, ..., g,,
n =1 and g,y1 = Ag1. Since 1 = £ (gny1) = M€ (g1) we obtain that A; = 1 and
Jni1 = g1, a contradiction. O]

Remark 1.55. Let (C, A, ¢) be a k-coalgebra and assume that G (C') is nonempty.
Then the subspace kG (C) spanned by G (C) is a subcoalgebra of C'.



Chapter 2

Comodules and Rational Modules

Definitions 2.1. Let (C,A,e) be a k-coalgebra. A right C-comodule is a pair
(M, p™) where

e M 1is a k-vector space
o pM M — M ® C is a k-linear map such that
(21) (MeA)opM=(p"®@C)op” and ryo(M®e)op =M.
A left C-comodule is a pair (N N p) where
e N s a k-vector space

e Yop: N — C®N is a k-linear map such that

(2.2) (A N)op=(C@ p)oNp and Iyo(e®@N)o"p=N.,

Definition 2.2. Let (C, A, ) be a coalgebra and let (M, ,oM) be a right C-comodule.
We define, by recursion, a sequence (pé”)ml by setting

oM =p" and pM = (pM ® Cm_l) opM . for everyn € Nyn > 2.

Proposition 2.3. Let (C, A, ) be a coalgebra and let (M, pM) be a right C'-comodule.
Then

(2.3)
pM = (Z\/[ RCTTRA® C"fl*t)opfy_l for everyn,t e NNn>2 andl1l <t <n—1.

Proof. 1t is similar to that of Lemma [CT3. O]

Notation 2.4. Let (M, pM) be a right C'-comodule. For every x € M we will write

P () =)z ® 0

24
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or even
= Z o ® xI.
Note that, using this notation, equalities in (E1) can be rewritten as

>0 @), =D %0 y @z and Y re (z) =2

for every x € M.

Notation 2.5. More generally, for any n € N, n > 1 we write

M $):Zl‘(0)®...®x(n)

Using this notation, equality (E33) gives rise to

Z )X ... Q0 T(p) = Zx(o) X...Q0xt-1)® Z(t), X T(t), D X(t+1) - - - @ T(n—1)-

Definition 2.6. Let (C,A,¢e) be a coalgebra and let (N, Np) be a left C-comodule.
We define, by recursion, a sequence (an)n>1 by setting

No,=Yp and an:(C’”_1®Np)oan_1 for every n € N,n > 2.

Notation 2.7. Let (N, Np) be a left C'-comodule. For every x € N we will write

=) a1y ®
= Zx,l X xg.

Note that, using this notation, equalities in (E22) can be rewritten as

Zx (—1), (1), ® Z(0 Zx (1)®x(0)(0> and Zs(x(_l))x(o):x

for every x € N.

or even

Notation 2.8. More generally, for any n € N, n > 1 we write

:Zx(_n)®...®x(0)

Using this notation, an equality analogous to (E23) gives rise to

DT ®- - ®T) = Y T(nin) ® - O L(tm1) ® (), ® (), ®T(—t41) - - BT (o).

Remarks 2.9. 1) Both for right and for left comodules, using the same criteria
imwvolved in the case of coalgebras, others formulas can be deduced.

2) Both for right and for left comodules, sometimes we will need to use as brackets
the symbols [| or even ().
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Definitions 2.10. Let (C,A,€) be a k-coalgebra and let (M, p™) and (M, p™?)
be right C-comodules. A k-linear map f : My — My is called a morphism of (right)
comodules (or right colinear map) if

(feC)op™ =pMof
i.e. if
Zf(%) ®x; = Zf(x)o ® f(z), for every x € M.

We will denote by MC the category of right C-comodules.

Let (C, A, €) be a k-coalgebra and let (Nl, Nlp) and (Ng, N2p) be left C'-comodules.
A k-linear map f : Ny — Ny is called a morphism of (left) comodules (or left
colinear map ) if

(C®f)oMp="2pof
n.e. if
dxa@f(ro)=Y f(x) ,®[f(z), foreveryx e Ny

We will denote by “ M the category of left C-comodules.

Exercise 2.11. Let (C, A, ¢) be a coalgebra and let (M, pM) be a right C'-comodule.
Prove that p™ is injective.

Exercise 2.12. Let f : (M, p™) — (Ma, p™?) be a comodule morphism and as-
sume that f is bijective. Sow that f~' is a comodule morphism.

Definition 2.13. A subspace L of a right C-comodule (M, pM) is called a C-
subcomodule if
pM (L)CL®C.

In this case L itself becomes in a natural way a right C'-comodule by setting

o ((pM)|L> LeC |

In this way the natural inclusion iy, : L — M becomes automatically a morphism of
comodules.

Remark 2.14. An analogous definition hold for left C'-comodules.

Example 2.15. Any coalgebra C' can be regarded as a right C'-comodule by setting
p¢ = A. The subcomodules of this particular comodule are just the right coideals of

C.

Exercise 2.16. Let f : My — My be a morphism of right C'-comodules. Prove that
Ker(f) is a subcomodule of My and Im (f) is a subcomodule of M.
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Theorem 2.17. (The Fundamental Theorem of the Quotient Comod-
ule) Let (ZW7 pM) be a right C'-comodule, let L be a subcomodule of M and let
p=mpr: M — M/L be the canonical projection. Then M/L can be endowed by a
unique comodule structure (called quotient comodule) such that p becomes a comod-
ule morphism. Moreover given any morphism f : M — M" of right C-comodules
such that L C Ker (f), there exists a unique comodule morphism f : M/L — M’
such that f = f op.
Proof. Since pM (L) € L @ C, we get that[(p® C) o pM] (L) = {0}. Hence there
exists a unique k-linear map pM/* : M/L — M/L ® C such that pM/t o p =
(p®@C)opM and we have
(M/L®A)op"top = (M/LeA)o(peC)opM

= (peA)op" =(peCaC)o(MaA)opY

= (peCeC)o (P @C)op"

= (peC)op"®C)op"

= (pMtop@C)opt=(p""r®C)o(peC)opM

(pM/L ® C) o oM/ o p.
Since p is surjective, we get that (M/L ® A)o pM/L = (pM/E® C) o pM/L. Let us
compute
rajpo (M/L@e)opMFop = rypo(M/L@e)o(p®C)op™
= ruypo(p®@k)o(M®e)op"
(E)poTMo(M(X)s)opM = p

Since p is surjective, we get that ryy o (M/L®¢) o pM/IL = Idar and hence
(M/L, pM/t) is a right C-comodule. Note that p becomes automatically a comodule
morphism.

Let now f: M — M’ be a comodule morphism and assume that L is contained
in Ker(f). Then there exists a unique k-linear map f : M/L — M’ such that
fop=f. Let us check that f is a comodule morphism. Indeed we have

(FfaC)optop = (fRC)o(@aC)opM =(faC)op =p" of
= pMofop.
Since p is surjective we deduce that (f ® C) o pM/- = pM o f. O

Exercise 2.18. Let (L;),; be a family of subcomodules of a right comodule (M, p
Show that both > ._, L; and () L; are subcomodules of M.

icl

iel

2.19. Let C be a coalgebra and let M be a k-vector space. Let W C M* and let
evpw : MW — k be the evaluation map. For every k-linear map p: M — M &@C
set

M®evg o+
—

gy CTOM Y Mot 5 MeCeCr M@k 2% M.
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Lemma 2.20. Using the notation of 219, let
0 :=my o (evo e ®eveer) o (CRToe- ®C): CRCRC*®C* — k.
Then the map
©:Hom (MM ®@C®C)— Hom(M®C*®C*, M k) :
defined by setting
O =M®0)o(yC*®C*) for every v € Hom (M, M ® C @ C')
1S 1njective.

Proof. Note that, for every x € M, c,d € C' and f,g € C*, we have
(2.4)
M) (r2cd fRg) =2 f(c)g(d) =M (mro(fRg)](z®cxd).

Let v € Hom (M, M ® C @ C) and let x € M, f,g € C*. Let us compute

OM (@ feg)=[(Mab)o(yoC ®C) (o fog)
— (M@0 (y(x)® f®g) T [M& (myo(f®g))](y(x)).

Let v,£€ € Hom (M, M ® C'® C) and assume that © () = © (£). From the forego-
ing, we deduce that, for every x € M, f,g € C*, we have

(2.5) (M @ (mg o (f ©9)] (v () = [M & (my o (f @9))] (& (x))

Now assume that there exists an € M such that

y=7(x)~E(x) £0.

Let (e;);c; be a basis of C. Then there exist x;; € M,i,j € F where F is a finite
subset of I such that
Yy = Z Tij Qe Qe
ijEF

Let (e}),c; be the dual system of (e;),.;. Then for any s,t € F' we get

i€l
(M @ (my o (e; ® €f))) (Z Tij ® e @ 6;‘.) = Tt
ijeF
Since y # 0, there exist sg, tp such that z,, # 0. This contradicts (). O

The proof of the following theorem is mostly due to Alessandro Ardizzoni. We
thank him for this great help.
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Theorem 2.21. Using the notation of 1A, we have that
(M, p) is a right C-comodule <= (M, p,) is a left C*-module.
Proof. Set ev = evc o+ Let us prove that
(2.6) evo(C@mex)=mgo(ev®ev)o (CRTee ®C*)o(Ac®@C*®C*)
Let c € C, f,g € C*. We compute

[evo (C@me)](c® f@g)=(f*g)(c)

and

[my o (ev @ ev) o (C @ Tocr @ C*) o (Ac ® C*® CH)] (c® f® g)
=my, (ev ® ev) (C @ 1,0+ @ C*) (ch®02®f®g> =

=my (ev ® ev) (ch ®f®02®g) = Zf(cl)g(CQ).
By definition of f * g we deduce (E8). From this we get that

ppo (mes @ M) =rp o (M®ev)o(p®C*)ortespo(me @ M)

D rio(M@ev)o(p®C*) o (MO me)oresea

=ryo(M®evo(C@me))o(p®C*®C*)oTewger m

) o (M & [my o (ev @ ev) o (C® 1o @ C) o (Ae @ C* @ CF)))

o(p@C"®C")oTerger M
=ry o (M ®[mygo(ev®ev)o (CR oo @C))
O(MRIA®C*RC") o (p@C*®C*)oTergerMm
=7y o (M®[mgo(ev®ev)o(C® 1o ®C)])
o[(M®Ag)op®C*®C*| oTemger

and hence we have

(2.7) ppo(me-@M) = ryo(M®[myo(ev®ev)o(C®Too@CY)])
o[(M®Ag)op®C*®RC*| oTeger

Now it is easy to check that

(2.8) (Tem ® CF) 0 Tow cvgmr = (M ® To= 0+) © Towgo= M-
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We compute

10 (C* @ ) = a0 (M @ ev) o (p® C*) 0 Temar 0 (C° @ )

= o (M ®@ev)o(p®@C*)o(u,®C*)oTescrgm =Tmo (M ®ev)o (p®C*)o

(TM ® O*) 9 (M X ev R C*> o) (p X C* (24 C*) @) (TC*,M (9 C*) O To*,C*@M

(E)TMO(M(XJFJ’U)O(p@O*)O

(TM ® O*) o (M®€U®O*> o) (p®0* ®O*) O (M®70*7C*) oTC*@C*,M
=ryo(M®ev)o(pory®C*)o
(M®€U® O*) o (M®C®TC*,C*) ¢} (p@C* X O*) O Te*@C*, M

= ry o (M ®ev)o

(ruegco (p@k)@C* ) o(MRev®C*)o(MRC R Terc+) o (pRC*®C*) o Terger m
= rvo(M@ev)o(Mere®C*)
o(pRkRC*)o(M®ev®C*)o(MRC &Te+c+) 0 (p®C*®C™) o Terger M
=ryo(M®ev)o(M®@rc®@C*)o(M®@C®ev®C*)o
o(pRCRC*"RC*) o (MRC QR T1cc+) 0 (p®C* R C*) o Terges M
=ryo(M®ev)o(MRrc®@C*)o(MC®ev®C*)o
(MR CRCRTexc+) o (pRCRC*RC*) o (p@C* ®C) o Terger M
=ryo(M®evo(re@C*)o(C®ev®C*)o(C®C®Tec+)])
o((p®C)op®C*®CY)oTergenm
Now it is easy to prove that

(2.9)
[evo(re @C*)o(C®ev®C*)o(C®C®Tecx)] = [my (ev® ev) (C® 7o @ CY)].

In fact, for every ¢,d € C, f,g € C* we have

evo(re®@C)o(CRev®C*)o(CRCRTe )] (c®d® f®g)
= [evo(re®C*)o(CRev@CH)(c®dRg® f)=g(d) f(c)

and
[mro(ev®ev)o (CRToe @CH)] (AR fRg)=my(ev®@ev) (c®d®Rg® f)=f(c)g(d).

Thus we obtain

(2.10) 1y (C" @ pp) = g0 (M & [mpo (v ev)o (€ @ rece @ CH)]) o
(p@C)op®C*"®C™)oTeegee M-

Now, for every m € M, c € C, we have

(2.11) [rro(M®ev)|(m@c®e)=m-c(c)=[ryyo(M®e)| (m®c)
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so that

(1tp 0 (e @ M) o I3 (&) = py (e @ ) = [rar 0 (M @ ev) 0 (0@ C*) 0 00 aa] (€ ® ) =
— [rwo (M@ev)o(p@C%)](x @) = [rar o (M ® ev)] (p(z) @ ¢)
= o (M ®e)] (p(2)) = [raro (M @¢) o] (x)
and hence we get

(2.12) p0 (uc- @ M) oly =ryo(M®e)op

=) Since (p®@C)op = (M ®A)op, from (24) and from (EI0) we get 1, o
(me« @ M) = p, 0 (C*®@ p,). On the other hand, since ry; o (M ®¢) o p = Idy,
from (Z12) we get p, o (uc- @ M) oly) = Idy,.

<) Conversely, since j, o (me= ® M) = p, o (C* ® p,), from () and (1),
we get

(213) M @mgo(ev®ev)o (CRTe e @C)])o[(M & Ac)op®C* @ C*
= (M®@[mpo(ev®@ev)o (CRToc-RC*))o((p@C)op®C* 0 C*).

Set v = (M ® A¢)opand £ = (p® C) o p. Using the notations of Lemma
this means that

O()=0().

Since O is injective, we deduce that v = £.
Since 1,0 (uc+ @ M)oly) = Idyy, from (EI2) we get ryro(M @ e)op = Idy,. O

Proposition 2.22. The assignment (M, pM) > (M, ,LLpM) gives rise to a functor
H MC — C*M

Proof. Let v : M — M' be a comodule morphism. Given f € C* and x € M let us
compute

Y(f o) =7 (D wof @) = 3 (o) £ o) = (3 (@) £ (1 @)y) = F(r ().
From this we deduce that ~ is a morphism of left C*-modules. m

2.23. Let M be a vector space. The map ¢ : M x C — Hom (C*, M) defined by
setting

C((z,e))](f) =af(c) foreveryxze M,ceC, feC”

is bilinear so that it gives rise to a k-linear map ap : M @ C'— Hom (C*, M) such
that
(ap(x®@0)) (f) =af(c) foreveryxze M,ceC, feC”.

Proposition 2.24. Within the assumptions and notations of ZZZ3, the map oy :
M ® C' — Hom (C*, M) is injective.
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Proof. Let z =%, 2 ®c; € M ®C and suppose that z # 0 and ay (2) = 0.
We can assume, w.l.o.g. that cq,....,c, are linearly independent and that x; # 0.
Let ¢f € C* such that ¢} (¢;) = ;.. Then

0=oapy(2) () =ay (Z T; ® c¢> (7)) = Z:clcf (¢;) =z #0,

contradiction. O

2.25. Let (M, Mu) be a left C*-module. Then we can consider the k-linear map
By M — Hom (C*, M) defined by setting

By (x)=1y:C"— M where 1,(f)=f-x.

Definition 2.26. A left C*-module (M, Mu) 15 called rational when there exists a
k-linear map 6™ : M — M ® C such that

aMoéM:BM.

We will denote by Rat (c«M) the full subcategory of ¢« M whose objects are exactly
the rational modules.

Remark 2.27. Note that if 6,0 : M — M ® C satisfy apy 0 = By = app00’, then,
since ayy 18 injective, we get & = §'. Thus we will write (M, My, 5M) € Rat (¢~ M)
to specify the unique map 6™ such that oy o 6™ = Byy.

Proposition 2.28. Let (M, M,u) be a left C*-module. M 1is rational if and only if
for any x € M there existn € Nyn > 1, y1,...,yp, € M and ¢y, ...,c, € C' such
that

fro= Zyif (ci) forany f e C”.

In this case

M (z) :Zyi@)ci for any x € M.

=1

Proof. Assume that M is rational and let 6 : M — M ®C such that a ;06 = By,.
For x € M let

§M(x):Zyi®ci where n e Non > 1,y1,...,y, € M,cy,...,c, € C.
i=1

Then, for any f € C*, we have

£ = [0 () () = [aar (6 )] () = (Z b ) ()= uf (@)
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Conversely assume that for any x € M thereexist n € Nyn > 1, y1,...,y, € M and
C1,...,¢p € C'such that f-2=3"" v f(¢) for any f € C*. Then, given z € M,
for any f € C*, we have

Bur @) () = 2= > i () =ans (Z 0 e ) ()

Bu (x) = am (Zyz ®Ci> :

Since ayy is injective, we define a map 6 : M — M ® C by setting

M () :Zyi@)ci for any x € M.

i=1

Then "
ay (6 (z)) = am (Z Yi ® Ci) = Pum (z)

so that ays o 6™ = Bys. Since ayy is injective and both ajp; and By are k-linear, it
follows that 0™ is k-linear too. n

Lemma 2.29. Using the assumptions and notations of Proposition 2223, for every
(M, pM) € MC%we have that (M, Hp M) is a rational module. Therefore Im (H) C
Rat (C*M) .

Proof. Let (M oM ) be a right C-comodule and let us consider the associated left
C*-module ((M, ,upM)). Then, for every x € M and f € C*, we compute

(e ™) @] (1) = [aar (P wo @) | (1) =D wof (@) = f-o = [Bu (@] ().

Therefore we deduce that
Qipr O PM = Bur-

O

Theorem 2.30. The assignment (M, ,oM) — (M, IR M) gives rise to a category
isomorphism T : M% — Rat (c=M) .

Proof. In view of Lemma 29, the image of the functor H : M¢ — oM in

Proposition 222 is contained in Rat (¢«M) and hence we can consider the func-
tor T = H|Rat(c*/\/l)_
Now assume that (M, ,6™) is rational. For z € M, let

(5M(3:):Zyi®ci where n e NNon > 1,y1,...,yn € M,cq,...,c, € C.

i=1
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Then, for any f € C* we have

psv (f @ x) = [rMo(M®ev)o (5M®C’*) OTC*,M] (f@r)=

(70 0 (M ® ev)] <<Zyz®cz> ®f> :Zyif(ci) = ap <Zyi®ci> (f) =
= [an (0" (@)] () = [Bu (@) (f) = [ -2 =Yp(f @)
Thus

(2.14) psn =My

and hence, by Theorem P20, we deduce that (M oM ) is a right C'-comodule.

Now we want to prove that the assignment (M, p,6™) — (M, ) gives rise
to a functor A : Rat (¢~ M) — M. Thus let (M, M,u,éM) and (M’,M’u, 5M/) be
rational modules and let v : M — M’ be a morphism of left C*-modules. We
will prove that ~ : (M oM ) — (M’ ,(5M') is a morphism of comodules. For any
te M,ceC, feC* we have

[ (@ )] (f) = tf (c)

so that

{lasro(v@ON(E@ A} (f) = lowr (v () @ (f) =7 (1) f (¢)

and hence

(2.15) {laar o (y@ O (t® )} (f) =7 lem (E® ) (F)]-

Now, for every x € M and f € C*, we have

{loar o (v® C) 0 6] ()} (f) = {loar o (v® O) (6" (2)) } (f)
=y foar (0 (@) (H] = 7 [Bu (@) (D) =7 (f )
and
{|awr 06" 07| @} () = Bar (v (@) (D) = F -7 (a).

Since v is a morphism of left C*-modules, for every x € M and f € C*, we obtain
that

{oaro (y® )0 6"] ()} (f) = { [ 08" o] (@) } (£)

and hence
a0 (7 ®C)odM =y 06 on.

Since ayr is injective we get

(y®C)odM =M 0.
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Hence we obtain a functor A : Rat (M) — MY such that
A (M, Mu,5M) = (M, 5M) and A (f) = f for any morphism f in ¢+ M.

Let us prove that the functors I' and A give rise to an isomorphism of categories
between M and Rat (¢« M).
Let (M, pM) € M. Then T (M, p™) = (M, p,r, p™) and hence A (T (M, p™)) =
(M, pM). Conversely, let (M, p,6™) € Rat (c=M). Then A (M, Mp,6M) = (M, )
]

and hence T' (A (M, Mp,6M)) =T (M, M) = (M, jigne, ™) = (M, M p1,6M).

Exercise 2.31. Let C' be a coalgebra and let f : M — N be an isomorphism in
oM. Show that, if M is rational, also N is rational.

Theorem 2.32. Let C' be a coalgebra. The full subcategory Rat (c«M) of ¢+ M s
closed under submodules, quotients and direct sums.

Proof. Let (M, My, (5M) € Rat (¢~ M) and let L be a C*-submodule of M.
Since M is rational, by Proposition 28, for every [ € L, there exist n € N,
n>1vy,...,9. € M and cq,...,c, € C such that

fl= Zyif(ci) for any f € C*.
i=1

We can assume cy, ..., ¢, linearly independent and denote by ¢} the elements of C*
defined by ¢; (c;) = d; ;. Then we obtain

L>c;-l=y; foreveryj=1y,...,n

ILeC
Hence, by Proposition ZZZ8, we conclude that L is rational with 6% = ((5M ) | L) .

Now we apply again Proposition to get that, for every x € M, there exist
neNn>1vy,...,y, € M and cq,...,c, € C such that

frx= Zyif(c,-) for any f € C*.
i=1

Then

n

fle+L)=(f-2)+L= (Z?ﬁf(@)) +L:Z(yi+L)f(ci)

=1

and hence, using one more time Proposition 28, we conclude that M /L is rational.
Let now (M;,Mip, 6™),_ be a family in Rat (¢+M). Let

w:@(M,-®C)—><@Mi>®C

icl el
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be the natural isomorphism, i.e. for every t; € M; and ¢; € C' we have

w t®cue1 Z&l ®Q—Z(Ei®0)(h®@)-

i€l i€l

Set
§BierMi _ Yo (@iGI(sMi) )
Then, for every (z;);,.; € @ M;, we get
il
[0 0 (®ierd™)] (:)ic; = ¥ ((Ons, (4))ses) = Z (e: ® C) (O, (1)) -
il

Let (2:),c; € @B M;,c € C, f € C* and let us compute
icl

[(esernr) 0 (6:® C) (@ )] (f) = [(a@iesnn) (5 (1) @ )] (f) =& (22) [ (c)
=& (:if (c)) = &i [an (wc)(f)]-

Hence we deduce that
[(a@iGIMi © 5@i€IMi) (xi)iel} (f) = [(a@iGIMi © 770 o (@ieléMi)) (xz)iel} (f)

_ [aM (Z 6 C) (5o, (2 )] = {lows (B (2] (1))

i€l el

= &lBu @) (N =D e (f-2) = [~ @)ier = [Bowerns; (@i)ier)] (f)

el el

i.e.
DicrM; __
Cp,erM; © 0 - 6691‘611\41"

O

Theorem 2.33. Let (M, pM) be a right C'-comodule and let x € M. Then C*z 1is
the minimal subcomodule of M containing x. Moreover dimy (C*x) < o0.

Proof. The first assertion follows from Theorem 232 and Theorem E=30. Let x € M
and write p () =>,_; , ¥ ®c¢;. Then

.....

fx= Zyif(ci) € Zkyl for any f € C*
i=1 i=1

so that

=1
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Theorem 2.34. Let (M, ;) € ¢« M and let Rat (M) = {L <¢c+- M | L € Rat (c~M)}.
Set

(2.16) rat(M)= Y L.
)

LeRat(M

Then rat (M) € ¢+M and it is the mazimal submodule of M which is a rational
module. Moreover if f: M — M’ is a morphism in ¢« M, then

1) f(rat(M)) C rat(M'),
2) Ker (f\rat(M)) =rat (Ker (f)) :

Proof. For every L € Rat (M), let iy, : L — M be the canonical inclusion and let ¢
be the codiagonal morphism of the family (1) ;¢ gar(ar) :

P : EB L — M.

LeRat(M)

Then Im (®) = >, ¢ gusary L and, in view of Theorem EZ32, we obtain that Im (®) €
Rat (c+M).

Let now f : M — M’ be a morphism in ¢ M. Then f (rat (M)) is a quotient
of rat (M) and hence, by Theorem 232, f (rat (M)) € Rat(M'). Moreover, by
the same Theorem we have that any C*-submodule of rat (M) is rational so that
Ker(f)Nrat (M) C rat (Ker (f)) and we get

Ker (firar(ar)) = Ker (f) Nrat (M) C rat (Ker (f)) C Ker (f) Nrat (M).

Proposition 2.35. Let (M, M,u) € c«M. Then
rat (M) = By (ay (M ® C))

Proof. Let L be a C*-submodule of M and assume that (L,uL, 5L) € Rat (= M).
Then B, = ay 0 dy. Let iy, : L — M be the canonical inclusion. Then

(2.17) Hom (C*,ir) oay = apo (i @ C).
and

(2.18) By oir = Hom (C*,ip) o B
Hence

Buroir, = Hom (C*,iy) o 8, = Hom (C*,ip) o o 0§y, b= ap o (i ® C) ooy,
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so that
(219) ﬁMoz’L:aMo(iL@C)oéL

and hence
L € ByBu (L) € By (e (M ®C)).

Conversely, let us prove that X = g5, (ay (M ® C)) is a rational H*-submodule of
M. Let g € C* and let x € X. Then there exist n € Nyon > 1, x1,...,z, € M and
c1,...,¢n € C such that

T) = apy (Zxﬂ@cl) :

1.e.

for every f € C*

[Bar ()] (f) = [aM (Z T ® q)

so that

[rx=[Bu(2)](f) = [OéM (Z%@Cz)

and hence we get

= inf (¢;) forevery feC”

(2.20) frx= szf (¢;) forevery f e C".
Thus we have

[Bar (92)] (F) = [ (92) = (f % g) )sz [(f % 9) ()]

= ZZﬁf ci)y] g l(ci)o] = [aM (Zx ®Ci19[(ci)2])] (f)

i=1

(B (9)] (f [ (Z T; @ ¢, g 1(¢i), >] (f) forevery feC*

which means that

Bu (9z) = an <Z Ti @ Ciyg [(Ci)z]> €ay(MeC)

i=1

and hence we get that gr € X. Therefore X is a left C*-submodule of M.

Thus we can apply to the left C*-module X Proposition EZZ8. Since, for any
r € X thereexist n € NNn>1, xq,...,2, € M and ¢y, ...,¢, € C such that (EZ20)
holds, we conclude, in view of Proposition 28, that X is rational. O
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Theorem 2.36. Let (C, A, ¢) be a finite dimensional coalgebra. Then Rat (o« M) =
oM

Proof. In view of Theorem EZ34, we have only to prove that C* € Rat (¢+M).
Let n € Nyn > 1andlet eq,...e, be abasisof C. Let e],...e) the corresponding
dual basis. Then, for every f € C*

f= Z@ff (e:)
i=1

and hence, given v € C*, for every f € C* we have

foy= (Ze;kf(ei>> '722(6?'7)f(6z‘)-

i=1 i=1
Since ef -y € C* for every ¢ = 1...n, in view of 228, we conclude. n

Definition 2.37. Let R be a ring and let M € rM. The Wisbauer category
o [M] is the smallest full subcategory of pRM which contains M and is closed under
submodules, quotients and direct sums.

PROPOSAL FOR A DEEPER UNDERSTANDING: Introduce the con-
cept of Grothendieck category. Prove that Rat (¢«M) is a Grothendieck category
and that

Rat (c+M) =0 (+C).

Notation 2.38. We will denote by Vecy the category of k-vector spaces i.e. of
symmetric k-bimodules.

Proposition 2.39. Let (C, A, ¢) be a coalgebra, let V € Vecy, and (M, pM) c MC.
Then the assignments V (V® M,V®pM) and f — f® M define a functor
Fy o Veey — MC.

Proof. We compute
VeMaA)o(Vept) = Veol[(MoA)opY] =V [(pM®C)op]
= (Vep")eC)o (Vap")
and

rvemo (Ve M®e)o (Vep") = Veru)o(VaM®e)o (Vep")
= (Velruoe(Mae)o(pM)]) =VeoM.
Moreover, for any k-linear map f : V' — V'’ we have

(feMaC)o(Vap')=(fop")=(Vep")o(feM).



40 CHAPTER 2. COMODULES AND RATIONAL MODULES

Theorem 2.40. Let (C,A,¢) be a coalgebra. The functor F = Fg : Vecy — M
is a right adjoint of the forgetful functor U : M — Vecy,.

Proof. Let (M, p™) € MC. Then p™ : (M, p™) — (M ® C,M ® A) is a comodule
morphism. Indeed we have

(P )= (Mo A)op"

Let us check that the family (pM ) gives rise to a functorial morphism

MeMC
p:ldye — FU.
Let f: M — M’ be a right comodule morphism. This means that
(f®C)opM =pMof

and this is what is needed for p to be a functorial morphsim.
Let now V' be a vector space and set

cv =ryo(Vee): Vel -V
Let us check that the family (ey)y ¢y, gives rise to a functorial morphism
€: UF — Idye, -

In fact, given a k-linear map h : V — V', we have
_ (=) _
hoey = horyo(V®e) = ryoh®k)o(Vee)=ryo(h®e)
= rpo(V@e)ohaC)=ero(hx().

Let us prove that p and e fulfill the requirements for being the unit, resp. the
counit, for an adjunction (U, F'). Thus let (M, pM) € MY, let V € Vec, and let us
compute

curaayny o U (M) = rar o (M @ £) 0 o = 1das = Wya
and
Fev)oprvy=F(ryo(V®e)o(VROA)=(ry®@C)o(VRe®C)o(V®A)
D WVel)o(Vac®0)o(VeA) =Idyse.
O
Corollary 2.41. For any k-vector space V., F (V) is an injective object in MC.

Proof. In view of Theorem 0, the functor Hom . (—, F (V')) is isomorphic to the
functor Hom (U (—), V). Since U and Hom (—, V') are exact functors, we conclude.

]
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Proposition 2.42. Let (C,A,¢) be a coalgebra. Then (C,A) is an injective cogen-
erator of MC.

Proof. By Corollary 41, we have that F (k) is an injective object in M®. Now
lo: F(k)=(k®Ck®A)— (C,A) is colinear. In fact, by (I), we have

(lc@C)O(k@A):lC®CO(l€®A)ZAOlC

Thus I¢ is an isomorphism in M® and hence C' is an injective object in M®. Let
now (M, pM) € M® and let X\ : M — k&) be an isomorphism of vector spaces.

It is easy to check that the usual isomorphism ¢ : &) ® C — C™) is a colinear
map from F (k9) into (C, A)™) . Since pyr : (M, pM) — FU (M) =~ F (k) is an
injective colinear map, we conclude. O

Definitions 2.43. Let (C, A¢,ec) and (D, Ap,ep) be coalgebras. A C-D-bicomodule
is a triple (M, p, p™) such that (M,™p) € °M, (M, p™) € MP and

(2.21) (Mp®D)opM:(C®pM)oMp.

A k-linear map f: M — M’ between two C-D-bicomodules is called a morphism of
C-D-bicomodules if it is both left C'-colinear and right D-colinear. The category of
C-D-bicomodules we will denoted by cmP

Proposition 2.44. Let (C, A¢,ec) and (D, Ap,ep) be coalgebras and let (M, Mp) €
M and (N,pN) € MP. Then (M®N,Mp®N,M®pN) e ‘M".

Proof. By Proposition =39, (M®N, M,O®N) € “M and (M@N,M@pN) €
MP . Since we also have

(MpeNeD)o (M@ p) = (Mpept)=(CaMap®)o(YpaN),
we conclude. n

Remark 2.45. From the foregoing, we deduce that (E220) can be read both as

o pM : (M,Mp) - (M®D,Mp® D) is a morphism in “M (and hence in
C D
M7) or
e Mp: (M, pM) — (C®M,C®pM) is a morphism in MP (and hence in
C D
MP).
Remark 2.46. Let D = (k;, Ap=r1;" e = Idk). Then M” = S M.

Definition 2.47. Let (C,Ac,ec), (D,Ap,ep), (E,Ag,eg) be coalgebras and let
(M, Mp,pM) € PMC and (N, Np,pN) € “MPF. The cotensor product of the comod-
ules M and N s the k-subspace MUcN of M & N defined by setting

MOcN =Ker (p" @ N — M @ "p).
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Lemma 2.48. Let L, M, N € Vec, and assume that L < M. Let iy : L — M and
irgn - L& N — M ® N be the canonical inclusions. Then
ireN =1 @ N.
Proof. Since the functor @ N is left exact we get that
irQN: LN —- M®N
is injective and hence it coincides with the canonical inclusion iygn. O
Proposition 2.49. Let (C,Ac,ec), (D,Ap,ep) and (E, Ag,eg) be coalgebras. The
assignment (M, N) — MUOcN defines a left exact functor
Oc : PME x CME = PME.
Proof. Since ®E is an exact functor, we have that (MOcN)QE =Ker(pM @ N@ E— M @ Np® E).
Since N € “M¥, we have (Np® E) o pV = (C @ p") o Vp. From this, it follows
that
(PMOINRE-Me p@E)o(Map")=(p"ap" —Me[(poE)ocp"])
= (M@ - Me [(Cep¥)oNp])=(MaC@p")o (M N-Me"p).
Therefore
(MONQE-MeYp®E)o (M p") oiynany =
= (M®C’®pN) o (pM®N—M®Np) oiygen =0

and hence

(PMONRE-Me pRE)o (M p")oiyn,n =0.
Hence there exists a unique map pMPeN : MOsN — (MOgN) ® E such that

(222)  (imoeny ® E) 0 pM9N = (igoamer) 0 pM7N = (M @ p™) o inoen

where 1yo,n and ¢y, n)ee denote the obvious canonical inclusions. Then we
compute

(ivoeNn @ E® E) o (pMDCN ® E) o pMHeN — (([iMDCN ® E] o pMDcN) ® E) o pMOeN
= ([(M @ p") 0irpen] ® E) 0 pMHe™ =
= (M ®p") ® E) o (inmen @ E) 0 pMtel =
=((M@p")@E)o(M®p")oinmn
=(M® (,0 ® E) OPN) O lMOeN
= (M®(N®Ag)o PN) Ol MOeN
=(M®N®Ap)o (M®p") oinmen
= (M ® N ®Ag) o (iyoeny ® E) o pMeN
= (iyoen ® Ag) o pMHeN

— (iMDcN QR ER® E) o (MDCN® AE) opMDCN‘
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MOeN

Since iyo.y ® E ® E is injective, we conclude that p is coassociative.

Let us compute
iMOeN) © Tarmen) © (MOGN ® e) 0 pMBeN &)
= ryen © (ivoeny @ k) o (MOeN ® eg) o pMHel
= ruyen © (ivoey ® eg) o pMHeN
=ryen o (M @ N ®cg) o (iyoon @ E) o pMeN
=ruen o (M ®N ®eg)o (M®"p)oiyo.n
= ruen o (M ® [(N®eg) o Vp]) oipnen

S (M ery) (M [(N®eg) o)) oinmon
=(M® [ryo(N®eg)o™p]) oinnen
= (M@N) O IMON = IMOGN-

Since iy, N 1 injective, we conclude that (MDCN, pMch) € ME. An analogous
procedure endows M- N with a left D-comodule structure uniquely defined by

(D ® inpen) o M7Np = (ipgoen)) 0 7N p = (Mp ® N) o ingn-
Let us prove that (MOcN, MPeNp pMBeN) € DAE je. that

(MDCNP® E) o pMEICN _ (D ® pMEICN) ° MIZIch.

Let us compute

(D @ iroon@E) o (MDch® E) o pMOeN — (Mp® N® E) o (i@ E) o pMOoN
= (Mp@N®E)o(M®p")oimnen
= (MP®PN) O LMOeN

= (D®M®pN) o (Mp®N) O IMOEN

= (D@M®p") o (D ®ing.n) o™ Np
= (D& [(M&p") oinnen]) o MMy

_ (D ® [(iMDcN@)E) OIOMEICND o MDch

= (D @ inoon®E) o (D @ pMPelN) o MPaN p,

Since D ® iyon®F is injective, we get that MO-N € P MPE.
Let now f : M — M’ and g : N — N’ be morphism in PM¢ and in ¢ M¥
respectively. Let us prove that (pM/ QN —M® N/p) o(f®g)oimo.n =0.
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We compute

(pM'®N’>O(f®g)oiMch = pM'®N'>O(f®N’)O(M®9>OiMDcN
(feC@N)o (p" @N')o(M®g)oiun.n
(f®C®N)o(M®C®g)o (p™ ®N) oinmen
(feC@N)o(M®C®g)o(MeYp)oiynen
(feCeN)o (M [(C®g)o™p])oivaen
(f®C®N)

O

(M
( ®[ pog)oiMDcN
= M’®N/p)0(f®g)0’iMDcN-

Hence (pM/ QN —M® N’p) o (f®g)oiyn.ny = 0. Therefore there exists a
unique map (fOcg) : MOgN — M'OcN' such that

(2.23) invmen' © (fHeg) = (f ® 9) o imoen-

It is now easy to check that, in this way we get a functor ¢ : P MY xC MFE — PME,
Let us check it is left exact. Let

0= N L N2 N" 50

be an exact sequence in “MPF and let M € MY Then we can consider the
commutative diagram

MOc f MUcgyg

0 MOeN' MOgN MOEN”
iMDCN/l mcwi CNi
0 MeoN M _yveN Y pe N 0
WM,N/l W,Ni W,N,i

0—=MeC N Yoo NN eco N —s0

where, for each M, N we have
’YM,NZPM(X)N—M@Np.
Note that the first row of the diagram is exact in view of the Snake’s Lemma. []
Lemma 2.50. Let C' be a coalgebra and let M be a right C'-comodule. Then
(2.24) M ~ MO:C

Proof. Since MUcC :Ker(pM RC-M® A) and since (pM RXC-M® A)opM =
0 and pM is injective, there exists a unique isomorphism ¢,; : M — MOcC such
that

ivoee © o = p.
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Proposition 2.51. Let ¢ : C'— D be a coalgbra morphism and let (M, pM) e M.
Set

(2.25) pp = (M@)o p"

Then (M, p%) € MP and the assignment (M, ,oM) — (M, p%) yields an exact
functor

(=), : ME = MP

Proof. Let us compute

(p¥ @ D) opl = (M@ D)o (" D)o (Mey)op
=M@y D)o (pM@p)op" =(Mop@D)o(MoC®p)o (p" e C)op"
—(M®p@p)o(M&A)op™ = (M®[(p® p) o Ad]) o pM FEomemomhion
— (M®[Apoy])op” = (M&Ap)o(Map)op™ = (M Ap)opl

and

Mo(M®ep)opp =r"o(M&ep)o(M®yp)op"

M iscoalgmorphism  pr

= Mo (M & (ep o)) 0 p NI M 6 (1 @ ec) 0 pM = M.

Thus we get that (M, p]g) € MP. Let now f : M — M’ be a morphism in M® and
let us check that f: (M, p}) — (M’, p}’) is a morphism in MP. In fact we have

(f@D)opl E (feD)o(Map)opM =(fap)op =
—(M'®@@)o(f@C)op =™ (M @ p)op™ o f=ptof.

O

Lemma 2.52. Let C, D and E be coalgebras and let ¢ : C' — D be a coalgebra
morphism. Let (M, p, p™) € EMC. Then (M, Mp, p}) € EMP.

Proof. Since (M, Mp, p™) € FM we have that (Mp @ C) o pM = (E® p™) o Mp.
Let us compute

(Mp@ D) opll "= (Mp@ D)o (M@ p)op” = (Mp®p)opM
—(EoMep)o(Mpel)op = (EaMep)o(ExpM)oMp

(e=23) (E®p%)oMp
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Theorem 2.53. Let ¢ : C' — D be a coalgebra morphism and let us consider C'
endowed with its D-C'-bicomodule structure:

(C.50 =(p®C) o Ap, Ag) € PMC.
For any (N, p") € MP we set
(2.26) N¢ = (NOpC, pNPr¢ = NOpA¢) € M©
Then the assignment (N, pN) — N¥ yields a functor
(=) MP = M©
which is a right adjoint of (=),

Proof. By Proposition 249, we have only to prove the adjunction statement. Let
(M, pM) € M and let us compute

(P @C)op” = (Mo C)o (i eC)op™ =

Miscomed (v ro 0 O) o (M @ Ag) o pM =
—(M&(p@C)ohAc)op” = (M&Sp)op™.
Therefore there exists a linear map vy : M — (M,)? = M,OpC such that
(2.27) pM = IM,OpC © VM-
Let us prove that vy, is a morphism in M. We compute
(in,0pc ® C) 0 pMe)” 0 ypy = (in,0pc ® C) o pMetn®
= (M, ® Ac] o ir,0p0 ©YM
= (M e Ac)opM =
= (pM ® C) o pM = [('l.M(pEIDC o ’YM) ® C'}
= (iss,0p0 ® C) 0 (v ® C) 0 p™.

°YMm

©
Now we prove that (var),,cc vields a functorial morphism « : Id e — <(—)¢> )
Thus let f : (M, pM) — (M’, pM') be a morphism in M® and let us compute

. ¢ . v .
tMmOpC © ((f)¢> °YM = tM,0OpC © (f8pC) o ym = (f®C)oimopcorm =

v isco / c2a) |
(:)<f®C)OPMf:10M Of(:)ZM;,DDCOVM/Of-

Since % MOpc 18 injective, we conclude.



47

Now, for every (N N ) € MP let us consider the map
(228) )\N:TNO(N®€C)OiN|]Dci(Nsp)@:(NDDC)(P%N

and let us prove it is a morphism in MP. Thus, let us compute

(v ® D)o p&) ) (10 @ D)o (N® ec ® D) o (inpye © D) o pNe

=) (rN®@ D)o (N®ec® D)o (inope ® D) o (NOpC ® @) o pNpC

=(ry®D)o(N®ec®D)o(N®C®y)o (ing,c ®C) o pNr¢

"= (@ D)o (N©ec® D)o (N®C®¢)o(N®As)oinmpe

piscoalgmrph (

rNn®@D)o(N®(epop)®@D)o(N®C®p)o(N®As)oino,c
=(rvn®D)o(N®ep®@D)o(N®@yp®p)o(N®Ac)oino,c
=(rv®@D)o(N®ep®D)o(N®[(p®p)oAc])oinnpe

piscoalgmrph (

rN® D)o (N®ep®D)o(N®I[Apoy|)oino,c
I(TN®D>O(N®5D®D)O(N®AD)O(N®90)OiNDDC

S (N@ip)o(N@ep® D)o (N@Ap)o (N @) oinope

=(N®llpo(ep®D)oAp])o(N®y)oino,c

Discoal, .
=" (N ® ¢) oinope

PR (N @ [rp o (D ®ep) 0 Ap]) o (N ® ¢) 0 inope

=(N®rp)o(N®(D®ep)oAp)o(N®p)oiyg,c

D .

iscoalgmrph .
PEET rvep o (N®@ D®@ep) o (N®[(p® p) 0 Ac)) oinope
=7Tngp o (N®D®ep)o(N@p®p)o(N®Ac)oino,c
:TN®DO<N®D®(5DOQ0>>O(N®Q0®O)O<N®Ac)0iNDDC
piscoalgmrph rnep © (N®@D®eéec)o(N®(p®C)oAg)oino,c
=rnepo (N®D®ec)o (N®Gp) oinoye

defcot . .
e )T’N®DO(N®D®€C)O (pN®C) °tNOpC = I'NeD © (,ON®€C) O INOpC
. o .
= rnep o (pV ®k) o (N ®eg) oinpe (:)PNOTNO(N®EC)OZNDDC(:)PNO)\N

Let us prove that (Ay)ycp vields a functorial morphism

A:((-)9), = (~0pC), = Tduo.
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Hence let A : N — N’ be a morphism in MP” and let us compute
>\N’ o (hDDC) (IZZZE) T'nN? O (N, & 80) 9 iN’DDC o (hDDC) =

(=) ry o (N'®@ec)o(h®C)oinoyc

=Ty’ O(h@k)o(N@ec) OiNDDC

o rnvo (N ®ec)oino,c = ho AN.

Let us prove that v and A give rise to an adjunction. Given (M oM ) € MY let us
compute

VAL )

) . (22
Am, © (’YM)SD ="ryo(M®ec)oiy,opcovm = Tmo(M®ec)o p"
— Ty = Idyy,.

Given (N, pN) € MP, let us compute

inapc © (AN)7 oyne = inopco (ryvo (N ®ec)oinnyo)? o yne =

(T=m) . .
="inopc o [(rv o (N ®ec) o ingye) OpCl o ynope =
=3 . .
= [(ry o (N ®ec) oingye) ® Cloinnpe), ope © INope =

(z:m) [(TN o (N & Z‘:C) @) iNDDC) X C] o) pNDDC —

= [(ry o (N®ec)) ®Cl o (ing,c @ C) o pNor¢ =

E [(rv o (V@ 20)) ® Clo (N @ p°) 0 inmpe

=[(rvno(N®ec)) ®Clo(N®A¢)oing,c
:(T’N®C)O(N®(€C®C)OA0>O’iNDDC

(=)

= (N®Ilc)o(N® (e¢ ® C) o A¢) oing,o

Cliscoalg .
= INOpC

]

Exercise 2.54. Apply Theorem 2243 to the particular case when the coalgebra mor-
phism is ec 1 (C,A¢,ec) — (k, Ap=r =1 " ep = Idk). (See TZd. Show that
(—)ep MY — MF = Vecy, is just the forgetful functor U and (—)°¢ : M¥ = Vecy, —
M is just the functor Fg. Therefore Theorem can be obtained as a particular
case of Theorem [ZZA3.



Chapter 3

Bialgebras and Hopf Algebras

Theorem 3.1. Let us consider a 5th-uple (B, mp,up, Ag,ep) such that (B, mp,up)
is an algebra, (B, Ap,eg) is a coalgebra. The following assertions are equivalent:

(a) The maps Ap and ep are algebra morphisms.
(b) The maps mp and up are coalgebra morphisms.
Proof. Recall that, in view of (ICR), we have
Apep = (B® T ®@B)o(Ap®Ap) and epgp =0 (cp®ep).
Analogously
Mmpep = (mp@mp)o (B@1pp®B) and upep = (up @ up)o (I) "

Ap is an algebra morphism means

mpgp © (Ap® Ap) =Agpomp and Apoup = upgs

le.

(3.1) (mp®@mp)o(B®Tp® B)o(Ap®Ap) =Agomg
and

(3.2) Agougol, =ug @ ug

ep is an algebra morphism means

(33) 5BomB:mko(€B®€B):lko(EB®EB)
and
(34) EBOUB = U = Idk

49
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mp is a coalgebra morphism means

Apomp = (mp®mp)oApgp and epomp=cpgp

ie.

(35) ABomB:(mB®mB)o(B®TB,B®B)o(AB®AB)
and

(36) &TBO’ITLB:lkO(cEB@éB)

up is a coalgebra morphism means

ABOUB:<UB®UB)OAk®k and EBOoOUB = &

le.

(3.7) Agougol,=ug @ ug
and

(3.8) egoup = Id;.

Since (B3 = (B3), (B32) = (B@), (B3) = (BM) and (BA) = (BR), we conclude. [

Definition 3.2. A bialgebra over k is a 5th-uple (B,mp,up, Ap,ep) such that
(B,mp,ug) is an algebra, (B, Ap,ep) is a coalgebra and the equivalent conditions
i Theorem B hold.

Remark 3.3. Using the sigma notation, (Bdl) can be written as

(3.9) Z (a-b), ®(a-b); = Laib; ® asbs,
(B2) can be written as

(3.10) Y (p),®(1p)y =15 @ 15,
(B3) can be written as

(3.11) ep(ab) =ep(a) €5 (b)

(B3) can be written as

(3.12) ep (1) = 1;.

Definition 3.4. Let (H,mpy,uy, Ay, eyg) be a bialgebra. Set H* = (H, Ay, ep) and
H* = (H,mg,ug). A linear map S : H — H s called an antipode for H if S is an
inverse for Idy in the convolution algebra Hom (H¢, H®) i.e.

S*IdH:UHOSH:IdH*S

This means that, for every h € H

(3.13) > S (h)-hy=cy(h)ly =Y hi-S(hy).
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Remark 3.5. If a bialgebra has an antipode, then this antipode is unique. (Why?)

Definition 3.6. An Hopf algebra is a 6th-uple (H,my,uy, Ay, ey, S) where (H, my,ug, Ay, e5)
i.e. a bialgebra and S is an antipode for H.

Theorem 3.7. Let (H,m,u, A, =, S) be a Hopf algebra. Then:
1) S(gh) =S (h)S(g) for every g,h € H.

2) S(ly) =1y4.

3) A(S(h)) =>_5(hy) ® S (h1) for every h € H.

4) (S (h)) =¢e(h) for every h € H.

Properties 1) and 2) mean that S is an algebra antihomomorphism. Properties
3) and 4) mean tha S is a coalgebra antihomomorphism.

Proof. 1) Let g,h € H and let us compute

=S (D ae(g)n) = S[(Yaih) e ()] = D S (@he (h2)) = (2)
=Y_s glhlg(hz))gms 92.) = > S (g1 e (h2)) 91,5 (92)
= S (g1,h) g,e (h2) S (92) = ZS (91.h1) G121, S (ha,) S (g2) =
= S(g1 1) 91,h1,8 (h2) S ZS (g1h1),) (g1h1)y S (h2) S (g2) =
3 e (gihn) 5 (he) S (92) 0N e (g1) e () S () S (92)
=Y S (e(h) ha) S (= (g1) g2) = S (h) S (9)

2) We know that

Since A (1y) =1y ® 1y and & (1) = 1i, this means that
and hence

S(1y) = 1y

3) In this proof, for every h € H we will simply write A (h) = hy ® hy, summation
understood.
Let h € H. Since
e(h)1y =S (hy)hy

we get

£ (h) 1H®1H = £ (h) A (1H) =A (8 (h) 1H) =A (S (hl) hg) =5 (hl)l h21®5 (hl)g h22
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so that
(3.14) e(h)1g @1y =S5 (h1), he, ® S (h1)y ha,
and hence
[S (W], @[S (M)]y =[S (h1)]y € (h2) ® [S (h)]y = [S (h1)]y ha, S (ha,) @ [S (ha)],
=[S (h)]y haS (h3) ® [S (h1)],
=[S (h1)]y haye (h22) (hs) @[S (h1)],
=[S (h)], haS (ha) ® [S ()], € (hs)
=[S (h1)]; haS (hs) ® [5( 1)]3 h3S (ha)

)
=[S (h1y,)], sy S (h) @ [S (h,,)], (h112) (h1,)
()

=" £ (h1,) S (h2) @ S (h1,) = 5 (h2) ® S (e (h1,) h1,) = S (h2) ® S ()

3

4) Let h € H. We compute

(S () =< (5 (D ctm)ha)) = e ) ="
= (1S (1) =2 (3 S () =& (2 () == (1) =& (W) 1 = = (h).

Proposition 3.8. Let (H,m,u, A, ¢, S) be a Hopf algebra. Then the following state-
ments are equivalent:

(a) >>S(ha)hy =€ (h) 1y for every h € H.
(b) > haS (hy) =€ (h) 1y for every h € H.
(€) SoS =Idy.

Proof. In this proof, for every h € H we will simply write A (h) = hi®hs, summation
understood.
(a) = (c) Let h € H. From (a) we deduce that

(3.15) e(h)1g = S5(S (h2) h1) = S (h) [(S 0 5) ()]

and hence we get

hie (hs) = hiS (ha,) [(S 0 S) (hay)] = he S () [(S © S) ()]
e () [(S 0 S) (hs)] = (S 08) (e (A1) ha) = (S0 S) ().

h

(¢c) = (a) Let h € H. Then

(W1 =S (W) 1y) =SS (h) ha] = S (hs) S (S (h1)) = S (hs) Iy



23

(b) = (c) Let h € H. From (b) we deduce that
(3.16) e(h) 1y =S (haS (b)) = [(S 0 S) (h1)] S (h2)
and hence we get
ho= e(h)hy E=1((S058) (h,)]S (h1,) ha = [(S 0 S) ()] S (ha,) ha,
= [(§085)(h)]e(he) = [(S05) (he (ha))] = (S0 5) (h).
(¢c) = (b) Let h € H. Then
O

Corollary 3.9. Let (H,m,u,A,¢,S) be a Hopf algebra. If H is either commutative
or cocommutative, then S* = Idy.

Proof. Assume that H is commutative. Then, for every h € H, we have

W1y =Y mS(ha) =Y S(ha)ln

Assume that H is cocommutative. Then, for every h € H, we have

W1y =Y mS(ha) => hyS(l).
O

Proposition 3.10. Let (H,my,uy, Ay, ey, Sy) be a finite dimensional Hopf alge-
bra. Then (H*,mpy«,ug~, Ag~, g+, Sy~) is an Hopf algebra where Ay~ : H* (m

A, wup)* evy
(H®H)*£>IH*®H* and 5H*-H*(H) Nk
H*®H* (H® H)" 4 H* and uH*:k(eU}\_2 k* (512* H*
and SH*: (S—H)> H*.

Proof. By Proposition A0 we know that (H*, Ag«,ey+) is a coalgebra and by
Proposition T8 we know that (H*, mpy«,ug~) is an algebra. For every f,g € H*
and z,y € H, we compute

(f*g)( Zf TyY), Zf z191) g (T2Y2)
—Zﬁ (1) fo y1)91 (2) 92 (y2) Zf1 (1) g1 (22) f2 (1) g2 (y2)
—Z fixg1) (@) (faxg2) (y)-

Since Ap« (fxg) =>,(f*9g), @ (f * g), is uniquely determined by

(f9) (zy) =D [(f*9), @)][(f x9)y (v)] for every z,y € H
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we deduce that

D (9@ (frg)y=) (ixg)® (f2xg).

We also compute

Ag- (1g+) = Ap- (en) = Z (er); ® (€r),

which is uniquely determined by

ey (zy) = Z (em), (x) (em), (y) for every z,y € H.

Since
ey (zy) =ep (x)ey (y) for every x,y € H
we deduce that
AH* (5H) =g Rey.

Therefore Ay« is an algebra morphism. For every f,g € H* | let us compute
en- (fxg9) = (fx9)(lu) = f(ln) g (In) = en- () en- (9)-
We have also
Elg* (lH*) = £g=* (EH) =Ecy (IH) = 1k
Therefore also e+ is an algebra morphism.
Let now f € H* and let us compute

(Sue 1dp=) () =D Su= (f1) * o =Y (fr0Su) * fo.

For every x € H we compute

[Z (fioSu) * f2} () = Z (f108m) (x1) fa (x2) =
_Zfl (Su (1)) f2 (22) Zf =flen (@)= f(u)en (x) = ep- (f)en (v).
We deduce that

(Sg«*Idg=) (f) = Z (fioSm)xfo=cn- (f)en = (ug-oep-) (f) forevery f € H"

i.e. that
SH* ES IdH* = U+ O Eg=*.

The proof that Idg« * Sy« = ug- o eg+ is similar. O

Proposition 3.11. Let (H,my,uy, Ag,ey, Sy) be a finite dimensional Hopf alge-
bra and let w : H — H** the natural isomorphism:

w(x)(f)=f(x) forany fe H" andx € H.

Then
w (HamH7uH7AH7€HasH> — (H*amH*auH*aAH*ng*7SH*)

18 an isomorphism of Hopf algebras.
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Proof. Let a and g € H**. Then

(axB)(f) = a(f))B(f) forany fe H*

where A (f) =" f1 ® fo is uniquely determined by

flab)=>"fi(a) f2(b) for any a,b€ H.

We have

(@) xw W] () =D (@) f2(y) = f(ey) = w(zy) (f) forany f € H'and z,y € H.

and hence w (z) *w (y) = w (ry). Now we know that

uniquely determined by

w(@)(frg) =3 @], () (@), (g) forany f,g € H'and x € H.

We compute

S w (@) (Nwle) (9) = 3 f (@) g(e2) = (f+9)(x) for any f,g € Hand & € H.

Since
w(@)(fxg)=(f*g)(x) forany f,g € Hand x € H

we conclude that

YW@ (@) (9) =) W) ()] [wlxe)(9)] forany f,g € Hand z € H

i.e. that

Y w@),®w@)], =) w@)®w(w) foranyz e H

Moreover we have

w(l)| (f) = f(g) =1y (f) forany fe H*

and

e ow] () =eps (w(x)) =w(z) (eg) =eg (x) for any z € H.
Hence w (1y) = 1gw and eg« ow = €. O
Definition 3.12. Let (A, ma,ua, Aa,ea)and (B, mp,up, Ag,ep,Sg) be bialgebras.
A k-linear map f : A — B is called a bialgebra morphism if f : (A,ma,us) —

(B,mp,ug) is an algebra homomorphism and f : (A, A 4,e4) — (B,Ap,ep) is a
coalgebra homomorphism.
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Definition 3.13. Let (A,m,u,A,e) be a bialgebra. A wvector subspace I of A is
called a bi-ideal of A if

e [ is an ideal of the algebra (A, m,u),
e [ is a coideal of the coalgebra (A, A €).

Theorem 3.14. (The Fundamental Theorem of the Quotient Bialgebra)
Let (A,m,u,A,e,S) be a Hopf algebra, let I be a bi-ideal of A.and letp =pr: A —
A/l be the canonical projection. Then A/l can be endowed by a unique bialgebra
structure (called quotient bialgebra) such that p becomes a morphism of bialgebras.
Moreover given any bialgebra morphism f : A — L such that I C Ker (f), there
exists a unique bialgebra morphism f : A/I — L such that f = f o p.

Proof. Exercise. O]

Definition 3.15. Let (H, my,uy, Ap,eg, Sy) and (B, mp,up, Ag,ep,Sp) be Hopf
algebras. A k-linear map f : A — B is called a Hopf algebra morphism if it is a
bialgebra morphism.

PI‘OpOSitiOIl 3.16. Let (H,mH,UH,AH,éH,SH> and (B,mB,UB,AB,&TB,SB> be
Hopf algebras and let f : H — B be a Hopf algebra morphism. Then Sgof = foSy.

Proof. For every x € H, let us compute

(Spof)* =Y Sp(f (@) sf (@)= Ss([f (@)])slf (@), =5 (f () 15 = cu (z) 1.
Thus we get that
(317) (SB o f) * f = ]-Hom(H,B)'

For every x € H, let us also compute

Lf* (f o Su)]( Zf r1) B f (Su (72)) [Zﬂﬁl w0 Su (v2)| = f(en (v)) = en (v) f (1n)
=epy (z)1p.

Thus we get that

(318) f * (f e} SH) = 1H0m(H7B)-

From (BT2) and (BIX) we deduce that f is invertible in Hom (H, B) and that its

two-sided inverse is
Sgpo f=foSy.
O]

Definition 3.17. Let (H,m,u,A,e,S) be a Hopf algebra. A wvector subspace I of
H is called a Hopf ideal of H if
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e [ is an ideal of the algebra (H, m,u),
e [ is a coideal of the coalgebra (H, A, ) and
e S(I)C 1.

Theorem 3.18. The Fundamental Theorem of the Quotient Hopf Alge-
bra) Let (H,m,u,A e, S) be a Hopf algebra, let I be a Hopf ideal of H.and let
p =p;r: H— HJI be the canonical projection. Then H/I can be endowed by a
unique Hopf algebra structure (called quotient Hopf algebra) such that p becomes a
morphism of Hopf algebras. Moreover given any Hopf algebra morphism f: H — L
such that I C Ker (f), there exists a unique Hopf algebra morphism f : H/I — L
such that f = f o p.

Proof. Exercise. O

Exercise 3.19. From Sweedler’s book we quote these exercise for practicing sigma
notation. Let (H,m,u, A, &,S) be an Hopf algebra and let h, f,g € H. Show that

hiS (hy) @ hs =1g ® h

S(hi)ha@hs =15 ®h
hi® S (hy)hs =h® 1y
hi ® heS (h3) =h® 1y
hi®...0hi-1®@hiS(hiy1) Qhipo® ... Qh, =h1 ® ... hy_o
hi@...0hi1®S(hi)his1 @hipo®...Q ", =M ® ... hy_o
h1S (g1fh2) g2 = € (gh) S (f)
b ®...®0hi1 @ AS (hi) @ hit1... ® hyq
= h®.0h 1S (ht1)®S(h) @hiya... R hy

(L ® S (h1) ha) [AS (hs)] = AS (h)
(L @ S (h3) ha) [AS (ho)] = (S ® S) A (h)
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Hopf Modules

Throughout this section H = (H,m,u, A, ¢,S) will be a Hopf algebra.

Proposition 4.1. Let (M, M), (N, 1) € My. Set

- Mg, N
PMEN . MaNeoH YA eoNeoHoH I MoHoNoH 4 MeN.

Then (M @ N, pM®N) € My.

Proof. 1t is easy to check that

(4.1) [Tnaen @ H) o [N® H ®@ Ty p) = [H ® Tngm,u) © [Tnvg @ H® H]

o8
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Mo (M@ Nom)= (M @opN) oM@ Tnn ®H)o(M®N®A)o(M®N ®m)
= (W@ pN)o(M@TNg®H)o(M&N®[Aom]) =

= (luM@:uN)O(M®TN,H®H)O(M®N®m®m)

oMINXHRTTr®H)o(M®N®A®A)
= (M@ pN) o (M ®Tymo (N ®@m)®m)
OMINRHRTEE@H)o(M®NRQA®A)
=) (IuM@,uN)o(M®(m®N)oTN,H®H®m)
OMINRHRTEn@H)o(M@NRA®A)
=" opM)o(Mem@N®m)o(MQTNuen ® H® H)
cMOINSHRTg@H)o(MRN®A®A)
:(NMO(M®m>®MNO(N®m))O(M®TN,H®H®H®H)
OMINRHRTHEE@H)o(M@NRQA®A)
:(MMO(p,M®H)®,uNo(MN®H))O(M®TN7H®H®H®H)
O(MINRHR@TmTuu@H)o(M®NRA®A)
=" eu")o (WMo Hep" @ H)
oM TNpep @HQH) o MAINRHQmTmr@H)o(M@NRQA®A)
Do) o (M@ H N @ H)o(M&H® Tyenn® H)o(M®7yy® H®H® H)
o(M®N®A®A)
=" ouN)o (WMo (H@ ") ornern ®H) o(M®@Tyvy @ HR® H® H)
o(M®N®A®A)

S M@)o (1M @mmo (W © H) © H) o (M® v HoH o H)

o(M®NR®A®A)
_( M N M N
=(MopN)oMerng@H)o (M @pN @ HoH)o(M®7yy ® H® H® H)
O(MNRX®HRHR@A)o(MRNRARH)
:(IuM@IuN)O(M@TN7H®H)O(M®N®A)O
o(WMeop"©H) oM@y ®H®H)o(M@N®A®H)
:MM®NO (MM®N®H)

It is easy to prove that

(4.2) (rM@N®k)o(M@Tye®k)o(MeN®I;) =Ildusnek
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We have

pMN o (M@ N@u) = (Mo pN)o (M@ g @ H)o(M®N®A)o (M®N Qu)

(M o) oMoy @ H)o(MeN@uu)o (Ma NI =

= (WM eou¥)o(M@HRN@u)o(MR@mynu®@k)o(M@NQuak)o(MO®N®IL') =
=Moo )o(M®HON®u) o(M®Tyuo(N®u)®@k) (MeN®IlL') =

= (MopN)o(M@HRN®@u)o(M®(u®N)ory,®@k)o (M®N® I
=(MeopN)o(M®HON®u) o(Me®u® N k)
o(M@TNr®@k)o (M®N® I
=" (Meu)@N)o(Mk®uNo(N®u))o(MeTNn,®k)o(Me&N®IL)
=(rM@N)o(M@k®@ry)o(M@TNr®@k)o (M®N® I
=(M@ry)o(ry@N®k)o(M@Tne®@k)o (M®N® I
(E) (M@TN) =TM®N-

Let us prove the same statement directly. For all x € M,y € N and a € H, we have

piN (rey®a) = [(WMop) oM@y @ H)o(MON®A) (z1®y®a)

= Zxal & yas
so that, for all x € M,y € N and a,b € H we deduce that
[MN o (M@ N@m)] (z@y®a®b) = (z®y) (ab)
= z(ab); @y (ab), = Y _x(arb) ® y (azb) = » _ (xar) by @ (yaz) by
= 3 (@) @ (yaa)| b = [w @ y) a]b = [05N o (1N @ H)] (2@ y @ a2 D)
and
N o (M@ N@u)] (t@ye 1) =(2@y) 1y = 21p@yly = 10y = ruey (T Y @ 1i).
[
Proposition 4.2. Let (M, p™), (N,p") € M. Set

M@ty N®H M@N@m
—

MEN . MNP MoHo N H MoNoHoH 2™ Mo NeH.
Then (M @ N, pM®N) € MH.

Proof. The Proof is dual to that of Proposition Bl and is left to the reader. O
Definition 4.3. A right H-Hopf module is a triple (M, ,uM,pM) where

° (M,/LM) e My,



61

o (M,pM) e M and

o MM — M ® H satisfies
(4.3) pM oy = (M em)o (M@ H)o (pM ®A)
which means that

Z (@ h)gy ® (@ h)yy = Zx(o)hl ® xyhe  for every x € M and h € H.

Proposition 4.4. Given a triple (M, uM, pM), where (M, MM) € My and (M, pM) €
M the following assertions are equivalent

(a) (M, uM, pM) 15 a right H-Hopf module.

(b) pM (M, pM) = (M ® H, pM®") is a morphism in My.

(c) pM: (M & H, pM®H) — (M, pM) is a morphism in M™.

Proof. pM : (M, ™M) — (M @ H, p™®) is a morphism in My means that
Mot = pMEH o (Mg )

= (WeomoMe@mgr®H)o (Mo H®A)o (p" @ H)
= (Wem)o(M@myy@H)o (p" @A).

M (M ® H, pM®H) — (M, pM) is a morphism in M* means that

plop = (WeH)op" =" @H)o(M®H@m)o(M&my®H)o (0" ®A)
= (NM®m)O(M®7H7H®H)O(pM®A).

]

Definition 4.5. Let (M, u™, pM) and (M, ™', pM") be right H-Hopf modules. A
linear map f: M — M’ is called a morphism of right H-Hopf modules if it is both
a module and a comodule morphism. We will denote by ME the category of right
H-Hopf modules.

Proposition 4.6. Let V € Vecy and let M € M%. Then (V@ M,V @ M,V @ pM) €
M. Moreover the assignment V — (V@ M,V @ M.V @ pM) and f — f@ M
yield a functor

Fu - Veey — M2

Proof. By Proposition 239, we know that (V M,V & pM) € M. On the other
hand it is easy to show that (V M,V & ,uM) € Mypy. Let us check the compati-
bility relation:

pVEM o [ VOM _ (NV®M @m) o(VoOM®®Tyu®@H)o (pV®M ® A) '
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We compute

(1M @m)o (VoM @y H)o (p"*M @A) =
(Veouem)o(VeoMemue H)o(VepeA)=
(V& [ 9m) o (M @ H) o (0¥ 0 4)]) =
MeMi Ve (pM OMM) _ (V®pM) o (V®MM) — VEM o VEM,
Let now f:V — V' be a k-linear map. We compute

(foM)®@H)op"*M=((foM)® H)o (V&p") =
= (V'@pM)o(feM)=p"""o(fe M)

and
(feM)ou" " =(foM)o(Veu)
= (fou")
=(V'eupM)o(feMeH).
Thus Fy (f) is a morphism in M. O

Lemma 4.7. (H,m,A) € M.

Proof. We know that (H,m) € M and (H,A) € My. Moreover

Aomg(m@)m)O(H@TH,H@H)o(A@A).

Definition 4.8. Let (M, p™) € M. Set
MM ={zeM|pM(2)=2®1y.}
MeH s called the subspace of coinvariants in M.

Remark 4.9. Let (M, pM) e M and let \yy - M — M @ H be the linear map
defined by setting
A (z)=xz®1y for everyx € M.

Then
MeH = Ker (pM — )\M)

Note that, if f: M — M’ is a k-linear map, then

(4.4) (f@OH)o MM =Xypof
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Proposition 4.10. The assignment M s M“H yields a functor
()" M = Ve,
Proof. Let ipeon : M®H — M be the canonical inclusion. Then we compute
(pM’ — AM,> o foipeon = pM = [(f @ H) 0 pM] 0ipgeon — Aapr 0 f 0 ipgeon

= [(f ® H) 0 AM] 0 ipgeon — Ay © f 0 ipgeons = 0

It follows that there is a unique linear map f¢¥ : M<H — M'H guch that
ippreorr 0 0 = f 0 peon.

It is now easy to check that this gives rise to a functor. O

Theorem 4.11. (The Fundamental Theorem of Hopf Modules) Let H be a Hopf
algebra and let
G: M — Veey,

be the restriction to MY of the functor (=)™ introduced in Proposition FI0. Let
F:FH:Veck—L/\/lg

be the functor defined in Proposition 0. Then (G, F') is an equivalence of categories.
Proof. Let (M, ™, pM) € M%. We compute, for z € M

(Zl‘ ) > (=) ( ) (5 (zw)), ® (%))(1) (S (zw)),
m,) @ (20 ) Zfﬁ ) @S (1)
= Zx(o)S I’(g)) ® (1 Zw )®e (zq) 1
=> 10 S(s(a: ®1H—Zx(0 (z) ® 1.

This means that > xS (x(l)) € MH for every x € M. Thus we may define a map
P: M — M“" by setting P (x Z (0 1) for every x € M.
Let us define a map ay; : M°? @ H — M by setting
v(@®h)=x-h foreveryx € M and h € H.
Let us define a map By : M — M @ H by setting

By = (P®Idy)opM ie

ZP CL’(O) @z Zx ( >®I ZCU(O)S $(1))®x()
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for every x € M. Given o € M and h € H, we compute
Bur (an (x @) = [(P@Idy) o p™] (x-h) =

= Z (a:h)(o) S ((»Th)u)) ® (:z:h)@) = Zx(o)hlS ($(1)h2) ® (37(2)h3)

Since x € M“H we have that Zx(o) ® x(1) = v ® 1y from which we deduce that
Yo%) ®Ta) @2 =2 ® 1y @ 1y. Therefore we get

B (aar (v @ h)) :th15(h2)®h3:x25(h1)®h2:x®h.

We deduce that Gy o apr = IdeH®H. Given x € M, we also compute

(aps o Bar) ( Z (o Z x(O)S x(l) Z T x(l)
Let us prove that a,, is a morphism in /\/lg Let 2 € M and h € H. We compute

m((z@h)-t)=ay(x@ht)=x-(ht)=(z-h) - t=ay(x®h) -t
and

oM (ay (z@h)) =pM(2-h) = Ziﬂ(o)hl ® xyhe = thl ® ha

= (o @ H)Y (2@ @ hy) = (ay @ H) (0" (z @ 1)) .
For any k-vector space V, let us define
v:(V® H)COH — V' by setting vy (z": v; ® hi> = zn:me (h
i=1 i=1
for every S°7  v; @ hy € (V @ H)®™ . Let us also define a map
oy 1V — (Vo H)" by setting oy (v) = v @ 1y € (V@ H)®" for every v € V.
Then, for every v € V we have that
W (Ov (v) = ve (1n) = v

Let now Y., v @ h; € (V @ H)®" . Then we get that

Zvi ® (hi); @ (hi)y = Zvi ® h; @ 1g.
i=1

i=1

and hence we obtain

Oy (’YV (Zvi@?hi)) = sz ®1H—ZU2®5 1H:Z”¢®[€<(hi)1)]

i=1
i=1

We give as an exercise to the reader to check that both the family (aar) ;e i and
(’YV)Veveck yield functorial morphisms between the appropriate functors. O
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Exercise 4.12. Let (M, p™) € M and consider (k,(u® k)l;") € M. Prove
that
MUOyk ~ M“".

Hint: use the isomorphism in (2224).



Chapter 5

Integrals for bialgebras

Definition 5.1. An augmented k-algebra is a 4th-uple (A, ma,ua, ) where:
o (A,ma,uy) is a k-algebra.
o m: A— ks ak-algebra morphism

7 15 called the augmentation of A.

Definitions 5.2. Let A = (A,ma,uas,m) be an augmented algebra and let x € A.
We say that

e 1 is a left integral in A if
a-ax=m(a)z, for everya € A.
In this case x is called a total left integral if m (z) = 1.
e 1 is a right integral in A if
x-pa=uxm(a), per ognia € A.
In this case x is called a total right integral if 7 () = 1.

The set of all left integrals in A will be denote by [, = [, (A).

The set of all right integrals in A will be denoted by [ = [ (A).

We will say that A is unimodular whenever j; = fT. In this case an element of
fl = fr will be simply called an integral.

Remark 5.3. fl and fT are k-vector subspaces of A. Thus they are called space of
left, resp. right, integrals in A.

Definition 5.4. Let (A,ma,ua,m) and (A", mar, uq, ') be augmented algebras. A
linear map f : A — A’ is called a morphism of augmented algebras if [ is a
morphism of algebras and ' o f = .

66
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Proposition 5.5. Let f : (A,ma,ua,m) = (A ma,ua, ') be a surjective mor-
phism of augmented algebras. Then

r(fw)e [u,

Proof. Let t € [ (A) and let a € A. We compute
fla)-f(t)=fla-t)=f(r(a)t)=m(a) f(t)=(x"of)(a) f(t)=7"(f(a)) f(t).
O

Proposition 5.6. Let (A, ma,ua,m) be an augmented algebra. Then [, (A) and
[ (A) are two-sided ideals of A.

Proof. Let o € A and & € [, (A). We have to prove that

ax € /l(A) and ra € /I(A).

For every a € A we compute
zisleftint zisleftint
a(azr)=(aa)z = w(aa)z=7(a)m(a)z =7 (a) (m(a)x) =" 7(a)(ax).

This means that az is a left integral in A. We also compute

:):isle:ftint (7‘(‘( )

a(za) = (ar) a)r)a =7 (a) (za).

which means that also za is a left integral in A.
The proof for [ (A) is analogous. O

5.7. Let (H,mpy,up, Ay, eg) be a bialgebra. Then

o (H,mpg,uy,ey) is an augmented algebra. A left integral in H is an element
t € H such that
h-gt=eg(h)t, for every h € H.

It is also total if ey (t) = 1k.
o (H*,mpy«,ug+,my+) is an augmented algebra where - : H* — k is defined
by setting
ma (f) = f(ly) for every f € H*.
A left integral in H* is an element A € H* such that

fxX=mg(f)A, forevery f € H*

1.e.
fxA=f(g) A, forevery f € H .

In this case X is a total integral if g« (A\) = 1 t.e. A(1g) = 14.
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Lemma 5.8. (The well-known Lemma) Let V' be a k-vector space and let x,y € V.
Then

r=y< f(x)=f(y) for every f € V*.

Proposition 5.9. Let (H,m,u,A,¢) be a bialgebra and let X € H*. Then we have
that
1) A is a left integral in H* if and only if

(5.1) Z haA (he) = 1gA(h)  for every h € H.
2) X is a right integral in H*if and only if
(5.2) Z A(hi) hg =1yX(h) for every h € H.

Proof. 1) Let A € H*. Then A is a left integral in H* if and only if fx A = f (1) A,
for every f € H* which means that

(f*X)(h)=f(g)A(h) forevery fe€ H" and h € H.

We compute
(F52) () = D7 F () A (ha) = £ (32 A (ha))
and
fA)A(h) = f(1uA(h)).
Thus A is a left integral in H* if and only if

f (Z i (h2)> — f(1g\(h) forevery h e H and f € H*.
In view of Lemma B this happens if and only if
> haX(hy) =1xA(h) for every h € H.

2) The proof is analogous. O

Proposition 5.10. Let (H,m,u,A,e,S) be a Hopf algebra and let t € H. Then
1) If t is a left integral in H then S (t) is a right integral in H.
2) If t is a total left integral in H, then t = S (t).
1) If t is a right integral in H then S (t) is a left integral in H.
2') If t is a total right integral in H, then t = S (t).

Proof. 1) We have to show that
S(t)-h=¢e(h)S(t) for every h € H.
Since t is a left integral in H we have

h-t=¢(h)t for every h € H.
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We compute

S(t)-h = S(t)-(z (h1) h2> 3" Sle ()t he PSS (hy <) - hy
= ) _S{t)-S(h)ha=38(t)-> S(h)hy =38 (t)e(h) =c(h)S ().
2) We compute

S(t) is a right int

S(t) _ 1kS( )tlStOtal€<t)S<t> S(t)ttisagftinté’[;g(t)]t:

- - (t) tlstotal 1kt — ¢
]

Corollary 5.11. Let (H,m,u, A, ¢,S) be a Hopf algebra and lett € H. The following
statements are equivalent:

(a) t is a left total integral in H.

(b) t is a right total integral in H.

If there is a left total integral in H, then

/I(H):/T(H):k;t.

Proof. (a) = (b) In view of Proposition B0, ¢t = S (¢) is a right integral in H.

(b) = (a) is analogous.

Assume now that ¢ is a left (and hence right) total integral and let € [, (H
be a left integral in H. Then

In particular H is unimodular.

tistotal

T = 1k.’17 total _ (t) T xisle:ftint tr tisrig:htint te (33) c kt
so that
/ (H) C kt.
!
An analogous proof shows that [ (H) = kt. O

Proposition 5.12. Let (H,m,u, A, &,S) be a Hopf algebra and let A € H*. Then
1) If X\ is a left integral in H*, then Ao S is a right integral in H*.
2) If X\ is a total left integral in H*, then A = Ao S.
1) If X\ is a right integral in H*, then X\ o S is a left integral in H*.
2') If X is a total right integral in H*, then A = X o S.

Proof. 1) In view of Proposition B9, we have to show that

Z[()\OS) (h1)lha =1y [(Ao S)(h)] for every h € H



70 CHAPTER 5. INTEGRALS FOR BIALGEBRAS

We compute

1 [(A o S) (h) _1H)\[ (Zhle (h) )}
—1HZ)\ (hye (hy))] :1HZ)\ (hy)] € (hs)
= S ONS ())& (ho) 1y = S A[S ( [ZS hz)hg,]
—Z/\ S (ha) hs = X[S (h1,)] S (h1,) o
=D AlS (m)] ha =[S (h)]y A[LS ()] ho

= Z LA [S (ha) hy = > A[S ()] ha

2) Since, in view of 1), Ao S € H* is a right integral in H*, we have that
Ao S)x A= (Ao S)[A(1x)] "2 Ao s

and since A is a left integral we have that

tot

(Ao S)xA=[A0S) (1g)]A=A(S (L)) A=A(1g) A "E" A

so that we get
Ao S =\

]

Corollary 5.13. Let (H,m,u,A,¢,S) be a Hopf algebra and let A € H*. The fol-
lowing statements are equivalent:

(a) A is a total left integral in H*.

(b) A is a total right integral in H*.

If there is a left total integral in H*, then

/I(H*) - [(H*) = k.

In particular H* is unimodular.

Proof. (a) = (b) In view of Proposition BT2, A = A o S is a right integral in H*.
(b) = (a) is analogous.
Assume now that A is a left (and hence right) total integral and let x € [, (H*)
be a left integral in H*. Then

xisleftint Aisrightint

X = lpx Alstotal y (1g)x % Ax (1g) € kA

so that

/ (H*) C k.

I
An analogous proof shows that [ (H*) = k. ]
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5.1 H*Tat

5.14. Let (H,mpg,uy,Ag,ey, Sy) be a Hopf algebra. We know from [ZJ that
(H*, mp«,ug~) is an algebra. In particular (H*, myg+) € g+ M and we can consider
H** = rat (g+H*). In view of Theorem B30, H*"** is a right H-comodule with
respect to

p = Operar - H —s H*™ @ H.

Then for every x € H** and f € H* we have

Fox = [Brrerar (O] () = [(areree 0 ) ()] (F) = D x0f (x1)

so that

(5.3) Frx =Y xof(x1)

where
p(x) = ZXO ®@x1 for every x € H*™.

Since H is a right H-module via my, we have that H* has a left H-module structure
defined by

For every h € H and f € H* we will write h — f =h- f. The we have
(h— f)(z) = f(xzh) forallh,x € H and f € H".
Since S = Sy : H— H 1is an algebra antihomomorphism, by setting
feh=S(h)—f
we obtain a right H-module structure on H*. Ezxplicitly we have
(f = h) (@) = (5 (h) = [) (=) = [ (25 (h))

1.€.
(f —h)(z)=f(xS(h)) forallh,x € H and f € H".

Theorem 5.15. H*"* is a right H-submodule of the right H-module (H*, <)
Let p: H* @ H — H*" the induced right H-module structure on H*™.
Then (H*™, pu, p) € M is a right H-Hopf module.

Proof. First of all let us recall that, in view of Proposition 233, we know that
H*" = 35, (ag- (H* @ H)).

Thus to prove that H*"* is a right H-submodule of the right H-module (H*, ) we
will prove that

X~ h € B (g (H* ® H)) = H"" for any h € H and x € H*"™.



72 CHAPTER 5. INTEGRALS FOR BIALGEBRAS

Actually we will prove that

(5.4) Bue (X — ) = am- Y [(xo ~— h1) @ x1hs]

which means that

Ba- (¢ = W) (1) = {aur- D [(x0 — ha) @ xaha] } () for any f € H'

i.e. that
f(x~h)= Z(Xo — h1) - f(x1he) for any f e H*.

This amounts to prove that

f*(x~h)](z) = Z(Xo «— h1) (z) - f(x1he) for any f € H* and x € H.

Let us compute

> 0t — h) (@) - F(xaha) "S> xo (@S (7)) - f(xaha)
N X0 @S (1) - [(he = 1) )l B3 [(he = £) 5 x] (S ()
=3 " [(ha = ) @S (h))y] - [x (@S (h))y) = D [(ha = f) (21 (h1,))] - [x (228 ()]
= [(hs = f) (215 (h2))] - [x (228 (hl))} =>1If (ﬁls(hz) hs)] - [x (225 (h1))]
= [f (@1lye (ha)] - [x (x2S (h1))] = D f (21) - [x (x2S (hae (h2)))]
=> " f@) (@S W) S fa 1)[(X\—h)( 2)] =[f (x — )] ().

Thus form (B4) is proved.
Let L = H* and let iy, : L — H* be the canonical inclusion. By (Z19) we
have that
Bu+oir =ag-o (i@ H)op

Thus we obtain
(= o (i1, @ H)) |3 (o = ) @ xaha| = ar- [ D (xo = ha) @ xaha| =
= (B 0in) (x — h) =
= o o (i ® H) 0 pl (x — h) = (a0 (i @ H)) [p (x ~ )]

and hence we get
p(x ~h) :Z(XO — h1) @ x1he

which means that (H*™ u, p) € M is a right H-Hopf module. O

Proposition 5.16. Let (H,mpy,uy, Ay, en, Sy) be a Hopf algebra. Then

1) [, (H*) is a submodule of y+H*™.
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2) (H*Tat)coH — L(H*)

3) The map o = agwrar : [, (H*) @ H — H*™ defined by setting

a(A®h)=A~—h forevery)\e/(H*) and h € H
I

is an isomorphism in M1 .

Proof. 1) and 2) By Proposition B8, [, (H*) is a two-sided ideal in H*. In particular
j; (H*) is a left H*-submodule of H*. Thus we may apply Proposition ZZ8. Since,
for any X € [ (H*) we have

fxAx=f(Ag)A=Af(ly) forany fe H*
we deduce that X = [, (H*) is a rational left H*-module and that
dx : X — X ® H is defined by setting dx (A\) = A® 1y

so that X C (H*rat)cot
Conversely let x € (H*"*)°H Then p(x) = x ® 1y and hence

Fax =3 xof () = xJ (1) = f (1) x for every f € H*

so that x € [, (H*).
3) Apply now Theorem ETT. H

Corollary 5.17. [, (H*) = {04-} if and only if H*"** = {0~} .

Proof. By Proposition B8 we have that

/(H*) ® H ~ H*rat‘
l

]

Proposition 5.18. Let (H, my,uy, Ay, ey, Sy) be a Hopf algebra and assume that

) # (om).

l

Then Sy is injective.

Proof. Let A € [,(H*), A # 0 and let h € H such that Sy (h) = 0. By Proposition
bTd, the map « is an isomorphism. Since

a(AN®h) =A—h=2Sg(h) = A=0—A=0

and A # 0 we conclude that h = 0. ]
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Proposition 5.19. Let (H, my,ug, Ay, e, Su) be a finite dimensional Hopf alge-
bra. Then

1) dimy [, (H*) =1
2) Sy is bijective.
Proof. 1) By Theorem we have that
Rat (g+M) = g+ M.

and hence we get that H*"% = H*. Then, from Proposition E18 we deduce that

/ (H) @ H ~ H*
!
and hence

dim (H) = dim (H*) = dim (/(H*) ® H) = dim </I(H*)) - dim (H)

l

which implies that dim ( f(H *)) = 1. Then, in view of Proposition I8, we obtain
that Sy is injective and hence bijective as H has finite dimension. O]

Lemma 5.20. Let H be a finite dimensional Hopf algebra and consider the dual
Hopf algebra H*. Then the space of left integrals in this Hopf algebra coincide with
the space of left integrals in the augmented algebra (H*, my~) .

Proof. Since the algebra structure is the same, we have only to point out that
EHgx = TTg~*. ]

Lemma 5.21. Let H be a finite dimensional Hopf algebra and let w : H — H** the

natural isomorphism. Then
(fin) - for

/(H**) ={a € H™ | a is a left integral in the dual of the Hopf algebra H*}
!

Moreover

Proof. By Proposition BT, w : H — H** is a Hopf algebra isomorphism. In
particular w : (H,eg) — (H**, g~ ) is an isomorphism of augmented Hopf algebras.
Apply now Proposition B.

The last statement follows by Lemma B=20. O]
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Proposition 5.22. Let H be a finite dimensional Hopf algebra.
Then

dim, / (H) = 1.
!
Moreover given at € [,(H),t # 0, we have that
H = H"t.

Proof. By Proposition B0, H* is a finite dimensional Hopf algebra. Hence, by
Proposition B9 and Lemma BZ21 we conclude.
Let t € fl (H),t # 0. Then for every x € H there exists an f € H* such that

ap= (w(t) @ f) =w(t) — f=w(z).
We compute
w(®)— fl(g) = w®)(gxSu-f)=w(t)(gxfoSu)= (g% foSu)(t)

= Zg t) f(Su(t)) =g (Ztlf (S (ta2) ) =w (Ztlf(SH (t2))> (9)

= w(foSu-t)(g)

so that [w(t) ~— f] =w (f o Sy - t). Hence we deduce that w (z) = w (fSy - t) which
means that t = fo Sy -t € H*t. O

5.2 Semisemplicity and Cosemisemplicity
Lemma 5.23. Let H be a Hopf algebra Then we have

1) X AM@S(y1))ye = 2 miM@25(y)) for every A € [, (H*), z,y € H.
2) >t ®S(ta)h =Y bty ® S(t2) for everyt € [, (H), h € H.

Proof. 1) Let A € [,(H*) and z,y € H. We compute

le (225 (y le)\ (225 [e(y2)yn]) 29”15 y2)A(225(y1))
=> a[S( AM@25(y1))
— leS y12)y2/\($25(911))
= le y1 192)\ L2 [S(yl)]z)
= 3 (@S} A (Sl
=> (@S ()], M[=S(y1)])ws
S A S ()

=D A@S(m))ye:
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2) Let t € [,(H) and € H. We compute

Ne(@)h @t =c(@)A(t) = A (@) ) " A () = ¥ (at), @ (at),

so that

(5.5) den(@th@b=Y (st), @ (at),.

We compute

Yt @S(t)h =Y t1®@S(ta)e () ha =Y e (h1)t1 @ S(ta)ho
N (tut), © S((hat))hs = 3 byt © S(huta)hs
= hity ® S(hata)hs = Y haty ® S(t2)S(ho)hs
= ity ® S(ta)e(ha) = Y hty @ S(ta).
O

Definition 5.24. A k-algebra A is called left (resp. right) semisimple if it is left
(resp. right) semisimple as a Ting i.e. if every left (resp. right) A-module is projec-
tive. If A is both right and left semisimple, we will simlpy say that A is semisimple.

Theorem 5.25 (Maschke’s Theorem). Let H be a Hopf algebra
The following statements are equivalent:

a) H is a left semisimple Hopf algebra.

(

(a') H is a right semisimple Hopf algebra.
(b) There exists a total left integral t in H.
(

¢) There exists a left integral t in H such that g (t) # 0.

Proof. (b) = (c) It is trivial.
(¢c) = (b). Let t € H be a left integral such that ey (t) # 0. Set

1

t = -

t.

Then t’ & is a (left) total integral in H.
(a) = (b) The map
g:H— k
is an algebra morphism. Hence k can be endowed with a left H-module structure
defined by setting

h-x=eg(h)x forevery h € H and z € k.
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Note that ey becomes automatically a left H-module morphism. Since H is a
semisimple algebra, k is a projective left H-module so that, being ey surjective,
there exists a left H-module morphism 7 : k& — H such that the following diagram
is commutative:

k
T L 1dg

H % k—=0
We set
=7 (1g).
We have that
eg (t) =epy (1 (1)) = Idg (1) = 14.

For any h € H let us compute
hchT(lk):T(hlk):T<€H(h)1k):€H(h)T(1k):6H(h)t

We deduce that t is a total left integral in H.
(b) = (a) Let t € H be a total left integral in H and let P be a left H-module. Let

T M —N

be a surjective morphism of left H-modules and let f : P — N be a morphism of
left H-modules. B

We seek for a left H-module morphism f rendering the following diagram commu-
tative.

B P
v Lf
M = N

Since k is a field there exists a k-linear map v : N — M rendering the following
diagram commutative

N
v dldn
M = N
i.e. such that m oy = Idy. (Why?)
We define a map
o: N — M by setting o ( th Sy (ts) )  for every x € N.

We have

7T(O' (I)) == Z [tl’y (SH t2 mSH hnztlﬂ' SH tg ZhSH t2

= ey (t)x=ux.
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Thus we obtain that m o o = Idy.
Now we will check that o is a left H-module morphism. In view of Lemma 23, we
have that

Ztl ® Su(ty)h = thl ® Sy(ty) for every t € /(H) and h € H.
l

Thus we obtain
=> 117 (Su (t2) ha) = > htry (S (t2) ) = ho (x) .

Now we set

f=cof:P— M.
Then f is a left H-module morphism and
Tof=mocof=f

Since, by Corollary BT, any left total integral in H is a right total integral in
H, the proof of (a’) < (b) is similar. O

Theorem 5.26. Fvery semisimple Hopf algebra has finite dimension.

Proof. In view of Theorem BZ3 there is a total left integral ¢ in H. Now by Lemma
b3, we have that

(5.6) D 1@ Su(ta)h =Y hty® Su(ty) for every h € H.

Let us write

Then (BM) rewrites as

n

(5.7) Z a; @ b;h = Z ha; @ b;  for every h € H.

i=1 i=1

Let (e;);c; be a basis for H over k and let (ej),.; be the dual basis. We have
el (e;) = 0;; for every i,5 € I. Then for every h € H there is a finite subset I (h) of

x = Z e (h)e;.

I such that
i€I(h)
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We compute

h=hly=heg(t 1H—th15’Ht2—hZa“

—Zhalb —Zhal Z e; (bi) e;

JEI(bi)
= Z Z
JEI(b
Y Y Gt
i=1 jel(b;)
Hence
{aie; |i=1,...,nand j € I(b)}
is a finite set of generators of H over k. n

Definition 5.27. A coalgebra C is called left (resp. right) cosemisimple if every
left (resp. right) C'-comodule is injective.

If C is both right and left cosemisimple, we will simply say that C' is cosemisim-
ple.

Theorem 5.28 (Dual Maschke’s Theorem ). Let H be a Hopf algebra. The following
statements are equivalent:

(a) H is a left cosemisimple Hopf algebra.

(a') H is a right cosemisimple Hopf algebra.
(b) There exists a left total integral \ in H*.
(

c) There exists a left integral X\ in H* such that A (1g) # 0.

Proof. (b) = (c) It is trivial.
(¢c) = (b) Let A € H* be a left integral such that A (1y) # 0. Set

Then X is a total left integral in H*.
(a) = (b) The map
ug :k—H : k+— klgy

is a coalgebra morphism. Hence k can be endowed with a left H-comodule structure
defined by setting

Fo(z) =21y ®1;, for every x € k.
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Note that uy becomes automatically a left H-comodule morphism. Since H is a left
cosemisimple coalgebra, k is an injective left H-comodule so that, being uy injective
there exists a left H-comodule morphism A : k — H such that the following diagram
is commutative:
ko =% H
Idg J A
k

Then we have

Moreover, since A is a left H-comodule morphism, we have that
(H® N oAy ="*po
This means that
> h@A(ha) =A(h) 1y @1 forevery h € H
from which we deduce
> hiA(ha) = A(h)1y for every h € H

Therefore X is a total left integral in H*.
(b) = (a). Let A € H* be a total left integral in H* and let E be a left H-comodule.
Let

oc: M — N

be an injective morphism of left H-comodules and let f : M — E be a morphism
of left H-comodules. _
We seek for a left H-comodule morphism f rendering the following diagram com-
mutative.
M - N
T
E
Since k is a field, there exists a k-linear map v : N — M rendering the following
diagram commutative
M - N
Idy 4 v
M

i.e. such that v oo = Idy. (Why?)
We define a map

m: N — M Dby setting 7 (y) = Z AMy=1Su((v (o)) _1)] (v (wo)), for every y € N.

Since o is a morphism of left H-comodules, we have that

(Hoo)oMp="poo
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which means that
Zx,l Qo (zg) =0 (z)_;®0(x), foreveryz e M.

We compute

(moo) Z/\ SH ( (ZE)O)) 1)} (v (‘7 (@0))0
=" AeiSully a(m D) >} =D A )] (20)y
—Z/\xQSH(:U D zo = Z)\x hSHx 1,)] o = ZA eg(z_1)ly|z

—E/\]_HgHCL’lZL’O ElkéHl'll’o—(L'

Thus we obtain that m o o = Id,.
Let us prove that 7 is a morphism of left H-comodules, i.e. that

(HomoNp="por

In view of Lemma B3, we have

Z)\ (xS (y1))ye = Zazl)\ (x2SH(y for every \ € /(H*) and x,y € H.
!

Thus, for every y € N, we obtain

[(H o) =2 v @7 ()
:Zy,2®x[y,1sH<< < ) >}< < >
= yo\[y1Su((y

~—

0

D)@
—Zy LA [y- 125H (yo) D] ®
= > M yaSu((r (o), ] (v (), w %)),
= > Ay 1Su((y o) _a] (7 (80)) 1 @ (v (o)),
p{ZA 1Sul( (90)) 1] (7 (o))}
= Mpor)(y)

Now we set

f=fomr:N—E.
Then f is a morphism of left H-comodules and
foo=foroo=f

Since by Corollary B3, any left total integral in H* is a right total integral in H*,
the proof of (a') < (b) is similar. O
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Corollary 5.29. Let H be a finite dimensional Hopf algebra. Then
H is semisimple <= H* is cosemisimple.
H is cosemisimple <= H* is semisimple.

Proof. Recall that, by Lemma B=2T

w </(H)) = /(H**) = {a € H™ | a is a left integral in the dual of the Hopf algebra H*}
! !

By Maschke Theorem b23, H is semisimple <= there exists a left integral ¢ in H
such that ey (t) # 0.By Dual Maschke Theorem BZ28, H is cosemisimple <= there
exists a left integral A in H* such that A (1) # 0.

Thus, by the foregoing we have that H* is cosemisimple<=> there exists a left
integral t € [, (H) such that 0 # w (t) (1g+) = w (t) (ey) = ep (t) <= H is semisim-
ple.

Analogously H* is semisimple <= there exists a left integral A in H* such that
0# ey (A\) =A(1)ie H is cosemiusimple. O
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Examples

6.1 kG

Let (G,mg,1lg) be a multiplicative monoid. Then we can consider the monoid
algebra kG (see Example ). Recall that as a k-vector space it is just k(©) where
the multiplication is defined by setting

zZ,weG
Zw=z

Then, for each = € G, let e, be the element of k(©) defined by
e, (z) = 1p and ex (y) = 0y for every y € G,y # .

Then, accordingly to [, we write z instead of e, for every x € GG so that every
element a € k(%) can be uniquely written, using the k-vector space structure of k(¢

a = Z a(x)z.

z€Supp(a)

Then the product in kG is uniquely defined by setting
TrGY =T cqly
for every x,y € GG. In particular the identity 1,4 of kG is
Lo = 1g.

On the other hand, we can consider the grouplike coalgebra (kG, Arg,crg) intro-
duced in example 2a) CITA. We have

Ape(z) =@z and e (z) =1, for every z € G.
Let us check that (G, mg, lg, Ak, €xc) is a bialgebra. Indeed, we have:

Age (zy) = 2y@zy = (2 @ 2) (Y ® y) = Ak (v) Agg (y) for every z,y € G and Aye (1) = 16&

83
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Moreover
ISy el (Iy) = 1k = 1klk = LG (SL’) ISy el (y) for every x,y G and ISy el (1kg> = 1k-

Assume now that G is a group. Then (G, mg, lg, Mg, €xa, Ska) is a Hopf algebra
where
Sea (g) = g~ ! for every g € G.

In fact we have
(Ska *Idke) (9) = g9 = 1o = exa (9) = g9~" = (Idse * Ska) (g) for every g € G.
Let A : kG — k be the k-linear map defined by setting

A(g) = 6g1,1k for every g € G.

Let us check that A is a total left integral in (kG)". Let f € (kG)" and, for every
x € G, let us compute

(fxN)(2) = f(x) M) = [(2)621e = [ (1) Ox1e = [ (1) A (@) .
Thus we deduce that
fxx=f(le) A
Moreover we have
A (1kg) = (10) =1;.

Thus, by The Dual Maschke’s Theorem B28, kG is always a cosemisimple Hopf
algebra.
Assume now that G is a finite group and let us set

t= Zg.
geG
For every x € GG, we compute
x~t:Zx-g:Zg:t: 1xt = ere (2) t.
geG geG

Therefore ¢t is a left integral in kG. Since t # Oxg, by Proposition 22, we know
that [ (H) = kt. Thus we deduce, by Maschke’s Theorem BZ3, that kG is also
semisimple if and only if €, (t) # 0x. Therefore we compute

exc (1) = e (Z 9) = ngG (9) = |G| 1.
geG geG

Hence we conclude that, for a finite group G, kG is semisimple if and only if char (k) 1
|Gl.
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When G is a finite group, by Proposition B0, (kG)" is also a Hopf algebra.
Note that, since kG is a cocommutative Hopf algebra, (kG)" is a commutative Hopf
algebra. Denote by p, : kG — k the dual of the element g € G, i.e. p, (h) = ,,, for
every g,h € G. Then the p,’s, g € G, are a basis of the k-vector space (kG)" and
we have

(pg * pn) () = 6g20n.0
so that

(pg*pn)(x) =1, ifg=x=h and (p, *ps)(z) = 04 otherwise, i.e.

Po*Dh=0gpg and Y py=era = lucy
geG

which means that (pg)ge(; is a complete system of orthogonal idempotents of the
k-algebra (kG)". Moreover, for every f € (kG)", we have

Away (f) = Zﬁ ® fo

where Y fi ® fo is uniquely defined by

f(gh) = Zfl (9) f2 (h) for every g, h € G.

Since the p, ® py, g, h € G constitute a basis of (kG)" ® (kG)", there exist elements
oy, € k such that

Ay (f) = Z Qg.nPg @ Ph

g,heG

and hence

Fay) = 3 agapy (8)pn (9) =y for every 2,y € G
g,heG

so that
Agay (f) = fgh)p, @ pi.

g,heG

In particular, for f = p, we obtain

A(kG)* (px) = Z Dz (gh) Py X pr = Z Dy Q pr = Zpg ®pg—1x-

g.heG g,}fLLEG g€G
gh=x

Moreover we have
cwe)y* (Pz) = P (1g) = Oz 161k
and
[Sey ()] (&) = [f o Ske] (x) = f (=71)
so that
[Skay (pg)] (@) = py (#71) = Gga-11i = g1 x1i = pyg—1 ()
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i.e.
Sikay* (pg) = pg-1.

Clearly, by the foregoing, A = p1,, is a total integral in (kG)* so that, for a finite
group G, (kG)" is always semisimple. Moreover, by means of Lemma B2, it is easy
to prove that (kG)" is cosemisimple if and only if char (k) 1 |G|.

We list all these result in the following theorem.

Theorem 6.1 (Classical Maschke’s Theorem). Let k be a field and let G be a group.
Then

e the Hopf algebra kG is always cosemisimple.

e [fG is a finite group, kG is semisimple if and only if char (k) 1 |G| if and only
if (kG)" is cosemisimple.

o If G is a finite group, (kG)" is always semisimple.

6.2 The Tensor Algebra
Let A be a ring and M = 4M 4 be a two-sided A-module.. Set
M® = A, M® =M, and M® = M®i @, M for every n € N,n > 2

and let
Ty (M) = @ M®4.

neN

For every n € N, let 4, : M® — T4 (M) be the obvious injective A-bimodule
homomorphism. We define on T' = T4 (M) a multiplication by setting

ig(a) 7ig(b) = idg(a-ab) foreverya,be A
Qo (a) 7in (11 ®4...Qax,) = ip[(a-pmT)@a... Q4 x,]
foreverya € AneNn>1lx,...,0,€M
in (11 ®4...Qaxy) Tig(a) = ip[Tr1®a...R4 (,.0)]
foreverya € AneNn>1lx,....,x, €M

im(x1®A"‘®Axm)'Tin(y1®A"'®Ayn) = im+n(x1®A'-~®Al'm®Ay1®A~~®Ayn)
for every m,n € Nom,n>1,21,...,Zm,Y1,---,Yn € M

and extending it by linearity on 7.

Lemma 6.2. Let A be a bialgebra and let h : A — A°P be an algebra homomorphism.
If, for a,b € A, (hx1da)(a) = (uaoeca)(a) and (hx1da) (b) = (uaocca)(b) then
(h*1dy) (ab) = (ug oca) (ab).
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Proof. Let us compute

(h*1da)(ab) = Y h((ab), = 3" h(abi) ashy "= b (1) (ar) asby
= Y h(b)ea(a)laba=ea(a)Y h(b)by=ca(a)ea(b)1a

= EA(CLb) 1,4— (UAOEA) (ab)
[

Theorem 6.3. Let A be a ring and let M = 4 My be a two-sided A-module. Then,
with respect to the structure defined above, Ty (M) becomes a ring. Moreover Ty (M)
fulfills the following universal property. Let fo : A — B be a ring homomorphism
and let f1 : M — B be an A-bimodule homomorphism. Then there exists an algebra
homomorphism f : Ty (M) — B such that

foio=fo and f[foi;=fi
Moreover f is unique with respect to this property.
Proof. For every n € N;n > 2, let us define
fn:M®% = B
by setting

fo(@1®a...@a2,) = fi(21) ... B f1(Tn)
for every z1 @4 ... ®4 x, € M4,

Note that f, is well defined since f; is a morphism of A-bimodules. Let f : T =
T4 (M) — B be the codiagonal morphism of (f,) Then f oi; = f; for every
j € N. For every a,b € M®1 = A, we compute

neN”

[ (o (a) -7 10 (b)) = f (io (a4 b)) = fo(a-ab) = fo(a)5fo(b) = [ (io(a))-Bf (io (b))

For every a € M® = A, for everyn € N,n > 1 and for every 21 ®4. ..Q 42, € M4,
we compute

flio(a) rin (21 @4 ... @awn)) = f(in[(a mx1) @a ... @a7y]) =
= fila-m21)B...-sfi(zn) =[fola) B fi(x)]B... B f1(2,) =
:fo(a) ‘B [fl(Il) 'B---'Bfl(xn)]Zf[Z ( )] 'Bf[in($1®A.--®A$n)].

Similarly, one gets

flin(x1®a...®42,) 7i0(a)) = flin (X1 ®@a...R042,)] B fio(a)].
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For every n,m € N,n,m > 1 and for every 7, ®4 ... ®4 T, € M4 and for every
Y1 ®a...04Yn € M®4 | we compute

flim(@ ®@a...Q4%n) 7in (11 @4 ... R4Yy)] =

= [limsn (01 @4 ... Q4T Qa1 @A ... D4 Yn)]
=fi(@) ... fi(@m) B filyr) B Bfi(Ys) =
= flim (@1 ®@4...042n)] B flin( ®a...04yn)].

Let g : T — B be another algebra morphism such that g oiy = fy and go iy = f;.
Then, for every n € N,n > 2, we compute

(goin) (1 ®@a...Qam,) = g(ir(z1) ... vi1(zn)) =g (i1 (21)) .. Bg(ir(vs))
= fi(x) ... Bfi(wn) = (foin)(11®a...®a1y).

]

Assume now that A = k is a field and that M is a k-vector space. In this case, we
want to define a coalgebra structure on 7' = T}, (M). To this aim, we will consider
the algebra tensor product of 7' by itself. To avoid confusion, we will write this
tensor product and his elements as

TRT, xQy.

Set fo = (ip®ip) 0 Ag : k — TRT where Ay, = l,;l = r;l(see =24). Then fy is a
bialgebra map.Let us consider the map f; : M — T®T defined by setting

f1(x) =iy (z) ®ig (1x) + ip (1) ®iy (z), for every z € M.

Clearly f; is a k-linear map. Then, by the universal property of the tensor algebra,
there exists a unique algebra map Az : T'— T®T such that

AT © Z.O = (ZO@Z()) o Ak and AT ] il = fl-

Always by the the universal property of the tensor algebra, there exists a unique
algebra map er : T' — k such that

eroig=c¢cr=1dy and eroi; =0.
Let us check that (T, Az, er) is a bialgebra. We compute

[(Td7®@A7r) 0o Ag] 0ig = (Idr®A7) o (ip®ig) 0 Ay, = [ig® (A 0ig)] 0 Ay
= [10®@5 ((1¢®ig) 0 Ag)] 0 A = (ig®ip®ig) o (k ® Ag) 0 Ap = (i0®i®ig) © (Ar @ k) 0 Ay =
[((10®10) © Ag) ®ig] 0 A, = [(Ar 0ig) Rip] 0 Ay =
= (Ar®Idy) o (ip®ip) 0 A = [(Ar®Idr) o Ar] oy

so that, we obtain

(61) [(IdT®AT) o AT] o) io = [(AT@IdT) e} AT] o} ig
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For every x € M, we calculate

([(Idr®A7) 0 A7)0 iy) (z) = ((Idr®@Ar) 0 f1) (2)
= (IdT®AT)[' () @io (1k) + io (1) ®ir ()] =
= i1 (z) @A (io (1)) + o (1x) ®A7 (i1 (2))
=1 l‘)@o( )® (1) + o (1x) ® (i1 () @ig (1k) + io (1) ®ig (1) @iy () =
io (1

1)+ (1) B () Bio (1) + 10 (1) B (1) s (¢) =

Ar iy () Bio (1) + Ar (io (1)) Bis (x) =
— (ArBldy) (i (2) Bio (L) + o (L) B () = (ArBldr) o f1) (a) =
= ((Ar®ldr) o Ar o) (2)

so that we obtain
(62) [(IdT®AT) O AT] O il - [(AT®IdT) o AT] (¢] il.

By the uniqueness in the universal property of 7', from (EdI) and (E2) we deduce
that
(IdTgAT) o AT - (AT@IdT) o AT-

Let us compute
(Ir o (er®T) o0 Ar) 0ig = Iy o (ep®T) o (ig®ig) © A = Iy o ((e 0 1) ®ig) 0 Ay =
= Iy o (k&ig) o (ex®k) 0 Ak = ig o Iy o (e4Bk) 0 Ay = ig
so that we obtain
(6.3) (Ir o (e7®T') o Ar) 0 ig = ip.

For every x € M, we calculate

[(I7 0 (ex®T) o Ar) oidy] (z) = (Ir o (e7RT)) (i1 (7) @ (1k) + 1o (1) @11 (7)) = Ir (e7 (i1

so that we get
(64) (lT @) (€T®T) o AT) o) il = il'

By the uniqueness in the universal property of 7, from (E3) and (Ed)we deduce
that
lT @) (8T®T> e} AT = IdT

In a similar way one can prove that
T O (T@éT) o AT = IdT

Thus (T, Ar, e7) is a coalgebra. By construction, both Ar and er are algebra maps
and hence we obtain that (T, my,ur, Ar,er) is a bialgebra.

() @i (
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Let us consider the linear map hy : M — TP defined by setting
hy () =iy (—z), forevery z € M
and consider
ho =P : kP =k — T°P.
Then, by the universal property of T, there exists a unique algebra morphism
ST T — TP
such that
STOiQ :ho and STOil = hl.

Let us prove that (T, mp, ur, Ar,er, St) is a Hopf algebra, that is
ST * IdT =UuroE&Er and IdT *x ST =Uuroer.

By Lemma B3 it is sufficient to prove it for the elements i; (z), for every x € M,
that generate T’

[(Sr*1dr) ody] (v) = St (i1 (x)) ¢ Idr (io (1x)) + St (90 (1x)) -7 Id7 (i1 (2))
= hl (.CC) T io (1k> + ’io (1k) T ’il (.CC) = ?:1 (-l’) + ’il (l’) = OT =UuUroero il (%)
so that
(ST*IdT)O’il :uTogToil
and hence we deduce that
ST * IdT =Uurocer.
In a similar way one proves also that Idr * S7 = ur o er.

Remark 6.4. Assume that M is a k-vector space of dimension n and let xq, ..., x,
be a basis of M. Set

X; =11 (x;) foreveryj=1,...,n.

Then (zj, @ ... ®@xj,). is a basis of M®" and hence

(Xj1 Tttt T th)jse{l ..... n}

i.e. the "words” in Xq,..., X, of length t, is a basis for iy (M®"). Thus any ele-
ment of T = Ty, (M) is a linear combination, with coefficients in k of the elements
(X th)jse{l 77777 1 where t ranges in N i.e. is a linear combination of words
in X1,...,X, of arbitrary length t.
When n =1 we get that Ty, (M) can be identified with the polynomial ring k [X].
When n = 2, writing X = X1 and Y = X5, we get that any element of Ty, (M)
18 a linear combination of elements of the form

X% Y o X% p Y where s € N and a;, b; eN foreveryi=1,...,s.

In general Ty, (M) can be thought as a polynomial ring in the noncommutative vari-
ables X1, ..., X,. For this reason it is also denoted by k{X1,..., X, }.
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6.3 The Symmetric Algebra

Let M be a vector space over the field k. For any z,y € M let us consider the
element

Sey =l (T @y —y®x)="d1(x) 701 (y) — i1 (y) 701 (2) € T}, (M)

and let I be the two-sided ideal of T}, (M) generated by all s, , where z and y range
in M. Let us check that I is a Hopf ideal of T' = T}, (M). Let z,y € M and let us
compute

A7 (s4y) = Ar (i1 (2)) - Az (i1 (y)) — A7 (i1 (y)) - Ar (i1 (2))
= [i1 (z) ®io (1x) + io (1x) @iy ()] [i1 (y) @io (1k) + io (1x) @1 (y)] +
— [i1 (y) @i (1x) + o (1) ®ir (y)] [i1 () @i (1) + o (11) @i (2)]
= [i1 (%) -7 i1 (y) — i1 (y) -7 i1 (2)] @io (1x) + i (1x) @ [i1 () -7 i1 (y) — 41 (y) -7 i1 ()] € [QT +T®

and
er (Szy) = €7 (i1 (x) -7 91 (y) — i1 (y) -7 41 (x))
= ler oy (z)][er 0 i1 (y)] — [er o1 (y)] [er 0 i1 ()] =0
and also
St (Szy) = St (i1 (2) -7 01 (y) — 41 (y) 711 (x))
=[St oii1 (y)] ‘7 [ST o1 (x)] — [Srodr (z)] -7 [ST o1 (y)] =
= [~i1 ()] -7 [0 (@)] = [—i1 ()] 7 [~ (W) =01 (y) 7 i1 (2) —i2 () 7 i1 (y) = —suy € 1.

Thus, by Theorem BIR, T, (M) /I is a Hopf algebra that will be denoted by Sy (M)
and called the symmetric algebra of M. Let p : Ty, (M) — T), (M) /I = S (M) be
the canonical projection and let j, = poi, : M®" — Sy (M) for every n € N. We
leave to the reader the proof of the following Theorem.

Theorem 6.5. Let M be a vector space over the field k, let (A, ma,ua) be a commu-
tative k-algebra and let f1 : M — A be a k-linear map. Then there exists a unique
algebra map f : Sk (M) — A such that f o jo = ua and f o j; = fi.

Exercise 6.6. Assume that M is a k-vector space of dimension n. Show that, in
this case

Sk (M) ~k[X1,...,Xn].

Proposition 6.7. Let (H,m,u, A, ¢) be a bialgebra. Assume that there exists a A a
left integral in H* such that X\ (1g) # 0. Then

PH)={z e H|A@x)=2® 1y + 1y @z} = {0}.
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Proof. Let x € P (H). We compute

le)\(xg) = H®\ (Zm@:@)

ri ( )
ru (HRN) (x @1y + 1y @ x)

Then
2 (1g) + 1) (2) 2 1A (2)

and hence

which implies, since A (1y) # 0, that = = 0. ]

Remark 6.8. Let M # {0} be a k-vector space. Then, in view of Proposition 01,
there exist no (left) total integrals both in Tj, (M) and in Sy, (M)*. In fact, we have
that

{0} #ir (M) C P (T (M)) and {0} # ji (M) C P (S, (M)).

Thus, in view of Theorem B=28, both Ty, (M) and Sy, (M) can never be cosemisimple.

6.4 Enveloping Algebra of a Lie Algebra.
Let us recall the following definition.
Definition 6.9. A Lie algebra over a field k is a couple (L,| ,]) where

o [ is a k-vector space

e [,]:LxL— L isamap such that

1) [,] is k-bilinear.
2) [z,2] =0 for every x € L.
3) [z, [y, 2]] + [y, [z, z]] + [z, [z, y]] = O for every x,y,z € L. (Jacobi’s Identity)

Remark 6.10. [ ,] is, in general, non associative.

Lemma 6.11. Let [ ,]: L x L — L be a k-bilinear map. Then, if | ,] fulfills 2) then
it also fulfills

2’) [z,y] = — [y, a] for every x,y € L.

If char (k) # 2, then 2) and 2') are equivalent.
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Proof. Let x,y € L. Then, by 2) and in view of the bilinearity of [ ,], we have
O=lz+yztyl =zl +[ryl+ [y 2]+ vyl =[xyl + [y, 2]

from which we deduce 2'). Conversely, assume that 2’) holds and char (k) # 2. Then
from
[.’L‘,l‘] - [l‘,l‘]

we deduce that

2[x,z] =0 and hence, since char (k) # 2, that [z,z] = 0 for every x € L.

O
Example 6.12. 1) Let A be any k-algebra and let us consider the Lie algebra A~ =
(A,[,]) where [ ] is defined by setting
[z,yl| =z -ay—y-ax for every x,y € A.
In fact we have
[, [y, 2] + [y, [z, 2]l + [z, [2,9]] = zoalyaz—zay—[yaz—2aylax

Yyalzrar—xz-paz]l—|zar—x-42-ay
tzoalray—yazl—|ray—y-axl-az
=0

In particular, for A = Endy (V'), where V is a k-vector space, we have that A~ is
denoted by gl (V') and is called general linear algebra. Ifn € N,n > 1, for
A= M, (k), A~ is denoted by gl, (k). Let e;; be the n x n matriz having 1;
in the (i,7) entry and Oy elsewhere. Then e;; - es; = d; e, and hence

[€igs €s1] = 0js€it = Ori€s;-
2) Let sl, (k) be the set of n x n matrices having trace Ox. Given two n X n matrices

a,b, we know that Tr (ab) = Tr (ba) and Tr (a +b) = Tr (a) + Tr (b). Hence
gl,, (k) induces a Lie algebra structure on s\, (k). This Lie algebra is called the

special linear algebra.
_ 0 I,
=\ -, 0

where I, is the identity matriz in M, (k). Let

3) Let n=2m and let

sp, (k) = {z € M, (k) | sz = —a's}

where x* denotes the transpose of the matriz x. It is easy to show that sp,, (k) C
sl, (k) and that sl, (k) induces a Lie algebra structure on sp,, (k). This Lie
algebra 1s called the symplectic algebra.
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Proposition 6.13. Let (L,[,]) be a Lie algebra over k and let I be the ideal of the
tensor algebra T' = Ty (L) generated by all the elements of the form

i1 ([z,y]) —ia(z®@y —y®ax) where x,y € L.
Then I is a Hopf ideal of T'.

Proof. Set l,,, =11 ([x,y]) —i2 (r @y —y ® x). For every x,y € L, we compute

Ar (ley) = Ar (i1 ([2,y])) — Az (i1 () - Ar (i1 (y)) + A7 (41 (y)) - Az (i1 (2)) =
= [i1 ([z, y]) ®io (11) + io (1) i1 ([z, y])] +

— [i1 (z) @i (1x) + io (1x) @iy ()] [i1 (y) @io (1) + i0 (1x) @iy (y)] +
+ i1 (y) @io (11) + o (1x) @i (y)] [ix (x) @ig (11) + o (1x) @iy ()] =
= [i1 ([z, y]) @io (1k) + o (Lx) ®ix ([z,y])] + [—i1 (z) -7 i1 (y) + 41 (y) -7 1 ()] Do (11) +
k

+io (1x) @ [—i1 (2) -7 i1 (y) + 11 (y) -7 i1 (2)] =
= [i1 ([, y]) — i1 (x) 7 is (y) + i1 (y) -7 i1 (2)] @io (1x) +
+io (1x) @ [i1 ([z, y]) — i1 (x) -7 i1 (y) +41 (y) -7 i1 ()] € [QT + TRI.

We calculate also

er (luy) = er(in([z,y]) —ia(z®@y—y®1))
er iy ([z,y]) — i1 (%) i1 (y) + 41 (y) -7 i1 ()]
= er (it ([z,y])] = [er o iy (z)] [er 01 (y)] + [er 0 i1 (y)] [er 041 (2)] = 0

and

St (ley) = Sr(ir([z,y]) — i1 (z) -7 i1 (y) + i1 (y) 71 (7))
= [Sroii([z,y])] — [Sroi1 (y)] -7 [Sroir (z)] + [ST 0 i1 (z)] -7 [ST 041 (y)]
= —iy ([z,y]) + [ix ()] -7 [=i1 (2)] + [=i1 (2)] -7 [—i1 (y)]
= —i1([x,y]) — i1 (v) i1 (z) + i1 (x) i1 (y) = —lpy € 1.
]

Definition 6.14. Let (L,[,]) be a Lie algebra over k. The enveloping algebra of
L is the quotient algebra U (L) of the tensor algebra T = Ty (L) modulo the ideal I
generated by all the elements of the form

i1 ([z,y]) —ia(r®@y—y®x) wherex,y € L.

Definition 6.15. Let (L, [ ,]) and (L',[,]') be Lie algebras over k. A k-linear map
f:L— L is called a morphism of Lie algebras if

f(ly)) =[f (). f )] for everyx,y € L.

Theorem 6.16. Let (L, [ ,]) be a Lie algebra over k. Then the tensor algebra Ty, (L)
induces a Hopf algebra structure on U (L).
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Theorem 6.17. (Universal Property of U (L)) Let (L,[ ,]) be a Lie algebra over k
and let A be a k-algebra. Given a morphism of Lie algebras f : L — A~ then there
exists a unique morphism of algebras f : U (L) — A such that f o j, = f. Here
L : L — U(L) denotes the canonical map.

Proof. By the universale property of the tensor algebra there exists a unique ho-
momorphism of k-algebras f : T} (L) — A such that foig=1Id, and foi; =
f. Now, U(L) = % where I is the two-sided ideal of T} (L) generated by
iv([z,y]) —is (r®y —y®a). We have to prove that f(I) = {0}. Let us com-
pute

Flr(wa)—i@ey-yen) = Fa @) - (Fo@ine-iwane))
(

so that there exists f : & L) =U (L) — A such that for = f where 7 : T, (L) —
Tk}” = U (L). Then f o jL = f omoi; = foi; = f. Assume that there exists
another homomorphism of k-algebras ¢g : U (L) — A such that g o j, = f. Then

gomoiy = gojr, = f and gomoig = Idy so that, by uniqueness of f, gor = f = for.
Since 7 is surjective we deduce that g = f. O

6.5 The Taft Algebra

Lemma 6.18. Let ¢ € k. Let A be a k-algebra and a,b € A such that ba = qab.
Then

(6.5) Va' = q¢“a't’ for everyi,j € N.
Proof. First of all, let us prove that, for every ¢ € N,
(6.6) ba' = q'a’b.

We proceed by induction on i. For ¢ = 0 there is nothing to prove. Let us assume
that the statement holds for some ¢ € N and let us prove it for i+ 1. Let us compute

baitl — (bai) ainfgyp (qiaib) o= (qiai) ba — ( )qab— qz+1 atp.

Let us fix 7 € N and let us prove the statement by induction on j. For j = 0 there
is nothing to prove. Let us assume that the statement holds for some j € N and let
us prove it for 7 + 1. Let us compute

Yl — p (bjai) incgyp b (qz’jaibj) (ba b]) o ng <qzazb> b o= qij+iaibj+1 z(g+1
]

b]-i—l
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Lemma 6.19. Let g € k. For everyn € Nyn > 2, let

Cny = Z gmtmettme for every r € N1 <r < n—1 and let Cnm = 1.
0<mi<ma<...<m,<n—r

Then

(6.7) Cny1p=1+q+ .. +¢" = (co1+q")

(6.8) Critr = Cop + Cpp1q" T forr=2,..n—1

(6.9) cpy1n = Z gttt =1 4 g4+ L+ q" =14 q (1) -

0<mi <ma<...<mp<1
Proof. We have
Ca1 = Z g™ =1+q.

0<m1<1

c31 = Z " =14+q+¢ = (c21+¢°).

0<m1<2

Let us assume that, for some n > 3, (E22) holds and let us prove it for n + 1. We

compute

i1 = Y, "= D "¢ =i+ " =14g+ "+

0<m;<n+1 0<m;<n
Let us compute, for r =2,...,n — 1,

— E mi+mo+..+m
Cntlr = q "

0<mi<mo<..<m,<n-+1l-r

— E qm1+m2+...+mr + E qm1+m2+-..+mr

0<mi<mo<..<m,<n-—r 0<mi<mo<...<mp=n+1-r

o n+l—r mi+mo+...+m,_ . n+l—r
= oyt > g = e g

0<mi<me<..<m,_1<n+l-r

and hence (B3) is proved. Let us compute

C3o = Z qm1+m2 — Z qm1+m2 + Z qm1+m2 =1+gq- (

0<mi1<m2<1 0<m1<m2<0 0<m1<mao=1

= 1+q(1+q):1+q+q2.

> o

0<m1<1

Assume now that (E3) holds for some n > 2 and let us prove it for n + 1. Then

. mi1+mo+...4+m
Cn+2,n+1 — E q 1 2 n+1

0<m1<ma<...<mnp4+1<1

— Z qm1+m2+-~+mn+1 + Z q

0<m1<ma<...<mn4+1<0 0<mi<ma<..<mp41=1

- qo +q- ( Z qm1+m2+...+mn>

0<mi<ma<..<mp<1

= 1+q(l+q+..+¢)=14+q+ .. +¢"

mi+mo+...+Mnt1

)
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Proposition 6.20. Let g € k, let A be a k-algebra and a,b € A such that ba = qab.
Then

n—1
(a+b)"=a"+ Z Cp @ "B

r=1

where

Cnp = Z gttt o every nor € Nyon > 2,1 <r <n— 1.

0<mi1<ma<...<mr<n—r
Proof. For n = 2 we have

(a+0)? = a*+ab+ba+b*=a*+(1+q) ab+ b
Since co; = 1+ ¢, we obtain (a + b)2 =a’+ co1ab + b2.

Let us assume that the statement holds for some n € N,n > 2 and let us prove it
for n + 1. We have

n—1
(a+b)"" = (a+b)|a"+ Z Cppa™ D" 4 "

r=1

n—1 n—1
= "+ e d™ T 4 ab™ 4 ba + Y e ba T 4 b
r=1 r=1
Now we compute
n—1 () n—1 n
_ B3 _ _ _ _
E cnﬂuba" Ly K § Cn,rqn Tl 7"b7’+1 — E Cn,s—lqn+1 san+1 58
r=1 r=1 s=2

so that we get

n—1 n
(CL + b>n+1 _ an+1 +Z cn’ra(n—&—l)—rbr +abn+qnanb+z cn’S_lqn—l-l—san—l-l—sbs +bn+1

r=1 s=2
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Now we calculate

n—1 n
chma(n—i—l)—rbr + ab” + qnanb + ch,s_lqn+1—san+l—sbs _
r=1 s=2
n—1 n—1
= (eaa +¢") "0+ Y Cnpa™ TV 4 ab" + Y Cn a1 4 no1qad”
r=2 s=2
n—1
= (CTL,I + qn) a"b + Z (Cn,r + Cn,r—lqn+1_r) a(n—i—l)—rbr + (1 + Cn,n—lQ) ab"
r=2
£3),(53), (60 —
( )7(:)7( ) Cn—i—l,lanb + ch+l,ra(n+l)_Tbr + cn+1,nabn
r=2

n
_ n+1)—tyt
—§ Cni1 0"V
t=1

so that we get

(a 4+ b>n+1 _ an+1 + Z cn+17ta("+1)_tbt + bn—i—l'
t=1

]

Proposition 6.21. Letn € N;n > 2 and let ¢ € k be a primitive n-th root of unity.
Then ¢, , =0 for everyn,r e Nyn>2,1<r <n-—1.

Proof. We have
o1 =14+q+..+q¢" =0

Assume that the statement holds for some n € Nyn > 2, and every r € N, 1 < r <
n — 1 and let us prove it for n + 1. In view of formula (E3), we have

— n+1l—r _
Cntly = Cny + Cppr—1q forr=2,...,n—1

so that, in view of the induction assumption we obtain c¢,+1, = 0 for every r =
2,...,n— 1. Now we calculate

Cntln = q+ ...+ q" =0 since ¢ is a primitive n + 1-th root of unity.
O

Corollary 6.22. Letn € Nyn > 2 and let ¢ € k be a primitive n-th root of unity.
Let A be a k-algebra and a,b € A such that ba = gab. Then

(a+b)" =a" +b" for every n € N.
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Proposition 6.23. Let q € k, let A be a k-algebra and a,b € A such that ba = qab.
Then

(6.10) (ba)" = ¢"a"™b" for everyn € Nyn > 1.

where
n

tn:Zi:n(n+1).

: 2
=1

Proof. Let us proceed by induction on n € N,n > 1. For n = 1 there is nothing to
prove. Let us assume that the statement holds for some n € N and let us prove it
for n + 1.

(ba)™ " = ba (ba)" indhyp g (ba) (a™") = " (ba" ) b" (=) gL = gt gL
O

Lemma 6.24. Let A be a k-algebra. Assume thata,x,y € A and that A : A — AQA
s a linear map such that

Alz)=2z®z, Aly)=y®Ry and Aa)=a®@r+yQa
Then

(A A)oAl(z) =[(A® A) o Al(z) [(A®A)oA](y) =[(A®A)oAl(y)
and [(A® A)oA](a) =[(A® A)oA](a).

Moreover if e : A — k is such that € (v) =€ (y) = 1 and € (a) = 0 then
(lo(e@T)oA)(x)=2 and (lo(e®@A)oA)(a)=a
A similar result holds on the other side.

Proof. Clearly [A® A)oAl(z) =2z @z ®x =[(A® A) o A](x). The same holds
for y. We compute

(A® A)oAl(a) = (ARA)(a@r+yRa)=Aa)@x+A(y)Ra
= a®QrRr+yRKaeRr+yRyXa

(A®A)oAl(a) = ARA)(e®r+y®Ra)=a®@A(z)+y®A(a)
= aRQrR¥r+yYRa®r+ylya

We compute
(lac(e®@A)oA)(a)=(lao(e®A)) (aR@zx+y®Ra)=1ls(c(a) ®x+c(y) ®a) =a.

]
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Let n € Nyn > 2 and let ¢ € k be a primitive n-th root of unity. Using the
universal property of the tensor algebra, we define on the algebra R = k{X,Y} an
algebra homomorphism

ARR—>R®R

by setting
Ar(X)=X®X and Ar(Y)=Y®X+1RY.

Then by Lemma we have that
(AR@R)oAgR](X) =X X ®X =[(R® Ag) o Ag] (X)
and
[(Ar®@ R)o Ag] (Y) = [(R® Ar) o Ag| (V)

so that we get
(AR®R)OAR: (R@AR)OAR

Using again the universal property of the tensor algebra we define an algebra homo-
morphism
ER . R—k

by setting
6R(X):]_ and €R(Y):O

By Lemma E24, we get
lRO(ER(X)T)OAR:IdR and T‘RO(T®€R)OAR:IC1R

Hence (R, Ag,cg) is a bialgebra. Let now I be the two-sided ideal I of R spanned by
the elements X" —1,Y" Y X —¢XY. [isabi-ideal of Ri.e. Ag([) CIQR+RQI
and eg (I) = {0}. Let p = p; : R — R/I be the canonical projection. To prove
that AR (I) C T ® R+ R® I we can equivalently prove that (p ® p) o Ap = 0. Let
x=X+1and y =Y + I, they fulfill the relations

2" =1,y" =0,yxr = quy.
Let us compute

[(p@p)oAr] (X" —1r) = (p®p)[Ar(X)" = Ar(1r)]
= (pep)(X"®@X")—(p@p)(1r® 1R)
= (lg+ )@ (Ap+1)—(1r+1)®(lg+1)=0.

We have
(yor)(ley) =Yy and (1Y) (yRr)=yQyr =y qry =q(y zy).

Set
a=y®xand b =1 ®y. Then we obtained that ba = qba.
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Hence, by Corollary 222 we have that
(a+b)" =a"+b"
and hence we obtain

[(p@p)oAgl(Y") = [[(p®p) o Ar](V)]"=p¥)@p(X)+p(1)@p(Y)]"
PYV)@pX)]"+pM)@p)]" =p¥")@pX")+p1)ap(Y")
0

Now let us calculate

[(p@p) o Ap](YX —¢XY) = (p@p)(Ar(Y)Ar(X) = qAr(X)Agr(Y))

PP (YOX+1Y)(X@X)—q(XeX) (Yo X+1®}
pep) (VXX +X®YX —q(XY 0 X*+ X @ XY))
yr@a° +r@yr —q(vy ® 2> + z @ zy)

= qry®z’+qrry—q(ryRa®+z@ay) =0.

Let us compute

ER(XTL—]_> = ER(X)n—lzln— =0
cr (Y = en(Y) =0
ER(YX—C]XY> = €R(Y)€R(X)—Q€R(X)ER(Y):0.

Thus [ is a bi-ideal of R. Let us use the universal property of R to define an algebra
homomorphism S : R — R such that

S(X)=X""1and S(Y) = —¢ ' X"'Y.
Let us prove that S (I) C I or equivalently that po S (/) = 0. We compute
(poS) (X" —1p)=p((X")" ' =1)=@E")""'-1=1-1=0.

Note that, by (E3), we have (z" ')y = ¢ ""lya"~1. Thus, by applying (EI0) where
b=a""1 a =1y weobtain (ba)" = (¢~"+1)" a"b" for every n € N,n > 1 which means
that

(6.11) (any)n _ (qfn+1)tn Y (xnfl)n _o
Now we compute

(poS)(Y") =[(poS) (V)" = [—q 2" y]" = (~1)" ¢ («"'y)" =" 0.
Let us calculate

(poS)(YX —¢XY) = p(X" " [-¢ ' X" Y] —q(—¢'X"Y) - X"7)

(E) . —1,.n-1_n-1



102 CHAPTER 6. EXAMPLES

Now we have that yz = qzy so that, by (E3) we have y/z' = ¢Yz'y’ for every

n—1,.n—1

i,j € N. In particular y2" ! = ¢" 2" 'y so that

—q "y "y = (=g ") (2" 2 y) = 0.

Hence S induces an algebra homomorphism Sg/; : R/I — (R/1)® such that

n—1

Sk (x) = 2" and Sgir(y) = —¢ 2"y

Let us check that Sg/; is an antipode for the bialgebra R/I. By Lemma B3 it is
enough to check this on x and y. Thus we compute

(SR/I * IdR/I) () = Sgy(z)-z= "l =a"=1= (uR/I o 53/1) (x) and
(Sryr*Wdgyr) (y) = Sk W) e+ Spn(Dy=—q¢ 2" lyz+y=—¢ 2" lqey+y=—a"y+y

= —y+y=0= (uR/IanR/I) (y)-

A similar computation shows that Idgr/; * Sp/r = ur/r 0 g1

The Hopf algebra R/I is called the Taft algebra and denoted by H,2 (¢). We list
here its main properties.

H,2 (q) is generated by the elements = and y which fulfill the relations:

" =1,y" =02y = qyx.
We have

Alz) = z@ux,e(r)=1
A(y) yr+1®y,e(y) =0
S(z) = «"1S8(y) =—¢ =" .

For n = 2 the Taft algebra is also called Sweedler’s 4-dimensional Hopf algebra. It
was the first example of a noncommutative noncocommutative Hopf Algebra.

6.6 The divided power Hopf algebra

In Example 1) of [IA, we have seen that on a vector space L over k with a basis
e;,1 € N, one can define the so called divided power coalgebra by setting

A (61) = Z e & €; and e (61) = 51‘70.

i+j=n

Assume that char (k) = 0 and let us define an algebra structure on L by setting

m-+n
€m * €n = m Cm—tn-
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We compute

es - (em - en)

103

s+m+n
s Es+m+n

(eo-em)-en = S+m . e — s+m s+m+n .
E m n s s+m n s s+m s+m+tn-
Since
m+n s+m+mn  (mAn) (s+m+n)  (s+m+n)
m m+n — mln! sl (m+n) mln!s!
s+m s+m+mn (s+m)!(s+m+n) (s+m+n)!
s s+m stm!  (s+m)n! mlnls!

we deduce that the product is associative and the unit of the ring is 1;, = ey. Let us

prove that L is a bialgebra. Let us compute
m-+n
(70" ) e = (

A(en - en)

A (6m) A (en)

2.

1+ a
)

m-+n

= (Z €i®€j><z ea®€b
i+j=m a+b=n

I+ 0
)(JJ )e”“®€“”:

m

>:

) Z et @ es

t+s=m+n

Z (€ - ea) ® (€ - &)

i+j=m
1+ a j+b
a b

a+b=n

D

)€t®es

i+j=m i+j=m
a+b=n a+b=n
- > (! C; )eee
N t—i s—j )t
t+s=m+n
1+j=m
Since we have
t s B t! s! B t! (m+mn—t)!
t—1 s—j )  ilt—)l(s—5 ilt—i)jl(m+n—t—j)
_ (m +n)! _ (m+n)!
Al =) (m—)(n—(t—1d)  mln!

we deduce that

Alen-en) =A(en) Ale,).

Moreover we have

A(lL):A(Go):G()@GO:lL@lL.

m-+n
m

m-+n
m

_ ( ) & (emin)

e (eg) = 1.

{

) Omtn0 = ( m; ' ) Om,00n,0 = € (em) € (€n )
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Let us define S : L — L recursively by setting
5(60) = S(lL) = 1L

and

S(e,) =— Z S (eq) €n—a-

0<a<n—1

Let us check that S is an antipode for the bialgebra L. By Lemma B3 it is enough
to check this on each e,. We proceed by induction on n. Let us compute

(S * IdL) (60) =5 (60) €y = 1L = ULE] (1L) = ULE] (60) .

Let us assume that the statement holds for some n € N and let us prove it for n+ 1.

(S *1Idp) (ent1) = Z S(€a) ent1-a = S5 (€nt1) €0 + Z S (€a) €nt1-a
0<a<n+1 0<a<n
= <_ Z S (ea) 6n+1—a> 1 + Z S (ea) €ntl—a = 0.
0<a<n 0<a<n

6.7 More Examples

Using the universal property of the tensor algebra, we define on the algebra R =
k{X,Y} an algebra homomorphism

Ap:R— R®R

by setting
Using again the universal property of the tensor algebra we define an algebra homo-
morphism
ER: R—k
by setting
er(X)=1 and eg(Y)=0.
By Lemma 624, we get that (R, Ag,cg) is a bialgebra. Let g € k, ¢ # 0 and let

be the two-sided ideal ideal of R generated by XY — qY X. Let us prove that [ is a
bi-ideal of R. We compute

AR(XY —qYX) = Ap(X)Ar(Y)—qAr(Y)Ar(X)
= (XeX)(Y®R1I+X0Y)—qYol+X®Y)(X®X)
= XY @XI+XX®XY —qYX®X —qgXX®YVX
— (XY =gV X)® X + XX ® (XY — gV X)



6.7. MORE EXAMPLES 105

and
€R (XY—(]YX) = ER (X)&R (Y) — (&R (Y) ER (X) =0.

Therefore R/I is a bialgebra. This bialgebra is denoted by O, (k?) and is called
quantum plane. Let x = X + 1 and y =Y + I. Then O, (k?) is generated by x and
y which satisfy zy = qyz. Let O = O, (k?). Then

Ao(z) = 2@z, Doy =y®l+z@y
60(513') = 17 8(9(y):()

Let us consider sl (k) the set of 2 x 2 matrices having trace 0.

01 0 0 1 0
=(0o)=(1) =0 )
We compute

00 )(10)- (Vo) (0o)=(o0)-(01)=n
() (D0 ) ()27
= (1 8)(EDE (1) (L D)

Then the enveloping algebra U (sly (k)) is the quotient of the polynomial ring in
noncommutative variables k {E, F, K} modulo the two-sided ideal I generated by

EF—-FE—-K
KE—-FK -2F
KF —-—FK +2F

For every x € U (sly (k)) we have that
Alx)=rz®1+1®z, e(r)=0and S(x)=—=x.

Let us consider the polynomial ring in noncommutative variables R = k{X,Y, Z, T}
and define on R a comultiplication A and a counit € by setting

AX) = 18X+X®Z, £(X)=0
AY) = TRY+Y®1, £(Y)=0
AZ) = Z2®7Z <(Z)=1
AT) = T®T, (T)=1.
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By Lemma EZ4, we get that R is a bialgebra. Let now ¢ € k,q # 0,¢? # 1 and let
I be the two-sided ideal of R generated by

ZT —1,TZ —1,
Z-T
q—q*
ZX —¢*XZ
Y —q Y Z.

XY -YX—

Let us prove that [ is a bi-ideal of R. Let p : R — R/I be the canonical projection.
Weset E=p(X),F=p(Y),K=p(Z)and K' =p(T). Then in R/I we have

KK'=1=K'K,i.e. K is invertible and K’ is its two-sided inverse

_ /
pF-rE-% Kl
q9—q
KE = ¢*FEK
KF = ¢ ?FK.

We compute
(poN)Y(ZT -1)=p[(Z@2)(T®T)—1®1]|=KK' @ KKK -1®1=0.

The computation for T'Z — 1 is similar.

-1

(poA) (XY—YX— Z_T)

q—q
[0 X+XeZ2)TeY+Yel)-TeY+Ye)(1eX+X®Z)+
=P == (Z02)+ A= (T®T)
=(1E+EQK)(K'QF+F®1)— (K®F+F®1) (19 E+ E®K)
1
- K®K)+ K' @ K') =
q—q‘l( ) q—q‘l( )
=K'QFEF+FQF+EK' @ KF+EFQK-K QFE-KEQFK—-F®F—-FE® K+
— K®K)+ K' ® K’
q—q‘l( ) q—q‘l( )
=K' ®[EF -~ FE|+|[EF - FE| K+ ’K'E® ¢ *FK - KKE® FK
— K®K)+ K' @K'
q—q‘l( ) q—q‘l( )
:K’®[EF—FE]—|—[EF—FE]®K—q_qfl(K®K)+q_q71(K’®K’)

1
= K'@(K-K)+(K-K)9K-K®K+K K'|=0
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(pol)(ZX —¢*XZ) = plZ0Z) 10X +X®Z)-p[ 10 X+X®Z)(Z®Z)]
= (K®K)(1®E+E®K)— ¢ (K®EK) — ¢* (EK ® K?)
= K@KE+KE®K’—¢*(K® EK) - ¢ (EK ® K?)
K® |[KE - ¢EK| + |[KE - *EK| ® K> =0

The computation for ZY — ¢ 2Y Z is similar.
Now we go back to R and we define an algebra homomorphism S : R — R by
setting
S(X)=-XT,S(Y)=-2Y,5(Z)=T,5(T) = Z.

Let us prove that S (I) C I. Note that KFEK' = ¢ ?FK¢*K'E = FE. We compute
(poS)(ZT —1)=p(ZT -1)=0.

The computation for TZ — 1 is similar. We compute

Z-T T-2
(pm%(XY—YX—- 4) :g%}ZYXT—XTZY— 4>
q-q q—q
K' - K K' - K
~=FE -~ EF - :
q—q" q—q"

= KFEK' — EF — = 0.

Since KE = ¢?EK we have that EK’ — ¢> K'E = 0 and hence
(poS)(ZX —¢’XZ) =p (—XTT + ¢*TXT) = —EK'K' + ’K'EK' = 0.

The computation for ZY — ¢ 2Y Z is similar. Now we want to check that S is an
antipode. We compute

(Sx1d)(E) = S()E+S(E)K=E—-EK'K=0=¢(E)1
(S +1d) (F) = 5@3F+S()1:KF—KF:0:ewn
(Sx1d) (K) = 1=¢e(K)1
(Sx1d) (K') = 1=¢e(K')1

The Hopf algebra R/I is called the Quantized Enveloping Algebra of sly (k) and
is denoted by U, (sl (k)).

6.8 Gauss binomial coefficients

In this section we work inside Q (X, Y), the field of quotients of the polynomial ring
in two variables, Q [X,Y]. For all a € Z we set

X* =Y

(6.12) 0] = S~
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Clearly we have that
[0] = 0.
Moreover

[a] = X P+ XY + .+ XY 24 Y foralla> 1.

Define the Gauss binomial coefficients by

[{q _ ld [a—u}][é].:.[c‘b[;]nle] o all o e Zm > 1 an
0| =1 forallaez

We have the following equalities

{‘” = [a],[Z]—land

[a] = 0if0<a<n.
n

We also set
0!'=1 and [n)! =[1][2]---[n] foralne€Z,n>1.
Thus

|
¢ :$ for all a,n € Z,0 <n < a.
n [n]! [a — n]!
Xa+1 _ Ya+1 — X" (Xa+1—n . Ya+1—n) 4 Xnya+1—n . Ya+1
Xa+1 _ Ya-‘,—l XnYa+1—n _ Ya-‘,—l
= X"+
Xa+1fn _ YaJrlfn Xa+17n _ Ya+1fn
a+1] [a + 1]! B [a]! a+1] [a Xotl _yatl
n n)lja+1—n]l  [p)'la—n]'la+1—-n] | n | Xetl-n _Yyatl-n
a . a XnyaJrlfn _ Ya+1
= |:n:|X + [n:| Xa+1—n_Ya+1—n
a X”Y‘H‘l_” _ Ya+1 _ [CL]' X”Y‘H‘l_” _ Ya-i—l
n Xa+l—n —_ Yoa+tl-n - [n]l [(Z _ n]l Xatl-n _ Ya+l-n
B [(l]' [(l —n4+ 1] xnyoatl-n _ yatl
= 1a—n+1]! [n] Xoatl-n _ yatl-n
r a 7 Xa—n+1 _ Ya—n+1 Xnya—i—l—n _ Yzz+1
- I n — 1 | Xn _ Yn Xa+1—n _ Ya—i—l—n
r a 7 Xnya—i—l—n _ Ya—i—l
T ln-1] Xn—yn
e JyenaXt=Y" T e e
a _n—l_Y Xn—Y”[n—l}Y
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so that we get
(6.13)

Note that

1] -

Therefore we get

(GM){azl}:{Z}X”+{na

[a—l—l

e [a]re L0 e

]
n n

a a+1l—n
“ |y

a |la—n+1]X"

Cotd PNl L

Xa

a i([a—n—i—]l]X” Y““‘")

n+1 Ya n+1

Xn 4 YaJrln)

Xn—-yn

a . (Xa+1 Xnrye- n+1_|_XnYa+1 n Ya—l—l)
S

Xa+1 Ya+1 >

a _[a_n+1]yn+|: :|Xa+1n
—1

I

7 Xafn+1 . Yafn+1
= |ata ( —yn Y”Xﬁln> B
- [ (R )

a 1 Xo- n+1yn Ya+1 +Xa+1 . XaJrlfnyn

- n—l_( Xn—Yn >
B a T Ya+1 + Xa+1
[ n—1] Xn — '

[a]!

at+l—mn __ a n at+l—n
el

{ Z ] " [n]! [[5]!— n)l

[n—1!{a —n+1)! [n]

[CL —n+ 1] B |: a :| Xa—n+1 _ Ya—n-l—l

n—1 Xn—-Yn

Assume that a,n € N,;0 < n < a and let us prove that [ Z } € Z[X,Y]. Let us

proceed by induction on n. Since [ “

0

=1 the case n = 0 is trivial. Let us assume
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that the statement holds for some n—1 € N and let us prove it for n. Let us proceed

by induction on a —n. If a —n = 0 then we have [ Z ] = % = 1. Let us assume

that the statement holds for all @ with 0 <n < a and a —n = h and let us prove it
for all @ with a € N,0 <n <a and a —n = h+ 1. From (E13) we deduce that

N R C R eI

n n—1

Since (a — 1) — n = h and since the statement holds for n — 1 and every b € N, 0 <
n — 1 < b, the conclusion follows.

Let g € k and let ¢ : Z[X,Y] — k be the unique ring homomorphism such that
o (X)=qgand p(Y)=1. Set

(n), = ¢([n]) for every n € Nyn > 1
(n), = qq"_—ll foreveryn e Nyn > 1,9 # 1
0), =1
(n)lg = (1), (2),--- (),
and ; ),
<h> :m foralln,h e NJO< h<n

Since n,h € N,0 < h < n, from the above we have that [ Z } € Z[X,Y] so that

(Z) :go({ Z }) Then, from (BI3) we get that
q

(1), =) (),

Let us prove that for every n,r € Nyn > 2 and 1 < r < n we have that

n
C =
n,r r
q

Cny = Z gttt for every r € N;1 < r < n—1 and let Cpn = 1.

0<mi<mo<...<m,<n—r

where for every n € N;n > 2, let

Let us proceed by induction n. For n = 2 we have

2 2
czgzqozlz(z) and02,1:1+q:(1).
q q
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Let us assume that the statement holds for some n € N,n > 2, and let us prove it
for n 4+ 1. From (B22), (68) and (E9) we deduce that

n n n n
(616) Cn+1,1:1+Q++q :(Cn,1+q>:(1> +q
q

(6.17)

— n+l—-r __ n n n+l—r _ .

Cn+1,r—cn,r+cn,r—1q - ( r ) + < r—1 ) q fOI'T—2,...,’rL 1
q q

(6.18)
Cntin = > e R Rl & I G 1+q<nﬁl)

0<mi<ma<...<m,<1 q

hence we have to prove that
n+1 n n
(), = ()
q
<n—|—1) = (n) —i—( " )q"“rforr—Q,...,n—l
r r r—1
q q q
n+1 n
(), = (L)
q q

The first and last equality are easily checked, while the second equality follows from

T )
)
NORERy



Chapter 7

Bosonization

Let (A, ma,us,Aa,e4) be a bialgebra and let (H,mpy,upy, Ay,en, Sy) be a Hopf
algebra and suppose that

e 0: H<— Aembeds H as a Hopf subalgebra of A
e m: A— H is a Hopf algebra projection such that
e Toco =Idy.

In this case we say that (A, H,0,m) is a bialgebra with a projection. Whenever
A is a Hopf algebra, we say that (A, H,o, ) is a Hopf algebra with a projection.
Then A can be endowed with a natural H-bimodule structure by setting

h-a=o0(h)-aa and a-h=a-40(h) forevery he Handac A
and with an H-bicomodule structure by setting
Hp,(a) = Zﬂ' (@) ®ay and pff (a) = Zal @7 (ay) for every a € A.

Theorem 7.1. Let (A, H,o,7) be a bialgebra with a projection. Let R := AU =
{a€Ala;®@m(az) =a® 1y} . Consider the map

T:A— R,7(a) = Za-A oSy (as) .
Then 7 is a well defined map and fulfills the following equalities

= Zal a0Sym (a3) ® T (az), for alla € A,
= ¢cala)ly, foralla€ A,

)

)

) r, for allr € R (this says that T is surjective),
T(a-a0(h)) = 7(a)ey (h), forallac Ah € H,

)

]

)

)

m

AR R, forallr € R,
= 7(ab), for all a,b € A.
= ¢e4(r)ly, foralreR.

N /N /N /N~~~
P B e B
0 ~J O O = W N =
~— O —

b

—~

=

= a, foralla € A.
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Consider the following structures

=Y w(r)®ra,  Ap(r)=)Y_r'@r’ =) r(r)®r,  er(r) =ealr),
h—r:=71(c(h)-ar)=o0(h1)roSy[(ha)].
Then

e (R, Ag,eR) is a coalgebra and 7 : A — R is a coalgebra homomorphism.

° ((R, HpR) ,AR,€R) 1s a left H-comodule coalgebra i.e. Agr and er are mor-
phisms of left H-comodules.

e ((R,—),ARg,cg) is a left H-module coalgebra. i.e. Ag and er are morphisms
of left H-modules.

Proof. Define 7' : A — A by setting 7’ (a) := > a1 -40Su7 (az) for every a € A. We
have

Aar'(a) = ) 7'(a),®7 (a),

= ) a1, -4 0SuT (a2), ® ay, -4 oSk (a2),

= Y a1, -a0SyT (az,) ® ar, -4 0SuT (az,)

= Y a1-40Sum(as) ® az -4 oSy (as)

= Zal a4 0Sym (az) @ 7' (as)
and
7' (a) =Y wlar-a0Sym(az)] = Y wa1)-uSum(az) =Y enm(a)ly =ceala)ly
so that

P (@) = Y (@, @7(r(a),) =) a1 -a0Sum(a3) ® 77 (as)
= Zal a4 0SyT(az) @ 1y =7 (a) ® 15.

Therefore 7 (a) € R and hence 7 is well defined and () and () are proved.
Let us prove ([[33):

T(r) = Zﬁ A0Sy (ra) "E'r g oSy (1y) = 7.
Let us prove (I4):

T(a-ao(h) = Y (a-a0(h); aoSum((a a0 (),
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Let us prove ([3):

A®R > ZT1®T (7'2 ZT1®T’21 AO’SHTF 7’22 ZT11®T12 AO’SHﬂ' 7“2 ZT1®7’2

Let us prove ([C8):

7 [aT (b)] = Z T [aby -4 0Sum (be)] = (ab) .

Note that (Z2) follows directly from (Z2) and (I3).
Finally, let us prove (8). For every a € A we have

Z 7 (ar) om(ay) = Z aj -4 0Sym (az) om (asz)
= Zal 40 (Sum (az) ™ (as))

= wea(ag) = a.

Now, for a € A, we have

AgT (a) = ZT (1 (a);) ®T(a), = ZT la1 -4 0SyT (a3)] ® 7 (az)
S (@) @7 (a2) = (1@ 7) Au(a)

ArpoT = (T®T)0Ay.

Let us prove that (R, Ag, eg) is a coalgebra. First of all, note that, in view of (I33),
Apg is well defined. We have

so that

(AR@R)oAgor = (AR@R)o(T®T)oAx=(TR7TR7)0(As® R)o Ay,
(R AR)oAgor = (RRAR)o(TRT)oAy=(TR7®7T)0(R®As)0Ay

which entail that (Ag ® R)oAgpo7 = (R® Ag)oAro7 whence (Ag ® R)o Ap =
(R® Ag) o Ag (7 is surjective). Moreover

erT (a ZéA a4 0Sum (az)] = €4 (a).
Then

lro(ecr®@R)oAgroT = Ilgo(cg®@R)o(T®@T)oAy=Ilgpo(K®@T)o(ea®A)oAy
= 70lpo(ea®A)oAy=r1
rrRo(R®er)oAroT = rro(R®eg)o(1®@T7)oAy=rgro(t®@K)o(A®eq)oAy
)o

= 70740 (A®ey)0A=T

so that [go(eg ® R)oAgoT =7 = rgo(R ® eg)oAgoT and then lgo(eg ® R)oAg =
Idg = rpo (R®eR) o Ag. Hence (R, Ag,cRr) is a coalgebra and 7 is a coalgebra
homomorphism.
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Let us prove ((R,H pR) , AR, 5R) is a left H-comodule coalgebra. First we have

(=3
Hpy(ry=) _m(m)®@r € HOR

so that (R, "py) is a subcomodule of (A, "p,). Moreover

Topendr () = "opor (D7 () @)
- Snlr (7’1)1] T (ra)) @7 (1), ® 1,
T[T (r1),] 7 (r2) @ T (r1)y, ® 13
Z TPy -4 0SuT (r1y)] 7 (12) @ T (r1,) @ 73

7T[T11 SH7T 7’13) (TQ)@T(T12)®T3

(]

—_
—

=

7T<7”1 ®7’ 7”2 ® 13

7 (r) @ Ag (r9) = (H®AR)HpR(r).

I
AN

Recall that k has a natural structure of left H-comodule defined by setting #p, =

(ugp @k)or, ' =rt ouy.

(Hoer)"pp(r) = Y m(r)®er(ra) =) m(r)@ea(r)
)

(=
= 7(r)®lg :( )sA(r)1H®1KzaR(r)lH(X)lK:HpksR(r).

so that ((R,H pR) , AR, 5R) is a left H-comodule coalgebra.

Let us prove that ((R,—),Ag,cr) is a left H-module coalgebra. First let us
check that —: H ® R — R defines a left action of H on R. We have, for every
h,k € H and for every r € R,

ko= (h=r)=k—=71(0®)ar)=7[ok) at(@ ) a7)] B 1o k) a0 (h) ar] = (kh) -

ly — r=71(c(lg)-ar)=71(r)=r.

Let us prove that A : R — R® R is left H-linear where R ® R is a left H-module
via the diagonal action induced by —. We have

Agr(h—r)=Agt[o(h) -aT]
= (T®@7)Axlo(h) ar]
= D r(o()-ar) @7 (o (hs)-ams)
DN @ () AT () @7 (0 (ha) a2)
= Z(hlé’l“l)@(hgéT’Q)
and
er(h—r)=cgr(o(h)-ar)=ca(o(h)-ar)=cu(h)er(r).
Thus ((R,—),Ag,er) is a left H-module coalgebra. O
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Proposition 7.2. Using the assumptions and notations of Theorem [I_] we have
that

e R is a subalgebra of A.

(] AR (1R) == 1R® 1R-

er : R — k is an algebra morphism.
e 7: A — R is a morphism of left H-modules.

e For every r,s € R the following equality holds
(7.9) Z r ) ® 7"(0)3
o For every h € H and r € R the following equality holds

(7.10) r(h—=1)=> hr_ySu(hs) ® (ha = 1)) .

e Idg has an inverse in the convolution algebra Hom (R, R*) whenever A is a
Hopf algebra.

Proof. Let r,s € R. We compute

pH(roas) = Z(T'A8)1®W((T'AS)2):ZTI'A51®7T(T2'A52)
- Z(rl'A31)®(7T(7“2)'H7T(82))ZT-A5®1H_

Hence we obtain that -4, s € R. Moreover 14 € R and hence R is a subalgebra of
A. Since eg = g4 rwe deduce that cp is an algebra morphism. Moreover we have

Ar(1r) =Y 7 ((1a)) @ (1a)y =Y (1a); a4 0Sum ((14),) @ (1a); = 15 ® 1p.

Let h € H and r € R and let us compute

T(o(h)ar) = Y (o(h)-ar);-acSym(o(h)-ar),
= > (o () -ar1)-a0Sum (o (hy) -ar2)
= Y o (h1) ari-a0Sym(ry) -4 0Sym (o (hy))
"EEN " () ara oSy (0 (h))

= hér(E)héT(T).
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Let us calculate

_Z (r1) (7 (1ra,) 43 ®7“223 —ZT )®7’3s2
= Z (r1) s @rs’ = 7(r)(m <r2> 47( 1>> @ rysy "L
= Z (r1) ‘4 81)) @138y = Zrl a0Sym(re)om(rs) s1 -4 0Sym (o (14) S2) @ 7583
= Z r1 a0 [Sym(re) m(r3)] s1 -4 oSk [m (14) 7 (52)] @ 583
= Zrlsl a4 0Sy [m(ry) m(s2)] ® r3s3
= Zrlsl A OSHT (r282) ® r3ss = ZT (r181) @ ro89 = Ag (15) .

Let us prove ([10) .

Upr(h=1) = "pp (3o ()ro (S (ha))
= Yooy (hg)))l} @ (Yo (h)ro (S (h2)))2
= Y 70 (b)) 7 (r1) 70 (S (ha)),) ® 0 (h,) r20Sy (hs),
= Y (rl)SH(h22)®a(h12)rgaSH(h2l)
= Y I (r1) Sy (ha) ® 0 (ha) 120y (hs)
= Y IrySu (hs) @ (ha — 7o)

Assume now that A is a Hopf algebra with antipode S4 and consider the map
S : R — R defined by setting

S(r)= 7(om(ry) -4 ([Sa(r)])).

We compute

Sorlomr)a((Sara)) = Y om

Therefore we get

(7.11) S(r)= Zmr (r1) Sa (r2) .



118 CHAPTER 7. BOSONIZATION

We compute
Norts(?) = S () S(r) =Y 7 () om (1) Sa (1) =3 1184 ()
= ea(r)1la=cer(r)
and
dYos@E)r? = D S(r(r)r
= Y om (7 (1)) Sa (7 (11))y) 72
DS on[(r1,) -4 oS (r1)] Sa (7 (11,)) 73

[]

7.3. Let us consider the map w : R® H — A defined by setting w (r @ h) =r-40 (h)
and the map W' : A — R® H defined by setting w' (a) = 7 (a1) ® 7 (as)

Theorem 7.4. Using the assumptions and notations above, we have that w : R ®
H — A is bijective with inverse w'.

Proof. Let us compute, for every r € R and h € H

Swroh)] = Jraoh)=Y m(racml) @ (r-aoh)],)
= Zr(rl a0 (hy))@m(rg-a0(hs)) = ZT(Tl) ®7T(T2>hT€=RT(T) ®h

and, for every a € A

@)

ww (@) =) (@) aom(az)

a.
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7.5. By using w we can transfer the bialgebra structure of A to R ® H. Let us
compute it. For everyr € R and h € H we compute

(W @) (Aa(w(reh)) = (W ew)As(rac(h) = QW)Y (rn-ao(h)® (a0 (h))
=Y W (rao(h)®@wW (rac(ha)=> ' (r-a0(h)@w (W(r:®hs))
= W (r1a0 (b)) @ra® hy
=S "7 (ry a0 (b)) @7 (11, a0 (b)) @ 12 ® hy
DN r ) @Tr) M ©r®h =Y T(n) ©(r) h ® 13 ® hy

:ZT 1 ®7T(7“21)h1®7“22®h2 (ELB)ZT(T)@)W(T(T )1)h1®7‘(7’2)2®h2
—ZT 1) ® T (r2) 1y 1 ® 7 (r2)g) ® ho = Zr ® ( 1)h1®(7’2)(0)®h2
and for every r,s € R and h,t € H we calculate
w(mA( (reohjw(s®t)=w (rao(h)as-ac(t) =
('f’ a0 (h1)-as-a0Su (ha)-a0(hs)-a0(t))
W (r-a(hi —8)-a0(h)-a0(t))

Rissubal+(3)

= W (T (r-a(hi—s))-a0(hat))
=ww(r-a(hy — s)® hat)
=r-a(hy = 8)@hot =15 (hy — 5) ® hot.

Lemma 7.6. Assume that (H, mpg,uy, Ag, e, Sy) is a Hopf algebra, (R, mg, ug)
is a k-algebra, (R, Ag,eg) is a k-coalgebra, (R,—) is a left H-module, (R, " pg) is
a left H-comodule such that

e mp,ugr, Ar,cr are left H-linear,
e mp,ugr, Ar,cr are left H-colinear.
Then the following statements are equivalent
(a) Tpg(h—r) =3 hir1)Sh (hs) ® (ha = 1)) for every h € H and r € R.

(0) > (hi = 71)_yyha ® (he = 7)) = Yo har(1) ® ha = 1(g) for every h € H and
re R.

Proof. (a) = (b) For every h € H and r € R, we compute

Z (b1 = 1)y ha®(h1 = 1) g @ Z hir(<1ySk (hs) ha®(hy = () = Z har—1)®hy — 1(0).
(b) = (a) For every h € H and r € R, we compute

Hor(h—=1) = > (h=r)_y@h=1)_y= (h—=1)_ hQS(h3)®(h4r)(_2)(:b)

- Z hir-1)S (hs) @ (ha = r()) -
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7.7. Assume now that (H,mpg,uy, Ag,en, Sy) is a Hopf algebra, (R, mg,ug) is a
k-algebra, (R, Ag,eR) is a k-coalgebra, (R, —) is a left H-module, (R, HpR) is a left
H-comodule such that

1. mpg,uRr, AR, er are left H-linear

2. mpg,ugr, Ar,cr are left H-colinear

3. Hpp(h—= 1) =3 hir1)Su (hs)®(hs = 1)) or equivalently (see Lemma )
>o(h— 7“) h2 ® (h1 — T‘) o = = > hir1y ® hy = 1) for every h € H and
re R.

4. Ar(1g) = 1 ® 1g,
5. Ar(r-s)=>.r! <7“(2_1) — 51> ® T%O)Sz for every r,s € R.
6. g : R — k is an algebra morphism.
Define a multiplication on R ® H by setting
(reoh) (s®t) :ZT-R(hl — $) ® hot
with unit 1g ® 1y, a comultiplication by setting
A(r®h)= Zrl ® (T2)(_1) hy ® (TQ)(O) ® hg

and a counit
e(r@h)=cg(r)eg(h).

Theorem 7.8. Within the assumptions and definitions above R® H is a bialgebra.

Proof. First of all, let us prove that R ® H is an algebra. For every r,s,w € R and
for every h,t,l € H we have

(reh)-[s@n) @] =rah)- (3 smh—=w et
=Y " rr (b =[5k (= w)]) @ hatal ™ E N "1 g [(hy = ) g (ha = (B — w))] @ hatal
=> reg (= 8) g (haty = w)] @ hgtol =Y [r g (hy = 5)] g (haty = w) @ hatl
= (X rati =) @nt) we) =(ren) (sob)] (wel)

so that the multiplication is associative. Moreover

( ®h 1R®1H ZTR — 1R ®h21H wSIththZT ‘REH h1)®h21H—T®h

and
(1R®1H 7’®h ZlRR 4T>®1Hh:7”®h
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Let us prove that R ® H is a coalgebra. For every r € R and h € H, we have

(A@RQ H)A(r®h) :ZA(TI(X) (7"2)(_1)h1> © (r%) g ® ha

1 [(7“2)(_1) hl}l ® < 7“1)2>(0) ® [(7“2)(_1) hlL ® (Tz)(o) ® hy

I
<
-
&
~—
3
)
N—
Py
o
=
L—
—
3
w
SN—
=
‘ :
- =
—_
=
®
~
=
[\
N— N~— SN— ~—~
=
(=]

S
L—
~—
3

w
SN—"
Py
o
=
>
S
| IS
® &

(RRHRA)A(r@h) = ZH@ (rz)(_l)h1®A((r2)(o)®h2

sothat A R® H)o A= (R® H® A) o A. Moreover

TrReg © (R H®e)oAl(r@h) = Zrl ® (7“2)(_1) hier ((r2)(0)> eg (hs)

= Y@ () yen (7)) men ()

sRislegH—col ZTl ® €R (7’2) h = r ® h

and

lrgpo (e @R H)oAl(r®@h) = ZsR(rl)sH <(r2)(_1)h1> (T2)(0)®h2

so that rpgg o (RO H®e)o A=R® H = lggn o (e ® R® H) o A. Let us check
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that the algebra structure and the coalgebra structure are compatible. In fact
Alroh)-(s@t)] =A [Zr-R (hy 45)®h2t] =
=Y (rer (=)' @ ((rr (b= )?) _ hot1 ® (g (= 9))%) ) ® hats =
. D ortr ity = (= 8)") @ (rfy) r (= 3)2)(71) hat1 ® (rfy) “r (b1 — 3)2)(0) © hats
SN T g (2 = (= 8) @ (o (e = 5)) et @ (1) (B = %)) ) © Pt

—

=Y rlp ([T(Q—l)hl} —s)® (T(Qo) g (ha = 32))(—1) hst1 @ (T(QO) 'k (ha = 82))(0) @ hats
mgisleftH-col Zrl r ([ripym] —=s') @ 7"(2o)< R (he — 52) ) hatr @ T?O) o B (ha — 52)(0> ® hats
=D n ([foh] =) @12, op (e = 5%) L hstr @78y h (ha = 57) ) ® hats

Therefore A[(r@h) - (s®@t)]=A(r®h)-A(s®t). Moreover
Agp(r-s)=>r"g (T(z—l) - 31) Q7o) S
Hpp(h—1) =Y hir)S (hy) @ (ha = 7))
(hy — 7“)(_1) ha @ (hy — 7")(0) = hir(c1) @ hy — 1)

A(lg @ 1p) Zlﬁ@ 1y (L), @ (1%) ) © (La),
= 213@’ (Lr)(ny 1ar @ (1r)) @ 1u

uRlsleftH lin

@1l R1p® 1y

and

ellr@h)-(s@t) = E[ZT"R( — s ®h2t] Zé?R rer (b1 — s))en (hat) =

= er(r)egp(h—98)eg(t) " =" er(r)eg(h)er(s)en(t) =c(r®@h)e(s®t)

5(1R® 1H) = ER (1R)5H (1H)
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eRisan

T(roh)- (s©t)) = W([ZT-R(hlés)(@hgt)zeR(r-R(hlés))hgt :
R (W) en (i) er () hat = er(r)her(s)t=n(r@h)T(s® 1)

episanalgmap

7T(1R®1H):€R(1R>1H 1k1H:1H

Definire II e poi la Sggy Prendere dal file del 4.6
(ﬂ. ® ﬂ-) A (7’ ® h) = Zﬂ. |:7”1 ® (TZ)(_U h1i| & |:(r2)(0) ®
sRislegH-colzgR (7’1) ER (7,2) h1®h225R (’r) hi®hy = eg (’I“)Zh1®h2 = Apym (7‘®h)

egm(r®@h)=cy(er(r)h) =cr(r)eg (h) =c(r®h).
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Some results on modules and rings

8.1. We will use the following notations.
Let V' be a vector space over a field k and let {e,}.cx be a basis of V.
For every x € X, we will denote by e’ the element of V* = Hom (V) k) defined by
setting
er(ez) =1 and el(e,) =0 for everyy € X,y # .

Let A be a ring. We set:

L(A) = the lattice of subgroups of the abelian group (A, +,04)
L(4A)={I € L(A)]| I is a left ideal of A}

L(As) ={I € L(A)|I is a right ideal of A}

L(aAs) ={1 € L(A) | I is a two-sided ideal A}

Q=Q(A) = {M | M is a mazimal two-sided ideal of A}
Q= U(A) ={L | L is a maximal left ideal of A}

Q. =Q.(A) ={M | M is a mazximal right ideal of A}

AS ={S € aM | S is a simple left A-module}
Sa={S€Mu|S isa simple right A-module}

When A is a k-algebra, we also set:

Qr =Qs(A) ={m e Q| dimp(A/m) < oo}

Let M € sM. We set L(aM) = {L| L is a submodule of s\M}. Let x € M. Consider
the right A-module morphism

JUE AA — AM
a +— ax

We set Anna(zx) = Ker(u,). Since Im(u,) = Ax, in view of the First Isomorphism
Theorem for Modules, we get that

Ly AJAnng(z) — Az
a+ Anny (z) +— ax '

is an isomorphism. Therefore we deduce that

LeQ & AL € 4S8

124
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and similarly
LeQ, & A/Le Sy

Recall that a ring A is called simple whenever

L(aAs) ={{0}, A} .

Therefore we have:
m € Q < A/m is a simple ring.

We also set
Anny(M)={a € AlaM =0} = ﬂ Anny(z) .
zeM
Note that Anna(M) € L(4AA).
End(M,) will denote the ring of endomorphism of Ma,
Module homomorphisms will be written to the side opposite to the one of scalars.

Lemma 8.2. (Schur’s Lemma) Let A be a ring and let Sy be a simple right
A-module. Then F' = End(Sa) is a division ring.

Proof. Let f € F, f # 0. Then Ker(f) & S4 and hence Ker(f) = {0}. Since
{0} S Im(f) € Sa we also get that Im(f) = S. O

Lemma 8.3. Let A be a ring and let AM be a left A-module. Set B = End (M) .
Then the map
opv: A — End(Mp)
Mg — Mgp
x — az

a +—

is well defined and is a ring homomorphism.

Proof. Let ¢ = ppr. Then, for every a € A, for every x € M we have that

BEB=End(4M)

¢ (a) (xB) = a(2f) (a2)f = [p(a)(@)] 5 forevery f € B

which means that ¢ (a) € End(Mpg) and hence ¢ is well defined. Clearly ¢ is
additive. Let us check it is multiplicative. Let a,b € A, then we have

¢ (ab) (x) = (ab)x = a(bx) = [p(a) - ¢ (b)] (x) for every x € M

which means that p(ab) = ¢(a) - p(b). Clearly we also have ¢(14) = Idy;. Thus ¢
is a ring morphism. O]

Lemma 8.4. Let A be a ring, let S € oS be a simple left A-module, let D =
End(4S) and let E = End (Sp). Letn e Nyn > 1, let zy,...,x, € S and let n € E.
Then there ezists an a € A such that n(z;) = a - z; for everyi=1,...,n.
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Proof. Let x = (x4, ...,x,) € S™ and assume that z = (n(x1), ..., n(z,)) € S"\ Ax.
Since 4S™ is a semisimple left A-module, there exists a submodule H < 4S5™ such
that

S"=H® Ax.

Let
AN: 4JS"=H@ Az —4 5"

such that (y)A =0 for every y € Az and (y)A = y for every y € H.

Since z ¢ Az, we have that z = h + ax where a € A, h € H and h # 0. We have
(2)A = (h)A + (ax)A =h # 0.

Let n € EndSp and let us consider the map

g Sm— S,

Clearly n" € End(S}).
For every 1 = 1,...,n let
e S —S"

denote the i-th embedding of S into S™ and let
p;:S" =S
denote the i-th projection from S™ to S

Then, for every z € S™, we can write

n

Tr = Z(x>piei

i=1
so that we get

n

0+# (2)A = Z(z/\)piei = Z(Z zpjej)Apie; .

i=1 j=1

For every i,j5 = 1,...,n set ejAp; = A;;. Note that A;; € End(45) = D and hence

we have Lo .
(Z)A = Z ZijAijei = Z Z"’/(I])Amez .

i=1 j=1 i=1 j=1

Since n € E' = End(Sp) and A;; € D, for every i,j = 1,...,n, we obtain that
(@) Nij = nla;Ay)

and hence

n

(DA =D nlzp)Aie =Y > nlwih)e; = ZU(Z zjNij)e; = Zﬁ(z zjejAp;)e; .

i=1 j=1 i=1 j=1 i=1 i=1
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Now for every ¢ = 1,...,n we have
> zjeihp =[O xje;)Alp; = (x)Ap; = (0)p; = 0
j=1 j=1

we get that
0#zA= Zn(z zjejAp;)e; =0 .
=1 j=1
Contradiction. O]

Notations 8.5. Let R be a ring and let n € N, n > 0. Given t,s € N such that
1 < s,t <n, we will denote by es; the element of M,,(R) defined by setting

(€st)uw = Osu0tn for every s,v € NJ1 <t s <n.
Clearly we have
(8.1) €stluw = Oruesy for every s, t,u,v € N, 1 < s t,u,v <n.

For every i, 1 <1 < n, we set

Ji = Z R@sﬂg.
o
Lemma 8.6. Let A = M,(R). For every i, 1 <i <n we have that

Ji = Anng (e;;)

and hence J; is a left ideal of A. Moreover we have
i=1

Furthermore J; € Q5(A) whenever R = D is a division ring.

Proof. From formula (BT) we get that J; C Anna (e;;). Conversely let a = Esi Ts1€st €
Anny (e;;). Since

0= § TstCst€is = § Ts,t(st,ies,i - E Ts,i€s,i

s,t s,t st
we deduce that r,; = 0 for every 5,1 < s < n. Therefore

a= E Tst€st € Ji.
s,t
t#i
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We have

n ﬂ nna (e;;) C Anna (Ze”> = Anny (14) = {0}.

=1

Assume now that R = D is a division ring and let a € A\ J;. Then we have

a = E Ts,tes,tZE rs,tes,t—i_g T'stCst
s,t S

; s,
t=i t#i

= Z As€si + b where b = er,te&t € Jiand A\ =715, € D.

s=1 s,t
t#i

Moreover, since a ¢ J; there exists an sg, 1 < so < n such that Ay, # 0. This implies
that

<)\50)_1 680750 a = (Aso)_l Z /\8680,5068,1' + (Aso)_l eso,sob - (/\30)_1 )\soeso,i + (/\50>_1 eso,sob

1

= Cs,i + (Aso)i 650750b

and hence
Csoi = (Nso) ™ €soso " @ — (Nsg) " €s0,500 € Aa + J;.
Since Aa + J; is a left ideal of A we get that

i = €1.506s0i € Aa+ J; forevery t =1,....n

On the other hand, if ¢ # ¢, we know that e,; € J; and hence we deduce that e;; € J;
for every s,t =1,...,n so that

This means that each J; is a left maximal ideal of A. O

Lemma 8.7. Let A be a ring and let M be a left A-module. Then the following
conditions are equivalent:

(a) Every descending chain in L (4 M) is stationary.
(b) Every non empty subset of L (aM) has a minimum.

Proof. (a) = (b). Let X be a non empty subset of £ (4M). Since X is non-empty,
there exists Ly € X. If X has no minimal element, then for each submodule L in X
there is at least one submodule L7 in X such that L' & L. By applying the Axiom of
choice, for each L € X we can choose one such L’. Then, by recursion we construct
a descending chain in X by setting: L; = (Lo) and L1 = (L,)". Contradiction.

(b) = (a).Let (Ly),cy be a descending chain of submodules of 4M. Then the
set {L, | n € N} has a minimum element, say L,,. For every n > ny we have

Lny © Ly © Ly,.
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Definition 8.8. Let A be a ring and let M be a left A-module. M is called left
artinian if M satisfies one of the equivalent conditions of Lemma B].

Definition 8.9. Let A be a ring. A is called left artinian if the left A-module 4 A
is left artinian.

Theorem 8.10. Let A be a ring, let S € 4S8 be a simple left A-module and let
D = End(4S). Let P = Anna(S) and assume that A/ P is left artinian. Then:

1) D is a division ring and dim(Sp) < oo.
2) The canonical morphism ¢ = pg : A — End(Sp) is surjective.
3) A/P ~ End(Sp) ~ M, (D) where n = dimp(Sp).

4) P=1LiN..NL, where n = dimp(Sp) and Ly, ..., L, are left mazimal ideals
of A.

Proof. 1) By Schur’s Lemma B2, D = End(495) is a division ring.
Assume that zq, xg, ..., x,,... € S is a sequence of linearly independent elements of
Sp. Let E = End(Sp) and, for every i € Nyi > 1, let H; = Anng(V;),L; =
Anna (V;) where V; = {x1, ..., x;}. Then the H;’s form a strictly decreasing sequence
of left ideals of E :

H 2Hy,2..2H,2 ..

By Lemma B4, we have that also the L;’s form a strictly decreasing sequence of left
ideals of A. Since L; O Anny(S) = P for every i, we can consider the left ideals
L;/P of A/P which form a strictly decreasing sequence of left ideals of A/P. Since
A/P is left artinian, we get a contradiction. Hence dimp S < oc.

2) Let z1,...,x, be a system of generators of Sp and n € E. Then, by Lemma
B4, there exists an a € A such that n(x;) = az; for every i = 1,...,n. Let z € S.
Then there exists \; € D,i = 1,...,n, such that = > | 2;\; so that

n

i=1

We deduce that ¢(a) = n and hence that ¢ is surjective.

3) Since ¢ is surjective and P = Ker(y) we get that A/P ~ E.
Since dimp (Sp) = n we get that E ~ M, (D).

4) By Lemma B@ we know that in M, (D) we have that {0} = J;N...NJ, where
Ji, ..., Jy are left maximal ideals of M,, (D). Since A/P ~ M, (D) the ideals Ji, ..., J,
lift to left maximal ideals L1, ..., L,, of A such that LynN...N L, = P. O

Corollary 8.11. Let A be a simple left artinian ring. Then there exist an n €
N,n > 1 and a division ring D such that A ~ M,(D). Moreover there exist left
mazimal ideals Ly, ..., L, of A such that {0} = Ly N ... N Ly,.
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Proof. Since 4A is left artinian, it contains a non zero left ideal 47 such that
al =min{L | L < 4A and L # {0}}.

Then 4/ is a simple left A-module and Anny (41) ; A. Since Annga (4l) is a two-
sided ideal of A we deduce that Anny (41) = {0}. By Theorem B0, we get our
conclusion. ]

Corollary 8.12. Let A be a k-algebra and let m € Qy. Then there exist an n € N
and a division ring D such that A/m ~ M, (D). Moreover there exist L, ..., L, € €
such that m = LyN...N L,.

Proof. Since m € Qy, A/m is a simple ring and dimy, (A/m) < co. Hence A/m is a
simple left artinian ring. Apply now Corollary BT O]

Definition 8.13. Let A be a ring. The Jacobson radical of A, which will be denoted
by J(A) or also by Jac(A), is the intersection of all left maximal ideals of A, i.e.

Jac(A) = ﬂ L.

LeQ,(A)

Theorem 8.14. Let A be a finite dimensional k-algebra. Then

o cvery maximal two-sided ideal of A is an intersection of a finite number of
maximal left ideals of A.

e cvery maximal left ideal contains a mazimal two-sided ideal of A.

Therefore
Jac(A) = ﬂ m.

meN(A)

Proof. Let 45 be a simple left A-module. Since A is a finitely dimensional k-algebra,
we have that also dimy (A/Ann4 (5)) is finite so that A/Anny (S) is, in particular,
a left artinian ring. Thus we can apply Theorem B0 to get that D = End (45)
is a division ring, n = dimp (S) < oo, A/Anna (S) ~ M,(D) and Anna (S) =
LiN...N L, where L; € Q4(A) for every i = 1,...,n.

Let now m € Q(A) and let T be a simple left A/m-module. Then T is a simple left
A-module and A 2 Anny (T') D m so that, since m is a maximal two-sided ideal,
we have that m = Ann4(T). Then, by the foregoing, we deduce that there exists an
ne€N,n>1and Ly ..., L, € Q4(A) such that m = Ly N...N L,. Conversely, let L €
Qs(A). Then S = A/L is a simple left A-module and we have that L = Anna(z) 2
Anny(S) where x = 14 + L. By the foregoing we know that A/Ann,(S) ~ M, (D)
where D is a division ring. Thus A/Ann,(S) is a simple ring i.e. Anna(S) is a
maximal two-sided ideal of A. O
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Theorem 8.15. Let A be a simple ring and let I be a left ideal of A, I # {0}. Set
D = End(4I). Then the canonical morphism

po=pr: A — End(Ip)
In — 1Ip
r o ax

a +—

15 an 1somorphism.

Proof. Let us recall that, in view of Lemma B3, ¢ is a well defined ring homomor-
phism. Thus, since ¢ (14) = lgnq,), we get that Ker(yp) is a proper two-sided
ideal of A and hence, A being simple, we obtain that Ker(¢) = {0}.

Let £ = End(Ip). Let us show that

h-p(r)=hop(r)=w(h(r)) forevery he€ E andr € [.
Let x € 4I. Then the map

Yo: I —> 1
r o r.

is well defined since [ is a left ideal of A. Let a € A and z € I. We compute
(a2)7e = (az)r = a(zz) = al(2) 7]
which means that v, € End(4I) = D. Now let h € End(Ip) and r € I. For every
x € I, we calculate
rel reland~y, € Dandstructureofl

(h- p(r)(x) = (ho @(r) () = hlp(r) (2)) = h(re) = h((r)y) == L 1)

he€Eand~, €D defv,

T R () h(r)v: “=" hr)a = p(h(r))().

h(r)€Tlandy, € Dandstructureoflp
e = (

Therefore we get

for every x € I, i.e.

h-p(r) = @(h(r))
for every h € E' and r € I which means that
(8.2) E-p(I) Co(I).

Since I A # {0} and I A is a two-sided ideal of A, which is a simple ring, we deduce
that 1 A = A and hence

(8.3) P(A) = (I A) = p(I) - p(A).
Then we have

E-o(A) S B [o(1) - o(A)] = [E-o(D)] - o(A) © (I - p(4) = (4) .

Then p(A) is a left ideal of E. Since 1p = Id; = ¢(14) € p(A), we deduce that
¢(A) = E and thus ¢ is an isomorphism. O



Chapter 9

The coradical

9.1. Let C be a k-coalgebra and let M € M. Recall from Theorem that, M
has a natural structure of left C*-module defined by setting

f-m= Zmof(ml) for every f € C*and m € M.

Analogously every M € ° M has a natural structure of right C*-module defined by
setting

m-f= Zf(m_l)mo for every f € C*and m € M.

In particular C, being a right C'-comodule, has a natural structure of left C*-module
which we will write as

f—c= Zle(CQ) for every f € C*and c € C.

Analogously C', being a left C-comodule, has a natural structure of right C*-module
which we will write as

c— f= Zf(C]_)CQ for every f € C*and c € C.

It is easy to check that, with respect to this structures, C' becomes a two-sided C*-
module.

Proposition 9.2. Let M be a right C-comodule and let L be a subvector space of
M. Then L is a right subcomodule of M if and only if L is a left C*-submodule of
M.

Proof. Let iy, : L — M be the canonical inclusion. Assume that L is a right
subcomodule of M. Then, by Proposition 22, H (iy,) =iy : L — M is a morphism
of left C*-modules i.e. L is a left C*-submodule of M. Conversely, assume that
L is a left C*-submodule of M. Then, by Theorem EE32, L € Rat (¢+M) so that
ir, : L — M is a morphism in Rat (c~M). By Theorem 2230, I'™! (ip) =i, : L - M
is a morphism in M i.e. L is a subcomodule of M m

Lemma 9.3. Let C' be a k-coalgebra and let D be a vector subspace of C'. Then the
following are equivalent

132
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(a) D is a subcoalgebra of C.

(b) D is a right subcomodule (a right coideal) of Cc and a left subcomodule (left
coideal) of ¢C.

(¢) D is a two-sided submodule of c+Cex.
Proof. (a) < (b). We have that
(DeD)=(DxC)Nn(CxD).
(b) & (c). It follows from B2 O

Corollary 9.4. Let C be a k-coalgebra. Then C*cC* is a subcoalgebra of C', for
every ¢ € C. C*cC™* is the smallest subcoalgebra of C' containing c. Moreover C*c C*
is finitely dimensional

Proof. Apply Proposition B2 and Lemma B3, By Theorem 233, C*cis finitely
dimensional. N

Definition 9.5. Let C' be a k-coalgebra and let ¢ € C. The subcoalgebra C*c C* is
called subcoalgebra of C' generated by c.

Proposition 9.6. Let C' be a k-coalgebra. Then the set of subcoalgebras of C' is
closed under intersections and summations.

Proof. Apply Lemma and Theorem PZ32. O

Theorem 9.7. Let C' be a k-coalgebra.

1) For every right C-comodule M and every finite subset {my,...,m,} C M, there
exists a finite dimensional right subcomodule N of M such that {my,...,m,} C

N.

2) Let I be a subset of C, the subcoalgebra ) . C*cC* is the smallest subcoal-
gebra of C' containing F. Clearly Y .. C*cC* is finite dimensional whenever
F is finite.

Proof. The first assertion follows from Theorem P=33.

Let now F' be a subset of C'. Then, by Corollary B4 and by Proposition B8,
Y e C*cC* is the minimal subcoalgebra of C' containing F. Since dimj C*cC* is
finite, the last assertion is trivial. O]

Definition 9.8. Let F' be a subset of a k-coalgebra C'. The subcoalgebra " .. C*c C*

will be called subcoalgebra of C' generated by F'.

ceF

Definition 9.9. Let C' be a k-coalgebra. We say that C' is a simple coalgebra if
C # {0} and C does not contain any proper nonzero subcoalgebras.
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Definition 9.10. Let C be a k-coalgebra and let M be a right C'-comodule. We
say that M is a simple right C-comodule if M # {0} and M does not contain any
nonzero proper subcomodule.

Proposition 9.11. 1. Every simple coalgebra has finite dimension.
2. Let C be a coalgebra. Every simple right C-comodule has finite dimension.

Proof. 1) Let D be a simple coalgebra and let d € D\{0}. By Thorem 72 there exists
a finite dimensional subcoalgebra E of D which contains d. Since {0} # E C D and
D is a simple coalgebra we deduce that £ = D.

2) Let M be a simple right C-comodule and let m € M, m # 0. Then, by
Theorem T4, there exists a finite subcomodule N of M which contains m. Since
{0} # N C M and M is a simple right C-comodule we deduce that M = N. O

Corollary 9.12. Let C' be a k-coalgebra. Then

1) every simple subcoalgebra of C' has finite dimension.

2) every simple right C'-comodule has finite dimension.
Notations 9.13. Let C be a k-coalgebra. For every subset X of C' we set
Xt={feC"| f(x)=0 for everyx € X}.
For every subset W of C* we set
Wh={zeC|f(x)=0 for every f € W}.
Lemma 9.14. Then we have that

1) VY =V for every k-vector subspace V of C.

2) Z++ = 7 for every subspace Z of C* whenever dimy C' < oco.

Proof. 1) Let V be a k-vector subspace of C. It is clear that V C V4. Assume
that z € V++ V. Then there exists a ¢* € C* such that ¢* (V) = 0 and ¢* (z) # 0.
From ¢* (V) = 0 we deduce that ¢* € V* and hence, since z € V4 we get that
c* (z) = 0. Contradiction.

2) Assume now that dimy C' < oo and let Z be a subspace of C*. It is clear that
Z C Z+t. Assume that h € Z++ . Z. Then there exists an a € (C*)" such that
a(Z) =0 and « (h) # 0.Since C' is finite dimensional there exists a ¢ € C such that
a(f) = f(c) for every f € C*. Therefore we get that f(c) = 0 for every f € Z
and hence that ¢ € Z+. This implies that h(c) = 0. On the other hand we have
0 # a(h) = h(c). Contradiction. O

Proposition 9.15. Let C' be a k-coalgebra. Then
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1) L is a right (resp. left) coideal of C' < L* is a right (resp. left) ideal of C*.

2) If I is a right (resp. left) ideal of C*, then I+ is a right (resp. left) coideal of
C. The converse is true whenever C' has finite dimension.

3) D is a subcoalgebra of C < D= is a two-sided ideal of C*.

Proof. 1)” =7 Let L be a right coideal of C' and let f € L+ and ¢* € C*. For any
xr € L we compute

(fe) (@) = (fx ) (@) = Y flan)e*(wa) = Y f (1) " (ws).
Since L is a right coideal of C' we have that
A(x) :Zx1®x2 eEL®C

so that, since f € L, we get that

(fc") (x) = Zf (1) ™ (x2) =0

which means that fc¢* € L+t
2) Let I be a right ideal of C*. In view of Proposition B2 we have to prove that
I+ is a left C*-submodule of C' i.e. that

cr—~J1+ Ccrt

Let feC*, ce It and g € I. Then g * f € I and hence

g(f=a = 9(Xafle) =D g f(e)
= (9xf)lc)=0.

Therefore we deduce that f — c € I+,

Assume now that dim;, C' < oo and let I be a subspace of C* such that I+ is a
right coideal of C. Then, by 1)” = 7 I*++ is a right ideal of C* and by Lemma 014
we have that I = I*++.

1)” <7 Let L be a subspace of C' such that L' is a right ideal of C*. Then, by
2) L+t is a right coideal of C' and by Lemma HEId we have that L = L+

3) follows from 1) in view of Lemma E33. O

Corollary 9.16. Let C' be a finite dimensiona k-coalgebra. Then the assignment

L—s L+

defines a bijection between the right coideals of C' and the right ideals of C* which
induces a bijection between the subcoalgebras of C' and the two-sided ideals of C*.

Proposition 9.17. Let C' be a k-coalgebra. Then C is a simple coalgebra if and
only if C* is a finite dimensional simple k-algebra.
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Proof. By Corollary 12 every simple subcoalgebra of C' has finite dimension. On
the other hand, dim; C* < oo implies that dim, C' < oco. Apply then Corollary
oTo. O

Corollary 9.18. Let D be a subcoalgebra of a k-coalgebra C. Then the following
statements are equivalent.

(a) D is a simple subcoalgebra of C'.
(b) D* is a finite dimensional simple algebra.
(c) Dt is a two-sided mazimal ideal of C* of finite codimension.

Proof. (a) < (b) follows from Proposition ET4.
Let V' be a vector subspace of C. From the exact sequence

0=V -—C—C/V—=0
we get the exact sequence
(9.1) 0=Vt —C"— V" =0.

(a) = (b) = (c) Assume that D is a simple coalgebra. Then by Proposition I3 D+
is a two-sided ideal of C* and from (E0) we deduce that D+ is a maximal two-sided
ideal of finite codimension.
(¢) = (b) Assume that D+ is a two-sided maximal ideal C* of finite codimension.
From (H)

0— D+ —C"— D"—0
we deduce that D* is a finite dimensional simple algebra. O]

Definition 9.19. Let C' be a k-coalgebra. The coradical Cy of C' is the sum of all
simple subcoalgebras of C'.

Definition 9.20. Let C' be a nonzero k-coalgebra. C' is called pointed if all simple
subcoalgebras of C' are 1-dimensional.

Definition 9.21. Let C' be a nonzero k-coalgebra. C' is called connected if dimy Cy =
1.

Corollary 9.22. Let C' be a nonzero k-coalgebra. Then C contains a simple sub-
coalgebra and hence Cy # {0}.

Proof. Let 0 # ¢ € C. Then by Corollary B4 D = C*cC* is a finite dimensional
subcoalgebra of C'. Let I be a maximal two-sided ideal of D*. Since D is finite

dimensional, by 2) of Lemma 814 [ = (I L)L. Then, by Corollary IR, we deduce
that I+ is a simple subcoalgebra of D and in particular of C. n

Proposition 9.23. Let C be a k-coalgebra. Then the coradical Cy of C' is a sub-
coalgebra of C.
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Proof. By Proposition B3, the sum of subcoalgebras is a subcoalgebra. O]

Proposition 9.24. Let C be a k-coalgebra. The 1-dimensional subcoalgebras of C'
are exactly those of the form kg for g € G(C).

Proof. Let D be a 1-dimensional subcoalgebra of C' and let e € D;e # 0. Then
there exists A € k such that A(e) = A\e ® e. Hence we get that

e = Xe(e)e

from which we deduce that Ae(e) = 1.
Set g = Ae. Then we get that

A(g) =ANe) =AA(e) =X Ae®@e) =Xe®@Ae and e(g) = Ae(e) = 1.

Therefore g € G (C) and kg = ke = D.
The converse is trivial. O

Lemma 9.25. Let D be a simple subcoalgebra of a k-coalgebra C' and let C',C" be
nonzero subcoalgebras of C' such that D C C' +C". Then we have that either D C C'
or D CC".

Proof. Assume that D ¢ C’. Then, since D is simple we get that DNC" = {0} and
hence that D + C" = D @ C". Then there exists a v € C* such that

YWp =¢p and 7y =0.

The, for every d € D, we get that

A(D)CD®D
v d =Y diy(dy) =N die(ds) = d

On the other hand, from D C C" + C" we deduce that
AD)CACHY+A(CHCC @C +C"oC"
and since 7)» = 0 we obtain that v — d € c". [l

Proposition 9.26. Let (C;);cr be a family of subcoalgebras of a k-coalgebra C' and
let D be a simple subcoalgebra of C. Then D C .., C; if and only if there ewists
an g € I such D C C;,,.

Proof. Since D is simple, by E12 D has finite dimension so that if D C ., C;
there exist n € N,n > 1 and iq,...,7, € I such that D C E;LZI Ci;. Since, by
Proposition B3, the sum of subcoalgebras is a subcoalgebra, in view of Lemma EZ23,
we conclude. O]

Lemma 9.27. Let (D;)icr be a family of pairwise distinct simple subcoalgebras of a
k-coalgebra C'. Then.we have that

> D= D

el el
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Proof. Let us assume that there exists an ¢ € I such that D; N >_,;, D; # {0}.
Since, by Proposition B8, D; N j2iDjis a subcoalgebra of the simple algebra D;
we get that

DN D;=D;

i
so that D; C »_.; D;. Then, by Lemma there exists an i € I\ {i} such tha
D; C D,,. Since D;, is a simple coalgebra we get D; = D, ,. Contradiction. O
Proposition 9.28. Let D be the set of all simple subcoalgebras of a k-coalgebra C.
Then
Co=€EPD
DeD

Proof. Apply Lemma =20 m

Proposition 9.29. Let F' and D be subcoalgebras of a k-coalgebra C'. Then
(F+ D)y = Fy+ Dy.
Proof. Clearly we have that
Fo+ Do C (F + D).
The converse inclusion follows by Proposition BEZ28. O
Proposition 9.30. Let C be a k-coalgebra. Then C' is pointed < Cy = kG(C).

Proof. Let A be the set of simple subcoalgebras of C'.
7 =7 Assume that C' is pointed. Then, by Proposition we get that A =
{kg | g € G(C)} and hence that

Co=> A= Y kg=kG(O).

AeA geG(C)

7 <7 Conversely, assume that Cy = kG(C) and let D be a simple subcoalgebra of
C. Then from D C Cy = kG(C), by Proposition we deduce that there exists a
g € G(C) such that D C kg and hence D = kg. O

Definition 9.31. Let C be a nonzero k-coalgebra. We say that C' is an irreducible
coalgebra if any two nonzero subcoalgebras of C' have nonzero intersection.

Lemma 9.32. Let C be a k-coalgebra. Then C' s irriducible < C' contains a unique
simple subcoalgebra.

Proof. 7 = 7 By Corollary 22, C' contains a simple subcoalgebra. Since the
intersection of two distinct simple subcoalgebras is zero, C' must contain an unique
simple subcoalgebra.

7 <7 Let D be the unique simple subcoalgebra of C. Then, by Corollary B4, D is
contained in every nonzero subcoalgebra of C. O]
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Proposition 9.33. Let C' be a k-coalgebra. Then the following are equivalent

(a) C is pointed and irreducible
(b) C is pointed and |G(C)| = 1.
(¢) C is connected.

Proof. (a) < (b) By Lemma B32 C' is irreducible if and only if C' contains an
unique simple subcoalgebra. Since C'is pointed, this means that C' has a unique 1-
dimensional subcoalgebra. By Proposition 824, this happens if and only if |G(C)| =
1.

(¢) < (b) Follows by B30 O

Definition 9.34. Let R be a ring and let M be a left R-module. The socle Soc(rM)
of M is the sum of all simple left submodules of M.

Proposition 9.35. Let C' be a simple k-coalgebra. Then Soc(Ce+) = C' = Soc(c-C).

Proof. Since C' is a simple coalgebra, by Corollary 12 (' is finite dimensional and
by Proposition I C* is a finite dimensional simple k-algebra. Thus, by Corollary
BT, there exists n € N and [, ..., I,, left maximal ideals of C* such that

Since C' is finite dimensional, we have that

n n n 1
ot oh= A=) - ()
j=1 j=1 j=1

and hence, by Lemma T4, we get that

C=ct= (Z[j) => I
i=1 i=1

Since C' is finite dimensional, by Proposition BT3, every [ ]l is a minimal left coideal
of C' and hence, by Proposition B2 it is a simple submodule of Cs«. Therefore we
get

C = E:I]L C Soc(Ce+) C C.
j=1

]

Lemma 9.36. Let D be a subcoalgebra of a k-coalgebra C' and let W be a vector
subspace of D. Then W s a left D*-submodule of D if and only if W is a left
C*-submodule of D.
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Proof. Let ip : D — C' be the canonical inclusion. Let d € D and let g € D*. Then
there exists an element f € C* such that g = f oip so that we get

g—d=Y dig(dy) =Y dif(do)=f—deC" —d.

Conversely, let f € C*. Then

f=d=Y dif(d)=>)Y d(foip)(d) € D" —d.
O

Lemma 9.37. Let C' be a finite dimensional k-coalgebra. Then every simple left
C*-submodule of C' is contained in a simple subcoalgebra of C'.

Proof. Let S be a simple left C*-submodule of C'. Then, by Proposition B2, S is a
minimal left coideal of C.

By Proposition I3 S+ is a left maximal ideal of C*. Since C* is finite dimensional,
by Theorem BT it contains a maximal two-sided ideal I of C*. Then, by Lemma
014, J = I+ and hence, in view of Corollary BIR I+ is a simple subcoalgebra, of
C. By Lemma BI4 we have that

S =8+ crt.

Proposition 9.38. Let C be a k-coalgebra. Then
Co = Soc(c+C).

Proof. Let D be a simple subcoalgebra of C. Then, by Proposition B33 D =
Soc(p~D). By Lemma B38, every simple left D*-submodule of D is a simple C*-
submodule and hence D C Soc(c+C).

Conversely, let S be a simple left C*-submodule of C. By Corollary T2, S has
finite dimension. Let x € S, x # 0. We have that

S=C"rCC*xC".

and D = C*xC* has finite dimension. By Lemma S is a simple left D*-
submodule of D. Since D is finite dimensional we can apply Lemma B=32 and get
that S is contained in a simple subcoalgebra E of D so that

S CE CCy.
[l

Lemma 9.39. Let R be a ring and let L be a submodule of a left R-module M.
Then
Soc(rL) = Soc(rRM)N L.
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Proof. The simple submodules of gL are the simple submodules of kM which are
contained in L. The inclusion Soc(grL) C Soc(gM) N L is trivial. Conversely
Soc(rM) N L is a submodule of the semisimple left R-module Soc (M) and hence
it is semisimple. Thus Soc (kM )N L is a sum of simple modules which are contained
in L so that Soc(gkM)N L C Soc(rL). O

Lemma 9.40. Let D be a subcoalgebra of a k-coalgebra C. Then
DQ - C() N D

Proof. By Proposition B38, we have that Dy = Soc (p+-D) and by Lemma we
have that Soc (p«D) = Soc (¢=D) so that, by Lemma we obtain that

Progm

Dy = Soc(c+D) = Soc(c+C) N D CoND.

Proposition 9.41. Let C' be a finite dimensional k-coalgebra. Then
Cy = Jac(C¥).

Proof. By Proposition I3 the maximal right ideals of C* are exactly those of the
form L where L is a minimal right coideal of C i.e., by Proposition B3, a simple
subcomodule of o«C'. Let & denotes the set of simple submodules of o+C'. Then we

have
Jac(C*) = (L = (Z L) =y .

LeS LeS
[l

Lemma 9.42. Let R be a ring and let f € R. Then f € Jac(R) < for every h € R,
1g — hf has a left inverse in R.

Proof. 7 =7 Since 1 = hf + (1 —hf), and hf € Jac(R) we have that 1 — hf is not
contained in any left maximal ideal of R. By Krull’s Lemma this means that

R(1—hf) =R

i.e. 1 — hf has a left inverse.
7 <7 Assume that f ¢ Jac(R). Then there exists a left maximal ideal L of R such
that f ¢ L and hence

Rf+L=R.

Thus there exist an h € R and an [ € L such that
hf+1=1g.

Then 1 — hf does not have any left inverse. m
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Lemma 9.43. Let R be a ring and let L be a left ideal of R such that every element
of L is nilpotent R.
Then L C Jac(R).

Proof. Let a € L and let € R. Then za € L and hence there exists ann € Nyjn > 1
such that (za)" = 0. Thus we obtain

(1+za+ (za)> + ... + (za)" (1 —za) =1 — (za)" =1

and hence 1 — za has a left inverse in R. Thus, by Lemma B2 we get that a €
Jac(R). O

Lemma 9.44. Let C and D be k-coalgebras. Then
(C® D)y C Cy® Dy.
Moreover if C and D are also pointed (resp. connected), then
(C®D)y=Cy® Dy
and C' ® D is pointed (resp. connected).

Proof. Let X # {0} be a simple subcoalgebra of C' ® D. We have to prove that
X C Cy® Dy. First of all let us show that we can assume that both C' and D are
finite dimensional. By Corollary 12 X is finitely dimensional. Let {vy,...,v,} be
a basis of X. Since X < C ® D, for every i = 1, ..., n, there exists a finite subset F;
of C' and a finite subset GG; of D such that

v; = Z c®d

CEFZ' ,dEGi

Let C" be the subcoalgebra of C' generated by F; and let D’ be the subcoalgebra
of D generated by G. Then both C’" and D’ are finite dimensional. We will show
that X C C) ® Dj. Thus we may assume that both C' and D are finite dimensional.
Then we have the isomorphism

(C®D)"=C*"® D"
and by Proposition 1 we have that
Cy = Jac(C*) and Dy = Jac(D*).

Since C* and D* are finitely dimensional, by Nakayama’s Lemma, there exist m,n €
N, m,n > 1 such that

(Cy)" = {0} and (Dy)™ = {0}.

Clearly we may assume n = m.
Set
I =Cy®D"+C*® Dy
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then [ is a two-sided ideal of C* ® D*. Note that
(Cy ® D*) (C* ® Dy) = Cy ® Dy = (C*® Dy) (Cq ® D)

so that )
me Y (M) G en)ceny -0
i+j=2n v
Therefore, by Lemma BZ3 and Theorem B4

I C Jac(C*® D*) C P
for every two-sided maximal ideal P di C* ® D* . Therefore we deduce that

pPtcrt

where P+ is any simple subcoalgebra of C® D. By Lemma 53, [ = (Cy® D)+ and
hence, by Proposition I3 I+ = Cy ® Dy and it contains all simple subcoalgebras
of C ® D. In particular we get that X C I+ = (Cy ® D).

Assume now that both C' and D are pointed. Since

G(C)®G(D)CG(C®D)
we get that, in this case,
Co® Dy C (C® D)

and hence
(C®D)y CCo® Dy C (C® D).

Thus (C® D)y = Co® Dy = k(G (C)) ® kG (D) = kG(C ® D) so that C ® D is
pointed. []
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The Coradical Filtration

Definition 10.1. Let X and Y be subspaces of a k-coalgebra (C, A, e). The wedge
product of X and Y (in C)is defined by

TI'C ﬂ'C
XAcY =XAY =Ker(C 2 CoC ™5 0/X 0 C/Y)

where 7§ and ©$ are the canonical projections.

Lemma 10.2. Let f: C — U and g: C — W be k-linear maps. Then
(10.1) AT [C®Ker(g) +Ker(f)@Cl=Ker[(f ®g)oA].

Lemma 10.3. Let XY, Z be subspaces of a k-coalgebra (C,A,¢).

1)

(10.2) XANY=ATCoY+X®C(C).
2)

(10.3) X AY = (XYY" where the product X+ x Y+ is in C*.
3)

(10.4) (XAY)ANZ =Ker[(rx @ my @mz) 0o Ag] = X AN (Y A Z).
4)

(10.5)

D A E is a subcoalgebra of C' whenever D and E are subcoalgebras of C.

Proof. 1) We have

XAY = Ker((rx @ my) o A) = AT (C @ Ker (my) + Ker (1x) ® C)
= AT(CRY+X®(0).

144
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2) Let z€ X ANY =Ker((rx ® my) o A). We compute

(Xt*xYH)E = {ceC| (f*g)(c)=0, forevery f € X+, geY*}

{ceC| Zf(c1)g<02) =0, for every f € X+ ge Yt}

{ceC|mi(f®g)A(c) =0, forevery f € X+, gc Y}

€ C|(f®g)A(c)=0, for every f € X+, gc Yt}

{ce O | Ac) € Ker(f ®g), forevery f € X+, gecY*}
) A" [Ker(f®g)]

fext geyt

myisiso {

so that
(X vht= () AT [Ker(f® ).

fext,geyt

Now f € X+ means that f (X) = {0} i.e. X C Ker(f) and similarly g € Y+ means
that Y C Ker(g). Thus

XAY = AT(CeY+Xe0)C (| AT[C®Ker(g)+ Ker(f)®C]
fexd geyL
= (| AT [Ker(f@g) = (X" =Y

fext geyt

Let us prove the other inclusion. Let (z;);e; be a basis of X and let (x;);e,
where J D I, be a basis of C. Analogously let (y;);cr, be a basis of Y and let (y;)ser,
where T' D L a basis of C.

Let x} and y; the dual morphisms of z; and y; respectively. Then, for every
j € J\I we have that 2 € X* and for every t € T\ L we have that y; € Y. Let
c € (Xt % Y1)t Then we can write

Alc) = Z Njix; &y, for some A, € k.

JEJLET

For every (jo,to) € (J\I) X (T'\L) we have z% *y; € X+« Y~ so that

0 = (x;ko * yZO) (C) = )\jOtO

so that
Ale)= > Mm@y e X®C+CaY.

(4,t)eJxT
,J€E€I or teL



146 CHAPTER 10. THE CORADICAL FILTRATION

3) We compute
(XAY)NZ = AT[C®Z+(XAY)®(]
= AT [C®Ker(nz)+ Ker[(mx @ my) o A] @ (]

Y Ker [([(nx ® mv) 0 Al @ 7z) 0 A
= Ker[[(nx @ 1y @ 1z)] 0 (A® C) 0 A
= Ker[[(nx @ 1y @ 72)] 0 (C @ A) 0 A]
= Ker[(mx ®@ [(1y ® 7z) 0 A]) 0 A

D A+ [C @ Ker (mx) + Ker [(my @ m7) 0 A] @ C]
= AT[C®X+YNZ)RC(]
= XANYANZ).

4) Let D and E be subcoalgebras of C. Then, by Proposition @IH, D+ and E* are
two-sided ideals of C* so that D+ x E1 is a two-sided ideal of C* and hence, by 2)
and Proposition I3, D A E = (D+ x E+)+ is a subcoalgebra of C. [

Lemma 10.4. Let D and E be subcoalgebras of a coalgebra C'. Then
DCDAFE and ECDAE.
Proof. Since D is a subcoalgebra of C' we have
AD)CDRDCDRCCDRC+CRE
so that, by 1) of Lemma M3, we get
DCAT(C®RFE+D®C)=DAE
[

Lemma 10.5. Let C' be a k-coalgebra, D a subcoalgebra of C' and E and F subcoal-
gebras of D. Then
Enp F=(ENcF)ND.

Proof. We have that

D D
QMR

EApF=Ker(D2%DoD "5 D/E® D/F).

Leti: D — C, ip/p : D/E — C/E and ip;p : D/F — C/F be the canonical

inclusions. Then
(iD/E ® iD/F) o (75 ® W?) oAp = (Wg 0i®7s o z)
(Wg@)ﬂ'g) o(i®i)oAp

= (W%@Wg)OACOi
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so that
EAnp FF = Ker [(WED@)W?)OAD]:Ker [(z’D/E@)Z'D/F)o(ﬂg@W?)oAD}
= Ker[(n; ®75) 0o Acoi] =i (EAc F) = (EAc F)ND.
n

Lemma 10.6. Let C' be a k-coalgebra, D a subcoalgebra of C' and E a subcoalgebra

of D. Then
ENc ECDAeD.

Proof. Let 75 : C/E — C/D be the canonical projection. Then

c__E__C
TH=TpOTg

so that

DAe D = Ker [(Wg ®7Tg) o Ac] =Ker {[(7] owg) ® (7 0 Wg)} oAc}

= Ker{[(ﬂg ®7rg) o (Wg ®7Tg)] OAC’}

ENcE = Ker [(ﬂ'g ®7Tg) o Ac] - Ker{[(ﬂg ®7Tg) o (ﬂ'g ®7rg)} o AC}
= Ker{ [(Wg o Wg) ® (WIE) ow%)} oAc}
= DA¢D.

We recall that the sequence (A,), -, was defined by recursion by setting
A=A and A, = (A ® ]”_1) oA, 1 foreveryneNn>2

and that, by Theorem [IA, for every n,i,m € Nyn > 2,1 < i < n—1 and
0<m<n—ru, '
Ap=(I"@NQI""™) 0 A,y

Definition 10.7. Let C' be a k-coalgebra and let X be a vector subspace of C. We
define N X = A\ X as follows
c

/\X = Ker |:(7T)C()®n ) An,l] for every n € N where A_1 = Ag = (w§)®° = Id¢

0 1
so that /\X = {0}, /\X = X.
Lemma 10.8. Let C be a k-coalgebra and let X be a vector subspace of C. Then

a b a+b b a
(10.6) /\X/\/\X:/\X:/\X /\/\Xforeverya,bGN,a,bZl.
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Proof. For every a,b € N,a,b > 1, we compute
a b b a
AXANX=A|C® (/\X) + </\X) ®C
=A% [C’ ® Ker [(ﬂgj()@b o Ab_l} + Ker [(7&)@“ o Aa_l} ® C]
D Ker ({ (7)o Aut| @ [ ()™ 0 21| 0 )
= Ker <{ [(n§)®“ ® (71')0()®b] 0[Au_1 ® Ab_l]} o A)
= Ker [(9)*"" o (A1 @ A1) 0 A
= Ker | (7§)*" ™ 0 (€% @ Ay 1) 0 (A1 @ C) 0 A

Lemm:a(ll:l:a) Ker |:(7T)C()®a+b o (C®a ® Ab—l) o Aa:| = Ker [(W§)®a+b o Aa+b]

a+b

= A\X.

]

Definition 10.9. Let (C, A, ¢) be a k-coalgebra. We define a sequence (Cy,),,cn Of

subspaces of C' as follows : for n = —1 we set C_; = {0}, for n = 0 we let Cy be
the coradical of C' and for each n € N,n > 1 we set

n+1
Co =\ Co.

Theorem 10.10. For every n € N, we have that

1) Cuipr1 = Cy A Cy for every a,b € N.

2) C,, is a subcoalgebra of C, for every n € N.
3) C,, C Cpy1, for every n € N.

4) A(Cp) €Y, Ci® Cy, for every n € N.
5) C = C,.

n=0
Proof. 1) We have

a+1 b+1 (D) a+1+b+1
CanCo= NCoANC =" N Co=Copn

2) We proceed by induction on n € N.For n = 0 we know that, by Proposition B8,
Cy is a subcoalgebra of C'. Let us assume that there exists an n € N,n > 1 such
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that C,_; is a subcoalgebra of C. Then C, = Cy A C,,_1, in view of 4) in Lemma
33, is a subcoalgebra of C'.
3) By Lemma [, for any subcoalgebra D and E we have

DCDANEand ECDAE.

Then for every n € N
C CCy ACo 2 Ch.

4) In view of 1) we get
n+1l—1

Co=(N\C)A( N\ Co)
for every 1 < i < n so that, for every 1 <1 < n we obtain

n+1—1

AC,) = A((/\Co)/\( /\ Co))
A <O®n+/1\_100+/2\00®0>

n+l1—1 i
c co N\ G+AGec

= A

Moreover, since (), is a subcoalgebra of C, for ¢ = 0 we have
AC,)CC®C,+{0}eC=CxC,

and fori=n-+1
AC,) CCe{0}+C,@C=C,®C.

Now, for every vector space V and for every ascending chain of subspaces
{0}=hcwvc..cVv,c..

by Lemma 24 we have that

n+1 n+1

(10.8) ﬂ VoV +VieV) = Z Vi @ Voo

i=0 i=1
Since we already know that, for every 0 <i <mn+1
AC,)CC®Cri+Ci1®C

1.e.
n+1

A(C,) € (Y(C®Crei+ Ciy @ C)

=0
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we can apply (0R) for V = C and V; = C;_; and get that

n+1

ACy) € ((C®Coi+Cimy@C)
=0
n+1

= Z Ci—1 @ Cry1

i=1
= i C; @ Cpi.
i=0

5) In view of Theorem BT, C is the union of its finite dimensional subcoalgebras.
Thus let D be a finite dimensional subcoalgebra of C' and let us prove that there
exists an n € N such that D C (). Since D is finite dimensional we can apply
Proposition B2 to get that Jac(D*) = Dy and that there exists an n € N such
that (Dg )™ = (Dg )" so that, by Nakayama’s Lemma, we obtain that (Dg )" = {0}.
Hence, by (I3) we obtain that

D ={0}* = ((Dg)")*" = /\ D

D

Now, by Lemma I3, we get that
/\ Dy C /\ Dy
D c

and by Lemma B0, we have
Dy=CyND.

Hence, by Lemma A, we deduce that
/\ Dy C /\ Co
c c

so that we finally obtain that

D:/\Dog/\C():Cnfl.
D C

Lemma 10.11. Let D be a subcoalgebra of a k-coalgebra C'. Then

D, =C,ND for everyn > 0.
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Proof. Let us proceed by induction on n. For n = 0 the equality follows by Lemma
0. Assume now that the equality holds for some n € N and let us prove it for
n + 1. We have

DNCoyi=DNAS (C,@C+C®Cy)=DNAS[(DeD)N(C, 0 C+C®Cy)
FESE DAAS [(DNC,) @D+ D (DNC)
" DAAS (D, ® D+ D®Dy) = A5 (D ® D+ D ® Dy) = Dy

O

Lemma 10.12. Let A a be k-algebra, let C be a k-coalgebra and let f € Homy (C, A).
If fic, = 0 then f‘"Jr1 =0 for every n € N.

Proof. Let us proceed by induction on n € N. For n = 0 there is nothing to prove.
Assume that f‘”Jrl = 0 for some n € N and let us prove that f|”+2 = 0. We have
that

Coi1=CoNC,==A(CRC,+Cohx(0).

Thus, for every ¢ € C,,1 we can write

m

Ae) = Zai®bi+20j®djwherem,sGN,aiEC,biGC’n,cjECo,deC’
i=1 j=1
forevery: = 1,...,mandj=1,...,s

so that

m S

) = (Fxf" )@= Fla) )+ fle) f(dy) =

i=1 Jj=1
= > fla)-0+ > 0-f(dy) =0.
i=1 Jj=1

]

Proposition 10.13. (Takeuchi) Let A a be k-algebra and let C' be a k-coalgebra. A
map f € Homy, (C, A) is convolution invertible < fic, is invertible in Homy, (Cop, A) .

Proof. 7 =7 Let g € Homy, (C, A) be such that fxg=us0ec =g f ie.

Zf 1) )=c¢c|( 1A—Zg 1) ) for every c € C.

Then we get

Zf(cl)g(@):sc 1A—Zg c1) ) for every ¢ € Cj

ie. fio, * 9ico = Ua © €y = Gcy * fico-
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7 <" Let h € Homy, (Cy, A) be such that fio, * h =ua0ec, = h* fic,. Let W
be a subvector space of C such that C' = Cy @ W and extend htoamap h' : C — A
by setting h' (W) = 0. Let x = ua 0 e¢ — f* h'. Then x|, = 0 so that, by Lemma
2, Xr“ = 0 for every n € N and hence ) X" is by 5) in Theorem [T,
well-defined on C' and we have

U (S IR o N

neN neN

so that h'x (ZneN X”) is a right inverse for f. Similarly let v = uqo0ec—h'x f. Then
Yo, = 0 so that, by Lemma [ T3, 7"};1 = 0 for every n € N and hence ) "
by 5) in Theorem IITQ, well-defined on C' and we have

<ZV”> « (W x f) = <27n> ¥ ((uaoec) —v) =uaoec

neN neN

so that (3, cn7") * A is a left inverse for f. O
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Algebra and Coalgebra Filtrations

Definition 11.1. Let (C,A,¢) be a k-coalgebra. We say that a sequence (V,,), oy of
subspaces of C' is a coalgebra filtration of C' if

1) V, € V,uq, for every n € N.
2) AV, CY " Vi® V,_, for every n € N.
3) C =U,>Vy.
In this case we also say that the coalgebra C' is filtered.

Definition 11.2. Let (A, m,u) be a k-algebra. We say that a sequence (Vy,), oy of
subspaces of A is an algebra filtration of A if

1) V, € Vyuq, for every n € N.
2) 14 € Vg and V;V; C Viy; for everyi,j € N.
3) A=UpoVa-
In this case we also say that the algebra A is filtered.

Definition 11.3. Let (H,m,u,A,¢e,S) be a Hopf algebra over a field k. We say
that a sequence (V;,), ey of subspaces of H is a Hopf algebra filtration of A if

1) (Vi),en 18 a coalgebra filtration of H;
2) (Va)nen 5 an algebra filtration of H;
3) S(V,) CV, for every n € N.

Definition 11.4. Let (C, A, ¢) be a k-coalgebra and let (C,,),, o be as in TIA. Then,
in view of Theorem WD, (Cy), oy 5 a coalgebra filtration of C' which is called
coradical filtration.

153
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Example 11.5. Let us provide an example of Hopf algebra filtration.
Let us consider the usual polynomial ring k[X] endowed with the usual Hopf algebra
stucture

AX)=X®1+10X , «X)=0 , SX)=-X.

Let us set, for everyn € N,
Ay =k+ kX +EkX*+ .. + kX"
and let us show that (A,) is a Hopf algebra filtration. Clearly we have

Ay C A A =kX] L S(A) C Ay and AnA, C Apy for all m,n € N

n>0

Let us show that
A(A,) €Y A @ Anj for alln € N.
1=0

We compute

A(A,) = Alk+ ...+ kX" =k+kAX) + ... + EAX™)
= k4+EAX) + ..+ EAX)"
= k+EXR1+10X)+.. +k(X®1+10X)"
)(X ® D)Mo X))

n

= k+X®k+k@X+ . +k() <h

h=0

_ k+X®k+k®X+...+k(i <Z)(Xh®1)(1®xnh))

— k+X®k+k®X+...+Z<Z)(/<:Xh®X"h)

h=0
n

D X" @EX"M S Ay ® App.

h=0 h=0

IN

Proposition 11.6. Let (V,,)nen be a coalgebra filtration of a k-coalgebra C. Then

1) each V, is a subcoalgebra of C
2)

(11.1) AV, CVo@Vy+V, @V,

3) Cy C Va.
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Proof. 1) and 2) From AV, C > ' V;® V,_; and V, C V4, for every n,a € N we
get that AV, CV, @V, and AV, CVu@V,+> " VieV,, CVo@V,+V,0V,_;.
3) Let D be a simple subcoalgebra of C. In view of 1), it suffices to show that

DNV, #{0}.

Since C' = (J,cy Vi there exists a minimum »n such that DNV, # {0}. We will show
that n =0. Let 0 #£ d € DNV,. Assume that n > 0. We have

A(d) € A (V) C Zn: Vi@ Vi

i=0
so that there exists v; € V; and w; € V,,_;, for every i = 1,...,n such that

n

(11.2) Ald) = v @w;.

1=0

Let (b;)ier be a basis of V; and let (b;);cs, where J D I, be a basis of C. Then we
have
A(d) = Zaj ® b; for some a; € C, almost all a; =0 .
jeJ
Then there exists a jo € J \ I such that a;, # 0. In fact, otherwise we would
get A(d) € C ® Vp and hence d = lo(e ® C)A(d) € Vo. Let f = (by,)" € C* ie.
f(bj) = 0,,; for every j € J. Then

D3 f-d=Y dif(d)=> a;f(bj)=aj #0.

jed

Note that f € V5" and hence, in view of (1)

n n—1 n—1
i=0 i=0 =0
so that
0#£f-de DNV, ;.
Contradiction. —~

Corollary 11.7. Let f : C — D be a surjective morphism of k-coalgebras. Then
Dy C f(Co).

Proof. Let (Cy),cy be the coradical filtration of C' and let us prove that (V;,),,cx
with V,, = f(C,) is a coalgebra filtration of D. Clearly, since C,, C (4, for every
n €N,

Vo= f(Ch) C f(Cry1) = Vi for every n € N.
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Since f is surjective

D:f<C):f[U<Cn)] :Uf(cn):UVn

neN neN neN

and since f is a coalgebra morphism, we have that

Ap (Vo) = Ap (f(Cr)) = (f © ) (Ac (Cr)) S (f© f) (ZC@?Cm):ZVé@VM.

Then we can conclude by 3) of Proposition [T, that
Dy C Vo= f(Ch) .
m

Corollary 11.8. Let f : C — D be a surjective morphism of k-coalgebras. Assume
that D # {0},

1) If C is pointed, also D is pointed.
2) If C is connected, also D is connected.

Proof. 1) By Corollary 174, we have that Dy C f(Cy) = f (kG (C)) C k (D) C Dy.
2) By Corollary T4, we have that dimy Dy < dimy f(Cjy) < 1. By Corollary
B2 we deduce that dim;, Dy = 1. O

Proposition 11.9. Let C' be a k-coalgebra, let J = Cg- in C* and let W = Q;(C*)
the set of all two-sided ideals of C* of finite codimension. Then

1) C,, = (J"™)E, for every n € N

2) J=Jac(C*)= (| M

3) N J" = (0).By Proposition I3 we have C,, = (J"1)+

n>0

Proof. 1) By Lemma BI4 we have Cy = Ci+ = J* so that 1) holds for n = 0.
Assume now that 1) holds for some n — 1 € N;n > 1 and let us prove it for n. We
have

C " AT(C O + o C) "B AT (Co (JN) + I C) S
= AT ((J@ M) = (I = (JHE

2) Let f € J. Then, for every n € N, f**! € J*"! and hence, by 1), f** (C,,) =0
so that it makes sense to consider the map g defined on C by setting

g=>_f"
n=0
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where f0 = e. It is easy to show that g = (¢ — f)™' in C*. Let f € J and h € C*,
then hf € Jin fact f (Cy) = 0 and (hf) (Cy) = (h* f) (Cy) so that e — hf has a left
inverse. Hence, by Lemma BZ2, we get f € Jac(C*). Therefore we obtain that J C
Jac(C*). Now, by Corollary BT, every M € W is a finite intersection of L € {2 so
that we get

J C Jac(CY) (]Lc ﬂzw

LeQ, Mew
Let {D, | a € A} be the set of simple subcoalgebras of C. Then, by Corollary B8,

every Dl is a two-sided maximal ideal of C* of finite codimension i.e. Df € W.
Therefore we obtain

JCJac(C*)= (VLS (| MC () Da =0 _Du) =Ci =J

LeQs MeW a€cA a€cA

and hence

J=C=0"D) =\ Di= N M

acA acA MeWw

3) Since, in view of 1), for every n € N,n > 1, we have J" C (J")*+ = (C,_;)*
we obtain

N7 € NI = N(Coa)* = (3 Gt = C* = {0}

n>1 n>1 n>1 n>1

Lemma 11.10. Let (H,,) be the coradical filtration of a Hopf algebra H.
Then (H,) is a Hopf algebra filtration of H < Hy is a Hopf subalgebra of H.

Proof. 7 =7 is trivial.
7 <7 Let us show, by induction on n € N, that S(H,) C H,. For n = 0 this is
trivial, since Hy is a Hopf subalgebra of H. Assume that for some n € N, n > 1
S(H;) C H, for every i < n.

By Theorem B74, we know that

AS(H,) = 7(S ® S)A(H,).
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where 7: H ® H — H ® H denotes the usual flip. Then we get

by4)inTheollT0

AS(H,) = 7(S ® S)A(H,) C T (Zn: S(H;)® S (HM)> —
= Y S(H,—;) ® S(H;)

=0
n—1

= S(H,—;) ® S(H;) + S(Ho) ® S(H,) + S(H,) @ S(H,)
=1
ind hyp n-l
C ZHn_i®Hi+HO®H+H®HO C
=1

gH@Hn,1+H0®H+H®HO:H®Hn,1+H0®H
ie.
AS(H,) CH®H, 1+ Hy® H

so that
S(H,) CA(H® H,_1 +Hy® H) = H,.
Let us show that
H,H, C H,., for every m,n € N.

Assume n = 0 and let us prove this by induction on m. For m = 0 there is nothing
to prove. Assume that, for some m > 1, we have H,,_1Hy C H,,_1. Then we have

|

A(HnHo) = A(Hpu)A(Hy) C (Ho® Hy, + Hy @ Hy,—1)(Ho ® Ho) C
H:®@ H+ H® H,,_1H,

H(] ® H + H ® H’m—l

N 1N

so that
H,HyCAY(Hi@ H+ H® H,,_1) = Hp,.

In a similar way we get that
HyH, C H, for every n > 0.

Let us now sho that H,,H, C H,,., by induction on t = m +n. If £ = 0 then
m = 0 = n and there is nothing to prove. Assume now that the statement holds for

some t —1 > 0 and let us prove it for ¢t. In view of the foregoing, we can assume
that m > 0 and n > 0. We have

A(H,,H,) i (Ho® Hp + Hypy @ Hy1)(Ho ® Hyy 4+ Hy, © Hy,_q)

HZ ® Hy,H, + H,Hy® H,, 1H, + HyH, ® Hyp,H, 1+ H,H, ® H,, 1H,
H®H+H®H,n1+H®H;, 0 o

Hy® H+ H® Hppina

N 1N 1N
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and hence

HmHn - AH(}IO QH+H® Hernfl) = Hm+n-



Chapter 12

Some Results on Connected
Coalgebras

Definition 12.1. Let C' be a connected k-coalgebra with G (C') = {g}. We set
PC)={ceC|Alc)=c®g+g®c}.
The elements of P (C) will be called primitive elements of C'.
Proposition 12.2. Let C' be a connected k-coalgebra with G(C) = {g}. Then
P(C)C Ker(e) and Cy=kgo P(C).
Proof. Let x € P(C'). We compute

z=rc(C®e)A(x) =[re(C®e)(r®g+g @)
=rc(r®e(g) + 9 ®e(x)) = 2e(g) + ge(x) = v + ge(x)

so that we get @ = = + ge(x) which implies that e(xz) = 0. Thus P(C) C Ker(e).
Note that
Co = kG(C) = kg

and denote by 7¢, : C' — C/Cy the canonical projection. Then for every x € P(C)
we have

(Tcy @ Tey)A(x) = (70, ® 6, ) (T ® g+ g ® T)

= 7c,(2) ® 7, (9) + ey (9) ® 7o, (2)
T () @ 04+ 0 @ ey (2) = 0.

Thus
P(C) g K@T((?TCO X WCO)A) = C() VAN C() = 01.

Now, by Theorem [T, we have that kg = Cy C C so that we get that kg+ P(C) C
Cy. Let d = A\g € kg P(C), A € k. Then we have

0=c(d)=Xe(g) = A

160
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and hence the sum kg + P(C) is direct. Let now ¢ € C and set
d=c—e(c)g.
Then d € C,. We compute
e(d) = e(c) —e(c)e(g) = e(c) —e(e) = 0.

Since d € € and by Theorem M0 A (Cy) C Z;ZO CixC_;=CixCi+Cy®Cy
there exist dq,ds € C; such

so that we get

0=¢e(d) =mp(e®@e)A(d) = el(di)e(g) +e(g)e(da)
e(dy) + e(dy)

and also
d1 + g€<d2) =d= €(d1>g + dg.

Therefore we obtain

= (d—yge(d)) ® g+ g @ (d—e(dr)g)

= d@g—lg@g(e(d) +e(d))] +g@d

= d®g+g®d
ie. d=c—¢(c)g € P(C) and hence c = e(c)g+ d € kg & P(C). O
Definition 12.3. Let C be a k-coalgebra. We set

Ch=0C,nKer(e).

Lemma 12.4. Let C be a connected k-coalgebra with G(C) = {g}.

1) Then for everyn € N, n > 1 and ¢ € C,,, we have that

Alc)=c®Rg+g®Rc+y where y € C,_1 ® Cy_1.

2) Then for everyn € N, n > 1 and ¢ € C;I we have that

Alc)=c®g+g®c+y  whereyeCl,@C .
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Proof. Let ¢ € C,,. By 4) of Theorem M0, we have that

n—1

Ale) €)Y Ci®Cri=Cr@Cy+Co®Crt > Ci®C,s.

=0 i=1
Since Cy = kg we may write
Alc)=a® g+ g®b+w where a,b € C,, and w € Cy,_1 ® Cy,_;.
We compute
c=rc(C®e)Alc) = ae(g) + ge(b) +re(C @e)w

= a+ge(b) +rc(C®e)w
€ a+Coy+C,1Ca+0C,_;.

Thus we deduce that a — ¢ = ¢ € C,_;. Analogously we have

c=loc(e®@C)Ac) = ela)g+e(g)b+lc(e @ C)w
= ela)g+b+lc(e®C)w
€ b+Co+Ch_1 Cb+Ch_q

sothat b—c=c¢" € C,_1. Set
y:w+c/®g+g®c”ECn,1®C'n,1.
Then we get
Ale) = aRg+gRb+w=aRg+gRb+y—c @g—gc
= (a—cl>®g+g®<b—c”>+y
= c®qg+g®c+y whereyeC, 1®C, 1.
Assume now that ¢ € C;F. We compute

re(C@e)(y) = ro(C®e)A(c) —ce(g) — ge(c)

= c—c—ge(c)=0

and also
le(e@Cy = lo(e®@C)A(c) —e(c)g —e(g)c
= c—¢(c)g—c=0.

Thus we obtain that y € Ker (C ® ¢) = Ker (Id¢) ® C' + C ® Ker (¢) = C ® Ker (¢)
and also that y € Ker (e ® C') = Ker (¢) ® C + C ® Ker (Id¢) = Ker (¢) ® C. We
deduce that

y€ (Ker(e)@C)N(C ® Ker(e)) = Ker(e) ® Ker(e)
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and hence, by the foregoing, we obtain that
y € (Cro1®Chq)N(Ker(e)® Ker(e)) =CH @ CF .
O

Lemma 12.5. Let C be a connected k-coalgebra with G(C) = {g}. Let f : C — D
be a coalgebra morphism such that fipc) is injective. Then f is injective.

Proof. We will show that fc, is injective for every n € N. We will proceed by
induction on n. Since f is a coalgebra morphism we have ep (f (g)) = (ep o f) (9) =
ec (9) = 1 and hence we deduce that f(g) # 0 and hence fi¢, is injective. Let us
assume that fo, is injective for some n € N and let € C,11 NKer (f). Now, by
Lemma X4

Alx)=rRg+g®@x+y, where y € C,, ® C),

and hence

0=A(f(2)) = (foNHAE) = f@)@ fl9)+ (9@ f@)+(fef)y) = (Fof) ).

Since fc, is injective, also fic, ® fic, is injective so that we deduce that y = 0.
Thus A(z) = 2®g+g®ax so that x € P (C). Now, by hypothesis, fip() is injective
and hence we get that z = 0. [



Chapter 13

Separable algebras

We start by recalling the celebrated

Theorem 13.1. (Wedderburn-Artin Theorem) Let R be a ring. rR is semisimple if
and only if R is isomorphic to a direct product of rings, each isomorphic to a finite
matriz ring M, (D) over a division ring D.

By Wedderburn Artin Theorem it is clear that for a given ring R we have
rR is semisimple <= Rp is semisimple
Definition 13.2. Let R be a ring. R is called semisimple if g R is semisimple.

Lemma 13.3. Let R be a ring and assume that g R is artinian. Then there exists
ann € N, n > 1 and mazimal left ideals of R, Ly, ..., L, such that

Lin---NL, ={0}.

Proof. For every F € Py (€ (R)), let Jp = () L and let
LeF

X={Jp| FeP((R)}.

Since rR is artinian, X has a minimal element. Let Fy € Py (€, (R)) be such that
Jr, is a minimal element for X. Then, for every L € ; (R), we have that

Jr, VL = Jpuixy € Jr,

and hence, by the minimality of Jp,, we obtain Jg, = Jg N L C L. Thus we get
that Jg, C Jac(R) C Jg, and hence Jg, = Jac(R). O

Proposition 13.4. Let R be a ring and assume that rR 1is artinian. Then the
following statements are equivalent
(a) R is semisimple.

(b) J(R) = {0}

(¢) R has no non-zero two-sided nilpotent ideal.

164
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Proof. (a) = (b) is trivial in view of Wedderburn Artin Theorem.
(b) = (c) is trivial since by Lemma BZ3 every nilpotent two-sided ideal is contained
in J(R) = {0}

(¢) = (b) Since rR is artinian, there exists an n € N such that

Since rR is noetherian (see [BEH, Theorem 15.20]), rJ (R)" is finitely generated and
hence, by Nakayama’s Lemma, we get that J (R)" = {0}so that we get J (R) = {0}.

(b) = (a) Since rR is artinian, by Lemma [33, there exists a finite number of
maximal left ideals of R say Lq,..., L, such that

Lin---NL, ={0}.

Thus grR embeds in the direct sum of a finite number of simple lef R-modules and
hence (see [BAH, Proposition 9.4]), it is semisimple. O

Corollary 13.5. Let A be a finite dimensional algebra over a field k. Then
A is semisimple < J(A) = {0} & A contains no non-zero two-sided nilpotent ideal.

Proof. Since 4A is artinian, just apply Proposition [ZX4. O

Definition 13.6. An algebra A over a field k is called classically separable if , for
every field extension L of k, the Jacobson radical of the L-algebra Ay = A ®y L is
zero.

Proposition 13.7. Let A be a finite dimensional algebra over a field k. Then the
following are equivalent:

(a) A is classically separable.

(b) For every field extension L of k, the L-algebra Ay is semisimple.

(c) For every field extension L of k, the L-algebra Ay contains no non-zero
two-sided nilpotent ideal.

Proof. For every field extension L of k, we have that
dim;, (A(L)) = dimy, (A) < o0
Apply now Corollary 3. O
Proposition 13.8. Let F' be a finite field extension of a field k. Then
F'is a classically separable k-algebra <= every u € F' is separable over k.

Proof. (=) Let uw € F', let f, be the minimal polynomial of u over k and let L be
a splitting field of f, over k. Then

L[X]
(fu)
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Let
fo= (X =)+ (X = a,)"

where aq, ..., a, are the distinct root of f, in L. Then, by the Chinese Remainder’s
Theorem, we have a ring isomorphism

LIX], LX) L LIX]

f)  (X—a)) (X —an)™)

Thus, any ¢; > 1 gives rise to a nilpotent ideal of k [u] ®; L and hence of F' ®j, L.
Since dimy, F' ®; L = dimy F' < oo, the conclusion follows in view of Proposition
3.

(<) Assume that every element u € F is separable over k. Then, by the Theorem of
the Primitive Element, there exists an u € F' such that F' = k (u) and the minimal
polynomial f, of u over k is separable over k. Let L be a field extension of k and let

Ju=hy--hy

be the factorization of f, as a product of irreducible factors in L [X]. Let M be a
spliting field of f, over k. Then in M [X] we can write

fu=X—=—a1) (X —a,)

where a1, ...,a, are all distinct. Considering the field extension L (a,...,a,),
we deduce that hy,...,h; are two by two not associated. Then, by the Chinese
Remainder’s Theorem, we get

kX] LIX] . LX] L[X]

(fu) (fu) () (he)
Since each L [X] / (h;) is a field, it follows that F'®j, L contains no non-zero nilpotent
ideal. ]

Definition 13.9. Let R be a commutative ring. An R-algebra A is called separable
if the multiplication map
ma : A Xpr A— A

has a section o (i.e. maoc = 1da) which is an A-bimodule homomorphism.
Proposition 13.10. Let R be a commutative ring and let A be a separable R-algebra.

Given a section o of ma which is an A-bimodule homomorphism, set

e = o(ls) andwrite e= le QR Y
i=1
for suitablen € N and x;,y; € A for everyi=1,...,n.

Then we have
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(13.1) male) =1a e Y myi=1a
i=1
and
(13.2) ae =ea i.€. Zawi KR Y = Zx, ®ryia  for every a € A.
i=1 i=1

Proof. Equalities ([330) and (I332) follows directly from being o an A-bimodule
section of m4.
]

Definition 13.11. Let A be an algebra over a commutative ring R. An element
e € A®r A is called a separability element (or also an idempotent) for A (over R)
if e fulfills (I3) and (I332).

Proposition 13.12. Let A be an algebra over a commutative ring R. Then
A is a separable R-algebra < ARgrA contains a separability element for A over R.

Moreover any separability element of A is an idempotent element of the ring A ®gr
A°P,

Proof. Let e be a separability element for A and define a map
c:A— ARRrA

by setting
o(a) = ae.

Then o is an A-bimodule homomorphism and a section of m 4. Write

e= Z% R Yi-
i=1

Then we have:

== J(lA) 'A®RAopU(1A):€2.
The other implication is Proposition I310. O

Lemma 13.13. Let A be a separable algebra over a commutative ring R. If L is a
two-sided ideal of A then A/L is a separable R-algebra.
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Proof. Let p: A — A/L be the canonical projection. Let e be a separability element
of A over R and let us prove that @ = (p ® p) (e) is a separability element for A/L
over R. We compute

masr (€) = [majL (p@p)] (e) = [pomal (€) =p(1a) = 1ayz.
Write e = E?:l x; Qg y; for suitable n € N and z;,y; € A for every ¢t = 1,...,n.
For every a € A we have

n

Y @i+ L) ®r(yi+L)| =

i=1

- Z(axi + L) ®r (yi + L) = (p® p) (ae)

=1

(a+L)ye=(at+L)[(pep)(e)]=(atL)

= (p®p) (ea) :Z(xﬁm ®p (yia+ L) =
= > (@i + L)@ (g + L)

=1

(a+L)=[pep)(e)]atL)

=e(a+1L).
[l

Proposition 13.14. Let R be a commutative ring and let n € N, n > 1. Then the
matriz ring M, (R) is a separable R-algebra.

Proof. Let e;; € M, (R) = A be the matrix defined by
(em)(i’j) =1g and (eiaj)(h,k) = 0 for every (h, k) # (i,7)
and set

n
e= E €1 QR €1,
i=1

Then

and, for every h,k =1,...n, we have

n

Epk € = E Enk - €1 OrE1; = €p1 QR E1E
i=1
n

€:epr = E €1 ®R €1 €hk = €p1 QR €1k
i=1

Therefore e is a separability element for M, (R) over R. O
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Proposition 13.15. Let R be a commutative ring and let G be a finite group whose
order n is a invertible in R. Then the group algebra A = RG is a separable R-
algebra.

Proof. Let
e=(nla)” Zg@mg '

geG
Then
meg (6) = (nlA)*l : (nlA) = 1A

and, for every h € GG, we have

h-e=(nly)” Zhg@Rg L= (nly)” Zt@Rt 'h=e¢-h.

gelG teG
Therefore the element e is a separability element for RG over R. O]

Proposition 13.16. Let A be an algebra over a field k. Then
A separable over k= dimg (A) < oo.

Proof. Let
e=) 7@y
j=1

be a separability element for A over k. For every a € A we have

n

Zaxj KY; = ij X y;a.
j=1

j=1

Let (e;),c; be a basis of A over k and for every i € I let e; : A — k be the k-linear
map defined by

e; (e5) = 0y

Then, for every ¢ € I, we have

(13.3) Zaxj@)e Yj) Z@@e y;a)

Now any element r € A can be uniquely written as

-y

€F(r)

where F'(r) is a suitable finite subset of I.

Set
F=|J Fy).
Jj=1,..n
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Thus, using (C333) we obtain

n

Za:vj@)yj = Za@@ Z

Jj=1 J=1 1€F (y;)
= Z ar; & Z e; (y;)e
i€l

= ZZG%‘ ®e; (y;)e
j=1 icF

= ZZ% ®e; (yja)e
j=1 icF

= 3N w @ (ya)e
i€F j=1

so that we obtain

a = ma(a)zm(Zaxj@)yj)
= m (ZZ@@@? (yja) ei)

ieF j=1
= E,E,sz y;a) E E:e y;a) Tje;.
i€F j=1 i€F j=1

It follows that the set { z;e; | j =1,...n, 7 € F'} is a set of generators for A over
k. ]

Proposition 13.17. Let A be a separable algebra over a field k. Then A is semisim-
ple.

Proof. Let o be a section of the multiplication map my4 : A ®;, A — A which is an
A-bimodule homomorphism and let

e = Z a; ®k bz
i=1
be a separability element of A over k.
We will prove that any epimorphism
f:M— N

of left A-modules splits in A-Mod. Let s : N — M be a section of f in k-Mod and
let us define a map
oc:N—-M
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by setting

3

Clearly we have

so that o is a section of f. Now in A ®; A we have, for every a € A

iaai ®bl = iai ®b1a
=1 =1

so that in A ®; A ®x N we have, for every a € A and x € N

Zn:aai®bi®x:zn:ai®bia®a:
=1 =1

Let pps (resp. py) be the multiplication map on M (resp. on N):
Har - A Rk M — M.

Then, for every a € A and for every x € N, we have

n

ao (x) = Zaais(bix)

=1

= un(A®s)(A® par) <Zn:aai®bi®x>

pun (AR s) (A ) (iaiébbia@x)

=1

n

= Z a;s (bjar) = o (ax)

i=1
and hence o is a morphism of left A-modules. n

Proposition 13.18. Let R be a commutative ring, let A be an R-algebra and let S
be a commutative R-algebra. Then

A is a separable R-algebra = Ay = A®g S is a separable S-algebra.

Moreover if we assume that R is a subring of S and m : S — R is an R-bilinear
retraction of the canonical inclusion v : R — S, then

Ay = A®RgS is a separable S-algebra = A is a separable R-algebra.
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Proof. Let us remark that for any R-algebra B, the S-algebra structure (and hence
the S-bimodule structure) of B(s) = B ® S is via the ring homomorphism

A:S — B®RS:B(S)

defined by setting
A(s)=1®gs

whose image lies in the center of B(g). This applies, in particular when B = A or
B =A®pg A.
The map

¢: (AR S)®s (A®RS) = Ais) ®s Ay — (A®Rr A) ®r S = (A ®r A)(S)
defined by setting
$((a®prs)Rs (b®prt)) = (a®@prb) Vg st
is well defined and an S-algebra isomorphism whose inverse is the map
V: AR A®r S = (A®r A)(S) — (AR S) ®s (A®RS) = Aws) @5 As)
defined by setting
V(a@rbRRs) = (a®prls) ®s (bQgs).

Let us note that ¢ is also an A(g) = (A ®g S)-bimodule homomorphism since the
A(s)-bimodule structure on (A ®r A) (s) Is given by

(c@pw) [(a®@rb) ®s 5] = (ca @p b) ®s ws
and

[(a ®rb) ®s s]- (c®rw) = (a®pgbc) Vg sw
so that

O((c@pw) [(a®rs)®s (b@grt)]) = ¢((ca @rws)Rs (bRrt))
= (ca®rb)®swst = (cRrw)-[(a ®pb) s st]
¢([(a®rs) @5 (0@r1)] (cQrw)) = ¢((a®ks)Ds (b @r tw))
(a ®@p bc) ®g stw = [(a @rb) ®g st| - (c @ w).

Note that
(ma®rS)o¢= MA )
so that
(13.4) ma g o =my RrS
Let

c:A— Axr A



173

be an A-bimodule homomorphism which is a section of m 4. Then the map
O'®RSZA®RS:A(S) — (A@RA) ®RS: (A®RA)(S)

is clearly a section of m4 ®pg S which is an A(g)-bimodule homomorphism. In fact,
for every a € A and s € S, we have

(c®@rS)(a®rs) = o(a)@rs=ac(lg) rs=(a®s)(c(lg) ®r 1g)
(c®@rS)(a®rs) = o(a)@rs=0(lr)a®rs=(0(lg) ®rls)(a®s).

Then the map
¢O(O’®RS) : A®RS=A(S) — (A®RS) XRs (A@RS) ZA(S) ®SA(S)

is an A(g)-bimodule homomorphism which is a section of ma . In fact, in view of
(33) we have

Mag 0P o (0 ®rS)=(ma®S)o(0c®rS)=ARxrS.

Conversely, assume that 6 : Ay = (A®r S) ®s (ARRS) = As) ®g A(g) is A(s)-
bimodule homomorphism which is a section of m Ay T hen we have

onrA®RAo[(A®RA)®R7r]o¢o¢90(A®RL)7“21
= r4(ma@rR)[(A®R A) @p7]pobo(A®rL)ry"
ralA®@rm| (ma®rS)pobo(A®r )Ty
= TA[A®R7T]OmA<S) ofo(A®pi)ry"
ralA®pg T oldag, (A®p)ryt =1Idy

where 74 : A®r R — A and 74,4 : AQr A®r R — A ®pr A are the usual
isomorphisms. Thus

0 =Tagpa 0 [(A®Rr A) ®R7T]O¢OQO(A®L)TZI

is a section of m 4. The proof that o is an A-bimodule isomorphism is straightforward
and is left as an exercise to the reader. ]

Proposition 13.19. Let Ay and As be algebras over a commutative ring R. Then
Ay and Ay are separable R-algebras < Ay X As is a separable R-algebra.

Proof. 7 =7 Let i1 : Ay — Ay X Ay and let i5 : Ay — A; X Ay the usual injective
R-module homomorphisms and let us consider the codiagonal map

0=V ((i1 ®ri1), (ia @ri2)) : (A @r A1) X (A ®r Ag) — (A1 X As) Qg (A1 X Ag).
We have

0 ((a1 @rb1), (a2 @p ba)) = [(a1,04,) @R (b1,04,)] + [(04,, a2) @r (04,,b2)]
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(Ma,xa, 00) ((a1 @R 1), (a2 @r b2))
Ma, x A, ([(@1,04,) @p (01,04,)] + [(04,,a2) ®p (04,,02)])
(a1b1,04,) + (04,, asbs) = (a1by, ashs)
= (ma, X ma,) ((a1 ®g b1), (a2 ®r by))

so that

mA1 X Ag o 9 = mA1 X mA2
Let 01 be an A;-bimodule sections of m 4, and let o5 be an Ay-module section
of my,. It follows that

Ma,xa, ©00 (01 X 03) = (ma, X ma,) o (01 X 09) =1da,xa,

and hence 0 o (o7 X 09) is a section of m 4, «4,. Let us prove that 6 o (o1 X 09) is an
Ay X As-bimodule homomophism. From

0 ((1a1 ®g b1, a2 @ by)) = (a1a1,04,) ®r (b1,04,) + (04,, 2a2) @p (04,, b2)
(a1, a2) ([(a1,04,) ®r (b1,04,)] 4 [(04,, a2) ®r (04,,b2)])
= (a1,)0((a1 ®r b1) , (a2 ®g b2))

we deduce that 6 is a left A; x As-module homomorphism. An analogous result on
the right gives us that # is in fact an A; x As-bimodule homorphism. Since we have

(o1 X 03) ((a1b1, asb9)) = (o1 (a1b1) , 09 (aghy)) =
= (@101 (b1) , a209 (b2)) =
= (a1,az) (01 (b1), 02 (ba))

and similarly on the right side, we also conclude that oy X 03 is an A; X Ay-bimodule
homorphism.
7«7 It follows by applying Lemma [3T3. O

Lemma 13.20. Let k be an algebraically closed field and assume that, for some
neNn>1kCZ(M, (D)) where D is a ring with no zerodivisor.
If dimy, M, (D) < oo then k ~ D

Proof. Let 3, ;a;je;; € Z (M, (D)) and let 1 <t,s <n. Then from

€s,s ( E a'i,jei,j> €t = As,tCts Ctt ( E ai,jei,j) €s,s = At s€Cs ¢
4. (2%]

we deduce that as,e;s = a; €54 for every t, s so that

as; =0 for t # s and a;y = a5, for t = s.
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so that Z (M, (D)) C D (>, e, )NZ (M, (D)) = D1y, (yNZ (M, (D)) C Z (Dan(D)) .
Therefore, via isomorphisms, we have that k¥ C Z (D) and dimy D < dimy, M,, (D) <

oo so that any element of D is algebraic over k. Thuslet a € D and let p (X) € k [X]

be a nonzero polynomial such that p(a) = 0. Since k is algebraically closed, there
exists aq,...,a, € k such that

(X — ).

1

p:

n
1=

n
Hence 0 = p(a) = [] (e — o). Since D contains no zerodivisor, we get that there

=1
exists an ¢ such that ¢ = o; € k. Thus we obtain that £ = D. O

Lemma 13.21. Let A be finite dimensional algebra over an algebraically closed field
k. If J(A) = {0} then A is separable over k.

Proof. By Corollary 33, we get that A is semisimple. Then, by Wedderburn-Artin
Theorem, we obtain that A is a direct product of rings, each isomorphic to a finite
matrix ring M, (D) over a division ring D:

A= M, (Dy) x...x M, (D)

The natural embedding of k in Z (A) gives rise to the embeddings of k in Z (M, (D;))
foreachi = 1,...,n. Since dimy A < 0o we have that dimy M, (D;) < oo and hence,
by Lemma 320, we get that each D; is isomorphic to k£ so that

A= M, (k) x...x M, (k).

By Proposition 314 each M, (k) is separable over k. In view of Proposition 319,
we conclude. O

Proposition 13.22. Let A be an algebra over a field k. Then
A separable over k< dimy (A) < 0o and A is classically separable over k.

Proof. (=) By Proposition 318, we already know that dimy (A) < co. Let now L
be a field extension of k. Then, by Proposition 318, A(;) is a separable L-algebra
and hence it is semisimple by Proposition I3T4. Then, in view of Proposition 37,
A is classically separable.

(<) Let L be an algebraic closure of k. Then A () = A®;, L has finite dimension
over L and hence it is left (and right) artinian. Moreover, since A is classically
separable over k, we know that .J (A(L)) = 0. Hence, by Lemma 20, A is
separable over L. Thus, by Proposition 318 we conclude. O

Proposition 13.23. Let k be a field and let H be a Hopf algebra over k. Then the
following statements are equivalent:

(a) H is separable.

(b) H is semisimple.

(¢) There exists a left integral t in H such that ey (t) = 1.
Moreover, if one of these conditions hold, then dimy, (H) < oo.
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Proof. (a) = (b) is Proposition [3T4.
(b) = (c). Since
EH : H—k

is an algebra homomorphism, k& becomes a left H-module via ey and it results that
ey is a morphism of left H-modules. Since H is semisimple, the module gk is
projective so that, as ey is surjective, there exists a left H-module homomorphism
7 : k — H which is a section of .

Let

Then we have
EH (t) =y (T (1k)) = (ZEHOT) (1k) = 1k
Also, for every h € H we have

and hence t is a left integral in H.
(¢c) = (a). Let t € H be a left integral such that ey (t) = 1. Let us prove that

e=)Y ty®S (t)

is a separability element for H over k. We have
D twS(te) =en () 1y = Lily = 1y

so that e fulfills (E3). Let h € H. We have

he = Y hta) @8 (te) =
= > hatay @S (te) e (he)
= Y haytay ® S () S (b)) hes)
= > hote @S (hote) he
= > [(1dy ® S) o A] (hyt) - (1© hes)
= (Xl © )0 A (en (h) 1)) - (1© i)
= (g2 8) oA (1) (18 =n (hw) he)
_ [Z ta) © S (t(g))} (1®h)
= D t)y®S (tg) h=ch

so that e also fulfills (I332).
The last assertion follows by Proposition [3T8A. O]
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Theorem 13.24. Let wm : E — B be a surjective morphism of algebras over a
field k, and let f : A — B be an algebra homomorphism. If A is separable and
ker (m)* = {0}, then

h=ocf+mglof@cflv—mp(E@mg)(cf@cfRcf)(v@A) (ua® Al A— E

defines a morphism of algebras such that moh = f. Here 0 : B — E is a k-linear
map such that m oo =Idg and 0 (1g) = 1g and v : A® A — A is a morphism of
A-bimodules such that myov = 1d,4.

Proof. Let us set
n=mg(of@of)v—mg(E@mg)(ocf @cof@af) (v A)(us® A)ly"
and let
v(la) = sz ®y; wheren € Nyn > 1 and z;,y; € Aforeveryi=1,...,n
i=1
be a separability element of A over k. Then, for every a € A, we have
n(a) =Y of(@)of(yi-a) =Y of (@)of(y)of(a)

and hence
ma) = 3 wof (w)wof (ya) me )70 f (y) 7o (a) =
= X ) = Y S 0=

so that mn = 0. Now
h=of +n
and so
th=mnof+mn=f.
Let us prove that h is an algebra morphism. We have
h(la)=0cf(la)+n(1a)=0(1p)+0=1g.
so that h is unital. Moreover we have
h(a) =of(a)+n(a)
so that, for every a,b € A we get,
h(a)h(b) = (o f (a)+n(a)) 5 (of (b)+n(b))
=of(a)-pof(b)+af(a)pn (b)_+ n(a)-pof(b)+n(a)pn(b)
—of(@)af (B)+of (@)D of (@)of (i-b)

~of (@) [Yof @)of w)of B)]
[ @) af ) of 0= [SDof @) of ) of @] of ()
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and

hiab) =of (ab) + > of (x;)of (yi-ab) =Y o f ()0 f (yi) o f (ab).

Since
Ziﬁi X y;a = Zail?i X Y;
we also get
d r@ua@b=Y ar; @y @b
and hence

Therefore we obtain both
Z of (z;)of (yab) = Z of (ax;)of (y;b) and
Y of(@)of(ya) = Y of(ax)of (y).

Using these equalities and keeping in mind that Ker (7)> = {0}, we obtain

h(ab) —h(a)h(b) =of (ab)+ > of (w)of (yiab) = > of (z:)of (y:)of (ab)
—of(@)of (0) = of (@) |Yof (@)of (ui-b)| +0f (@)D af (@) af (w)of (b)
—Y of(@)of (yia)of (b)+ > af (z)of (yi)of (a)af (b)
= [of (ax;) — o f (a) o f ()] o f (y:b)
=Y lof (azi) —af (a)of ()] [0 f (y:) o f (b))
1= of @) of )] of (ab) = [1 =Y of (@) of (5)] of (@) of (b)
=Y [of (azi) —af (a)of (@) [0 f (y:b) — o f (yi) o f ()]
+ 1= (@) of )] [of (@b) = of (@) o f ()] = 0.

Thus h is an algebra homomorphism. O]

Theorem 13.25 ( Wedderburn Principal Theorem). Let T' be a separable algebra
over a field k and let

fiR—T

be a surjective k-algebra morphism such that ker (f) is nilpotent. Then there exists
a k-algebra homomorphism

0: 7T — R

such that f o6 = 11 i.e. f has a section which is a k-algebra homomorphism.
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Proof. Let L =ker (f). Assume that, for n € N;n > 1, we have that L™ = {0}. For
every i =1,...,nset B; = R/L' and, for every i = 1,...,n — 1 let 7, : R/L""" —
R/L" be the canonical projection. Let p : R — R/L be the canonical projection and
let f: R/L — T be the unique algebra homomorphism such that fop = f. Since f
is surjective, f is an isomorphism: let g : T — R/L be its inverse. Then go f = p.
By applying Theorem to A=T FE=R/L>B=R/L, 7 =m and f = g we
get that there exists an algebra morphism h; : T — R/L? such that m o hy = g.

Then, by applying Theorem to A=T,F = R/L3>B = R/L* 7 = m
and f = h; we get that there exists an algebra morphism hy : T — R/L? such
that my o hy = hy. Assume now that h; : T — R/L‘"! is an algebra morphism
such that m; o h; = h;_y. Then we can apply again Theorem to A=T F =
R/L7*? B = R/L', m = w1 and f = h; we get that there exists an algebra
morphism A1 : T — R/L“™! such that 7,1 0 hyy = h;. Let x : R — R/L"™ be the
obvious isomorphism and let § = x~! o h,_;. Then we have

pol = (7T17T2"'7Tn—1 OX) OX_1 o hp_1 = (7T17T2 e '7Tn—1) o hpq
= <7Tl7T2"'7Tn_2>Ohn_2:...:7T10h1:g
and hence _
fopof=Idr

which means that
f of = ]-T-
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TAFT-WILSON Theorem

Definition 14.1. A k-coalgebra C' is said to have a separable coradical if, for every
simple subcoalgebra D of C', D* is a separable k-algebra.

Lemma 14.2. Let k be an algebraically closed field. Then any k-coalgebra C' has a
separable coradical.

Proof. Let D C C be a simple subcoalgebra. then, by Corollary B8, D* is a finite
dimensional simple algebra. Quindi, per la Proposizione 34, Jac(D*) = {0} so
that, since £ is algebraically closed, by Lemma 321, D* is separable over k. O]

Lemma 14.3. Let C be a pointed k-coalgebra. Then C' has separable coradical..

Proof. Since C' is pointed, every simple subcoalgebra of C' is of the form kg where
g € G(C) and hence (kg)* is a k-algebra isomorphic to k. O

Lemma 14.4. Let C' be a finite dimensional k-coalgebra. The following statements
are equivalent

(a) C has separable coradicall.

(b) (Co)* is a separable k-algebra.

Proof. By Proposition

COZ@D

DeD

where D is the set of all simple subcoalgebras of C.Moreover, since dimg(C') < oo,
we have that D is finite. Then we have a ring isomorphism

DeD

By Proposition 3TA, (Cy)* is separable over k if and only if, for every D € D, each
D* is separable over k. O

180
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Definition 14.5. Let D be a subcoalgebra of a k-coalgebra C' and let i : D — C be
the canonical injection. A coalgebra morphism

7:C —D

is called a (coalgebra) projection of C onto D if moi =1Idp.

Lemma 14.6. Let C' be a finite dimensional k-coalgebra with separable coradical and
let D be a subcoalgebra of C'. Then any projection m from D to Dy can be extended
to a projection of C' onto Cy.

Proof. Let i¢, : Co — C be the canonical injection and let 7 : C' —s C/Ker(r) =
F be the canonical projection. Set o = 7’ o igo. Since m : D — Dy is a coalgebra
morphism, Ker (7) is a coideal of D. Since
AcKer(r) = ApKer(r) C Ker(m) ® D+ D ® Ker(r)
C Ker(r)® C+C® Ker(r)
and
ec(Ker(m)) = ep(Ker(m)) = 0.
Ker () is a coideal also of C' and hence 7" and also a are coalgebra morphism. Now

we have

Ker(a) = Con Ker(r') = Cy N Ker(n)
=ConN DN Ker(m) L DN Ker(m) = {0}
so that « is injective and hence the dual morphism

ot B (G

is surjective. Let (7});e; be the family of simple subcoalgebras of C. Since « is
injective, each «(T;) is a simple subcoalgebra of E and hence

a(Cy) = Za(m C Ey.

On the other hand, by Corollary I3, we have that £y C 7 (Cp) = (7 04, ) (Co) =
a (Cp) and thus we deduce that Ey = a(Cp) = Im («). Therefore we have

Ker(a*) = {neE*:|:a*(n) =0}
{neFE*:|:noa=0}
{neE:|:n(Im(e)) =0}

= {ne k" :|:n(E) =0}
= Ef.

and hence we have the exact sequence

0— Bl = Ker(a) — E* 25 (Cy)* = 0 .
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Since C'is finite dimensional and has separable coradical, we deduce from Lemma
[23A that(Cy)* is a separable k-algebra. On the other hand F is finite dimensional
and hence Jac(E*) is a nilpotent two-sided ideal of E*. Moreover, by Proposition
OZ0 we know that Jac(E*) = Ej. Therefore we get that a* : E* — Cf is a
surjective algebra morphism and Ker(a*) = Ey = Jac(E*) is nilpotent. Thus we
can apply Wedderburn Principal Theorem 323 and deduce that there exists an
algebra morphism 3 : 5 — E* such that o o 3 = Id¢;. Since Cy and E are finite
dimensional, there exists a coalgebra morphism 7 : E — C such that § = 7 *
and we have

1

(7' ca)*=a*onm *=a*of = Ide; = (Idg,)" .
Therefore we obtain that
Idg, =7 ca=m oT o igo

i.e. the map

’ 1"

C 5 EZ5Cy—0

is a projection of C' onto Cy. Let us prove that # = 7 o7 extends 7 : D — Dy. Let
ig D — C, igo : Dy — D and zg% : Dy — Cj be the canonical injection
and let

j : D/Ker(m) — C/Ker(mw) be the canonical injection and
p : D — D/Ker(m) be the canonical projection.

Let 7 : D/Ker(mr) — Dy be the unique morphism such that 7op = 7. As 7 is

surjective, T is an isomorphism. Since j o p = 7’ 0i%, we have that

Co e Co _ ' _.C __.D __ . .D
Qoip = T Oig Olp =T Olpoip =jopo ip
. -1 .D . -1 .D . -1 . -1
= jJjoT oTopoip =joT omoip =jor oldp,=joT .
and hence

!

~ .C 1" ! .C 12 . 12 . _1 /! . _1
MOl =T OT Ol ) =T OJOP=T O0JOT OTOP=T OjOT OT

" 1 1 / 'Co

o . _ . " . — . / . 'CO _'CO
=T 0JOT "OTOP=T O0JOT OWM=T O OZDOOW—IdCOOZDOOﬂ'—ZDOOT(.

]

Theorem 14.7. Let C be a k-coalgebra with separable coradical. Then there exists
a coalgebra projection of C' onto Cy.
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Proof. Let
F ={(F,n) | F is a subcoalgebra of C' and 7 : F' — Fj is a coalgebra projection} .

Since (Cy,Id¢,) € F we have that F # (). Let us consider the partial order on F
defined by setting

/

(F',7') < (F,7) <= F' C F and Tip =T .

It is easy to show that (F, <) is inductive. Hence, by applying Zorn’s Lemma to
(F,<) we obtain that there exists a maximal element (F,7) in (F,<). Let us
assume that F’ ;Cé Candlet c € C, c ¢ F. Let L be the subcoalgebra of C generated
by ¢ and let

D=L+7n(LNF).

Since L is finite dimensional also D is finite dimensional and since 7(LNF) C Fy C
F, we get that

DNF=[L+n(LNE)NF=(LNF)+xn(LNF).

Now let € 7 (F) = Fy. Then we have that z = Idp, (z) = (roif) (z) = 7 (z)
where i, : Fy — F is the canonical inclusion. Therefore we have

X =7 (X) for every subset X C 7 (F) = Fj
In particular we have that
n(n(LNF))=n(LNF)

and
DNFy=n(DNFy) Cn(DNF).

Therefore we obtain

m(DNF) = n(LNF)+x(x(LNF)) = 7(LNF) C DNFy "= (DN F)y C n(DNF)
so that
(14.1) 7(DNF)=(DNF),.

Let 7 be the corestriction to (D N F)q of the restriction of 7 to D N F. Then, by
(), 7’ is a projection of DN F onto (DN F')y. Thus, being D finite dimensional,
we can apply Lemma I3 and deduce that 7’ extends to a coalgebra projection

T - D — Do.
Let v: D+ F — Dy + Fj be the map defined by setting

y(d+ f) =m(d) +7(f) for every d € D and f € F.
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Note tha v is well defined since 7| pnp = 7’ = T pnp and it is a coalgebra morphism.
Let d € Dy and f € Fy. We have

Y(d+f)=m(d)+7(f)=d+f
and hence vy o zg()*fFO = Idp,+r, so that 7 is a projection of D + F onto Dy + Fy =
(F 4+ D)y in view of Proposition B29.Contradiction. O

Lemma 14.8. Let f : C — D be a surjective morphism of k-coalgebras and let
W1, Wy be subspaces of C such that Ker(f) C Wy N Ws. Then

JWi Ae Wa) = f(W1) Ap f(Wa).

Proof. For every i = 1,2 we have that Ker(f) C W; and hence there exists an
isomorphism
fi: C/W; — f(C)/f(Wi) = D/ f(W;)
such that the diagram
c L fo=p
ngi ! 1 7T]P(Wi)
C/Wi s J(C)/F(W)

where my,and 7y w,) are the canonical projections, is commutative. We compute

FEU W) Ap f(Wa)] = £ (Ker [(whw,) © Tw,)) © Ap]) =
= Ker [(7fw,) ® Tfws)) © Ap o f]

Now we have
(TFwy) © THwm) © Ap o f = (T ® Trwy) © (f ® f) =

= [(Tfwy) © ) @ (T © )] 0 Ac
= [(fiom,) @ (foomy,)] 0 Ac = (f1® fo) o (miy, ®@ myy,) 0 Ac

so that, since f; ® f5 is bijective, we get
Ker [(ﬂ-f(Wl) ® 7Tf(Wz ) °cApo f} -

= Ker [(fl ® fa) o (7TW1 ® Wg/g) o AC}
= Ker [(ﬂ'g/l X W%Q) o) Ac] = W1 Nc WQ.

Thus we obtain
FTU W) Ap f(We)] = Wi Ac We

from which, since f is surjective, we infer that

fWh) Ap f(Wa) = f(f [f(W1) Ap f(W2)]) = f (Wi Ac Wa).
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Definition 14.9. Let C be a k-coalgebra and let Ct = Ker(e). Then R = R(C) =
C/Cy is called the associated connected coalgebra of C.

Lemma 14.10. Let D be a subcoalgebra of a k-coalgebra C and let I be a coideal of
C. Then I N D is a coideal of D and hence of C.

Proof. Let p : C — C/I be the canonical projection and let ip : D — C be the
canonical injection. We have that I N D = Ker (poip) is a coideal of D since poip
is a coalgebra morphism. O

Lemma 14.11. Let C be a k-coalgebra and let m = 7T : C' — R(C) = C/Cy be

the canonical projection. Then Cf is a coideal of C so that R(C) is a coalgebra.
Moreover, for every n € N, we have that R(C), = w(C,). In particular R(C) is
connected.

Proof. Since € : C' — k is a morphism of k-coalgebras (see [Z8), and since, by
Proposition B2Z3, Cj is a subcoalgebra of C, in view of Lemma 10 Cf = Cy N
Ker(e¢) = Ker(ee,) is a coideal of C' and hence R = R (C) is a coalgebra and 7 is
a coalgebra morphism.

Since 7 is surjective, we can apply Proposition 12 to infer that Ry C 7(Cp) =
Co/Cy =~ k and hence (note that R # {0}. Why?) Ry = 7(Cy) ~ k so that R is
connected.

Now let us assume that R,, = 7(C,,) for some n € N and let us prove it for n+ 1.

Since 7 is surjective, we can apply Lemma IZH to get that

T (Chsr) = 7 (Co Ac Cr) = 71(Co) Ar 7(C) " Ry A Ry, = Rui1.
]

Theorem 14.12. Let f: C — D be a morphism of k-coalgebras. If fic, is injective,
then f 1s injective.

Proof. Since Ker(f)NC;{ = {0} it is enough to show that N = {0} whenever N is a
coideal of C such that N NC} = {0}. Let R be the associated connected coalgebra
and let 7 : C' — R = C/C{ be the canonical projection. We compute

Rf = RiN(Ker(eg)) =7(Cy) N (Ker(e)/Cy)
= (C1/C) N (Ker(e)/Cy) = (Ci N Ker(e))/Cq
_ O = (07

Therefore we have

7(N)NRf = =w(N)N 7T<0+) =T [7?“ (7T(N W(Cf))]
T [ (n ™ (r(CT)] =7 [(N+CF) n (Cf +CF)]
= [(N+C+) ﬂC*] c 7 (C) = {0}



186 CHAPTER 14. TAFT-WILSON THEOREM

where the inclusion follows by the following: let n € N, z € C; such that n + z =
y € Cf is an element of the intersection (N+Cj) N C{. Thenn =y — =z €
NN Cf = {0}, therefore n = 0 and thus (N + C;") N Cf" C C . Now let

p:R— R/n(N)=mn(C)/m(N).
be the canonical projection. By Proposition [Z2, we know that P(R) C R{ so that
Ker (p) N P(R) C Ker (p) N R = 7m(N) N R = {0}.

Since R is connected we can apply Lemma 23 and get that p is injective i.e. w(N) =
{0}. This means that N C Ker(m) = Cf C Cy so that N = NN Cy = {0}. O

Definition 14.13. Let C' be a k-coalgebra and let g, h € G (C) be grouplike elements.
The set of g, h-primitive elements of C' is the set

Pon(C)={ceC|Alc)=c®@g+h®c}

Lemma 14.14. Let C be a k-coalgebra and let g,h € G (C) be grouplike elements.
Then

1) e(z) =0 for every x € P, (C).

2) We have
k(g —h) C P,,(C)N Ppy(C) N Co.

3) If C is pointed and g # h we have

Pg’h(0> N Phg(C) NCy C ]{f(g — h)

Proof. 1) Let x € P,;(C). Then from A(z) = 2 ® g + h ® z, we deduce that
x =¢(z) g+« and hence ¢ (z) = 0.
2) Since,

Alg—h)=gg-—h@h=(g—-h)®@g+h®(g-h)=(@g—-h)h+tgx(g—h),

it is clear that g — h € P, ,(C) N Py, 4(C) N Co.
3) Let x € P, ,(C) N Py 4(C) N Cy. By Proposition B30 we have that Cy = kG(C)
so that we can write

T=Ag+ ph+v where A\, € k and v € Z kg;.
9i79,9i7h

Since z € P, j,, we have that

Alz) = 1Q9+hQRr= \Rg+ph@g+v0g+h@Ag+h®@ ph+h@wv.
= (+NhRg)+vRg+hR@v+Ag® g+ hQ ph.
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Since z € P, 4, we also have

Alx) = 20h+9gRrx=AgRh+puh@h+v@h+gRAg+gR@puh+gQv
= (U+N(gRR) +v@h+gRv+g® Ag+ ph @ h.

and hence we obtain
(L+Nh@g)+v@g+h@v=(u+NgRh) +v@h+gu.

From this, we infer that
p+A=0 and wv=0.

Thus we obtain z = \(g — h). O

14.15. Let C be a pointed k-coalgebra. In view of Lemma [[Z-3, we know that C' has
separable coradical. By Theorem [[Z.1, there exist a projection w of C' onto Cy. Let
I =Ker(n). Then INCy= {0} and C = I + Cy so that

For every x € G = G(C), we define e, € C* by setting:

(14.2) ex(I) =0 and ey(y) =0,y forevery yeG.

The family (€4),cq s a family of pairwise orthogonal idempotents of C*. Since I is
a coideal of C" we have that I C Ker () and hence

E €y, = E.

zelG

For every c € C' and x,y € G we set
‘c=c-e,, =e,-c and “=("c)! ="(c),

and

e = {*|c € C}.

Note that I (and hence the *CY) are not unique since they are related to the pro-
jection that appears in Wedderburn Principal Theorem ILZZA which is not unique.

For every g € G we denote by L, the left multiplication by e, on C, and by R,
the right multiplication by e, on C' i.e.

L, (c) =e4c= cheg (c2) and  R,(c) =ce, = Zeg (c1) ca for every c € C.
For every c € C, we have
(AoLy) (@) = Aleg-0)=A (Y ae (@) =Y a@ae,(w)
= Sl ) =(CoL) oAl
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and
(AoR)(c) = Afc-e,)=A (Z e, (c1) cz) =Y e () e®e
= ) (a-e)®c=[(Ry®C)oA](c)

so that we deduce that

(14.3) (AoL)=(C®Ly)oA and Ao Ry= (R, ®C)o A

Now we have

(Ly@ Rp) o Al(c) = Y (eg-c1) @ (ca-en) =D creq(ca) @ e (cs) ca =

= > a®(eg(ca)enles)ea) =Y 1@ Ry (eq(ca2) cs)
= Y a@(RyoRy)(cs) = {[C @ (RyoRy) oA} ()

so that we get

(14.4) (L@ Rp) o A=[C® (RpoRy) oA

Now we compute

SOl @ R) o A=Y {IC® (Roo R o A} = (Z [O@(Rzom) A=

ze@G zeG ze@G
= ZO®RZ oA:<C®2R2>oA:A
zeG zeG
hence we get
(14.5) > l(L:®R.) oAl = A

zeG

Lemma 14.16. Let C' be a pointed k-coalgebra with Cy = kG and let us write
C=1®Cy as in[[Z-13. By using the notations introduced thereby, we have that

e:E €

zeG

so that

(14.6) c:s-c-ezZ(ey-c-ex):Z(%y).

Hence we obtain
(14.7) c=> rcr=@p
z,yeG z,yeG

where the second equality depends on the fact that the elements e, are pairwise
orthogonal.
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Proof. Let ¢ € C' =1 @ Cy.and let us write

c= uH—Z Agg where w € I, A\, € k for every g € G and A, = 0 for almost every g.
geG

Then
ey (c) = ey (W) + ey (9) = Ay

and hence e, (¢) = 0 for almost every y € G. It follows that
ey C= Z ciey (c2) = 0 for almost every y € G

and also
C-ey = Zey (c1) co = 0 for almost every y € G.

Zey(c) :ey(w)—FZZAgey(g) :ZAgze(C)

yeG yeG geG geG

Now

and since this holds for every ¢ € C' we deduce that

E €y = E.

yelG

Therefore, for every ¢ € C' we have

c=€-c~€:Zey~c~Zex: Z ey C ey = Z (“c”).

yeG zeG z,yeG z,yeG

We note that this sums make sense since e, - ¢ = Y c1e, (cz) = 0 for almost every
yeGandc-e, =) e, (c1)co =0 for almost every y € G. O

Lemma 14.17. Let C' be a pointed k-coalgebra with Cy = kG and let us write
C=1®Cy as in[IZ-13. By using the notations introduced thereby, we have that

0) e - I CIandlI-e, C1I foreveryz € G.

1) *C* = (*C*)" + kx = (*C*)" @ kx for every x € G.

2) *CY = (*CY)YN 1T = (*CY)* for every x,y € G with x© # y.
8) I ={,eq Ker(es).

4) I =®syec("CY)".

5) For every c € C and x,y € G we have

(14.8) A(er) = (1)@ (c2)”

zeG
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Proof. 0) Let © € G and a € I. Since [ is a coideal of C' we can write
A(G)Zzai@)cﬁ— d; ® b; where a;,b; € I and ¢;,d; € C

=1 j=1

so that, since e, (b;) € e, (I) = {0} we have

m

S — Z aes (¢;) + z”: die, (bj) = Z ae, (¢;) € 1.
=1 ‘

=1

In a similar way one proves that [ -e, C I.

1) and 2) Let * € G. First of all note that, since € (z) = 1, we have that
(*C*)* Nkx = {0} and hence (*C*)" +kx = (*C*)* @ kx. Moreover, since x € *C*,
it is clear that (*C*)* + kx C *C”*. Let ¢ € C' = I & Cy.and let us write

c= w+z Agg where w € I, A\, € k for every g € G and A\, = 0 for almost every g.
geG

Then,
€sCCy = €W €5 + A3

Now, by 0), e;we, € “C* NI and since I C Ker(e) we get that e,we, € (*C*)F
whence

esce; € (PCO)Y + ko
which implies that

rTCTC (Ot @ k.
Let now y € G such that x # y. Then

eyCey = eywe, € 1

so that
Y =(*C)ynI
and since I C Ker(c), we get that ey,ce, € Ker(e) N *CY = (*C¥)*". Thus we get
that
OV =(*CYyn 1 = (oY)t
3) Since e, (I) = {0} for every x € G, it is clear that I C (), Ker(e,). Conversely,

let ¢ € (,cq Ker(ey). Since ¢ € C, we may write ¢ = w+ Y \gg where w € I,
Ag € k for every g € G and A, = 0 for almost every g. Now, for every g € G we have

0 = e;(z) =eg(w+ Z Anh) = eg(w) + Ageg(9)
heF
— 04X, =0

so that we deduce that A\; = 0 for every g € G and hence c = w € I.



191

4) First of all, let us prove that

Z(zcy)Jr CI.

If x # y, this is clear in view of 3). Let us assume that © = y. As before, let ¢ € C
and let us write c = w + > ; A\gg where w € I, A, € k for every g € G and Ay =0
for almost every g. Then

€xC ey = €W €y + Ay,

Assume now that e;ce, € Ker(e) and let ¢ € G. Since e;we, € I = (1,5 Ker(ey),
we have that e, (e;we,) = 0. Since € = ), e, we deduce that

0=c(ezce,) = Zet (ezce,) = Zet (e;wey) + Z er () = Zét,y\x =\
te@ te@ teG te@

so that we get e,ce, = e,we, € 1.
Now let w € I. Then, by (IZ[) we have

ve 3
z,ye€G
where *wY = e, we, € I since [ is a coideal. Thus *w? €(*CY)NI C (*CY)NKer (¢) =
(*CY)* and we deduce that
we Y (on

z,yeG

I=> (¢t

z,yeG

Therefore we get that

In view of (I[Z=2), this sum is direct.
5) By applying to *¢¥ formula (@3)we have

A(Icy):A(ey-c-eI):Z[(LZ@)RZ)OA](%-C-%):Z(L2®Rz)(01-e$®ey-02):
2€G 2€G

:Zez-cl-ex®ey-02-ez:Zx(cl)zéi)z(@)y.

zeG zeG

]

Notation 14.18. Let C' be a pointed k-coalgebra and let g # h € G (C) be grouplike
elements. Then, by Lemma k(g—h) = Pyp(C)N Py y(C)NCy. In the following
we fix a subspace Pg/ﬁ(C) of P, (C) such that P,,(C) = k(g —h) & Pglvh(C’).

Theorem 14.19 (Taft-Wilson). Let C be a pointed k-coalgebra with G = G(C).
Then

1) For everyn € Nyn>1 and ¢ € C, N (*CY)* we have that

Alc)=c@y+z®@c+t wheret € C,_y @ Cpq
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2) For everyn € N, n > 1 and ¢ € C,,, we have that

c= Z Co.h where A(cgp) =cgn @g+h®@cop+w and w € Cpq @ Cpy.
g,heG

5) C1 =kG & (D, hea Pgl,h<0))'

Proof. We will use the notations introduced in [Z—13.
1) For every every n € N, n > 1, let I, = I N C,,. Since C' = I & Cy and, by 3)
inTheorem 10 Cy C ), we have that

(14.9) Cn =1, ® Cp.

Now, since, by Lemma IZT4, every (*CY)* C I we have

(14.10) c,nFeHtr =Cc,nInEFECHT) =L, N (*CY)*
and hence

D CnEent) = P e,

z,yeG z,yeG

Let ¢ € I, = I N C,. Since by 2) inTheorem MTA C,, is a subcoalgebra of C' and
by 0) of Lemma T4, we have

Y =ece, € (*CY)NI, C[(*CY)NKer ()] NI, = (*CY)" NI,

and hence, by form [24

c= ) (¢ e P e

z,yeG z,yeG
so that
L, < P mnEe)h).
z,yeG
Therefore we get
(14.11) L= @ e = @ o
z,yeCG z,yeG

Thus we can assume that ¢ € I,N(*CY)". Now, since C,, = I,,®Cy and, by Theorem
MM, we have C; C C,,_ for every : =0,...,n — 1, we get that

n—1
Ale) € Cn®CO+CO®Cn+ZCi®On—i
i=1
n—1
= In®C()+CO®OO+CO®]n+OO®CO+ZCi®Cn—i
i=1
C L, ®C+Co® 1, +Cphy ®Cpy.
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Therefore we can write

t

(14.12) Ae) = ch®g+2h®dh+20i®wi
geq hed i=1
where ¢;,d, € I, for every g € G and v;, w; € C,_; for every it =1,...¢.

Let us apply formula (IZ) to (Z12) and get

(14.13) Ale) =A(re) = 3 7 (e1) &7 (e2) " =

z€G
(14.14)
¢
= ()@ () + Y ()T (d) + D) ()@ (w) .
g,2€G h,zeG zeG i=1
Now
(9 = eyrg-e.=(ge,(9) e.=¢ey(9)e-(9)g
= 0yg0299 = 0294y
and

“(h)? = e, -h-e;=(he,(h))-e,=e,(h)e,(h)h
= 6z,h5:z,hh = Oz ,h,2T-

Then we can rewrite ([I132) as

(14.15) Ale)="(e))' @y +a@” (d)"+ ) Y " ()7 ®  (w;)?

zeG i=1
Let us apply lo o (e ® C) to (IZ13) and we get

¢ = e("(e)y+e@) (d)?+> ) el ()] 7 (w)?

z€G 1=1

= 047 (d) + ) D el ()] 7 (w)? =" () ¥+,

zeG i=1

where £(* (¢,)¥) = Osince ® (¢,) ¥ €I, C Ker () andv =3 _ ., S0 e[ (v;) *] * (i)Y €Cp_r.
In fact C, is a C*-sub-bimodule of C* so that * (v;)# and * (w;)¥ € C),_;.
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In a similar way, by applying r¢ o (C' ® €), way one gets
c= "(cy)?¥ +u where u € C),_.

Substituting in (IZTd)we get

Ale) = (c—uw)@y+a@(c—v)+> > ") ® *(w)?

zeG =1

t
= C®y+x®c—U®y—x®v+ZZx(vi)Z@) #(w;) Y
zeG 1=1
= cRQytar®c+t

where t € C,,_1 ® C,,_1. In fact, as noted before, each * (v;) *® * (w;) ¥ €Cp,_1 @ C,_1
and alsou®ye C, 1 Cy CC,1RC,_1,z2Rve CyxC,1 CC,_1®C,_1.Thus
1) is proved.

2) Let ¢ € C),. Then ¢ = Zg,heG (gch) where 9c" = ejce, € C,, N9 C". Now, if
g = h by we can write

9¢9 = ¢, + Ag where ¢, € (YCY9)" and X € k.

If g # h we have
gch c (gch) 2)ofLem:maIJIm
Let F' be a finite subset of G such that

c= E 9l

g,heF

Qe

Then, by 1) we have
A (9ch) =9 @ g+ h®9"+w where w € C,_; ® Cy_1 if g # I
and
AP =A(cg) +ANg) =¢,@9+9®@cg+u+A(g®g) where u € C,_1 ® Cy—y
so that
A(e9) = Aey)+A (Ng) = ¢,®@9+9gRcyg+w where w = u+A (g ® g) € Crm1 @C, 1.
3) From formula I, we know that C; = Cy @ [; and from formula IZTT that
I = @y ("CY) ™
Let us prove that

(14.16) P,.(C)=k(y —z)® *(Cy)¥".
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First of all, let us prove that the sum k(y — x) + *(Cy)¥" is direct i.e. that
k(y —x) N “(C)¥t = {0}. Let x # y and let A\(y — x) €* (C1)¥". Then we have

My — ) = e, ANy — x)e, = Meyye, — ey ze,) = 0.

?C” Let ce Py, = P,,(C), then A(c) =c®y+ 2 ® c. Let us apply formula
2. Then, for every g, h € GG, we have that

A(rd) = D0 (e) @ (@) =

zeG
= ) ()@ () "+ ()@ (o)
z€G z€G

= Shy 9 @Y+ 0,7 ® "

If h # y and g # x, then A9¢" = 0 so that 9¢" = 0.

If h =y and g # z, then A9c" = 9¢Y ® y which yields, by applying lc(e @ I),
Ich = e(9ch)y € ky.

If h # y and g = x, then A" = z @ *c" which yields, by applying rc(I ® ¢),
9ch = ge(*ch) € ka.

Finally if h =y and g = x, then A9" = *V @ y + . ® “¢¥ so that “c¥ € P, .
Thus we obtain

c = Z 9ch = Z Ieh Z 9ch + Z 9ch 4+ =y

g,heG g,heG g,heG g,heG
h#y h=y h#y
g#z g#T 9=z
= 0+ E e(9cM)yy + g e(*cMx + v
g,h€G g,heG
h=y h#y
gF#x g==

so that we get
c= "¢’ 4+ ax + By where “c¢! € P,, and o, 8 € k.

Since both cand “¢¥ € P, ,, we deduce that also ax + By € P, . Since, by Lemma

414, even a(z — y) € P,, we deduce that
(a+ By = (ax + By) — az —y) € Po
and hence, by 1) of Lemma [ZT4, we get
O=c((a+B)y)=a+p
which implies that

c=oa(r—y)+ “c¢ where “¢Y € P,, and a € k.
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If x =y we get
c="c"€ P,

and hence, by 1) of Lemma T4 we know that ¢(¢) = 0. If x # y, by 2) of Lemma
212 we know that *CY = (*CY)". Thus, in both case we have that ¢V € (*C¥)*.
” D7 By Lemma T4, we have that k(y — z) € P, .

Let now ¢ € C; N (*CY)*". Then, in view of 1),

Alc) =c®y+z®c+t where t € Cy® Cy
le.

Ale)=c@y+zrzc+ Z oy ng ® h where o, € k and they are almost all zero.
g,heG

Since, by formula (M), c =} ¢ (9¢") and since ¢ € *CY, we get that

c=ey-c-e, = "c.
Therefore
A(C) _ A(xcy) forméﬂIE) Z z (Cl) z®z (02) Y
ze€G
=D @)@ W)+ (@) 7 ()V+ D aga”(9)T @7 (b)Y
2€G g,heG

=()V @Y (1) + (@) O () D Agn ) 09wz © Onsyh

g,heG zeG
=CRQY+TRC+ 0,y y T @ Y.

Since g(c) = 0, by applying (I ® ) we obtain
C=CH 0y y0pyY
and hence 0, 40, , = 0. Thus we get

Ale)=c@y+r®c

ie.ce Py,.

Thus P, ,(C) = k(y —z) + *(C1)¥" and hence formula (IZ18) is proved.
Since P, ,(C) = k(y —x) ® *(C1)¥", we have

(14.17) Co® ("CY)* = Co + P, (C)

o2 e CinD=Coal =
(n*;m) Co fan [ @ (Cl N (zc«y)-i—)] _ Co @ [ @ (IC%)+)]

z,yeG z,yeG

=0+ Y P

z,yeG
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Since
P, h(C)=k(g—h)a Pg,h((])

and since k(g — h) € Cy, we get that

Cr=Co+ Y [klg—h)+F,(C)]=Cot Y Fu(C

g,heG g,heG

Co+ Y P,(C)

g,heG

Let us prove that the sum

is direct. Assume that

c+ Z dgn = 0 where c € Cj and, for every g,h € G, dy), € Pg;h(C).
g,heG

Now, for every g, h € GG, we have

P (C) € Pyu(C) = k(g — h) & (Cy N (°C™))

and hence we can write
dyn = agn(g — h) + bys where a, ), € k and b,;, € C1 N (9C™")*.

Therefore we get that

c+ Z ag,h(g—h)—l— Z bg7h:O

9,he€C 9,he€G
i.e.
hy+y D

e+ agnlg—h) == Y b € CoN( D (Cin(*CM)*) € Conly € ConI = {0}

9,heG g9,heG g9,heG

and hence

c+2aghg h) th—O
g,heG g,heG

Since 37, heqbon € Y gnea(C1NEICM) T =@, e (C1 N (*CY¥)T) we deduce that
byn = 0 for every g, h € G so that

dyn = agn(g—h) € k(g—h)N P;jh = {0} for every g,h € G

==Y dgn=0.

g,heG

and hence
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Corollary 14.20. Let f : C'— D be a k-coalgebra morphism. If C' is pointed and
J\P,n(c) 18 injective for every g, h € G, then f is injective.

Proof. We can assume w.l.o.g. that f is surjective. Then, by Corollary T8 also D
is pointed. Now, in view of Theorem A2, it is enough to show that f is injective on
C1. Let g,h € G = G(C), g # h. Then, by Lemma [ZT4, we have that 0 £ g — h €

P, ,(C) and hence, in view of our assumptions, we get 0 # f(g — h) = f(g) — f(h),

which implies that f is injective on G so that the family

(f (9)gec

is a family of distinct grouplike elements of G (D) and hence, by Theorem 4,
these elements are linearly independent. Let w € Cy = kG, w = deG Agg and
assume that f(w) = 0. Then from >° _,A,f (9) = 0 we deduce that Ay, = 0 for
every g € G and hence w = 0. Thus f is injective on Cy = kG. Let c € P, ,(C), i.e.
A(c) =c® g+ h®c. Then we get

A(f(e) = (fefHAl)=(fafllcagt+hec)
= fle)® f(g) + f(h) @ f(c) € Prg).pmy(D)

and hence we obtain that f (P;4(C)) C Pyg), s (D). Let P‘;’h(C) be a complement
subspace of k(g — h) in P, ;(C). Then

P, ,(C) N k(g —h) = {0}

and since f is injective on C we get
£ (Pa(C)) 0 f (kg = 1) = {0}

Hence we can choose a complement subspace Pf() s(D) of k(f(g) — f(h)) in
Prg).fny (D) containing f (P;yh(C’)). Since both C' and D are pointed, by Taft-
Wilson Theorem [ZTY, we have that O = kG @ (D, cq P ,(C)) and D =
kG (D) ® (D pecp) P,,(D)). In particular we get that

(> f [P;,hw)})] CKG(D)N > Pab

g,heG a,beG(D

=kG(D)N D Pou(D) ={0}.

a,beG(D)

Let ¢ € C and let us write

c=w+ Zt%h where w € kG and tg) € P;h(C) for every g,h € G.

Assume that f (¢) = 0. Then we obtain

==Y fltgn) € F(RG)N D f(P),(C)) = {0}

g,heG
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Since w € kG and f is injective on Cy = kG we deduce that w = 0. Moreover

/

since Za,beG(D) Poy(D) = @a,beG(D) Pc;,b(D> and, , f (Pg/,h(c)) < P]/‘(g),f(h)(D) where

f(g), f(h) € G (D), we get that 3° ,c f (P;,,(C)) = D, peq [ (Pyn(C)) so that,
from ) f(t,4) = 0 we infer that f(¢,,) = 0 for every g,h € G and hence, since
ton € Pg;,h(C') C () and f is injective on C4, that ¢, ; = 0. Therefore we obtain that
c=0. [l

Remark 14.21. Let n € Nyn > 2 and let U = U, be the k-algebra of the n x n
upper triangular matrices over the field k. Then a basis of U over k is given by
{eij | 1 <i < j<n} where e;j is defined by setting (e;;),, = dia0ip. Fiz ani,1 <

1 <n and let "
P = Z kea,b-

1<a<b<n

(a,b)#(4,7)
P; is a left ideal of U. In factlet 1 < s <t <nand1l < a <b<n with (a,b) # (i,1).
Then

€st€ab = 5t,aes,b

Assume t = a and (s,b) = (i,1). Then we would geti = s <t =a < b =1 and
hence (a,b) = (i,1). Contradiction. Clearly we have

U/Pz ~ ]{36,’71'

and hence P; is a left mazimal ideal of U. Conversely let P be a left maximal ideal
of U. Since 1y =Y I"_ €44 there exists an i such that e;; ¢ P. Since

P -+ UGM =U
for every (a,b) # (i,1) there exists a p € P and an u € U such that

p+ UE;; = €q,b-

Write
p= E Psi€st and u = E Usi€st, where psy,usy € k.
s<t s<t
Then we have
U€;; = E Us t€s,tCii = g Us ;€54
s<t s<1

and

P > €a,ap = § Pst€a,aCsit = E PatCat and

s<t a<t

€a,alCi; = E Us iCqa€s,i = 0 unless a < i in which case we get e, ue;; = Uq i€q.i-

s<1i

Thus we obtain

€a,b = €q,a€ab = €a,a (p + uei,i) = E PatCat + €a,aUEj
a<t
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In the case © < a this means

P> €a,al = E Pat€ait = €ap

a<t

In the case a <1 we get
E DPa,tCat + Uq,i€Ca,i = Cab.

a<t

Now if b# i this implies

P> €a,al = E Pat€ait = €Eayb.

a<t

Let us consider the case b = i. Then, since (a,b) # (i,1), we have a < b =i and
hence

E DPat€at + Uq,iCa,i = €Cayi-

a<t

If e,; ¢ P we have
P+ er- = U

Hence there exists a g € P and a w € U such that

q+weq; =€

Write
q= E gsi€st and w = g W €5t Where g5y, wsy € k.
s<t s<t
Then we have
Weq; = E Ws t€s,tCa,i = E Ws,a€s.i
s<t s<a
and
iid = 5,1€i,iCst = it€Cit -
P3eiiq=Y  ui€iiCor = Y Gisti
s<t i<t

Now we have that
0=¢e;weq; = g Ws,6€i,iCs,i

s<a

In fact
eiisi 70 and s < a impliesi =s < a

and since a < i, this cannot happen. Therefore we obtain
P> €iiq = €;;q + € ;Weq; = €;;€;; = €;;.

Contradiction. We deduce that P contains all e;; with (s,t) # (i,i) and
hence P = P;. Therefore for the Jacobson radical J (U) of U we have

JU)=PN..0Py= Y kepN...N Y keaqp= Y keqy

1<a<b<n 1<a<b<n 1<a<b<n

(a,b)#(1,1) (a,b)#(n,n)
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i.e. J(U) is the set of strictly upper triangular matrices. For every s € N1 < s<mn
we have

In particular

(J (V)" = {0}.

Example 14.22. Let C = M (n,k) the n X n matrix k-coalgebra.introduced in
T12 2). C has a basis of n* elements X;;, 1 <i,j < n, and its coalgebra structure
is defined by setting

A(X;5) = ZX“I ®@ Xp;  and  £(Xi;) = 045 for every 1 <i,j <n.
h=1

Recall that C* = M,(k), the n X n matriz k-algebra which is a simple algebra.
Thus C' is a simple coalgebra i.e. C = Cy. Let I be the subspace of C' spanned by
{Xij 11 <i,5 <n,i>j}. Foreveryl <i,j <n withi> j, we have that

A(Xij) = ZXz'h ® Xy =
h=1

=D X ®@Xp+ Y Xn®Xpy+X;0X;€I0C+Ca1

i>h h>i

and also that
e(X;j) =0 for every i > j.

Thus I is a coideal of C so that D = C/I is a coalgebra and {X; ; = Xy + I]i < j}
is a basis for D. Note that D* is the subalgebra of C* consisting of upper triangular
matrices. Now, for every 1 <i<j<nand1<h<mn, if h <i then X;;, € I while
if 3 < h we have that X;; € I so that

A(Xij) = Xii @ Xij+ Xiin1 © Xigrj+ o+ Xiy @ X5

Let J = Jac(D*) be the Jacobson radical of D*. By Remark [Z-Z1, for every
s €N, 1 <s<n we have

where for each (a,b) with 1 <a <b<mn, e, = (X%b)* i.e.

€ab (Xi,j) = d(ap)(i,j) = 0 unless (a,b) = (i,7) in which case it is 1.
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Now, by Proposition T2 for every s € N,;0 < s <n — 1 we have

1
n _
Do= ("™ = Y kean | = () (kean) = D kX
1<a<b<n 1<a<b<n 1<i<j<n
s+1<b—a s+1<b—a 7—1<s

Thus .
Do=J"= > kXiy;=> kX;;=kG (D),
=1

1<i<j<n
i<l

and in general for every s e N0 < s<n-—1

D,= Y kXyy= > kXi;j+ > kXi,j:Ds_huikX,,Hs

1<i<j<n 1<i<j<n 1<i<j<n =1
j—i<s joi<s—1 j—i=s
and
D, = D.

Now, for every 1 <i,s <n and 0<s<n withl <i+s<n we have

A(Xi,i+s) = X@',i & Xi,iJrs + Xi,iJrl & Xi+1,i+s + ...+ Xi,i+s & Xi+s,i+s
= Xi,i & Xi,i+s + Xi,i-‘rs X Xi-i—s,i—f—s + w
where X;; and X, ;. are in G (D) and
w=X;;11Q Xigti4s + oo + Xiirs—1 @ Xigs—1i45-1 € Ds_1 @ Dy_y.

Thus the elements )_(i,,urs € Dy have the form described in Taft-Wilson Theorem
[Z13. Let w:C — D be the canonical projection. Then we have

Dy G m(Co) =7 (C) = D.

Therefore Corollary [I1, in general, cannot be improved and the coradical filtration
18 not preserved in homorphic images.



Chapter 15

Some Useful Results

Lemma 15.1. Let k be a field and let f -V — W and f' : V' — W' be k-linear
maps. Then
Ker (f@ f)=Ker(f)@V'+V @ Ker (f).

Proof. Let X be a basis of Ker (f) which we complete to a basis Y of V. Let X’ be
a basis of Ker (f") which we complete to a basis Y’ of V'. Let a € Ker (f ® f') and
write

a= Z Ao o TR+ Z Ay YR+ Z Ay QY+ Z Ay YRy’

zeX,x'eX’ yeY\X,z'eX’ zeX Yy eY’| X’ yeY\ X,y eY’| X’/

Then we get

0= Z Az [ (7) ® fr(@') + Z Ay f(y) ® fr(@') + Z Aay f (1) @ @)
reX,x'eX’ yeY\X,z'eX’ zeX,y’ €Y'\ X’

+ Y A fWef©)

yeY\X y' €Y\ X'

_ Y Apfwef )

yeY\ X,y Y\ X/

so that, we get

(15.1) Z A (W)@ () =0

yeY\X y' €Y\ X'

Now f (Y'\X) is a linar indipendent subset of W. In fact, from

Z Af (y) =0

yeEY\X,

we get, for Z the subspace spanned by Y\ X
> Ay eKer(f)nZ={0}

yeY\X,

203
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and hence, A\, = 0 for every y € Y\ X. The same holds for f'(Y’\X’). Hence, from
() we deduce that A, = 0 for every y € Y\ X,y € Y'\X'. Hence, we obtain
that a € Ker (f) ® V' +V @ Ker (f’). The other inclusion is trivial. O

15.2. Let V be a vector space over a field k and let V* = Homy, (V. k) be its dual.
Given a subvector space W of V' we set:

Wo={feV"|[f(W)=0};
and for every subspace X of V* we set

Xt={veV|&w) =0 for every £ € X} = ﬂKer(S).
gex

Note that W+ = W while X = X+ whenever V is finite dimensional.

Lemma 15.3. Let V; and V5 be vector spaces over a field k and let X1 < V" and
Xo < V5. Then we have

(X1 @ X)) =V @ (X)) + (X1)" @ Vs in Vi @ Va.

Proof. Clearly we have

(| Ke(9)S [) Ker(4o&)

£eX1®X2 §1€X1,82€ X2

Let £ € X1 ®@ Xp. Then £ =37 & @& wheren € Nyn > 1, € X and &) € X,
for every ¢ = 1,...,n. Then

ﬂ Ker (fi & f%) C Ker (§)

=1

so that we have

(| Ke(@®&) o () Ker(d)

§1€X1,62€ X0 £eEX1®Xo
and we deduce that
(15.2) (X1®X)' = () Ke(9= (] Ker(L®&)
£eX1®X2 §1€X1,62€X7

Recall that, by Proposition =38, for every & € X7, &5 € X5, the assignment & ®&; —
&1 (&) & (§2) defines a k-linear map Agr ¢+ X1 ® Xp — k. Moreover the assignment
§1 ® &5+ Agr ¢x defines an injective k-linear map

A= AX17X2 : Xik X X; — (X1 X XQ)* .
For every i = 1,2, let I'; : V; = X be the map defined by setting

['; (vi) = vs)x, where v; : V; — k is the evaluation map.
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Let m :V, = V,® Vi/Xj be the canonical projection. Since Ker (I';) = X+, there
exists an injective map I'; : V;/ X+ — X7 such that ['; om; = I';. Let

TZAO(F1®f2) O(7T1®7T2)1V1®V2—>(X1®X2)*
For every ¢ = 1,2, let & € X; and v; € V;. We compute

[T (v1 @ v2)] (&1 @ &) {[Ao (T1 ®T3) o (m @ m)] (11 ®v2) } (&1 ® &) =
=[(Aol}) (11 ®@v)] (G ®&) =A (171\)(1 ® 772|X2) (&1 ®&) =& (v1) ® & (v2)

Then, by using (I23), we deudce that

Ker(T)= (] Ker(§)= (]| Ker(4®&) =(X10Xy)"

£eX1®X> §1€X1,62€X2
On the other hand, since A o (Fl ® fg) is injective, we get

Ker (T) = Ker (1, @ m) = Vi ® X3 + Xi" @ V;

Lemma 15.4. Let V' be a vector space over a field k and let
{0}=VocVicWhc..

be an ascending chain of subspaces of V. Then

n

ﬂ(V Vi + Vi V) = Zvi ® Vagi-i

=0 =1

Proof. We have

VeV, +WeaV)N(VeaVy+V,eV)=
=VeV,+{0}aV)Nn(Ve{0}+V,aV)
=VeaV,)nV,aV)
=V, @V,

Therefore we get

n n—1

NVeVii+VieV) = VeV, +%heV)n([|VeV+VieV)n(Valy+V,aV)
=0 i=1

n—1

= V,aV)n((\VeVii+VeV)
=1

n—1

= Ve Vii+V,aV,).

=1
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Thus we may assume

CHAPTER 15. SOME USEFUL RESULTS

and we have to prove that

=

1

1

Now for i =1,...,n, let W; C V; be such that

Then

so that

i.e.

(15.3)

Vi=Viao W,

(&)< (@) (@m)- (¢

EB@ W, @ W) +EBEB W, @ Wy) =

a=1 b=1 a=1 b=1

@@(%@MH@@(M@M)

a=1 b=1 a=t b=1

+@@ (W, @ W) +@EB (W, @ W)
a=1 b=1 a=1 b=i

= EB@ (W, @ W) +€B€D (W, @ W) +

a=1 b=1 a=i b=1

n n—1i

= PP w.om) +€B€B (W, @ W)

a=1 b=1 a=1 b=t

V,oVii+VieoV,= @ w.eow,
a<i
bg?f—i

b=

B

@@(W ® W)

=1 b=i
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Now

(15.4) ﬁ P w.eowm)= @ W.eWw)

or
b<n—i
In fact it is clear that

@ (W @ W) C @ (Wo @ Wy) for every i =0,...,n
a+b<n+1 a<i

or
b<n—1

Conversely let z € (| @ (W, ®@W,). Since z € V,, ® V,, and V,, = @ W, we can
=1

i=0 a<i
b<n—i
write .
T = Z Ty ® ys where x; € Wy and y, € Wi.
t,s=1
Assumethatx ¢ @ (W, ® W,). Then there exist ¢ and s such that 1 < ¢,s < n,

a+b<n+1
t+s>n+1and z;, ®ys # 0.

Let £ € N such that either n = 2k or n = 2k + 1.

Assume that ¢t < k. Then if s < n — k we would get t + s < n. Therefore
n—k<s Ifk=n—(n—k)<sthen we would get n =n — k + k < s. Therefore
n — k < s implies s < k and hence t + s < 2k < n.Contradiction.

Assume that k& < t. Since

S @ (Wa ® Wb)
a<k
bg?zr—k

we deduce that s <n — k. Now if n — k <t we would get n =n — k+ k < t. Thus
t<n—kandhencet+s<n—k+n—k=n+n-—2k <n+1. Contradiction.
Therefore (24) is proved. Let us show that

(15.5) b w.eow) = i Vi @ Vi1

a+b<n+1 =1

In fact if a + b <n+ 1, then W, C V,,,1_, and hence
Wa ® Wb g ‘/a ® Vn+1—a-

On the other hand

i ntl—i i nl-i
Vi®Vhy1-i = (@ Wa) ®< @ Wb> = EB (We @ W) C @ (W, @ W,).
a=1 a

=1 b=1 a+b<n+1
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Therefore we get

n

ﬂ(V®Vn—z’+Vi®V) = ﬁ EB (W, @ Wy) = @ (Wo @ Wh) (=) i%@vn-i—l—i-
i=1

=0 =0 a<i a+b<n+1

or
b<n—i
O

Lemma 15.5. Let D be a subspace of a vector space C' over a field k and let I, J, X
and Y be subspaces of D. Then we have:

IoD+DJ)N(XY)=INX)Y +X®(JNY)
In particular for D =C and X =Y = E we get
IC+CJ)N(E®RFE)=INE) E+E® (JNE).

Proof. Let p; : D — D/I and p; : D — D/J be the canonical projections. Then
we have
{®D+D®J)N(X®Y)=Ker(prop;) N (X ®Y)=Ker(pr ®ps)xey =
= Ker (prx @ pyiy) = Ker (prx) ® Y + X @ Ker (pyy) =
=INX)®Y+Xe((JNY).
]

Lemma 15.6. Let (W'1>iel be a finite family of subspaces of a vector space Vi and

(2

let (W}),c; be a finite family of subspaces of a vector space Va. Then
[l VieW+W' eW)="e (ﬂWf) + (ﬂW}) ® Va.
jediel jed iel

Proof. For every i € I and j € J, let p; : Vi — Vi/W} and p? : Vo — V3 /W? be the
canonical projection. Then

VioW? + W} @V, =Ker (p; ®@p?)
so that

m (V1®Wj2+W'Z-1®V2): ﬂ Ker(p%@p?):Ker(A)

jeJiel iel,jeJ

where
A:VieVea— [ /W e V/w;

icl,jeJ
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Let Ay : Vi — [[Vi/ W}
il
and let A, : Vo — [] Va/W? be the

jeJ

is the diagonal morphism of the family (pl1 ® p?)ie Lies
be the diagonal morphism of the family (p;);;

diagonal morphism of the family (p?)je ;- Let

o [ wwilevyw?—[vw/wie]]ve/w?

iel,jeJt i€l j€d
be the canonical isomorphism. Then
Ker (A) = Ker (® o A) = Ker (A ® Ay)
Therefore we obtain
| VieW?+W!@V) = Ker(A®Ay) = Vi@ Ker (Ay) + Ker (A) @ Vp =

jediel
e ) ()

jeJ iel
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