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Chapter 1

Algebras and Coalgebras

1.1. Let k be a commutative ring. If not stated otherwise, by the word k-module we
mean a symmetric k-module. Whenever k is a field, the word vector space substitutes
the word k-module. A k-homomorphism between k-modules will be also called a k-
linear map. Homk (M,N) or even Hom (M,N) the group of k-linear maps.

1.2. The tensor product over k will be denoted by ⊗k or even by ⊗ if there is no
risk of confusion. For a k-module M we denote by Mn the n-th tensor power of M
and for a morphism f :M → N of k-modules, we will denote by fn the n-th tensor
power of f . Also, for any k-module W, f ⊗W will denote the morphism f ⊗ IdW .
a similar convention holds for W ⊗ f.

1.3. Given a k-module M , we denote by lM the obvious isomorphism lM : k⊗kM →
M

lM (t⊗ x) = t · x for every t ∈ k, x ∈M.

The morphism rM : M ⊗ k → M is similarly defined. The identity on M will be
denoted by IM or even more simply by I or M . Observe that both lM and rM give
rise to functorial isomorphisms. In fact if f :M → N is a k-linear map we have

(1.1) f ◦ lM = lN ◦ (k ⊗ f) and f ◦ rM = rN ◦ (f ⊗ k) .

Moreover

(1.2) lM⊗N = lM ⊗N rM⊗N =M ⊗ rN and M ⊗ lN = rM ⊗N

We will also denote by τM,N : M ⊗ N → N ⊗ M the usual flip. Note that if
f :M →M ′ and g : N → N ′ are k-linear maps, then

(1.3) τM ′,N ′ ◦ (f ⊗ g) = (g ⊗ f) ◦ τM,N

Notation 1.4. Let R be a ring and let X be a non empty set. For each x ∈ X let
ex be the element of R(X) defined by

ex (x) = 1R and ex (y) = 0R for every y ∈ X, y ̸= x.
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Then every element α ∈ R(X) can be uniquely written, using the left R-module
structure of R(X), as

α =
∑

x∈Supp(α)

α (x) ex.

From now on, for every x ∈ X, we will write x instead of ex.

Definition 1.5. Let k be a commutative ring. A k-algebra is a couple (A, u) where

• A is a ring

• u : k → A is a morphism of rings such that

Im (u) ⊆ Z (A)

where Z (A) denotes the center of A.

Definition 1.6. Let k be a commutative ring. A k-algebra is a triple (A,m, u)
where

• A is k-module

• m : A⊗k A→ A is a morphism of k-modules

• u : k → A is a morphism of k-modules

such that the following diagrams are commutative:

A⊗ A⊗ A

m⊗A
��

A⊗m // A⊗ A

m

��
A⊗ A m //m

k ⊗ A

u⊗A %%JJ
JJ

JJ
JJ

J
lA // A A⊗ k

rAoo

A⊗uyyttt
tt
tt
tt

A⊗ A

m

OO

Exercise 1.7. Proof that Definition 1.5 and Definition 1.6 are equivalent.

Definition 1.8. Let (A,mA, uA) and (B,mB, uB) be k-algebras. A k-linear map
f : A→ B is called a morphism of algebras if it is a morphism of rings i.e.

f ◦mA = mB ◦ (f ⊗ f) and f ◦ uB = uA

.

Example 1.9. Let R be a ring and let (M, ·, 1M) be a monoid. On the abelian
group R(M) = {α :M → R | Sup (α) is finite} we define a multiplication by setting,
for every α, β ∈ R(M) and for every x ∈M :

(α · β) (x) =
∑
z,w∈M
zw=x

α (z) β (w) .
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In this way R(M) becomes a ring which is usually denoted by RM or by R [M ] and
is called the monoid ring of M over the ring R. Using the notations introduced
in 1.4, this product is uniquely defined by setting

x · y = xy

for every x, y ∈M . In particular the identity 1RM of RM is

1RM = 1M .

Let S be a non empty set and let M =
(
N(S),+, 0

)
. Then RM is the ring of

polynomials in S over R.
Whenever R = k is a commutative ring, the monoid ring kM of M over k is a

k-algebra. The ring homomorphism u : k → kM is defined by setting:

u (a) = a1M for every a ∈ k.

Definition 1.10. Let k be a commutative ring. A k-coalgebra is a triple (C,∆, ε)
where

• C is a k-module

• ∆ : C → C ⊗k C is a morphism of k-modules

• ε : C → k is a morphism of k-modules

such that the following diagrams are commutative:

C

△
��

△ // C ⊗ C

C⊗△
��

C ⊗ C
△⊗C// C ⊗ C ⊗ C

k ⊗ C C
l−1
Coo

△
��

r−1
C // C ⊗ k

C ⊗ C
ε⊗C

eeKKKKKKKKK C⊗ε

99sssssssss

i.e. the following equalities hold:

(1.4) (∆⊗ C) ◦∆ = (C ⊗∆) ◦∆ (coassociativity)

(1.5) lC ◦ (ε⊗ C) ◦∆ = I = rC ◦ (C ⊗ ε) ◦∆ (counitarity).

Exercise 1.11. Let (C,∆, ε) be a coalgebra. Prove that the map ∆ is injective while
the map ε is surjective whenever k is a field .

Example 1.12. Let S be a semigroup with zero element z, i.e.:s ·z = z = z ·s for
every s ∈ S. We denote S \ {z} by S∗ Assume also that S has local identities i.e.
S contains a subset E of nonzero orthogonal idempotents such that for each s ∈ S∗

there exists es and e′s in E with ess = s = se′s. Moreover assume that S is locally
finite i.e., for every s ∈ S∗ the set
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{(x, y) ∈ S∗ × S∗ | x · y = s}
is finite.

Let k be a commutative ring and let C (S, k) be the k-module k(S
∗) endowed with

the coalgebra structure defined by setting

∆(s) =
∑

(t,v)∈S∗×S∗

tv=s

t⊗k v for every s ∈ S∗

and

ε (s) = 0 for every s /∈ E

ε (s) = 1 for every s ∈ E

Note that ∑
(t,v)∈S∗×S∗

tv=s

ε (t) v =
∑

(e,v)∈E×S∗
ev=s

ε (e) v = ε (es) s = s.

The symmetrical equality is proved similarly. We call this the semigroup coalge-
bra of S with coefficients in k.

Let us consider now some particular cases.
1) Let S = (N,+) ∪ {z} . Then C (S, k) =

⊕
n∈N

kn and ∆(n) =
∑

i+j=n

i ⊗ j.

Moreover we have ε (n) = 0 if n ̸= 0 and ε (0) = 1. This coalgebra is called the
divided power coalgebra.

2) Let ≤ be a reflexive and transitive binary relation on a non empty set X.
Assume that (X,≤) is locally finite i.e. that the set

{t | x ≤ t ≤ y}

is finite, for every x, y ∈ X and set

X≤ = {(x, y) ∈ X ×X | x ≤ y} ∪ {z} where z /∈ X ×X.

Then X≤ is a semigroup with zero element z whenever we define

(x, y) · (x′, y′) = z whenever y ̸= x′ and (x, y) · (y, y′) = (x, y′) .

Here E = {(x, x) | x ∈ X} is a set of local identities and we have

∆((x, y)) =
∑
x≤t≤y

(x, t)⊗ (t, y) and ε ((x, y)) = δx,y.

This is called the incidence coalgebra of (X,≤).
2a) Consider the particular case when ≤ coincides with = . Then X≤ = E ∪{z}

and we have

∆((x, x)) = (x, x)⊗ (x, x) and ε ((x, x)) = 1.
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By identifying E with X we obtain the grouplike coalgebra over the set X.
2b) Another particular case is when the set X = {1, . . . , n}is finite and ≤ is the

usual order on X
X≤ = {(i, j) ∈ X ×X | i ≤ j} ∪ {z}

and we have

∆((i, j)) =
∑
i≤t≤j

(i, t)⊗ (t, j) and ε ((i, j)) = δi,j.

2c) Finally consider the case when the set X = {1, . . . , n}is finite and ≤ is the
the trivial order i.e.

X≤ = (X ×X) ∪ {z}
and we have

∆((i, j)) =
n∑
t=1

(i, t)⊗ (t, j) and ε ((i, j)) = δi,j.

This coalgebra is usually denoted by MC (n, k) and is called the matrix coalgebra.
3) Let now Γ = (V (Γ) , A (Γ) , s, t) be an oriented graph. This means that V (Γ)

and A (Γ) are nonempty sets and s, t : A (Γ) → V (Γ) are maps. The elements of
V (Γ) are usually called vertices and the elements of A (Γ) are called arrows of Γ
For a given arrow a ∈ A (Γ) the vertex s (a) is called the source of a while the vertix
t (a) is called the target of a. The picture

s (a)
a→ t (a)

means that a is an arrow with source s (a) and target t (a). Let n ∈ N, n ≥ 1.
A path of length n in Γ is an n-tuple α = (a1, . . . , an).where each ai ∈ A (Γ) and
t (ai) = s (ai+1) for every i = 1, . . . , n − 1. In this case we set s (α) = s (a1) and
t (α) = t (an). Let Dn (Γ) be the set of paths of Γ of length n. For n = 0 set
D0 (Γ) = V (Γ) where, for each x ∈ V (Γ), we set s (x) = t (x) = x.We call the
elements of D0 (Γ) paths of length 0. Let

D (Γ) =
∪
n∈N

Dn (Γ)

and set
S (Γ) = D (Γ) ∪ {z} where z /∈ D (Γ) .

S (Γ) becomes a semigroup with zero element z by setting, for given α = (a1, . . . , an),β =
(b1, . . . , bm) and v ∈ D0 (Γ) = V (Γ)

α · β = (a1, . . . , an, b1, . . . , bm) whenever t (an) = s (b1) and α · β = z otherwise

and

v · α = α whenever v = s (a) and v · α = z otherwise;

α · v = α whenever t (a) = v and α · v = z otherwise.
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The set of local identities is clearly D0 (Γ) = V (Γ) . Note that S (Γ) is locally finite
i.e. that

{(β, γ) ∈ D (Γ)×D (Γ) | β · γ = α}
is a finite set, for every α ∈ D (Γ) . Given α ∈ D (Γ) = (S (Γ))∗ we get

∆(α) =
∑

β,γ∈D(Γ)
β·γ=α

β ⊗ γ and

ε (γ) = 1 if γ has length 0 and ε (γ) = 0 otherwise.

This particular coalgebra is called path coalgebra of the oriented graph Γ.

Definition 1.13. Let (C,∆, ε) be a coalgebra. We define, by recursion, a sequence
(∆n)n≥1 by setting

∆1 = ∆ and ∆n =
(
∆⊗ Cn−1) ◦∆n−1 for every n ∈ N, n ≥ 2

Notation 1.14. For any k-module M and any k-linear map f : L→ N we set

M0 ⊗ f = f = f ⊗M0.

Lemma 1.15. Let (C,∆, ε) be a coalgebra. Then

∆n =
(
Ct ⊗∆⊗ Cn−1−t) ◦∆n−1 for every n, t ∈ N, n ≥ 2 and 0 ≤ t ≤ n− 1.

Proof. We proceed by induction on n. For n = 2 we have to prove that ∆2 =
(∆⊗ C) ◦∆ which holds in view of the given definition and that ∆2 = (C ⊗∆) ◦∆
which holds in view of the coassociativity of ∆. Let us assume that the statement
holds true for some n ∈ N, n ≥ 2 and let us prove it for n + 1. We proceed by
induction on t. For t = 0 we have to prove that ∆n+1 = (∆⊗ Cn) ◦∆n which holds
in view of the given definition. Let t ∈ N, 1 ≤ t ≤ n and let us assume that the
equality hold for t− 1. Then(

Ct ⊗∆⊗ Cn+1−1−t) ◦∆n

=
(
Ct ⊗∆⊗ Cn−t) ◦∆n

induct. on nandt′=t−1
=

(
Ct ⊗∆⊗ Cn−t) ◦ (Ct−1 ⊗∆⊗ Cn−1−(t−1)) ◦∆n−1

=
(
Ct−1 ⊗ C ⊗∆⊗ Cn−t) ◦ (Ct−1 ⊗∆⊗ Cn−t) ◦∆n−1

=
(
Ct−1 ⊗ [(C ⊗∆) ◦∆]⊗ Cn−t) ◦∆n−1

=
(
Ct−1 ⊗ [(∆⊗ C) ◦∆]⊗ Cn−t) ◦∆n−1

=
(
Ct−1 ⊗∆⊗ C ⊗ Cn−t) ◦ (Ct−1 ⊗∆⊗ Cn−t) ◦∆n−1

induct. on nandt′=t−1
=

(
Ct−1 ⊗∆⊗ Cn+1−t) ◦∆n

=
(
Ct−1 ⊗∆⊗ Cn+1−1−(t−1)) ◦∆n

induct. on t
= ∆n+1
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Lemma 1.16. Let (C,∆, ε) be a coalgebra. Then

∆n = (∆n−1 ⊗ C) ◦∆ for every n ≥ 2

Proof. We proceed by induction on n. For n = 2 we have to prove that ∆2 =
(∆1 ⊗ C)◦∆which holds in view of the given definition. Let us assume the statement
holds for some n ∈ N, n ≥ 2 and let us prove it for n+ 1.

We have

∆n+1
def.
= (∆⊗ Cn) ◦∆n

induct. assumpt.
= (∆⊗ Cn) ◦ (∆n−1 ⊗ C) ◦∆

=
(
∆⊗ Cn−1 ⊗ C

)
◦ (∆n−1 ⊗ C) ◦∆ =

([(
∆⊗ Cn−1) ◦∆n−1

]
⊗ C

)
◦∆ def

=

= (∆n ⊗ C) ◦∆.

Theorem 1.17. Let (C,∆, ε) be a coalgebra. Then

∆n =
(
Cm ⊗∆i ⊗ Cn−i−m) ◦∆n−i for every n, i,m ∈ N, n ≥ 2, 1 ≤ i ≤ n− 1

and 0 ≤ m ≤ n− i.

Proof. Let us fix an n ∈ N, n ≥ 2 and let us prove the statement by induction on i
where 1 ≤ i ≤ n− 1. For i = 1 we have to prove that

∆n =
(
Cm ⊗∆1 ⊗ Cn−1−m) ◦∆n−1 for every 0 ≤ m ≤ n− 1

which holds true in view of Lemma 1.15. Let us assume that the statement holds
for some i, 1 ≤ i ≤ n− 2 and let us prove it for i + 1. We have, for every 0 ≤ m ≤
n− (i+ 1) < n− i

∆n
induct on i

=
(
Cm ⊗∆i ⊗ Cn−i−m) ◦∆n−i

Lem1.15
=

(
Cm ⊗∆i ⊗ Cn−i−m) ◦ (Cm ⊗∆⊗ Cn−i−1−m) ◦∆n−i−1

=
(
Cm ⊗∆i ⊗ C ⊗ Cn−i−1−m) ◦ (Cm ⊗∆⊗ Cn−i−1−m) ◦∆n−i−1

=
(
Cm ⊗ [(∆i ⊗ C) ◦∆]⊗ Cn−i−1−m) ◦∆n−i−1 =

Lem1.16
=

(
Cm ⊗∆i+1 ⊗ Cn−(i+1)−m) ◦∆n−(i+1).

Note that, by induction assumption, actually all the first equality holds for every
0 ≤ m ≤ n− i while, in the second one we have to restrict to 0 ≤ m ≤ n− (i+ 1)
in order to apply 1.15 for n− i which forces 0 ≤ m ≤ n− i− 1.

Notation 1.18. (Sweedler’s Sigma Notation) Let (C,∆, ε) be a coalgebra. For a
given c ∈ C we have

∆(c) =
nc∑
i=1

c1i ⊗ c2i where nc ∈ N, nc ≥ 1, c1i, c2i ∈ C for every i = 1, . . . nc.
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We adopt the notation

∆(c) =
∑

c(1) ⊗ c(2)

or even

∆(c) =
∑

c1 ⊗ c2

where the index i is suppressed.
Note that, using this notation, equalities in 1.4 and in 1.5 become respectively

(1.6)
∑

(c1)1 ⊗ (c1)2 ⊗ c2 =
∑

c1 ⊗ (c2)1 ⊗ (c2)2

and

(1.7)
∑

ε (c1) c2 = c =
∑

c1ε (c2) .

Notation 1.19. More generally, for any n ∈ N, n ≥ 1 we write

∆n (c) =
∑

c1 ⊗ . . .⊗ cn+1.

Using this notation, equality 1.6 gives rise to∑
c1 ⊗ c2 ⊗ c3 =

∑
(c1)1 ⊗ (c1)2 ⊗ c2 =

∑
c1 ⊗ (c2)1 ⊗ (c2)2

Since, from Theorem 1.17, we have that ∆m+n = (Ca ⊗∆m ⊗ Cn−a) ◦∆n, for every
a,m, n ∈ N,m, n ≥ 1, and 0 ≤ a ≤ n, we obtain that∑

c1 ⊗ . . .⊗ cm+n+1 =

=
∑

c1 ⊗ . . .⊗ ca ⊗ (ca+1)1 ⊗ . . . (ca+1)m+1 ⊗ ca+2 . . .⊗ cn+1

for every a ∈ N, 1 ≤ a ≤ n− 1

and ∑
c1 ⊗ . . .⊗ cm+n+1 = (c1)1 ⊗ . . . (c1)m+1 ⊗ c2 . . .⊗ cn+1∑
c1 ⊗ . . .⊗ cm+n = c1 ⊗ . . .⊗ cn ⊗ (cn+1)1 ⊗ . . . (cn+1)m+1

Proposition 1.20. Let (C,∆, ε) be a coalgebra, let n, i ∈ N, i ≥ 1, n ≥ i. Let
f : Ci+1 → C and g : Cn+1 → C be k-homomorphisms. Then for every t ∈ N,
2 ≤ t ≤ n+ 1 we have∑

g (c1 ⊗ · · · ⊗ ct−1 ⊗ f (ct ⊗ · · · ⊗ ct+i)⊗ ct+i+1 · · · ⊗ cn+i+1)

=
∑

g
(
c1 ⊗ · · · ⊗ ct−1 ⊗ f

(
(ct)1 ⊗ · · · ⊗ (ct)i+1

)
⊗ ct+1 · · · ⊗ cn+1

)
.

Proof. Set

f = f ◦∆i.
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Since t−1 ≤ (n+ i)−i = n, we can apply Theorem 1.17 to the case when ”n” = n+i
and ”i” = i and ”m” = t−1 to get ∆n+i =

(
Ct−1 ⊗∆i ⊗ C(n+i)−i−(t−1))◦∆(n+i)−i =

(Ct−1 ⊗∆i ⊗ Cn−t+1) ◦∆n so that∑
g
(
c1 ⊗ · · · ⊗ ct−1 ⊗ f (ct)⊗ ct+1 · · · ⊗ cn+1

)
= g

(∑(
c1 ⊗ · · · ⊗ ct−1 ⊗ f (ct)⊗ ct+1 · · · ⊗ cn+1

))
=

[
g ◦
(
Ct−1 ⊗ f ⊗ Cn−t+1

)
◦∆n

]
(c)

=
[
g ◦
(
Ct−1 ⊗ f ⊗ Cn−t+1

)
◦
(
Ct−1 ⊗∆i ⊗ Cn−t+1

)
◦∆n

]
(c)

=
[
g ◦
(
Ct−1 ⊗ f ⊗ Cn−t+1

)
◦∆n+i

]
(c)

Notation 1.21. Let (C,∆, ε) be a coalgebra. In the sequel, for any c ∈ C and
i, j ∈ N, i, j ≥ 1, we will write cij instead of (ci)j e.g. c12 instead of (c1)2.

Exercise 1.22. Let (C,∆, ε) be a coalgebra. Prove that, for any c ∈ C, we have∑
ε (c1) ε (c2) c3 = c.

Definition 1.23. Let (C,∆, ε) be a coalgebra and let τ : C ⊗ C → C ⊗ C be the
usual flip. We say that the coalgebra C is cocommutative if τ ◦∆ = ∆ i.e. if∑

c1 ⊗ c2 =
∑

c2 ⊗ c1 for every c ∈ C.

Examples 1.24. The coalgebra in example 2a) is always cocommutative, while the
coalgebra in example 2b) is, in general, not cocommutative. A typical example of not
cocommutative coalgebra is the path coalgebra of the oriented graph

e0
do−→ d1

e1 −→ e2
d2−→ e3 · · ·

dn
en −→ en+1 · · ·

In fact we have

∆(di) = ei ⊗ di + di ⊗ ei+1 for every i ∈ N.

Definition 1.25. Let (C,∆C , εC) and (D,∆D, εD) be coalgebras. A k-linear map
φ : C → D will be called a morphism of coalgebras if the following diagrams are
commutative:

i.e. if

(φ⊗ φ) ◦∆C = ∆D ◦ φ and εD ◦ φ = εC

Which can be rewritten as∑
φ (c1)⊗φ (c2) =

∑
φ (c)1⊗φ (c)2 and εD (φ (c)) = εC (c) for every c ∈ C.
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1.26. We will denote by Coalgk the category of coalgebras over the ring k. Note
that k can be equipped by the structure of a coalgebra by setting

∆k = r−1k = l−1k : k → k ⊗ k i.e. ∆k (a) = a⊗ 1 = 1⊗ a for every a ∈ k

and εk = Idk : k → k i.e. εk (a) = a for every a ∈ k.

Note that, given any coalgebra (C,∆C , εC), εC : C → k is a coalgebra morphism. In
fact we have

(εC ⊗ εC) ◦∆C = r−1k ◦ εC and εk ◦ εC = εC .

Moreover εC is unique with respect to this property: given a coalgebra morphism
α : C → k we get that α = εk ◦ α = εC. Hence we can claim that (k,∆k, εk) is a
final object for the category Coalgk.

Theorem 1.27. Let (C,∆C , εC) and (D,∆D, εD) be coalgebras.
Then (C ⊗D,∆C⊗D, εC⊗D) is a coalgebra where

(1.8) ∆C⊗D = (C ⊗ τC,D ⊗D) ◦ (∆C ⊗∆D) and εC⊗D = lk ◦ (εC ⊗ εD) .

Here τC,D : C ⊗D → D ⊗ C denotes the usual flip. Moreover the map

pC : C ⊗D → C defined by setting pC (c⊗ d) = cεD (d)

is a morphism of coalgebras.

Proof. We compute

[((C ⊗D)⊗∆C⊗D) ◦∆C⊗D] (c⊗ d)

= [((C ⊗D)⊗ C ⊗ τC,D ⊗D) ◦ ((C ⊗D)⊗ (∆C ⊗∆D))]
∑

(c1 ⊗ d1 ⊗ c2 ⊗ d2)

=
∑

c1 ⊗ d1 ⊗ c21 ⊗ d21 ⊗ c22 ⊗ d22 =
∑

c11 ⊗ d11 ⊗ c12 ⊗ d12 ⊗ c2 ⊗ d2

= [(∆C⊗D ⊗ C ⊗D)]
(∑

c1 ⊗ d1 ⊗ c2 ⊗ d2

)
= [(∆C⊗D ⊗ C ⊗D) ◦∆C⊗D] (c⊗ d)

and

[lC⊗D ◦ (εC⊗D ⊗ C ⊗D) ◦∆C⊗D] (c⊗ d) =

= lC⊗D

[
lk

[∑
(εC (c1)⊗ εD (d1))

]
⊗ c2 ⊗ d2

]
=
∑

εC (c1) c2 ⊗ εD (d1) d2 = c⊗ d

=
∑

c1εC (c2)⊗ d1εD (d2)

= rC⊗D ◦
[∑

c1 ⊗ d1 ⊗ rk ◦ (εC (c2)⊗ εD (d2))
]

[rC⊗D ◦ (C ⊗D ⊗ εC⊗D) ◦∆C⊗D] (c⊗ d) .

The last statement is left as an exercise to the reader.
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Proposition 1.28. Let C and D be cocommutative coalgebras. Then the tensor
product C ⊗ D is the product of C and D in the full subcategory CoCoalgk of co-
commutative coalgebras.

Proof. Let φ : L → C and ψ : L → D be coalgebra morphisms where L is a
cocommutative coalgebra. Set ζ = (φ⊗ ψ) ◦∆L. Then ζ is a coalgebra morphism.
In fact, for any x ∈ L we have∑

x11 ⊗ x12 ⊗ x21 ⊗ x22 =
∑

x1 ⊗ x2 ⊗ x3 ⊗ x4 =
∑

x1 ⊗ x21 ⊗ x22 ⊗ x3

Lcocomm
=

∑
x1 ⊗ x22 ⊗ x21 ⊗ x3 =

∑
x1 ⊗ x3 ⊗ x2 ⊗ x4 =

∑
x11 ⊗ x21 ⊗ x12 ⊗ x22

so that we obtain

(1.9)
∑

x11 ⊗ x21 ⊗ x12 ⊗ x22 =
∑

x11 ⊗ x12 ⊗ x21 ⊗ x22

and hence

∆C⊗D (ζ) (x) =
∑

φ (x1)1 ⊗ ψ (x2)1 ⊗ φ (x1)2 ⊗ ψ (x2)2

=
∑

φ (x11)⊗ ψ (x21)⊗ φ (x12)⊗ ψ (x22)

(1.9)
=
∑

φ (x11)⊗ ψ (x12)⊗ φ (x21)⊗ ψ (x22)

=
∑

ζ (x1)⊗ ζ (x2) .

Moreover we have

εC⊗D (ζ (x)) =
∑

εC (φ (x1)) · εD (ψ (x2)) =
∑

εC (φ (x1)) · εD (ψ (x2))

=
∑

εL (x1) εL (x2) = εL

(∑
x1εL (x2)

)
= εL (x) .

We compute

pC (ζ (x)) = pC

(∑
φ (x1)⊗ ψ (x2)

)
=
∑

φ (x1) εD (ψ (x2)) =
∑

φ (x1) εL (x2)

= φ
(∑

x1εL (x2)
)
= φ (x) .

In a similar way, one gets pD (ζ (x)) = ψ (x) .
Now we have to prove that ζ is unique with respect to this property. Thus let

χ : L→ C ⊗D be a morphism of coalgebras such that pC ◦ χ = φ and pD ◦ χ = ψ.
Note that, given c ∈ C and d ∈ D, we have

c⊗ d =
∑

(c1 ⊗ d1) εC⊗D (c2 ⊗ d2) =
∑

(c1εD (d2)⊗ d1εC (c2))

D cocomm
=

∑
(c1εD (d1)⊗ d2εC (c2)) =

∑
pC (c1 ⊗ d1)⊗ pD (c2 ⊗ d2)

= (pC ⊗ pD) (∆C⊗D (c⊗ d))
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and hence we get that (pC ⊗ pD) ◦∆C⊗D = IC⊗D. From this we obtain

χ = IC⊗D ◦ χ = (pC ⊗ pD) ◦∆C⊗D ◦ χ = (pC ⊗ pD) ◦ (χ⊗ χ) ◦∆L =

= (pC ◦ χ⊗ pD ◦ χ) ◦∆L = (φ⊗ ψ) ◦∆L = ζ.

1.29. Let (C,∆C , εC) be a coalgebra. We denote by Ccop the coalgebra defined by
setting:

⇒ ∆Ccop = τ ◦∆C and εCcop = εC .

Clearly C is cocommutative if and only if C = Ccop.

Exercise 1.30. Check that (Ccop,∆Ccop,εCcop) is indeed a coalgebra.

Assumption 1.31. From now on we will assume that k is a field. This
will imply, in particular, that, given a subspace Wj of a k-vector space Vj, j = 1, 2,
we can identify W1 ⊗W2 with a subspace of V1 ⊗ V2.

Definition 1.32. Let (C,∆C , εC) be a coalgebra and let D be a k-subspace of C. D
is called a subcoalgebra of C if ∆C (D) ⊆ D⊗D. Note that D becomes a coalgebra

by setting ∆D =
(
∆|D

)|D⊗D
and εD = εC|D. Moreover the inclusion map iD : D → C

becomes a morphism of coalgebras.

Definitions 1.33. Let (C,∆C , εC) be a coalgebra and let I be a k-subspace of C. I
is called

• a right coideal of C if ∆ (I) ⊆ I ⊗ C,

• a left coideal of C if ∆ (I) ⊆ C ⊗ I,

• a (two-sided) coideal of C if ∆ (I) ⊆ I ⊗ C + C ⊗ I and εC (I) = {0}.

Exercise 1.34. Let f : C → D be a coalgebra morphism. Then Im (f) is a subcoal-
gebra of D and Ker(f) is a coideal of C. (Use Lemma 15.1).

Theorem 1.35. (The Fundamental Theorem of the Quotient Coalgebra)
Let (C,∆C , εC) be a coalgebra, let I be a coideal of C.and let p = pI : C → C/I be
the canonical projection. Then C/I can be endowed by a unique coalgebra structure
( called quotient coalgebra) such that p becomes a coalgebra morphism. Moreover
given any coalgebra morphism f : C → D such that I ⊆ Ker (f), there exists a
unique coalgebra morphism f : C/I → D such that f = f ◦ p.

Proof. Since ∆C (I) ⊆ I⊗C+C⊗I Lemma(15.1)
= Ker(p⊗ p) we deduce that I ⊆Ker((p⊗ p) ◦∆C),

so that there exists a unique linear map ∆ : C/I → (C/I) ⊗ (C/I) such that
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∆ ◦ p = (p⊗ p) ◦∆C and we have(
∆⊗ C/I

)
◦∆ ◦ p =

(
∆⊗ C/I

)
◦ [(p⊗ p) ◦∆C ]

=
([
∆ ◦ p

]
⊗ p
)
◦∆C = ([(p⊗ p) ◦∆C ]⊗ p) ◦∆C

= (p⊗ p⊗ p) ◦ (∆C ⊗ C) ◦∆C = (p⊗ p⊗ p) ◦ (C ⊗∆C) ◦∆C

= (p⊗ [(p⊗ p) ◦∆C ]) ◦∆C =
(
p⊗

[
∆ ◦ p

])
◦∆C

=
(
C/I ⊗∆

)
◦ [(p⊗ p) ◦∆C ] =

(
C/I ⊗∆

)
◦∆ ◦ p.

Since p is surjective, we get that
(
∆⊗ IC/I

)
◦ ∆ =

(
C/I ⊗∆

)
◦ ∆. Analogously,

since εC (I) = 0, there exists a unique map ε : C/I → k such that ε ◦ p = εC and
we have

lC/I ◦ (ε⊗ C/I) ◦∆ ◦ p = lC/I ◦ (ε⊗ C/I) ◦ (p⊗ p) ◦∆C

= lC/I ◦ (εC ⊗ p) ◦∆C = lC/I ◦ (k ⊗ p) ◦ (εC ⊗ C) ◦∆C

= p ◦ lC ◦ (εC ⊗ C) ◦∆C = p.

Since p is surjective, we get lC/I ◦ (ε⊗ C/I) ◦ ∆ = C/I. In a similar way one
proves that rC/I ◦ (C/I ⊗ ε) ◦∆ = C/I. Therefore

(
C/I,∆, ε

)
is a coalgebra. Note

that p becomes automatically a coalgebra morphism.
Let now f : C → D be a coalgebra morphism such that I ⊆Ker(f). Then there

exists a unique k-linear map f : C/I → D such that f ◦ p = f . Let us check that f
is a coalgebra morphism. Indeed we have(

f ⊗ f
)
◦∆ ◦ p =

(
f ⊗ f

)
◦ (p⊗ p) ◦∆C = (f ⊗ f) ◦∆C

= ∆D ◦ f =
(
∆D ◦ f

)
◦ p

and

εD ◦ f ◦ p = εD ◦ f = εC = ε ◦ p

and since p is surjective, we conclude.

Notation 1.36. For every k-vector space V we will denote by V ∗ the dual of V
i.e. V ∗ = Homk (V, k). We will also denote by ω = ωV : V → V ∗∗ the canonical
morphism defined by setting ω (x) = x̃ where x̃ = evx : V

∗ → k is the evaluation in
x: evx (f) = f (x) for every f ∈ V ∗.

Lemma 1.37. For any vector space V, ωV : V → V ∗∗ is a monomorphism. More-
over, for any α ∈ V ∗∗ and for any finite subset F = {ξ1, . . . , ξn} of V ∗, there exists
an element x ∈ V such that

α (ξi) = ξi (x) = x̃ (ξi) .

Proof. Let x ∈ V, x ̸= 0. Then there exists a k-linear morphism ξ : V → k such
that ξ (x) ̸= 0 so that x̃ (ξ) = ξ (x) ̸= 0. We deduce that ωV (x) = x̃ ̸= 0.
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Let now α ∈ V ∗∗ and let F = {ξ1, . . . , ξn} be a finite subset of V ∗. Set U =
{(ξ1 (x) , . . . , ξn (x)) | x ∈ V } ⊆ kn. Assume that

y = (α (ξ1) , . . . , α (ξn)) ∈ kn \ U .

Then there exists a k-linear map ζ : kn → k such that ζ (U) = {0} and ζ (y) ̸= 0.
Let e1, . . . , en be the canonical basis of kn and let θ : V → k be the linear map
defined by

θ =
n∑
i=1

ξiζ (ei) .

Then we have

θ (x) =
n∑
i=1

ξi (x) ζ (ei) = ζ

(
n∑
i=1

ξi (x) ei

)
= ζ ((ξ1 (x) , . . . , ξn (x))) = 0 for every x ∈ V

and hence θ = 0. Therefore we deduce that

0 = α (θ) = α

(
n∑
i=1

ξiζ (ei)

)
=

n∑
i=1

α (ξi) ζ (ei) = ζ

(
n∑
i=1

α (ξi) ei

)
= ζ ((α (ξ1) , . . . , α (ξn))) = ζ (y) ̸= 0. Contradiction.

Proposition 1.38. Let V and W be k-vector spaces. Then, for every v∗ ∈ V ∗, w∗ ∈
W ∗, the assignment v⊗w 7→ v∗ (v)w∗ (w) defines a k-linear map Λv∗,w∗ : V⊗W → k.
Moreover the assignment v∗ ⊗ w∗ 7→ Λv∗,w∗ defines an injective k-linear map

Λ = ΛV,W : V ∗ ⊗W ∗ → (V ⊗W )∗

which is also bijective whenever W has finite dimension.

Proof. It is easy to check that the map Γv∗,w∗V × W → k defined by setting
Γv∗,w∗ ((v, w)) = v∗ (v)w∗ (w) is bilinear. Thus we can consider the map Γ : V ∗ ×
W ∗ → (V ⊗W )∗defined by setting Γ ((v∗, w∗)) = Λv∗,w∗ . Even this map is bilinear
so that it gives rise to the k-linear map Λ. Let us prove that Λ is injective. Let

n ∈ N, n ≥ 1, and let v∗1, . . . , v
∗
n ∈ V ∗ and w∗1, . . . , w

∗
n ∈ W ∗ such that the element

n∑
i=1

v∗i ⊗ w∗i ̸= 0 in V ∗ ⊗W ∗. We can assume w.l.o.g. that v∗1, . . . , v
∗
n are linearly

independent and that w∗1 ̸= 0. By expanding F = {v∗1, . . . , v∗n} to a basis of V , we
can construct a k-linear map α : V ∗ → k such that α (v∗1) = 1 and α

(
v∗j
)
= 0 for

every j = 2, . . . n. In view of Lemma 1.37 there exists a v ∈ V such that

α (v∗i ) = v∗i (v) for every i = 1, . . . n.

Therefore we get

v∗1 (v) = 1 and v∗j (v) = 0 for every j = 2, . . . n.
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Since w∗1 ̸= 0 there exists a w ∈ W such that w∗1 (w) ̸= 0. Thus we obtain

Λ

(
n∑
i=1

v∗i ⊗ w∗i

)
(v ⊗ w) =

n∑
i=1

v∗i (v)w
∗
i (w) = v∗1 (v)w

∗
1 (w) = w∗1 (w) ̸= 0

and hence we deduce that Λ

(
n∑
i=1

v∗i ⊗ w∗i

)
̸= 0.

Assume now that dim (W ) < ∞ and let w1, . . . wm be a basis of W and let
w∗1, . . . w

∗
m denote the dual basis of W ∗. Let ξ ∈ (V ⊗W )∗ and let ξi ∈ V ∗ be

defined by setting ξi (v) = ξ (v ⊗ wi), for every v ∈ V . Then, for every v ∈ V and
j = 1, . . .m we have

Λ

(
n∑
i=1

ξi ⊗ w∗i

)
(v ⊗ wj) =

n∑
i=1

ξi (v)w
∗
i (wj) = ξj (v) = ξ (v ⊗ wj)

and hence we deduce that Λ

(
n∑
i=1

ξi ⊗ w∗i

)
= ξ.

Proposition 1.39. The k-linear maps ΛV,W give rise to a functorial morphism
Λ : (−)∗ ⊗ (−)∗ → (−⊗−)∗. Moreover for given vector spaces U, V,W, we have

(ΛU,V⊗W ) ◦ (U∗ ⊗ ΛV,W ) = ΛU⊗V,W ◦ (ΛU,V ⊗W ∗) .

Proof. Let α : U → V and β : T →W be k-linear maps. We have to prove that

ΛU,T ◦ (α∗ ⊗ β∗) = (α⊗ β)∗ ◦ ΛV,W .

For given v∗ ∈ V ∗, w∗ ∈ W ∗, u ∈ U and t ∈ T we compute

([ΛU,T ◦ (α∗ ⊗ β∗)] (v∗ ⊗ w∗)) (u⊗ t) = [ΛU,T (α
∗ (v∗)⊗ β∗ (w∗))] (u⊗ t)

= [ΛU,T ((v
∗ ◦ α)⊗ (w∗ ◦ β))] (u⊗ t) = [(v∗ ◦ α) (u)] [(w∗ ◦ β) (t)]

= v∗ (α (u))w∗ (β (t)) = [ΛV,W (v∗ ⊗ w∗)] (α (u)⊗ β (t))

= ([ΛV,W (v∗ ⊗ w∗)] ◦ (α⊗ β)) (u⊗ t) = [(α⊗ β)∗ (ΛV,W (v∗ ⊗ w∗))] (u⊗ t)

= ([(α⊗ β)∗ ◦ ΛV,W ] (v∗ ⊗ w∗)) (u⊗ t)

Let now u∗ ∈ U∗, v∗ ∈ V ∗, w∗ ∈ W ∗ and u ∈ U, v ∈ V,w ∈ W . We have

{[(ΛU,V⊗W ) ◦ (U∗ ⊗ ΛV,W )] (u∗ ⊗ v∗ ⊗ w∗)} (u⊗ v ⊗ w)

= [(ΛU,V⊗W ) (u∗ ⊗ Λv∗,w∗)] (u⊗ v ⊗ w) = u∗ (u) Λv∗,w∗ (v ⊗ w)

= u∗ (u) v∗ (v)w∗ (w) = Λu∗,v∗ (u⊗ v)w∗ (w)

= [(ΛU⊗V,W ) (Λu∗,v∗ ⊗ w∗)] (u⊗ v ⊗ w)

= {[ΛU⊗V,W ◦ (ΛU,V ⊗W ∗)] (u∗ ⊗ v∗ ⊗ w∗)} (u⊗ v ⊗ w) .
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Proposition 1.40. Let (A,m, u) be a finite dimensional algebra. Then A∗ =
Homk (A, k) has a natural coalgebra structure defined by setting

∆A∗ : A∗
m∗
−→ (A⊗ A)∗

Λ−1
A,A−→ A∗ ⊗ A∗ and εA∗ : A∗

u∗−→ k∗
ev1≃ k

This coalgebra is called the dual coalgebra of the algebra A.

Proof. Let α : U → V and β : T → W be k-linear maps between finite dimensional
vector spaces. Note that, by Proposition 1.39, we have

(1.10) (α∗ ⊗ β∗) ◦ Λ−1V,W . = Λ−1U,T ◦ (α⊗ β)∗

and

(1.11)
(
Λ−1U,V ⊗W ∗) ◦ Λ−1U⊗V,W =

(
U∗ ⊗ Λ−1V,W

) (
Λ−1U,V⊗W

)
We compute

(∆A∗ ⊗ A∗) ◦∆A∗ =
[(
Λ−1A,A ◦m∗

)
⊗ A∗

]
◦
(
Λ−1A,A ◦m∗

)
=
(
Λ−1A,A ⊗ A∗

)
◦ (m∗ ⊗ A∗) ◦ Λ−1A,A ◦m∗

(1.10)
=
(
Λ−1A,A ⊗ A∗

)
◦ Λ−1A⊗A,A ◦ (m⊗ A)∗ ◦m∗

=
(
Λ−1A,A ⊗ A∗

)
◦ Λ−1A⊗A,A ◦ [m ◦ (m⊗ A)]∗

=
(
Λ−1A,A ⊗ A∗

)
◦ Λ−1A⊗A,A ◦ [m ◦ (A⊗m)]∗

=
(
Λ−1A,A ⊗ A∗

)
◦ Λ−1A⊗A,A ◦ (A⊗m)∗ ◦m∗

(1.11)
=
(
A∗ ⊗ Λ−1A,A

)
◦ Λ−1A,A⊗A ◦ (A⊗m)∗ ◦m∗

(1.10)
=
(
A∗ ⊗ Λ−1A,A

)
◦ (A∗ ⊗m∗) ◦ Λ−1A,A ◦m∗

=
[
A∗ ⊗

(
Λ−1A,A ◦m∗

)]
◦ Λ−1A,A ◦m∗ = (A∗ ⊗∆A∗) ◦∆A∗

and

lA∗ ◦ (εA∗ ⊗ A∗) ◦∆A∗ = lA∗ ◦ ((ev1) ◦ u∗ ⊗ A∗) ◦ Λ−1A,A ◦m∗

= lA∗ ◦ (ev1 ⊗ A∗) ◦ (u∗ ⊗ A∗) ◦ Λ−1A,A ◦m∗ =
(1.10)
= lA∗ ◦ (ev1 ⊗ A∗) ◦ Λ−1k,A ◦ (u⊗ A)∗ ◦m∗ = lA∗ ◦ (ev1 ⊗ A∗) ◦ Λ−1k,A ◦ [m ◦ (u⊗ A)]∗

= lA∗ ◦ (ev1 ⊗ A∗) ◦ Λ−1k,A ◦ (lA)∗

Now we have Λ−1k,A (a
∗ ◦ lA) = Idk ⊗ a∗ in fact

Λk,A (Idk ⊗ a∗) (x⊗ a) = x · a∗ (a) = a∗ (xa) = (a∗ ◦ lA) (x⊗ a)

for every x ∈ k and a ∈ A.

It follows that[
lA∗ ◦ (ev1 ⊗ A∗) ◦ Λ−1k,A ◦ (lA)∗

]
(a∗) = [lA∗ ◦ (ev1 ⊗ A∗)]

(
Λ−1k,A (a

∗ ◦ lA)
)

= [lA∗ ◦ (ev1 ⊗ A∗)] (Idk ⊗ a∗) = lA∗ (1⊗ a∗) = a∗.

A similar proof showes that rA∗ ◦ (A∗ ⊗ εA∗) ◦∆A∗ = IA∗
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1.41. Let (A,m, u) be a finite dimensional algebra and let f ∈ A∗. Then

∆A∗ (f) = Λ−1A,A ◦m∗ (f) =
∑

f1 ⊗ f2

where
∑
f1 ⊗ f2 is uniquely determined by

ΛA,A

(∑
f1 ⊗ f2

)
= m∗ (f)

i.e. for every a, b ∈ A

ΛA,A

(∑
f1 ⊗ f2

)
(a⊗ b) = m∗ (f) (a⊗ b)

since
ΛA,A

(∑
f1 ⊗ f2

)
(a⊗ b) =

∑
f1 (a) f2 (b)

and
m∗ (f) (a⊗ b) = f (m (a⊗ b)) = f (ab)

we conclude that
∑
f1 ⊗ f2 is uniquely determined by

(1.12)
∑

f1 (a) f2 (b) = f (ab) for every a, b ∈ A.

Moreover
εA∗ (f) = (ev1k ◦ u∗) (f) = (f ◦ u) (1k) = f (1A)

Exercise 1.42. Let M be a finite monoid and let kM the monoid algebra over M .
Then in (kM)∗ we can consider the so called ”dual basis” (x∗)x∈M where x∗ is defined
by setting x∗ (y) = δx,y. Let ∆ = ∆(kM)∗ and let us compute ∆(x∗). Accordingly to
(1.12) we have:

∆(x∗) =
∑

f1 ⊗ f2 such that∑
f1 (y) f2 (z) = x∗ (yz) for every y, z ∈M

Since x∗ (yz) = 1 if and only if yz = x and x∗ (yz) = 0 otherwise, and since∑
s,t∈M
st=x

s∗ ⊗ t∗ has the property that∑
s,t∈M
st=x

s∗ (y) t∗ (z) = y∗ (y) z∗ (z) = 1 if yz = x and

∑
s,t∈M
st=x

s∗ (y) t∗ (z) = 0 otherwise.

We conclude that
∆(x∗) =

∑
s,t∈M
st=x

s∗ ⊗ t∗.

A computation on ε∗ reveals that (kM)∗ is just the coalgebra of the semigroup M as
introduced in Example 1.12.
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Exercise 1.43. Prove that for A = Mn (k), the algebra of the n × n matrices,
A∗ =M c (n, k).

Exercise 1.44. Prove that for an oriented finite graph Γ, the dual coalgebra of the
path algebra of Γ is the path coalgebra of Γ.

1.45. Let (C,∆, ε) be a k-coalgebra and let (A,m, u) be a k-algebra. Then

Homk (C,A)

is always an algebra, called convolution algebra. The multiplication ∗ of this algebra
is defined by setting, for every f, g ∈ Homk (C,A) and c ∈ C

(1.13) (f ∗ g) (c) =
∑

f (c1) · g (c2)

Proposition 1.46. Let (C,∆, ε) be a k-coalgebra and let (A,m, u) be a k-algebra.
Then Homk (C,A), with respect to the product defined in (1.13) becomes an algebra
whose identity is u ◦ ε.

Proof. Let f, g, h ∈ Homk (C,A) . For every c ∈ C, we calculate

((f ∗ g) ∗ h) (c) =
∑

(f ∗ g) (c1) · h (c2) =
∑

(f (c11) · g (c12)) · h (c2) =

=
∑

f (c1) · g (c21) · h (c22) =
∑

f (c1) · (g ∗ h) (c2)
= (f ∗ (g ∗ h)) (c)

and

(f ∗ (u ◦ ε)) (c) =
∑

f (c1) · (ε (c2)u (1k)) = f
(∑

c1ε (c2)
)
· 1A = f (c) .

Thus we get that f ∗ (u ◦ ε) = f . A similar proof shows that (u ◦ ε) ∗ f = f .

Proposition 1.47. Let φ : C2 → C1 be a morphism of k-coalgebras and let ψ : A1 →
A2 be a morphism of k-algebras. Then Hom (φ, ψ) : Hom (C1, A1) → Hom (C2, A2)
is an algebra morphism.

Proof. Let f, g ∈ Hom (C1, A1). Then Hom (φ, ψ) (f ∗ g) = ψ ◦ (f ∗ g) ◦ φ and we
have

[Hom (φ, ψ) (f ∗ g)] (c) = [ψ ◦ (f ∗ g) ◦ φ] (c) = ψ
[
f
∑

(φ (c)1) g (φ (c)2)
]

φcoalg.morph
= ψ

[∑
f (φ (c1)) g (φ (c2))

]
=
ψalg.morph

=
∑

ψ (f (φ (c1)))ψ (g (φ (c2))) =

[(ψ ◦ f ◦ φ) ∗ (ψ ◦ g ◦ φ)] (c) = [Hom (φ, ψ) (f) ∗ Hom (φ, ψ) (g)] (c)

and

Hom (φ, ψ) (uA1 ◦ εC1) = ψ ◦ (uA1 ◦ εC1) ◦ φ = (ψ ◦ uA1) ◦ (εC1 ◦ φ) =
ψalg.morph,φcoalg.morph

= uA2 ◦ εC2
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Example 1.48. In particular, we can consider the case when A = k. In this case
Homk (C,A) = C∗ and, in view of Proposition 1.47 the assignment C 7→ C∗ and
f 7→ f ∗ defines a covariant functor ∗ : Coalgk → Algk.

Exercise 1.49. Prove that for the divided power coalgebra C (see example 1) in
Example 1.12) C∗ is isomorphic to the formal power series ring k [[X]].

Definition 1.50. Let (C,∆, ε) be a k-coalgebra and let g ∈ C. The element g is
called a grouplike element if g ̸= 0 and ∆(g) = g ⊗ g. We will denote by G (C) the
set of grouplike elements of C.

Lemma 1.51. Let (C,∆, ε) be a k-coalgebra and let g ∈ C such that ∆(g) = g⊗ g.
Then

g ̸= 0 ⇐⇒ ε (g) = 1.

Proof. Since ∆ (g) = g ⊗ g we get that g = ε (g) g. From g ̸= 0 we deduce that
ε (g) = 1.

Proposition 1.52. Let A be a finite dimensional algebra. Then

G (A∗) = Alg (A, k)

where Alg (A, k) is the set of algebra morphisms from A to k.

Proof. Let f ∈ A∗. Then ∆A∗ (f) =
∑
f1 ⊗ f2 is uniquely determined by∑

f1 (a) f2 (b) = f (ab) for every a, b ∈ A.

Hence ∆A∗ (f) = f ⊗ f if and only if f (a) f (b) = f (ab) for every a, b ∈ A. Since
εA∗ (f) = f (1), we conclude.

Example 1.53. Let us consider the matrix coalgebra MC (n, k). Then MC (n, k) =
(Mn (k))

∗ so that, by Proposition 1.52,

G
(
MC (n, k)

)
= Alg (Mn (k) , k) .

Let φ :Mn (k) → k be an algebra morphism. Then Ker(φ) = {0} which is impossible
if n > 1. Hence we deduce that G

(
MC (n, k)

)
is empty.

Theorem 1.54. Let (C,∆, ε) be a k-coalgebra and assume that G (C) is nonempty.
Then the set G (C) is a linearly independent subset of C.

Proof. Assume that G (C) is not linearly independent. Since any grouplike element
is linearly independent, there exists an n ∈ N, n ≥ 1 such that any subset of n
elements in G (C) is linearly independent but there is a subset {g1, . . . , gn, gn+1},
consisting of n + 1 distinct elements of G (C), which is not linearly independent.
Hence there exists λ1, . . . λn ∈ k such that

gn+1 = λ1g1 + . . .+ λngn.
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By applying ∆ we get

gn+1 ⊗ gn+1 =
n∑
i=1

λigi ⊗ gi

and hence
n∑
t=1

λtgt ⊗
n∑
s=1

λsgs =
n∑
i=1

λigi ⊗ gi

so that
n∑

t,s=1

λtλsgt ⊗ gs =
n∑
i=1

λigi ⊗ gi

Then, since the set {gt ⊗ gs | t, s = 1, . . . , n} is linearly independent, for any t, s with
t ̸= s we get that λtλs = 0. This forces, by a possible renumbering of g1, . . . , gn,
n = 1 and gn+1 = λ1g1. Since 1 = ε (gn+1) = λ1ε (g1) we obtain that λ1 = 1 and
gn+1 = g1, a contradiction.

Remark 1.55. Let (C,∆, ε) be a k-coalgebra and assume that G (C) is nonempty.
Then the subspace kG (C) spanned by G (C) is a subcoalgebra of C.



Chapter 2

Comodules and Rational Modules

Definitions 2.1. Let (C,∆, ε) be a k-coalgebra. A right C-comodule is a pair(
M,ρM

)
where

• M is a k-vector space

• ρM :M →M ⊗ C is a k-linear map such that

(2.1) (M ⊗∆) ◦ ρM =
(
ρM ⊗ C

)
◦ ρM and rM ◦ (M ⊗ ε) ◦ ρM =M .

A left C-comodule is a pair
(
N,Nρ

)
where

• N is a k-vector space

• Nρ : N → C ⊗N is a k-linear map such that

(2.2) (∆⊗N) ◦ Nρ =
(
C ⊗ Nρ

)
◦ Nρ and lN ◦ (ε⊗N) ◦ Nρ = N .

Definition 2.2. Let (C,∆, ε) be a coalgebra and let
(
M,ρM

)
be a right C-comodule.

We define, by recursion, a sequence
(
ρMn
)
n≥1 by setting

ρM1 = ρM and ρMn =
(
ρM ⊗ Cn−1) ◦ ρMn−1 for every n ∈ N, n ≥ 2.

Proposition 2.3. Let (C,∆, ε) be a coalgebra and let
(
M,ρM

)
be a right C-comodule.

Then
(2.3)
ρMn =

(
M ⊗ Ct−1 ⊗∆⊗ Cn−1−t)◦ρMn−1 for every n, t ∈ N, n ≥ 2 and 1 ≤ t ≤ n−1.

Proof. It is similar to that of Lemma 1.15.

Notation 2.4. Let
(
M,ρM

)
be a right C-comodule. For every x ∈M we will write

ρM (x) =
∑

x(0) ⊗ x(1)

24
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or even
ρM (x) =

∑
x0 ⊗ x1.

Note that, using this notation, equalities in (2.1) can be rewritten as∑
x(0) ⊗ x(1)1 ⊗ x(1)2 =

∑
x(0)(0) ⊗ x(0)(1) ⊗ x(1) and

∑
x(0)ε

(
x(1)
)
= x

for every x ∈M .

Notation 2.5. More generally, for any n ∈ N, n ≥ 1 we write

ρMn (x) =
∑

x(0) ⊗ . . .⊗ x(n)

Using this notation, equality (2.3) gives rise to∑
x(0) ⊗ . . .⊗ x(n) =

∑
x(0) ⊗ . . .⊗ x(t−1) ⊗ x(t)1 ⊗ x(t)2 ⊗ x(t+1) . . .⊗ x(n−1).

Definition 2.6. Let (C,∆, ε) be a coalgebra and let
(
N,Nρ

)
be a left C-comodule.

We define, by recursion, a sequence
(
Nρn

)
n≥1 by setting

Nρ1 =
Nρ and Nρn =

(
Cn−1 ⊗ Nρ

)
◦ Nρn−1 for every n ∈ N, n ≥ 2.

Notation 2.7. Let
(
N,Nρ

)
be a left C-comodule. For every x ∈ N we will write

Nρ (x) =
∑

x(−1) ⊗ x(0)

or even
Nρ (x) =

∑
x−1 ⊗ x0.

Note that, using this notation, equalities in (2.2) can be rewritten as∑
x(−1)1 ⊗ x(−1)2 ⊗ x(0) =

∑
x(−1) ⊗ x(0)(−1)

⊗ x(0)(0) and
∑

ε
(
x(−1)

)
x(0) = x

for every x ∈ N .

Notation 2.8. More generally, for any n ∈ N, n ≥ 1 we write

Nρn (x) =
∑

x(−n) ⊗ . . .⊗ x(0)

Using this notation, an equality analogous to (2.3) gives rise to∑
x(−n)⊗ . . .⊗x(0) =

∑
x(−n+1)⊗ . . .⊗x(−t−1)⊗x(−t)1 ⊗x(−t)2 ⊗x(−t+1) . . .⊗x(0).

Remarks 2.9. 1) Both for right and for left comodules, using the same criteria
involved in the case of coalgebras, others formulas can be deduced.

2) Both for right and for left comodules, sometimes we will need to use as brackets
the symbols [] or even ⟨⟩.
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Definitions 2.10. Let (C,∆, ε) be a k-coalgebra and let
(
M1, ρ

M1
)
and

(
M2, ρ

M2
)

be right C-comodules. A k-linear map f :M1 →M2 is called a morphism of (right)
comodules (or right colinear map) if

(f ⊗ C) ◦ ρM1 = ρM2 ◦ f

i.e. if ∑
f (x0)⊗ x1 =

∑
f (x)0 ⊗ f (x)1 for every x ∈M1.

We will denote by MC the category of right C-comodules.

Let (C,∆, ε) be a k-coalgebra and let
(
N1,

N1ρ
)
and

(
N2,

N2ρ
)
be left C-comodules.

A k-linear map f : N1 → N2 is called a morphism of (left) comodules (or left
colinear map) if

(C ⊗ f) ◦ N1ρ = N2ρ ◦ f

i.e. if ∑
x−1 ⊗ f (x0) =

∑
f (x)−1 ⊗ f (x)0 for every x ∈ N1.

We will denote by CM the category of left C-comodules.

Exercise 2.11. Let (C,∆, ε) be a coalgebra and let
(
M,ρM

)
be a right C-comodule.

Prove that ρM is injective.

Exercise 2.12. Let f :
(
M1, ρ

M1
)
→
(
M2, ρ

M2
)
be a comodule morphism and as-

sume that f is bijective. Sow that f−1 is a comodule morphism.

Definition 2.13. A subspace L of a right C-comodule
(
M,ρM

)
is called a C-

subcomodule if

ρM (L) ⊆ L⊗ C.

In this case L itself becomes in a natural way a right C-comodule by setting

ρL =
((
ρM
)
|L

)L⊗C
.

In this way the natural inclusion iL : L→M becomes automatically a morphism of
comodules.

Remark 2.14. An analogous definition hold for left C-comodules.

Example 2.15. Any coalgebra C can be regarded as a right C-comodule by setting
ρC = ∆. The subcomodules of this particular comodule are just the right coideals of
C.

Exercise 2.16. Let f :M1 →M2 be a morphism of right C-comodules. Prove that
Ker(f) is a subcomodule of M1 and Im (f) is a subcomodule of M2.
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Theorem 2.17. (The Fundamental Theorem of the Quotient Comod-
ule) Let

(
M,ρM

)
be a right C-comodule, let L be a subcomodule of M and let

p = pL : M → M/L be the canonical projection. Then M/L can be endowed by a
unique comodule structure (called quotient comodule) such that p becomes a comod-
ule morphism. Moreover given any morphism f : M → M ′ of right C-comodules
such that L ⊆ Ker (f), there exists a unique comodule morphism f : M/L → M ′

such that f = f ◦ p.

Proof. Since ρM (L) ⊆ L ⊗ C, we get that
[
(p⊗ C) ◦ ρM

]
(L) = {0}. Hence there

exists a unique k-linear map ρM/L : M/L → M/L ⊗ C such that ρM/L ◦ p =
(p⊗ C) ◦ ρM and we have

(M/L⊗∆) ◦ ρM/L ◦ p = (M/L⊗∆) ◦ (p⊗ C) ◦ ρM

= (p⊗∆) ◦ ρM = (p⊗ C ⊗ C) ◦ (M ⊗∆) ◦ ρM

= (p⊗ C ⊗ C) ◦
(
ρM ⊗ C

)
◦ ρM

=
(
(p⊗ C) ◦ ρM ⊗ C

)
◦ ρM

=
(
ρM/L ◦ p⊗ C

)
◦ ρM =

(
ρM/L ⊗ C

)
◦ (p⊗ C) ◦ ρM

=
(
ρM/L ⊗ C

)
◦ ρM/L ◦ p.

Since p is surjective, we get that (M/L⊗∆) ◦ ρM/L =
(
ρM/L ⊗ C

)
◦ ρM/L. Let us

compute

rM/L ◦ (M/L⊗ ε) ◦ ρM/L ◦ p = rM/L ◦ (M/L⊗ ε) ◦ (p⊗ C) ◦ ρM

= rM/L ◦ (p⊗ k) ◦ (M ⊗ ε) ◦ ρM
(1.1)
= p ◦ rM ◦ (M ⊗ ε) ◦ ρM = p

Since p is surjective, we get that rM/L ◦ (M/L⊗ ε) ◦ ρM/L = IdM/L and hence(
M/L, ρM/L

)
is a right C-comodule. Note that p becomes automatically a comodule

morphism.
Let now f : M →M ′ be a comodule morphism and assume that L is contained

in Ker(f). Then there exists a unique k-linear map f : M/L → M ′ such that
f ◦ p = f . Let us check that f is a comodule morphism. Indeed we have(

f ⊗ C
)
◦ ρM/L ◦ p =

(
f ⊗ C

)
◦ (p⊗ C) ◦ ρM = (f ⊗ C) ◦ ρM = ρM

′ ◦ f
= ρM

′ ◦ f ◦ p.

Since p is surjective we deduce that
(
f ⊗ C

)
◦ ρM/L = ρM

′ ◦ f .

Exercise 2.18. Let (Li)i∈I be a family of subcomodules of a right comodule
(
M,ρM

)
.

Show that both
∑

i∈I Li and
∩
i∈I
Li are subcomodules of M .

2.19. Let C be a coalgebra and let M be a k-vector space. Let W ⊆ M∗ and let
evM,W :M⊗W → k be the evaluation map. For every k-linear map ρ :M →M⊗C
set

µρ : C
∗ ⊗M

τC∗,M−→ M ⊗ C∗
ρ⊗C∗
−→ M ⊗ C ⊗ C∗

M⊗evC,C∗
−→ M ⊗ k

rM−→M.



28 CHAPTER 2. COMODULES AND RATIONAL MODULES

Lemma 2.20. Using the notation of 2.19, let

θ := mk ◦ (evC,C∗ ⊗ evC,C∗) ◦ (C ⊗ τC,C∗ ⊗ C∗) : C ⊗ C ⊗ C∗ ⊗ C∗ → k.

Then the map

Θ : Hom (M,M ⊗ C ⊗ C) → Hom (M ⊗ C∗ ⊗ C∗,M ⊗ k) :

defined by setting

Θ(γ) = (M ⊗ θ) ◦ (γ ⊗ C∗ ⊗ C∗) for every γ ∈ Hom (M,M ⊗ C ⊗ C)

is injective.

Proof. Note that, for every x ∈M, c, d ∈ C and f, g ∈ C∗, we have
(2.4)
(M ⊗ θ) (x⊗ c⊗ d⊗ f ⊗ g) = x⊗ f (c) g (d) = [M ⊗ (mk ◦ (f ⊗ g))] (x⊗ c⊗ d) .

Let γ ∈ Hom (M,M ⊗ C ⊗ C) and let x ∈M, f, g ∈ C∗. Let us compute

Θ (γ) (x⊗ f ⊗ g) = [(M ⊗ θ) ◦ (γ ⊗ C∗ ⊗ C∗)] (x⊗ f ⊗ g)

= (M ⊗ θ) (γ (x)⊗ f ⊗ g)
(2.4)
= [M ⊗ (mk ◦ (f ⊗ g))] (γ (x)) .

Let γ, ξ ∈ Hom (M,M ⊗ C ⊗ C) and assume that Θ (γ) = Θ (ξ). From the forego-
ing, we deduce that, for every x ∈M, f, g ∈ C∗, we have

(2.5) [M ⊗ (mk ◦ (f ⊗ g))] (γ (x)) = [M ⊗ (mk ◦ (f ⊗ g))] (ξ (x)) .

Now assume that there exists an x ∈M such that

y = γ (x)− ξ (x) ̸= 0.

Let (ei)i∈I be a basis of C. Then there exist xi,j ∈ M, i, j ∈ F where F is a finite
subset of I such that

y =
∑
i,j∈F

xi,j ⊗ ei ⊗ ej.

Let (e∗i )i∈I be the dual system of (ei)i∈I . Then for any s, t ∈ F we get

(M ⊗ (mk ◦ (e∗s ⊗ e∗t )))

(∑
i,j∈F

xi,j ⊗ ei ⊗ ej.

)
= xs,t.

Since y ̸= 0, there exist s0, t0 such that xs0,t0 ̸= 0. This contradicts (2.5).

The proof of the following theorem is mostly due to Alessandro Ardizzoni. We
thank him for this great help.
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Theorem 2.21. Using the notation of 2.19, we have that

(M,ρ) is a right C-comodule ⇐⇒ (M,µρ) is a left C∗-module.

Proof. Set ev = evC,C∗ . Let us prove that

(2.6) ev ◦ (C ⊗mC∗) = mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗) ◦ (∆C ⊗ C∗ ⊗ C∗)

Let c ∈ C, f, g ∈ C∗. We compute

[ev ◦ (C ⊗mC∗)] (c⊗ f ⊗ g) = (f ∗ g) (c)

and

[mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗) ◦ (∆C ⊗ C∗ ⊗ C∗)] (c⊗ f ⊗ g)

= mk (ev ⊗ ev) (C ⊗ τC,C∗ ⊗ C∗)
(∑

c1 ⊗ c2 ⊗ f ⊗ g
)
=

= mk (ev ⊗ ev)
(∑

c1 ⊗ f ⊗ c2 ⊗ g
)
=
∑

f (c1) g (c2) .

By definition of f ∗ g we deduce (2.6). From this we get that

µρ ◦ (mC∗ ⊗M) = rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦ τC∗,M ◦ (mC∗ ⊗M)

(1.3)
= rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦ (M ⊗mC∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ ev ◦ (C ⊗mC∗)) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

(2.6)
= rM ◦ (M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗) ◦ (∆C ⊗ C∗ ⊗ C∗)])

◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)])

◦ (M ⊗∆C ⊗ C∗ ⊗ C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)])

◦ [(M ⊗∆C) ◦ ρ⊗ C∗ ⊗ C∗] ◦ τC∗⊗C∗,M

and hence we have

µρ ◦ (mC∗ ⊗M) = rM ◦ (M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)])(2.7)

◦ [(M ⊗∆C) ◦ ρ⊗ C∗ ⊗ C∗] ◦ τC∗⊗C∗,M

Now it is easy to check that

(2.8) (τC∗,M ⊗ C∗) ◦ τC∗,C∗⊗M = (M ⊗ τC∗,C∗) ◦ τC∗⊗C∗,M .
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We compute

µρ ◦ (C∗ ⊗ µρ) = rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦ τC∗,M ◦ (C∗ ⊗ µρ)

(1.3)
= rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦ (µρ ⊗ C∗) ◦ τC∗,C∗⊗M = rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦

(rM ⊗ C∗) ◦ (M ⊗ ev ⊗ C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ (τC∗,M ⊗ C∗) ◦ τC∗,C∗⊗M

(2.8)
= rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦

(rM ⊗ C∗) ◦ (M ⊗ ev ⊗ C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ (M ⊗ τC∗,C∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ ev) ◦ (ρ ◦ rM ⊗ C∗) ◦
(M ⊗ ev ⊗ C∗) ◦ (M ⊗ C ⊗ τC∗,C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

(1.1)
= rM ◦ (M ⊗ ev) ◦

(rM⊗C ◦ (ρ⊗ k)⊗ C∗) ◦ (M ⊗ ev ⊗ C∗) ◦ (M ⊗ C ⊗ τC∗,C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

1.2
= rM ◦ (M ⊗ ev) ◦ (M ⊗ rC ⊗ C∗)

◦ (ρ⊗ k ⊗ C∗) ◦ (M ⊗ ev ⊗ C∗) ◦ (M ⊗ C ⊗ τC∗,C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ ev) ◦ (M ⊗ rC ⊗ C∗) ◦ (M ⊗ C ⊗ ev ⊗ C∗) ◦
◦ (ρ⊗ C ⊗ C∗ ⊗ C∗) ◦ (M ⊗ C ⊗ τC∗,C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ ev) ◦ (M ⊗ rC ⊗ C∗) ◦ (M ⊗ C ⊗ ev ⊗ C∗) ◦
◦ (M ⊗ C ⊗ C ⊗ τC∗,C∗) ◦ (ρ⊗ C ⊗ C∗ ⊗ C∗) ◦ (ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

= rM ◦ (M ⊗ [ev ◦ (rC ⊗ C∗) ◦ (C ⊗ ev ⊗ C∗) ◦ (C ⊗ C ⊗ τC∗,C∗)])

◦ ((ρ⊗ C) ◦ ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M

Now it is easy to prove that
(2.9)
[ev ◦ (rC ⊗ C∗) ◦ (C ⊗ ev ⊗ C∗) ◦ (C ⊗ C ⊗ τC∗,C∗)] = [mk (ev ⊗ ev) (C ⊗ τC,C∗ ⊗ C∗)] .

In fact, for every c, d ∈ C, f, g ∈ C∗ we have

[ev ◦ (rC ⊗ C∗) ◦ (C ⊗ ev ⊗ C∗) ◦ (C ⊗ C ⊗ τC∗,C∗)] (c⊗ d⊗ f ⊗ g)

= [ev ◦ (rC ⊗ C∗) ◦ (C ⊗ ev ⊗ C∗)] (c⊗ d⊗ g ⊗ f) = g (d) f (c)

and

[mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)] (c⊗ d⊗ f ⊗ g) = mk (ev ⊗ ev) (c⊗ d⊗ g ⊗ f) = f (c) g (d) .

Thus we obtain

µρ ◦ (C∗ ⊗ µρ) = rM ◦ (M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)]) ◦(2.10)

((ρ⊗ C) ◦ ρ⊗ C∗ ⊗ C∗) ◦ τC∗⊗C∗,M .

Now, for every m ∈M, c ∈ C, we have

(2.11) [rM ◦ (M ⊗ ev)] (m⊗ c⊗ ε) = m · ε (c) = [rM ◦ (M ⊗ ε)] (m⊗ c)
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so that(
µρ ◦ (uC∗ ⊗M) ◦ l−1M

)
(x) = µρ (ε⊗ x) = [rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗) ◦ τC∗,M ] (ε⊗ x) =

= [rM ◦ (M ⊗ ev) ◦ (ρ⊗ C∗)] (x⊗ ε) = [rM ◦ (M ⊗ ev)] (ρ (x)⊗ ε)

(2.11)
= [rM ◦ (M ⊗ ε)] (ρ (x)) = [rM ◦ (M ⊗ ε) ◦ ρ] (x)

and hence we get

(2.12) µρ ◦ (uC∗ ⊗M) ◦ l−1M = rM ◦ (M ⊗ ε) ◦ ρ

⇒) Since (ρ⊗ C) ◦ ρ = (M ⊗∆) ◦ ρ, from (2.7) and from (2.10) we get µρ ◦
(mC∗ ⊗M) = µρ ◦ (C∗ ⊗ µρ). On the other hand, since rM ◦ (M ⊗ ε) ◦ ρ = IdM ,
from (2.12) we get µρ ◦ (uC∗ ⊗M) ◦ l−1M = IdM .

⇐) Conversely, since µρ ◦ (mC∗ ⊗M) = µρ ◦ (C∗ ⊗ µρ), from (2.7) and (2.10),
we get

(M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)]) ◦ [(M ⊗∆C) ◦ ρ⊗ C∗ ⊗ C∗](2.13)

= (M ⊗ [mk ◦ (ev ⊗ ev) ◦ (C ⊗ τC,C∗ ⊗ C∗)]) ◦ ((ρ⊗ C) ◦ ρ⊗ C∗ ⊗ C∗) .

Set γ = (M ⊗∆C) ◦ ρ and ξ = (ρ⊗ C) ◦ ρ. Using the notations of Lemma 2.20
this means that

Θ (γ) = Θ (ξ) .

Since Θ is injective, we deduce that γ = ξ.
Since µρ ◦ (uC∗ ⊗M)◦ l−1M = IdM , from (2.12) we get rM ◦ (M ⊗ ε)◦ρ = IdM .

Proposition 2.22. The assignment
(
M,ρM

)
7→
(
M,µρM

)
gives rise to a functor

H : MC → C∗M

Proof. Let γ : M →M ′ be a comodule morphism. Given f ∈ C∗ and x ∈ M let us
compute

γ (f · x) = γ
(∑

x0f (x1)
)
=
∑

γ (x0) f (x1) =
(∑

(γ (x))0 f ((γ (x))1)
)
= f ·(γ (x)) .

From this we deduce that γ is a morphism of left C∗-modules.

2.23. Let M be a vector space. The map ζ : M × C → Hom (C∗,M) defined by
setting

[ζ ((x, c))] (f) = xf (c) for every x ∈M, c ∈ C, f ∈ C∗

is bilinear so that it gives rise to a k-linear map αM :M ⊗ C → Hom (C∗,M) such
that

(αM (x⊗ c)) (f) = xf (c) for every x ∈M, c ∈ C, f ∈ C∗.

Proposition 2.24. Within the assumptions and notations of 2.23, the map αM :
M ⊗ C → Hom (C∗,M) is injective.
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Proof. Let z =
∑

i=1,...,n xi ⊗ ci ∈ M ⊗ C and suppose that z ̸= 0 and αM (z) = 0.
We can assume, w.l.o.g. that c1, . . . ., cn are linearly independent and that x1 ̸= 0.
Let c∗i ∈ C∗ such that c∗i (cj) = δi,j.. Then

0 = αM (z) (c∗1) = αM

(
n∑
i=1

xi ⊗ ci

)
(c∗1) =

n∑
i=1

xic
∗
1 (ci) = x1 ̸= 0,

contradiction.

2.25. Let
(
M,Mµ

)
be a left C∗-module. Then we can consider the k-linear map

βM :M → Hom (C∗,M) defined by setting

βM (x) = rx : C
∗ →M where rx (f) = f · x.

Definition 2.26. A left C∗-module
(
M,Mµ

)
is called rational when there exists a

k-linear map δM :M →M ⊗ C such that

αM ◦ δM = βM .

We will denote by Rat (C∗M) the full subcategory of C∗M whose objects are exactly
the rational modules.

Remark 2.27. Note that if δ, δ′ :M →M ⊗C satisfy αM ◦ δ = βM = αM ◦ δ′, then,
since αM is injective, we get δ = δ′. Thus we will write

(
M,Mµ, δM

)
∈ Rat (C∗M)

to specify the unique map δM such that αM ◦ δM = βM .

Proposition 2.28. Let
(
M,Mµ

)
be a left C∗-module. M is rational if and only if

for any x ∈ M there exist n ∈ N, n ≥ 1, y1, . . . , yn ∈ M and c1, . . . , cn ∈ C such
that

f · x =
n∑
i=1

yif (ci) for any f ∈ C∗.

In this case

δM (x) =
n∑
i=1

yi ⊗ ci for any x ∈M.

Proof. Assume thatM is rational and let δM :M →M⊗C such that αM ◦δM = βM .
For x ∈M let

δM (x) =
n∑
i=1

yi ⊗ ci where n ∈ N, n ≥ 1, y1, . . . , yn ∈M, c1, . . . , cn ∈ C.

Then, for any f ∈ C∗, we have

f · x = [βM (x)] (f) =
[
αM

(
δM (x)

)]
(f) = αM

(
n∑
i=1

yi ⊗ ci

)
(f) =

n∑
i=1

yif (ci)
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Conversely assume that for any x ∈M there exist n ∈ N, n ≥ 1, y1, . . . , yn ∈M and
c1, . . . , cn ∈ C such that f · x =

∑n
i=1 yif (ci) for any f ∈ C∗. Then, given x ∈ M ,

for any f ∈ C∗, we have

[βM (x)] (f) = f · x =
n∑
i=1

yif (ci) = αM

(
n∑
i=1

yi ⊗ ci

)
(f)

i.e.

βM (x) = αM

(
n∑
i=1

yi ⊗ ci

)
.

Since αM is injective, we define a map δM :M →M ⊗ C by setting

δM (x) =
n∑
i=1

yi ⊗ ci for any x ∈M.

Then

αM
(
δM (x)

)
= αM

(
n∑
i=1

yi ⊗ ci

)
= βM (x)

so that αM ◦ δM = βM . Since αM is injective and both αM and βM are k-linear, it
follows that δM is k-linear too.

Lemma 2.29. Using the assumptions and notations of Proposition 2.22, for every(
M,ρM

)
∈ MCwe have that

(
M,µρM , ρ

M
)
is a rational module. Therefore Im (H) ⊆

Rat (C∗M).

Proof. Let
(
M,ρM

)
be a right C-comodule and let us consider the associated left

C∗-module
((
M,µρM

))
. Then, for every x ∈M and f ∈ C∗, we compute[(

αM ◦ ρM
)
(x)
]
(f) =

[
αM

(∑
x0 ⊗ x1

)]
(f) =

∑
x0f (x1) = f ·x = [βM (x)] (f) .

Therefore we deduce that
αM ◦ ρM = βM .

Theorem 2.30. The assignment
(
M,ρM

)
7→
(
M,µρM , ρ

M
)
gives rise to a category

isomorphism Γ : MC → Rat (C∗M) .

Proof. In view of Lemma 2.29, the image of the functor H : MC → C∗M in
Proposition 2.22 is contained in Rat (C∗M) and hence we can consider the func-
tor Γ = H pRat(C∗M).

Now assume that
(
M,Mµ,δM

)
is rational. For x ∈M, let

δM (x) =
n∑
i=1

yi ⊗ ci where n ∈ N, n ≥ 1, y1, . . . , yn ∈M, c1, . . . , cn ∈ C.
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Then, for any f ∈ C∗ we have

µδM (f ⊗ x) =
[
rM ◦ (M ⊗ ev) ◦

(
δM ⊗ C∗

)
◦ τC∗,M

]
(f ⊗ x) =

[rM ◦ (M ⊗ ev)]

((
n∑
i=1

yi ⊗ ci

)
⊗ f

)
=

n∑
i=1

yif (ci) = αM

(
n∑
i=1

yi ⊗ ci

)
(f) =

=
[
αM

(
δM (x)

)]
(f) = [βM (x)] (f) = f · x = Mµ (f ⊗ x)

Thus

(2.14) µδM = Mµ

and hence, by Theorem 2.21, we deduce that
(
M, δM

)
is a right C-comodule.

Now we want to prove that the assignment
(
M,Mµ,δM

)
7→
(
M, δM

)
gives rise

to a functor Λ : Rat (C∗M) → MC . Thus let
(
M,Mµ,δM

)
and

(
M ′,M ′µ, δM

′)
be

rational modules and let γ : M → M ′ be a morphism of left C∗-modules. We
will prove that γ :

(
M, δM

)
→
(
M ′, δM

′)
is a morphism of comodules. For any

t ∈M, c ∈ C, f ∈ C∗ we have

[αM ((t⊗ c))] (f) = tf (c)

so that

{[αM ′ ◦ (γ ⊗ C)] (t⊗ c)} (f) = [αM ′ (γ (t)⊗ c)] (f) = γ (t) f (c)

= γ (tf (c)) = γ [αM (t⊗ c) (f)]

and hence

(2.15) {[αM ′ ◦ (γ ⊗ C)] (t⊗ c)} (f) = γ [αM (t⊗ c) (f)] .

Now, for every x ∈M and f ∈ C∗, we have{[
αM ′ ◦ (γ ⊗ C) ◦ δM

]
(x)
}
(f) =

{
[αM ′ ◦ (γ ⊗ C)]

(
δM (x)

)}
(f)

(2.15)
= γ

[
αM

(
δM (x)

)
(f)
]

= γ [βM (x) (f)] = γ (f · x)

and {[
αM ′ ◦ δM ′ ◦ γ

]
(x)
}
(f) = (βM ′ (γ (x))) (f) = f · γ (x) .

Since γ is a morphism of left C∗-modules, for every x ∈ M and f ∈ C∗, we obtain
that {[

αM ′ ◦ (γ ⊗ C) ◦ δM
]
(x)
}
(f) =

{[
αM ′ ◦ δM ′ ◦ γ

]
(x)
}
(f)

and hence
αM ′ ◦ (γ ⊗ C) ◦ δM = αM ′ ◦ δM ′ ◦ γ.

Since αM ′ is injective we get

(γ ⊗ C) ◦ δM = δM
′ ◦ γ.
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Hence we obtain a functor Λ : Rat (C∗M) → MC such that

Λ
(
M,Mµ,δM

)
=
(
M, δM

)
and Λ (f) = f for any morphism f in C∗M.

Let us prove that the functors Γ and Λ give rise to an isomorphism of categories
between MC and Rat (C∗M).

Let
(
M,ρM

)
∈ MC . Then Γ

(
M,ρM

)
=
(
M,µρM , ρ

M
)
and hence Λ

(
Γ
(
M,ρM

))
=(

M,ρM
)
. Conversely, let

(
M,Mµ,δM

)
∈ Rat (C∗M). Then Λ

(
M,Mµ,δM

)
=
(
M, δM

)
and hence Γ

(
Λ
(
M,Mµ,δM

))
= Γ

(
M, δM

)
=
(
M,µδM , δ

M
) 2.14
=
(
M,Mµ,δM

)
.

Exercise 2.31. Let C be a coalgebra and let f : M → N be an isomorphism in

C∗M. Show that, if M is rational, also N is rational.

Theorem 2.32. Let C be a coalgebra. The full subcategory Rat (C∗M) of C∗M is
closed under submodules, quotients and direct sums.

Proof. Let
(
M,Mµ, δM

)
∈ Rat (C∗M) and let L be a C∗-submodule of M .

Since M is rational, by Proposition 2.28, for every l ∈ L, there exist n ∈ N,
n ≥ 1, y1, . . . , yn ∈M and c1, . . . , cn ∈ C such that

f · l =
n∑
i=1

yif (ci) for any f ∈ C∗.

We can assume c1, . . . , cn linearly independent and denote by c∗j the elements of C∗

defined by c∗j (ci) = δi,j. Then we obtain

L ∋ c∗j · l = yj for every j = 11, . . . , n.

Hence, by Proposition 2.28, we conclude that L is rational with δL =
((
δM
)
|L

)|L⊗C
.

Now we apply again Proposition 2.28 to get that, for every x ∈ M , there exist
n ∈ N, n ≥ 1, y1, . . . , yn ∈M and c1, . . . , cn ∈ C such that

f · x =
n∑
i=1

yif (ci) for any f ∈ C∗.

Then

f · (x+ L) = (f · x) + L =

(
n∑
i=1

yif (ci)

)
+ L =

n∑
i=1

(yi + L) f (ci)

and hence, using one more time Proposition 2.28, we conclude thatM/L is rational.
Let now

(
Mi,

Miµ, δMi
)
i∈I be a family in Rat (C∗M). Let

ψ :
⊕
i∈I

(Mi ⊗ C) →

(⊕
i∈I

Mi

)
⊗ C
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be the natural isomorphism, i.e. for every ti ∈Mi and ci ∈ C we have

ψ
(
(ti ⊗ ci)i∈I

)
=
∑
i∈I

εi (ti)⊗ ci =
∑
i∈I

(εi ⊗ C) (ti ⊗ ci) .

Set
δ⊕i∈IMi = ψ ◦

(
⊕i∈Iδ

Mi
)
.

Then, for every (xi)i∈I ∈
⊕
i∈I
Mi, we get

[
ψ ◦

(
⊕i∈Iδ

Mi
)]

(xi)i∈I = ψ
(
(δMi

(xi))i∈I
)
=
∑
i∈I

(εi ⊗ C) (δMi
(xi)) .

Let (xi)i∈I ∈
⊕
i∈I
Mi, c ∈ C, f ∈ C∗ and let us compute

[(
α⊕i∈IMi

)
◦ (εi ⊗ C) (xi ⊗ c)

]
(f) =

[(
α⊕i∈IMi

)
(εi (xi)⊗ c)

]
(f) = εi (xi) f (c)

= εi (xif (c)) = εi [αMi
(xi ⊗ c) (f)] .

Hence we deduce that[(
α⊕i∈IMi

◦ δ⊕i∈IMi
)
(xi)i∈I

]
(f) =

[(
α⊕i∈IMi

◦ ψ ◦
(
⊕i∈Iδ

Mi
))

(xi)i∈I
]
(f)

=

[
α⊕i∈IMi

(∑
i∈I

(εi ⊗ C) (δMi
(xi))

)]
(f) =

∑
i∈I

εi {[αMi
(δMi

(xi))] (f)}

=
∑
i∈I

εi [(βMi
(xi)) (f)] =

∑
i∈I

εi (f · xi) = f · (xi)i∈I =
[
β⊕i∈IMi

(
(xi)i∈I

)]
(f)

i.e.
α⊕i∈IMi

◦ δ⊕i∈IMi = β⊕i∈IMi
.

Theorem 2.33. Let
(
M,ρM

)
be a right C-comodule and let x ∈ M . Then C∗x is

the minimal subcomodule of M containing x. Moreover dimk (C
∗x) <∞.

Proof. The first assertion follows from Theorem 2.32 and Theorem 2.30. Let x ∈M
and write ρ (x) =

∑
i=1,...,n yi ⊗ ci. Then

f · x =
n∑
i=1

yif (ci) ∈
n∑
i=1

kyi for any f ∈ C∗

so that

C∗x ≤
n∑
i=1

kyi.
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Theorem 2.34. Let
(
M,Mµ

)
∈ C∗M and let Rat (M) = {L ≤C∗ M | L ∈ Rat (C∗M)}.

Set

(2.16) rat (M) =
∑

L∈Rat(M)

L.

Then rat (M) ∈ C∗M and it is the maximal submodule of M which is a rational
module. Moreover if f :M →M ′ is a morphism in C∗M, then

1) f (rat (M)) ⊆ rat (M ′),

2) Ker
(
f|rat(M)

)
= rat (Ker (f)) .

Proof. For every L ∈ Rat (M), let iL : L→M be the canonical inclusion and let Φ
be the codiagonal morphism of the family (iL)L∈Rat(M) :

Φ :
⊕

L∈Rat(M)

L→M.

Then Im (Φ) =
∑

L∈Rat(M) L and, in view of Theorem 2.32, we obtain that Im (Φ) ∈
Rat (C∗M).

Let now f : M → M ′ be a morphism in C∗M. Then f (rat (M)) is a quotient
of rat (M) and hence, by Theorem 2.32, f (rat (M)) ∈ Rat (M ′). Moreover, by
the same Theorem we have that any C∗-submodule of rat (M) is rational so that
Ker(f) ∩ rat (M) ⊆ rat (Ker (f)) and we get

Ker
(
f|rat(M)

)
= Ker (f) ∩ rat (M) ⊆ rat (Ker (f)) ⊆ Ker (f) ∩ rat (M) .

Proposition 2.35. Let
(
M,Mµ

)
∈ C∗M. Then

rat (M) = β←M (αM (M ⊗ C))

Proof. Let L be a C∗-submodule of M and assume that
(
L, µL, δL

)
∈ Rat (C∗M).

Then βL = αL ◦ δL. Let iL : L→M be the canonical inclusion. Then

(2.17) Hom (C∗, iL) ◦ αL = αM ◦ (iL ⊗ C) .

and

(2.18) βM ◦ iL = Hom (C∗, iL) ◦ βL

Hence

βM ◦ iL
(2.18)
= Hom (C∗, iL) ◦ βL = Hom (C∗, iL) ◦ αL ◦ δL

(2.17)
= αM ◦ (iL ⊗ C) ◦ δL
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so that

(2.19) βM ◦ iL = αM ◦ (iL ⊗ C) ◦ δL

βM (L) = βM ◦ iL (L) = [αM ◦ (iL ⊗ C) ◦ δL] (L) ⊆ αM (M ⊗ C)

and hence
L ⊆ β←MβM (L) ⊆ β←M (αM (M ⊗ C)) .

Conversely, let us prove that X = β←M (αM (M ⊗ C)) is a rational H∗-submodule of
M. Let g ∈ C∗ and let x ∈ X. Then there exist n ∈ N, n ≥ 1, x1, . . . , xn ∈ M and
c1, . . . , cn ∈ C such that

βM (x) = αM

(
n∑
i=1

xi ⊗ ci

)
.

i.e.

[βM (x)] (f) =

[
αM

(
n∑
i=1

xi ⊗ ci

)]
(f) for every f ∈ C∗

so that

f · x = [βM (x)] (f) =

[
αM

(
n∑
i=1

xi ⊗ ci

)]
(f) =

n∑
i=1

xif (ci) for every f ∈ C∗

and hence we get

(2.20) f · x =
n∑
i=1

xif (ci) for every f ∈ C∗.

Thus we have

[βM (gx)] (f) = f (gx) = (f ∗ g)x (2.20)
=

n∑
i=1

xi [(f ∗ g) (ci)]

=
n∑
i=1

∑
xif [(ci)1] g [(ci)2] =

[
αM

(
n∑
i=1

xi ⊗ ci1g [(ci)2]

)]
(f)

i.e.

[βM (gx)] (f) =

[
αM

(
n∑
i=1

xi ⊗ ci1g [(ci)2]

)]
(f) for every f ∈ C∗

which means that

βM (gx) = αM

(
n∑
i=1

xi ⊗ ci1g [(ci)2]

)
∈ αM (M ⊗ C)

and hence we get that gx ∈ X. Therefore X is a left C∗-submodule of M .
Thus we can apply to the left C∗-module X Proposition 2.28. Since, for any

x ∈ X there exist n ∈ N, n ≥ 1, x1, . . . , xn ∈M and c1, . . . , cn ∈ C such that (2.20)
holds, we conclude, in view of Proposition 2.28, that X is rational.
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Theorem 2.36. Let (C,∆, ε) be a finite dimensional coalgebra. Then Rat (C∗M) =

C∗M

Proof. In view of Theorem 2.34, we have only to prove that C∗ ∈ Rat (C∗M).
Let n ∈ N, n ≥ 1 and let e1, . . . en be a basis of C. Let e

∗
1, . . . e

∗
n the corresponding

dual basis. Then, for every f ∈ C∗

f =
n∑
i=1

e∗i f (ei)

and hence, given γ ∈ C∗, for every f ∈ C∗ we have

f · γ =

(
n∑
i=1

e∗i f (ei)

)
· γ =

n∑
i=1

(e∗i · γ) f (ei) .

Since e∗i · γ ∈ C∗ for every i = 1 . . . n, in view of 2.28, we conclude.

Definition 2.37. Let R be a ring and let M ∈ RM. The Wisbauer category
σ [M ] is the smallest full subcategory of RM which contains M and is closed under
submodules, quotients and direct sums.

PROPOSAL FOR A DEEPER UNDERSTANDING: Introduce the con-
cept of Grothendieck category. Prove that Rat (C∗M) is a Grothendieck category
and that

Rat (C∗M) = σ (C∗C) .

Notation 2.38. We will denote by V eck the category of k-vector spaces i.e. of
symmetric k-bimodules.

Proposition 2.39. Let (C,∆, ε) be a coalgebra, let V ∈ V eck and
(
M,ρM

)
∈ MC.

Then the assignments V 7→
(
V ⊗M,V ⊗ ρM

)
and f 7→ f ⊗ M define a functor

FM : V eck → MC.

Proof. We compute

(V ⊗M ⊗∆) ◦
(
V ⊗ ρM

)
= V ⊗

[
(M ⊗∆) ◦ ρM

]
= V ⊗

[(
ρM ⊗ C

)
◦ ρM

]
=

((
V ⊗ ρM

)
⊗ C

)
◦
(
V ⊗ ρM

)
and

rV⊗M ◦ (V ⊗M ⊗ ε) ◦
(
V ⊗ ρM

) (1.2)
= (V ⊗ rM) ◦ (V ⊗M ⊗ ε) ◦

(
V ⊗ ρM

)
=

(
V ⊗

[
rM ◦ (M ⊗ ε) ◦

(
ρM
)])

= V ⊗M .

Moreover, for any k-linear map f : V → V ′ we have

(f ⊗M ⊗ C) ◦
(
V ⊗ ρM

)
=
(
f ⊗ ρM

)
=
(
V ′ ⊗ ρM

)
◦ (f ⊗M) .
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Theorem 2.40. Let (C,∆, ε) be a coalgebra. The functor F = FC : V eck → MC

is a right adjoint of the forgetful functor U : MC → V eck.

Proof. Let
(
M,ρM

)
∈ MC . Then ρM :

(
M,ρM

)
→ (M ⊗ C,M ⊗∆) is a comodule

morphism. Indeed we have (
ρM ⊗ C

)
= (M ⊗∆) ◦ ρM .

Let us check that the family
(
ρM
)
M∈MC gives rise to a functorial morphism

ρ : IdMC → FU.

Let f :M →M ′ be a right comodule morphism. This means that

(f ⊗ C) ◦ ρM = ρM
′ ◦ f

and this is what is needed for ρ to be a functorial morphsim.
Let now V be a vector space and set

ϵV = rV ◦ (V ⊗ ε) : V ⊗ C → V.

Let us check that the family (ϵV )V ∈V eck gives rise to a functorial morphism

ϵ : UF → IdV eck .

In fact, given a k-linear map h : V → V ′, we have

h ◦ ϵV = h ◦ rV ◦ (V ⊗ ε)
(1.1)
= rV ′ ◦ (h⊗ k) ◦ (V ⊗ ε) = rV ′ ◦ (h⊗ ε)

= rV ′ ◦ (V ′ ⊗ ε) ◦ (h⊗ C) = ϵV ′ ◦ (h⊗ C) .

Let us prove that ρ and ϵ fulfill the requirements for being the unit, resp. the
counit, for an adjunction (U, F ). Thus let

(
M,ρM

)
∈ MC , let V ∈ V eck and let us

compute

ϵU(M,ρM ) ◦ U
(
ρM
)
= rM ◦ (M ⊗ ε) ◦ ρM = IdM = IdU(M,ρM )

and

F (ϵV ) ◦ ρF (V ) = F (rV ◦ (V ⊗ ε)) ◦ (V ⊗∆) = (rV ⊗ C) ◦ (V ⊗ ε⊗ C) ◦ (V ⊗∆)

(1.2)
= (V ⊗ lC) ◦ (V ⊗ ε⊗ C) ◦ (V ⊗∆) = IdV⊗C .

Corollary 2.41. For any k-vector space V , F (V ) is an injective object in MC.

Proof. In view of Theorem 2.40, the functor HomMC (−, F (V )) is isomorphic to the
functor Hom (U (−) , V ). Since U and Hom (−, V ) are exact functors, we conclude.
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Proposition 2.42. Let (C,∆, ε) be a coalgebra. Then (C,∆) is an injective cogen-
erator of MC.

Proof. By Corollary 2.41, we have that F (k) is an injective object in MC . Now
lC : F (k) = (k ⊗ C, k ⊗∆) → (C,∆) is colinear. In fact, by (1.1), we have

(lC ⊗ C) ◦ (k ⊗∆) = lC⊗C ◦ (k ⊗∆) = ∆ ◦ lC .

Thus lC is an isomorphism in MC and hence C is an injective object in MC . Let
now

(
M,ρM

)
∈ MC and let λ : M → k(X) be an isomorphism of vector spaces.

It is easy to check that the usual isomorphism ψ : k(X) ⊗ C → C(X) is a colinear
map from F

(
k(X)

)
into (C,∆)(X) . Since ρM :

(
M,ρM

)
→ FU (M) ≃ F

(
k(X)

)
is an

injective colinear map, we conclude.

Definitions 2.43. Let (C,∆C , εC) and (D,∆D, εD) be coalgebras. A C-D-bicomodule
is a triple

(
M,Mρ, ρM

)
such that

(
M,Mρ

)
∈ CM,

(
M,ρM

)
∈ MD and

(2.21)
(
Mρ⊗D

)
◦ ρM =

(
C ⊗ ρM

)
◦ Mρ.

A k-linear map f :M →M ′ between two C-D-bicomodules is called a morphism of
C-D-bicomodules if it is both left C-colinear and right D-colinear. The category of
C-D-bicomodules we will denoted by CMD

Proposition 2.44. Let (C,∆C , εC) and (D,∆D, εD) be coalgebras and let
(
M,Mρ

)
∈

CM and
(
N, ρN

)
∈ MD. Then

(
M ⊗N,Mρ⊗N,M ⊗ ρN

)
∈ CMD

.

Proof. By Proposition 2.39,
(
M ⊗N,Mρ⊗N

)
∈ CM and

(
M ⊗N,M ⊗ ρN

)
∈

MD. Since we also have(
Mρ⊗N⊗D

)
◦
(
M ⊗ ρN

)
=
(
Mρ⊗ ρN

)
=
(
C ⊗M ⊗ ρN

)
◦
(
Mρ⊗N

)
,

we conclude.

Remark 2.45. From the foregoing, we deduce that (2.21) can be read both as

• ρM :
(
M,Mρ

)
→
(
M ⊗D,Mρ⊗D

)
is a morphism in CM (and hence in

CMD
) or

• Mρ :
(
M,ρM

)
→
(
C ⊗M,C ⊗ ρM

)
is a morphism in MD (and hence in

CMD
).

Remark 2.46. Let D =
(
k,∆k = r−1k , εk = Idk

)
. Then CMD

= CM.

Definition 2.47. Let (C,∆C , εC), (D,∆D, εD), (E,∆E, εE) be coalgebras and let(
M,Mρ,ρM

)
∈ DMC and

(
N,Nρ,ρN

)
∈ CME. The cotensor product of the comod-

ules M and N is the k-subspace M�CN of M ⊗N defined by setting

M�CN = Ker
(
ρM ⊗N −M ⊗ Nρ

)
.
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Lemma 2.48. Let L,M,N ∈ V eck and assume that L ≤ M . Let iL : L → M and
iL⊗N : L⊗N →M ⊗N be the canonical inclusions. Then

iL⊗N = iL ⊗N.

Proof. Since the functor ⊗N is left exact we get that

iL ⊗N : L⊗N →M ⊗N

is injective and hence it coincides with the canonical inclusion iL⊗N .

Proposition 2.49. Let (C,∆C , εC), (D,∆D, εD) and (E,∆E, εE) be coalgebras. The
assignment (M,N) 7→M�CN defines a left exact functor

�C : DMC × CME → DME.

Proof. Since⊗E is an exact functor, we have that (M�CN)⊗E =Ker
(
ρM ⊗N ⊗ E −M ⊗ Nρ⊗ E

)
.

Since N ∈ CME, we have
(
Nρ⊗ E

)
◦ ρN =

(
C ⊗ ρN

)
◦ Nρ. From this, it follows

that(
ρM ⊗N ⊗ E −M ⊗ Nρ⊗ E

)
◦
(
M ⊗ ρN

)
=
(
ρM ⊗ ρN −M ⊗

[(
Nρ⊗ E

)
◦ ρN

])
=
(
ρM ⊗ ρN −M ⊗

[(
C⊗ρN

)
◦ Nρ

])
=
(
M ⊗ C ⊗ ρN

)
◦
(
ρM ⊗N −M ⊗ Nρ

)
.

Therefore (
ρM ⊗N ⊗ E −M ⊗ Nρ⊗ E

)
◦
(
M ⊗ ρN

)
◦ iM�CN =

=
(
M ⊗ C ⊗ ρN

)
◦
(
ρM ⊗N −M ⊗ Nρ

)
◦ iM�CN = 0

and hence (
ρM ⊗N ⊗ E −M ⊗ Nρ⊗ E

)
◦
(
M ⊗ ρN

)
◦ iM�CN = 0.

Hence there exists a unique map ρM�CN :M�CN → (M�CN)⊗ E such that

(2.22) (iM�CN ⊗ E) ◦ ρM�CN =
(
i(M�CN)⊗E

)
◦ ρM�CN =

(
M ⊗ ρN

)
◦ iM�CN

where iM�CN and i(M�CN)⊗E denote the obvious canonical inclusions. Then we
compute

(iM�CN ⊗ E ⊗ E) ◦
(
ρM�CN ⊗ E

)
◦ ρM�CN =

((
[iM�CN ⊗ E] ◦ ρM�CN

)
⊗ E

)
◦ ρM�CN

=
([(

M ⊗ ρN
)
◦ iM�CN

]
⊗ E

)
◦ ρM�CN =

=
((
M ⊗ ρN

)
⊗ E

)
◦ (iM�CN ⊗ E) ◦ ρM�CN =

=
((
M ⊗ ρN

)
⊗ E

)
◦
(
M ⊗ ρN

)
◦ iM�CN

=
(
M ⊗

(
ρN ⊗ E

)
◦ ρN

)
◦ iM�CN

=
(
M ⊗ (N ⊗∆E) ◦ ρN

)
◦ iM�CN

= (M ⊗N ⊗∆E) ◦
(
M ⊗ ρN

)
◦ iM�CN

= (M ⊗N ⊗∆E) ◦ (iM�CN ⊗ E) ◦ ρM�CN

= (iM�CN ⊗∆E) ◦ ρM�CN

= (iM�CN ⊗ E ⊗ E) ◦ (M�CN ⊗∆E) ◦ ρM�CN .
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Since iM�CN ⊗ E ⊗ E is injective, we conclude that ρM�CN is coassociative.

Let us compute

i(M�CN) ◦ r(M�CN) ◦ (M�CN ⊗ εE) ◦ ρM�CN
(1.1)
=

= rM⊗N ◦ (iM�CN ⊗ k) ◦ (M�CN ⊗ εE) ◦ ρM�CN

= rM⊗N ◦ (iM�CN ⊗ εE) ◦ ρM�CN

= rM⊗N ◦ (M ⊗N ⊗ εE) ◦ (iM�CN ⊗ E) ◦ ρM�CN

= rM⊗N ◦ (M ⊗N ⊗ εE) ◦
(
M ⊗ Nρ

)
◦ iM�CN

= rM⊗N ◦
(
M ⊗

[
(N ⊗ εE) ◦ Nρ

])
◦ iM�CN

(1.2)
= (M ⊗ rN)

(
M ⊗

[
(N ⊗ εE) ◦ Nρ

])
◦ iM�CN

=
(
M ⊗

[
rN ◦ (N ⊗ εE) ◦ Nρ

])
◦ iM�CN

= (M ⊗N) ◦ iM�CN = iM�CN .

Since iM�CN is injective, we conclude that
(
M�CN, ρ

M�CN
)
∈ ME. An analogous

procedure endows M�CN with a left D-comodule structure uniquely defined by

(D ⊗ iM�CN) ◦ M�CNρ =
(
iD⊗(M�CN)

)
◦ M�CNρ =

(
Mρ⊗N

)
◦ iM�CN .

Let us prove that
(
M�CN,

M�CNρ,ρM�CN
)
∈ DME i.e. that

(
M�CNρ⊗ E

)
◦ ρM�CN =

(
D ⊗ ρM�CN

)
◦ M�CNρ.

Let us compute

(D ⊗ iM�CN⊗E) ◦
(
M�CNρ⊗ E

)
◦ ρM�CN =

(
Mρ⊗N ⊗ E

)
◦ (iM�CN⊗E) ◦ ρM�CN

=
(
Mρ⊗N ⊗ E

)
◦
(
M ⊗ ρN

)
◦ iM�CN

=
(
Mρ⊗ ρN

)
◦ iM�CN

=
(
D ⊗M ⊗ ρN

)
◦
(
Mρ⊗N

)
◦ iM�CN

=
(
D ⊗M ⊗ ρN

)
◦ (D ⊗ iM�CN) ◦ M�CNρ

=
(
D ⊗

[(
M ⊗ ρN

)
◦ iM�CN

])
◦ M�CNρ

=
(
D ⊗

[
(iM�CN⊗E) ◦ ρM�CN

])
◦ M�CNρ

= (D ⊗ iM�CN⊗E) ◦
(
D ⊗ ρM�CN

)
◦ M�CNρ.

Since D ⊗ iM�CN⊗E is injective, we get that M�CN ∈ DME.

Let now f : M → M ′ and g : N → N ′ be morphism in DMC and in CME

respectively. Let us prove that
(
ρM

′ ⊗N ′ −M ′ ⊗ N ′
ρ
)
◦ (f ⊗ g) ◦ iM�CN = 0.
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We compute(
ρM

′ ⊗N ′
)
◦ (f ⊗ g) ◦ iM�CN =

(
ρM

′ ⊗N ′
)
◦ (f ⊗N ′) ◦ (M ⊗ g) ◦ iM�CN

= (f ⊗ C ⊗N ′) ◦
(
ρM ⊗N ′

)
◦ (M ⊗ g) ◦ iM�CN

= (f ⊗ C ⊗N ′) ◦ (M ⊗ C ⊗ g) ◦
(
ρM ⊗N

)
◦ iM�CN

= (f ⊗ C ⊗N ′) ◦ (M ⊗ C ⊗ g) ◦
(
M ⊗ Nρ

)
◦ iM�CN

= (f ⊗ C ⊗N ′) ◦
(
M ⊗

[
(C ⊗ g) ◦ Nρ

])
◦ iM�CN

= (f ⊗ C ⊗N ′) ◦
(
M ⊗

[
N ′
ρ ◦ g

])
◦ iM�CN

=
(
M ′ ⊗ N ′

ρ
)
◦ (f ⊗ g) ◦ iM�CN .

Hence
(
ρM

′ ⊗N ′ −M ′ ⊗ N ′
ρ
)
◦ (f ⊗ g) ◦ iM�CN = 0. Therefore there exists a

unique map (f�Cg) : M�CN →M ′�CN
′ such that

(2.23) iM ′�CN ′ ◦ (f�Cg) = (f ⊗ g) ◦ iM�CN .

It is now easy to check that, in this way we get a functor�C : DMC×CME → DME.
Let us check it is left exact. Let

0 → N ′
f−→ N

g−→ N ′′ → 0

be an exact sequence in CME and let M ∈ DMC . Then we can consider the
commutative diagram

0 //M�CN
′

iM�CN′

��

M�Cf //M�CN

iM�CN

��

M�Cg //M�CN
′′

iM�CN′′

��
0 //M ⊗N ′

γM,N′

��

M⊗f //M ⊗N

γM,N

��

M⊗g //M ⊗N ′′

γM,N′

��

// 0

0 //M ⊗ C ⊗N ′
M⊗C⊗f//M ⊗ C ⊗N

M⊗C⊗g//M ⊗ C ⊗N ′′ // 0
where, for each M,N we have

γM,N = ρM ⊗N −M ⊗ Nρ.

Note that the first row of the diagram is exact in view of the Snake’s Lemma.

Lemma 2.50. Let C be a coalgebra and let M be a right C-comodule. Then

(2.24) M ≃M�CC

Proof. SinceM�CC =Ker
(
ρM ⊗ C −M ⊗∆

)
and since

(
ρM ⊗ C −M ⊗∆

)
◦ρM =

0 and ρM is injective, there exists a unique isomorphism ϕM : M → M�CC such
that

iM�CC ◦ ϕM = ρM .



45

Proposition 2.51. Let φ : C → D be a coalgbra morphism and let
(
M,ρM

)
∈ MC.

Set

(2.25) ρMD = (M ⊗ φ) ◦ ρM

Then
(
M,ρMD

)
∈ MD and the assignment

(
M,ρM

)
7→
(
M,ρMD

)
yields an exact

functor

(−)φ : MC → MD

Proof. Let us compute

(
ρMD ⊗D

)
◦ ρMD

(2.25)
= (M ⊗ φ⊗D) ◦

(
ρM ⊗D

)
◦ (M ⊗ φ) ◦ ρM

= (M ⊗ φ⊗D) ◦
(
ρM ⊗ φ

)
◦ ρM = (M ⊗ φ⊗D) ◦ (M ⊗ C ⊗ φ) ◦

(
ρM ⊗ C

)
◦ ρM

= (M ⊗ φ⊗ φ) ◦ (M ⊗∆C) ◦ ρM = (M ⊗ [(φ⊗ φ) ◦∆C ]) ◦ ρM
φiscoalgmorphism

=

= (M ⊗ [∆D ◦ φ]) ◦ ρM = (M ⊗∆D) ◦ (M ⊗ φ) ◦ ρM (2.25)
= (M ⊗∆D) ◦ ρMD

and

rM ◦ (M ⊗ εD) ◦ ρMD = rM ◦ (M ⊗ εD) ◦ (M ⊗ φ) ◦ ρM

= rM ◦ (M ⊗ (εD ◦ φ)) ◦ ρM φiscoalgmorphism
= rM ◦ (M ⊗ εC) ◦ ρM =M.

Thus we get that
(
M,ρMD

)
∈ MD. Let now f :M →M ′ be a morphism in MC and

let us check that f :
(
M,ρMD

)
→
(
M ′, ρM

′
D

)
is a morphism in MD. In fact we have

(f ⊗D) ◦ ρMD
(2.25)
= (f ⊗D) ◦ (M ⊗ φ) ◦ ρM = (f ⊗ φ) ◦ ρM =

= (M ′ ⊗ φ) ◦ (f ⊗ C) ◦ ρM f iscolin
= (M ′ ⊗ φ) ◦ ρM ′ ◦ f = ρM

′

D ◦ f.

Lemma 2.52. Let C,D and E be coalgebras and let φ : C → D be a coalgebra
morphism. Let

(
M,Mρ, ρM

)
∈ EMC. Then

(
M,Mρ, ρMD

)
∈ EMD.

Proof. Since
(
M,Mρ, ρM

)
∈ EMC we have that

(
Mρ⊗ C

)
◦ ρM =

(
E ⊗ ρM

)
◦ Mρ.

Let us compute

(
Mρ⊗D

)
◦ ρMD

(2.25)
=
(
Mρ⊗D

)
◦ (M ⊗ φ) ◦ ρM =

(
Mρ⊗ φ

)
◦ ρM

= (E ⊗M ⊗ φ) ◦
(
Mρ⊗ C

)
◦ ρM (2.21)

= (E ⊗M ⊗ φ) ◦
(
E ⊗ ρM

)
◦ Mρ

(2.25)
=
(
E ⊗ ρMD

)
◦ Mρ
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Theorem 2.53. Let φ : C → D be a coalgebra morphism and let us consider C
endowed with its D-C-bicomodule structure:(

C, CDρ =(φ⊗ C) ◦∆C ,∆C

)
∈ DMC .

For any
(
N, ρN

)
∈ MD we set

(2.26) Nφ =
(
N�DC, ρ

N�DC = N�D∆C

)
∈ MC

Then the assignment
(
N, ρN

)
7→ Nφ yields a functor

(−)φ : MD → MC

which is a right adjoint of (−)φ.

Proof. By Proposition 2.49, we have only to prove the adjunction statement. Let(
M,ρM

)
∈ MC and let us compute

(
ρMD ⊗ C

)
◦ ρM (2.25)

= (M ⊗ φ⊗ C) ◦
(
ρM ⊗ C

)
◦ ρM =

M iscomod
= (M ⊗ φ⊗ C) ◦ (M ⊗∆C) ◦ ρM =

=(M ⊗ (φ⊗ C) ◦∆C) ◦ ρM
(2.25)
=
(
M ⊗ C

Dρ
)
◦ ρM .

Therefore there exists a linear map γM :M → (Mφ)
φ =Mφ�DC such that

(2.27) ρM = iMφ�DC ◦ γM .

Let us prove that γM is a morphism in MC . We compute(
iMφ�DC ⊗ C

)
◦ ρ(Mφ)

φ

◦ γM =
(
iMφ�DC ⊗ C

)
◦ ρMφ�DC ◦ γM

(2.22)
= [Mφ ⊗∆C ] ◦ iMφ�DC ◦ γM

(2.27)
= (M ⊗∆C) ◦ ρM =

=
(
ρM ⊗ C

)
◦ ρM (2.27)

=
[(
iMφ�DC ◦ γM

)
⊗ C

]
=
(
iMφ�DC ⊗ C

)
◦ (γM ⊗ C) ◦ ρM .

Now we prove that (γM)M∈MC yields a functorial morphism γ : IdMC →
(
(−)φ

)φ
.

Thus let f :
(
M,ρM

)
→
(
M ′, ρM

′)
be a morphism in MC and let us compute

iM ′
φ�DC ◦

(
(f)φ

)φ
◦ γM = iM ′

φ�DC ◦ (f�DC) ◦ γM
(2.23)
= (f ⊗ C) ◦ iMφ�DC ◦ γM =

(2.27)
= (f ⊗ C) ◦ ρM f iscol

= ρM
′ ◦ f (2.27)

= iM ′
φ�DC ◦ γM ′ ◦ f.

Since iM ′
φ�DC is injective, we conclude.
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Now, for every
(
N, ρN

)
∈ MD, let us consider the map

(2.28) λN = rN ◦ (N ⊗ εC) ◦ iN�DC : (Nφ)φ = (N�DC)φ → N

and let us prove it is a morphism in MD. Thus, let us compute

(λN ⊗D) ◦ ρ(Nφ)φ
(2.28)
= (rN ⊗D) ◦ (N ⊗ εC ⊗D) ◦ (iN�DC ⊗D) ◦ ρ(Nφ)φ

(2.25)
= (rN ⊗D) ◦ (N ⊗ εC ⊗D) ◦ (iN�DC ⊗D) ◦ (N�DC ⊗ φ) ◦ ρN�DC

= (rN ⊗D) ◦ (N ⊗ εC ⊗D) ◦ (N ⊗ C ⊗ φ) ◦ (iN�DC ⊗ C) ◦ ρN�DC

(2.22)
= (rN ⊗D) ◦ (N ⊗ εC ⊗D) ◦ (N ⊗ C ⊗ φ) ◦ (N ⊗∆C) ◦ iN�DC

φiscoalgmrph
= (rN ⊗D) ◦ (N ⊗ (εD ◦ φ)⊗D) ◦ (N ⊗ C ⊗ φ) ◦ (N ⊗∆C) ◦ iN�DC

= (rN ⊗D) ◦ (N ⊗ εD ⊗D) ◦ (N ⊗ φ⊗ φ) ◦ (N ⊗∆C) ◦ iN�DC

= (rN ⊗D) ◦ (N ⊗ εD ⊗D) ◦ (N ⊗ [(φ⊗ φ) ◦∆C ]) ◦ iN�DC

φiscoalgmrph
= (rN ⊗D) ◦ (N ⊗ εD ⊗D) ◦ (N ⊗ [∆D ◦ φ]) ◦ iN�DC

= (rN ⊗D) ◦ (N ⊗ εD ⊗D) ◦ (N ⊗∆D) ◦ (N ⊗ φ) ◦ iN�DC

(1.2)
= (N ⊗ lD) ◦ (N ⊗ εD ⊗D) ◦ (N ⊗∆D) ◦ (N ⊗ φ) ◦ iN�DC

= (N ⊗ [lD ◦ (εD ⊗D) ◦∆D]) ◦ (N ⊗ φ) ◦ iN�DC

Discoalg
= (N ⊗ φ) ◦ iN�DC

Discoalg
= (N ⊗ [rD ◦ (D ⊗ εD) ◦∆D]) ◦ (N ⊗ φ) ◦ iN�DC

= (N ⊗ rD) ◦ (N ⊗ (D ⊗ εD) ◦∆D) ◦ (N ⊗ φ) ◦ iN�DC

(1.2)
= rN⊗D ◦ (N ⊗D ⊗ εD) ◦ (N ⊗ [∆D ◦ φ]) ◦ iN�DC

φiscoalgmrph
= rN⊗D ◦ (N ⊗D ⊗ εD) ◦ (N ⊗ [(φ⊗ φ) ◦∆C ]) ◦ iN�DC

= rN⊗D ◦ (N ⊗D ⊗ εD) ◦ (N ⊗ φ⊗ φ) ◦ (N ⊗∆C) ◦ iN�DC

= rN⊗D ◦ (N ⊗D ⊗ (εD ◦ φ)) ◦ (N ⊗ φ⊗ C) ◦ (N ⊗∆C) ◦ iN�DC

φiscoalgmrph
= rN⊗D ◦ (N ⊗D ⊗ εC) ◦ (N ⊗ (φ⊗ C) ◦∆C) ◦ iN�DC

= rN⊗D ◦ (N ⊗D ⊗ εC) ◦
(
N ⊗ C

Dρ
)
◦ iN�DC

(defcot)
= rN⊗D ◦ (N ⊗D ⊗ εC) ◦

(
ρN ⊗ C

)
◦ iN�DC = rN⊗D ◦

(
ρN ⊗ εC

)
◦ iN�DC

= rN⊗D ◦
(
ρN ⊗ k

)
◦ (N ⊗ εC) ◦ iN�DC

(1.1)
= ρN ◦ rN ◦ (N ⊗ εC) ◦ iN�DC

(2.28)
= ρN ◦ λN

Let us prove that (λN)N∈MD yields a functorial morphism

λ : ((−)φ)φ = (−�DC)φ → IdMD .
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Hence let h : N → N ′ be a morphism in MD and let us compute

λN ′ ◦ (h�DC)
(2.28)
= rN ′ ◦ (N ′ ⊗ εC) ◦ iN ′�DC ◦ (h�DC) =

(2.23)
= rN ′ ◦ (N ′ ⊗ εC) ◦ (h⊗ C) ◦ iN�DC

= rN ′ ◦ (h⊗ k) ◦ (N ⊗ εC) ◦ iN�DC

(1.1)
= h ◦ rN ◦ (N ⊗ εC) ◦ iN�DC

(2.28)
= h ◦ λN .

Let us prove that γ and λ give rise to an adjunction. Given
(
M,ρM

)
∈ MC , let us

compute

λMφ ◦ (γM)φ
(2.28)
= rM ◦ (M ⊗ εC) ◦ iMφ�DC ◦ γM

(2.27)
= rM ◦ (M ⊗ εC) ◦ ρM

= IdM = IdMφ .

Given
(
N, ρN

)
∈ MD, let us compute

iN�DC ◦ (λN)φ ◦ γNφ
(2.28)
= iN�DC ◦ (rN ◦ (N ⊗ εC) ◦ iN�DC)

φ ◦ γNφ =

(2.26)
= iN�DC ◦ [(rN ◦ (N ⊗ εC) ◦ iN�DC)�DC] ◦ γN�DC =

(2.23)
= [(rN ◦ (N ⊗ εC) ◦ iN�DC)⊗ C] ◦ i(N�DC)φ�DC ◦ γN�DC =

(2.27)
= [(rN ◦ (N ⊗ εC) ◦ iN�DC)⊗ C] ◦ ρN�DC =

= [(rN ◦ (N ⊗ εC))⊗ C] ◦ (iN�DC ⊗ C) ◦ ρN�DC =

(2.22)
= [(rN ◦ (N ⊗ εC))⊗ C] ◦

(
N ⊗ ρC

)
◦ iN�DC

= [(rN ◦ (N ⊗ εC))⊗ C] ◦ (N ⊗∆C) ◦ iN�DC

= (rN ⊗ C) ◦ (N ⊗ (εC ⊗ C) ◦∆C) ◦ iN�DC

(1.2)
= (N ⊗ lC) ◦ (N ⊗ (εC ⊗ C) ◦∆C) ◦ iN�DC

Ciscoalg
= iN�DC

Exercise 2.54. Apply Theorem 2.53 to the particular case when the coalgebra mor-
phism is εC : (C,∆C , εC) →

(
k,∆k = r−1k = l−1k , εk = Idk

)
. (See 1.26. Show that

(−)εC : MC → Mk = V eck is just the forgetful functor U and (−)εC : Mk = V eck →
MC is just the functor FC. Therefore Theorem 2.40 can be obtained as a particular
case of Theorem 2.53.



Chapter 3

Bialgebras and Hopf Algebras

Theorem 3.1. Let us consider a 5th-uple (B,mB, uB,∆B, εB) such that (B,mB, uB)
is an algebra, (B,∆B, εB) is a coalgebra. The following assertions are equivalent:

(a) The maps ∆B and εB are algebra morphisms.

(b) The maps mB and uB are coalgebra morphisms.

Proof. Recall that, in view of (1.8), we have

∆B⊗B = (B ⊗ τB,B ⊗B) ◦ (∆B ⊗∆B) and εB⊗B = lk ◦ (εB ⊗ εB) .

Analogously

mB⊗B = (mB ⊗mB) ◦ (B ⊗ τB,B ⊗B) and uB⊗B = (uB ⊗ uB) ◦ (lk)−1 .

∆B is an algebra morphism means

mB⊗B ◦ (∆B ⊗∆B) = ∆B ◦mB and ∆B ◦ uB = uB⊗B

i.e.

(3.1) (mB ⊗mB) ◦ (B ⊗ τB,B ⊗B) ◦ (∆B ⊗∆B) = ∆B ◦mB

and

(3.2) ∆B ◦ uB ◦ lk = uB ⊗ uB

εB is an algebra morphism means

(3.3) εB ◦mB = mk ◦ (εB ⊗ εB) = lk ◦ (εB ⊗ εB)

and

(3.4) εB ◦ uB = uk = Idk.

49
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mB is a coalgebra morphism means

∆B ◦mB = (mB ⊗mB) ◦∆B⊗B and εB ◦mB = εB⊗B

i.e.

(3.5) ∆B ◦mB = (mB ⊗mB) ◦ (B ⊗ τB,B ⊗B) ◦ (∆B ⊗∆B)

and

(3.6) εB ◦mB = lk ◦ (εB ⊗ εB)

uB is a coalgebra morphism means

∆B ◦ uB = (uB ⊗ uB) ◦∆k⊗k and εB ◦ uB = εk

i.e.

(3.7) ∆B ◦ uB ◦ lk = uB ⊗ uB

and

(3.8) εB ◦ uB = Idk.

Since (3.1) = (3.5), (3.2) = (3.7), (3.3) = (3.6) and (3.4) = (3.8), we conclude.

Definition 3.2. A bialgebra over k is a 5th-uple (B,mB, uB,∆B, εB) such that
(B,mB, uB) is an algebra, (B,∆B, εB) is a coalgebra and the equivalent conditions
in Theorem 3.1 hold.

Remark 3.3. Using the sigma notation, (3.1) can be written as

(3.9)
∑

(a · b)1 ⊗ (a · b)1 = Σa1b1 ⊗ a2b2,

(3.2) can be written as

(3.10)
∑

(1B)1 ⊗ (1B)2 = 1B ⊗ 1B,

(3.3) can be written as

(3.11) εB (ab) = εB (a) · εB (b)

(3.4) can be written as

(3.12) εB (1B) = 1k.

Definition 3.4. Let (H,mH , uH ,∆H , εH) be a bialgebra. Set Hc = (H,∆H , εH) and
Ha = (H,mH , uH). A linear map S : H → H is called an antipode for H if S is an
inverse for IdH in the convolution algebra Hom (Hc, Ha) i.e.

S ∗ IdH = uH ◦ εH = IdH ∗ S.

This means that, for every h ∈ H

(3.13)
∑

S (h1) · h2 = εH (h) 1H =
∑

h1 · S (h2) .
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Remark 3.5. If a bialgebra has an antipode, then this antipode is unique. (Why?)

Definition 3.6. An Hopf algebra is a 6th-uple (H,mH , uH ,∆H , εH , S) where (H,mH , uH ,∆H , εH)
i.e. a bialgebra and S is an antipode for H.

Theorem 3.7. Let (H,m, u,∆, ε, S) be a Hopf algebra. Then:

1) S (gh) = S (h)S (g) for every g, h ∈ H.

2) S (1H) = 1H .

3) ∆(S (h)) =
∑
S (h2)⊗ S (h1) for every h ∈ H.

4) ε (S (h)) = ε (h) for every h ∈ H.

Properties 1) and 2) mean that S is an algebra antihomomorphism. Properties
3) and 4) mean tha S is a coalgebra antihomomorphism.

Proof. 1) Let g, h ∈ H and let us compute

S (gh) = S
(∑

g1ε (g2)h
)
= S

[(∑
g1h
)
ε (g2)

]
=
∑

S (g1h1ε (h2)) ε (g2)

=
∑

S (g1h1ε (h2)) g21S (g22) =
∑

S (g11h1ε (h2)) g12S (g2)

=
∑

S (g11h1) g12ε (h2)S (g2) =
∑

S (g11h1) g12h21S (h22)S (g2) =

=
∑

S (g11h11) g12h12S (h2)S (g2)
(3.9)
=
∑

S ((g1h1)1) (g1h1)2 S (h2)S (g2) =

(3.13)
=
∑

ε (g1h1)S (h2)S (g2)
(3.11)
=
∑

ε (g1) ε (h1)S (h2)S (g2)

=
∑

S (ε (h1)h2)S (ε (g1) g2) = S (h)S (g)

2) We know that
(S ∗ IdH) (1H) = (u ◦ ε) (1H)

Since ∆ (1H) = 1H ⊗ 1H and ε (1H) = 1k, this means that

S (1H) · 1H = u (1k)

and hence
S (1H) = 1H .

3) In this proof, for every h ∈ H we will simply write ∆ (h) = h1 ⊗ h2, summation
understood.

Let h ∈ H. Since
ε (h) 1H = S (h1)h2

we get

ε (h) 1H⊗1H = ε (h)∆ (1H) = ∆ (ε (h) 1H) = ∆ (S (h1)h2) = S (h1)1 h21⊗S (h1)2 h22
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so that

(3.14) ε (h) 1H ⊗ 1H = S (h1)1 h21 ⊗ S (h1)2 h22

and hence

[S (h)]1 ⊗ [S (h)]2 = [S (h1)]1 ε (h2)⊗ [S (h1)]2 = [S (h1)]1 h21S (h22)⊗ [S (h1)]2
= [S (h1)]1 h2S (h3)⊗ [S (h1)]2

= [S (h1)]1 h21ε (h22)S (h3)⊗ [S (h1)]2
= [S (h1)]1 h2S (h4)⊗ [S (h1)]2 ε (h3)

= [S (h1)]1 h2S (h5)⊗ [S (h1)]2 h3S (h4)

=
[
S
(
h111

)]
1
h1121

S (h2)⊗
[
S
(
h111

)]
2

(
h1122

)
S (h12)

(3.14)
= ε (h11)S (h2)⊗ S (h12) = S (h2)⊗ S (ε (h11)h12) = S (h2)⊗ S (h1)

4) Let h ∈ H. We compute

ε (S (h)) = ε
(
S
(∑

ε (h1)h2

))
=
∑

ε (h1) ε (S (h2))
(3.11)
=

= ε (h1S (h2)) = ε
(∑

h1S (h2)
)
= ε (ε (h)) = ε (1H) = ε (h) 1k = ε (h) .

Proposition 3.8. Let (H,m, u,∆, ε, S) be a Hopf algebra. Then the following state-
ments are equivalent:

(a)
∑
S (h2)h1 = ε (h) 1H for every h ∈ H.

(b)
∑
h2S (h1) = ε (h) 1H for every h ∈ H.

(c) S ◦ S = IdH .

Proof. In this proof, for every h ∈ H we will simply write ∆ (h) = h1⊗h2, summation
understood.

(a) ⇒ (c) Let h ∈ H. From (a) we deduce that

(3.15) ε (h) 1H = S (S (h2)h1) = S (h1) [(S ◦ S) (h2)]

and hence we get

h = h1ε (h2)
(3.15)
= h1S (h21) [(S ◦ S) (h22)] = h11S (h12) [(S ◦ S) (h2)]

= ε (h1) [(S ◦ S) (h2)] = (S ◦ S) (ε (h1)h2) = (S ◦ S) (h) .

(c) ⇒ (a) Let h ∈ H. Then

ε (h) 1H = S (ε (h) 1H) = S [S (h1)h2] = S (h2)S (S (h1)) = S (h2)h1
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(b) ⇒ (c) Let h ∈ H. From (b) we deduce that

(3.16) ε (h) 1H = S (h2S (h1)) = [(S ◦ S) (h1)]S (h2)

and hence we get

h = ε (h1)h2
(3.16)
= = [(S ◦ S) (h11)]S (h12)h2 = [(S ◦ S) (h1)]S (h21)h22

= [(S ◦ S) (h1)] ε (h2) = [(S ◦ S) (h1ε (h2))] = (S ◦ S) (h) .

(c) ⇒ (b) Let h ∈ H. Then

ε (h) 1H = S (ε (h) 1H) = S [h1S (h2)] = S (S (h2))S (h1) = h2S (h1)

Corollary 3.9. Let (H,m, u,∆, ε, S) be a Hopf algebra. If H is either commutative
or cocommutative, then S2 = IdH .

Proof. Assume that H is commutative. Then, for every h ∈ H, we have

ε (h) 1H =
∑

h1S (h2) =
∑

S (h2)h1.

Assume that H is cocommutative. Then, for every h ∈ H, we have

ε (h) 1H =
∑

h1S (h2) =
∑

h2S (h1) .

Proposition 3.10. Let (H,mH , uH ,∆H , εH , SH) be a finite dimensional Hopf alge-

bra. Then (H∗,mH∗ , uH∗ ,∆H∗ , εH∗ , SH∗) is an Hopf algebra where ∆H∗ : H∗
(mH)∗−→

(H ⊗H)∗
Λ−1
H,H−→ H∗ ⊗H∗ and εH∗ : H∗

(uH)∗−→ k∗
ev1≃ k

mH∗ : H∗ ⊗H∗
ΛH,H−→ (H ⊗H)∗

(∆H)∗−→ H∗ and uH∗ = k
(ev1)

−1

≃ k∗
(εH)∗→ H∗

and SH∗ : H∗
(SH)∗−→ H∗.

Proof. By Proposition 1.40 we know that (H∗,∆H∗ , εH∗) is a coalgebra and by
Proposition 1.46 we know that (H∗,mH∗ , uH∗) is an algebra. For every f, g ∈ H∗

and x, y ∈ H, we compute

(f ∗ g) (xy) =
∑

f ((xy)1) g ((xy)2) =
∑

f (x1y1) g (x2y2)

=
∑

f1 (x1) f2 (y1) g1 (x2) g2 (y2) =
∑

f1 (x1) g1 (x2) f2 (y1) g2 (y2)

=
∑

(f1 ∗ g1) (x) (f2 ∗ g2) (y) .

Since ∆H∗ (f ∗ g) =
∑

(f ∗ g)1 ⊗ (f ∗ g)2 is uniquely determined by

(f ∗ g) (xy) =
∑

[(f ∗ g)1 (x)] [(f ∗ g)2 (y)] for every x, y ∈ H
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we deduce that ∑
(f ∗ g)1 ⊗ (f ∗ g)2 =

∑
(f1 ∗ g1)⊗ (f2 ∗ g2) .

We also compute

∆H∗ (1H∗) = ∆H∗ (εH) =
∑

(εH)1 ⊗ (εH)2

which is uniquely determined by

εH (xy) =
∑

(εH)1 (x) (εH)2 (y) for every x, y ∈ H.

Since
εH (xy) = εH (x) εH (y) for every x, y ∈ H

we deduce that
∆H∗ (εH) = εH ⊗ εH .

Therefore ∆H∗ is an algebra morphism. For every f, g ∈ H∗ , let us compute

εH∗ (f ∗ g) = (f ∗ g) (1H) = f (1H) g (1H) = εH∗ (f) εH∗ (g) .

We have also
εH∗ (1H∗) = εH∗ (εH) = εH (1H) = 1k.

Therefore also εH∗ is an algebra morphism.
Let now f ∈ H∗ and let us compute

(SH∗ ∗ IdH∗) (f) =
∑

SH∗ (f1) ∗ f2 =
∑

(f1 ◦ SH) ∗ f2.

For every x ∈ H we compute[∑
(f1 ◦ SH) ∗ f2

]
(x) =

∑
(f1 ◦ SH) (x1) f2 (x2) =

=
∑

f1 (SH (x1)) f2 (x2) =
∑

f [SH (x1) x2] = f (εH (x)) = f (1H) εH (x) = εH∗ (f) εH (x) .

We deduce that

(SH∗ ∗ IdH∗) (f) =
∑

(f1 ◦ SH)∗f2 = εH∗ (f) εH = (uH∗ ◦ εH∗) (f) for every f ∈ H∗

i.e. that
SH∗ ∗ IdH∗ = uH∗ ◦ εH∗ .

The proof that IdH∗ ∗ SH∗ = uH∗ ◦ εH∗ is similar.

Proposition 3.11. Let (H,mH , uH ,∆H , εH , SH) be a finite dimensional Hopf alge-
bra and let ω : H → H∗∗ the natural isomorphism:

ω (x) (f) = f (x) for any f ∈ H∗ and x ∈ H.

Then
ω : (H,mH , uH ,∆H , εH , SH) → (H∗,mH∗ , uH∗ ,∆H∗ , εH∗ , SH∗)

is an isomorphism of Hopf algebras.
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Proof. Let α and β ∈ H∗∗. Then

(α ∗ β) (f) =
∑

α (f1) β (f2) for any f ∈ H∗

where ∆ (f) =
∑
f1 ⊗ f2 is uniquely determined by

f (ab) =
∑

f1 (a) f2 (b) for any a, b ∈ H.

We have

[ω (x) ∗ ω (y)] (f) =
∑

f1 (x) f2 (y) = f (xy) = ω (xy) (f) for any f ∈ H∗and x, y ∈ H.

and hence ω (x) ∗ ω (y) = ω (xy). Now we know that

∆H∗∗ (ω (x)) =
∑

[ω (x)]1 ⊗ [ω (x)]2

uniquely determined by

ω (x) (f ∗ g) =
∑

[ω (x)]1 (f) [ω (x)]2 (g) for any f, g ∈ H∗and x ∈ H.

We compute∑
ω (x1) (f)ω (x2) (g) =

∑
f (x1) g (x2) = (f ∗ g) (x) for any f, g ∈ H∗and x ∈ H.

Since
ω (x) (f ∗ g) = (f ∗ g) (x) for any f, g ∈ H∗and x ∈ H

we conclude that∑
[ω (x)]1 (f) [ω (x)]2 (g) =

∑
[ω (x1) (f)] [ω (x2) (g)] for any f, g ∈ H∗and x ∈ H

i.e. that ∑
[ω (x)]1 ⊗ [ω (x)]2 =

∑
ω (x1)⊗ ω (x2) for any x ∈ H.

Moreover we have

[ω (1H)] (f) = f (1H) = 1H∗∗ (f) for any f ∈ H∗

and
[εH∗∗ ◦ ω] (x) = εH∗∗ (ω (x)) = ω (x) (εH) = εH (x) for any x ∈ H.

Hence ω (1H) = 1H∗∗ and εH∗ ◦ ω = εH .

Definition 3.12. Let (A,mA, uA,∆A, εA)and (B,mB, uB,∆B, εB, SB) be bialgebras.
A k-linear map f : A → B is called a bialgebra morphism if f : (A,mA, uA) →
(B,mB, uB) is an algebra homomorphism and f : (A,∆ A, εA) → (B,∆B, εB) is a
coalgebra homomorphism.
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Definition 3.13. Let (A,m, u,∆, ε) be a bialgebra. A vector subspace I of A is
called a bi-ideal of A if

• I is an ideal of the algebra (A,m, u) ,

• I is a coideal of the coalgebra (A,∆, ε).

Theorem 3.14. (The Fundamental Theorem of the Quotient Bialgebra)
Let (A,m, u,∆, ε, S) be a Hopf algebra, let I be a bi-ideal of A.and let p = pI : A→
A/I be the canonical projection. Then A/I can be endowed by a unique bialgebra
structure ( called quotient bialgebra) such that p becomes a morphism of bialgebras.
Moreover given any bialgebra morphism f : A → L such that I ⊆ Ker (f), there
exists a unique bialgebra morphism f : A/I → L such that f = f ◦ p.

Proof. Exercise.

Definition 3.15. Let (H,mH , uH ,∆H , εH , SH) and (B,mB, uB,∆B, εB, SB) be Hopf
algebras. A k-linear map f : A → B is called a Hopf algebra morphism if it is a
bialgebra morphism.

Proposition 3.16. Let (H,mH , uH ,∆H , εH , SH) and (B,mB, uB,∆B, εB, SB) be
Hopf algebras and let f : H → B be a Hopf algebra morphism. Then SB ◦f = f ◦SH .

Proof. For every x ∈ H, let us compute

[(SB ◦ f) ∗ f ] (x) =
∑

SB (f (x1))·Bf (x2) =
∑

SB ([f (x)]1)·B[f (x)]2 = εB (f (x)) 1B = εH (x) 1B.

Thus we get that

(3.17) (SB ◦ f) ∗ f = 1Hom(H,B).

For every x ∈ H, let us also compute

[f ∗ (f ◦ SH)] (x) =
∑

f (x1) ·B f (SH (x2)) = f
[∑

x1 ·H SH (x2)
]
= f (εH (x)) = εH (x) f (1H)

= εH (x) 1B.

Thus we get that

(3.18) f ∗ (f ◦ SH) = 1Hom(H,B).

From (3.17) and (3.18) we deduce that f is invertible in Hom (H,B) and that its
two-sided inverse is

SB ◦ f = f ◦ SH .

Definition 3.17. Let (H,m, u,∆, ε, S) be a Hopf algebra. A vector subspace I of
H is called a Hopf ideal of H if
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• I is an ideal of the algebra (H,m, u) ,

• I is a coideal of the coalgebra (H,∆, ε) and

• S (I) ⊆ I.

Theorem 3.18. The Fundamental Theorem of the Quotient Hopf Alge-
bra) Let (H,m, u,∆, ε, S) be a Hopf algebra, let I be a Hopf ideal of H.and let
p = pI : H → H/I be the canonical projection. Then H/I can be endowed by a
unique Hopf algebra structure ( called quotient Hopf algebra) such that p becomes a
morphism of Hopf algebras. Moreover given any Hopf algebra morphism f : H → L
such that I ⊆ Ker (f), there exists a unique Hopf algebra morphism f : H/I → L
such that f = f ◦ p.

Proof. Exercise.

Exercise 3.19. From Sweedler’s book we quote these exercise for practicing sigma
notation. Let (H,m, u,∆, ε, S) be an Hopf algebra and let h, f, g ∈ H. Show that

h1S (h2)⊗ h3 = 1H ⊗ h

S (h1)h2 ⊗ h3 = 1H ⊗ h

h1 ⊗ S (h2)h3 = h⊗ 1H

h1 ⊗ h2S (h3) = h⊗ 1H

h1 ⊗ . . .⊗ hi−1 ⊗ hiS (hi+1)⊗ hi+2 ⊗ . . .⊗ hn = h1 ⊗ . . .⊗ hn−2

h1 ⊗ . . .⊗ hi−1 ⊗ S (hi)hi+1 ⊗ hi+2 ⊗ . . .⊗ hn = h1 ⊗ . . .⊗ hn−2

h1S (g1fh2) g2 = ε (gh)S (f)

h1 ⊗ . . .⊗ hi−1 ⊗∆S (hi)⊗ hi+1 . . .⊗ hn−1

= h1 ⊗ . . .⊗ hi−1 ⊗ S (hi+1)⊗ S (hi)⊗ hi+2 . . .⊗ hn

(1H ⊗ S (h1)h2) [∆S (h3)] = ∆S (h)

(1H ⊗ S (h3)h1) [∆S (h2)] = (S ⊗ S)∆ (h)



Chapter 4

Hopf Modules

Throughout this section H = (H,m, u,∆, ε, S) will be a Hopf algebra.

Proposition 4.1. Let
(
M,µM

)
,
(
N,µN

)
∈ MH . Set

µM⊗N :M⊗N⊗H M⊗N⊗∆−→ M⊗N⊗H⊗H
M⊗τN,H⊗H−→ M⊗H⊗N⊗H µM⊗µN−→ M⊗N.

Then
(
M ⊗N,µM⊗N

)
∈ MH .

Proof. It is easy to check that

(4.1) [τN,H⊗H ⊗H] ◦ [N ⊗H ⊗ τH,H ] = [H ⊗ τN⊗H,H ] ◦ [τN,H ⊗H ⊗H]

58
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µM⊗N ◦ (M ⊗N ⊗m) =
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗∆) ◦ (M ⊗N ⊗m)

=
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗ [∆ ◦m]) =

(3.1)
=
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗m⊗m)

◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ◦ (N ⊗m)⊗m)

◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

(1.3)
=
(
µM ⊗ µN

)
◦ (M ⊗ (m⊗N) ◦ τN,H⊗H ⊗m)

◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ⊗ µN

)
◦ (M ⊗m⊗N ⊗m) ◦ (M ⊗ τN,H⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ◦ (M ⊗m)⊗ µN ◦ (N ⊗m)

)
◦ (M ⊗ τN,H⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ◦

(
µM ⊗H

)
⊗ µN ◦

(
µN ⊗H

))
◦ (M ⊗ τN,H⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ⊗ µN

)
◦
(
µM ⊗H ⊗ µN ⊗H

)
◦ (M ⊗ τN,H⊗H ⊗H ⊗H) ◦ (M ⊗N ⊗H ⊗ τH,H ⊗H) ◦ (M ⊗N ⊗∆⊗∆)

(4.1)
=
(
µM ⊗ µN

)
◦
(
µM ⊗H ⊗ µN ⊗H

)
◦ (M ⊗H ⊗ τN⊗H,H ⊗H) ◦ (M ⊗ τN,H ⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ⊗ µN

)
◦
(
µM ⊗

(
H ⊗ µN

)
◦ τN⊗H,H ⊗H

)
◦ (M ⊗ τN,H ⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗∆⊗∆)

(1.3)
=
(
µM ⊗ µN

)
◦
(
µM ⊗ τN,H ◦

(
µN ⊗H

)
⊗H

)
◦ (M ⊗ τN,H ⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗∆⊗∆)

=
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦

(
µM ⊗ µN ⊗H ⊗H

)
◦ (M ⊗ τN,H ⊗H ⊗H ⊗H)

◦ (M ⊗N ⊗H ⊗H ⊗∆) ◦ (M ⊗N ⊗∆⊗H)

=
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗∆) ◦

◦
(
µM ⊗ µN ⊗H

)
◦ (M ⊗ τN,H ⊗H ⊗H) ◦ (M ⊗N ⊗∆⊗H)

= µM⊗N ◦
(
µM⊗N ⊗H

)

It is easy to prove that

(4.2) (rM ⊗N ⊗ k) ◦ (M ⊗ τN,k ⊗ k) ◦
(
M ⊗N ⊗ l−1K

)
= IdM⊗N⊗k
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We have

µM⊗N ◦ (M ⊗N ⊗ u) =
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗∆) ◦ (M ⊗N ⊗ u)

(3.7)
=
(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗ u⊗ u) ◦

(
M ⊗N ⊗ l−1K

)
=

=
(
µM ⊗ µN

)
◦ (M ⊗H ⊗N ⊗ u) ◦ (M ⊗ τN,H ⊗ k) ◦ (M ⊗N ⊗ u⊗ k) ◦

(
M ⊗N ⊗ l−1K

)
=

=
(
µM ⊗ µN

)
◦ (M ⊗H ⊗N ⊗ u) ◦ (M ⊗ τN,H ◦ (N ⊗ u)⊗ k)

(
M ⊗N ⊗ l−1K

)
=

(1.3)
=
(
µM ⊗ µN

)
◦ (M ⊗H ⊗N ⊗ u) ◦ (M ⊗ (u⊗N) ◦ τN,k ⊗ k) ◦

(
M ⊗N ⊗ l−1K

)
=
(
µM ⊗ µN

)
◦ (M ⊗H ⊗N ⊗ u) ◦ (M ⊗ u⊗N ⊗ k)

◦ (M ⊗ τN,k ⊗ k) ◦
(
M ⊗N ⊗ l−1K

)
=
(
µM (M ⊗ u)⊗N

)
◦
(
M ⊗ k ⊗ µN ◦ (N ⊗ u)

)
◦ (M ⊗ τN,k ⊗ k) ◦

(
M ⊗N ⊗ l−1K

)
= (rM ⊗N) ◦ (M ⊗ k ⊗ rN) ◦ (M ⊗ τN,k ⊗ k) ◦

(
M ⊗N ⊗ l−1K

)
= (M ⊗ rN) ◦ (rM ⊗N ⊗ k) ◦ (M ⊗ τN,k ⊗ k) ◦

(
M ⊗N ⊗ l−1K

)
(4.2)
= (M ⊗ rN) = rM⊗N .

Let us prove the same statement directly. For all x ∈M, y ∈ N and a ∈ H, we have

µM⊗N (x⊗ y ⊗ a) =
[(
µM ⊗ µN

)
◦ (M ⊗ τN,H ⊗H) ◦ (M ⊗N ⊗∆)

]
(x⊗ y ⊗ a)

=
∑

xa1 ⊗ ya2

so that, for all x ∈M, y ∈ N and a, b ∈ H we deduce that[
µM⊗N ◦ (M ⊗N ⊗m)

]
(x⊗ y ⊗ a⊗ b) = (x⊗ y) (ab)

=
∑

x (ab)1 ⊗ y (ab)2 =
∑

x (a1b1)⊗ y (a2b2) =
∑

(xa1) b1 ⊗ (ya2) b2

=
[∑

(xa1)⊗ (ya2)
]
b = [(x⊗ y) a] b =

[
µM⊗N ◦

(
µM⊗N ⊗H

)]
(x⊗ y ⊗ a⊗ b)

and[
µM⊗N ◦ (M ⊗N ⊗ u)

]
(x⊗ y ⊗ 1k) = (x⊗ y) 1H = x1H⊗y1H = x⊗y = rM⊗N (x⊗ y ⊗ 1k) .

Proposition 4.2. Let
(
M,ρM

)
,
(
N, ρN

)
∈ MH . Set

ρM⊗N :M⊗N ρM⊗ρN−→ M⊗H⊗N⊗H
M⊗τH,N⊗H−→ M⊗N⊗H⊗H M⊗N⊗m−→ M⊗N⊗H.

Then
(
M ⊗N, ρM⊗N

)
∈ MH .

Proof. The Proof is dual to that of Proposition 4.1 and is left to the reader.

Definition 4.3. A right H-Hopf module is a triple
(
M,µM , ρM

)
where

•
(
M,µM

)
∈ MH ,
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•
(
M,ρM

)
∈ MH and

• ρM :M →M ⊗H satisfies

(4.3) ρM ◦ µM =
(
µM ⊗m

)
◦ (M ⊗ τH,H ⊗H) ◦

(
ρM ⊗∆

)
which means that∑

(x · h)(0) ⊗ (x · h)(1) =
∑

x(0)h1 ⊗ x(1)h2 for every x ∈M and h ∈ H.

Proposition 4.4. Given a triple
(
M,µM , ρM

)
, where

(
M,µM

)
∈ MH and

(
M,ρM

)
∈

MH , the following assertions are equivalent

(a)
(
M,µM , ρM

)
is a right H-Hopf module.

(b) ρM :
(
M,µM

)
→
(
M ⊗H,µM⊗H

)
is a morphism in MH .

(c) µM :
(
M ⊗H, ρM⊗H

)
→
(
M,ρM

)
is a morphism in MH .

Proof. ρM :
(
M,µM

)
→
(
M ⊗H,µM⊗H

)
is a morphism in MH means that

ρM ◦ µM = µM⊗H ◦
(
ρM ⊗H

)
=

(
µM ⊗m

)
◦ (M ⊗ τH,H ⊗H) ◦ (M ⊗H ⊗∆) ◦

(
ρM ⊗H

)
=

(
µM ⊗m

)
◦ (M ⊗ τH,H ⊗H) ◦

(
ρM ⊗∆

)
.

µM :
(
M ⊗H, ρM⊗H

)
→
(
M,ρM

)
is a morphism in MH means that

ρM ◦ µM =
(
µM ⊗H

)
◦ ρM⊗H =

(
µM ⊗H

)
◦ (M ⊗H ⊗m) ◦ (M ⊗ τH,H ⊗H) ◦

(
ρM ⊗∆

)
=

(
µM ⊗m

)
◦ (M ⊗ τH,H ⊗H) ◦

(
ρM ⊗∆

)
.

Definition 4.5. Let
(
M,µM , ρM

)
and

(
M

′
, µM

′
, ρM

′)
be right H-Hopf modules. A

linear map f : M → M ′ is called a morphism of right H-Hopf modules if it is both
a module and a comodule morphism. We will denote by MH

H the category of right
H-Hopf modules.

Proposition 4.6. Let V ∈ V eck and letM ∈ MH
H . Then

(
V ⊗M,V ⊗ µM , V ⊗ ρM

)
∈

MH
H . Moreover the assignment V 7→

(
V ⊗M,V ⊗ µM , V ⊗ ρM

)
and f 7→ f ⊗M

yield a functor
FM : V eck → MH

H

Proof. By Proposition 2.39, we know that
(
V ⊗M,V ⊗ ρM

)
∈ MH . On the other

hand it is easy to show that
(
V ⊗M,V ⊗ µM

)
∈ MH . Let us check the compati-

bility relation:

ρV⊗M ◦ µV⊗M =
(
µV⊗M ⊗m

)
◦ (V ⊗M ⊗ τH,H ⊗H) ◦

(
ρV⊗M ⊗∆

)
.
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We compute (
µV⊗M ⊗m

)
◦ (V ⊗M ⊗ τH,H ⊗H) ◦

(
ρV⊗M ⊗∆

)
=(

V ⊗ µM ⊗m
)
◦ (V ⊗M ⊗ τH,H ⊗H) ◦

(
V ⊗ ρM ⊗∆

)
=

=
(
V ⊗

[(
µM ⊗m

)
◦ (M ⊗ τH,H ⊗H) ◦

(
ρM ⊗∆

)])
=

M∈MH
H= V ⊗

(
ρM ◦ µM

)
=
(
V ⊗ ρM

)
◦
(
V ⊗ µM

)
= ρV⊗M ◦ µV⊗M .

Let now f : V → V ′ be a k-linear map. We compute

((f ⊗M)⊗H) ◦ ρV⊗M = ((f ⊗M)⊗H) ◦
(
V ⊗ ρM

)
=

=
(
f ⊗ ρM

)
=

=
(
V ′ ⊗ ρM

)
◦ (f ⊗M) = ρV

′⊗M ◦ (f ⊗M)

and

(f ⊗M) ◦ µV⊗M = (f ⊗M) ◦
(
V ⊗ µM

)
=
(
f ⊗ µM

)
=
(
V ′ ⊗ µM

)
◦ (f ⊗M ⊗H) .

Thus FM (f) is a morphism in MH
H .

Lemma 4.7. (H,m,∆) ∈ MH
H .

Proof. We know that (H,m) ∈ MH and (H,∆) ∈ MH . Moreover

∆ ◦m 3.9
= (m⊗m) ◦ (H ⊗ τH,H ⊗H) ◦ (∆⊗∆) .

Definition 4.8. Let
(
M,ρM

)
∈ MH . Set

M coH =
{
x ∈M | ρM (x) = x⊗ 1H .

}
M coH is called the subspace of coinvariants in M .

Remark 4.9. Let
(
M,ρM

)
∈ MH and let λM : M → M ⊗ H be the linear map

defined by setting

λM (x) = x⊗ 1H for every x ∈M .

Then

M coH = Ker
(
ρM − λM

)
Note that, if f :M →M ′ is a k-linear map, then

(4.4) (f ⊗H) ◦ λM = λM ′ ◦ f
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Proposition 4.10. The assignment M 7→M coH yields a functor

(−)coH : MH → V eck

Proof. Let iMcoH :M coH →M be the canonical inclusion. Then we compute(
ρM

′ − λM ′

)
◦ f ◦ iMcoH = ρM

′
=
[
(f ⊗H) ◦ ρM

]
◦ iMcoH − λM ′ ◦ f ◦ iMcoH

=
[
(f ⊗H) ◦ λM

]
◦ iMcoH − λM ′ ◦ f ◦ iMcoH

(4.4)
= 0

It follows that there is a unique linear map f coH :M coH →M
′coH such that

iM ′coH ◦ f coH = f ◦ iMcoH .

It is now easy to check that this gives rise to a functor.

Theorem 4.11. (The Fundamental Theorem of Hopf Modules) Let H be a Hopf
algebra and let

G : MH
H → V eck

be the restriction to MH
H of the functor (−)coH introduced in Proposition 4.10. Let

F = FH : V eck → MH
H

be the functor defined in Proposition 4.6. Then (G,F ) is an equivalence of categories.

Proof. Let
(
M,µM , ρM

)
∈ MH

H . We compute, for x ∈M

ρM
(∑

x(0)S
(
x(1)
)) (4.3)

=
∑(

x(0)
)
(0)

(
S
(
x(1)
))

1
⊗
(
x(0)
)
(1)

(
S
(
x(1)
))

2

=
∑(

x(0)
)
(0)
S
(
x(1)2

)
⊗
(
x(0)
)
(1)
S
(
x(1)1

)
=
∑

x(0)S
(
x(3)
)
⊗ x(1)S

(
x(2)
)

=
∑

x(0)S
(
x(2)
)
⊗ x(1)1S

(
x(1)2

)
=
∑

x(0)S
(
x(2)
)
⊗ ε

(
x(1)
)
1H

=
∑

x(0)S
(
ε
(
x(1)
)
x(2)
)
⊗ 1H =

∑
x(0)S

(
x(1)
)
⊗ 1H .

This means that
∑
x(0)S

(
x(1)
)
∈M coH for every x ∈M. Thus we may define a map

P :M →M coH by setting P (x) =
∑

x(0)S
(
x(1)
)

for every x ∈M .

Let us define a map αM :M coH ⊗H →M by setting

αM (x⊗ h) = x · h for every x ∈M coH and h ∈ H.

Let us define a map βM :M →M coH ⊗H by setting

βM = (P ⊗ IdH) ◦ ρM i.e

βM (x) =
∑

P
(
x(0)
)
⊗ x(1) =

∑
x(0)(0)S

(
x(0)(1)

)
⊗ x(1) =

∑
x(0)S

(
x(1)
)
⊗ x(2)
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for every x ∈M . Given x ∈M coH and h ∈ H, we compute

βM (αM (x⊗ h)) =
[
(P ⊗ IdH) ◦ ρM

]
(x · h) =

=
∑

(xh)(0) S
(
(xh)(1)

)
⊗ (xh)(2)

(4.3)
=
∑

x(0)h1S
(
x(1)h2

)
⊗
(
x(2)h3

)
Since x ∈ M coH we have that

∑
x(0) ⊗ x(1) = x ⊗ 1H from which we deduce that∑

x(0) ⊗ x(1) ⊗ x(2) = x⊗ 1H ⊗ 1H . Therefore we get

βM (αM (x⊗ h)) =
∑

xh1S (h2)⊗ h3 = x
∑

ε (h1)⊗ h2 = x⊗ h.

We deduce that βM ◦ αM = IdMcoH⊗H . Given x ∈M, we also compute

(αM ◦ βM) (x) =
∑

x(0)S
(
x(1)
)
x(2) =

∑
x(0)S

(
x(1)1

)
x(1)2 =

∑
x(0)ε

(
x(1)
)
= x.

Let us prove that αM is a morphism in MH
H . Let x ∈M coH and h ∈ H. We compute

αM ((x⊗ h) · t) = αM (x⊗ ht) = x · (ht) = (x · h) · t = αM (x⊗ h) · t

and

ρM (αM (x⊗ h)) = ρM (x · h) =
∑

x(0)h1 ⊗ x(1)h2 =
∑

xh1 ⊗ h2

= (αM ⊗H)
∑

(x⊗ h1 ⊗ h2) = (αM ⊗H)
(
ρM⊗H (x⊗ h)

)
.

For any k-vector space V, let us define

γV : (V ⊗H)coH → V by setting γV

(
n∑
i=1

vi ⊗ hi

)
=

n∑
i=1

viε (hi)

for every
∑n

i=1 vi ⊗ hi ∈ (V ⊗H)coH . Let us also define a map

δV : V → (V ⊗H)coH by setting δV (v) = v ⊗ 1H ∈ (V ⊗H)coH for every v ∈ V .

Then, for every v ∈ V we have that

γV (δV (v)) = vε (1H) = v

Let now
∑n

i=1 vi ⊗ hi ∈ (V ⊗H)coH . Then we get that

n∑
i=1

vi ⊗ (hi)1 ⊗ (hi)2 =
n∑
i=1

vi ⊗ hi ⊗ 1H .

and hence we obtain

δV

(
γV

(
n∑
i=1

vi ⊗ hi

))
=

n∑
i=1

viε (hi)⊗ 1H =
n∑
i=1

vi ⊗ ε (hi) 1H =
n∑
i=1

vi ⊗ [ε ((hi)1)] (hi)2

=
n∑
i=1

vi ⊗ hi.

We give as an exercise to the reader to check that both the family (αM)M∈MH
H
and

(γV )V ∈V eck yield functorial morphisms between the appropriate functors.
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Exercise 4.12. Let
(
M,ρM

)
∈ MH and consider

(
k, (u⊗ k) l−1k

)
∈ HM. Prove

that
M�Hk ≃M coH .

Hint: use the isomorphism in (2.24).



Chapter 5

Integrals for bialgebras

Definition 5.1. An augmented k-algebra is a 4th-uple (A,mA, uA, π) where:

• (A,mA, uA) is a k-algebra.

• π : A→ k is a k-algebra morphism

π is called the augmentation of A.

Definitions 5.2. Let A = (A,mA, uA, π) be an augmented algebra and let x ∈ A.
We say that

• x is a left integral in A if

a ·A x = π (a) x, for every a ∈ A.

In this case x is called a total left integral if π (x) = 1k.

• x is a right integral in A if

x ·A a = xπ (a) , per ogni a ∈ A.

In this case x is called a total right integral if π (x) = 1k.

The set of all left integrals in A will be denote by
∫
l
=
∫
l
(A).

The set of all right integrals in A will be denoted by
∫
r
=
∫
r
(A).

We will say that A is unimodular whenever
∫
l
=
∫
r
. In this case an element of∫

l
=
∫
r
will be simply called an integral.

Remark 5.3.
∫
l
and

∫
r
are k-vector subspaces of A. Thus they are called space of

left, resp. right, integrals in A.

Definition 5.4. Let (A,mA, uA, π) and (A′,mA′ , uA′ , π′) be augmented algebras. A
linear map f : A → A′ is called a morphism of augmented algebras if f is a
morphism of algebras and π′ ◦ f = π.
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Proposition 5.5. Let f : (A,mA, uA, π) → (A′,mA′ , uA′ , π′) be a surjective mor-
phism of augmented algebras. Then

f

(∫
l

(A)

)
⊆
∫
l

(A′) .

Proof. Let t ∈
∫
l
(A) and let a ∈ A. We compute

f (a) · f (t) = f (a · t) = f (π (a) t) = π (a) f (t) = (π′ ◦ f) (a) f (t) = π′ (f (a)) f (t) .

Proposition 5.6. Let (A,mA, uA, π) be an augmented algebra. Then
∫
l
(A) and∫

r
(A) are two-sided ideals of A.

Proof. Let α ∈ A and x ∈
∫
l
(A) . We have to prove that

αx ∈
∫
l

(A) and xα ∈
∫
l

(A) .

For every a ∈ A we compute

a (αx) = (aα) x
xisleftint
= π (aα) x = π (a)π (α)x = π (a) (π (α) x)

xisleftint
= π (a) (αx) .

This means that αx is a left integral in A. We also compute

a (xα) = (ax)α
xisleftint
= (π (a) x)α = π (a) (xα) .

which means that also xα is a left integral in A.
The proof for

∫
r
(A) is analogous.

5.7. Let (H,mH , uH ,∆H , εH) be a bialgebra. Then

• (H,mH , uH , εH) is an augmented algebra. A left integral in H is an element
t ∈ H such that

h ·H t = εH (h) t, for every h ∈ H.

It is also total if εH (t) = 1K .

• (H∗,mH∗ , uH∗ , πH∗) is an augmented algebra where πH∗ : H∗ → k is defined
by setting

πH∗ (f) = f (1H) for every f ∈ H∗.

A left integral in H∗ is an element λ ∈ H∗ such that

f ∗ λ = πH∗ (f)λ, for every f ∈ H∗

i.e.
f ∗ λ = f (1H)λ, for every f ∈ H∗.

In this case λ is a total integral if πH∗ (λ) = 1K i.e. λ (1H) = 1k.



68 CHAPTER 5. INTEGRALS FOR BIALGEBRAS

Lemma 5.8. (The well-known Lemma) Let V be a k-vector space and let x, y ∈ V .
Then

x = y ⇔ f (x) = f (y) for every f ∈ V ∗.

Proposition 5.9. Let (H,m, u,∆, ε) be a bialgebra and let λ ∈ H∗. Then we have
that

1) λ is a left integral in H∗ if and only if

(5.1)
∑

h1λ (h2) = 1Hλ (h) for every h ∈ H.

2) λ is a right integral in H∗if and only if

(5.2)
∑

λ (h1)h2 = 1Hλ (h) for every h ∈ H.

Proof. 1) Let λ ∈ H∗. Then λ is a left integral in H∗ if and only if f ∗ λ = f (1H)λ,
for every f ∈ H∗ which means that

(f ∗ λ) (h) = f (1H)λ (h) for every f ∈ H∗ and h ∈ H.

We compute

(f ∗ λ) (h) =
∑

f (h1)λ (h2) = f
(∑

h1λ (h2)
)

and
f (1H)λ (h) = f (1Hλ (h)) .

Thus λ is a left integral in H∗ if and only if

f
(∑

h1λ (h2)
)
= f (1Hλ (h)) for every h ∈ H and f ∈ H∗.

In view of Lemma 5.8 this happens if and only if∑
h1λ (h2) = 1Hλ (h) for every h ∈ H.

2) The proof is analogous.

Proposition 5.10. Let (H,m, u,∆, ε, S) be a Hopf algebra and let t ∈ H. Then
1) If t is a left integral in H then S (t) is a right integral in H.
2) If t is a total left integral in H, then t = S (t) .
1′) If t is a right integral in H then S (t) is a left integral in H.
2′) If t is a total right integral in H, then t = S (t) .

Proof. 1) We have to show that

S (t) · h = ε (h)S (t) for every h ∈ H.

Since t is a left integral in H we have

h · t = ε (h) t for every h ∈ H.
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We compute

S (t) · h = S (t) ·
(∑

ε (h1)h2

)
=
∑

S [ε (h1) t]h2
tisleftint
=

∑
S (h1 · t) · h2

=
∑

S (t) · S (h1)h2 = S (t) ·
∑

S (h1)h2 = S (t) ε (h) = ε (h)S (t) .

2) We compute

S (t) = 1kS (t)
tistotal
= ε (t)S (t)

S(t) is a right int
= S (t) t

t is a left int
= ε [S (t)] t =

= ε (t) t
tistotal
= 1kt = t.

Corollary 5.11. Let (H,m, u,∆, ε, S) be a Hopf algebra and let t ∈ H. The following
statements are equivalent:

(a) t is a left total integral in H.
(b) t is a right total integral in H.
If there is a left total integral in H, then∫

l

(H) =

∫
r

(H) = kt.

In particular H is unimodular.

Proof. (a) ⇒ (b) In view of Proposition 5.10, t = S (t) is a right integral in H.
(b) ⇒ (a) is analogous.
Assume now that t is a left (and hence right) total integral and let x ∈

∫
l
(H)

be a left integral in H. Then

x = 1kx
tistotal
= ε (t) x

xisleftint
= tx

tisrightint
= tε (x) ∈ kt

so that ∫
l

(H) ⊆ kt.

An analogous proof shows that
∫
r
(H) = kt.

Proposition 5.12. Let (H,m, u,∆, ε, S) be a Hopf algebra and let λ ∈ H∗. Then
1) If λ is a left integral in H∗, then λ ◦ S is a right integral in H∗.
2) If λ is a total left integral in H∗, then λ = λ ◦ S.
1′) If λ is a right integral in H∗, then λ ◦ S is a left integral in H∗.
2′) If λ is a total right integral in H∗, then λ = λ ◦ S.

Proof. 1) In view of Proposition 5.9, we have to show that∑
[(λ ◦ S) (h1)]h2 = 1H [(λ ◦ S) (h)] for every h ∈ H



70 CHAPTER 5. INTEGRALS FOR BIALGEBRAS

We compute

1H [(λ ◦ S) (h)] = 1Hλ
[
S
(∑

h1ε (h2)
)]

= 1H
∑

λ [S (h1ε (h2))] = 1H
∑

λ [S (h1)] ε (h2)

=
∑

λ [S (h1)] ε (h2) 1H =
∑

λ [S (h1)]
[∑

S (h2)h3

]
=
∑

λ [S (h1)]S (h2)h3 =
∑

λ [S (h11)]S (h12)h2

=
∑

λ [[S (h1)]2] [S (h1)]1 h2 =
∑

[S (h1)]1 λ [[S (h1)]2]h2

(5.1)
=
∑

1Hλ [S (h1)]h2 =
∑

λ [S (h1)]h2.

2) Since, in view of 1), λ ◦ S ∈ H∗ is a right integral in H∗, we have that

(λ ◦ S) ∗ λ = (λ ◦ S) [λ (1H)]
λis tot
= λ ◦ S

and since λ is a left integral we have that

(λ ◦ S) ∗ λ = [(λ ◦ S) (1H)]λ = λ (S (1H))λ = λ (1H)λ
λis tot
= λ

so that we get
λ ◦ S = λ.

Corollary 5.13. Let (H,m, u,∆, ε, S) be a Hopf algebra and let λ ∈ H∗. The fol-
lowing statements are equivalent:

(a) λ is a total left integral in H∗.
(b) λ is a total right integral in H∗.
If there is a left total integral in H∗, then∫

l

(H∗) =

∫
r

(H∗) = kλ.

In particular H∗ is unimodular.

Proof. (a) ⇒ (b) In view of Proposition 5.12, λ = λ ◦ S is a right integral in H∗.
(b) ⇒ (a) is analogous.
Assume now that λ is a left (and hence right) total integral and let χ ∈

∫
l
(H∗)

be a left integral in H∗. Then

χ = 1kχ
λistotal
= λ (1H)χ

χisleftint
= λ ∗ χ λisrightint

= λχ (1H) ∈ kλ

so that ∫
l

(H∗) ⊆ kλ.

An analogous proof shows that
∫
r
(H∗) = kλ.
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5.1 H∗rat

5.14. Let (H,mH , uH ,∆H , εH , SH) be a Hopf algebra. We know from 1.45 that
(H∗,mH∗ , uH∗) is an algebra. In particular (H∗,mH∗) ∈ H∗M and we can consider
H∗rat = rat (H∗H∗). In view of Theorem 2.30, H∗rat is a right H-comodule with
respect to

ρ = δH∗rat : H∗rat −→ H∗rat ⊗H.

Then for every χ ∈ H∗rat and f ∈ H∗ we have

f ∗ χ = [βH∗rat (χ)] (f) = [(αH∗rat ◦ ρ) (χ)] (f) =
∑

χ0f(χ1)

so that

(5.3) f ∗ χ =
∑

χ0f(χ1)

where
ρ (χ) =

∑
χ0 ⊗ χ1 for every χ ∈ H∗rat.

Since H is a right H-module via mH , we have that H
∗ has a left H-module structure

defined by

HH
∗ = Hom (kHH ,k k) .

For every h ∈ H and f ∈ H∗ we will write h ⇀ f = h · f . The we have

(h ⇀ f) (x) = f (xh) for all h, x ∈ H and f ∈ H∗.

Since S = SH : H → H is an algebra antihomomorphism, by setting

f ↽ h = S (h)⇀ f

we obtain a right H-module structure on H∗. Explicitly we have

(f ↽ h) (x) = (S (h)⇀ f) (x) = f (xS (h))

i.e.
(f ↽ h) (x) = f (xS (h)) for all h, x ∈ H and f ∈ H∗.

Theorem 5.15. H∗rat is a right H-submodule of the right H-module (H∗,↽)
Let µ : H∗rat ⊗H → H∗rat the induced right H-module structure on H∗rat.
Then (H∗rat, µ, ρ) ∈ MH

H is a right H-Hopf module.

Proof. First of all let us recall that, in view of Proposition 2.35, we know that

H∗rat = β←H∗ (αH∗ (H∗ ⊗H)) .

Thus to prove that H∗rat is a right H-submodule of the right H-module (H∗,↽) we
will prove that

χ ↽ h ∈ β←H∗ (αH∗ (H∗ ⊗H)) = H∗rat for any h ∈ H and χ ∈ H∗rat.
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Actually we will prove that

(5.4) βH∗ (χ ↽ h) = αH∗

∑
[(χ0 ↽ h1)⊗ χ1h2]

which means that

[βH∗ (χ ↽ h)] (f) =
{
αH∗

∑
[(χ0 ↽ h1)⊗ χ1h2]

}
(f) for any f ∈ H∗

i.e. that
f ∗ (χ ↽ h) =

∑
(χ0 ↽ h1) · f(χ1h2) for any f ∈ H∗.

This amounts to prove that

[f ∗ (χ ↽ h)] (x) =
∑

(χ0 ↽ h1) (x) · f(χ1h2) for any f ∈ H∗ and x ∈ H.

Let us compute∑
(χ0 ↽ h1) (x) · f(χ1h2)

def↽
=
∑

χ0 (xS (h1)) · f(χ1h2)

def⇀
=
∑

χ0 (xS (h1)) · [(h2 ⇀ f) (χ1)]
(5.3)
=
∑

[(h2 ⇀ f) ∗ χ] (xS (h1))

=
∑

[(h2 ⇀ f) (xS (h1))1] · [χ (xS (h1))2] =
∑

[(h2 ⇀ f) (x1S (h12))] · [χ (x2S (h11))]

=
∑

[(h3 ⇀ f) (x1S (h2))] · [χ (x2S (h1))] =
∑

[f (x1S (h2)h3)] · [χ (x2S (h1))]

=
∑

[f (x11Hε (h2))] · [χ (x2S (h1))] =
∑

f (x1) · [χ (x2S (h1ε (h2)))]

=
∑

f (x1) · [χ (x2S (h))]
def↽
= f (x1) [(χ ↽ h) (x2)] = [f ∗ (χ ↽ h)] (x) .

Thus form (5.4) is proved.
Let L = H∗rat and let iL : L → H∗ be the canonical inclusion. By (2.19) we

have that
βH∗ ◦ iL = αH∗ ◦ (iL ⊗H) ◦ ρ.

Thus we obtain

(αH∗ ◦ (iL ⊗H))
[∑

(χ0 ↽ h1)⊗ χ1h2

]
= αH∗

[∑
(χ0 ↽ h1)⊗ χ1h2

]
=

(5.4)
= (βH∗ ◦ iL) (χ ↽ h) =

(2.19)
= [αH∗ ◦ (iL ⊗H) ◦ ρ] (χ ↽ h) = (αH∗ ◦ (iL ⊗H)) [ρ (χ ↽ h)]

and hence we get

ρ (χ ↽ h) =
∑

(χ0 ↽ h1)⊗ χ1h2

which means that (H∗rat, µ, ρ) ∈ MH
H is a right H-Hopf module.

Proposition 5.16. Let (H,mH , uH ,∆H , εH , SH) be a Hopf algebra. Then

1)
∫
l
(H∗) is a submodule of H∗H∗rat.
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2) (H∗rat)coH =
∫
l
(H∗) .

3) The map α = αH∗rat :
∫
l
(H∗)⊗H −→ H∗rat defined by setting

α (λ⊗ h) = λ ↽ h for every λ ∈
∫
l

(H∗) and h ∈ H

is an isomorphism in MH
H .

Proof. 1) and 2) By Proposition 5.6,
∫
l
(H∗) is a two-sided ideal in H∗. In particular∫

l
(H∗) is a left H∗-submodule of H∗. Thus we may apply Proposition 2.28. Since,

for any λ ∈
∫
l
(H∗) we have

f ∗ λ = f (1H)λ = λf (1H) for any f ∈ H∗

we deduce that X =
∫
l
(H∗) is a rational left H∗-module and that

δX : X −→ X ⊗H is defined by setting δX (λ) = λ⊗ 1H

so that X ⊆ (H∗rat)coH .
Conversely let χ ∈ (H∗rat)coH . Then ρ (χ) = χ⊗ 1H and hence

f ∗ χ (5.3)
=
∑

χ0f(χ1) = χf (1H) = f (1H)χ for every f ∈ H∗

so that χ ∈
∫
l
(H∗).

3) Apply now Theorem 4.11.

Corollary 5.17.
∫
l
(H∗) = {0H∗} if and only if H∗rat = {0H∗} .

Proof. By Proposition 5.16 we have that∫
l

(H∗)⊗H ≃ H∗rat.

Proposition 5.18. Let (H,mH , uH ,∆H , εH , SH) be a Hopf algebra and assume that∫
l

(H∗) ̸= {0H∗} .

Then SH is injective.

Proof. Let λ ∈
∫
l
(H∗), λ ̸= 0 and let h ∈ H such that SH (h) = 0. By Proposition

5.16, the map α is an isomorphism. Since

α (λ⊗ h) = λ ↽ h = SH (h)⇀ λ = 0⇀ λ = 0

and λ ̸= 0 we conclude that h = 0.
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Proposition 5.19. Let (H,mH , uH ,∆H , εH , SH) be a finite dimensional Hopf alge-
bra. Then

1) dimk

∫
l
(H∗) = 1

2) SH is bijective.

Proof. 1) By Theorem 2.36 we have that

Rat (H∗M) = H∗M.

and hence we get that H∗rat = H∗. Then, from Proposition 5.16 we deduce that∫
l

(H∗)⊗H ≃ H∗

and hence

dim (H) = dim (H∗) = dim

(∫
l

(H∗)⊗H

)
= dim

(∫
l

(H∗)

)
· dim (H)

which implies that dim
(∫

l
(H∗)

)
= 1. Then, in view of Proposition 5.18, we obtain

that SH is injective and hence bijective as H has finite dimension.

Lemma 5.20. Let H be a finite dimensional Hopf algebra and consider the dual
Hopf algebra H∗. Then the space of left integrals in this Hopf algebra coincide with
the space of left integrals in the augmented algebra (H∗, πH∗) .

Proof. Since the algebra structure is the same, we have only to point out that
εH∗ = πH∗ .

Lemma 5.21. Let H be a finite dimensional Hopf algebra and let ω : H → H∗∗ the
natural isomorphism. Then

ω

(∫
l

(H)

)
=

∫
l

(H∗∗) .

Moreover∫
l

(H∗∗) = {α ∈ H∗∗ | α is a left integral in the dual of the Hopf algebra H∗}

Proof. By Proposition 3.11, ω : H → H∗∗ is a Hopf algebra isomorphism. In
particular ω : (H, εH) → (H∗∗, εH∗∗) is an isomorphism of augmented Hopf algebras.
Apply now Proposition 5.5.

The last statement follows by Lemma 5.20.
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Proposition 5.22. Let H be a finite dimensional Hopf algebra.
Then

dimk

∫
l

(H) = 1.

Moreover given a t ∈
∫
l
(H),t ̸= 0, we have that

H = H∗t.

Proof. By Proposition 3.10, H∗ is a finite dimensional Hopf algebra. Hence, by
Proposition 5.19 and Lemma 5.21 we conclude.
Let t ∈

∫
l
(H) , t ̸= 0. Then for every x ∈ H there exists an f ∈ H∗ such that

αH∗∗ (ω (t)⊗ f) = ω (t)↽ f = ω (x) .

We compute

[ω (t)↽ f ] (g) = ω (t) (g ∗ SH∗f) = ω (t) (g ∗ f ◦ SH) = (g ∗ f ◦ SH) (t)

=
∑

g (t1) f (SH (t2)) = g
(∑

t1f (SH (t2))
)
= ω

(∑
t1f (SH (t2))

)
(g)

= ω (f ◦ SH · t) (g)

so that [ω (t)↽ f ] = ω (f ◦ SH · t). Hence we deduce that ω (x) = ω (fSH · t) which
means that x = f ◦ SH · t ∈ H∗t.

5.2 Semisemplicity and Cosemisemplicity

Lemma 5.23. Let H be a Hopf algebra Then we have

1)
∑
λ(xS(y1))y2 =

∑
x1λ(x2S(y)) for every λ ∈

∫
l
(H∗), x, y ∈ H.

2)
∑
t1 ⊗ S(t2)h =

∑
ht1 ⊗ S(t2) for every t ∈

∫
l
(H), h ∈ H.

Proof. 1) Let λ ∈
∫
l
(H∗) and x, y ∈ H. We compute∑

x1λ(x2S(y)) =
∑

x1λ (x2S [ε(y2)y1]) =
∑

x1ε(y2)λ(x2S(y1))

=
∑

x1 [S(y2)y3]λ(x2S(y1))

=
∑

x1S(y12)y2λ(x2S(y11))

=
∑

x1 [S(y1)]1 y2λ(x2 [S(y1)]2)

=
∑

[(xS(y1)]1 y2λ([xS(y1)]2)

=
∑

[(xS(y1)]1 λ([xS(y1)]2)y2

(5.1)
=
∑

1Hλ(xS(y1))y2

=
∑

λ(xS(y1))y2.
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2) Let t ∈
∫
l
(H) and x ∈ H. We compute∑

ε (x) t1 ⊗ t2 = ε (x)∆ (t) = ∆ (ε (x) t)
tleftint
= ∆(xt) =

∑
(xt)1 ⊗ (xt)2

so that

(5.5)
∑

εH (x) t1 ⊗ t2 =
∑

(xt)1 ⊗ (xt)2 .

We compute∑
t1 ⊗ S(t2)h =

∑
t1 ⊗ S(t2)ε (h1)h2 =

∑
ε (h1) t1 ⊗ S(t2)h2

(5.5)
=
∑

(h1t)1 ⊗ S((h1t)2)h2 =
∑

h11t1 ⊗ S(h12t2)h2

=
∑

h1t1 ⊗ S(h2t2)h3 =
∑

h1t1 ⊗ S(t2)S(h2)h3

=
∑

h1t1 ⊗ S(t2)ε(h2) =
∑

ht1 ⊗ S(t2).

Definition 5.24. A k-algebra A is called left (resp. right) semisimple if it is left
(resp. right) semisimple as a ring i.e. if every left (resp. right) A-module is projec-
tive. If A is both right and left semisimple, we will simlpy say that A is semisimple.

Theorem 5.25 (Maschke’s Theorem). Let H be a Hopf algebra
The following statements are equivalent:

(a) H is a left semisimple Hopf algebra.

(a′) H is a right semisimple Hopf algebra.

(b) There exists a total left integral t in H.

(c) There exists a left integral t in H such that εH (t) ̸= 0.

Proof. (b) ⇒ (c) It is trivial.
(c) ⇒ (b) . Let t ∈ H be a left integral such that εH (t) ̸= 0. Set

t′ :=
1

εH (t)
t.

Then t′ è is a (left) total integral in H.
(a) ⇒ (b) The map

εH : H → k

is an algebra morphism. Hence k can be endowed with a left H-module structure
defined by setting

h · x = εH (h)x for every h ∈ H and x ∈ k.
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Note that εH becomes automatically a left H-module morphism. Since H is a
semisimple algebra, k is a projective left H-module so that, being εH surjective,
there exists a left H-module morphism τ : k → H such that the following diagram
is commutative:

k
τ ↙ ↓ Idk

H
εH−→ k → 0

We set

t = τ (1k) .

We have that

εH (t) = εH (τ (1k)) = Idk (1k) = 1k.

For any h ∈ H let us compute

h · t = h · τ (1k) = τ (h · 1k) = τ (εH (h) · 1k) = εH (h) · τ (1k) = εH (h) · t.

We deduce that t is a total left integral in H.
(b) ⇒ (a) Let t ∈ H be a total left integral in H and let P be a left H-module. Let

π :M −→ N

be a surjective morphism of left H-modules and let f : P → N be a morphism of
left H-modules.
We seek for a left H-module morphism f rendering the following diagram commu-
tative.

P

f ↙ ↓ f
M

π−→ N

Since k is a field there exists a k-linear map γ : N −→ M rendering the following
diagram commutative

N
γ ↙ ↓ IdN

M
π−→ N

i.e. such that π ◦ γ = IdN . (Why?)
We define a map

σ : N −→M by setting σ (x) =
∑

t1γ (SH (t2)x) for every x ∈ N .

We have

π (σ (x)) =
∑

π [t1γ (SH (t2) x)]
πisH-lin
=

∑
t1π (γ (SH (t2) x)) =

∑
t1SH (t2) x

= εH (t)x = x.
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Thus we obtain that π ◦ σ = IdN .
Now we will check that σ is a left H-module morphism. In view of Lemma 5.23, we
have that∑

t1 ⊗ SH(t2)h =
∑

ht1 ⊗ SH(t2) for every t ∈
∫
l

(H) and h ∈ H.

Thus we obtain

σ (hx) =
∑

t1γ (SH (t2)hx) =
∑

ht1γ (SH (t2) x) = hσ (x) .

Now we set

f = σ ◦ f : P →M.

Then f is a left H-module morphism and

π ◦ f = π ◦ σ ◦ f = f.

Since, by Corollary 5.11, any left total integral in H is a right total integral in
H, the proof of (a′) ⇔ (b) is similar.

Theorem 5.26. Every semisimple Hopf algebra has finite dimension.

Proof. In view of Theorem 5.25 there is a total left integral t in H. Now by Lemma
5.23, we have that

(5.6)
∑

t1 ⊗ SH(t2)h =
∑

ht1 ⊗ SH(t2) for every h ∈ H.

Let us write ∑
t1 ⊗ SH(t2) =

n∑
i=1

ai ⊗ bi.

Then (5.6) rewrites as

(5.7)
n∑
i=1

ai ⊗ bih =
n∑
i=1

hai ⊗ bi for every h ∈ H.

Let (ei)i∈I be a basis for H over k and let (e∗i )i∈I be the dual basis. We have
e∗j (ei) = δij for every i, j ∈ I. Then for every h ∈ H there is a finite subset I (h) of
I such that

x =
∑
i∈I(h)

e∗i (h) ei.
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We compute

h = h1H = hεH (t) 1H = h
∑

t1SH(t2) = h

n∑
i=1

aibi

=
n∑
i=1

haibi =
n∑
i=1

hai ·
∑
j∈I(bi)

e∗j (bi) ej

(5.7)
=

n∑
i=1

ai ·
∑
j∈I(bi)

e∗j (bih) ej

=
n∑
i=1

∑
j∈I(bi)

e∗j (bih) aiej.

Hence
{aiej | i = 1, . . . , n and j ∈ I (bi)}

is a finite set of generators of H over k.

Definition 5.27. A coalgebra C is called left (resp. right) cosemisimple if every
left (resp. right) C-comodule is injective.

If C is both right and left cosemisimple, we will simply say that C is cosemisim-
ple.

Theorem 5.28 (Dual Maschke’s Theorem ). Let H be a Hopf algebra. The following
statements are equivalent:

(a) H is a left cosemisimple Hopf algebra.

(a′) H is a right cosemisimple Hopf algebra.

(b) There exists a left total integral λ in H∗.

(c) There exists a left integral λ in H∗ such that λ (1H) ̸= 0.

Proof. (b) ⇒ (c) It is trivial.
(c) ⇒ (b) Let λ ∈ H∗ be a left integral such that λ (1H) ̸= 0. Set

λ′ :=
1

λ (1H)
λ.

Then λ′ is a total left integral in H∗.
(a) ⇒ (b) The map

uH : k → H : k 7−→ k1H

is a coalgebra morphism. Hence k can be endowed with a left H-comodule structure
defined by setting

kρ (x) = x1H ⊗ 1k for every x ∈ k.
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Note that uH becomes automatically a left H-comodule morphism. Since H is a left
cosemisimple coalgebra, k is an injective left H-comodule so that, being uH injective
there exists a left H-comodule morphism λ : k → H such that the following diagram
is commutative:

k
uH−→ H

Idk ↓ ↙ λ
k

Then we have
λ (1H) = λ (uH (1k)) = Idk (1k) = 1k.

Moreover, since λ is a left H-comodule morphism, we have that

(H ⊗ λ) ◦∆H = kρ ◦ λ.

This means that ∑
h1 ⊗ λ (h2) = λ (h) 1H ⊗ 1k for every h ∈ H

from which we deduce∑
h1λ (h2) = λ (h) 1H for every h ∈ H

Therefore λ is a total left integral in H∗.
(b) ⇒ (a) . Let λ ∈ H∗ be a total left integral in H∗ and let E be a left H-comodule.
Let

σ :M −→ N

be an injective morphism of left H-comodules and let f : M → E be a morphism
of left H-comodules.
We seek for a left H-comodule morphism f rendering the following diagram com-
mutative.

M
σ−→ N

f ↓ ↙ f
E

Since k is a field, there exists a k-linear map γ : N −→ M rendering the following
diagram commutative

M
σ−→ N

IdM ↓ ↙ γ
M

i.e. such that γ ◦ σ = IdM . (Why?)
We define a map

π : N −→M by setting π (y) =
∑

λ
[
y−1SH((γ (y0))−1)

]
(γ (y0))0 for every y ∈ N .

Since σ is a morphism of left H-comodules, we have that

(H ⊗ σ) ◦ Mρ = Nρ ◦ σ
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which means that∑
x−1 ⊗ σ (x0) = σ (x)−1 ⊗ σ (x)0 for every x ∈M .

We compute

(π ◦ σ) (x) =
∑

λ
[
σ (x)−1 SH((γ (σ (x)0))−1)

]
(γ (σ (x)0))0

=
∑

λ
[
x−1SH((γ (σ (x0)))−1)

]
(γ (σ (x0)))0 =

∑
λ
[
x−1SH((x0)−1)

]
(x0)0

=
∑

λ [x−2SH(x−1)] x0 =
∑

λ [x−11SH(x−12)]x0 =
∑

λ [εH(x−1)1H ] x0

=
∑

λ (1H) εH(x−1)x0 =
∑

1kεH(x−1)x0 = x.

Thus we obtain that π ◦ σ = IdM .
Let us prove that π is a morphism of left H-comodules, i.e. that

(H ⊗ π) ◦ Nρ = Mρ ◦ π

In view of Lemma 5.23, we have∑
λ(xSH(y1))y2 =

∑
x1λ(x2SH(y)) for every λ ∈

∫
l

(H∗) and x, y ∈ H.

Thus, for every y ∈ N , we obtain[
(H ⊗ π) ◦ Nρ

]
(y) =

∑
y−1 ⊗ π (y0)

=
∑

y−2 ⊗ λ
[
y−1SH((γ (y0))−1)

]
(γ (y0))0

=
∑

y−2λ
[
y−1SH((γ (y0))−1)

]
⊗ (γ (y0))0

=
∑

y−11λ
[
y−12SH((γ (y0))−1)

]
⊗ (γ (y0))0

=
∑

λ
[
y−1SH((γ (y0))−11

]
(γ (y0))−12 ⊗ (γ (y0))0

=
∑

λ
[
y−1SH((γ (y0))−2

]
(γ (y0))−1 ⊗ (γ (y0))0

= Mρ
{∑

λ
[
y−1SH((γ (y0))−1

]
(γ (y0))0

}
=
(
Mρ ◦ π

)
(y)

Now we set
f = f ◦ π : N → E.

Then f is a morphism of left H-comodules and

f ◦ σ = f ◦ π ◦ σ = f.

Since by Corollary 5.13, any left total integral in H∗ is a right total integral in H∗,
the proof of (a′) ⇔ (b) is similar.
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Corollary 5.29. Let H be a finite dimensional Hopf algebra. Then
H is semisimple ⇐⇒ H∗ is cosemisimple.
H is cosemisimple ⇐⇒ H∗ is semisimple.

Proof. Recall that, by Lemma 5.21

ω

(∫
l

(H)

)
=

∫
l

(H∗∗) = {α ∈ H∗∗ | α is a left integral in the dual of the Hopf algebra H∗}

By Maschke Theorem 5.25, H is semisimple ⇐⇒ there exists a left integral t in H
such that εH (t) ̸= 0.By Dual Maschke Theorem 5.28, H is cosemisimple ⇐⇒ there
exists a left integral λ in H∗ such that λ (1H) ̸= 0.

Thus, by the foregoing we have that H∗ is cosemisimple⇐⇒ there exists a left
integral t ∈

∫
l
(H) such that 0 ̸= ω (t) (1H∗) = ω (t) (εH) = εH (t) ⇐⇒ H is semisim-

ple.
Analogously H∗ is semisimple ⇐⇒ there exists a left integral λ in H∗ such that

0 ̸= εH∗ (λ) = λ (1) i.e. H is cosemiusimple.
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Examples

6.1 kG

Let (G,mG, 1G) be a multiplicative monoid. Then we can consider the monoid
algebra kG (see Example 1.9). Recall that as a k-vector space it is just k(G) where
the multiplication is defined by setting

(α · β) (x) =
∑
z,w∈G
zw=x

α (z) β (w) .

Then, for each x ∈ G, let ex be the element of k(G) defined by

ex (x) = 1k and ex (y) = 0k for every y ∈ G, y ̸= x.

Then, accordingly to 1.4, we write x instead of ex for every x ∈ G so that every
element α ∈ k(G) can be uniquely written, using the k-vector space structure of k(G),
as

α =
∑

x∈Supp(α)

α (x)x.

Then the product in kG is uniquely defined by setting

x ·kG y = x ·G y

for every x, y ∈ G. In particular the identity 1kG of kG is

1kG = 1G.

On the other hand, we can consider the grouplike coalgebra (kG,∆kG, εkG) intro-
duced in example 2a) 1.12. We have

∆kG (x) = x⊗ x and εkG (x) = 1k for every x ∈ G.

Let us check that (G,mG, 1G,∆kG, εkG) is a bialgebra. Indeed, we have:

∆kG (xy) = xy⊗xy = (x⊗ x) (y ⊗ y) = ∆kG (x)∆kG (y) for every x, y ∈ G and ∆kG (1G) = 1G⊗1G.

83
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Moreover

εkG (xy) = 1k = 1k1k = εkG (x) εkG (y) for every x, y ∈ G and εkG (1kG) = 1k.

Assume now that G is a group. Then (G,mG, 1G,∆kG, εkG, SkG) is a Hopf algebra
where

SkG (g) = g−1 for every g ∈ G.

In fact we have

(SkG ∗ IdkG) (g) = g−1·g = 1G = εkG (g) = g·g−1 = (IdkG ∗ SkG) (g) for every g ∈ G.

Let λ : kG→ k be the k-linear map defined by setting

λ (g) = δg,1G1k for every g ∈ G.

Let us check that λ is a total left integral in (kG)∗. Let f ∈ (kG)∗ and, for every
x ∈ G, let us compute

(f ∗ λ) (x) = f (x)λ (x) = f (x) δx,1G = f (1G) δx,1G = f (1G)λ (x) .

Thus we deduce that
f ∗ λ = f (1G)λ.

Moreover we have
λ (1kG) = λ (1G) = 1k.

Thus, by The Dual Maschke’s Theorem 5.28, kG is always a cosemisimple Hopf
algebra.

Assume now that G is a finite group and let us set

t =
∑
g∈G

g.

For every x ∈ G, we compute

x · t =
∑
g∈G

x · g =
∑
g∈G

g = t = 1kt = εkG (x) t.

Therefore t is a left integral in kG. Since t ̸= 0kG, by Proposition 5.22, we know
that

∫
l
(H) = kt. Thus we deduce, by Maschke’s Theorem 5.25, that kG is also

semisimple if and only if εkG (t) ̸= 0k. Therefore we compute

εkG (t) = εkG

(∑
g∈G

g

)
=
∑
g∈G

εkG (g) = |G| 1k.

Hence we conclude that, for a finite groupG, kG is semisimple if and only if char (k) -
|G|.
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When G is a finite group, by Proposition 3.10, (kG)∗ is also a Hopf algebra.
Note that, since kG is a cocommutative Hopf algebra, (kG)∗ is a commutative Hopf
algebra. Denote by pg : kG→ k the dual of the element g ∈ G, i.e. pg (h) = δg,h for
every g, h ∈ G. Then the pg’s, g ∈ G, are a basis of the k-vector space (kG)∗ and
we have

(pg ∗ ph) (x) = δg,xδh,x

so that

(pg ∗ ph) (x) = 1k if g = x = h and (pg ∗ ph) (x) = 0k otherwise, i.e.

pg ∗ ph = δg,hpg and
∑
g∈G

pg = εkG = 1(kG)∗

which means that (pg)g∈G is a complete system of orthogonal idempotents of the

k-algebra (kG)∗. Moreover, for every f ∈ (kG)∗, we have

∆(kG)∗ (f) =
∑

f1 ⊗ f2

where
∑
f1 ⊗ f2 is uniquely defined by

f (gh) =
∑

f1 (g) f2 (h) for every g, h ∈ G.

Since the pg ⊗ ph, g, h ∈ G constitute a basis of (kG)∗ ⊗ (kG)∗, there exist elements
αg,h ∈ k such that

∆(kG)∗ (f) =
∑
g,h∈G

αg,hpg ⊗ ph

and hence

f (xy) =
∑
g,h∈G

αg,hpg (x) ph (y) = αx,y for every x, y ∈ G

so that
∆(kG)∗ (f) =

∑
g,h∈G

f (gh) pg ⊗ ph.

In particular, for f = px we obtain

∆(kG)∗ (px) =
∑
g,h∈G

px (gh) pg ⊗ ph =
∑
g,h∈G
gh=x

pg ⊗ ph =
∑
g∈G

pg ⊗ pg−1x.

Moreover we have
ε(kG)∗ (px) = px (1G) = δx,1G1k

and [
S(kG)∗ (f)

]
(x) = [f ◦ SkG] (x) = f

(
x−1
)

so that [
S(kG)∗ (pg)

]
(x) = pg

(
x−1
)
= δg,x−11k = δg−1,x1k = pg−1 (x)
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i.e.

S(kG)∗ (pg) = pg−1 .

Clearly, by the foregoing, λ = p1G is a total integral in (kG)∗ so that, for a finite
group G, (kG)∗ is always semisimple. Moreover, by means of Lemma 5.21, it is easy
to prove that (kG)∗ is cosemisimple if and only if char (k) - |G|.

We list all these result in the following theorem.

Theorem 6.1 (Classical Maschke’s Theorem). Let k be a field and let G be a group.
Then

• the Hopf algebra kG is always cosemisimple.

• If G is a finite group, kG is semisimple if and only if char (k) - |G| if and only
if (kG)∗ is cosemisimple.

• If G is a finite group, (kG)∗ is always semisimple.

6.2 The Tensor Algebra

Let A be a ring and M = AMA be a two-sided A-module.. Set

M⊗0
A = A, M⊗1

A =M, and M⊗n
A =M⊗n−1

A ⊗AM for every n ∈ N, n ≥ 2

and let

TA (M) =
⊕
n∈N

M⊗n
A .

For every n ∈ N, let in : M⊗n
A → TA (M) be the obvious injective A-bimodule

homomorphism. We define on T = TA (M) a multiplication by setting

i0 (a) ·T i0 (b) = i0 (a ·A b) for every a, b ∈ A

i0 (a) ·T in (x1 ⊗A . . .⊗A xn) = in [(a ·M x1)⊗A . . .⊗A xn]

for every a ∈ A, n ∈ N, n ≥ 1, x1, . . . , xn ∈M

in (x1 ⊗A . . .⊗A xn) ·T i0 (a) = in [x1 ⊗A . . .⊗A (xn.a)]

for every a ∈ A, n ∈ N, n ≥ 1, x1, . . . , xn ∈M

im (x1 ⊗A . . .⊗A xm) ·T in (y1 ⊗A . . .⊗A yn) = im+n (x1 ⊗A . . .⊗A xm ⊗A y1 ⊗A . . .⊗A yn)

for every m,n ∈ N,m, n ≥ 1, x1, . . . , xm, y1, . . . , yn ∈M

and extending it by linearity on T .

Lemma 6.2. Let A be a bialgebra and let h : A→ Aop be an algebra homomorphism.
If, for a, b ∈ A, (h ∗ IdA) (a) = (uA ◦ εA) (a) and (h ∗ IdA) (b) = (uA ◦ εA) (b) then
(h ∗ IdA) (ab) = (uA ◦ εA) (ab) .
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Proof. Let us compute

(h ∗ IdA) (ab) =
∑

h ((ab)1) (ab)2 =
∑

h (a1b1) a2b2
hantialgmor

=
∑

h (b1)h (a1) a2b2

=
∑

h (b1) εA (a) 1Ab2 = εA (a)
∑

h (b1) b2 = εA (a) εA (b) 1A

= εA (ab) 1A = (uA ◦ εA) (ab) .

Theorem 6.3. Let A be a ring and let M = AMA be a two-sided A-module. Then,
with respect to the structure defined above, TA (M) becomes a ring. Moreover TA (M)
fulfills the following universal property. Let f0 : A → B be a ring homomorphism
and let f1 :M → B be an A-bimodule homomorphism. Then there exists an algebra
homomorphism f : TA (M) → B such that

f ◦ i0 = f0 and f ◦ i1 = f1.

Moreover f is unique with respect to this property.

Proof. For every n ∈ N, n ≥ 2, let us define

fn :M⊗n
A → B

by setting

fn (x1 ⊗A . . .⊗A xn) = f1 (x1) ·B . . . ·B f1 (xn)
for every x1 ⊗A . . .⊗A xn ∈M⊗n

A .

Note that fn is well defined since f1 is a morphism of A-bimodules. Let f : T =
TA (M) → B be the codiagonal morphism of (fn)n∈N. Then f ◦ ij = fj for every

j ∈ N. For every a, b ∈M⊗0
A = A, we compute

f (i0 (a) ·T i0 (b)) = f (i0 (a ·A b)) = f0 (a ·A b) = f0 (a)·Bf0 (b) = f (i0 (a))·Bf (i0 (b)) .

For every a ∈M⊗0
A = A, for every n ∈ N, n ≥ 1 and for every x1⊗A . . .⊗Axn ∈M⊗n

A ,
we compute

f (i0 (a) ·T in (x1 ⊗A . . .⊗A xn)) = f (in [(a ·M x1)⊗A . . .⊗A xn]) =

= f1 (a ·M x1) ·B . . . ·B f1 (xn) = [f0 (a) ·B f1 (x1)] ·B . . . ·B f1 (xn) =
= f0 (a) ·B [f1 (x1) ·B . . . ·B f1 (xn)] = f [i0 (a)] ·B f [in (x1 ⊗A . . .⊗A xn)] .

Similarly, one gets

f (in (x1 ⊗A . . .⊗A xn) ·T i0 (a)) = f [in (x1 ⊗A . . .⊗A xn)] ·B f [i0 (a)] .
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For every n,m ∈ N, n,m ≥ 1 and for every x1 ⊗A . . . ⊗A xm ∈ M⊗m
A and for every

y1 ⊗A . . .⊗A yn ∈M⊗n
A , we compute

f [im (x1 ⊗A . . .⊗A xm) ·T in (y1 ⊗A . . .⊗A yn)] =

= f [im+n (x1 ⊗A . . .⊗A xm ⊗A y1 ⊗A . . .⊗A yn)]

= f1 (x1) ·B . . . ·B f1 (xm) ·B f1 (y1) ·B . . . ·B f1 (yn) =
= f [im (x1 ⊗A . . .⊗A xm)] ·B f [in (y1 ⊗A . . .⊗A yn)] .

Let g : T → B be another algebra morphism such that g ◦ i0 = f0 and g ◦ i1 = f1.
Then, for every n ∈ N, n ≥ 2, we compute

(g ◦ in) (x1 ⊗A . . .⊗A xn) = g (i1 (x1) ·T . . . ·T i1 (xn)) = g (i1 (x1)) ·B . . . ·B g (i1 (xn))
= f1 (x1) ·B . . . ·B f1 (xn) = (f ◦ in) (x1 ⊗A . . .⊗A xn) .

Assume now that A = k is a field and thatM is a k-vector space. In this case, we
want to define a coalgebra structure on T = Tk (M). To this aim, we will consider
the algebra tensor product of T by itself. To avoid confusion, we will write this
tensor product and his elements as

T⊗T, x⊗y.

Set f0 = (i0⊗i0) ◦∆k : k → T⊗T where ∆k = l−1k = r−1k (see 1.26). Then f0 is a
bialgebra map.Let us consider the map f1 :M → T⊗T defined by setting

f1 (x) = i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x) , for every x ∈M .

Clearly f1 is a k-linear map. Then, by the universal property of the tensor algebra,
there exists a unique algebra map ∆T : T → T⊗T such that

∆T ◦ i0 = (i0⊗i0) ◦∆k and ∆T ◦ i1 = f1.

Always by the the universal property of the tensor algebra, there exists a unique
algebra map εT : T → k such that

εT ◦ i0 = εk = Idk and εT ◦ i1 = 0.

Let us check that (T,∆T , εT ) is a bialgebra. We compute

[(IdT⊗∆T ) ◦∆T ] ◦ i0 = (IdT⊗∆T ) ◦ (i0⊗i0) ◦∆k = [i0⊗ (∆T ◦ i0)] ◦∆k

= [i0⊗H ((i0⊗i0) ◦∆k)] ◦∆k = (i0⊗i0⊗i0) ◦ (k ⊗∆k) ◦∆k = (i0⊗i0⊗i0) ◦ (∆k ⊗ k) ◦∆k =

[((i0⊗i0) ◦∆k)⊗i0] ◦∆k = [(∆T ◦ i0)⊗i0] ◦∆k =

= (∆T⊗IdT ) ◦ (i0⊗i0) ◦∆k = [(∆T⊗IdT ) ◦∆T ] ◦ i0

so that, we obtain

(6.1) [(IdT⊗∆T ) ◦∆T ] ◦ i0 = [(∆T⊗IdT ) ◦∆T ] ◦ i0
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For every x ∈M , we calculate

([(IdT⊗∆T ) ◦∆T ] ◦ i1) (x) = ((IdT⊗∆T ) ◦ f1) (x)
= (IdT⊗∆T ) [i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)] =
= i1 (x)⊗∆T (i0 (1k)) + i0 (1k)⊗∆T (i1 (x)) =

= i1 (x)⊗i0 (1k)⊗i0 (1k) + i0 (1k)⊗ (i1 (x)⊗i0 (1k) + i0 (1k)⊗i0 (1k)⊗i1 (x)) =
= (i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x))⊗i0 (1k) + i0 (1k)⊗i0 (1k)⊗i1 (x) =

= ∆T (i1 (x))⊗i0 (1k) + ∆T (i0 (1k))⊗i1 (x) =
= (∆T⊗IdT ) (i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)) = ((∆T⊗IdT ) ◦ f1) (x) =

= ([(∆T⊗IdT ) ◦∆T ] ◦ i1) (x)

so that we obtain

(6.2) [(IdT⊗∆T ) ◦∆T ] ◦ i1 = [(∆T⊗IdT ) ◦∆T ] ◦ i1.

By the uniqueness in the universal property of T, from (6.1) and (6.2) we deduce
that

(IdT⊗∆T ) ◦∆T = (∆T⊗IdT ) ◦∆T .

Let us compute

(lT ◦ (εT⊗T ) ◦∆T ) ◦ i0 = lT ◦ (εT⊗T ) ◦ (i0⊗i0) ◦∆k = lT ◦ ((εT ◦ i0)⊗i0) ◦∆k =

= lT ◦ (k⊗i0) ◦ (εk⊗k) ◦∆k
(1.1)
= i0 ◦ lk ◦ (εk⊗k) ◦∆k = i0

so that we obtain

(6.3) (lT ◦ (εT⊗T ) ◦∆T ) ◦ i0 = i0.

For every x ∈M , we calculate

[(lT ◦ (εT⊗T ) ◦∆T ) ◦ i1] (x) = (lT ◦ (εT⊗T )) (i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)) = lT (εT (i1 (x))⊗i0 (1k) + εT (i0 (1k))⊗i1 (x)) =
= lT (1k⊗i1 (x)) = 1k ·T i1 (x) = i1 (x)

so that we get

(6.4) (lT ◦ (εT⊗T ) ◦∆T ) ◦ i1 = i1.

By the uniqueness in the universal property of T, from (6.3) and (6.4)we deduce
that

lT ◦ (εT⊗T ) ◦∆T = IdT .

In a similar way one can prove that

rT ◦ (T⊗εT ) ◦∆T = IdT .

Thus (T,∆T , εT ) is a coalgebra. By construction, both ∆T and εT are algebra maps
and hence we obtain that (T,mT , uT ,∆T , εT ) is a bialgebra.
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Let us consider the linear map h1 :M → T op defined by setting

h1 (x) = i1 (−x) , for every x ∈M

and consider
h0 = iop : kop = k → T op.

Then, by the universal property of T , there exists a unique algebra morphism

ST : T → T op

such that
ST ◦ i0 = h0 and ST ◦ i1 = h1.

Let us prove that (T,mT , uT ,∆T , εT , ST ) is a Hopf algebra, that is

ST ∗ IdT = uT ◦ εT and IdT ∗ ST = uT ◦ εT .

By Lemma 6.2 it is sufficient to prove it for the elements i1 (x), for every x ∈ M,
that generate T

[(ST ∗ IdT ) ◦ i1] (x) = ST (i1 (x)) ·T IdT (i0 (1k)) + ST (i0 (1k)) ·T IdT (i1 (x))

= h1 (x) ·T i0 (1k) + i0 (1k) ·T i1 (x) = i1 (−x) + i1 (x) = 0T = uT ◦ εT ◦ i1 (x)

so that
(ST ∗ IdT ) ◦ i1 = uT ◦ εT ◦ i1

and hence we deduce that
ST ∗ IdT = uT ◦ εT .

In a similar way one proves also that IdT ∗ ST = uT ◦ εT .

Remark 6.4. Assume that M is a k-vector space of dimension n and let x1, . . . , xn
be a basis of M . Set

Xj = i1 (xj) for every j = 1, . . . , n.

Then (xj1 ⊗ . . .⊗ xjt)js∈{1,...,n} is a basis of M⊗t and hence

(Xj1 ·T · · · ·T Xjt)js∈{1,...,n}

i.e. the ”words” in X1, . . . , Xn of length t, is a basis for it (M
⊗t). Thus any ele-

ment of T = Tk (M) is a linear combination, with coefficients in k of the elements
(Xj1 ·T · · · ·T Xjt)js∈{1,...,t} where t ranges in N i.e. is a linear combination of words
in X1, . . . , Xn of arbitrary length t.

When n = 1 we get that Tk (M) can be identified with the polynomial ring k [X].
When n = 2, writing X = X1 and Y = X2, we get that any element of Tk (M)

is a linear combination of elements of the form

Xa0 ·T Y b0 ·T · · · ·T Xas ·T Y bs where s ∈ N and ai, bi ∈ N for every i = 1, . . . , s.

In general Tk (M) can be thought as a polynomial ring in the noncommutative vari-
ables X1, . . . , Xn. For this reason it is also denoted by k {X1, . . . , Xn}.
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6.3 The Symmetric Algebra

Let M be a vector space over the field k. For any x, y ∈ M let us consider the
element

sx,y = i2 (x⊗ y − y ⊗ x) = i1 (x) ·T i1 (y)− i1 (y) ·T i1 (x) ∈ Tk (M)

and let I be the two-sided ideal of Tk (M) generated by all sx,y where x and y range
in M . Let us check that I is a Hopf ideal of T = Tk (M). Let x, y ∈ M and let us
compute

∆T (sx,y) = ∆T (i1 (x)) ·∆T (i1 (y))−∆T (i1 (y)) ·∆T (i1 (x))

= [i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)] [i1 (y)⊗i0 (1k) + i0 (1k)⊗i1 (y)] +
− [i1 (y)⊗i0 (1k) + i0 (1k)⊗i1 (y)] [i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)]

= [i1 (x) ·T i1 (y)− i1 (y) ·T i1 (x)]⊗i0 (1k) + i0 (1k)⊗ [i1 (x) ·T i1 (y)− i1 (y) ·T i1 (x)] ∈ I⊗T + T⊗I

and

εT (sx,y) = εT (i1 (x) ·T i1 (y)− i1 (y) ·T i1 (x))
= [εT ◦ i1 (x)] [εT ◦ i1 (y)]− [εT ◦ i1 (y)] [εT ◦ i1 (x)] = 0

and also

ST (sx,y) = ST (i1 (x) ·T i1 (y)− i1 (y) ·T i1 (x))
= [ST ◦ i1 (y)] ·T [ST ◦ i1 (x)]− [ST ◦ i1 (x)] ·T [ST ◦ i1 (y)] =

= [−i1 (y)] ·T [−i1 (x)]− [−i1 (x)] ·T [−i1 (y)] = i1 (y) ·T i1 (x)− i1 (x) ·T i1 (y) = −sx,y ∈ I.

Thus, by Theorem 3.18, Tk (M) /I is a Hopf algebra that will be denoted by Sk (M)
and called the symmetric algebra of M . Let p : Tk (M) → Tk (M) /I = Sk (M) be
the canonical projection and let jn = p ◦ in : M⊗n → Sk (M) for every n ∈ N. We
leave to the reader the proof of the following Theorem.

Theorem 6.5. LetM be a vector space over the field k, let (A,mA, uA) be a commu-
tative k-algebra and let f1 : M → A be a k-linear map. Then there exists a unique
algebra map f : Sk (M) → A such that f ◦ j0 = uA and f ◦ j1 = f1.

Exercise 6.6. Assume that M is a k-vector space of dimension n. Show that, in
this case

Sk (M) ≃ k [X1, . . . , Xn] .

Proposition 6.7. Let (H,m, u,∆, ε) be a bialgebra. Assume that there exists a λ a
left integral in H∗ such that λ (1H) ̸= 0. Then

P (H) = {x ∈ H | ∆(x) = x⊗ 1H + 1H ⊗ x} = {0} .
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Proof. Let x ∈ P (H) . We compute∑
x1λ (x2) = rH (H ⊗ λ)

(∑
x1 ⊗ x2

)
= rH (H ⊗ λ) (x⊗ 1H + 1H ⊗ x)

= rH (H ⊗ λ) (x⊗ 1H) + rH (H ⊗ λ) (1H ⊗ x)

= xλ (1H) + 1Hλ (x) .

Then

xλ (1H) + 1Hλ (x)
(5.1)
= 1Hλ (x)

and hence

xλ (1H) = 0

which implies, since λ (1H) ̸= 0, that x = 0.

Remark 6.8. Let M ̸= {0} be a k-vector space. Then, in view of Proposition 6.7,
there exist no (left) total integrals both in Tk (M)∗ and in Sk (M)∗ . In fact, we have
that

{0} ̸= i1 (M) ⊆ P (Tk (M)) and {0} ̸= j1 (M) ⊆ P (Sk (M)) .

Thus, in view of Theorem 5.28, both Tk (M) and Sk (M) can never be cosemisimple.

6.4 Enveloping Algebra of a Lie Algebra.

Let us recall the following definition.

Definition 6.9. A Lie algebra over a field k is a couple (L, [ , ]) where

• L is a k-vector space

• [ , ] : L× L→ L is a map such that

1) [ , ] is k-bilinear.

2) [x, x] = 0 for every x ∈ L.

3) [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]] = 0 for every x, y, z ∈ L. (Jacobi’s Identity)

Remark 6.10. [ , ] is , in general, non associative.

Lemma 6.11. Let [ , ] : L×L→ L be a k-bilinear map. Then, if [ , ] fulfills 2) then
it also fulfills

2’) [x, y] = − [y, x] for every x, y ∈ L.

If char (k) ̸= 2, then 2) and 2′) are equivalent.
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Proof. Let x, y ∈ L. Then, by 2) and in view of the bilinearity of [ , ], we have

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]

from which we deduce 2′). Conversely, assume that 2′) holds and char (k) ̸= 2. Then
from

[x, x] = − [x, x]

we deduce that

2 [x, x] = 0 and hence, since char (k) ̸= 2, that [x, x] = 0 for every x ∈ L.

Example 6.12. 1) Let A be any k-algebra and let us consider the Lie algebra A− =
(A, [ , ]) where [ , ] is defined by setting

[x, y] = x ·A y − y ·A x for every x, y ∈ A.

In fact we have

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = x ·A [y ·A z − z ·A y]− [y ·A z − z ·A y] ·A x
+y ·A [z ·A x− x ·A z]− [z ·A x− x ·A z] ·A y
+z ·A [x ·A y − y ·A x]− [x ·A y − y ·A x] ·A z

= 0

In particular, for A = Endk (V ), where V is a k-vector space, we have that A− is
denoted by gl (V ) and is called general linear algebra. If n ∈ N, n ≥ 1, for
A = Mn (k), A

− is denoted by gln (k). Let ei,j be the n × n matrix having 1k
in the (i, j) entry and 0k elsewhere. Then ei,j · es,t = δj,sei,t and hence

[ei,j, es,t] = δj,sei,t − δt,ies,j.

2) Let sln (k) be the set of n×n matrices having trace 0k. Given two n×n matrices
a, b, we know that Tr (ab) = Tr (ba) and Tr (a+ b) = Tr (a) + Tr (b). Hence
gln (k) induces a Lie algebra structure on sln (k). This Lie algebra is called the
special linear algebra.

3) Let n = 2m and let

s =

(
0 Im

−Im 0

)
where Im is the identity matrix in Mm (k). Let

spn (k) =
{
x ∈Mn (k) | sx = −xts

}
where xt denotes the transpose of the matrix x. It is easy to show that spn (k) ⊆
sln (k) and that sln (k) induces a Lie algebra structure on spn (k). This Lie
algebra is called the symplectic algebra.
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Proposition 6.13. Let (L, [ , ]) be a Lie algebra over k and let I be the ideal of the
tensor algebra T = Tk (L) generated by all the elements of the form

i1 ([x, y])− i2 (x⊗ y − y ⊗ x) where x, y ∈ L.

Then I is a Hopf ideal of T .

Proof. Set lx,y = i1 ([x, y])− i2 (x⊗ y − y ⊗ x) . For every x, y ∈ L, we compute

∆T (lx,y) = ∆T (i1 ([x, y]))−∆T (i1 (x)) ·∆T (i1 (y)) + ∆T (i1 (y)) ·∆T (i1 (x)) =

= [i1 ([x, y])⊗i0 (1k) + i0 (1k)⊗i1 ([x, y])] +
− [i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)] [i1 (y)⊗i0 (1k) + i0 (1k)⊗i1 (y)] +
+ [i1 (y)⊗i0 (1k) + i0 (1k)⊗i1 (y)] [i1 (x)⊗i0 (1k) + i0 (1k)⊗i1 (x)] =

= [i1 ([x, y])⊗i0 (1k) + i0 (1k)⊗i1 ([x, y])] + [−i1 (x) ·T i1 (y) + i1 (y) ·T i1 (x)]⊗i0 (1k)+
+i0 (1k)⊗ [−i1 (x) ·T i1 (y) + i1 (y) ·T i1 (x)] =

= [i1 ([x, y])− i1 (x) ·T i1 (y) + i1 (y) ·T i1 (x)]⊗i0 (1k)+
+i0 (1k)⊗ [i1 ([x, y])− i1 (x) ·T i1 (y) + i1 (y) ·T i1 (x)] ∈ I⊗T + T⊗I.

We calculate also

εT (lx,y) = εT (i1 ([x, y])− i2 (x⊗ y − y ⊗ x))

= εT [i1 ([x, y])− i1 (x) ·T i1 (y) + i1 (y) ·T i1 (x)]
= εT [i1 ([x, y])]− [εT ◦ i1 (x)] [εT ◦ i1 (y)] + [εT ◦ i1 (y)] [εT ◦ i1 (x)] = 0

and

ST (lx,y) = ST (i1 ([x, y])− i1 (x) ·T i1 (y) + i1 (y) ·T i1 (x))
= [ST ◦ i1 ([x, y])]− [ST ◦ i1 (y)] ·T [ST ◦ i1 (x)] + [ST ◦ i1 (x)] ·T [ST ◦ i1 (y)]
= −i1 ([x, y]) + [i1 (y)] ·T [−i1 (x)] + [−i1 (x)] ·T [−i1 (y)]
= −i1 ([x, y])− i1 (y) ·T i1 (x) + i1 (x) ·T i1 (y) = −lx,y ∈ I.

Definition 6.14. Let (L, [ , ]) be a Lie algebra over k. The enveloping algebra of
L is the quotient algebra U (L) of the tensor algebra T = Tk (L) modulo the ideal I
generated by all the elements of the form

i1 ([x, y])− i2 (x⊗ y − y ⊗ x) where x, y ∈ L.

Definition 6.15. Let (L, [ , ]) and
(
L′, [ , ]′

)
be Lie algebras over k. A k-linear map

f : L→ L′ is called a morphism of Lie algebras if

f ([x, y]) = [f (x) , f (y)]′ for every x, y ∈ L.

Theorem 6.16. Let (L, [ , ]) be a Lie algebra over k. Then the tensor algebra Tk (L)
induces a Hopf algebra structure on U (L).
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Theorem 6.17. (Universal Property of U (L)) Let (L, [ , ]) be a Lie algebra over k
and let A be a k-algebra. Given a morphism of Lie algebras f : L → A− then there
exists a unique morphism of algebras f̂ : U (L) → A such that f̂ ◦ jL = f . Here
jL : L→ U (L) denotes the canonical map.

Proof. By the universale property of the tensor algebra there exists a unique ho-
momorphism of k-algebras f̃ : Tk (L) → A such that f̃ ◦ i0 = Idk and f̃ ◦ i1 =

f . Now, U (L) = Tk(L)
I

where I is the two-sided ideal of Tk (L) generated by

i1 ([x, y]) − i2 (x⊗ y − y ⊗ x) . We have to prove that f̃ (I) = {0}. Let us com-
pute

f̃ (i1 ([x, y])− i2 (x⊗ y − y ⊗ x)) = f̃ (i1 ([x, y]))−
(
f̃ (i1 (x) i1 (y)− i1 (y) i1 (x))

)
= f ([x, y])−

(
f̃ (i1 (x)) f̃ (i1 (y))− f̃ (i1 (y)) f̃ (i1 (x))

)
= f ([x, y])− (f (x) f (y)− f (y) f (x))

= f ([x, y])− [f (x) , f (y)]A
−
= 0

so that there exists f̂ : Tk(L)
I

= U (L) → A such that f̂ ◦ π = f̃ where π : Tk (L) →
Tk(L)
I

= U (L) . Then f̂ ◦ jL = f̂ ◦ π ◦ i1 = f̃ ◦ i1 = f. Assume that there exists
another homomorphism of k-algebras g : U (L) → A such that g ◦ jL = f. Then

g◦π◦i1 = g◦jL = f and g◦π◦i0 = Idk so that, by uniqueness of f̃ , g◦π = f̃ = f̂ ◦π.
Since π is surjective we deduce that g = f̂ .

6.5 The Taft Algebra

Lemma 6.18. Let q ∈ k. Let A be a k-algebra and a, b ∈ A such that ba = qab.
Then

(6.5) bjai = qijaibj for every i, j ∈ N.

Proof. First of all, let us prove that, for every i ∈ N,

(6.6) bai = qiaib.

We proceed by induction on i. For i = 0 there is nothing to prove. Let us assume
that the statement holds for some i ∈ N and let us prove it for i+1. Let us compute

bai+1 =
(
bai
)
a

indhyp
=

(
qiaib

)
a =

(
qiai
)
ba =

(
qiai
)
qab = qi+1ai+1b.

Let us fix i ∈ N and let us prove the statement by induction on j. For j = 0 there
is nothing to prove. Let us assume that the statement holds for some j ∈ N and let
us prove it for j + 1. Let us compute

bj+1ai = b
(
bjai
) indhyp

= b
(
qijaibj

)
= qij

(
baibj

) (6.6)
= qij

(
qiaib

)
bj = qij+iaibj+1 = qi(j+1)aibj+1.
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Lemma 6.19. Let q ∈ k. For every n ∈ N, n ≥ 2, let

cn,r =
∑

0≤m1≤m2≤...≤mr≤n−r

qm1+m2+...+mr for every r ∈ N, 1 ≤ r ≤ n−1 and let cn,n = 1.

Then

cn+1,1 = 1 + q + ...+ qn = (cn,1 + qn)(6.7)

cn+1,r = cn,r + cn,r−1q
n+1−r for r = 2, ..., n− 1(6.8)

cn+1,n =
∑

0≤m1≤m2≤...≤mn≤1

qm1+m2+...+mn = 1 + q + ...+ qn = 1 + q (cn,n−1) .(6.9)

Proof. We have

c2,1 =
∑

0≤m1≤1

qm1 = 1 + q.

c3,1 =
∑

0≤m1≤2

qm1 = 1 + q + q2 =
(
c2,1 + q2

)
.

Let us assume that, for some n ≥ 3, (6.7) holds and let us prove it for n + 1. We
compute

cn+2,1 =
∑

0≤m1≤n+1

qm1 =
∑

0≤m1≤n

qm1 + qn+1 = cn+1,1 + qn = 1 + q + ...+ qn + qn+1.

Let us compute, for r = 2, ..., n− 1,

cn+1,r =
∑

0≤m1≤m2≤...≤mr≤n+1−r

qm1+m2+...+mr

=
∑

0≤m1≤m2≤...≤mr≤n−r

qm1+m2+...+mr +
∑

0≤m1≤m2≤...≤mr=n+1−r

qm1+m2+...+mr

= cn,r + qn+1−r ·

 ∑
0≤m1≤m2≤...≤mr−1≤n+1−r

qm1+m2+...+mr−1

 = cn,r + cn,r−1q
n+1−r

and hence (6.8) is proved. Let us compute

c3,2 =
∑

0≤m1≤m2≤1

qm1+m2 =
∑

0≤m1≤m2≤0

qm1+m2 +
∑

0≤m1≤m2=1

qm1+m2 = 1 + q ·

( ∑
0≤m1≤1

qm1

)
= 1 + q (1 + q) = 1 + q + q2.

Assume now that (6.9) holds for some n ≥ 2 and let us prove it for n+ 1. Then

cn+2,n+1 =
∑

0≤m1≤m2≤...≤mn+1≤1

qm1+m2+...+mn+1

=
∑

0≤m1≤m2≤...≤mn+1≤0

qm1+m2+...+mn+1 +
∑

0≤m1≤m2≤...≤mn+1=1

qm1+m2+...+mn+1

= q0 + q ·

( ∑
0≤m1≤m2≤...≤mn≤1

qm1+m2+...+mn

)
= 1 + q (1 + q + ...+ qn) = 1 + q + ...+ qn+1.
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Proposition 6.20. Let q ∈ k, let A be a k-algebra and a, b ∈ A such that ba = qab.
Then

(a+ b)n = an +
n−1∑
r=1

cn,ra
n−rbr + bn

where

cn,r =
∑

0≤m1≤m2≤...≤mr≤n−r

qm1+m2+...+mr for every n, r ∈ N, n ≥ 2, 1 ≤ r ≤ n− 1.

Proof. For n = 2 we have

(a+ b)2 = a2 + ab+ ba+ b2 = a2 + (1 + q) ab+ b2

Since c2,1 = 1 + q, we obtain (a+ b)2 = a2 + c2,1ab+ b2.

Let us assume that the statement holds for some n ∈ N, n ≥ 2 and let us prove it
for n+ 1. We have

(a+ b)n+1 = (a+ b)

[
an +

n−1∑
r=1

cn,ra
n−rbr + bn

]

= an+1 +
n−1∑
r=1

cn,ra
(n+1)−rbr + abn + ban +

n−1∑
r=1

cn,rba
n−rbr + bn+1.

Now we compute

n−1∑
r=1

cn,rba
n−rbr

(6.5)
=

n−1∑
r=1

cn,rq
n−ran−rbr+1 =

n∑
s=2

cn,s−1q
n+1−san+1−sbs

so that we get

(a+ b)n+1 = an+1+
n−1∑
r=1

cn,ra
(n+1)−rbr+abn+ qnanb+

n∑
s=2

cn,s−1q
n+1−san+1−sbs+ bn+1
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Now we calculate

n−1∑
r=1

cn,ra
(n+1)−rbr + abn + qnanb+

n∑
s=2

cn,s−1q
n+1−san+1−sbs =

= (cn,1 + qn) anb+
n−1∑
r=2

cn,ra
(n+1)−rbr + abn +

n−1∑
s=2

cn,s−1q
n+1−san+1−sbs + cn,n−1qab

n

= (cn,1 + qn) anb+
n−1∑
r=2

(
cn,r + cn,r−1q

n+1−r) a(n+1)−rbr + (1 + cn,n−1q) ab
n

(6.7),(6.8),(6.9)
= cn+1,1a

nb+
n−1∑
r=2

cn+1,ra
(n+1)−rbr + cn+1,nab

n

=
n∑
t=1

cn+1,ta
(n+1)−tbt

so that we get

(a+ b)n+1 = an+1 +
n∑
t=1

cn+1,ta
(n+1)−tbt + bn+1.

Proposition 6.21. Let n ∈ N, n ≥ 2 and let q ∈ k be a primitive n-th root of unity.
Then cn,r = 0 for every n, r ∈ N, n ≥ 2, 1 ≤ r ≤ n− 1.

Proof. We have

cn,1 = 1 + q + ...+ qn−1 = 0.

Assume that the statement holds for some n ∈ N, n ≥ 2, and every r ∈ N, 1 ≤ r ≤
n− 1 and let us prove it for n+ 1. In view of formula (6.8), we have

cn+1,r = cn,r + cn,r−1q
n+1−r for r = 2, ..., n− 1

so that, in view of the induction assumption we obtain cn+1,r = 0 for every r =
2, ..., n− 1. Now we calculate

cn+1,n
6.9
= 1 + q + ...+ qn = 0 since q is a primitive n+ 1-th root of unity.

Corollary 6.22. Let n ∈ N, n ≥ 2 and let q ∈ k be a primitive n-th root of unity.
Let A be a k-algebra and a, b ∈ A such that ba = qab.Then

(a+ b)n = an + bn for every n ∈ N.
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Proposition 6.23. Let q ∈ k, let A be a k-algebra and a, b ∈ A such that ba = qab.
Then

(6.10) (ba)n = qtnanbn for every n ∈ N, n ≥ 1.

where

tn =
n∑
i=1

i =
n (n+ 1)

2
.

Proof. Let us proceed by induction on n ∈ N, n ≥ 1. For n = 1 there is nothing to
prove. Let us assume that the statement holds for some n ∈ N and let us prove it
for n+ 1.

(ba)n+1 = ba (ba)n
indhyp
= qtn (ba) (anbn) = qt

(
ban+1

)
bn

(6.5)
= qtnqn+1an+1bn+1 = qtn+1an+1bn+1.

Lemma 6.24. Let A be a k-algebra. Assume that a, x, y ∈ A and that ∆ : A→ A⊗A
is a linear map such that

∆(x) = x⊗ x, ∆(y) = y ⊗ y and ∆(a) = a⊗ x+ y ⊗ a

Then

[(∆⊗ A) ◦∆] (x) = [(A⊗∆) ◦∆] (x) [(∆⊗ A) ◦∆] (y) = [(A⊗∆) ◦∆] (y)

and [(∆⊗ A) ◦∆] (a) = [(A⊗∆) ◦∆] (a) .

Moreover if ε : A→ k is such that ε (x) = ε (y) = 1 and ε (a) = 0 then

(l ◦ (ε⊗ T ) ◦∆) (x) = x and (l ◦ (ε⊗ A) ◦∆) (a) = a

A similar result holds on the other side.

Proof. Clearly [(∆⊗ A) ◦∆] (x) = x ⊗ x ⊗ x = [(A⊗∆) ◦∆] (x). The same holds
for y. We compute

[(∆⊗ A) ◦∆] (a) = (∆⊗ A) (a⊗ x+ y ⊗ a) = ∆ (a)⊗ x+∆(y)⊗ a

= a⊗ x⊗ x+ y ⊗ a⊗ x+ y ⊗ y ⊗ a

[(A⊗∆) ◦∆] (a) = (A⊗∆) (a⊗ x+ y ⊗ a) = a⊗∆(x) + y ⊗∆(a)

= a⊗ x⊗ x+ y ⊗ a⊗ x+ y ⊗ y ⊗ a

We compute

(lA ◦ (ε⊗ A) ◦∆) (a) = (lA ◦ (ε⊗ A)) (a⊗ x+ y ⊗ a) = lA (ε (a)⊗ x+ ε (y)⊗ a) = a.
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Let n ∈ N, n ≥ 2 and let q ∈ k be a primitive n-th root of unity. Using the
universal property of the tensor algebra, we define on the algebra R = k {X, Y } an
algebra homomorphism

∆R : R → R⊗R

by setting
∆R (X) = X ⊗X and ∆R (Y ) = Y ⊗X + 1⊗ Y .

Then by Lemma 6.24 we have that

[(∆R ⊗R) ◦∆R] (X) = X ⊗X ⊗X = [(R⊗∆R) ◦∆R] (X)

and
[(∆R ⊗R) ◦∆R] (Y ) = [(R⊗∆R) ◦∆R] (Y )

so that we get
(∆R ⊗R) ◦∆R = (R⊗∆R) ◦∆R.

Using again the universal property of the tensor algebra we define an algebra homo-
morphism

εR : R → k

by setting
εR (X) = 1 and εR (Y ) = 0.

By Lemma 6.24, we get

lR ◦ (εR ⊗ T ) ◦∆R = IdR and rR ◦ (T ⊗ εR) ◦∆R = IdR

Hence (R,∆R, εR) is a bialgebra. Let now I be the two-sided ideal I of R spanned by
the elements Xn−1, Y n, Y X−qXY . I is a bi-ideal of R i.e. ∆R (I) ⊆ I⊗R+R⊗I
and εR (I) = {0}. Let p = pI : R → R/I be the canonical projection. To prove
that ∆R (I) ⊆ I ⊗ R + R ⊗ I we can equivalently prove that (p⊗ p) ◦∆R = 0. Let
x = X + I and y = Y + I, they fulfill the relations

xn = 1, yn = 0, yx = qxy.

Let us compute

[(p⊗ p) ◦∆R] (X
n − 1R) = (p⊗ p) [∆R (X)n −∆R (1R)]

= (p⊗ p) (Xn ⊗Xn)− (p⊗ p) (1R ⊗ 1R)

= (1R + I)⊗ (1R + I)− (1R + I)⊗ (1R + I) = 0.

We have

(y ⊗ x) (1⊗ y) = (y ⊗ xy) and (1⊗ y) (y ⊗ x) = y ⊗ yx = y ⊗ qxy = q (y ⊗ xy) .

Set
a = y ⊗ x and b = 1⊗ y. Then we obtained that ba = qba.



6.5. THE TAFT ALGEBRA 101

Hence, by Corollary 6.22 we have that

(a+ b)n = an + bn

and hence we obtain

[(p⊗ p) ◦∆R] (Y
n) = [[(p⊗ p) ◦∆R] (Y )]n = [p (Y )⊗ p (X) + p (1)⊗ p (Y )]n

= [p (Y )⊗ p (X)]n + [p (1)⊗ p (Y )]n = p (Y n)⊗ p (Xn) + p (1)⊗ p (Y n)

= 0.

Now let us calculate

[(p⊗ p) ◦∆R] (Y X − qXY ) = (p⊗ p) (∆R (Y )∆R (X)− q∆R (X)∆R (Y ))

= (p⊗ p) ((Y ⊗X + 1⊗ Y ) (X ⊗X)− q (X ⊗X) (Y ⊗X + 1⊗ Y ))

= (p⊗ p)
(
Y X ⊗X2 +X ⊗ Y X − q

(
XY ⊗X2 +X ⊗XY

))
= yx⊗ x2 + x⊗ yx− q

(
xy ⊗ x2 + x⊗ xy

)
= qxy ⊗ x2 + qx⊗ xy − q

(
xy ⊗ x2 + x⊗ xy

)
= 0.

Let us compute

εR (Xn − 1) = εR (X)n − 1 = 1n − 1 = 0

εR (Y n) = εR (Y )n = 0

εR (Y X − qXY ) = εR (Y ) εR (X)− qεR (X) εR (Y ) = 0.

Thus I is a bi-ideal of R. Let us use the universal property of R to define an algebra
homomorphism S : R → Rop such that

S (X) = Xn−1 and S (Y ) = −q−1Xn−1Y .

Let us prove that S (I) ⊆ I or equivalently that p ◦ S (I) = 0. We compute

(p ◦ S) (Xn − 1R) = p
(
(Xn)n−1 − 1

)
= (xn)n−1 − 1 = 1− 1 = 0.

Note that, by (6.5), we have (xn−1) y = q−n+1yxn−1. Thus, by applying (6.10) where
b = xn−1, a = y we obtain (ba)n = (q−n+1)

tn anbn for every n ∈ N, n ≥ 1 which means
that

(6.11)
(
xn−1y

)n
=
(
q−n+1

)tn
yn
(
xn−1

)n
= 0.

Now we compute

(p ◦ S) (Y n) = [(p ◦ S) (Y )]n =
[
−q−1xn−1y

]n
= (−1)n q−n

(
xn−1y

)n (6.11)
= 0.

Let us calculate

(p ◦ S) (Y X − qXY ) = p
(
Xn−1 ·

[
−q−1Xn−1Y

]
− q

(
−q−1Xn−1Y

)
·Xn−1)

(6.5)
= −q−1xn−1xn−1y + qn−1xn−1xn−1y

= 0.
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Now we have that yx = qxy so that, by (6.5) we have yjxi = qijxiyj for every
i, j ∈ N. In particular yxn−1 = qn−1xn−1y so that

−q−1xn−1xn−1y + xn−1yxn−1 =
(
−q−1 + qn−1

) (
xn−1xn−1y

)
= 0.

Hence S induces an algebra homomorphism SR/I : R/I → (R/I)op such that

SR/I (x) = xn−1 and SR/I (y) = −q−1xn−1y.

Let us check that SR/I is an antipode for the bialgebra R/I. By Lemma 6.2 it is
enough to check this on x and y. Thus we compute(
SR/I ∗ IdR/I

)
(x) = SR/I (x) · x = xn−1 · x = xn = 1 =

(
uR/I ◦ εR/I

)
(x) and(

SR/I ∗ IdR/I
)
(y) = SR/I (y) x+ SR/I (1) y = −q−1xn−1yx+ y = −q−1xn−1qxy + y = −xny + y

= −y + y = 0 =
(
uR/I ◦ εR/I

)
(y) .

A similar computation shows that IdR/I ∗ SR/I = uR/I ◦ εR/I .
The Hopf algebra R/I is called the Taft algebra and denoted by Hn2 (q). We list

here its main properties.
Hn2 (q) is generated by the elements x and y which fulfill the relations:

xn = 1, yn = 0, xy = qyx.

We have

∆ (x) = x⊗ x, ε (x) = 1

∆ (y) = y ⊗ x+ 1⊗ y, ε (y) = 0

S (x) = xn−1, S (y) = −q−1xn−1y.

For n = 2 the Taft algebra is also called Sweedler’s 4-dimensional Hopf algebra. It
was the first example of a noncommutative noncocommutative Hopf Algebra.

6.6 The divided power Hopf algebra

In Example 1) of 1.12, we have seen that on a vector space L over k with a basis
ei, i ∈ N, one can define the so called divided power coalgebra by setting

∆ (ei) =
∑
i+j=n

ei ⊗ ej and ε (ei) = δi,0.

Assume that char (k) = 0 and let us define an algebra structure on L by setting

em · en =

(
m+ n
m

)
em+n.
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We compute

es · (em · en) =

(
m+ n
m

)
es · em+n =

(
m+ n
m

)(
s+m+ n

s

)
es+m+n

(es · em) · en =

(
s+m
s

)
es+m · en =

(
s+m
s

)(
s+m+ n
s+m

)
es+m+n.

Since (
m+ n
m

)(
s+m+ n
m+ n

)
=

(m+ n)!

m!n!

(s+m+ n)!

s! (m+ n)!
=

(s+m+ n)!

m!n!s!(
s+m
s

)(
s+m+ n
s+m

)
=

(s+m)!

s!m!

(s+m+ n)!

(s+m)!n!
=

(s+m+ n)!

m!n!s!

we deduce that the product is associative and the unit of the ring is 1L = e0. Let us
prove that L is a bialgebra. Let us compute

∆ (em · en) = ∆

((
m+ n
m

)
em+n

)
=

(
m+ n
m

) ∑
t+s=m+n

et ⊗ es

∆(em)∆ (en) =

( ∑
i+j=m

ei ⊗ ej

)( ∑
a+b=n

ea ⊗ eb

)
=
∑
i+j=m
a+b=n

(ei · ea)⊗ (ej · eb)

=
∑
i+j=m
a+b=n

(
i+ a
i

)(
j + b
j

)
ei+a ⊗ ej+b =

∑
i+j=m
a+b=n

(
i+ a
a

)(
j + b
b

)
et ⊗ es

=
∑

t+s=m+n
i+j=m

(
t

t− i

)(
s

s− j

)
et ⊗ es

Since we have(
t

t− i

)(
s

s− j

)
=

t!

i! (t− i)!

s!

j! (s− j)!
=

t!

i! (t− i)!

(m+ n− t)!

j! (m+ n− t− j)!

=
(m+ n)!

i! (t− i)! (m− i)! (n− (t− i))!
=

(m+ n)!

m!n!

we deduce that
∆ (em · en) = ∆ (em)∆ (en) .

Moreover we have
∆ (1L) = ∆ (e0) = e0 ⊗ e0 = 1L ⊗ 1L.

ε (em · en.) =

(
m+ n
m

)
ε (em+n) =

(
m+ n
m

)
δm+n,0 =

(
m+ n
m

)
δm,0δn,0 = ε (em) ε (en )

ε (1L) = ε (e0) = 1k.
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Let us define S : L→ L recursively by setting

S (e0) = S (1L) = 1L

and
S (en) = −

∑
0≤a≤n−1

S (ea) en−a.

Let us check that S is an antipode for the bialgebra L. By Lemma 6.2 it is enough
to check this on each en. We proceed by induction on n. Let us compute

(S ∗ IdL) (e0) = S (e0) e0 = 1L = uLεL (1L) = uLεL (e0) .

Let us assume that the statement holds for some n ∈ N and let us prove it for n+1.

(S ∗ IdL) (en+1) =
∑

0≤a≤n+1

S (ea) en+1−a = S (en+1) e0 +
∑

0≤a≤n

S (ea) en+1−a

=

(
−
∑

0≤a≤n

S (ea) en+1−a

)
1L +

∑
0≤a≤n

S (ea) en+1−a = 0.

6.7 More Examples

Using the universal property of the tensor algebra, we define on the algebra R =
k {X, Y } an algebra homomorphism

∆R : R → R⊗R

by setting
∆R (X) = X ⊗X and ∆R (Y ) = Y ⊗ 1 +X ⊗ Y .

Using again the universal property of the tensor algebra we define an algebra homo-
morphism

εR : R → k

by setting
εR (X) = 1 and εR (Y ) = 0.

By Lemma 6.24, we get that (R,∆R, εR) is a bialgebra. Let q ∈ k, q ̸= 0 and let I
be the two-sided ideal ideal of R generated by XY − qY X. Let us prove that I is a
bi-ideal of R. We compute

∆R (XY − qY X) = ∆R (X)∆R (Y )− q∆R (Y )∆R (X)

= (X ⊗X) (Y ⊗ 1 +X ⊗ Y )− q (Y ⊗ 1 +X ⊗ Y ) (X ⊗X)

= XY ⊗X1 +XX ⊗XY − qY X ⊗X − qXX ⊗ Y X

= (XY − qY X)⊗X +XX ⊗ (XY − qY X)
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and

εR (XY − qY X) = εR (X) εR (Y )− qεR (Y ) εR (X) = 0.

Therefore R/I is a bialgebra. This bialgebra is denoted by Oq (k
2) and is called

quantum plane. Let x = X + I and y = Y + I. Then Oq (k
2) is generated by x and

y which satisfy xy = qyx. Let O = Oq (k
2). Then

∆O (x) = x⊗ x, ∆O (y) = y ⊗ 1 + x⊗ y

εO (x) = 1, εO (y) = 0.

Let us consider sl2 (k) the set of 2× 2 matrices having trace 0k.

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
We compute

[e, f ] =

(
0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)
=

(
1 0
0 0

)
−
(

0 0
0 1

)
= h

[h, e] =

(
1 0
0 −1

)(
0 1
0 0

)
−
(

0 1
0 0

)(
1 0
0 −1

)
=

(
0 1
0 0

)
−
(

0 −1
0 0

)
= 2e

[h, f ] =

(
1 0
0 −1

)(
0 0
1 0

)
−
(

0 0
1 0

)(
1 0
0 −1

)
=

(
0 0
−1 0

)
−
(

0 0
1 0

)
= −2f.

Then the enveloping algebra U (sl2 (k)) is the quotient of the polynomial ring in
noncommutative variables k {E,F,K} modulo the two-sided ideal I generated by

EF − FE −K

KE − EK − 2E

KF − FK + 2F

For every x ∈ U (sl2 (k)) we have that

∆ (x) = x⊗ 1 + 1⊗ x, ε (x) = 0 and S (x) = −x.

Let us consider the polynomial ring in noncommutative variables R = k {X, Y, Z, T}
and define on R a comultiplication ∆ and a counit ε by setting

∆ (X) = 1⊗X +X ⊗ Z, ε (X) = 0

∆ (Y ) = T ⊗ Y + Y ⊗ 1, ε (Y ) = 0

∆ (Z) = Z ⊗ Z, ε (Z) = 1

∆ (T ) = T ⊗ T, ε (T ) = 1.
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By Lemma 6.24, we get that R is a bialgebra. Let now q ∈ k, q ̸= 0, q2 ̸= 1 and let
I be the two-sided ideal of R generated by

ZT − 1, TZ − 1,

XY − Y X − Z − T

q − q−1

ZX − q2XZ

ZY − q−2Y Z.

Let us prove that I is a bi-ideal of R. Let p : R → R/I be the canonical projection.
We set E = p (X) , F = p (Y ) , K = p (Z) and K ′ = p (T ). Then in R/I we have

KK ′ = 1 = K ′K, i.e. K is invertible and K ′ is its two-sided inverse

EF − FE =
K −K ′

q − q−1

KE = q2EK

KF = q−2FK.

We compute

(p ◦∆) (ZT − 1) = p [(Z ⊗ Z) (T ⊗ T )− 1⊗ 1] = KK ′ ⊗K ′K − 1⊗ 1 = 0.

The computation for TZ − 1 is similar.

(p ◦∆)

(
XY − Y X − Z − T

q − q−1

)
= p

[
(1⊗X +X ⊗ Z) (T ⊗ Y + Y ⊗ 1)− (T ⊗ Y + Y ⊗ 1) (1⊗X +X ⊗ Z)+

− 1
q−q−1 (Z ⊗ Z) + 1

q−q−1 (T ⊗ T )

]
= (1⊗ E + E ⊗K) (K ′ ⊗ F + F ⊗ 1)− (K ′ ⊗ F + F ⊗ 1) (1⊗ E + E ⊗K)

− 1

q − q−1
(K ⊗K) +

1

q − q−1
(K ′ ⊗K ′) =

= K ′ ⊗ EF + F ⊗ E + EK ′ ⊗KF + EF ⊗K −K ′ ⊗ FE −K ′E ⊗ FK − F ⊗ E − FE ⊗K+

− 1

q − q−1
(K ⊗K) +

1

q − q−1
(K ′ ⊗K ′)

= K ′ ⊗ [EF − FE] + [EF − FE]⊗K + q2K ′E ⊗ q−2FK −K ′E ⊗ FK

− 1

q − q−1
(K ⊗K) +

1

q − q−1
(K ′ ⊗K ′)

= K ′ ⊗ [EF − FE] + [EF − FE]⊗K − 1

q − q−1
(K ⊗K) +

1

q − q−1
(K ′ ⊗K ′)

=
1

q − q−1
[K ′ ⊗ (K −K ′) + (K −K ′)⊗K −K ⊗K +K ′ ⊗K ′] = 0
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(p ◦∆)
(
ZX − q2XZ

)
= p [(Z ⊗ Z) (1⊗X +X ⊗ Z)]− p

[
q2 (1⊗X +X ⊗ Z) (Z ⊗ Z)

]
= (K ⊗K) (1⊗ E + E ⊗K)− q2 (K ⊗ EK)− q2

(
EK ⊗K2

)
= K ⊗KE +KE ⊗K2 − q2 (K ⊗ EK)− q2

(
EK ⊗K2

)
= K ⊗

[
KE − q2EK

]
+
[
KE − q2EK

]
⊗K2 = 0

The computation for ZY − q−2Y Z is similar.
Now we go back to R and we define an algebra homomorphism S : R → Rop by

setting
S (X) = −XT, S (Y ) = −ZY, S (Z) = T, S (T ) = Z.

Let us prove that S (I) ⊆ I. Note thatKFEK ′ = q−2FKq2K ′E = FE.We compute

(p ◦ S) (ZT − 1) = p (ZT − 1) = 0.

The computation for TZ − 1 is similar. We compute

(p ◦ S)
(
XY − Y X − Z − T

q − q−1

)
= p

(
+ZY XT −XTZY − T − Z

q − q−1

)
= KFEK ′ − EF − K ′ −K

q − q−1
= FE − EF − K ′ −K

q − q−1
= 0.

Since KE = q2EK we have that EK ′ − q2K ′E = 0 and hence

(p ◦ S)
(
ZX − q2XZ

)
= p

(
−XTT + q2TXT

)
= −EK ′K ′ + q2K ′EK ′ = 0.

The computation for ZY − q−2Y Z is similar. Now we want to check that S is an
antipode. We compute

(S ∗ Id) (E) = S (1)E + S (E)K = E − EK ′K = 0 = ε (E) 1

(S ∗ Id) (F ) = S (K ′)F + S (F ) 1 = KF −KF = 0 = ε (F ) 1

(S ∗ Id) (K) = 1 = ε (K) 1

(S ∗ Id) (K ′) = 1 = ε (K ′) 1.

The Hopf algebra R/I is called the Quantized Enveloping Algebra of sl2 (k) and
is denoted by Uq (sl2 (k)).

6.8 Gauss binomial coefficients

In this section we work inside Q (X, Y ) , the field of quotients of the polynomial ring
in two variables, Q [X,Y ]. For all a ∈ Z we set

(6.12) [a] =
Xa − Y a

X − Y
.
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Clearly we have that
[0] = 0.

Moreover

[a] = Xa−1 +Xa−2Y + · · ·+X2Y a−2 + Y a−1 for all a ≥ 1.

Define the Gauss binomial coefficients by[
a
n

]
=

[a] [a− 1] · · · [a− n+ 1]

[1] [2] · · · [n]
for all a, n ∈ Z, n ≥ 1 and[

a
0

]
= 1 for all a ∈ Z.

We have the following equalities[
a
1

]
= [a] ,

[
n
n

]
= 1 and[

a
n

]
= 0 if 0 ≤ a < n.

We also set

[0]! = 1 and [n]! = [1] [2] · · · [n] for all n ∈ Z, n ≥ 1.

Thus [
a
n

]
=

[a]!

[n]! [a− n]!
for all a, n ∈ Z, 0 ≤ n ≤ a.

Xa+1 − Y a+1 = Xn
(
Xa+1−n − Y a+1−n)+XnY a+1−n − Y a+1

Xa+1 − Y a+1

Xa+1−n − Y a+1−n = Xn +
XnY a+1−n − Y a+1

Xa+1−n − Y a+1−n[
a+ 1
n

]
=

[a+ 1]!

[n]! [a+ 1− n]!
=

[a]!

[n]! [a− n]!

[a+ 1]

[a+ 1− n]
=

[
a
n

]
Xa+1 − Y a+1

Xa+1−n − Y a+1−n

=

[
a
n

]
Xn +

[
a
n

]
XnY a+1−n − Y a+1

Xa+1−n − Y a+1−n

[
a
n

]
XnY a+1−n − Y a+1

Xa+1−n − Y a+1−n =
[a]!

[n]! [a− n]!

XnY a+1−n − Y a+1

Xa+1−n − Y a+1−n

=
[a]!

[n− 1]! [a− n+ 1]!

[a− n+ 1]

[n]

XnY a+1−n − Y a+1

Xa+1−n − Y a+1−n

=

[
a

n− 1

]
Xa−n+1 − Y a−n+1

Xn − Y n

XnY a+1−n − Y a+1

Xa+1−n − Y a+1−n

=

[
a

n− 1

]
XnY a+1−n − Y a+1

Xn − Y n

=

[
a

n− 1

]
Y a+1−nX

n − Y n

Xn − Y n
=

[
a

n− 1

]
Y a+1−n
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so that we get

(6.13)

[
a+ 1
n

]
=

[
a
n

]
Xn +

[
a

n− 1

]
Y a+1−n.

Note that[
a+ 1
n

]
=

[
a
n

]
Xn +

[
a

n− 1

]
Y a+1−n

=

[
a

n− 1

]
[a− n+ 1]Xn

[n]
+

[
a

n− 1

]
Y a+1−n

=

[
a

n− 1

](
[a− n+ 1]Xn

[n]
+ Y a+1−n

)
=

[
a

n− 1

](
Xa−n+1 − Y a−n+1

Xn − Y n
Xn + Y a+1−n

)
=

[
a

n− 1

](
Xa+1 −XnY a−n+1 +XnY a+1−n − Y a+1

Xn − Y n

)
=

[
a

n− 1

](
Xa+1 − Y a+1

Xn − Y n

)
[
a
n

]
Y n +

[
a

n− 1

]
Xa+1−n =

[
a

n− 1

]
[a− n+ 1]

[n]
Y n +

[
a

n− 1

]
Xa+1−n

=

[
a

n− 1

](
Xa−n+1 − Y a−n+1

Xn − Y n
Y n +Xa+1−n

)
=

=

[
a

n− 1

](
Xa−n+1Y n − Y a+1

Xn − Y n
+Xa+1−n

)
=

[
a

n− 1

](
Xa−n+1Y n − Y a+1 +Xa+1 −Xa+1−nY n

Xn − Y n

)
=

[
a

n− 1

](
−Y a+1 +Xa+1

Xn − Y n

)
.

Therefore we get

(6.14)

[
a+ 1
n

]
=

[
a
n

]
Xn +

[
a

n− 1

]
Y a+1−n =

[
a
n

]
Y n +

[
a

n− 1

]
Xa+1−n

[
a
n

]
=

[a]!

[n]! [a− n]!
=

[a]!

[n− 1]! [a− n+ 1]!

[a− n+ 1]

[n]
=

[
a

n− 1

]
Xa−n+1 − Y a−n+1

Xn − Y n
.

Assume that a, n ∈ N, 0 ≤ n ≤ a and let us prove that

[
a
n

]
∈ Z [X, Y ]. Let us

proceed by induction on n. Since

[
a
0

]
= 1 the case n = 0 is trivial. Let us assume
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that the statement holds for some n−1 ∈ N and let us prove it for n. Let us proceed

by induction on a− n. If a− n = 0 then we have

[
a
a

]
= [a]!

[a]![0]!
= 1. Let us assume

that the statement holds for all a with 0 ≤ n ≤ a and a− n = h and let us prove it
for all a with a ∈ N, 0 ≤ n ≤ a and a− n = h+ 1. From (6.13) we deduce that

(6.15)

[
a
n

]
=

[
a− 1
n

]
Xn +

[
a− 1
n− 1

]
Y a−n.

Since (a− 1)− n = h and since the statement holds for n− 1 and every b ∈ N, 0 ≤
n− 1 ≤ b, the conclusion follows.

Let q ∈ k and let φ : Z [X, Y ] → k be the unique ring homomorphism such that
φ (X) = q and φ (Y ) = 1. Set

(n)q = φ ([n]) for every n ∈ N, n ≥ 1

(n)q =
qn − 1

q − 1
for every n ∈ N, n ≥ 1, q ̸= 1

(0)q = 1

(n)!q = (1)q (2)q · · · (n)q
and (

n
h

)
q

=
(n)!q

(n− h)!q (h)!q
for all n, h ∈ N, 0 ≤ h ≤ n

Since n, h ∈ N, 0 ≤ h ≤ n, from the above we have that

[
n
h

]
∈ Z [X, Y ] so that(

n
h

)
q

= φ

([
n
h

])
. Then, from (6.15) we get that

(
n
h

)
q

=

(
n− 1
h

)
q

qh +

(
n− 1
h− 1

)
q

.

Let us prove that for every n, r ∈ N, n ≥ 2 and 1 ≤ r ≤ n we have that

cn,r =

(
n
r

)
q

where for every n ∈ N, n ≥ 2, let

cn,r =
∑

0≤m1≤m2≤...≤mr≤n−r

qm1+m2+...+mr for every r ∈ N, 1 ≤ r ≤ n−1 and let cn,n = 1.

Let us proceed by induction n. For n = 2 we have

c2,2 = q0 = 1 =

(
2
2

)
q

and c2,1 = 1 + q =

(
2
1

)
q

.
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Let us assume that the statement holds for some n ∈ N, n ≥ 2, and let us prove it
for n+ 1. From (6.7) , (6.8) and (6.9) we deduce that

cn+1,1 = 1 + q + ...+ qn = (cn,1 + qn) =

(
n
1

)
q

+ qn(6.16)

cn+1,r = cn,r + cn,r−1q
n+1−r =

(
n
r

)
q

+

(
n

r − 1

)
q

qn+1−r for r = 2, ..., n− 1

(6.17)

cn+1,n =
∑

0≤m1≤m2≤...≤mn≤1

qm1+m2+...+mn = 1 + q + ...+ qn = 1 + q (cn,n−1) = 1 + q

(
n

n− 1

)
q

(6.18)

hence we have to prove that(
n+ 1
1

)
q

=

(
n
1

)
+ qn(

n+ 1
r

)
q

=

(
n
r

)
q

+

(
n

r − 1

)
q

qn+1−rfor r = 2, ..., n− 1(
n+ 1
n

)
q

= 1 + q

(
n

n− 1

)
q

The first and last equality are easily checked, while the second equality follows from
(6.14), in fact (

n+ 1
r

)
q

= φ

([
n+ 1
r

])
= φ

([
n
r

]
Y r +

[
n

r − 1

]
Xn+1−r

)
=

(
n
r

)
q

+

(
n

r − 1

)
q

qn+1−r.



Chapter 7

Bosonization

Let (A,mA, uA,∆A, εA) be a bialgebra and let (H,mH , uH ,∆H , εH , SH) be a Hopf
algebra and suppose that

• σ : H ↪→ A embeds H as a Hopf subalgebra of A

• π : A→ H is a Hopf algebra projection such that

• π ◦ σ = IdH .

In this case we say that (A,H, σ, π) is a bialgebra with a projection. Whenever
A is a Hopf algebra, we say that (A,H, σ, π) is a Hopf algebra with a projection.

Then A can be endowed with a natural H-bimodule structure by setting

h · a = σ (h) ·A a and a · h = a ·A σ (h) for every h ∈ H and a ∈ A

and with an H-bicomodule structure by setting

HρA (a) =
∑

π (a1)⊗ a2 and ρHA (a) =
∑

a1 ⊗ π (a2) for every a ∈ A.

Theorem 7.1. Let (A,H, σ, π) be a bialgebra with a projection. Let R := Aco(H) =
{a ∈ A | a1 ⊗ π (a2) = a⊗ 1H} . Consider the map

τ : A→ R, τ (a) :=
∑

a ·A σSHπ (a2) .

Then τ is a well defined map and fulfills the following equalities

∆Aτ (a) =
∑

a1 ·A σSHπ (a3)⊗ τ (a2) , for all a ∈ A,(7.1)

πτ (a) = εA (a) 1H , for all a ∈ A,(7.2)

τ (r) = r, for all r ∈ R (this says that τ is surjective),(7.3)

τ (a ·A σ (h)) = τ (a) εH (h) , for all a ∈ A, h ∈ H,(7.4)

∆A (r) ∈ A⊗R, for all r ∈ R,(7.5)

τ [aτ (b)] = τ (ab) , for all a, b ∈ A.(7.6)

π (r) = εA (r) 1H , for all r ∈ R.(7.7) ∑
τ (a1)σπ (a2) = a, for all a ∈ A.(7.8)

112
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Consider the following structures

HρR (r) :=
∑

π (r1)⊗r2, ∆R (r) =
∑

r1⊗r2 :=
∑

τ (r1)⊗r2, εR (r) := εA (r) ,

h ⇀ r := τ (σ (h) ·A r) = σ (h1) rσSH [(h2)] .

Then

• (R,∆R, εR) is a coalgebra and τ : A→ R is a coalgebra homomorphism.

•
((
R,HρR

)
,∆R, εR

)
is a left H-comodule coalgebra i.e. ∆R and εR are mor-

phisms of left H-comodules.

• ((R,⇀) ,∆R, εR) is a left H-module coalgebra. i.e. ∆R and εR are morphisms
of left H-modules.

Proof. Define τ ′ : A→ A by setting τ ′ (a) :=
∑
a1 ·A σSHπ (a2) for every a ∈ A. We

have

∆Aτ
′ (a) =

∑
τ ′ (a)1 ⊗ τ ′ (a)2

=
∑

a11 ·A σSHπ (a2)1 ⊗ a12 ·A σSHπ (a2)2
=

∑
a11 ·A σSHπ (a22)⊗ a12 ·A σSHπ (a21)

=
∑

a1 ·A σSHπ (a4)⊗ a2 ·A σSHπ (a3)

=
∑

a1 ·A σSHπ (a3)⊗ τ ′ (a2)

and

πτ ′ (a) =
∑

π [a1 ·A σSHπ (a2)] =
∑

π [a1]·HSHπ (a2) =
∑

εHπ (a) 1H = εA (a) 1H

so that

ρHA (τ ′ (a)) =
∑

τ ′ (a)1 ⊗ π (τ ′ (a)2) =
∑

a1 ·A σSHπ (a3)⊗ πτ ′ (a2)

=
∑

a1 ·A σSHπ (a2)⊗ 1H = τ ′ (a)⊗ 1H .

Therefore τ ′ (a) ∈ R and hence τ is well defined and (7.1) and (7.2) are proved.
Let us prove (7.3):

τ (r) =
∑

r1 ·A σSHπ (r2)
r∈R
= r ·A σSHπ (1H) = r.

Let us prove (7.4):

τ (a ·A σ (h)) =
∑

(a ·A σ (h))1 ·A σSHπ [(a ·A σ (h))2]

=
∑

a1 ·A σ (h1) ·A σSHπ [a2 ·A σ (h2)]

=
∑

a1 ·A σ (h1) ·A σSH [π (a2)h2]

=
∑

a1 ·A σ (h1) ·A σSH (h2) ·A σSHπ (a2) = τ (a) εH (h) .
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Let us prove (7.5):

A⊗R ∋
∑

r1⊗τ (r2) =
∑

r1⊗r21 ·AσSHπ (r22) =
∑

r11⊗r12 ·AσSHπ (r2)
r∈R
=
∑

r1⊗r2 = ∆A (r) .

Let us prove (7.6):

τ [aτ (b)] =
∑

τ [ab1 ·A σSHπ (b2)]
(7.4)
= τ (ab) .

Note that (7.7) follows directly from (7.2) and (7.3).
Finally, let us prove (7.8). For every a ∈ A we have∑

τ (a1)σπ (a2) =
∑

a1 ·A σSHπ (a2) σπ (a3)

=
∑

a1 ·A σ (SHπ (a2)π (a3))
= a1εA (a2) = a.

Now, for a ∈ A, we have

∆Rτ (a) =
∑

τ (τ (a)1)⊗ τ (a)2
(7.1)
=
∑

τ [a1 ·A σSHπ (a3)]⊗ τ (a2)

(7.4)
=
∑

τ (a1)⊗ τ (a2) = (τ ⊗ τ)∆A (a)

so that
∆R ◦ τ = (τ ⊗ τ) ◦∆A.

Let us prove that (R,∆R, εR) is a coalgebra. First of all, note that, in view of (7.5),
∆R is well defined. We have

(∆R ⊗R) ◦∆R ◦ τ = (∆R ⊗R) ◦ (τ ⊗ τ) ◦∆A = (τ ⊗ τ ⊗ τ) ◦ (∆A ⊗R) ◦∆A,

(R⊗∆R) ◦∆R ◦ τ = (R⊗∆R) ◦ (τ ⊗ τ) ◦∆A = (τ ⊗ τ ⊗ τ) ◦ (R⊗∆A) ◦∆A

which entail that (∆R ⊗R) ◦∆R ◦ τ = (R⊗∆R) ◦∆R ◦ τ whence (∆R ⊗R) ◦∆R =
(R⊗∆R) ◦∆R (τ is surjective). Moreover

εRτ (a) =
∑

εA [a1 ·A σSHπ (a2)] = εA (a) .

Then

lR ◦ (εR ⊗R) ◦∆R ◦ τ = lR ◦ (εR ⊗R) ◦ (τ ⊗ τ) ◦∆A = lR ◦ (K ⊗ τ) ◦ (εA ⊗ A) ◦∆A

= τ ◦ lA ◦ (εA ⊗ A) ◦∆A = τ

rR ◦ (R⊗ εR) ◦∆R ◦ τ = rR ◦ (R⊗ εR) ◦ (τ ⊗ τ) ◦∆A = rR ◦ (τ ⊗K) ◦ (A⊗ εA) ◦∆A

= τ ◦ rA ◦ (A⊗ εA) ◦∆A = τ

so that lR◦(εR ⊗R)◦∆R◦τ = τ = rR◦(R⊗ εR)◦∆R◦τ and then lR◦(εR ⊗R)◦∆R =
IdR = rR ◦ (R⊗ εR) ◦ ∆R. Hence (R,∆R, εR) is a coalgebra and τ is a coalgebra
homomorphism.
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Let us prove
((
R,H ρR

)
,∆R, εR

)
is a left H-comodule coalgebra. First we have

HρA (r) =
∑

π (r1)⊗ r2
(7.5)
∈ H ⊗R

so that
(
R,HρR

)
is a subcomodule of

(
A,HρA

)
. Moreover

HρR⊗R∆R (r) = HρR⊗R

(∑
τ (r1)⊗ r2

)
=

∑
π [τ (r1)1]π (r21)⊗ τ (r1)2 ⊗ r22

=
∑

π [τ (r1)1]π (r2)⊗ τ (r1)2 ⊗ r3

(7.1)
=
∑

π [r11 ·A σSHπ (r13)] π (r2)⊗ τ (r12)⊗ r3

=
∑

π [r11 ]SHπ (r13)π (r2)⊗ τ (r12)⊗ r3

=
∑

π (r1)⊗ τ (r2)⊗ r3

=
∑

π (r1)⊗∆R (r2) = (H ⊗∆R)
H ρR (r) .

Recall that k has a natural structure of left H-comodule defined by setting Hρk =
(uH ⊗ k) ◦ r−1k = r−1H ◦ uH .

(H ⊗ εR)
HρR (r) =

∑
π (r1)⊗ εR (r2) =

∑
π (r1)⊗ εA (r2)

= π (r)⊗ 1K
(7.3),(7.2)

= εA (r) 1H ⊗ 1K = εR (r) 1H ⊗ 1K = HρkεR (r) .

so that
((
R,H ρR

)
,∆R, εR

)
is a left H-comodule coalgebra.

Let us prove that ((R,⇀) ,∆R, εR) is a left H-module coalgebra. First let us
check that ⇀: H ⊗ R → R defines a left action of H on R. We have, for every
h, k ∈ H and for every r ∈ R,

k ⇀ (h ⇀ r) = k ⇀ τ (σ (h) ·A r) = τ [σ (k) ·A τ (σ (h) ·A r)]
(7.6)
= τ [σ (k) ·A σ (h) ·A r] = (kh)⇀ r

1H ⇀ r = τ (σ (1H) ·A r) = τ (r) = r.

Let us prove that ∆R : R → R⊗R is left H-linear where R⊗R is a left H-module
via the diagonal action induced by ⇀. We have

∆R (h ⇀ r) = ∆Rτ [σ (h) ·A r]
= (τ ⊗ τ)∆A [σ (h) ·A r]
=

∑
τ (σ (h1) ·A r1)⊗ τ (σ (h2) ·A r2)

(7.6)
=
∑

τ (σ (h1) ·A τ (r1))⊗ τ (σ (h2) ·A r2)

=
∑(

h1 ⇀ r1
)
⊗
(
h2 ⇀ r2

)
and

εR (h ⇀ r) = εRτ (σ (h) ·A r) = εA (σ (h) ·A r) = εH (h) εR (r) .

Thus ((R,⇀) ,∆R, εR) is a left H-module coalgebra.
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Proposition 7.2. Using the assumptions and notations of Theorem 7.1 we have
that

• R is a subalgebra of A.

• ∆R (1R) = 1R ⊗ 1R.

• εR : R → k is an algebra morphism.

• τ : A→ R is a morphism of left H-modules.

• For every r, s ∈ R the following equality holds

(7.9) ∆R (r · s) =
∑

r1
(
r2(−1) ⇀ s1

)
⊗ r2(0)s

2.

• For every h ∈ H and r ∈ R the following equality holds

(7.10) HρR (h ⇀ r) =
∑

h1r(−1)SH (h3)⊗
(
h2 ⇀ r(0)

)
.

• IdR has an inverse in the convolution algebra Hom (Rc, Ra) whenever A is a
Hopf algebra.

Proof. Let r, s ∈ R. We compute

ρHA (r ·A s) =
∑

(r ·A s)1 ⊗ π ((r ·A s)2) =
∑

r1 ·A s1 ⊗ π (r2 ·A s2)

=
∑

(r1 ·A s1)⊗ (π (r2) ·H π (s2)) = r ·A s⊗ 1H .

Hence we obtain that r ·A s ∈ R. Moreover 1A ∈ R and hence R is a subalgebra of
A. Since εR = εA|Rwe deduce that εR is an algebra morphism. Moreover we have

∆R (1R) =
∑

τ ((1A)1)⊗ (1A)2 =
∑

(1A)1 ·A σSHπ ((1A)2)⊗ (1A)3 = 1R ⊗ 1R.

Let h ∈ H and r ∈ R and let us compute

τ (σ (h) ·A r) =
∑

(σ (h) ·A r)1 ·A σSHπ (σ (h) ·A r)2
=

∑
(σ (h1) ·A r1) ·A σSHπ (σ (h2) ·A r2)

=
∑

σ (h1) ·A r1 ·A σSHπ (r2) ·A σSHπ (σ (h2))
r∈R
=
∑

σ (h1) ·A r ·A σSHπ (σ (h2))

= h ⇀ r
(7.3)
= h ⇀ τ (r) .
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Let us calculate∑
r1
(
r2(−1) ⇀ s1

)
⊗ r2(0)s

2 =
∑

τ (r1)
(
(r2)(−1) ⇀ s1

)
⊗ (r2)(0) s

2 =

=
∑

τ (r1)
(
π (r21)⇀ s1

)
⊗ r22s

2 =
∑

τ (r1)
(
π (r2)⇀ s1

)
⊗ r3s

2

=
∑

τ (r1)
(
π (r2)⇀ s1

)
⊗ r3s

2 =
∑

τ (r1) (π (r2)⇀ τ (s1))⊗ r3s2
τ isleftH-lin

=

=
∑

τ (r1) (τ (σπ (r2) ·A s1))⊗ r3s2 =
∑

r1 ·A σSHπ (r2) σπ (r3) s1 ·A σSHπ (σπ (r4) s2)⊗ r5s3

=
∑

r1 ·A σ [SHπ (r2)π (r3)] s1 ·A σSH [π (r4)π (s2)]⊗ r5s3

=
∑

r1s1 ·A σSH [π (r2)π (s2)]⊗ r3s3

=
∑

r1s1 ·A σSHπ (r2s2)⊗ r3s3 =
∑

τ (r1s1)⊗ r2s2 = ∆R (rs) .

Let us prove (7.10) .

HρR (h ⇀ r) = HρR

(∑
σ (h1) rσ (SH (h2))

)
=

∑
π
[(∑

σ (h1) rσ (SH (h2))
)
1

]
⊗
(∑

σ (h1) rσ (SH (h2))
)
2

=
∑

πσ (h11) π (r1)πσ ((SH (h2))1)⊗ σ (h12) r2σSH (h2)2

=
∑

h11π (r1)SH (h22)⊗ σ (h12) r2σSH (h21)

=
∑

h1π (r1)SH (h4)⊗ σ (h2) r2σSH (h3)

=
∑

h1r(−1)SH (h3)⊗ (h2 ⇀ r0) .

Assume now that A is a Hopf algebra with antipode SA and consider the map
S : R → R defined by setting

S (r) =
∑

τ (σπ (r1) ·A ([SA (r2)])) .

We compute∑
τ (σπ (r1) ·A ([SA (r2)])) =

∑
σπ (r1)1 SA (r2)1 ·A σSHπ [σπ (r1)2 SA (r2)2]

=
∑

σπ (r1)SA (r4) ·A σSHπ [σπ (r2)SA (r3)]

=
∑

σπ (r1)SA (r4) ·A σSH [πσπ (r2) πSA (r3)]

=
∑

σπ (r1)SA (r4) ·A σSH [π (r2) πSA (r3)]

=
∑

σπ (r1)SA (r4) ·A σSHπ [r2SA (r3)] =
∑

σπ (r1)SA (r2) .

Therefore we get

(7.11) S (r) =
∑

σπ (r1)SA (r2) .
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We compute

∑
r1S

(
r2
)

=
∑

τ (r1)S (r2) =
∑

τ (r1)σπ (r2)SA (r3)
(7.8)
=
∑

r1SA (r2)

= εA (r) 1A = εR (r)

and ∑
S
(
r1
)
r2 =

∑
S (τ (r1)) r2

=
∑

σπ ((τ (r1))1)SA ((τ (r1))2) r2

(7.1)
=
∑

σπ [(r11) ·A σSHπ (r13)]SA (τ (r12)) r2

=
∑

σπ (r11) σπσSHπ (r13)SA (τ (r12)) r2

=
∑

σπ (r1) σSHπ (r3)SA (τ (r2)) r4

=
∑

σπ (r1) σSHπ (r3)SA (r21 ·A σSHπ (r22)) r4

=
∑

σπ (r1) σSHπ (r4)SAσSHπ (r3)SA (r2) r5

=
∑

σπ (r1) [σSHπ (r3)]1 SA [σSHπ (r3)]2 SA (r2) r5

=
∑

σπ (r1)SA (r2) r3

= σπ (r) = σ (εA (r) 1H) = εR (r) .

7.3. Let us consider the map ω : R⊗H → A defined by setting ω (r ⊗ h) = r ·Aσ (h)
and the map ω

′
: A→ R⊗H defined by setting ω′ (a) = τ (a1)⊗ π (a2)

Theorem 7.4. Using the assumptions and notations above, we have that ω : R ⊗
H → A is bijective with inverse ω′.

Proof. Let us compute, for every r ∈ R and h ∈ H

ω′ [ω (r ⊗ h)] = ω′ (r ·A σ (h)) =
∑

τ ([r ·A σ (h)]1)⊗ π ([r ·A σ (h)]2)

=
∑

τ (r1 ·A σ (h1))⊗ π (r2 ·A σ (h2))
(7.4)
=
∑

τ (r1)⊗ π (r2)h
r∈R
= τ (r)⊗ h

and, for every a ∈ A

ω (ω′ (a)) =
∑

τ (a1) ·A σπ (a2)
(7.8)
= a.
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7.5. By using ω we can transfer the bialgebra structure of A to R ⊗ H. Let us
compute it. For every r ∈ R and h ∈ H we compute

(ω′ ⊗ ω′) (∆A (ω (r ⊗ h))) = (ω′ ⊗ ω′)∆A (r ·A σ (h)) = (ω′ ⊗ ω′)
∑

(r1 ·A σ (h1))⊗ (r2 ·A σ (h2))

=
∑

ω′ (r1 ·A σ (h1))⊗ ω′ (r2 ·A σ (h2)) =
∑

ω′ (r1 ·A σ (h1))⊗ ω′ (ω (r2 ⊗ h2))

=
∑

ω′ (r1 ·A σ (h1))⊗ r2 ⊗ h2

=
∑

τ (r11 ·A σ (h11))⊗ π (r12 ·A σ (h12))⊗ r2 ⊗ h2

(7.4)
=
∑

τ (r11)⊗ π (r12)h1 ⊗ r2 ⊗ h2 =
∑

τ (r1)⊗ π (r2)h1 ⊗ r3 ⊗ h2

=
∑

τ (r1)⊗ π (r21)h1 ⊗ r22 ⊗ h2
(7.5)(7.3)

=
∑

τ (r1)⊗ π (τ (r2)1)h1 ⊗ τ (r2)2 ⊗ h2

=
∑

τ (r1)⊗ τ (r2)(−1) h1 ⊗ τ (r2)(0) ⊗ h2 =
∑

r1 ⊗
(
r2
)
(−1) h1 ⊗

(
r2
)
(0)

⊗ h2

and for every r, s ∈ R and h, t ∈ H we calculate

ω′ (mA (ω (r ⊗ h)ω (s⊗ t))) = ω′ (r ·A σ (h) ·A s ·A σ (t)) =
= ω′ (r ·A σ (h1) ·A s ·A σSH (h2) ·A σ (h3) ·A σ (t))

= ω′ (r ·A (h1 ⇀ s) ·A σ (h2) ·A σ (t))
Rissubal+(7.3)

= ω′ (τ (r ·A (h1 ⇀ s)) ·A σ (h2t))
= ω′ω (r ·A (h1 ⇀ s)⊗ h2t)

= r ·A (h1 ⇀ s)⊗ h2t = r ·R (h1 ⇀ s)⊗ h2t.

Lemma 7.6. Assume that (H,mH , uH ,∆H , εH , SH) is a Hopf algebra, (R,mR, uR)
is a k-algebra, (R,∆R, εR) is a k-coalgebra, (R,⇀) is a left H-module,

(
R,HρR

)
is

a left H-comodule such that

• mR, uR,∆R, εR are left H-linear,

• mR, uR,∆R, εR are left H-colinear.

Then the following statements are equivalent

(a) HρR (h ⇀ r) =
∑
h1r(−1)SH (h3)⊗

(
h2 ⇀ r(0)

)
for every h ∈ H and r ∈ R.

(b)
∑

(h1 ⇀ r)(−1) h2 ⊗ (h1 ⇀ r)(0) =
∑
h1r(−1) ⊗ h2 ⇀ r(0) for every h ∈ H and

r ∈ R.

Proof. (a) ⇒ (b) For every h ∈ H and r ∈ R, we compute∑
(h1 ⇀ r)(−1) h2⊗(h1 ⇀ r)(0)

(a)
=
∑

h1r(−1)SH (h3)h2⊗
(
h2 ⇀ r(0)

)
=
∑

h1r(−1)⊗h2 ⇀ r(0).

(b) ⇒ (a) For every h ∈ H and r ∈ R, we compute

HρR (h ⇀ r) =
∑

(h ⇀ r)(−1) ⊗ (h ⇀ r)(−2) =
∑

(h ⇀ r)(−1) h2S (h3)⊗ (h ⇀ r)(−2)
(b)
=

=
∑

h1r(−1)S (h3)⊗
(
h2 ⇀ r(0)

)
.
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7.7. Assume now that (H,mH , uH ,∆H , εH , SH) is a Hopf algebra, (R,mR, uR) is a
k-algebra, (R,∆R, εR) is a k-coalgebra, (R,⇀) is a left H-module,

(
R,HρR

)
is a left

H-comodule such that

1. mR, uR,∆R, εR are left H-linear

2. mR, uR,∆R, εR are left H-colinear

3. HρR (h ⇀ r) =
∑
h1r(−1)SH (h3)⊗

(
h2 ⇀ r(0)

)
or equivalently (see Lemma 7.6)∑

(h1 ⇀ r)(−1) h2 ⊗ (h1 ⇀ r)(0) =
∑
h1r(−1) ⊗ h2 ⇀ r(0) for every h ∈ H and

r ∈ R.

4. ∆R (1R) = 1R ⊗ 1R,

5. ∆R (r · s) =
∑
r1
(
r2(−1) ⇀ s1

)
⊗ r2(0)s

2 for every r, s ∈ R.

6. εR : R → k is an algebra morphism.

Define a multiplication on R⊗H by setting

(r ⊗ h) · (s⊗ t) =
∑

r ·R (h1 ⇀ s)⊗ h2t

with unit 1R ⊗ 1H , a comultiplication by setting

∆(r ⊗ h) =
∑

r1 ⊗
(
r2
)
(−1) h1 ⊗

(
r2
)
(0)

⊗ h2

and a counit
ε (r ⊗ h) = εR (r) εH (h) .

Theorem 7.8. Within the assumptions and definitions above R⊗H is a bialgebra.

Proof. First of all, let us prove that R⊗H is an algebra. For every r, s, w ∈ R and
for every h, t, l ∈ H we have

(r ⊗ h) · [(s⊗ t) · (w ⊗ l)] = (r ⊗ h) ·
(∑

s ·R (t1 ⇀ w)⊗ t2l
)

=
∑

r ·R (h1 ⇀ [s ·R (t1 ⇀ w)])⊗ h2t2l
multHlin

=
∑

r ·R [(h1 ⇀ s) ·R (h2 ⇀ (t1 ⇀ w))]⊗ h3t2l

=
∑

r ·R [(h1 ⇀ s) ·R (h2t1 ⇀ w)]⊗ h3t2l =
∑

[r ·R (h1 ⇀ s)] ·R (h2t1 ⇀ w)⊗ h3t2l

=
(∑

r ·R (h1 ⇀ s)⊗ h2t
)
· (w ⊗ l) = [(r ⊗ h) · (s⊗ t)] · (w ⊗ l)

so that the multiplication is associative. Moreover

(r ⊗ h)·(1R ⊗ 1H) =
∑

r·R(h1 ⇀ 1R)⊗h21H
uisleftH-lin

=
∑

r·RεH (h1)⊗h21H = r⊗h

and
(1R ⊗ 1H) · (r ⊗ h) =

∑
1R ·R (1H ⇀ r)⊗ 1Hh = r ⊗ h.



121

Let us prove that R⊗H is a coalgebra. For every r ∈ R and h ∈ H, we have

(∆⊗R⊗H)∆ (r ⊗ h) =
∑

∆
(
r1 ⊗

(
r2
)
(−1) h1

)
⊗
(
r2
)
(0)

⊗ h2

=
∑(

r1
)1 ⊗ ((r1)2)

(−1)

[(
r2
)
(−1) h1

]
1
⊗
((
r1
)2)

(0)
⊗
[(
r2
)
(−1) h1

]
2
⊗
(
r2
)
(0)

⊗ h2

=
∑

r1 ⊗
(
r2
)
(−1)

[(
r3
)
(−1) h1

]
1
⊗
(
r2
)
(0)

⊗
[(
r3
)
(−1) h1

]
2
⊗
(
r3
)
(0)

⊗ h2

=
∑

r1 ⊗
(
r2
)
(−1)

[(
r3
)
(−1)

]
1
h1 ⊗

(
r2
)
(0)

⊗
[(
r3
)
(−1)

]
2
h2 ⊗

(
r3
)
(0)

⊗ h3

=
∑

r1 ⊗
(
r2
)
(−1)

(
r3
)
(−2) h1 ⊗

(
r2
)
(0)

⊗
(
r3
)
(−1) h2 ⊗

(
r3
)
(0)

⊗ h3

(R⊗H ⊗∆)∆ (r ⊗ h) =
∑

r1 ⊗
(
r2
)
(−1) h1 ⊗∆

((
r2
)
(0)

⊗ h2

)
=

∑
r1 ⊗

(
r2
)
(−1) h1 ⊗

((
r2
)
(0)

)1
⊗
(((

r2
)
(0)

)2)
(−1)

h21 ⊗
(((

r2
)
(0)

)2)
(0)

⊗ h22

∆RleftH-col
=

∑
r1 ⊗

((
r2
)1)

(−1)

((
r2
)2)

(−1)
h1 ⊗

((
r2
)1)

(0)
⊗
(((

r2
)2)

(0)

)
(−1)

h21 ⊗
(((

r2
)2)

(0)

)
(0)

⊗ h22

=
∑

r1 ⊗
(
r2
)
(−1)

(
r3
)
(−1) h1 ⊗

(
r2
)
(0)

⊗
((
r3
)
(0)

)
(−1)

h2 ⊗
((
r3
)
(0)

)
(0)

⊗ h3

=
∑

r1 ⊗
(
r2
)
(−1)

(
r3
)
(−2) h1 ⊗

(
r2
)
(0)

⊗
(
r3
)
(−1) h2 ⊗

(
r3
)
(0)

⊗ h3

so that (∆⊗R⊗H) ◦∆ = (R⊗H ⊗∆) ◦∆. Moreover

[rR⊗H ◦ (R⊗H ⊗ ε) ◦∆] (r ⊗ h) =
∑

r1 ⊗
(
r2
)
(−1) h1εR

((
r2
)
(0)

)
εH (h2)

=
∑

r1 ⊗
(
r2
)
(−1) εR

((
r2
)
(0)

)
h1εH (h2)

εRisleftH-col
=

∑
r1 ⊗ εR

(
r2
)
h = r ⊗ h

and

[lR⊗H ◦ (ε⊗R⊗H) ◦∆] (r ⊗ h) =
∑

εR
(
r1
)
εH

((
r2
)
(−1) h1

) (
r2
)
(0)

⊗ h2

=
∑

εR
(
r1
)
εH

((
r2
)
(−1)

) (
r2
)
(0)

⊗ εH (h1)h2

= r ⊗ h.

so that rR⊗H ◦ (R⊗H ⊗ ε) ◦∆ = R ⊗H = lR⊗H ◦ (ε⊗R⊗H) ◦∆. Let us check
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that the algebra structure and the coalgebra structure are compatible. In fact

∆ [(r ⊗ h) · (s⊗ t)] = ∆
[∑

r ·R (h1 ⇀ s)⊗ h2t
]
=

=
∑

(r ·R (h1 ⇀ s))1 ⊗
(
(r ·R (h1 ⇀ s))2

)
(−1) h2t1 ⊗

(
(r ·R (h1 ⇀ s))2

)
(0)

⊗ h3t2 =

5)
=
∑

r1 ·R
(
r2(−1) ⇀ (h1 ⇀ s)1

)
⊗
(
r2(0) ·R (h1 ⇀ s)2

)
(−1) h2t1 ⊗

(
r2(0) ·R (h1 ⇀ s)2

)
(0)

⊗ h3t2

∆RisleftH-lin
=

∑
r1 ·R

(
r2(−1) ⇀

(
h1 ⇀ s1

))
⊗
(
r2(0) ·R

(
h2 ⇀ s2

))
(−1)

h3t1 ⊗
(
r2(0) ·R

(
h2 ⇀ s2

))
(0)

⊗ h4t2

=
∑

r1 ·R
([
r2(−1)h1

]
⇀ s1

)
⊗
(
r2(0) ·R

(
h2 ⇀ s2

))
(−1)

h3t1 ⊗
(
r2(0) ·R

(
h2 ⇀ s2

))
(0)

⊗ h4t2

mRisleftH-col
=

∑
r1 ·R

([
r2(−1)h1

]
⇀ s1

)
⊗ r2(0)(−1)

·R
(
h2 ⇀ s2

)
(−1) h3t1 ⊗ r2(0)(0) ·R

(
h2 ⇀ s2

)
(0)

⊗ h4t2

=
∑

r1 ·R
([
r2(−2)h1

]
⇀ s1

)
⊗ r2

(−1)
·R
(
h2 ⇀ s2

)
(−1) h3t1 ⊗ r2(0) ·R

(
h2 ⇀ s2

)
(0)

⊗ h4t2

and

∆ (r ⊗ h) ·∆(s⊗ t) =
(∑

r1 ⊗
(
r2
)
(−1) h1 ⊗

(
r2
)
(0)

⊗ h2

)
·
(∑

s1 ⊗
(
s2
)
(−1) t1 ⊗

(
s2
)
(0)

⊗ t2

)
=

∑(
r1 ⊗

(
r2
)
(−1) h1

)
·
(
s1 ⊗

(
s2
)
(−1) t1

)
⊗
((
r2
)
(0)

⊗ h2

)
·
((
s2
)
(0)

⊗ t2

)
=

∑
r1 ·R

([(
r2
)
(−1) h1

]
1
⇀ s1

)
⊗
[(
r2
)
(−1) h1

]
2

(
s2
)
(−1) t1 ⊗

(
r2
)
(0)

·R
(
(h2)1 ⇀

(
s2
)
(0)

)
⊗ (h2)2 t2

=
∑

r1 ·R
([(

r2
)
(−1)1

h1

]
⇀ s1

)
⊗
(
r2
)
(−1)2

h2
(
s2
)
(−1) t1 ⊗

(
r2
)
(0)

·R
(
h3 ⇀

(
s2
)
(0)

)
⊗ h4t2

=
∑

r1 ·R
([(

r2
)
(−2) h1

]
⇀ s1

)
⊗
(
r2
)
(−1) h2

(
s2
)
(−1) t1 ⊗

(
r2
)
(0)

·R
(
h3 ⇀

(
s2
)
(0)

)
⊗ h4t2

3bis
=
∑

r1 ·R
([(

r2
)
(−2) h1

]
⇀ s1

)
⊗
(
r2
)
(−1)

(
h21 ⇀

(
s2
))

(−1) h22t1 ⊗
(
r2
)
(0)

·R
((
h21 ⇀

(
s2
))

(0)

)
⊗ h4t2.

Therefore ∆ [(r ⊗ h) · (s⊗ t)] = ∆ (r ⊗ h) ·∆(s⊗ t) . Moreover

∆R (r · s) =
∑
r1 ·R

(
r2(−1) ⇀ s1

)
⊗ r2(0) ·R s2

HρR (h ⇀ r) =
∑
h1r(−1)S (h3)⊗

(
h2 ⇀ r(0)

)
(h1 ⇀ r)(−1) h2 ⊗ (h1 ⇀ r)(0) = h1r(−1) ⊗ h2 ⇀ r(0)

∆(1R ⊗ 1H) =
∑

11R ⊗
(
12R
)
(−1) (1H)1 ⊗

(
12R
)
(0)

⊗ (1H)2
4)
= .

∑
1R ⊗ (1R)(−1) 1H ⊗ (1R)(0) ⊗ 1H

uRisleftH-lin
= 1R ⊗ 1H ⊗ 1R ⊗ 1H

and

ε [(r ⊗ h) · (s⊗ t)] = ε
[∑

r ·R (h1 ⇀ s)⊗ h2t
]
=
∑

εR (r ·R (h1 ⇀ s)) εH (h2t) =

= εR (r) εR (h ⇀ s) εH (t)
εRisleftH-lin

= εR (r) εH (h) εR (s) εH (t) = ε (r ⊗ h) ε (s⊗ t)

ε (1R ⊗ 1H) = εR (1R) εH (1H) .
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π ([(r ⊗ h) · (s⊗ t)]) = π
([∑

r ·R (h1 ⇀ s)⊗ h2t
])

= εR (r ·R (h1 ⇀ s))h2t
εRisanalgmap

= εR (r) εR (h1 ⇀ s)h2t

εRisleftH-lin
= εR (r) εH (h1) εR (s)h2t = εR (r)hεR (s) t = π (r ⊗ h) π (s⊗ t)

π (1R ⊗ 1H) = εR (1R) 1H
εRisanalgmap

= 1k1H = 1H

Definire Π e poi la SR⊗H Prendere dal file del 4.6

(π ⊗ π)∆ (r ⊗ h) =
∑

π
[
r1 ⊗

(
r2
)
(−1) h1

]
⊗ π

[(
r2
)
(0)

⊗ h2

]
=
∑

εR
(
r1
) (
r2
)
(−1) h1 ⊗ εR

((
r2
)
(0)

)
εRisleftH-col

=
∑

εR
(
r1
)
εR
(
r2
)
h1 ⊗ h2

∑
εR (r)h1 ⊗ h2 = εR (r)

∑
h1 ⊗ h2 = ∆Hπ (r ⊗ h)

εHπ (r ⊗ h) = εH (εR (r)h) = εR (r) εH (h) = ε (r ⊗ h) .

Hρ



Chapter 8

Some results on modules and rings

8.1. We will use the following notations.
Let V be a vector space over a field k and let {ex}x∈X be a basis of V .
For every x ∈ X, we will denote by e∗x the element of V ∗ = Hom (V, k) defined by
setting

e∗x(ex) = 1 and e∗x(ey) = 0 for every y ∈ X, y ̸= x.

Let A be a ring. We set:
L(A) = the lattice of subgroups of the abelian group (A,+, 0A)
L(AA) = {I ∈ L(A) | I is a left ideal of A}
L(AA) = {I ∈ L(A) | I is a right ideal of A}
L(AAA) = {I ∈ L(A) | I is a two-sided ideal A}
Ω = Ω(A) = {M | M is a maximal two-sided ideal of A}
Ωl = Ωl(A) = {L | L is a maximal left ideal of A}
Ωr = Ωr(A) = {M |M is a maximal right ideal of A}
AS = {S ∈ AM | S is a simple left A-module}
SA = {S ∈ MA | S is a simple right A-module}
When A is a k-algebra, we also set:
Ωf = Ωf (A) = {m ∈ Ω | dimk(A/m) <∞}
LetM ∈ AM.We set L(AM) = {L| L is a submodule of AM}. Let x ∈M . Consider
the right A-module morphism

µx : AA −→ AM
a 7−→ a x

.

We set AnnA(x) = Ker(µx). Since Im(µx) = Ax, in view of the First Isomorphism
Theorem for Modules, we get that

µ̂x : A/AnnA(x) −→ Ax
a+ AnnA (x) 7−→ a x

.

is an isomorphism. Therefore we deduce that

L ∈ Ωl ⇔ A/L ∈ AS
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and similarly

L ∈ Ωr ⇔ A/L ∈ SA

Recall that a ring A is called simple whenever

L(AAA) = {{0}, A} .

Therefore we have:

m ∈ Ω ⇔ A/m is a simple ring.

We also set

AnnA(M) = {a ∈ A | aM = 0} =
∩
x∈M

AnnA(x) .

Note that AnnA(M) ∈ L(AAA).
End(MA) will denote the ring of endomorphism of MA.

Module homomorphisms will be written to the side opposite to the one of scalars.

Lemma 8.2. (Schur’s Lemma) Let A be a ring and let SA be a simple right
A-module. Then F = End(SA) is a division ring.

Proof. Let f ∈ F , f ̸= 0. Then Ker(f) $ SA and hence Ker(f) = {0}. Since
{0} $ Im(f) ⊆ SA we also get that Im(f) = S.

Lemma 8.3. Let A be a ring and let AM be a left A-module. Set B = End (AM) .
Then the map

φM : A −→ End(MB)

a 7−→ MB −→ MB

x 7−→ a x

is well defined and is a ring homomorphism.

Proof. Let φ = φM . Then, for every a ∈ A, for every x ∈M we have that

φ (a) (xβ) = a (xβ)
β∈B=End(AM)

= (a x)β = [φ (a) (x)] β for every β ∈ B

which means that φ (a) ∈ End(MB) and hence φ is well defined. Clearly φ is
additive. Let us check it is multiplicative. Let a, b ∈ A, then we have

φ (ab) (x) = (a b)x = a(b x) = [φ (a) · φ (b)] (x) for every x ∈M

which means that φ(a b) = φ(a) · φ(b). Clearly we also have φ(1A) = IdM . Thus φ
is a ring morphism.

Lemma 8.4. Let A be a ring, let S ∈ AS be a simple left A-module, let D =
End(AS) and let E = End (SD). Let n ∈ N, n ≥ 1, let x1, ..., xn ∈ S and let η ∈ E.
Then there exists an a ∈ A such that η(xi) = a · xi for every i = 1, ..., n.



126 CHAPTER 8. SOME RESULTS ON MODULES AND RINGS

Proof. Let x = (x1, ..., xn) ∈ Sn and assume that z = (η(x1), ..., η(xn)) ∈ SnrAx.
Since AS

n is a semisimple left A-module, there exists a submodule H ≤ AS
n such

that
Sn = H ⊕ Ax.

Let
Λ : AS

n = H ⊕ Ax→A S
n

such that (y)Λ = 0 for every y ∈ Ax and (y)Λ = y for every y ∈ H.
Since z /∈ Ax, we have that z = h + αx where a ∈ A, h ∈ H and h ̸= 0. We have
(z)Λ = (h)Λ + (αx)Λ = h ̸= 0.
Let η ∈ EndSD and let us consider the map

ηn : Sn → Sn.

Clearly ηn ∈ End(SnD).
For every i = 1, ..., n let

ei : S → Sn

denote the i-th embedding of S into Sn and let

pi : S
n → S

denote the i-th projection from Sn to S
Then, for every x ∈ Sn, we can write

x =
n∑
i=1

(x)piei

so that we get

0 ̸= (z)Λ =
n∑
i=1

(zΛ)piei =
n∑
i=1

(
n∑
j=1

zpjej)Λpiei .

For every i, j = 1, ..., n set ejΛpi = Λij. Note that Λij ∈ End(AS) = D and hence
we have

(z)Λ =
n∑
i=1

n∑
j=1

zpjΛijei =
n∑
i=1

n∑
j=1

η(xj)Λijei .

Since η ∈ E = End(SD) and Λij ∈ D, for every i, j = 1, ..., n, we obtain that

η(xj)Λij = η(xjΛij)

and hence

(z)Λ =
n∑
i=1

n∑
j=1

η(xj)Λijei =
n∑
i=1

n∑
j=1

η(xjΛij)ei =
n∑
i=1

η(
n∑
j=1

xjΛij)ei =
n∑
i=1

η(
n∑
j=1

xjejΛpi)ei .
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Now for every i = 1, ..., n we have

n∑
j=1

xjejΛpi = [(
n∑
j=1

xjej)Λ]pi = (x)Λpi = (0) pi = 0

we get that

0 ̸= zΛ =
n∑
i=1

η(
n∑
j=1

xjejΛpi)ei = 0 .

Contradiction.

Notations 8.5. Let R be a ring and let n ∈ N, n > 0. Given t, s ∈ N such that
1 ≤ s, t ≤ n, we will denote by es,t the element of Mn(R) defined by setting

(es,t)u,v = δs,uδt,v for every s, v ∈ N, 1 ≤ t, s ≤ n.

Clearly we have

(8.1) es,teu,v = δt,ues,v for every s, t, u, v ∈ N, 1 ≤ s, t, u, v ≤ n.

For every i, 1 ≤ i ≤ n, we set

Ji =
∑
s,t
t ̸=i

Res,t.

Lemma 8.6. Let A =Mn(R). For every i, 1 ≤ i ≤ n we have that

Ji = AnnA (ei,i)

and hence Ji is a left ideal of A. Moreover we have

n∩
i=1

Ji = {0} .

Furthermore Ji ∈ Ωs(A) whenever R = D is a division ring.

Proof. From formula (8.1) we get that Ji ⊆ AnnA (ei,i). Conversely let a =
∑

s,t rs,tes,t ∈
AnnA (ei,i). Since

0 =
∑
s,t

rs,tes,tei,i =
∑
s,t

rs,tδt,ies,i =
∑
s,t

rs,ies,i

we deduce that rs,i = 0 for every s, 1 ≤ s ≤ n. Therefore

a =
∑
s,t
t ̸=i

rs,tes,t ∈ Ji.
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We have
n∩
i=1

Ji =
n∩
i=1

AnnA (ei,i) ⊆ AnnA

(
n∑
i=1

ei,i

)
= AnnA (1A) = {0} .

Assume now that R = D is a division ring and let a ∈ A \ Ji. Then we have

a =
∑
s,t

rs,tes,t =
∑
s,t
t=i

rs,tes,t +
∑
s,t
t ̸=i

rs,tes,t

=
n∑
s=1

λses,i + b where b =
∑
s,t
t ̸=i

rs,tes,t ∈ Ji and λs = rs,i ∈ D.

Moreover, since a /∈ Ji there exists an s0, 1 ≤ s0 ≤ n such that λs0 ̸= 0. This implies
that

(λs0)
−1 es0,s0 · a = (λs0)

−1
n∑
s=1

λses0,s0es,i + (λs0)
−1 es0,s0b = (λs0)

−1 λs0es0,i + (λs0)
−1 es0,s0b

= es0,i + (λs0)
−1 es0,s0b

and hence
es0,i = (λs0)

−1 es0,s0 · a− (λs0)
−1 es0,s0b ∈ Aa+ Ji.

Since Aa+ Ji is a left ideal of A we get that

et,i = et,s0es0,i ∈ Aa+ Ji for every t = 1, ..., n.

On the other hand, if t ̸= i, we know that es,t ∈ Ji and hence we deduce that es,t ∈ Ji
for every s, t = 1, ..., n so that

Aa+ Ji = A.

This means that each Ji is a left maximal ideal of A.

Lemma 8.7. Let A be a ring and let M be a left A-module. Then the following
conditions are equivalent:

(a) Every descending chain in L (AM) is stationary.

(b) Every non empty subset of L (AM) has a minimum.

Proof. (a) ⇒ (b) . Let X be a non empty subset of L (AM). Since X is non-empty,
there exists L0 ∈ X. If X has no minimal element, then for each submodule L in X
there is at least one submodule L′ in X such that L′ & L. By applying the Axiom of
choice, for each L ∈ X we can choose one such L′. Then, by recursion we construct
a descending chain in X by setting: L1 = (L0)

′ and Ln+1 = (Ln)
′. Contradiction.

(b) ⇒ (a) .Let (Ln)n∈N be a descending chain of submodules of AM . Then the
set {Ln | n ∈ N} has a minimum element, say Ln0 . For every n ≥ n0 we have

Ln0 ⊆ Ln ⊆ Ln0 .
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Definition 8.8. Let A be a ring and let M be a left A-module. M is called left
artinian if M satisfies one of the equivalent conditions of Lemma 8.7.

Definition 8.9. Let A be a ring. A is called left artinian if the left A-module AA
is left artinian.

Theorem 8.10. Let A be a ring, let S ∈ AS be a simple left A-module and let
D = End(AS). Let P = AnnA(S) and assume that A/P is left artinian. Then:

1) D is a division ring and dim(SD) <∞.

2) The canonical morphism φ = φS : A→ End(SD) is surjective.

3) A/P ≃ End(SD) ≃Mn(D) where n = dimD(SD).

4) P = L1 ∩ ... ∩ Ln where n = dimD(SD) and L1, ..., Ln are left maximal ideals
of A.

Proof. 1) By Schur’s Lemma 8.2, D = End(AS) is a division ring.
Assume that x1, x2, ..., xn, ... ∈ S is a sequence of linearly independent elements of
SD. Let E = End (SD) and, for every i ∈ N, i ≥ 1, let Hi = AnnE(Vi), Li =
AnnA (Vi) where Vi = {x1, ..., xi}. Then the Hi’s form a strictly decreasing sequence
of left ideals of E :

H1 % H2 % ... % Hn % ....

By Lemma 8.4, we have that also the Li’s form a strictly decreasing sequence of left
ideals of A. Since Li ⊇ AnnA(S) = P for every i, we can consider the left ideals
Li/P of A/P which form a strictly decreasing sequence of left ideals of A/P. Since
A/P is left artinian, we get a contradiction. Hence dimD S <∞.

2) Let x1, ..., xn be a system of generators of SD and η ∈ E. Then, by Lemma
8.4, there exists an a ∈ A such that η(xi) = a xi for every i = 1, ..., n. Let x ∈ S.
Then there exists λi ∈ D, i = 1, ..., n, such that x =

∑n
i=1 xiλi so that

η(x) =
n∑
i=1

η(xiλi) =
n∑
i=1

η(xi)λi =
n∑
i=1

(a xi)λi = a x .

We deduce that φ(a) = η and hence that φ is surjective.
3) Since φ is surjective and P = Ker(φ) we get that A/P ≃ E.

Since dimD (SD) = n we get that E ≃Mn(D).
4) By Lemma 8.6 we know that in Mn(D) we have that {0} = J1∩ ...∩Jn where

J1, ..., Jn are left maximal ideals ofMn(D). Since A/P ≃Mn(D) the ideals J1, ..., Jn
lift to left maximal ideals L1, ..., Ln of A such that L1 ∩ ... ∩ Ln = P .

Corollary 8.11. Let A be a simple left artinian ring. Then there exist an n ∈
N, n ≥ 1 and a division ring D such that A ≃ Mn(D). Moreover there exist left
maximal ideals L1, ..., Ln of A such that {0} = L1 ∩ ... ∩ Ln.
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Proof. Since AA is left artinian, it contains a non zero left ideal AI such that

AI = min {L | L ≤ AA and L ̸= {0}} .

Then AI is a simple left A-module and AnnA (AI) $ A. Since AnnA (AI) is a two-
sided ideal of A we deduce that AnnA (AI) = {0}. By Theorem 8.10, we get our
conclusion.

Corollary 8.12. Let A be a k-algebra and let m ∈ Ωf . Then there exist an n ∈ N
and a division ring D such that A/m ≃Mn(D). Moreover there exist L1, ..., Ln ∈ Ωs

such that m = L1 ∩ ... ∩ Ln.

Proof. Since m ∈ Ωf , A/m is a simple ring and dimk (A/m) <∞. Hence A/m is a
simple left artinian ring. Apply now Corollary 8.11.

Definition 8.13. Let A be a ring. The Jacobson radical of A, which will be denoted
by J(A) or also by Jac(A), is the intersection of all left maximal ideals of A, i.e.

Jac(A) =
∩

L∈Ωs(A)

L .

Theorem 8.14. Let A be a finite dimensional k-algebra. Then

• every maximal two-sided ideal of A is an intersection of a finite number of
maximal left ideals of A.

• every maximal left ideal contains a maximal two-sided ideal of A.

Therefore

Jac(A) =
∩

m∈Ω(A)

m.

Proof. Let AS be a simple left A-module. Since A is a finitely dimensional k-algebra,
we have that also dimk (A/AnnA (S)) is finite so that A/AnnA (S) is, in particular,
a left artinian ring. Thus we can apply Theorem 8.10 to get that D = End (AS)
is a division ring, n = dimD (S) < ∞, A/AnnA (S) ≃ Mn(D) and AnnA (S) =
L1 ∩ ... ∩ Ln where Li ∈ Ωs(A) for every i = 1, ..., n.
Let now m ∈ Ω(A) and let T be a simple left A/m-module. Then T is a simple left
A-module and A ' AnnA (T ) ⊇ m so that, since m is a maximal two-sided ideal,
we have that m = AnnA(T ). Then, by the foregoing, we deduce that there exists an
n ∈ N, n ≥ 1 and L1,..., Ln ∈ Ωs(A) such that m = L1 ∩ ...∩Ln. Conversely, let L ∈
Ωs(A). Then S = A/L is a simple left A-module and we have that L = AnnA(x) ⊇
AnnA(S) where x = 1A + L. By the foregoing we know that A/AnnA(S) ≃Mn(D)
where D is a division ring. Thus A/AnnA(S) is a simple ring i.e. AnnA(S) is a
maximal two-sided ideal of A.
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Theorem 8.15. Let A be a simple ring and let I be a left ideal of A, I ̸= {0}. Set
D = End(AI). Then the canonical morphism

φ = φI : A −→ End(ID)

a 7−→ ID −→ ID
x 7−→ a x

is an isomorphism.

Proof. Let us recall that, in view of Lemma 8.3, φ is a well defined ring homomor-
phism. Thus, since φ (1A) = 1End(ID), we get that Ker(φ) is a proper two-sided
ideal of A and hence, A being simple, we obtain that Ker(φ) = {0}.

Let E = End(ID). Let us show that

h · φ(r) = h ◦ φ(r) = φ(h(r)) for every h ∈ E and r ∈ I.

Let x ∈ AI. Then the map

γx : I −→ I
r 7−→ r x .

is well defined since I is a left ideal of A. Let a ∈ A and z ∈ I. We compute

(a z)γx = (a z)x = a(z x) = a[(z)γx]

which means that γx ∈ End(AI) = D. Now let h ∈ End(ID) and r ∈ I. For every
x ∈ I, we calculate

(h · φ(r))(x) = (h ◦ φ(r))(x) = h(φ(r)(x)) = h(rx)
r∈I
= h((r)γx)

r∈Iandγx∈DandstructureofID= h (r · γx)
h∈Eandγx∈D

= h (r) · γx
h(r)∈Iandγx∈DandstructureofID

= (h(r))γx
defγx
= h(r)x = φ(h(r))(x).

Therefore we get
(h · φ(r))(x) = φ(h(r))(x)

for every x ∈ I, i.e.
h · φ(r) = φ(h(r))

for every h ∈ E and r ∈ I which means that

(8.2) E · φ(I) ⊆ φ(I).

Since I A ̸= {0} and I A is a two-sided ideal of A, which is a simple ring, we deduce
that I A = A and hence

(8.3) φ(A) = φ(I A) = φ(I) · φ(A).

Then we have

E · φ(A) (8.3)
= E · [φ(I) · φ(A)] = [E · φ(I)] · φ(A)

(8.2)

⊆ φ(I) · φ(A) (8.3)
= φ(A) .

Then φ(A) is a left ideal of E. Since 1E = IdI = φ(1A) ∈ φ(A), we deduce that
φ(A) = E and thus φ is an isomorphism.



Chapter 9

The coradical

9.1. Let C be a k-coalgebra and let M ∈ MC. Recall from Theorem 2.21 that, M
has a natural structure of left C∗-module defined by setting

f ·m =
∑

m0f(m1) for every f ∈ C∗and m ∈M.

Analogously every M ∈ CM has a natural structure of right C∗-module defined by
setting

m · f =
∑

f(m−1)m0 for every f ∈ C∗and m ∈M.

In particular C, being a right C-comodule, has a natural structure of left C∗-module
which we will write as

f ⇀ c =
∑

c1f (c2) for every f ∈ C∗and c ∈ C.

Analogously C, being a left C-comodule, has a natural structure of right C∗-module
which we will write as

c ↼ f =
∑

f (c1) c2 for every f ∈ C∗and c ∈ C.

It is easy to check that, with respect to this structures, C becomes a two-sided C∗-
module.

Proposition 9.2. Let M be a right C-comodule and let L be a subvector space of
M . Then L is a right subcomodule of M if and only if L is a left C∗-submodule of
M .

Proof. Let iL : L → M be the canonical inclusion. Assume that L is a right
subcomodule of M . Then, by Proposition 2.22, H (iL) = iL : L→M is a morphism
of left C∗-modules i.e. L is a left C∗-submodule of M . Conversely, assume that
L is a left C∗-submodule of M . Then, by Theorem 2.32, L ∈ Rat (C∗M) so that
iL : L→M is a morphism in Rat (C∗M). By Theorem 2.30, Γ−1 (iL) = iL : L→M
is a morphism in MC i.e. L is a subcomodule of M

Lemma 9.3. Let C be a k-coalgebra and let D be a vector subspace of C. Then the
following are equivalent
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(a) D is a subcoalgebra of C.

(b) D is a right subcomodule (a right coideal) of CC and a left subcomodule (left
coideal) of CC.

(c) D is a two-sided submodule of C∗CC∗.

Proof. (a) ⇔ (b) . We have that

(D ⊗D) = (D ⊗ C) ∩ (C ⊗D) .

(b) ⇔ (c) . It follows from 9.2.

Corollary 9.4. Let C be a k-coalgebra. Then C∗cC∗ is a subcoalgebra of C, for
every c ∈ C. C∗cC∗ is the smallest subcoalgebra of C containing c. Moreover C∗cC∗

is finitely dimensional

Proof. Apply Proposition 9.2 and Lemma 9.3. By Theorem 2.33, C∗c is finitely
dimensional.

Definition 9.5. Let C be a k-coalgebra and let c ∈ C. The subcoalgebra C∗cC∗ is
called subcoalgebra of C generated by c.

Proposition 9.6. Let C be a k-coalgebra. Then the set of subcoalgebras of C is
closed under intersections and summations.

Proof. Apply Lemma 9.3 and Theorem 2.32.

Theorem 9.7. Let C be a k-coalgebra.

1) For every right C-comoduleM and every finite subset {m1, ...,mn} ⊂M , there
exists a finite dimensional right subcomodule N of M such that {m1, ...,mn} ⊆
N .

2) Let F be a subset of C, the subcoalgebra
∑

c∈F C
∗cC∗ is the smallest subcoal-

gebra of C containing F . Clearly
∑

c∈F C
∗cC∗ is finite dimensional whenever

F is finite.

Proof. The first assertion follows from Theorem 2.33.

Let now F be a subset of C. Then, by Corollary 9.4 and by Proposition 9.6,∑
c∈F C

∗cC∗ is the minimal subcoalgebra of C containing F . Since dimk C
∗cC∗ is

finite, the last assertion is trivial.

Definition 9.8. Let F be a subset of a k-coalgebra C. The subcoalgebra
∑

c∈F C
∗cC∗

will be called subcoalgebra of C generated by F .

Definition 9.9. Let C be a k-coalgebra. We say that C is a simple coalgebra if
C ̸= {0} and C does not contain any proper nonzero subcoalgebras.
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Definition 9.10. Let C be a k-coalgebra and let M be a right C-comodule. We
say that M is a simple right C-comodule if M ̸= {0} and M does not contain any
nonzero proper subcomodule.

Proposition 9.11. 1. Every simple coalgebra has finite dimension.

2. Let C be a coalgebra. Every simple right C-comodule has finite dimension.

Proof. 1) LetD be a simple coalgebra and let d ∈ D\{0}. By Thorem 9.7 there exists
a finite dimensional subcoalgebra E of D which contains d. Since {0} ̸= E ⊆ D and
D is a simple coalgebra we deduce that E = D.

2) Let M be a simple right C-comodule and let m ∈ M , m ̸= 0. Then, by
Theorem 9.7, there exists a finite subcomodule N of M which contains m. Since
{0} ̸= N ⊆M and M is a simple right C-comodule we deduce that M = N .

Corollary 9.12. Let C be a k-coalgebra. Then

1) every simple subcoalgebra of C has finite dimension.

2) every simple right C-comodule has finite dimension.

Notations 9.13. Let C be a k-coalgebra. For every subset X of C we set

X⊥ = {f ∈ C∗ | f (x) = 0 for every x ∈ X} .

For every subset W of C∗ we set

W⊥ = {x ∈ C | f (x) = 0 for every f ∈ W} .

Lemma 9.14. Then we have that

1) V ⊥⊥ = V for every k-vector subspace V of C.

2) Z⊥⊥ = Z for every subspace Z of C∗ whenever dimk C <∞.

Proof. 1) Let V be a k-vector subspace of C. It is clear that V ⊆ V ⊥⊥. Assume
that x ∈ V ⊥⊥rV . Then there exists a c∗ ∈ C∗ such that c∗ (V ) = 0 and c∗ (x) ̸= 0.
From c∗ (V ) = 0 we deduce that c∗ ∈ V ⊥ and hence, since x ∈ V ⊥⊥ we get that
c∗ (x) = 0. Contradiction.

2) Assume now that dimk C <∞ and let Z be a subspace of C∗. It is clear that
Z ⊆ Z⊥⊥. Assume that h ∈ Z⊥⊥ r Z. Then there exists an α ∈ (C∗)∗ such that
α (Z) = 0 and α (h) ̸= 0.Since C is finite dimensional there exists a c ∈ C such that
α (f) = f (c) for every f ∈ C∗. Therefore we get that f (c) = 0 for every f ∈ Z
and hence that c ∈ Z⊥. This implies that h (c) = 0. On the other hand we have
0 ̸= α (h) = h (c). Contradiction.

Proposition 9.15. Let C be a k-coalgebra. Then
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1) L is a right (resp. left) coideal of C ⇔ L⊥ is a right (resp. left) ideal of C∗.

2) If I is a right (resp. left) ideal of C∗, then I⊥ is a right (resp. left) coideal of
C. The converse is true whenever C has finite dimension.

3) D is a subcoalgebra of C ⇔ D⊥ is a two-sided ideal of C∗.

Proof. 1)” ⇒ ” Let L be a right coideal of C and let f ∈ L⊥ and c∗ ∈ C∗. For any
x ∈ L we compute

(fc∗) (x) = (f ∗ c∗) (x) =
∑

f(x1)c
∗(x2) =

∑
f (x1) c

∗ (x2) .

Since L is a right coideal of C we have that

∆(x) =
∑

x1 ⊗ x2 ∈ L⊗ C

so that, since f ∈ L⊥, we get that

(fc∗) (x) =
∑

f (x1) c
∗ (x2) = 0

which means that fc∗ ∈ L⊥.
2) Let I be a right ideal of C∗. In view of Proposition 9.2 we have to prove that

I⊥ is a left C∗-submodule of C i.e. that

C∗ ⇀ I⊥ ⊆ I⊥

Let f ∈ C∗, c ∈ I⊥ and g ∈ I. Then g ∗ f ∈ I and hence

g (f ⇀ c) = g
(∑

c1f(c2)
)
=
∑

g (c1) f(c2)

= (g ∗ f)(c) = 0.

Therefore we deduce that f ⇀ c ∈ I⊥.
Assume now that dimk C < ∞ and let I be a subspace of C∗ such that I⊥ is a

right coideal of C. Then, by 1)” ⇒ ” I⊥⊥ is a right ideal of C∗ and by Lemma 9.14
we have that I = I⊥⊥.

1)” ⇐ ” Let L be a subspace of C such that L⊥ is a right ideal of C∗. Then, by
2) L⊥⊥ is a right coideal of C and by Lemma 9.14 we have that L = L⊥⊥.

3) follows from 1) in view of Lemma 9.3.

Corollary 9.16. Let C be a finite dimensiona k-coalgebra. Then the assignment

L 7−→ L⊥

defines a bijection between the right coideals of C and the right ideals of C∗ which
induces a bijection between the subcoalgebras of C and the two-sided ideals of C∗.

Proposition 9.17. Let C be a k-coalgebra. Then C is a simple coalgebra if and
only if C∗ is a finite dimensional simple k-algebra.
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Proof. By Corollary 9.12 every simple subcoalgebra of C has finite dimension. On
the other hand, dimk C

∗ < ∞ implies that dimk C < ∞. Apply then Corollary
9.16.

Corollary 9.18. Let D be a subcoalgebra of a k-coalgebra C. Then the following
statements are equivalent.

(a) D is a simple subcoalgebra of C.

(b) D∗ is a finite dimensional simple algebra.

(c) D⊥ is a two-sided maximal ideal of C∗ of finite codimension.

Proof. (a) ⇔ (b) follows from Proposition 9.17.
Let V be a vector subspace of C. From the exact sequence

0 → V −→ C −→ C/V → 0

we get the exact sequence

(9.1) 0 → V ⊥ −→ C∗ −→ V ∗ → 0.

(a) = (b) ⇒ (c) Assume that D is a simple coalgebra. Then by Proposition 9.15 D⊥

is a two-sided ideal of C∗ and from (9.1) we deduce that D⊥ is a maximal two-sided
ideal of finite codimension.
(c) ⇒ (b) Assume that D⊥ is a two-sided maximal ideal C∗ of finite codimension.
From (9.1)

0 → D⊥ −→ C∗ −→ D∗ → 0

we deduce that D∗ is a finite dimensional simple algebra.

Definition 9.19. Let C be a k-coalgebra. The coradical C0 of C is the sum of all
simple subcoalgebras of C.

Definition 9.20. Let C be a nonzero k-coalgebra. C is called pointed if all simple
subcoalgebras of C are 1-dimensional.

Definition 9.21. Let C be a nonzero k-coalgebra. C is called connected if dimk C0 =
1.

Corollary 9.22. Let C be a nonzero k-coalgebra. Then C contains a simple sub-
coalgebra and hence C0 ̸= {0}.

Proof. Let 0 ̸= c ∈ C. Then by Corollary 9.4 D = C∗cC∗ is a finite dimensional
subcoalgebra of C. Let I be a maximal two-sided ideal of D∗. Since D is finite

dimensional, by 2) of Lemma 9.14 I =
(
I⊥
)⊥

. Then, by Corollary 9.18, we deduce
that I⊥ is a simple subcoalgebra of D and in particular of C.

Proposition 9.23. Let C be a k-coalgebra. Then the coradical C0 of C is a sub-
coalgebra of C.
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Proof. By Proposition 9.6, the sum of subcoalgebras is a subcoalgebra.

Proposition 9.24. Let C be a k-coalgebra. The 1-dimensional subcoalgebras of C
are exactly those of the form kg for g ∈ G(C).

Proof. Let D be a 1-dimensional subcoalgebra of C and let e ∈ D, e ̸= 0. Then
there exists λ ∈ k such that ∆(e) = λe⊗ e. Hence we get that

e = λε(e)e

from which we deduce that λε(e) = 1.
Set g = λe. Then we get that

∆ (g) = ∆(λe) = λ∆(e) = λ(λe⊗ e) = λe⊗ λe and ε (g) = λε(e) = 1.

Therefore g ∈ G (C) and kg = ke = D.
The converse is trivial.

Lemma 9.25. Let D be a simple subcoalgebra of a k-coalgebra C and let C
′
, C

′′
be

nonzero subcoalgebras of C such that D ⊆ C
′
+C

′′
. Then we have that either D ⊆ C

′

or D ⊆ C
′′
.

Proof. Assume that D * C ′. Then, since D is simple we get that D∩C ′
= {0} and

hence that D + C
′
= D ⊕ C

′
. Then there exists a γ ∈ C∗ such that

γ|D = εD and γ|C′ = 0.

The, for every d ∈ D, we get that

γ ⇀ d =
∑

d1γ(d2)
∆(D)⊆D⊗D

=
∑

d1ε(d2) = d.

On the other hand, from D ⊆ C
′
+ C

′′
we deduce that

∆(D) ⊆ ∆(C
′
) + ∆(C

′′
) ⊆ C

′ ⊗ C
′
+ C

′′ ⊗ C
′′

and since γ|C′ = 0 we obtain that γ ⇀ d ∈ C
′′
.

Proposition 9.26. Let (Ci)i∈I be a family of subcoalgebras of a k-coalgebra C and
let D be a simple subcoalgebra of C. Then D ⊆

∑
i∈I Ci if and only if there exists

an i0 ∈ I such D ⊆ Ci0 .

Proof. Since D is simple, by 9.12 D has finite dimension so that if D ⊆
∑

i∈I Ci
there exist n ∈ N,n ≥ 1 and i1, ..., in ∈ I such that D ⊆

∑n
j=1Cij . Since, by

Proposition 9.6, the sum of subcoalgebras is a subcoalgebra, in view of Lemma 9.25,
we conclude.

Lemma 9.27. Let (Di)i∈I be a family of pairwise distinct simple subcoalgebras of a
k-coalgebra C. Then.we have that∑

i∈I

Di =
⊕
i∈I

Di.
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Proof. Let us assume that there exists an i ∈ I such that Di ∩
∑

j ̸=iDj ̸= {0}.
Since, by Proposition 9.6, Di ∩

∑
j ̸=iDj is a subcoalgebra of the simple algebra Di

we get that

Di ∩
∑
j ̸=i

Dj = Di

so that Di ⊆
∑

j ̸=iDj. Then, by Lemma 9.26 there exists an i0 ∈ I\ {i} such tha
Di ⊆ Di0 . Since Di0 is a simple coalgebra we get Di = Di0 . Contradiction.

Proposition 9.28. Let D be the set of all simple subcoalgebras of a k-coalgebra C.
Then

C0 =
⊕
D∈D

D

Proof. Apply Lemma 9.27.

Proposition 9.29. Let F and D be subcoalgebras of a k-coalgebra C. Then

(F +D)0 = F0 +D0.

Proof. Clearly we have that

F0 +D0 ⊆ (F +D)0.

The converse inclusion follows by Proposition 9.26.

Proposition 9.30. Let C be a k-coalgebra. Then C is pointed ⇔ C0 = kG(C).

Proof. Let A be the set of simple subcoalgebras of C.
” ⇒ ” Assume that C is pointed. Then, by Proposition 9.24 we get that A =

{kg | g ∈ G(C)} and hence that

C0 =
∑
A∈A

A =
∑

g∈G(C)

kg = kG(C).

” ⇐ ” Conversely, assume that C0 = kG(C) and let D be a simple subcoalgebra of
C. Then from D ⊆ C0 = kG(C), by Proposition 9.26 we deduce that there exists a
g ∈ G(C) such that D ⊆ kg and hence D = kg.

Definition 9.31. Let C be a nonzero k-coalgebra. We say that C is an irreducible
coalgebra if any two nonzero subcoalgebras of C have nonzero intersection.

Lemma 9.32. Let C be a k-coalgebra. Then C is irriducible ⇔ C contains a unique
simple subcoalgebra.

Proof. ” ⇒ ” By Corollary 9.22, C contains a simple subcoalgebra. Since the
intersection of two distinct simple subcoalgebras is zero, C must contain an unique
simple subcoalgebra.
” ⇐ ” Let D be the unique simple subcoalgebra of C. Then, by Corollary 9.4, D is
contained in every nonzero subcoalgebra of C.
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Proposition 9.33. Let C be a k-coalgebra. Then the following are equivalent

(a) C is pointed and irreducible

(b) C is pointed and |G(C)| = 1.

(c) C is connected.

Proof. (a) ⇔ (b) By Lemma 9.32 C is irreducible if and only if C contains an
unique simple subcoalgebra. Since C is pointed, this means that C has a unique 1-
dimensional subcoalgebra. By Proposition 9.24, this happens if and only if |G(C)| =
1.

(c) ⇔ (b) Follows by 9.30.

Definition 9.34. Let R be a ring and let M be a left R-module. The socle Soc(RM)
of M is the sum of all simple left submodules of M.

Proposition 9.35. Let C be a simple k-coalgebra. Then Soc(CC∗) = C = Soc(C∗C).

Proof. Since C is a simple coalgebra, by Corollary 9.12 C is finite dimensional and
by Proposition 9.17 C∗ is a finite dimensional simple k-algebra. Thus, by Corollary
8.12, there exists n ∈ N and I1, ..., In left maximal ideals of C∗ such that

{0} =
n∩
j=1

Ij.

Since C is finite dimensional, we have that

C⊥ = {0} =
n∩
j=1

Ij =
n∩
j=1

I⊥⊥j =

(
n∑
j=1

I⊥j

)⊥
and hence, by Lemma 9.14, we get that

C = C⊥⊥ =

(
n∑
j=1

I⊥j

)⊥⊥
=

n∑
j=1

I⊥j .

Since C is finite dimensional, by Proposition 9.15, every I⊥j is a minimal left coideal
of C and hence, by Proposition 9.2 it is a simple submodule of CC∗ . Therefore we
get

C =
n∑
j=1

I⊥j ⊆ Soc(CC∗) ⊆ C.

Lemma 9.36. Let D be a subcoalgebra of a k-coalgebra C and let W be a vector
subspace of D. Then W is a left D∗-submodule of D if and only if W is a left
C∗-submodule of D.
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Proof. Let iD : D → C be the canonical inclusion. Let d ∈ D and let g ∈ D∗. Then
there exists an element f ∈ C∗ such that g = f ◦ iD so that we get

g ⇀ d =
∑

d1g (d2) =
∑

d1f (d2) = f ⇀ d ∈ C∗ ⇀ d.

Conversely, let f ∈ C∗. Then

f ⇀ d =
∑

d1f (d2) =
∑

d1 (f ◦ iD) (d2) ∈ D∗ ⇀ d.

Lemma 9.37. Let C be a finite dimensional k-coalgebra. Then every simple left
C∗-submodule of C is contained in a simple subcoalgebra of C.

Proof. Let S be a simple left C∗-submodule of C. Then, by Proposition 9.2, S is a
minimal left coideal of C.
By Proposition 9.15 S⊥ is a left maximal ideal of C∗. Since C∗ is finite dimensional,
by Theorem 8.14 it contains a maximal two-sided ideal I of C∗. Then, by Lemma
9.14, I = I⊥⊥ and hence, in view of Corollary 9.18 I⊥ is a simple subcoalgebra of
C. By Lemma 9.14 we have that

S = S⊥⊥ ⊆ I⊥.

Proposition 9.38. Let C be a k-coalgebra. Then

C0 = Soc(C∗C).

Proof. Let D be a simple subcoalgebra of C. Then, by Proposition 9.35 D =
Soc(D∗D). By Lemma 9.36, every simple left D∗-submodule of D is a simple C∗-
submodule and hence D ⊆ Soc(C∗C).
Conversely, let S be a simple left C∗-submodule of C. By Corollary 9.12, S has
finite dimension. Let x ∈ S, x ̸= 0. We have that

S = C∗x ⊆ C∗xC∗.

and D = C∗xC∗ has finite dimension. By Lemma 9.36 S is a simple left D∗-
submodule of D. Since D is finite dimensional we can apply Lemma 9.37 and get
that S is contained in a simple subcoalgebra E of D so that

S ⊆ E ⊆ C0.

Lemma 9.39. Let R be a ring and let L be a submodule of a left R-module M .
Then

Soc (RL) = Soc (RM) ∩ L.
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Proof. The simple submodules of RL are the simple submodules of RM which are
contained in L. The inclusion Soc (RL) ⊆ Soc (RM) ∩ L is trivial. Conversely
Soc (RM) ∩ L is a submodule of the semisimple left R-module Soc (RM) and hence
it is semisimple. Thus Soc (RM)∩L is a sum of simple modules which are contained
in L so that Soc (RM) ∩ L ⊆ Soc (RL) .

Lemma 9.40. Let D be a subcoalgebra of a k-coalgebra C. Then

D0 = C0 ∩D.

Proof. By Proposition 9.38, we have that D0 = Soc (D∗D) and by Lemma 9.36 we
have that Soc (D∗D) = Soc (C∗D) so that, by Lemma 9.39 we obtain that

D0 = Soc (C∗D) = Soc(C∗C) ∩D Prop9.38
= C0 ∩D.

Proposition 9.41. Let C be a finite dimensional k-coalgebra. Then

C⊥0 = Jac(C∗).

Proof. By Proposition 9.15 the maximal right ideals of C∗ are exactly those of the
form L⊥ where L is a minimal right coideal of C i.e., by Proposition 9.2, a simple
subcomodule of C∗C. Let S denotes the set of simple submodules of C∗C. Then we
have

Jac(C∗) =
∩
L∈S

L⊥ =

(∑
L∈S

L

)⊥
= C⊥0 .

Lemma 9.42. Let R be a ring and let f ∈ R. Then f ∈ Jac(R) ⇔ for every h ∈ R,
1R − hf has a left inverse in R.

Proof. ” ⇒ ” Since 1 = hf + (1− hf), and hf ∈ Jac(R) we have that 1− hf is not
contained in any left maximal ideal of R. By Krull’s Lemma this means that

R(1− hf) = R

i.e. 1− hf has a left inverse.
” ⇐ ” Assume that f /∈ Jac(R). Then there exists a left maximal ideal L of R such
that f /∈ L and hence

Rf + L = R.

Thus there exist an h ∈ R and an l ∈ L such that

hf + l = 1R.

Then 1− hf does not have any left inverse.
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Lemma 9.43. Let R be a ring and let L be a left ideal of R such that every element
of L is nilpotent R.
Then L ⊆ Jac(R).

Proof. Let a ∈ L and let x ∈ R. Then xa ∈ L and hence there exists an n ∈ N,n ≥ 1
such that (xa)n = 0. Thus we obtain

(1 + xa+ (xa)2 + ...+ (xa)n−1)(1− xa) = 1− (xa)n = 1

and hence 1 − xa has a left inverse in R. Thus, by Lemma 9.42 we get that a ∈
Jac(R).

Lemma 9.44. Let C and D be k-coalgebras. Then

(C ⊗D)0 ⊆ C0 ⊗D0.

Moreover if C and D are also pointed (resp. connected), then

(C ⊗D)0 = C0 ⊗D0

and C ⊗D is pointed (resp. connected).

Proof. Let X ̸= {0} be a simple subcoalgebra of C ⊗ D. We have to prove that
X ⊆ C0 ⊗D0. First of all let us show that we can assume that both C and D are
finite dimensional. By Corollary 9.12 X is finitely dimensional. Let {v1, ..., vn} be
a basis of X. Since X ≤ C ⊗D, for every i = 1, ..., n, there exists a finite subset Fi
of C and a finite subset Gi of D such that

vi =
∑

c∈Fi,d∈Gi

c⊗ d

Let C
′
be the subcoalgebra of C generated by Fi and let D

′
be the subcoalgebra

of D generated by G. Then both C ′ and D′ are finite dimensional. We will show
that X ⊆ C ′0 ⊗D′0. Thus we may assume that both C and D are finite dimensional.
Then we have the isomorphism

(C ⊗D)∗ ∼= C∗ ⊗D∗

and by Proposition 9.41 we have that

C⊥0 = Jac(C∗) and D⊥0 = Jac(D∗).

Since C∗ and D∗ are finitely dimensional, by Nakayama’s Lemma, there exist m,n ∈
N, m, n ≥ 1 such that

(C⊥0 )
n = {0} and (D⊥0 )

m = {0}.

Clearly we may assume n = m.
Set

I = C⊥0 ⊗D∗ + C∗ ⊗D⊥0
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then I is a two-sided ideal of C∗ ⊗D∗. Note that(
C⊥0 ⊗D∗

) (
C∗ ⊗D⊥0

)
= C⊥0 ⊗D⊥0 =

(
C∗ ⊗D⊥0

) (
C⊥0 ⊗D∗

)
so that

I2n =
∑

i+j=2n

(
2n

i

)(
C⊥0 ⊗D∗

)i (
C∗ ⊗D⊥0

)j
= {0}.

Therefore, by Lemma 9.43 and Theorem 8.14

I ⊆ Jac(C∗ ⊗D∗) ⊆ P

for every two-sided maximal ideal P di C∗ ⊗D∗ . Therefore we deduce that

P⊥ ⊆ I⊥

where P⊥ is any simple subcoalgebra of C⊗D. By Lemma 15.3, I = (C0⊗D0)
⊥ and

hence, by Proposition 9.15 I⊥ = C0 ⊗ D0 and it contains all simple subcoalgebras
of C ⊗D. In particular we get that X ⊆ I⊥ = (C0 ⊗D0).
Assume now that both C and D are pointed. Since

G(C)⊗G(D) ⊆ G(C ⊗D)

we get that, in this case,
C0 ⊗D0 ⊆ (C ⊗D)0

and hence
(C ⊗D)0 ⊆ C0 ⊗D0 ⊆ (C ⊗D)0.

Thus (C ⊗ D)0 = C0 ⊗ D0 = k (G (C)) ⊗ kG (D) = kG(C ⊗ D) so that C ⊗ D is
pointed.
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The Coradical Filtration

Definition 10.1. Let X and Y be subspaces of a k-coalgebra (C,∆, ε). The wedge
product of X and Y (in C)is defined by

X ∧C Y = X ∧ Y = Ker(C
∆−→ C ⊗ C

πC
X⊗π

C
Y−→ C/X ⊗ C/Y )

where πCX and πCY are the canonical projections.

Lemma 10.2. Let f : C → U and g : C → W be k-linear maps. Then

(10.1) ∆← [C ⊗Ker (g) + Ker (f)⊗ C] = Ker [(f ⊗ g) ◦∆] .

Lemma 10.3. Let X, Y, Z be subspaces of a k-coalgebra (C,∆, ε) .

1)

(10.2) X ∧ Y = ∆←(C ⊗ Y +X ⊗ C).

2)

(10.3) X ∧ Y = (X⊥ ∗ Y ⊥)⊥ where the product X⊥ ∗ Y ⊥ is in C∗.

3)

(10.4) (X ∧ Y ) ∧ Z = Ker [(πX ⊗ πY ⊗ πZ) ◦∆2] = X ∧ (Y ∧ Z).

4)
(10.5)
D ∧ E is a subcoalgebra of C whenever D and E are subcoalgebras of C.

Proof. 1) We have

X ∧ Y = Ker((πX ⊗ πY ) ◦∆)
(10.1)
= ∆←(C ⊗Ker (πY ) + Ker (πX)⊗ C)

= ∆←(C ⊗ Y +X ⊗ C).

144
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2) Let z ∈ X ∧ Y =Ker((πX ⊗ πY ) ◦∆). We compute

(X⊥ ∗ Y ⊥)⊥ = {c ∈ C | (f ∗ g) (c) = 0, for every f ∈ X⊥, g ∈ Y ⊥}
= {c ∈ C |

∑
f (c1) g (c2) = 0, for every f ∈ X⊥, g ∈ Y ⊥}

= {c ∈ C | mk(f ⊗ g)∆(c) = 0, for every f ∈ X⊥, g ∈ Y ⊥}
mkisiso= {c ∈ C | (f ⊗ g)∆(c) = 0, for every f ∈ X⊥, g ∈ Y ⊥}

= {c ∈ C | ∆(c) ∈ Ker(f ⊗ g), for every f ∈ X⊥, g ∈ Y ⊥}
=

∩
f∈X⊥,g∈Y ⊥

∆← [Ker(f ⊗ g)]

so that

(X⊥ ∗ Y ⊥)⊥ =
∩

f∈X⊥,g∈Y ⊥

∆← [Ker(f ⊗ g)] .

Now f ∈ X⊥ means that f (X) = {0} i.e. X ⊆ Ker (f) and similarly g ∈ Y ⊥ means
that Y ⊆ Ker(g). Thus

X ∧ Y = ∆←(C ⊗ Y +X ⊗ C) ⊆
∩

f∈X⊥,g∈Y ⊥

∆← [C ⊗Ker(g) + Ker(f)⊗ C]

=
∩

f∈X⊥,g∈Y ⊥

∆← [Ker(f ⊗ g)] = (X⊥ ∗ Y ⊥)⊥.

Let us prove the other inclusion. Let (xi)i∈I be a basis of X and let (xj)j∈J ,
where J ⊇ I, be a basis of C. Analogously let (yl)l∈L be a basis of Y and let (yt)t∈T ,
where T ⊇ L a basis of C.

Let x∗j and y∗t the dual morphisms of xj and yt respectively. Then, for every
j ∈ J\I we have that x∗j ∈ X⊥ and for every t ∈ T\L we have that y∗t ∈ Y ⊥. Let
c ∈ (X⊥ ∗ Y ⊥)⊥. Then we can write

∆(c) =
∑

j∈J,t∈T

λjtxj ⊗ yt for some λj,t ∈ k.

For every (j0, t0) ∈ (J\I)× (T\L) we have x∗j0 ∗ y
∗
t0
∈ X⊥ ∗ Y ⊥ so that

0 =
(
x∗j0 ∗ y

∗
t0

)
(c) = λj0t0

so that

∆(c) =
∑

(j,t)∈J×T
,j∈I or t∈L

λjtxj ⊗ yt ∈ X ⊗ C + C ⊗ Y.



146 CHAPTER 10. THE CORADICAL FILTRATION

3) We compute

(X ∧ Y ) ∧ Z = ∆← [C ⊗ Z + (X ∧ Y )⊗ C]

= ∆← [C ⊗Ker (πZ) + Ker [(πX ⊗ πY ) ◦∆]⊗ C]
(10.1)
= Ker [([(πX ⊗ πY ) ◦∆]⊗ πZ) ◦∆]

= Ker [[(πX ⊗ πY ⊗ πZ)] ◦ (∆⊗ C) ◦∆]

= Ker [[(πX ⊗ πY ⊗ πZ)] ◦ (C ⊗∆) ◦∆]

= Ker [(πX ⊗ [(πY ⊗ πZ) ◦∆]) ◦∆]
(10.1)
= ∆← [C ⊗Ker (πX) + Ker [(πY ⊗ πZ) ◦∆]⊗ C]

= ∆← [C ⊗X + (Y ∧ Z)⊗ C]

= X ∧ (Y ∧ Z).

4) Let D and E be subcoalgebras of C. Then, by Proposition 9.15, D⊥ and E⊥ are
two-sided ideals of C∗ so that D⊥ ∗ E⊥ is a two-sided ideal of C∗ and hence, by 2)
and Proposition 9.15, D ∧ E = (D⊥ ∗ E⊥)⊥ is a subcoalgebra of C.

Lemma 10.4. Let D and E be subcoalgebras of a coalgebra C. Then

D ⊆ D ∧ E and E ⊆ D ∧ E.

Proof. Since D is a subcoalgebra of C we have

∆ (D) ⊆ D ⊗D ⊆ D ⊗ C ⊆ D ⊗ C + C ⊗ E

so that, by 1) of Lemma 10.3, we get

D ⊆ ∆←(C ⊗ E +D ⊗ C) = D ∧ E

Lemma 10.5. Let C be a k-coalgebra, D a subcoalgebra of C and E and F subcoal-
gebras of D. Then

E ∧D F = (E ∧C F ) ∩D.

Proof. We have that

E ∧D F = Ker(D
∆D−→ D ⊗D

πD
E⊗π

D
F−→ D/E ⊗D/F ).

Let i : D → C, iD/E : D/E → C/E and iD/F : D/F → C/F be the canonical
inclusions. Then(

iD/E ⊗ iD/F
)
◦
(
πDE ⊗ πDF

)
◦∆D =

(
πCE ◦ i⊗ πCF ◦ i

)
=

(
πCE ⊗ πCF

)
◦ (i⊗ i) ◦∆D

=
(
πCE ⊗ πCF

)
◦∆C ◦ i
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so that

E ∧D F = Ker
[(
πDE ⊗ πDF

)
◦∆D

]
= Ker

[(
iD/E ⊗ iD/F

)
◦
(
πDE ⊗ πDF

)
◦∆D

]
= Ker

[(
πCE ⊗ πCF

)
◦∆C ◦ i

]
= i← (E ∧C F ) = (E ∧C F ) ∩D.

Lemma 10.6. Let C be a k-coalgebra, D a subcoalgebra of C and E a subcoalgebra
of D. Then

E ∧C E ⊆ D ∧C D.

Proof. Let πED : C/E → C/D be the canonical projection. Then

πCD = πED ◦ πCE

so that

D ∧C D = Ker
[(
πCD ⊗ πCD

)
◦∆C

]
= Ker

{[(
πED ◦ πCE

)
⊗
(
πED ◦ πCE

)]
◦∆C

}
= Ker

{[(
πED ⊗ πED

)
◦
(
πCE ⊗ πCE

)]
◦∆C

}
E ∧C E = Ker

[(
πCE ⊗ πCE

)
◦∆C

]
⊆ Ker

{[(
πED ⊗ πED

)
◦
(
πCE ⊗ πCE

)]
◦∆C

}
= Ker

{[(
πED ◦ πCE

)
⊗
(
πED ◦ πCE

)]
◦∆C

}
= D ∧C D.

We recall that the sequence (∆n)n≥1 was defined by recursion by setting

∆1 = ∆ and ∆n =
(
∆⊗ In−1

)
◦∆n−1 for every n ∈ N, n ≥ 2

and that, by Theorem 1.17, for every n, i,m ∈ N, n ≥ 2, 1 ≤ i ≤ n − 1 and
0 ≤ m ≤ n− i,

∆n =
(
Im ⊗∆i ⊗ In−i−m

)
◦∆n−i.

Definition 10.7. Let C be a k-coalgebra and let X be a vector subspace of C. We

define
n∧
C

X =
n∧
X as follows

n∧
X = Ker

[(
πCX
)⊗n ◦∆n−1

]
for every n ∈ N where ∆−1 = ∆0 =

(
πCX
)⊗0

= IdC

so that
0∧
X = {0},

1∧
X = X.

Lemma 10.8. Let C be a k-coalgebra and let X be a vector subspace of C. Then

(10.6)
a∧
X ∧

b∧
X =

a+b∧
X =

b∧
X ∧

a∧
X for every a, b ∈ N, a, b ≥ 1.
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Proof. For every a, b ∈ N, a, b ≥ 1, we compute

a∧
X ∧

b∧
X = ∆←

[
C ⊗

(
b∧
X

)
+

(
a∧
X

)
⊗ C

]
=

= ∆←
[
C ⊗Ker

[(
πCX
)⊗b ◦∆b−1

]
+Ker

[(
πCX
)⊗a ◦∆a−1

]
⊗ C

]
(10.1)
= Ker

({[(
πCX
)⊗a ◦∆a−1

]
⊗
[(
πCX
)⊗b ◦∆b−1

]}
◦∆
)
=

= Ker
({[(

πCX
)⊗a ⊗ (πCX)⊗b] ◦ [∆a−1 ⊗∆b−1]

}
◦∆
)

= Ker
[(
πCX
)⊗a+b ◦ (∆a−1 ⊗∆b−1) ◦∆

]
= Ker

[(
πCX
)⊗a+b ◦ (C⊗a ⊗∆b−1

)
◦ (∆a−1 ⊗ C) ◦∆

]
Lemma(1.16)

= Ker
[(
πCX
)⊗a+b ◦ (C⊗a ⊗∆b−1

)
◦∆a

]
= Ker

[(
πCX
)⊗a+b ◦∆a+b

]
=

a+b∧
X.

Definition 10.9. Let (C,∆, ε) be a k-coalgebra. We define a sequence (Cn)n∈N of
subspaces of C as follows : for n = −1 we set C−1 = {0} , for n = 0 we let C0 be
the coradical of C and for each n ∈ N, n ≥ 1 we set

Cn =
n+1∧

C0.

Theorem 10.10. For every n ∈ N, we have that

1) Ca+b+1 = Ca ∧ Cb for every a, b ∈ N.

2) Cn is a subcoalgebra of C, for every n ∈ N.

3) Cn ⊆ Cn+1, for every n ∈ N.

4) ∆(Cn) ⊆
∑n

i=0Ci ⊗ Cn−i, for every n ∈ N.

5) C =
∪
n>0

Cn.

Proof. 1) We have

Ca ∧ Cb =
a+1∧

C0 ∧
b+1∧

C0
(10.6)
=

a+1+b+1∧
C0 = Ca+b+1

2) We proceed by induction on n ∈ N.For n = 0 we know that, by Proposition 9.6,
C0 is a subcoalgebra of C. Let us assume that there exists an n ∈ N, n ≥ 1 such
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that Cn−1 is a subcoalgebra of C. Then Cn = C0 ∧ Cn−1, in view of 4) in Lemma
10.3, is a subcoalgebra of C.

3) By Lemma 10.4, for any subcoalgebra D and E we have

D ⊆ D ∧ E and E ⊆ D ∧ E.

Then for every n ∈ N
Cn ⊆ Cn ∧ C0

1)
= Cn+1.

4) In view of 1) we get

Cn = (
i∧
C0) ∧ (

n+1−i∧
C0)

for every 1 ≤ i ≤ n so that, for every 1 ≤ i ≤ n we obtain

∆(Cn) = ∆((
i∧
C0) ∧ (

n+1−i∧
C0))

= ∆

[
∆←

(
C ⊗

n+1−i∧
C0 +

i∧
C0 ⊗ C

)]

⊆ C ⊗
n+1−i∧

C0 +
i∧
C0 ⊗ C

= C ⊗ Cn−i + Ci−1 ⊗ C.(10.7)

Moreover, since Cn is a subcoalgebra of C, for i = 0 we have

∆(Cn) ⊆ C ⊗ Cn + {0} ⊗ C = C ⊗ Cn

and for i = n+ 1
∆(Cn) ⊆ C ⊗ {0}+ Cn ⊗ C = Cn ⊗ C.

Now, for every vector space V and for every ascending chain of subspaces

{0} = V0 ⊆ V1 ⊆ ... ⊆ Vn ⊆ ...

by Lemma 15.4 we have that

(10.8)
n+1∩
i=0

(V ⊗ Vn+1−i + Vi ⊗ V ) =
n+1∑
i=1

Vi ⊗ Vn+2−i.

Since we already know that, for every 0 ≤ i ≤ n+ 1

∆(Cn) ⊆ C ⊗ Cn−i + Ci−1 ⊗ C

i.e.

∆(Cn) ⊆
n+1∩
i=0

(C ⊗ Cn−i + Ci−1 ⊗ C)
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we can apply (10.8) for V = C and Vi = Ci−1 and get that

∆(Cn) ⊆
n+1∩
i=0

(C ⊗ Cn−i + Ci−1 ⊗ C)

=
n+1∑
i=1

Ci−1 ⊗ Cn+1−i

=
n∑
i=0

Ci ⊗ Cn−i.

5) In view of Theorem 9.7, C is the union of its finite dimensional subcoalgebras.
Thus let D be a finite dimensional subcoalgebra of C and let us prove that there
exists an n ∈ N such that D ⊆ Cn. Since D is finite dimensional we can apply
Proposition 9.41 to get that Jac(D∗) = D⊥0 and that there exists an n ∈ N such
that (D⊥0 )

n = (D⊥0 )
n+1 so that, by Nakayama’s Lemma, we obtain that (D⊥0 )

n = {0}.
Hence, by (10.3) we obtain that

D = {0}⊥ = ((D⊥0 )
n)⊥ =

n∧
D

D0.

Now, by Lemma 10.5, we get that

n∧
D

D0 ⊆
n∧
C

D0

and by Lemma 9.40, we have

D0 = C0 ∩D.

Hence, by Lemma 10.6, we deduce that

n∧
C

D0 ⊆
n∧
C

C0

so that we finally obtain that

D =
n∧
D

D0 ⊆
n∧
C

C0 = Cn−1.

Lemma 10.11. Let D be a subcoalgebra of a k-coalgebra C. Then

Dn = Cn ∩D for every n ≥ 0.
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Proof. Let us proceed by induction on n. For n = 0 the equality follows by Lemma
9.40. Assume now that the equality holds for some n ∈ N and let us prove it for
n+ 1. We have

D ∩ Cn+1 = D ∩∆←C (Cn ⊗ C + C ⊗ C0) = D ∩∆←C [(D ⊗D) ∩ (Cn ⊗ C + C ⊗ C0)]

Lem15.5
= D ∩∆←C [(D ∩ Cn)⊗D +D ⊗ (D ∩ C0)]

ind hyp
= D ∩∆←C (Dn ⊗D +D ⊗D0) = ∆←D (Dn ⊗D +D ⊗D0) = Dn+1.

Lemma 10.12. Let A a be k-algebra, let C be a k-coalgebra and let f ∈ Homk (C,A) .
If f|C0 = 0 then fn+1

|Cn
= 0 for every n ∈ N.

Proof. Let us proceed by induction on n ∈ N. For n = 0 there is nothing to prove.
Assume that fn+1

|Cn
= 0 for some n ∈ N and let us prove that fn+2

|Cn+1
= 0. We have

that
Cn+1 = C0 ∧ Cn == ∆←(C ⊗ Cn + C0 ⊗ C).

Thus, for every c ∈ Cn+1 we can write

∆ (c) =
m∑
i=1

ai ⊗ bi +
s∑
j=1

cj ⊗ dj where m, s ∈ N, ai ∈ C, bi ∈ Cn, cj ∈ C0, dj ∈ C

for every i = 1, . . . ,m and j = 1, . . . , s

so that

fn+2 (c) =
(
f ∗ fn+1

)
(c) =

m∑
i=1

f (ai) · fn+1 (bi) +
s∑
j=1

f (cj) · fn+1 (dj) =

=
m∑
i=1

f (ai) · 0 +
s∑
j=1

0 · fn+1 (dj) = 0.

Proposition 10.13. (Takeuchi) Let A a be k-algebra and let C be a k-coalgebra. A
map f ∈ Homk (C,A) is convolution invertible ⇔ f|C0 is invertible in Homk (C0, A) .

Proof. ” ⇒ ” Let g ∈ Homk (C,A) be such that f ∗ g = uA ◦ εC = g ∗ f i.e.∑
f (c1) g (c2) = εC (c) 1A =

∑
g (c1) f (c2) for every c ∈ C.

Then we get∑
f (c1) g (c2) = εC (c) 1A =

∑
g (c1) f (c2) for every c ∈ C0

i.e. f|C0 ∗ g|C0 = uA ◦ εC0 = g|C0 ∗ f|C0 .
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” ⇐ ” Let h ∈ Homk (C0, A) be such that f|C0 ∗ h = uA ◦ εC0 = h ∗ f|C0 . Let W
be a subvector space of C such that C = C0⊕W and extend h to a map h′ : C → A
by setting h′ (W ) = 0. Let χ = uA ◦ εC − f ∗ h′. Then χ|C0 = 0 so that, by Lemma
10.12, χn+1

|Cn
= 0 for every n ∈ N and hence

∑
n∈N χ

n is by 5) in Theorem 10.10,
well-defined on C and we have

(f ∗ h′) ∗

(∑
n∈N

χn

)
= ((uA ◦ εC)− χ) ∗

(∑
n∈N

χn

)
= uA ◦ εC

so that h′∗
(∑

n∈N χ
n
)
is a right inverse for f. Similarly let γ = uA◦εC−h′∗f . Then

γ|C0 = 0 so that, by Lemma 10.12, γn+1
|Cn

= 0 for every n ∈ N and hence
∑

n∈N γ
n is

by 5) in Theorem 10.10, well-defined on C and we have(∑
n∈N

γn

)
∗ (h′ ∗ f) =

(∑
n∈N

γn

)
∗ ((uA ◦ εC)− γ) = uA ◦ εC

so that
(∑

n∈N γ
n
)
∗ h′ is a left inverse for f.
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Algebra and Coalgebra Filtrations

Definition 11.1. Let (C,∆, ε) be a k-coalgebra. We say that a sequence (Vn)n∈N of
subspaces of C is a coalgebra filtration of C if

1) Vn ⊆ Vn+1, for every n ∈ N.

2) ∆Vn ⊆
∑n

i=0 Vi ⊗ Vn−i, for every n ∈ N.

3) C = ∪n>0Vn.

In this case we also say that the coalgebra C is filtered.

Definition 11.2. Let (A,m, u) be a k-algebra. We say that a sequence (Vn)n∈N of
subspaces of A is an algebra filtration of A if

1) Vn ⊆ Vn+1, for every n ∈ N.

2) 1A ∈ V0 and ViVj ⊆ Vi+j for every i, j ∈ N.

3) A = ∪n>0Vn.

In this case we also say that the algebra A is filtered.

Definition 11.3. Let (H,m, u,∆, ε, S) be a Hopf algebra over a field k. We say
that a sequence (Vn)n∈N of subspaces of H is a Hopf algebra filtration of A if

1) (Vn)n∈N is a coalgebra filtration of H;

2) (Vn)n∈N is an algebra filtration of H;

3) S(Vn) ⊆ Vn for every n ∈ N.

Definition 11.4. Let (C,∆, ε) be a k-coalgebra and let (Cn)n∈N be as in 10.9. Then,
in view of Theorem 10.10, (Cn)n∈N is a coalgebra filtration of C which is called
coradical filtration.

153
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Example 11.5. Let us provide an example of Hopf algebra filtration.
Let us consider the usual polynomial ring k[X] endowed with the usual Hopf algebra
stucture

∆(X) = X ⊗ 1 + 1⊗X , ε(X) = 0 , S(X) = −X.

Let us set, for every n ∈ N,

An = k + kX + kX2 + ...+ kXn

and let us show that (An) is a Hopf algebra filtration. Clearly we have

An ⊆ An+1 ,
∪
n≥0

An = k[X] , S(An) ⊆ An and AmAn ⊆ Am+n for all m,n ∈ N.

Let us show that

∆(An) ⊆
n∑
i=0

Ai ⊗ An−i for all n ∈ N.

We compute

∆(An) = ∆(k + ...+ kXn) = k + k∆(X) + ...+ k∆(Xn)

= k + k∆(X) + ...+ k∆(X)n

= k + k(X ⊗ 1 + 1⊗X) + ...+ k(X ⊗ 1 + 1⊗X)n

= k +X ⊗ k + k ⊗X + ...+ k(
n∑
h=0

(
n

h

)
(X ⊗ 1)h(1⊗X)n−h)

= k +X ⊗ k + k ⊗X + ...+ k(
n∑
h=0

(
n

h

)
(Xh ⊗ 1)(1⊗Xn−h))

= k +X ⊗ k + k ⊗X + ...+
n∑
h=0

(
n

h

)
(kXh ⊗Xn−h)

⊆
n∑
h=0

(kXh ⊗ kXn−h) ⊆
n∑
h=0

Ah ⊗ An−h.

Proposition 11.6. Let (Vn)n∈N be a coalgebra filtration of a k-coalgebra C. Then

1) each Vn is a subcoalgebra of C

2)

(11.1) ∆Vn ⊆ V0 ⊗ Vn + Vn ⊗ Vn−1

3) C0 ⊆ V0.
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Proof. 1) and 2) From ∆Vn ⊆
∑n

i=0 Vi ⊗ Vn−i and Va ⊆ Va+1 for every n, a ∈ N we
get that ∆Vn ⊆ Vn⊗Vn and ∆Vn ⊆ V0⊗Vn+

∑n
i=1 Vi⊗Vn−i ⊆ V0⊗Vn+Vn⊗Vn−1.

3) Let D be a simple subcoalgebra of C. In view of 1), it suffices to show that

D ∩ V0 ̸= {0}.

Since C =
∪
k∈N Vk there exists a minimum n such that D∩Vn ̸= {0}. We will show

that n = 0. Let 0 ̸= d ∈ D ∩ Vn. Assume that n > 0. We have

∆(d) ∈ ∆(Vn) ⊆
n∑
i=0

Vi ⊗ Vn−i

so that there exists vi ∈ Vi and wi ∈ Vn−i, for every i = 1, . . . , n such that

(11.2) ∆(d) =
n∑
i=0

vi ⊗ wi.

Let (bi)i∈I be a basis of V0 and let (bj)j∈J , where J ⊇ I, be a basis of C. Then we
have

∆(d) =
∑
j∈J

aj ⊗ bj for some aj ∈ C, almost all aj = 0 .

Then there exists a j0 ∈ J \ I such that aj0 ̸= 0. In fact, otherwise we would
get ∆(d) ∈ C ⊗ V0 and hence d = lC(ε ⊗ C)∆(d) ∈ V0. Let f = (bj0)

∗ ∈ C∗ i.e.
f(bj) = δj0j for every j ∈ J . Then

D ∋ f · d =
∑

d1f (d2) =
∑
j∈J

ajf (bj) = aj0 ̸= 0.

Note that f ∈ V ⊥0 and hence, in view of (11.2)

f · d =
n∑
i=0

vif (wi) =
n−1∑
i=0

vif (wi) ∈
n−1∑
i=0

Vi ⊆ Vn−1

so that

0 ̸= f · d ∈ D ∩ Vn−1.

Contradiction.

Corollary 11.7. Let f : C −→ D be a surjective morphism of k-coalgebras. Then
D0 ⊆ f(C0).

Proof. Let (Cn)n∈N be the coradical filtration of C and let us prove that (Vn)n∈N
with Vn = f (Cn) is a coalgebra filtration of D. Clearly, since Cn ⊆ Cn+1 for every
n ∈ N,

Vn = f (Cn) ⊆ f (Cn+1) = Vn+1 for every n ∈ N.
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Since f is surjective

D = f (C) = f

[∪
n∈N

(Cn)

]
=
∪
n∈N

f (Cn) =
∪
n∈N

Vn

and since f is a coalgebra morphism, we have that

∆D (Vn) = ∆D (f (Cn)) = (f ⊗ f) (∆C (Cn)) ⊆ (f ⊗ f)

(
n∑
i=0

Ci ⊗ Cn−i

)
=

n∑
i=0

Vi⊗Vn−i.

Then we can conclude by 3) of Proposition 11.6, that

D0 ⊆ V0 = f (C0) .

Corollary 11.8. Let f : C −→ D be a surjective morphism of k-coalgebras. Assume
that D ̸= {0} ,

1) If C is pointed, also D is pointed.

2) If C is connected, also D is connected.

Proof. 1) By Corollary 11.7, we have thatD0 ⊆ f(C0) = f (kG (C)) ⊆ kG (D) ⊆ D0.
2) By Corollary 11.7, we have that dimkD0 ≤ dimk f(C0) ≤ 1. By Corollary

9.22 we deduce that dimkD0 = 1.

Proposition 11.9. Let C be a k-coalgebra, let J = C⊥0 in C∗ and let W = Ωf (C
∗)

the set of all two-sided ideals of C∗ of finite codimension. Then

1) Cn = (Jn+1)⊥, for every n ∈ N

2) J = Jac(C∗) =
∩

M∈W
M

3)
∩
n≥0

Jn = (0).By Proposition 11.9 we have Cn = (Jn+1)⊥

Proof. 1) By Lemma 9.14 we have C0 = C⊥⊥0 = J⊥ so that 1) holds for n = 0.
Assume now that 1) holds for some n − 1 ∈ N, n ≥ 1 and let us prove it for n. We
have

Cn
(11.1)
= ∆← (C ⊗ Cn−1 + C0 ⊗ C)

indhyp
= ∆←

(
C ⊗ (Jn)⊥ + J⊥ ⊗ C

) Lemma15.3
=

= ∆←
(
(J ⊗ Jn)⊥

)
= (J ∗ Jn)⊥ = (Jn+1)⊥.

2) Let f ∈ J . Then, for every n ∈ N, fn+1 ∈ Jn+1 and hence, by 1), fn+1 (Cn) = 0
so that it makes sense to consider the map g defined on C by setting

g =
∞∑
n=0

fn
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where f 0 = ε. It is easy to show that g = (ε − f)−1 in C∗. Let f ∈ J and h ∈ C∗,
then hf ∈ J in fact f (C0) = 0 and (hf) (C0) = (h ∗ f) (C0) so that ε−hf has a left
inverse. Hence, by Lemma 9.42, we get f ∈ Jac(C∗). Therefore we obtain that J ⊆
Jac(C∗). Now, by Corollary 8.12, every M ∈ W is a finite intersection of L ∈ Ωs so
that we get

J ⊆ Jac(C∗) =
∩
L∈Ωs

L ⊆
∩
M∈W

M.

Let {Dα | α ∈ A} be the set of simple subcoalgebras of C. Then, by Corollary 9.18,
every D⊥a is a two-sided maximal ideal of C∗ of finite codimension i.e. D⊥a ∈ W .
Therefore we obtain

J ⊆ Jac(C∗) =
∩
L∈Ωs

L ⊆
∩
M∈W

M ⊆
∩
α∈A

D⊥α = (
∑
α∈A

Dα)
⊥ = C⊥0 = J

and hence

J = C⊥0 = (
∑
α∈A

Dα)
⊥ =

∩
α∈A

D⊥α =
∩
M∈W

M.

3) Since, in view of 1), for every n ∈ N, n ≥ 1, we have Jn ⊆ (Jn)⊥⊥ = (Cn−1)
⊥

we obtain

∩
n≥1

Jn ⊆
∩
n≥1

(Jn)⊥⊥ =
∩
n≥1

(Cn−1)
⊥ = (

∑
n≥1

Cn−1)
⊥ = C⊥ = {0} .

Lemma 11.10. Let (Hn) be the coradical filtration of a Hopf algebra H.
Then (Hn) is a Hopf algebra filtration of H ⇔ H0 is a Hopf subalgebra of H.

Proof. ” ⇒ ” is trivial.

” ⇐ ” Let us show, by induction on n ∈ N, that S(Hn) ⊆ Hn. For n = 0 this is
trivial, since H0 is a Hopf subalgebra of H. Assume that for some n ∈ N, n ≥ 1

S(Hi) ⊆ Hi for every i < n.

By Theorem 3.7, we know that

∆S(Hn) = τ(S ⊗ S)∆(Hn).
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where τ : H ⊗H → H ⊗H denotes the usual flip. Then we get

∆S(Hn) = τ(S ⊗ S)∆(Hn)
by4)inTheo10.10

⊆ τ

(
n∑
i=0

S (Hi)⊗ S (Hn−i)

)
=

=
n∑
i=0

S(Hn−i)⊗ S(Hi)

=
n−1∑
i=1

S(Hn−i)⊗ S(Hi) + S(H0)⊗ S(Hn) + S(Hn)⊗ S(H0)

ind hyp

⊆
n−1∑
i=1

Hn−i ⊗Hi +H0 ⊗H +H ⊗H0 ⊆

⊆ H ⊗Hn−1 +H0 ⊗H +H ⊗H0 = H ⊗Hn−1 +H0 ⊗H

i.e.
∆S(Hn) ⊆ H ⊗Hn−1 +H0 ⊗H

so that
S(Hn) ⊆ ∆←(H ⊗Hn−1 +H0 ⊗H) = Hn.

Let us show that
HmHn ⊆ Hm+n for every m,n ∈ N.

Assume n = 0 and let us prove this by induction on m. For m = 0 there is nothing
to prove. Assume that, for some m ≥ 1, we have Hm−1H0 ⊆ Hm−1. Then we have

∆(HmH0) = ∆(Hm)∆(H0)
11.1

⊆ (H0 ⊗Hm +Hm ⊗Hm−1)(H0 ⊗H0) ⊆
⊆ H2

0 ⊗H +H ⊗Hm−1H0

⊆ H0 ⊗H +H ⊗Hm−1

so that
HmH0 ⊆ ∆←(H0 ⊗H +H ⊗Hm−1) = Hm.

In a similar way we get that

H0Hn ⊆ Hn for every n ≥ 0.

Let us now sho that HmHn ⊆ Hm+n by induction on t = m + n. If t = 0 then
m = 0 = n and there is nothing to prove. Assume now that the statement holds for
some t − 1 ≥ 0 and let us prove it for t. In view of the foregoing, we can assume
that m > 0 and n > 0. We have

∆(HmHn)
11.1

⊆ (H0 ⊗Hm +Hm ⊗Hm−1)(H0 ⊗Hn +Hn ⊗Hn−1)

⊆ H2
0 ⊗HmHn +HmH0 ⊗Hm−1Hn +H0Hn ⊗HmHn−1 +HmHn ⊗Hm−1Hn−1

⊆ H0 ⊗H +H ⊗Hm+n−1 +H ⊗Hm+n−2

⊆ H0 ⊗H +H ⊗Hm+n−1
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and hence

HmHn ⊆ ∆←(H0 ⊗H +H ⊗Hm+n−1) = Hm+n.



Chapter 12

Some Results on Connected
Coalgebras

Definition 12.1. Let C be a connected k-coalgebra with G (C) = {g}. We set

P (C) = {c ∈ C | ∆(c) = c⊗ g + g ⊗ c}.

The elements of P (C) will be called primitive elements of C.

Proposition 12.2. Let C be a connected k-coalgebra with G(C) = {g}. Then

P (C) ⊆ Ker(ε) and C1 = kg ⊕ P (C).

Proof. Let x ∈ P (C). We compute

x = rC(C ⊗ ε)∆(x) = [rC(C ⊗ ε)](x⊗ g + g ⊗ x)

= rC(x⊗ ε(g) + g ⊗ ε(x)) = xε(g) + gε(x) = x+ gε(x)

so that we get x = x+ gε(x) which implies that ε(x) = 0. Thus P (C) ⊆ Ker(ε).
Note that

C0 = kG(C) = kg

and denote by πC0 : C → C/C0 the canonical projection. Then for every x ∈ P (C)
we have

(πC0 ⊗ πC0)∆(x) = (πC0 ⊗ πC0)(x⊗ g + g ⊗ x)

= πC0(x)⊗ πC0(g) + πC0(g)⊗ πC0(x)

= πC0(x)⊗ 0 + 0⊗ πC0(x) = 0.

Thus
P (C) ⊆ Ker((πC0 ⊗ πC0)∆) = C0 ∧ C0 = C1.

Now, by Theorem 10.10, we have that kg = C0 ⊆ C1 so that we get that kg+P (C) ⊆
C1. Let d = λg ∈ kg ∩ P (C), λ ∈ k. Then we have

0 = ε (d) = λε (g) = λ

160
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and hence the sum kg + P (C) is direct. Let now c ∈ C1 and set

d = c− ε(c)g.

Then d ∈ C1. We compute

ε(d) = ε(c)− ε(c)ε(g) = ε(c)− ε(c) = 0.

Since d ∈ C1 and by Theorem 10.10 ∆ (C1) ⊆
∑1

i=0Ci ⊗C1−i = C0 ⊗C1 + C1 ⊗C0

there exist d1, d2 ∈ C1 such

∆(d) = d1 ⊗ g + g ⊗ d2

so that we get

0 = ε(d) = mk(ε⊗ ε)∆(d) = ε(d1)ε(g) + ε(g)ε(d2)

= ε(d1) + ε(d2)

and also

d1 + gε(d2) = d = ε(d1)g + d2.

Therefore we obtain

∆(d) = d1 ⊗ g + g ⊗ d2

= (d− gε(d2))⊗ g + g ⊗ (d− ε(d1)g)

= d⊗ g − [g ⊗ g(ε(d2) + ε(d1))] + g ⊗ d

= d⊗ g + g ⊗ d

i.e. d = c− ε(c)g ∈ P (C) and hence c = ε(c)g + d ∈ kg ⊕ P (C).

Definition 12.3. Let C be a k-coalgebra. We set

C+
n = Cn ∩Ker(ε).

Lemma 12.4. Let C be a connected k-coalgebra with G(C) = {g}.

1) Then for every n ∈ N, n ≥ 1 and c ∈ Cn, we have that

∆(c) = c⊗ g + g ⊗ c+ y where y ∈ Cn−1 ⊗ Cn−1.

2) Then for every n ∈ N, n ≥ 1 and c ∈ C+
n we have that

∆(c) = c⊗ g + g ⊗ c+ y where y ∈ C+
n−1 ⊗ C+

n−1.
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Proof. Let c ∈ Cn. By 4) of Theorem 10.10, we have that

∆(c) ∈
n∑
i=0

Ci ⊗ Cn−i = Cn ⊗ C0 + C0 ⊗ Cn +
n−1∑
i=1

Ci ⊗ Cn−i.

Since C0 = kg we may write

∆(c) = a⊗ g + g ⊗ b+ w where a, b ∈ Cn and w ∈ Cn−1 ⊗ Cn−1.

We compute

c = rC(C ⊗ ε)∆(c) = aε(g) + gε(b) + rC(C ⊗ ε)w

= a+ gε(b) + rC(C ⊗ ε)w

∈ a+ C0 + Cn−1 ⊆ a+ Cn−1.

Thus we deduce that a− c = c
′ ∈ Cn−1. Analogously we have

c = lC(ε⊗ C)∆(c) = ε(a)g + ε(g)b+ lC(ε⊗ C)w

= ε(a)g + b+ lC(ε⊗ C)w

∈ b+ C0 + Cn−1 ⊆ b+ Cn−1

so that b− c = c
′′ ∈ Cn−1. Set

y = w + c
′ ⊗ g + g ⊗ c

′′ ∈ Cn−1 ⊗ Cn−1.

Then we get

∆(c) = a⊗ g + g ⊗ b+ w = a⊗ g + g ⊗ b+ y − c
′ ⊗ g − g ⊗ c

′′

=
(
a− c

′
)
⊗ g + g ⊗

(
b− c

′′
)
+ y

= c⊗ g + g ⊗ c+ y where y ∈ Cn−1 ⊗ Cn−1.

Assume now that c ∈ C+
n . We compute

rC(C ⊗ ε) (y) = rC(C ⊗ ε)∆(c)− cε(g)− gε(c)

= c− c− gε(c) = 0

and also

lC(ε⊗ C)y = lC(ε⊗ C)∆(c)− ε(c)g − ε(g)c

= c− ε(c)g − c = 0.

Thus we obtain that y ∈ Ker (C ⊗ ε) = Ker (IdC)⊗ C + C ⊗Ker (ε) = C ⊗Ker (ε)
and also that y ∈ Ker (ε⊗ C) = Ker (ε) ⊗ C + C ⊗ Ker (IdC) = Ker (ε) ⊗ C. We
deduce that

y ∈ (Ker(ε)⊗ C) ∩ (C ⊗Ker(ε)) = Ker(ε)⊗Ker(ε)
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and hence, by the foregoing, we obtain that

y ∈ (Cn−1 ⊗ Cn−1) ∩ (Ker(ε)⊗Ker(ε)) = C+
n−1 ⊗ C+

n−1.

Lemma 12.5. Let C be a connected k-coalgebra with G(C) = {g}. Let f : C → D
be a coalgebra morphism such that f|P (C) is injective. Then f is injective.

Proof. We will show that f|Cn is injective for every n ∈ N. We will proceed by
induction on n. Since f is a coalgebra morphism we have εD (f (g)) = (εD ◦ f) (g) =
εC (g) = 1 and hence we deduce that f(g) ̸= 0 and hence f|C0 is injective. Let us
assume that f|Cn is injective for some n ∈ N and let x ∈ Cn+1 ∩ Ker (f). Now, by
Lemma 12.4

∆(x) = x⊗ g + g ⊗ x+ y, where y ∈ Cn ⊗ Cn

and hence

0 = ∆(f(x)) = (f ⊗ f)∆(x) = f(x)⊗ f(g)+ f(g)⊗ f(x)+ (f ⊗ f) (y) = (f ⊗ f) (y) .

Since f|Cn is injective, also f|Cn ⊗ f|Cn is injective so that we deduce that y = 0.
Thus ∆(x) = x⊗g+g⊗x so that x ∈ P (C). Now, by hypothesis, f|P (C) is injective
and hence we get that x = 0.



Chapter 13

Separable algebras

We start by recalling the celebrated

Theorem 13.1. (Wedderburn-Artin Theorem) Let R be a ring. RR is semisimple if
and only if R is isomorphic to a direct product of rings, each isomorphic to a finite
matrix ring Mn (D) over a division ring D.

By Wedderburn Artin Theorem it is clear that for a given ring R we have

RR is semisimple ⇐⇒ RR is semisimple

Definition 13.2. Let R be a ring. R is called semisimple if RR is semisimple.

Lemma 13.3. Let R be a ring and assume that RR is artinian. Then there exists
an n ∈ N, n ≥ 1 and maximal left ideals of R, L1, . . . , Ln such that

L1 ∩ · · · ∩ Ln = {0} .

Proof. For every F ∈ P0 (Ωl (R)), let JF =
∩
L∈F

L and let

X = {JF | F ∈ P0 (Ωl (R))} .

Since RR is artinian, X has a minimal element. Let F0 ∈ P0 (Ωl (R)) be such that
JF0 is a minimal element for X. Then, for every L ∈ Ωl (R), we have that

JF0 ∩ L = JF0∪{X} ⊆ JF0

and hence, by the minimality of JF0 , we obtain JF0 = JF0 ∩ L ⊆ L. Thus we get
that JF0 ⊆ Jac (R) ⊆ JF0 and hence JF0 = Jac (R).

Proposition 13.4. Let R be a ring and assume that RR is artinian. Then the
following statements are equivalent

(a) R is semisimple.
(b) J(R) = {0}
(c) R has no non-zero two-sided nilpotent ideal.
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Proof. (a) ⇒ (b) is trivial in view of Wedderburn Artin Theorem.
(b) ⇒ (c) is trivial since by Lemma 9.43 every nilpotent two-sided ideal is contained
in J(R) = {0}

(c) ⇒ (b) Since RR is artinian, there exists an n ∈ N such that

J (R)n = J (R)n+1

Since RR is noetherian (see [AF, Theorem 15.20]), RJ (R)n is finitely generated and
hence, by Nakayama’s Lemma, we get that J (R)n = {0}so that we get J (R) = {0}.

(b) ⇒ (a) Since RR is artinian, by Lemma 13.3, there exists a finite number of
maximal left ideals of R say L1, . . . , Ln such that

L1 ∩ · · · ∩ Ln = {0} .

Thus RR embeds in the direct sum of a finite number of simple lef R-modules and
hence (see [AF, Proposition 9.4]), it is semisimple.

Corollary 13.5. Let A be a finite dimensional algebra over a field k. Then

A is semisimple ⇔ J (A) = {0} ⇔ A contains no non-zero two-sided nilpotent ideal.

Proof. Since AA is artinian, just apply Proposition 13.4.

Definition 13.6. An algebra A over a field k is called classically separable if , for
every field extension L of k, the Jacobson radical of the L-algebra A(L) = A⊗k L is
zero.

Proposition 13.7. Let A be a finite dimensional algebra over a field k. Then the
following are equivalent:

(a) A is classically separable.
(b) For every field extension L of k, the L-algebra A(L) is semisimple.
(c) For every field extension L of k, the L-algebra A(L) contains no non-zero

two-sided nilpotent ideal.

Proof. For every field extension L of k, we have that

dimL

(
A(L)

)
= dimk (A) <∞

Apply now Corollary 13.5.

Proposition 13.8. Let F be a finite field extension of a field k. Then

F is a classically separable k-algebra ⇐⇒ every u ∈ F is separable over k.

Proof. (⇒) Let u ∈ F , let fu be the minimal polynomial of u over k and let L be
a splitting field of fu over k. Then

L [X]

(fu)
∼= k [u]⊗k L ⊆ F ⊗k L.
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Let
fu = (X − α1)

t1 · · · (X − αn)
tn

where α1, . . . , αn are the distinct root of fu in L. Then, by the Chinese Remainder’s
Theorem, we have a ring isomorphism

L [X]

(fu)
∼=

L [X](
(X − α1)

t1
) × . . .× L [X](

(X − αn)
tn
)

Thus, any ti > 1 gives rise to a nilpotent ideal of k [u] ⊗k L and hence of F ⊗k L.
Since dimL F ⊗k L = dimk F < ∞, the conclusion follows in view of Proposition
13.7.
(⇐) Assume that every element u ∈ F is separable over k. Then, by the Theorem of
the Primitive Element, there exists an u ∈ F such that F = k (u) and the minimal
polynomial fu of u over k is separable over k. Let L be a field extension of k and let

fu = h1 · · ·ht

be the factorization of fu as a product of irreducible factors in L [X]. Let M be a
spliting field of fu over k. Then in M [X] we can write

fu = (X − α1) · · · (X − αn)

where α1, . . . , αn are all distinct. Considering the field extension L (α1, . . . , αn),
we deduce that h1, . . . , ht are two by two not associated. Then, by the Chinese
Remainder’s Theorem, we get

F ⊗k L = k (u)⊗k L ∼=
k [X]

(fu)
⊗k L ∼=

L [X]

(fu)
∼=
L [X]

(h1)
× . . .× L [X]

(ht)
.

Since each L [X] / (hi) is a field, it follows that F⊗kL contains no non-zero nilpotent
ideal.

Definition 13.9. Let R be a commutative ring. An R-algebra A is called separable
if the multiplication map

mA : A⊗R A→ A

has a section σ (i.e. mAσ = IdA) which is an A-bimodule homomorphism.

Proposition 13.10. Let R be a commutative ring and let A be a separable R-algebra.
Given a section σ of mA which is an A-bimodule homomorphism, set

e = σ (1A) and write e =
n∑
i=1

xi ⊗R yi

for suitable n ∈ N and xi, yi ∈ A for every i = 1, . . . , n.

Then we have
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(13.1) mA (e) = 1A i.e.
n∑
i=1

xiyi = 1A

and

(13.2) ae = ea i.e.
n∑
i=1

axi ⊗R yi =
n∑
i=1

xi ⊗R yia for every a ∈ A.

Proof. Equalities (13.1) and (13.2) follows directly from being σ an A-bimodule
section of mA.

Definition 13.11. Let A be an algebra over a commutative ring R. An element
e ∈ A⊗R A is called a separability element (or also an idempotent) for A (over R)
if e fulfills (13.1) and (13.2).

Proposition 13.12. Let A be an algebra over a commutative ring R. Then

A is a separable R-algebra ⇔ A⊗RA contains a separability element for A over R.

Moreover any separability element of A is an idempotent element of the ring A⊗R

Aop.

Proof. Let e be a separability element for A and define a map

σ : A→ A⊗R A

by setting
σ(a) = ae.

Then σ is an A-bimodule homomorphism and a section of mA. Write

e =
n∑
i=1

xi ⊗R yi.

Then we have:

e = σ (1A) = σ

(
n∑
i=1

xiyi

)
= σ

(
n∑
i=1

xi1Ayi

)
=

n∑
i=1

xiσ (1A) yi =

= σ (1A) ·A⊗RAop σ (1A) = e2.

The other implication is Proposition 13.10.

Lemma 13.13. Let A be a separable algebra over a commutative ring R. If L is a
two-sided ideal of A then A/L is a separable R-algebra.
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Proof. Let p : A→ A/L be the canonical projection. Let e be a separability element
of A over R and let us prove that e = (p⊗ p) (e) is a separability element for A/L
over R. We compute

mA/L (e) =
[
mA/L (p⊗ p)

]
(e) = [p ◦mA] (e) = p (1A) = 1A/L.

Write e =
∑n

i=1 xi ⊗R yi for suitable n ∈ N and xi, yi ∈ A for every i = 1, . . . , n.
For every a ∈ A we have

(a+ L) e = (a+ L) [(p⊗ p) (e)] = (a+ L)

[
n∑
i=1

(xi + L)⊗R (yi + L)

]
=

=
n∑
i=1

(axi + L)⊗R (yi + L) = (p⊗ p) (ae)

= (p⊗ p) (ea) =
n∑
i=1

(xi + L)⊗R (yia+ L) =

=

[
n∑
i=1

(xi + L)⊗R (yi + L)

]
(a+ L) = [(p⊗ p) (e)] (a+ L)

= e (a+ L) .

Proposition 13.14. Let R be a commutative ring and let n ∈ N, n ≥ 1. Then the
matrix ring Mn (R) is a separable R-algebra.

Proof. Let ei,j ∈Mn (R) = A be the matrix defined by

(ei,j)(i,j) = 1R and (ei,j)(h,k) = 0 for every (h, k) ̸= (i, j)

and set

e =
n∑
i=1

ei,1 ⊗R e1,i

Then

mR (e) =
n∑
i=1

ei,i = 1A

and, for every h, k = 1, . . . n, we have

eh,k · e =
n∑
i=1

eh,k · ei,1 ⊗R e1,i = eh,1 ⊗R e1,k

e · eh,k =
n∑
i=1

ei,1 ⊗R e1,i · eh,k = eh,1 ⊗R e1.k

Therefore e is a separability element for Mn (R) over R.
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Proposition 13.15. Let R be a commutative ring and let G be a finite group whose
order n is a invertible in R. Then the group algebra A = RG is a separable R-
algebra.

Proof. Let

e = (n1A)
−1
∑
g∈G

g ⊗R g
−1.

Then
mR (e) = (n1A)

−1 · (n1A) = 1A

and, for every h ∈ G, we have

h · e = (n1A)
−1
∑
g∈G

hg ⊗R g
−1 = (n1A)

−1
∑
t∈G

t⊗R t
−1h = e · h.

Therefore the element e is a separability element for RG over R.

Proposition 13.16. Let A be an algebra over a field k. Then

A separable over k ⇒ dimk (A) <∞.

Proof. Let

e =
n∑
j=1

xj ⊗ yj

be a separability element for A over k. For every a ∈ A we have

n∑
j=1

axj ⊗ yj =
n∑
j=1

xj ⊗ yja.

Let (ei)i∈I be a basis of A over k and for every i ∈ I let e∗i : A → k be the k-linear
map defined by

e∗i (ej) = δij

Then, for every i ∈ I, we have

(13.3)
n∑
j=1

axj ⊗ e∗i (yj) =
n∑
j=1

xj ⊗ e∗i (yja) .

Now any element r ∈ A can be uniquely written as

r =
∑
i∈F (r)

e∗i (r) ei

where F (r) is a suitable finite subset of I.
Set

F =
∪

j=1,...n

F (yj) .
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Thus, using (13.3) we obtain

n∑
j=1

axj ⊗ yj =
n∑
j=1

axj ⊗
∑

i∈F (yj)

e∗i (yj) ei

=
n∑
j=1

axj ⊗
∑
i∈F

e∗i (yj) ei

=
n∑
j=1

∑
i∈F

axj ⊗ e∗i (yj) ei

=
n∑
j=1

∑
i∈F

xj ⊗ e∗i (yja) ei

=
∑
i∈F

n∑
j=1

xj ⊗ e∗i (yja) ei

so that we obtain

a = mσ (a) = m

(
n∑
j=1

axj ⊗ yj

)

= m

(∑
i∈F

n∑
j=1

xj ⊗ e∗i (yja) ei

)

=
∑
i∈F

n∑
j=1

xje
∗
i (yja) ei =

∑
i∈F

n∑
j=1

e∗i (yja)xjei.

It follows that the set { xjei | j = 1, . . . n, i ∈ F} is a set of generators for A over
k.

Proposition 13.17. Let A be a separable algebra over a field k. Then A is semisim-
ple.

Proof. Let σ be a section of the multiplication map mA : A ⊗k A → A which is an
A-bimodule homomorphism and let

e =
n∑
i=1

ai ⊗k bi

be a separability element of A over k.
We will prove that any epimorphism

f :M → N

of left A-modules splits in A-Mod. Let s : N → M be a section of f in k-Mod and
let us define a map

σ : N →M
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by setting

σ (x) =
n∑
i=1

ais (bix) .

Clearly we have

fσ (x) = f

[
n∑
i=1

ais (bix)

]
=

n∑
i=1

aif [s (bix)] =
n∑
i=1

ai (bix) = x

so that σ is a section of f . Now in A⊗k A we have, for every a ∈ A

n∑
i=1

aai ⊗ bi =
n∑
i=1

ai ⊗ bia

so that in A⊗k A⊗k N we have, for every a ∈ A and x ∈ N

n∑
i=1

aai ⊗ bi ⊗ x =
n∑
i=1

ai ⊗ bia⊗ x

Let µM (resp. µN) be the multiplication map on M (resp. on N):

µM : A⊗k M →M.

Then, for every a ∈ A and for every x ∈ N , we have

aσ (x) =
n∑
i=1

aais (bix)

= µN (A⊗ s) (A⊗ µM)

(
n∑
i=1

aai ⊗ bi ⊗ x

)

=

[
µN (A⊗ s) (A⊗ µM)

(
n∑
i=1

ai ⊗ bia⊗ x

)]

=
n∑
i=1

ais (biax) = σ (ax)

and hence σ is a morphism of left A-modules.

Proposition 13.18. Let R be a commutative ring, let A be an R-algebra and let S
be a commutative R-algebra. Then

A is a separable R-algebra ⇒ A(S) = A⊗R S is a separable S-algebra.

Moreover if we assume that R is a subring of S and π : S → R is an R-bilinear
retraction of the canonical inclusion ι : R → S, then

A(S) = A⊗R S is a separable S-algebra ⇒ A is a separable R-algebra.
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Proof. Let us remark that for any R-algebra B, the S-algebra structure (and hence
the S-bimodule structure) of B(S) = B ⊗R S is via the ring homomorphism

λ : S → B ⊗R S = B(S)

defined by setting
λ (s) = 1⊗R s

whose image lies in the center of B(S). This applies, in particular when B = A or
B = A⊗R A.

The map

ϕ : (A⊗R S)⊗S (A⊗R S) = A(S) ⊗S A(S) −→ (A⊗R A)⊗R S = (A⊗R A)(S)

defined by setting

ϕ ((a⊗R s)⊗S (b⊗R t)) = (a⊗R b)⊗S st

is well defined and an S-algebra isomorphism whose inverse is the map

ψ : A⊗R A⊗R S = (A⊗R A)(S) −→ (A⊗R S)⊗S (A⊗R S) = A(S) ⊗S A(S)

defined by setting

ψ (a⊗R b⊗R s) = (a⊗R 1S)⊗S (b⊗R s) .

Let us note that ϕ is also an A(S) = (A⊗R S)-bimodule homomorphism since the
A(S)-bimodule structure on (A⊗R A)(S) is given by

(c⊗R w) · [(a⊗R b)⊗S s] = (ca⊗R b)⊗S ws

and
[(a⊗R b)⊗S s] · (c⊗R w) = (a⊗R bc)⊗S sw

so that

ϕ ((c⊗R w) · [(a⊗R s)⊗S (b⊗R t)]) = ϕ ((ca⊗R ws)⊗S (b⊗R t))

= (ca⊗R b)⊗S wst = (c⊗R w) · [(a⊗R b)⊗S st]

ϕ ([(a⊗R s)⊗S (b⊗R t)] (c⊗R w)) = ϕ ((a⊗R s)⊗S (bc⊗R tw))

= (a⊗R bc)⊗S stw = [(a⊗R b)⊗S st] · (c⊗R w) .

Note that
(mA ⊗R S) ◦ ϕ = mA(S)

so that

(13.4) mA(S)
◦ ψ = mA ⊗R S

Let
σ : A→ A⊗R A
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be an A-bimodule homomorphism which is a section of mA. Then the map

σ ⊗R S : A⊗R S = A(S) → (A⊗R A)⊗R S = (A⊗R A)(S)

is clearly a section of mA ⊗R S which is an A(S)-bimodule homomorphism. In fact,
for every a ∈ A and s ∈ S, we have

(σ ⊗R S) (a⊗R s) = σ (a)⊗R s = aσ (1R)⊗R s = (a⊗ s) (σ (1R)⊗R 1S)

(σ ⊗R S) (a⊗R s) = σ (a)⊗R s = σ (1R) a⊗R s = (σ (1R)⊗R 1S) (a⊗ s) .

Then the map

ψ ◦ (σ ⊗R S) : A⊗R S = A(S) → (A⊗R S)⊗S (A⊗R S) = A(S) ⊗S A(S)

is an A(S)-bimodule homomorphism which is a section of mA(S)
. In fact, in view of

(13.4) we have

mA(S)
◦ ψ ◦ (σ ⊗R S) = (mA ⊗ S) ◦ (σ ⊗R S) = A⊗R S.

Conversely, assume that θ : A(S) → (A⊗R S) ⊗S (A⊗R S) = A(S) ⊗S A(S) is A(S)-
bimodule homomorphism which is a section of mA(S)

. Then we have

mA ◦ rA⊗RA ◦ [(A⊗R A)⊗R π] ◦ ϕ ◦ θ ◦ (A⊗R ι) r
−1
A

= rA (mA ⊗R R) [(A⊗R A)⊗R π]ϕ ◦ θ ◦ (A⊗R ι) r
−1
A

= rA [A⊗R π] (mA ⊗R S)ϕ ◦ θ ◦ (A⊗R ι) r
−1
A

= rA [A⊗R π] ◦mA(S)
◦ θ ◦ (A⊗R ι) r

−1
A

= rA [A⊗R π] ◦ IdA(S)
(A⊗R ι) r

−1
A = IdA

where rA : A ⊗R R → A and rA⊗RA : A ⊗R A ⊗R R → A ⊗R A are the usual
isomorphisms. Thus

σ = rA⊗RA ◦ [(A⊗R A)⊗R π] ◦ ϕ ◦ θ ◦ (A⊗ ι) r−1A

is a section ofmA. The proof that σ is an A-bimodule isomorphism is straightforward
and is left as an exercise to the reader.

Proposition 13.19. Let A1 and A2 be algebras over a commutative ring R. Then

A1 and A2 are separable R-algebras ⇔ A1 × A2 is a separable R-algebra.

Proof. ” ⇒ ” Let i1 : A1 → A1 × A2 and let i2 : A2 → A1 × A2 the usual injective
R-module homomorphisms and let us consider the codiagonal map

θ = ∇ ((i1 ⊗R i1) , (i2 ⊗R i2)) : (A1 ⊗R A1)×(A2 ⊗R A2) → (A1 × A2)⊗R(A1 × A2) .

We have

θ ((a1 ⊗R b1) , (a2 ⊗R b2)) = [(a1,0A2)⊗R (b1,0A2)] + [(0A1 , a2)⊗R (0A1 , b2)]
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(mA1×A2 ◦ θ) ((a1 ⊗R b1) , (a2 ⊗R b2))

= mA1×A2 ([(a1,0A2)⊗R (b1,0A2)] + [(0A1 , a2)⊗R (0A1 , b2)])

= (a1b1, 0A2) + (0A1 , a2b2) = (a1b1, a2b2)

= (mA1 ×mA2) ((a1 ⊗R b1) , (a2 ⊗R b2))

so that

mA1×A2 ◦ θ = mA1 ×mA2

Let σ1 be an A1-bimodule sections of mA1 and let σ2 be an A2-module section
of mA2 . It follows that

mA1×A2 ◦ θ ◦ (σ1 × σ2) = (mA1 ×mA2) ◦ (σ1 × σ2) = IdA1×A2

and hence θ ◦ (σ1 × σ2) is a section of mA1×A2 . Let us prove that θ ◦ (σ1 × σ2) is an
A1 × A2-bimodule homomophism. From

θ ((α1a1 ⊗R b1, α2a2 ⊗R b2)) = (α1a1, 0A2)⊗R (b1, 0A2) + (0A1 , α2a2)⊗R (0A1 , b2)

= (α1, α2) ([(a1,0A2)⊗R (b1,0A2)] + [(0A1 , a2)⊗R (0A1 , b2)])

= (α1, α2) θ ((a1 ⊗R b1) , (a2 ⊗R b2))

we deduce that θ is a left A1 ×A2-module homomorphism. An analogous result on
the right gives us that θ is in fact an A1×A2-bimodule homorphism. Since we have

(σ1 × σ2) ((a1b1, a2b2)) = (σ1 (a1b1) , σ2 (a2b2)) =

= (a1σ1 (b1) , a2σ2 (b2)) =

= (a1, a2) (σ1 (b1) , σ2 (b2))

and similarly on the right side, we also conclude that σ1×σ2 is an A1×A2-bimodule
homorphism.

” ⇐ ” It follows by applying Lemma 13.13.

Lemma 13.20. Let k be an algebraically closed field and assume that, for some
n ∈ N, n ≥ 1, k ⊆ Z (Mn (D)) where D is a ring with no zerodivisor.
If dimkMn (D) <∞ then k ≃ D

Proof. Let
∑

i,j ai,jei,j ∈ Z (Mn (D)) and let 1 ≤ t, s ≤ n. Then from

es,s

(∑
i,j

ai,jei,j

)
et,t = as,tets et,t

(∑
i,j

ai,jei,j

)
es,s = at,ses,t

we deduce that as,tets = at,ses,t for every t, s so that

as,t = 0 for t ̸= s and at,t = as,s for t = s.
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so that Z (Mn (D)) ⊆ D (
∑

t et,t)∩Z (Mn (D)) = D1Mn(D)∩Z (Mn (D)) ⊆ Z
(
D1Mn(D)

)
.

Therefore, via isomorphisms, we have that k ⊆ Z (D) and dimkD ≤ dimkMn (D) <
∞ so that any element of D is algebraic over k. Thus let a ∈ D and let p (X) ∈ k [X]
be a nonzero polynomial such that p (a) = 0. Since k is algebraically closed, there
exists α1, . . . , αn ∈ k such that

p =
n∏
i=1

(X − αi) .

Hence 0 = p (a) =
n∏
i=1

(a− αi). Since D contains no zerodivisor, we get that there

exists an i such that a = αi ∈ k. Thus we obtain that k = D.

Lemma 13.21. Let A be finite dimensional algebra over an algebraically closed field
k. If J (A) = {0} then A is separable over k.

Proof. By Corollary 13.5, we get that A is semisimple. Then, by Wedderburn-Artin
Theorem, we obtain that A is a direct product of rings, each isomorphic to a finite
matrix ring Mn (D) over a division ring D:

A ∼= Mn1 (D1)× . . .×Mnt (Dt)

The natural embedding of k in Z (A) gives rise to the embeddings of k in Z (Mni
(Di))

for each i = 1, . . . , n. Since dimk A <∞ we have that dimkMn (Di) <∞ and hence,
by Lemma 13.20, we get that each Di is isomorphic to k so that

A ∼= Mn1 (k)× . . .×Mnt (k) .

By Proposition 13.14 each Mni
(k) is separable over k. In view of Proposition 13.19,

we conclude.

Proposition 13.22. Let A be an algebra over a field k. Then

A separable over k ⇔ dimk (A) <∞ and A is classically separable over k.

Proof. (⇒) By Proposition 13.16, we already know that dimk (A) <∞. Let now L
be a field extension of k. Then, by Proposition 13.18, A(L) is a separable L-algebra
and hence it is semisimple by Proposition 13.17. Then, in view of Proposition 13.7,
A is classically separable.

(⇐) Let L be an algebraic closure of k. Then A(L) = A⊗kL has finite dimension
over L and hence it is left (and right) artinian. Moreover, since A is classically
separable over k, we know that J

(
A(L)

)
= 0. Hence, by Lemma 13.21, A(L) is

separable over L. Thus, by Proposition 13.18 we conclude.

Proposition 13.23. Let k be a field and let H be a Hopf algebra over k. Then the
following statements are equivalent:

(a) H is separable.
(b) H is semisimple.
(c) There exists a left integral t in H such that εH (t) = 1.

Moreover, if one of these conditions hold, then dimk (H) <∞.
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Proof. (a) ⇒ (b) is Proposition 13.17.
(b) ⇒ (c) . Since

εH : H → k

is an algebra homomorphism, k becomes a left H-module via εH and it results that
εH is a morphism of left H-modules. Since H is semisimple, the module Hk is
projective so that, as εH is surjective, there exists a left H-module homomorphism
τ : k → H which is a section of εH .

Let
t = τ (1k) .

Then we have
εH (t) = εH (τ (1k)) = (εH ◦ τ) (1k) = 1k.

Also, for every h ∈ H we have

h · t = h · τ (1k) = τ (h · 1k) = τ (εH (h) · 1k) = εH (h) · τ (1k) = εH (h) · t

and hence t is a left integral in H.
(c) ⇒ (a) . Let t ∈ H be a left integral such that εH (t) = 1. Let us prove that

e =
∑

t(1) ⊗ S
(
t(2)
)

is a separability element for H over k. We have∑
t(1)S

(
t(2)
)
= εH (t) 1H = 1k1H = 1H

so that e fulfills (13.1). Let h ∈ H. We have

he =
∑

ht(1) ⊗ S
(
t(2)
)
=

=
∑

h(1)t(1) ⊗ S
(
t(2)
)
εH
(
h(2)
)

=
∑

h(1)t(1) ⊗ S
(
t(2)
)
S
(
h(2)
)
h(3)

=
∑

h(1)t(1) ⊗ S
(
h(2)t(2)

)
h(3)

=
∑

[(IdH ⊗ S) ◦∆]
(
h(1)t

)
·
(
1⊗ h(2)

)
=

(∑
[(IdH ⊗ S) ◦∆]

(
εH
(
h(1)
)
t
))

·
(
1⊗ h(2)

)
= ([(IdH ⊗ S) ◦∆] (t)) ·

(
1⊗

∑
εH
(
h(1)
)
h(2)

)
=

[∑
t(1) ⊗ S

(
t(2)
)]

(1⊗ h)

=
∑

t(1) ⊗ S
(
t(2)
)
h = eh

so that e also fulfills (13.2).
The last assertion follows by Proposition 13.16.
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Theorem 13.24. Let π : E → B be a surjective morphism of algebras over a
field k, and let f : A → B be an algebra homomorphism. If A is separable and
ker (π)2 = {0}, then

h = σf +mE(σf ⊗σf)ν−mE(E⊗mE)(σf ⊗σf ⊗σf)(ν⊗A)(uA⊗A)l−1A : A→ E

defines a morphism of algebras such that π ◦ h = f . Here σ : B → E is a k-linear
map such that π ◦ σ = IdB and σ (1B) = 1E and ν : A ⊗ A → A is a morphism of
A-bimodules such that mA ◦ ν = IdA.

Proof. Let us set

η = mE(σf ⊗ σf)ν −mE(E ⊗mE)(σf ⊗ σf ⊗ σf)(ν ⊗ A)(uA ⊗ A)l−1A

and let

ν (1A) =
n∑
i=1

xi ⊗ yi where n ∈ N, n ≥ 1 and xi, yi ∈ A for every i = 1, . . . , n

be a separability element of A over k. Then, for every a ∈ A, we have

η (a) =
∑

σf (xi) σf (yi · a)−
∑

σf (xi)σf (yi)σf (a)

and hence

πη (a) =
∑

πσf (xi)πσf (yia)−
∑

πσf (xi) πσf (yi)πσf (a) =

=
∑

f (xi) f (yia)−
∑

f (xi) f (yi) f (a) = 0

so that πη = 0. Now
h = σf + η

and so
πh = πσf + πη = f.

Let us prove that h is an algebra morphism. We have

h (1A) = σf (1A) + η (1A) = σ (1B) + 0 = 1E.

so that h is unital. Moreover we have

h (a) = σf (a) + η (a)

so that, for every a, b ∈ A we get,

h (a)h (b) = (σf (a) + η (a)) ·B (σf (b) + η (b))

= σf (a) ·B σf (b) + σf (a) ·B η (b) + η (a) ·B σf (b) + η (a) ·B η (b)

= σf (a) σf (b) + σf (a)
[∑

σf (xi)σf (yi · b)
]

−σf (a)
[∑

σf (xi)σf (yi)σf (b)
]

+
[∑

σf (xi) σf (yi · a)
]
σf (b)−

[∑
σf (xi)σf (yi) σf (a)

]
σf (b)
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and

h (ab) = σf (ab) +
∑

σf (xi) σf (yi · ab)−
∑

σf (xi)σf (yi)σf (ab) .

Since ∑
xi ⊗ yia =

∑
axi ⊗ yi

we also get ∑
xi ⊗ yia⊗ b =

∑
axi ⊗ yi ⊗ b

and hence ∑
xi ⊗ yiab =

∑
axi ⊗ yib.

Therefore we obtain both∑
σf (xi) σf (yiab) =

∑
σf (axi)σf (yib) and∑

σf (xi)σf (yia) =
∑

σf (axi)σf (yi) .

Using these equalities and keeping in mind that Ker (π)2 = {0}, we obtain

h (ab)− h (a)h (b) = σf (ab) +
∑

σf (xi) σf (yiab)−
∑

σf (xi) σf (yi) σf (ab)

−σf (a) σf (b)− σf (a)
[∑

σf (xi) σf (yi · b)
]
+ σf (a)

∑
σf (xi)σf (yi) σf (b)

−
∑

σf (xi) σf (yia) σf (b) +
∑

σf (xi)σf (yi)σf (a)σf (b)

=
∑

[σf (axi)− σf (a) σf (xi)]σf (yib)

−
∑

[σf (axi)− σf (a) σf (xi)] [σf (yi)σf (b)]

+
[
1−

∑
σf (xi) σf (yi)

]
σf (ab)−

[
1−

∑
σf (xi)σf (yi)

]
σf (a) σf (b)

=
∑

[σf (axi)− σf (a)σf (xi)] [σf (yib)− σf (yi) σf (b)]

+
[
1−

∑
σf (xi) σf (yi)

]
[σf (ab)− σf (a) σf (b)] = 0.

Thus h is an algebra homomorphism.

Theorem 13.25 ( Wedderburn Principal Theorem). Let T be a separable algebra
over a field k and let

f : R −→ T

be a surjective k-algebra morphism such that ker (f) is nilpotent. Then there exists
a k-algebra homomorphism

θ : T −→ R

such that f ◦ θ = 1T i.e. f has a section which is a k-algebra homomorphism.
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Proof. Let L =ker (f). Assume that, for n ∈ N, n ≥ 1, we have that Ln = {0}. For
every i = 1, . . . , n set Bi = R/Li and, for every i = 1, . . . , n − 1 let πi : R/L

i+1 →
R/Li be the canonical projection. Let p : R → R/L be the canonical projection and
let f : R/L→ T be the unique algebra homomorphism such that f ◦ p = f . Since f
is surjective, f is an isomorphism: let g : T → R/L be its inverse. Then g ◦ f = p.
By applying Theorem 13.24 to A = T,E = R/L2, B = R/L, π = π1 and f = g we
get that there exists an algebra morphism h1 : T → R/L2 such that π1 ◦ h1 = g.

Then, by applying Theorem 13.24 to A = T,E = R/L3, B = R/L2, π = π2
and f = h1 we get that there exists an algebra morphism h2 : T → R/L3 such
that π2 ◦ h2 = h1. Assume now that hi : T → R/Li+1 is an algebra morphism
such that πi ◦ hi = hi−1. Then we can apply again Theorem 13.24 to A = T,E =
R/Li+2, B = R/Li+1, π = πi+1 and f = hi we get that there exists an algebra
morphism hi+1 : T → R/Li+1 such that πi+1 ◦ hi+1 = hi. Let χ : R → R/Ln be the
obvious isomorphism and let θ = χ−1 ◦ hn−1. Then we have

p ◦ θ = (π1π2 · · · πn−1 ◦ χ) ◦ χ−1 ◦ hn−1 = (π1π2 · · · πn−1) ◦ hn−1
= (π1π2 · · · πn−2) ◦ hn−2 = . . . = π1 ◦ h1 = g

and hence
f ◦ p ◦ θ = IdT

which means that
f ◦ θ = 1T .
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TAFT-WILSON Theorem

Definition 14.1. A k-coalgebra C is said to have a separable coradical if, for every
simple subcoalgebra D of C, D∗ is a separable k-algebra.

Lemma 14.2. Let k be an algebraically closed field. Then any k-coalgebra C has a
separable coradical.

Proof. Let D ⊆ C be a simple subcoalgebra. then, by Corollary 9.18, D∗ is a finite
dimensional simple algebra. Quindi, per la Proposizione 13.4, Jac(D∗) = {0} so
that, since k is algebraically closed, by Lemma 13.21, D∗ is separable over k.

Lemma 14.3. Let C be a pointed k-coalgebra. Then C has separable coradical..

Proof. Since C is pointed, every simple subcoalgebra of C is of the form kg where
g ∈ G (C) and hence (kg)∗ is a k-algebra isomorphic to k.

Lemma 14.4. Let C be a finite dimensional k-coalgebra. The following statements
are equivalent

(a) C has separable coradical.

(b) (C0)
∗ is a separable k-algebra.

Proof. By Proposition 9.28

C0 =
⊕
D∈D

D

where D is the set of all simple subcoalgebras of C.Moreover, since dimk(C) < ∞,
we have that D is finite. Then we have a ring isomorphism

(C0)
∗ ≃

∏
D∈D

D∗.

By Proposition 13.19, (C0)
∗ is separable over k if and only if, for every D ∈ D, each

D∗ is separable over k.

180
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Definition 14.5. Let D be a subcoalgebra of a k-coalgebra C and let i : D → C be
the canonical injection. A coalgebra morphism

π : C −→ D

is called a (coalgebra) projection of C onto D if π ◦ i = IdD.

Lemma 14.6. Let C be a finite dimensional k-coalgebra with separable coradical and
let D be a subcoalgebra of C. Then any projection π from D to D0 can be extended
to a projection of C onto C0.

Proof. Let iCC0
: C0 −→ C be the canonical injection and let π

′
: C −→ C/Ker(π) =

E be the canonical projection. Set α = π
′ ◦ iCC0

. Since π : D −→ D0 is a coalgebra
morphism, Ker (π) is a coideal of D. Since

∆CKer(π) = ∆DKer(π) ⊆ Ker(π)⊗D +D ⊗Ker(π)

⊆ Ker(π)⊗ C + C ⊗Ker(π)

and
εC(Ker(π)) = εD(Ker(π)) = 0.

Ker (π) is a coideal also of C and hence π
′
and also α are coalgebra morphism. Now

we have

Ker(α) = C0 ∩Ker(π
′
) = C0 ∩Ker(π)

= C0 ∩D ∩Ker(π) Lem9.40.
= D0 ∩Ker(π) = {0}

so that α is injective and hence the dual morphism

α∗ : E∗ −→ (C0)
∗

is surjective. Let (Ti)i∈I be the family of simple subcoalgebras of C. Since α is
injective, each α(Ti) is a simple subcoalgebra of E and hence

α(C0) =
∑
i∈I

α(Ti) ⊆ E0.

On the other hand, by Corollary 11.7, we have that E0 ⊆ π
′
(C0) =

(
π

′ ◦ iCC0

)
(C0) =

α (C0) and thus we deduce that E0 = α (C0) = Im (α). Therefore we have

Ker(α∗) = {η ∈ E∗ : | : α∗(η) = 0}
= {η ∈ E∗ : | : η ◦ α = 0}
= {η ∈ E∗ : | : η(Im(α)) = 0}
= {η ∈ E∗ : | : η(E0) = 0}
= E⊥0 .

and hence we have the exact sequence

0 → E⊥0 = Ker(α∗) −→ E∗
α∗
−→ (C0)

∗ → 0 .
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Since C is finite dimensional and has separable coradical, we deduce from Lemma
14.4 that(C0)

∗ is a separable k-algebra. On the other hand E is finite dimensional
and hence Jac(E∗) is a nilpotent two-sided ideal of E∗. Moreover, by Proposition
9.41 we know that Jac(E∗) = E⊥0 . Therefore we get that α∗ : E∗ −→ C∗0 is a
surjective algebra morphism and Ker(α∗) = E⊥0 = Jac(E∗) is nilpotent. Thus we
can apply Wedderburn Principal Theorem 13.25 and deduce that there exists an
algebra morphism β : C∗0 −→ E∗ such that α∗ ◦ β = IdC∗

0
. Since C0 and E are finite

dimensional, there exists a coalgebra morphism π
′′
: E −→ C0 such that β = π

′′∗

and we have

(π
′′ ◦ α)∗ = α∗ ◦ π′′∗ = α∗ ◦ β = IdC∗

0
= (IdC0)

∗ .

Therefore we obtain that

IdC0 = π
′′ ◦ α = π

′′ ◦ π′ ◦ iCC0

i.e. the map

C
π
′

−→ E
π
′′

−→ C0 → 0

is a projection of C onto C0. Let us prove that π̃ = π
′′ ◦π′

extends π : D → D0. Let

iCD : D → C, iDD0
: D0 −→ D and iC0

D0
: D0 −→ C0 be the canonical injection

and let

j : D/Ker(π) ↪→ C/Ker(π) be the canonical injection and

p : D −→ D/Ker(π) be the canonical projection.

Let τ : D/Ker(π) −→ D0 be the unique morphism such that τ ◦ p = π. As π is
surjective, τ is an isomorphism. Since j ◦ p = π′ ◦iCD, we have that

α ◦ iC0
D0

= π
′ ◦ iCC0

◦ iC0
D0

= π
′ ◦ iCD ◦ iDD0

= j ◦ p ◦ iDD0

= j ◦ τ−1 ◦ τ ◦ p ◦ iDD0
= j ◦ τ−1 ◦ π ◦ iDD0

= j ◦ τ−1 ◦ IdD0 = j ◦ τ−1.

and hence

π̃ ◦ iCD = π
′′ ◦ π′ ◦ iCD = π

′′ ◦ j ◦ p = π
′′ ◦ j ◦ τ−1 ◦ τ ◦ p = π

′′ ◦ j ◦ τ−1 ◦ π
= π

′′ ◦ j ◦ τ−1 ◦ τ ◦ p = π
′′ ◦ j ◦ τ−1 ◦ π = π

′′ ◦ α ◦ iC0
D0

◦ π = IdC0 ◦ iC0
D0

◦ π = iC0
D0

◦ π.

Theorem 14.7. Let C be a k-coalgebra with separable coradical. Then there exists
a coalgebra projection of C onto C0.
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Proof. Let

F = {(F, π) | F is a subcoalgebra of C and π : F −→ F0 is a coalgebra projection} .

Since (C0, IdC0) ∈ F we have that F ̸= ∅. Let us consider the partial order on F
defined by setting

(F
′
, π

′
) ≤ (F, π) ⇐⇒ F

′ ⊂ F and π|F ′ = π .

It is easy to show that (F ,≤) is inductive. Hence, by applying Zorn’s Lemma to
(F ,≤) we obtain that there exists a maximal element (F, π) in (F ,≤). Let us
assume that F $ C and let c ∈ C, c /∈ F . Let L be the subcoalgebra of C generated
by c and let

D = L+ π(L ∩ F ).
Since L is finite dimensional also D is finite dimensional and since π(L∩F ) ⊆ F0 ⊆
F , we get that

D ∩ F = [L+ π(L ∩ F )] ∩ F = (L ∩ F ) + π(L ∩ F ).

Now let x ∈ π (F ) = F0. Then we have that x = IdF0 (x) =
(
π ◦ iFF0

)
(x) = π (x)

where iFF0
: F0 → F is the canonical inclusion. Therefore we have

X = π (X) for every subset X ⊆ π (F ) = F0

In particular we have that

π(π(L ∩ F )) = π(L ∩ F )

and
D ∩ F0 = π (D ∩ F0) ⊆ π(D ∩ F ).

Therefore we obtain

π(D∩F ) = π(L∩F )+π(π(L∩F )) = π(L∩F ) ⊆ D∩F0
Lem9.40
= (D∩F )0 ⊆ π(D∩F )

so that

(14.1) π(D ∩ F ) .
= (D ∩ F )0.

Let π
′
be the corestriction to (D ∩ F )0 of the restriction of π to D ∩ F . Then, by

(14.1), π′ is a projection of D∩F onto (D ∩F )0. Thus, being D finite dimensional,
we can apply Lemma 14.6 and deduce that π′ extends to a coalgebra projection

π1 : D −→ D0.

Let γ : D + F −→ D0 + F0 be the map defined by setting

γ(d+ f) = π1(d) + π(f) for every d ∈ D and f ∈ F.
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Note tha γ is well defined since π1|D∩F = π′ = π|D∩F and it is a coalgebra morphism.
Let d ∈ D0 and f ∈ F0. We have

γ (d+ f) = π1(d) + π(f) = d+ f

and hence γ ◦ iD+F
D0+F0

= IdD0+F0 so that γ is a projection of D + F onto D0 + F0 =
(F +D)0 in view of Proposition 9.29.Contradiction.

Lemma 14.8. Let f : C → D be a surjective morphism of k-coalgebras and let
W1,W2 be subspaces of C such that Ker(f) ⊆ W1 ∩W2. Then

f(W1 ∧C W2) = f(W1) ∧D f(W2).

Proof. For every i = 1, 2 we have that Ker(f) ⊆ Wi and hence there exists an
isomorphism

fi : C/Wi −→ f(C)/f(Wi) = D/f(Wi)

such that the diagram

C
f−→ f(C) = D

πCWi
↓ ↓ πDf(Wi)

C/Wi
fi−→ f(C)/f(Wi)

where πWi
and πf(Wi) are the canonical projections, is commutative. We compute

f← [f(W1) ∧D f(W2)] = f←
(
Ker

[(
πDf(W1)

⊗ πDf(W2)

)
◦∆D

])
=

= Ker
[(
πDf(W1)

⊗ πDf(W2)

)
◦∆D ◦ f

]
Now we have(

πDf(W1)
⊗ πDf(W2)

)
◦∆D ◦ f =

(
πDf(W1)

⊗ πDf(W2)

)
◦ (f ⊗ f) =

=
[(
πDf(W1)

◦ f
)
⊗
(
πDf(W2)

◦ f
)]

◦∆C

=
[(
f1 ◦ πCW1

)
⊗
(
f2 ◦ πCW2

)]
◦∆C = (f1 ⊗ f2) ◦

(
πCW1

⊗ πCW2

)
◦∆C

so that, since f1 ⊗ f2 is bijective, we get

Ker
[(
πDf(W1)

⊗ πDf(W2)

)
◦∆D ◦ f

]
=

= Ker
[
(f1 ⊗ f2) ◦

(
πCW1

⊗ πCW2

)
◦∆C

]
= Ker

[(
πCW1

⊗ πCW2

)
◦∆C

]
=W1 ∧C W2.

Thus we obtain
f← [f(W1) ∧D f(W2)] = W1 ∧C W2

from which, since f is surjective, we infer that

f(W1) ∧D f(W2) = f (f← [f(W1) ∧D f(W2)]) = f (W1 ∧C W2) .
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Definition 14.9. Let C be a k-coalgebra and let C+ = Ker(ε). Then R = R(C) =
C/C+

0 is called the associated connected coalgebra of C.

Lemma 14.10. Let D be a subcoalgebra of a k-coalgebra C and let I be a coideal of
C. Then I ∩D is a coideal of D and hence of C.

Proof. Let p : C → C/I be the canonical projection and let iD : D → C be the
canonical injection. We have that I ∩D = Ker (p ◦ iD) is a coideal of D since p ◦ iD
is a coalgebra morphism.

Lemma 14.11. Let C be a k-coalgebra and let π = πC
C+

0

: C → R(C) = C/C+
0 be

the canonical projection. Then C+
0 is a coideal of C so that R (C) is a coalgebra.

Moreover, for every n ∈ N, we have that R(C)n = π(Cn). In particular R(C) is
connected.

Proof. Since ε : C → k is a morphism of k-coalgebras (see 1.26), and since, by
Proposition 9.23, C0 is a subcoalgebra of C, in view of Lemma 14.10 C+

0 = C0 ∩
Ker(εC) = Ker(εC0) is a coideal of C and hence R = R (C) is a coalgebra and π is
a coalgebra morphism.

Since π is surjective, we can apply Proposition 11.7 to infer that R0 ⊆ π(C0) =
C0/C

+
0 ≃ k and hence (note that R ̸= {0}. Why?) R0 = π(C0) ≃ k so that R is

connected.
Now let us assume that Rn = π(Cn) for some n ∈ N and let us prove it for n+1.
Since π is surjective, we can apply Lemma 14.8 to get that

π (Cn+1) = π (C0 ∧C Cn) = π(C0) ∧R π(Cn)
Indhypo
= R0 ∧Rn = Rn+1.

Theorem 14.12. Let f : C → D be a morphism of k-coalgebras. If f|C1 is injective,
then f is injective.

Proof. Since Ker(f)∩C+
1 = {0} it is enough to show that N = {0} whenever N is a

coideal of C such that N ∩C+
1 = {0}. Let R be the associated connected coalgebra

and let π : C → R = C/C+
0 be the canonical projection. We compute

R+
1 = R1 ∩ (Ker(εR)) = π(C1) ∩ (Ker(ε)/C+

0 )

= (C1/C
+
0 ) ∩ (Ker(ε)/C+

0 ) = (C1 ∩Ker(ε))/C+
0

= C+
1 /C

+
0 = π(C+

1 ).

Therefore we have

π(N) ∩R+
1 = π(N) ∩ π(C+

1 ) = π
[
π←
(
π(N) ∩ π(C+

1 )
)]

= π
[
π← (π(N)) ∩ π←

(
π(C+

1

)
)
]
= π

[(
N + C+

0

)
∩
(
C+

1 + C+
0

)]
= π

[(
N + C+

0

)
∩ C+

1

]
⊆ π

(
C+

0

)
= {0}
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where the inclusion follows by the following: let n ∈ N , x ∈ C+
0 such that n + x =

y ∈ C+
1 is an element of the intersection

(
N + C+

0

)
∩ C+

1 . Then n = y − x ∈
N ∩ C+

1 = {0} , therefore n = 0 and thus
(
N + C+

0

)
∩ C+

1 ⊆ C+
0 . Now let

p : R → R/π(N) = π(C)/π(N).

be the canonical projection. By Proposition 12.2, we know that P (R) ⊆ R+
1 so that

Ker (p) ∩ P (R) ⊆ Ker (p) ∩R+
1 = π(N) ∩R+

1 = {0}.

Since R is connected we can apply Lemma 12.5 and get that p is injective i.e. π(N) =
{0}. This means that N ⊆ Ker(π) = C+

0 ⊆ C+
1 so that N = N ∩ C+

1 = {0}.

Definition 14.13. Let C be a k-coalgebra and let g, h ∈ G (C) be grouplike elements.
The set of g, h-primitive elements of C is the set

Pg,h(C) = {c ∈ C | ∆(c) = c⊗ g + h⊗ c}.

Lemma 14.14. Let C be a k-coalgebra and let g, h ∈ G (C) be grouplike elements.
Then

1) ε (x) = 0 for every x ∈ Pg,h(C).

2) We have
k(g − h) ⊆ Pg,h(C) ∩ Ph,g(C) ∩ C0.

3) If C is pointed and g ̸= h we have

Pg,h(C) ∩ Ph,g(C) ∩ C0 ⊆ k(g − h).

Proof. 1) Let x ∈ Pg,h(C). Then from ∆(x) = x ⊗ g + h ⊗ x, we deduce that
x = ε (x) g + x and hence ε (x) = 0.

2) Since,

∆ (g − h) = g ⊗ g − h⊗ h = (g − h)⊗ g + h⊗ (g − h) = (g − h)⊗ h+ g ⊗ (g − h) ,

it is clear that g − h ∈ Pg,h(C) ∩ Ph,g(C) ∩ C0.
3) Let x ∈ Pg,h(C) ∩ Ph,g(C) ∩ C0. By Proposition 9.30 we have that C0 = kG(C)
so that we can write

x = λg + µh+ v where λ, µ ∈ k and v ∈
∑

gi ̸=g,gi ̸=h

kgi.

Since x ∈ Pg,h, we have that

∆(x) = x⊗ g + h⊗ x = λg ⊗ g + µh⊗ g + v ⊗ g + h⊗ λg + h⊗ µh+ h⊗ v.

= (µ+ λ)(h⊗ g) + v ⊗ g + h⊗ v + λg ⊗ g + h⊗ µh.
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Since x ∈ Ph,g, we also have

∆(x) = x⊗ h+ g ⊗ x = λg ⊗ h+ µh⊗ h+ v ⊗ h+ g ⊗ λg + g ⊗ µh+ g ⊗ v

= (µ+ λ)(g ⊗ h) + v ⊗ h+ g ⊗ v + g ⊗ λg + µh⊗ h.

and hence we obtain

(µ+ λ)(h⊗ g) + v ⊗ g + h⊗ v = (µ+ λ)(g ⊗ h) + v ⊗ h+ g ⊗ v.

From this, we infer that
µ+ λ = 0 and v = 0.

Thus we obtain x = λ(g − h).

14.15. Let C be a pointed k-coalgebra. In view of Lemma 14.3, we know that C has
separable coradical. By Theorem 14.7, there exist a projection π of C onto C0. Let
I = Ker (π) . Then I ∩ C0 = {0} and C = I + C0 so that

C = I ⊕ C0.

For every x ∈ G = G(C), we define ex ∈ C∗ by setting:

(14.2) ex(I) = 0 and ex(y) = δx,y for every y ∈ G.

The family (ex)x∈G is a family of pairwise orthogonal idempotents of C∗. Since I is
a coideal of C we have that I ⊆ Ker (ε) and hence∑

x∈G

ex = ε.

For every c ∈ C and x, y ∈ G we set

xc = c · ex, cy = ey · c and xcy = (xc)y = x(cy),

and
xCy = {xcy|c ∈ C}.

Note that I (and hence the xCy) are not unique since they are related to the pro-
jection that appears in Wedderburn Principal Theorem 13.25 which is not unique.

For every g ∈ G we denote by Lg the left multiplication by eg on C, and by Rg

the right multiplication by eg on C i.e.

Lg (c) = eg·c =
∑

c1eg (c2) and Rg (c) = c·eg =
∑

eg (c1) c2 for every c ∈ C.

For every c ∈ C, we have

(∆ ◦ Lg) (c) = ∆ (eg · c) = ∆
(∑

c1eg (c2)
)
=
∑

c1 ⊗ c2eg (c3)

=
∑

c1 ⊗ (eg · c2) = [(C ⊗ Lg) ◦∆] (c)
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and

(∆ ◦Rg) (c) = ∆ (c · eg) = ∆
(∑

eg (c1) c2

)
=
∑

eg (c1) c2 ⊗ c3

=
∑

(c1 · eg)⊗ c2 = [(Rg ⊗ C) ◦∆] (c)

so that we deduce that

(14.3) (∆ ◦ Lg) = (C ⊗ Lg) ◦∆ and ∆ ◦Rg = (Rg ⊗ C) ◦∆

Now we have

[(Lg ⊗Rh) ◦∆] (c) =
∑

(eg · c1)⊗ (c2 · eh) =
∑

c1eg (c2)⊗ eh (c3) c4 =

=
∑

c1 ⊗ (eg (c2) eh (c3) c4) =
∑

c1 ⊗Rh (eg (c2) c3)

=
∑

c1 ⊗ (Rh ◦Rg) (c2) = {[C ⊗ (Rh ◦Rg)] ◦∆} (c)

so that we get

(14.4) (Lg ⊗Rh) ◦∆ = [C ⊗ (Rh ◦Rg)] ◦∆

Now we compute∑
z∈G

[(Lz ⊗Rz) ◦∆]
(14.4)
=
∑
z∈G

{[C ⊗ (Rz ◦Rz)] ◦∆} =

(∑
z∈G

[C ⊗ (Rz ◦Rz)]

)
◦∆ =

=

[∑
z∈G

C ⊗Rz

]
◦∆ =

(
C ⊗

∑
z∈G

Rz

)
◦∆ = ∆

hence we get

(14.5)
∑
z∈G

[(Lz ⊗Rz) ◦∆] = ∆.

Lemma 14.16. Let C be a pointed k-coalgebra with C0 = kG and let us write
C = I ⊕ C0 as in 14.15. By using the notations introduced thereby, we have that

ε =
∑
x∈G

ex

so that

(14.6) c = ε · c · ε =
∑
x,y∈G

(ey · c · ex) =
∑
x,y∈G

(xcy) .

Hence we obtain

(14.7) C =
∑
x,y∈G

xCy =
⊕
x,y∈G

xCy

where the second equality depends on the fact that the elements ex are pairwise
orthogonal.
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Proof. Let c ∈ C = I ⊕ C0.and let us write

c = w+
∑
g∈G

λgg where w ∈ I, λg ∈ k for every g ∈ G and λg = 0 for almost every g.

Then
ey (c) = ey (w) + λgey (g) = λy

and hence ey (c) = 0 for almost every y ∈ G. It follows that

ey · c =
∑

c1ey (c2) = 0 for almost every y ∈ G

and also
c · ey =

∑
ey (c1) c2 = 0 for almost every y ∈ G.

Now ∑
y∈G

ey (c) = ey (w) +
∑
y∈G

∑
g∈G

λgey (g) =
∑
g∈G

λg = ε (c)

and since this holds for every c ∈ C we deduce that∑
y∈G

ey = ε.

Therefore, for every c ∈ C we have

c = ε · c · ε =
∑
y∈G

ey · c ·
∑
x∈G

ex =
∑
x,y∈G

ey · c · ex =
∑
x,y∈G

(xcy) .

We note that this sums make sense since ey · c =
∑
c1ey (c2) = 0 for almost every

y ∈ G and c · ey =
∑
ey (c1) c2 = 0 for almost every y ∈ G.

Lemma 14.17. Let C be a pointed k-coalgebra with C0 = kG and let us write
C = I ⊕ C0 as in 14.15. By using the notations introduced thereby, we have that

0) ex · I ⊆ I and I · ex ⊆ I for every x ∈ G.

1) xCx = (xCx)+ + kx = (xCx)+ ⊕ kx for every x ∈ G.

2) xCy = (xCy) ∩ I = (xCy)+ for every x, y ∈ G with x ̸= y.

3) I =
∩
x∈GKer(ex).

4) I = ⊕x,y∈G(
xCy)+.

5) For every c ∈ C and x, y ∈ G we have

(14.8) ∆ (xcy) =
∑
z∈G

x (c1)
z⊗z (c2)

y
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Proof. 0) Let x ∈ G and a ∈ I. Since I is a coideal of C we can write

∆ (a) =
m∑
i=1

ai ⊗ ci +
n∑
j=1

dj ⊗ bj where ai, bj ∈ I and ci, dj ∈ C

so that, since ex (bj) ∈ ex (I) = {0} we have

ex · a =
m∑
i=1

aiex (ci) +
n∑
j=1

djex (bj) =
m∑
i=1

aiex (ci) ∈ I.

In a similar way one proves that I · ex ⊆ I.
1) and 2) Let x ∈ G. First of all note that, since ε (x) = 1, we have that

(xCx)+∩kx = {0} and hence (xCx)++kx = (xCx)+⊕kx. Moreover, since x ∈ xCx,
it is clear that (xCx)+ + kx ⊆ xCx. Let c ∈ C = I ⊕ C0.and let us write

c = w+
∑
g∈G

λgg where w ∈ I, λg ∈ k for every g ∈ G and λg = 0 for almost every g.

Then,
exc ex = exw ex + λxx.

Now, by 0), exw ex ∈ xCx ∩ I and since I ⊆ Ker(ε) we get that exw ex ∈ (xCx)+

whence
exc ex ∈ (xCx)+ + kx

which implies that
xCx ⊆ (xCx)+ ⊕ kx.

Let now y ∈ G such that x ̸= y. Then

eyc ex = eyw ex ∈ I

so that
xCy = (xCy) ∩ I

and since I ⊆ Ker(ε), we get that eyc ex ∈ Ker(ε) ∩ xCy = (xCy)+. Thus we get
that

xCy = (xCy) ∩ I = (xCy)+.

3) Since ex (I) = {0} for every x ∈ G, it is clear that I ⊆
∩
x∈GKer(ex). Conversely,

let c ∈
∩
x∈GKer(ex). Since c ∈ C, we may write c = w +

∑
g∈F λgg where w ∈ I,

λg ∈ k for every g ∈ G and λg = 0 for almost every g. Now, for every g ∈ G we have

0 = eg (x) = eg(w +
∑
h∈F

λhh) = eg(w) + λgeg(g)

= 0 + λg = 0

so that we deduce that λg = 0 for every g ∈ G and hence c = w ∈ I.
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4) First of all, let us prove that∑
(xCy)+ ⊆ I.

If x ̸= y, this is clear in view of 3). Let us assume that x = y. As before, let c ∈ C
and let us write c = w+

∑
g∈G λgg where w ∈ I, λg ∈ k for every g ∈ G and λg = 0

for almost every g. Then
exc ex = exw ex + λxx.

Assume now that exc ex ∈ Ker(ε) and let t ∈ G. Since exw ex ∈ I =
∩
g∈GKer(eg),

we have that et (exw ex) = 0. Since ε =
∑

t∈G et we deduce that

0 = ε (exc ex) =
∑
t∈G

et (exc ex) =
∑
t∈G

et (exw ex) +
∑
t∈G

et (λxx) =
∑
t∈G

δt,xλx = λx

so that we get exc ex = exw ex ∈ I.
Now let w ∈ I. Then, by (14.6) we have

w =
∑
x,y∈G

xwy

where xwy = eywex ∈ I since I is a coideal. Thus xwy ∈(xCy)∩I ⊆ (xCy)∩Ker (ε) =
(xCy)+ and we deduce that

w ∈
∑
x,y∈G

(xCy)+.

Therefore we get that

I =
∑
x,y∈G

(xCy)+.

In view of (14.7) , this sum is direct.
5) By applying to xcy formula (14.5)we have

∆ (xcy) = ∆ (ey · c · ex) =
∑
z∈G

[(Lz ⊗Rz) ◦∆] (ey · c · ex) =
∑
z∈G

(Lz ⊗Rz) (c1 · ex ⊗ ey · c2) =

=
∑
z∈G

ez · c1 · ex ⊗ ey · c2 · ez =
∑
z∈G

x (c1)
z⊗z (c2)

y.

Notation 14.18. Let C be a pointed k-coalgebra and let g ̸= h ∈ G (C) be grouplike
elements.Then, by Lemma 14.14 k(g−h) = Pg,h(C)∩Ph,g(C)∩C0. In the following
we fix a subspace P

′

g,h(C) of Pg,h(C) such that Pg,h(C) = k(g − h)⊕ P
′

g,h(C).

Theorem 14.19 (Taft-Wilson). Let C be a pointed k-coalgebra with G = G(C).
Then

1) For every n ∈ N, n ≥ 1 and c ∈ Cn ∩ (xCy)+ we have that

∆(c) = c⊗ y + x⊗ c+ t where t ∈ Cn−1 ⊗ Cn−1
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2) For every n ∈ N, n ≥ 1 and c ∈ Cn, we have that

c =
∑
g,h∈G

cg,h where ∆(cg,h) = cg,h ⊗ g + h⊗ cg,h + w and w ∈ Cn−1 ⊗ Cn−1.

3) C1 = kG⊕ (
⊕

g,h∈G P
′

g,h(C)).

Proof. We will use the notations introduced in 14.15.
1) For every every n ∈ N, n ≥ 1, let In = I ∩ Cn. Since C = I ⊕ C0 and, by 3)

inTheorem 10.10 C0 ⊆ Cn we have that

(14.9) Cn = In ⊕ C0.

Now, since, by Lemma 14.17, every (xCy)+ ⊆ I we have

(14.10) Cn ∩ (xCy)+ = Cn ∩ (I ∩ (xCy)+) = In ∩ (xCy)+

and hence ⊕
x,y∈G

(Cn ∩ (xCy)+) =
⊕
x,y∈G

(In ∩ (xCy)+) ⊆ In

Let c ∈ In = I ∩ Cn. Since by 2) inTheorem 10.10 Cn is a subcoalgebra of C and
by 0) of Lemma 14.17, we have

xcy = exc ey ∈ (xCy) ∩ In ⊆ [(xCy) ∩Ker (ε)] ∩ In = (xCy)+ ∩ In

and hence, by form 14.6

c =
∑
x,y∈G

(xcy) ∈
⊕
x,y∈G

(In ∩ (xCy)+)

so that
In ⊆

⊕
x,y∈G

(In ∩ (xCy)+).

Therefore we get

(14.11) In =
⊕
x,y∈G

(In ∩ (xCy)+)
(14.10)
=

⊕
x,y∈G

(Cn ∩ (xCy)+)

Thus we can assume that c ∈ In∩(xCy)+. Now, since Cn = In⊕C0 and, by Theorem
10.10, we have Ci ⊆ Cn−1 for every i = 0, . . . , n− 1, we get that

∆(c) ∈ Cn ⊗ C0 + C0 ⊗ Cn +
n−1∑
i=1

Ci ⊗ Cn−i

= In ⊗ C0 + C0 ⊗ C0 + C0 ⊗ In + C0 ⊗ C0 +
n−1∑
i=1

Ci ⊗ Cn−i

⊆ In ⊗ C0 + C0 ⊗ In + Cn−1 ⊗ Cn−1.
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Therefore we can write

∆(c) =
∑
g∈G

cg ⊗ g +
∑
h∈G

h⊗ dh +
t∑
i=1

vi ⊗ wi(14.12)

where cg, dg ∈ Ig for every g ∈ G and vi, wi ∈ Cn−1 for every i = 1, . . . t.

Let us apply formula (14.8) to (14.12) and get

∆(c) = ∆ (xcy) =
∑
z∈G

x (c1)
z⊗z (c2)

y =(14.13)

=
∑
g,z∈G

x (cg)
z ⊗ z (g) y +

∑
h,z∈G

x (h) z ⊗ z (dh)
y +

∑
z∈G

t∑
i=1

x (vi)
z ⊗ z (wi)

y.

(14.14)

Now

z (g) y = ey · g · ez = (gey (g)) · ez = ey (g) ez (g) g

= δy,gδz,gg = δz,g,yy

and

x (h) z = ez · h · ex = (hez (h)) · ey = ez (h) ex (h)h

= δz,hδx,hh = δx,h,zx.

Then we can rewrite (14.12) as

(14.15) ∆(c) = x (cy)
y ⊗ y + x⊗ x (dx)

y +
∑
z∈G

t∑
i=1

x (vi)
z ⊗ z (wi)

y

Let us apply lC ◦ (ε⊗ C) to (14.15) and we get

c = ε(x (cy)
y)y + ε(x)x (dx)

y +
∑
z∈G

t∑
i=1

ε [x (vi)
z] z (wi)

y

= 0 + x (dx)
y +

∑
z∈G

t∑
i=1

ε [x (vi)
z] z (wi)

y = x (cx)
y + v,

where ε(x (cy)
y) = 0 since x (cy)

y ∈In ⊆ Ker (ε) and v =
∑

z∈G
∑t

i=1 ε [
x (vi)

z] z (wi)
y ∈Cn−1.

In fact Cn is a C∗-sub-bimodule of Cx so that x (vi)
z and z (wi)

y ∈ Cn−1.
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In a similar way, by applying rC ◦ (C ⊗ ε), way one gets

c = x (cy)
y + u where u ∈ Cn−1.

Substituting in (14.15)we get

∆(c) = (c− u)⊗ y + x⊗ (c− v) +
∑
z∈G

t∑
i=1

x (vi)
z ⊗ z (wi)

y

= c⊗ y + x⊗ c− u⊗ y − x⊗ v +
∑
z∈G

t∑
i=1

x (vi)
z ⊗ z (wi)

y

= c⊗ y + x⊗ c+ t

where t ∈ Cn−1⊗Cn−1. In fact, as noted before, each x (vi)
z⊗ z (wi)

y ∈Cn−1⊗Cn−1
and also u⊗ y ∈ Cn−1 ⊗C0 ⊆ Cn−1 ⊗Cn−1, x⊗ v ∈ C0 ⊗Cn−1 ⊆ Cn−1 ⊗Cn−1.Thus
1) is proved.

2) Let c ∈ Cn. Then c =
∑

g,h∈G
(
gch
)
where gch = ehceg ∈ Cn ∩g Ch. Now, if

g = h by we can write

gcg = cg + λg where cg ∈ (gCg)+ and λ ∈ k.

If g ̸= h we have
gch ∈ (gCh)

2)ofLemma14.17
= (gCh)+.

Let F be a finite subset of G such that

c =
∑
g,h∈F

gch.

Then, by 1) we have

∆
(
gch
)
= gch ⊗ g + h⊗ gch + w where w ∈ Cn−1 ⊗ Cn−1 if g ̸= h

and

∆ (gcg) = ∆ (cg) + ∆ (λg) = cg ⊗ g + g ⊗ cg + u+ λ (g ⊗ g) where u ∈ Cn−1 ⊗ Cn−1

so that

∆ (gcg) = ∆ (cg)+∆ (λg) = cg⊗g+g⊗cg+w where w = u+λ (g ⊗ g) ∈ Cn−1⊗Cn−1.

3) From formula 14.9, we know that C1 = C0 ⊕ I1 and from formula 14.11 that
I1 = ⊕x,y(

xCy
1 )

+.
Let us prove that

(14.16) Py,x(C) = k(y − x)⊕ x(C1)
y+.



195

First of all, let us prove that the sum k(y − x) + x(C1)
y+ is direct i.e. that

k(y − x) ∩ x(C1)
y+ = {0}. Let x ̸= y and let λ(y − x) ∈x (C1)

y+. Then we have

λ(y − x) = eyλ(y − x)ex = λ(eyyex − eyxex) = 0.

” ⊆ ” Let c ∈ Py,x = Py,x(C), then ∆(c) = c ⊗ y + x ⊗ c. Let us apply formula
14.8. Then, for every g, h ∈ G, we have that

∆
(
gch
)

=
∑
z∈G

g (c1)
z⊗z (c2)

h =

=
∑
z∈G

g (c) z⊗z (y) h+
∑
z∈G

g (x) z⊗z (c) h

= δh,y
gcy ⊗ y + δg,xx⊗ xch

If h ̸= y and g ̸= x, then ∆ gch = 0 so that gch = 0.
If h = y and g ̸= x, then ∆ gch = gcy ⊗ y which yields, by applying lC(ε ⊗ I),
gch = ε(gch)y ∈ ky.
If h ̸= y and g = x, then ∆gch = x ⊗ xch which yields, by applying rC(I ⊗ ε),
gch = xε(xch) ∈ kx.
Finally if h = y and g = x, then ∆ gch = xcy ⊗ y + x⊗ xcy so that xcy ∈ Py,x.
Thus we obtain

c =
∑
g,h∈G

gch =
∑
g,h∈G
h̸=y
g ̸=x

gch +
∑
g,h∈G
h=y
g ̸=x

gch +
∑
g,h∈G
h̸=y
g=x

gch + xcy

= 0 +
∑
g,h∈G
h=y
g ̸=x

ε(gch)y +
∑
g,h∈G
h̸=y
g=x

ε(xch)x+ xcy

so that we get

c = xcy + αx+ βy where xcy ∈ Py,x and α, β ∈ k.

Since both c and xcy ∈ Py,x, we deduce that also αx + βy ∈ Py,x. Since, by Lemma
14.14, even α(x− y) ∈ Py,x we deduce that

(α + β)y = (αx+ βy)− α(x− y) ∈ Py,x

and hence, by 1) of Lemma 14.14, we get

0 = ε ((α + β)y) = α + β

which implies that

c = α(x− y) + xcy where xcy ∈ Py,x and α ∈ k.
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If x = y we get
c = xcx ∈ Px,x

and hence, by 1) of Lemma 14.14 we know that ε(c) = 0. If x ̸= y, by 2) of Lemma
14.17 we know that xCy = (xCy)+. Thus, in both case we have that xcy ∈ (xCy)+.
” ⊇ ” By Lemma 14.14, we have that k(y − x) ∈ Py,x.
Let now c ∈ C1 ∩ (xCy)+. Then, in view of 1),

∆(c) = c⊗ y + x⊗ c+ t where t ∈ C0 ⊗ C0

i.e.

∆(c) = c⊗ y + x⊗ c+
∑
g,h∈G

αg,hg ⊗ h where αg,h ∈ k and they are almost all zero.

Since, by formula (14.6) , c =
∑

g,h∈G
(
gch
)
and since c ∈ xCy, we get that

c = ey · c · ex = xcy.

Therefore

∆(c) = ∆(xcy)
form(14.8)

=
∑
z∈G

x (c1)
z⊗z (c2)

y

=
∑
z∈G

x (c) z ⊗ z (y) y + x (x) z ⊗ z (c) y +
∑
g,h∈G

αg,h
x (g) z ⊗ z (h) y

= x (c) y ⊗ y (y) y + x (x) x ⊗ x (c) y+
∑
g,h∈G

αg,h
∑
z∈G

δg,x,zg ⊗ δh,z,yh

= c⊗ y + x⊗ c+ δx,yαx,y x⊗ y.

Since ε(c) = 0, by applying (I ⊗ ε) we obtain

c = c+ δx,yαx,yy

and hence δx,yαx,y = 0. Thus we get

∆(c) = c⊗ y + x⊗ c

i.e. c ∈ Py,x.
Thus Py,x(C) = k(y − x) + x(C1)

y+ and hence formula (14.16) is proved.

Since Py,x(C)
(14.16)
= k(y − x)⊕ x(C1)

y+, we have

(14.17) C0 ⊕ (xCy
1 )

+ = C0 + Py,x(C)

C1
(14.9)
= C0 ⊕ (C1 ∩ I) = C0 ⊕ I1 =

(14.11)
= C0 ⊕ [

⊕
x,y∈G

(C1 ∩ (xCy)+)] = C0 ⊕ [
⊕
x,y∈G

(xCy
1 )

+)]

(14.17)
= C0 +

∑
x,y∈G

Py,x(C).
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Since
Pg,h(C) = k(g − h)⊕ P

′

g,h(C)

and since k(g − h) ∈ C0, we get that

C1 = C0 +
∑
g,h∈G

[k(g − h) + P
′

g,h(C)] = C0 +
∑
g,h∈G

P
′

g,h(C).

Let us prove that the sum

C0 +
∑
g,h∈G

P
′

g,h(C)

is direct. Assume that

c+
∑
g,h∈G

dg,h = 0 where c ∈ C0 and, for every g, h ∈ G, dg,h ∈ P
′

g,h(C).

Now, for every g, h ∈ G, we have

P
′

g,h(C) ⊆ Pg,h(C)
(14.16)
= k(g − h)⊕ (C1 ∩ (gCh)+)

and hence we can write

dg,h = αg,h(g − h) + bg,h where αg,h ∈ k and bg,h ∈ C1 ∩ (gCh)+.

Therefore we get that

c+
∑
g,h∈G

αg,h(g − h) +
∑
g,h∈G

bg,h = 0

i.e.

c+
∑
g,h∈G

αg,h(g−h) = −
∑
g,h∈G

bg,h ∈ C0∩(
∑
g,h∈G

(C1∩(gCh)+)
(14.10)

⊆ C0∩I1 ⊆ C0∩I = {0}

and hence
c+

∑
g,h∈G

αg,h(g − h) = −
∑
g,h∈G

bg,h = 0

Since
∑

g,h∈G bg,h ∈
∑

g,h∈G(C1 ∩ (gCh)+ =
⊕

x,y∈G(C1 ∩ (xCy)+) we deduce that
bg,h = 0 for every g, h ∈ G so that

dg,h = αg,h(g − h) ∈ k(g − h) ∩ P ′

g,h = {0} for every g, h ∈ G

and hence
c = −

∑
g,h∈G

dg,h = 0.
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Corollary 14.20. Let f : C → D be a k-coalgebra morphism. If C is pointed and
f|Pg,h(C) is injective for every g, h ∈ G, then f is injective.

Proof. We can assume w.l.o.g. that f is surjective. Then, by Corollary 11.8 also D
is pointed. Now, in view of Theorem 14.12, it is enough to show that f is injective on
C1. Let g, h ∈ G = G(C), g ̸= h. Then, by Lemma 14.14, we have that 0 ̸= g− h ∈
Pg,h(C) and hence, in view of our assumptions, we get 0 ̸= f(g − h) = f(g)− f(h),
which implies that f is injective on G so that the family

(f (g))g∈G

is a family of distinct grouplike elements of G (D) and hence, by Theorem 1.54,
these elements are linearly independent. Let w ∈ C0 = kG, w =

∑
g∈G λgg and

assume that f (w) = 0. Then from
∑

g∈G λgf (g) = 0 we deduce that λg = 0 for
every g ∈ G and hence w = 0. Thus f is injective on C0 = kG. Let c ∈ Pg,h(C), i.e.
∆(c) = c⊗ g + h⊗ c. Then we get

∆(f(c)) = (f ⊗ f)∆(c) = (f ⊗ f)(c⊗ g + h⊗ c)

= f(c)⊗ f(g) + f(h)⊗ f(c) ∈ Pf(g),f(h)(D)

and hence we obtain that f (Pg,h(C)) ⊆ Pf(g),f(h)(D). Let P
′

g,h(C) be a complement
subspace of k(g − h) in Pg,h(C). Then

P
′

g,h(C) ∩ k(g − h) = {0}

and since f is injective on C1 we get

f
(
P

′

g,h(C)
)
∩ f (k(g − h)) = {0}

Hence we can choose a complement subspace P
′

f(g),f(h)(D) of k(f(g) − f(h)) in

Pf(g),f(h)(D) containing f
(
P ′g,h(C)

)
. Since both C and D are pointed, by Taft-

Wilson Theorem 14.19, we have that C1 = kG ⊕ (
⊕

g,h∈G P
′

g,h(C)) and D1 =

kG (D)⊕ (
⊕

a,b∈G(D) P
′

a,b(D)). In particular we get that

f (kG) ∩

[
(
∑
g,h∈G

f
[
P

′

g,h(C)
]
)

]
⊆ kG (D) ∩

∑
a,b∈G(D)

P
′

a,b(D) =

= kG (D) ∩
⊕

a,b∈G(D)

P
′

a,b(D) = {0} .

Let c ∈ C1 and let us write

c = w +
∑

tg,h where w ∈ kG and tg,h ∈ P
′

g,h(C) for every g, h ∈ G.

Assume that f (c) = 0. Then we obtain

f (w) = −
∑

f (tg,h) ∈ f (kG) ∩
∑
g,h∈G

f
(
P ′g,h(C)

)
= {0}
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Since w ∈ kG and f is injective on C0 = kG we deduce that w = 0. Moreover
since

∑
a,b∈G(D) P

′

a,b(D) =
⊕

a,b∈G(D) P
′

a,b(D) and, , f
(
P ′g,h(C)

)
⊆ P ′f(g),f(h)(D) where

f(g), f(h) ∈ G (D) , we get that
∑

g,h∈G f
(
P ′g,h(C)

)
=
⊕

g,h∈G f
(
P ′g,h(C)

)
so that,

from
∑
f (tg,h) = 0 we infer that f (tg,h) = 0 for every g, h ∈ G and hence, since

tg,h ∈ P
′

g,h(C) ⊆ C1 and f is injective on C1, that tg,h = 0. Therefore we obtain that
c = 0.

Remark 14.21. Let n ∈ N, n ≥ 2 and let U = Un be the k-algebra of the n × n
upper triangular matrices over the field k. Then a basis of U over k is given by
{ei,j | 1 ≤ i ≤ j ≤ n} where ei,j is defined by setting (eij)a,b = δi,aδj,b. Fix an i, 1 ≤
i ≤ n and let

Pi =
∑

1≤a≤b≤n
(a,b) ̸=(i,i)

kea,b.

Pi is a left ideal of U. In fact let 1 ≤ s ≤ t ≤ n and 1 ≤ a ≤ b ≤ n with (a, b) ̸= (i, i).
Then

es,tea,b = δt,aes,b

Assume t = a and (s, b) = (i, i). Then we would get i = s ≤ t = a ≤ b = i and
hence (a, b) = (i, i). Contradiction. Clearly we have

U/Pi ≃ kei,i

and hence Pi is a left maximal ideal of U . Conversely let P be a left maximal ideal
of U. Since 1U =

∑n
a=1 ea,a there exists an i such that ei,i /∈ P . Since

P + Uei,i = U

for every (a, b) ̸= (i, i) there exists a p ∈ P and an u ∈ U such that

p+ uei,i = ea,b.

Write
p =

∑
s≤t

ps,tes,t and u =
∑
s≤t

us,tes,t, where ps,t, us,t ∈ k.

Then we have
uei,i =

∑
s≤t

us,tes,tei,i =
∑
s≤i

us,ies,i

and

P ∋ ea,ap =
∑
s≤t

ps,tea,aes,t =
∑
a≤t

pa,tea,t and

ea,auei,i =
∑
s≤i

us,iea,aes,i = 0 unless a ≤ i in which case we get ea,auei,i = ua,iea,i.

Thus we obtain

ea,b = ea,aea,b = ea,a (p+ uei,i) =
∑
a≤t

pa,tea,t + ea,auei,i
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In the case i < a this means

P ∋ ea,ap =
∑
a≤t

pa,tea,t = ea,b

In the case a ≤ i we get ∑
a≤t

pa,tea,t + ua,iea,i = ea,b.

Now if b ̸= i this implies

P ∋ ea,ap =
∑
a≤t

pa,tea,t = ea,b.

Let us consider the case b = i. Then, since (a, b) ̸= (i, i), we have a < b = i and
hence ∑

a≤t

pa,tea,t + ua,iea,i = ea,i.

If ea,i /∈ P we have
P + Uea,i = U

Hence there exists a q ∈ P and a w ∈ U such that

q + wea,i = ei,i

Write
q =

∑
s≤t

qs,tes,t and w =
∑
s≤t

ws,tes,t where qs,t, ws,t ∈ k.

Then we have
wea,i =

∑
s≤t

ws,tes,tea,i =
∑
s≤a

ws,aes,i

and
P ∋ ei,iq =

∑
s≤t

qs,tei,ies,t =
∑
i≤t

qi,tei,t .

Now we have that
0 = ei,iwea,i =

∑
s≤a

ws,aei,ies,i

In fact
ei,ies,i ̸= 0 and s ≤ a implies i = s ≤ a

and since a < i, this cannot happen. Therefore we obtain

P ∋ ei,iq = ei,iq + ei,iwea,i = ei,iei,i = ei,i.

Contradiction. We deduce that P contains all es,t with (s, t) ̸= (i, i) and
hence P = Pi. Therefore for the Jacobson radical J (U) of U we have

J (U) = P1 ∩ . . . ∩ Pn =
∑

1≤a≤b≤n
(a,b)̸=(1,1)

kea,b ∩ . . . ∩
∑

1≤a≤b≤n
(a,b)̸=(n,n)

kea,b =
∑

1≤a<b≤n

kea,b



201

i.e. J (U) is the set of strictly upper triangular matrices. For every s ∈ N, 1 ≤ s ≤ n
we have

(J (U))s =
∑

1≤a≤b≤n
s≤b−a

kea,b.

In particular

(J (U))n = {0} .

Example 14.22. Let C = MC (n, k) the n × n matrix k-coalgebra.introduced in
1.12 2). C has a basis of n2 elements Xij, 1 ≤ i, j ≤ n, and its coalgebra structure
is defined by setting

∆(Xij) =
n∑
h=1

Xih ⊗Xhj and ε(Xij) = δij for every 1 ≤ i, j ≤ n.

Recall that C∗ ∼= Mn(k), the n × n matrix k-algebra which is a simple algebra.
Thus C is a simple coalgebra i.e. C = C0. Let I be the subspace of C spanned by
{Xij : |1 ≤ i, j ≤ n, i > j}. For every 1 ≤ i, j ≤ n with i > j, we have that

∆(Xij) =
n∑
h=1

Xih ⊗Xhj =

=
∑
i>h

Xih ⊗Xhj +
∑
h>i

Xih ⊗Xhj +Xii ⊗Xij ∈ I ⊗ C + C ⊗ I

and also that

ε(Xij) = 0 for every i > j.

Thus I is a coideal of C so that D = C/I is a coalgebra and {X̄i,j = Xij + I|i ≤ j}
is a basis for D. Note that D∗ is the subalgebra of C∗ consisting of upper triangular
matrices. Now, for every 1 ≤ i ≤ j ≤ n and 1 ≤ h ≤ n, if h < i then Xih ∈ I while
if j < h we have that Xhj ∈ I so that

∆(X̄i,j) = X̄i,i ⊗ X̄i,j + X̄i,i+1 ⊗ X̄i+1,j + ...+ X̄i,j ⊗ X̄jj.

Let J = Jac (D∗) be the Jacobson radical of D∗. By Remark 14.21, for every
s ∈ N, 1 ≤ s ≤ n we have

(J (U))s =
∑

1≤a≤b≤n
s≤b−a

kea,b.

where for each (a, b) with 1 ≤ a ≤ b ≤ n, ea,b =
(
X̄a,b

)∗
i.e.

ea,b
(
X̄i,j

)
= δ(a,b)(i,j) = 0 unless (a, b) = (i, j) in which case it is 1.
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Now, by Proposition 11.9 for every s ∈ N, 0 ≤ s ≤ n− 1 we have

Ds = (Js+1)⊥ =

 ∑
1≤a≤b≤n
s+1≤b−a

kea,b


⊥

=
∩

1≤a≤b≤n
s+1≤b−a

(kea,b)
⊥ =

∑
1≤i≤j≤n
j−i≤s

kX̄i,j.

Thus

D0 = J⊥ =
∑

1≤i≤j≤n
j−i≤1

kX̄i,j =
n∑
i=1

kX̄i,i = kG (D) ,

and in general for every s ∈ N, 0 ≤ s ≤ n− 1

Ds =
∑

1≤i≤j≤n
j−i≤s

kX̄i,j =
∑

1≤i≤j≤n
j−i≤s−1

kX̄i,j +
∑

1≤i≤j≤n
j−i=s

kX̄i,j = Ds−1 +
n−s∑
i=1

kX̄i,i+s

and
Dn = D.

Now, for every 1 ≤ i, s ≤ n and 0 ≤ s ≤ n with 1 ≤ i+ s ≤ n we have

∆(X̄i,i+s) = X̄i,i ⊗ X̄i,i+s + X̄i,i+1 ⊗ X̄i+1,i+s + ...+ X̄i,i+s ⊗ X̄i+s,i+s

= X̄i,i ⊗ X̄i,i+s + X̄i,i+s ⊗ X̄i+s,i+s + w

where X̄i,i and X̄i,i+s are in G (D) and

w = X̄i,i+1 ⊗ X̄i+1,i+s + ...+ X̄i,i+s−1 ⊗ X̄i+s−1,i+s−1 ∈ Ds−1 ⊗Ds−1.

Thus the elements X̄i,i+s ∈ Ds have the form described in Taft-Wilson Theorem
14.19. Let π : C → D be the canonical projection. Then we have

D0 $ π (C0) = π (C) = D.

Therefore Corollary 11.7, in general, cannot be improved and the coradical filtration
is not preserved in homorphic images.



Chapter 15

Some Useful Results

Lemma 15.1. Let k be a field and let f : V → W and f ′ : V ′ → W ′ be k-linear
maps. Then

Ker (f ⊗ f ′) = Ker (f)⊗ V ′ + V ⊗Ker (f ′) .

Proof. Let X be a basis of Ker (f) which we complete to a basis Y of V . Let X ′ be
a basis of Ker (f ′) which we complete to a basis Y ′ of V ′. Let a ∈ Ker (f ⊗ f ′) and
write

a =
∑

x∈X,x′∈X′

λx,x′x⊗x′+
∑

y∈Y \X,x′∈X′

λy,x′y⊗x′+
∑

x∈X,y′∈Y ′|X′

λx,y′x⊗y′+
∑

y∈Y \X,y′∈Y ′|X′

λy,y′y⊗y′.

Then we get

0 =
∑

x∈X,x′∈X′

λx,x′f (x)⊗ f ′ (x′) +
∑

y∈Y \X,x′∈X′

λy,x′f (y)⊗ f ′ (x′) +
∑

x∈X,y′∈Y ′\X′

λx,y′f (x)⊗ f ′ (y′)

+
∑

y∈Y \X,y′∈Y ′\X′

λy,y′f (y)⊗ f ′ (y′)

=
∑

y∈Y \X,y′∈Y ′\X′

λy,y′f (y)⊗ f ′ (y′)

so that, we get

(15.1)
∑

y∈Y \X,y′∈Y ′\X′

λy,y′f (y)⊗ f ′ (y′) = 0

Now f (Y \X) is a linar indipendent subset of W. In fact, from∑
y∈Y \X,

λyf (y) = 0

we get, for Z the subspace spanned by Y \X∑
y∈Y \X,

λyy ∈ Ker (f) ∩ Z = {0}

203
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and hence, λy = 0 for every y ∈ Y \X. The same holds for f ′ (Y ′\X ′). Hence, from
(15.1) we deduce that λy,y′ = 0 for every y ∈ Y \X, y′ ∈ Y ′\X ′. Hence, we obtain
that a ∈ Ker (f)⊗ V ′ + V ⊗Ker (f ′). The other inclusion is trivial.

15.2. Let V be a vector space over a field k and let V ∗ = Homk (V, k) be its dual.
Given a subvector space W of V we set:

W⊥ = {f ∈ V ∗ | f (W ) = 0} ;

and for every subspace X of V ∗ we set

X⊥ = {v ∈ V | ξ (v) = 0 for every ξ ∈ X} =
∩
ξ∈X

Ker (ξ) .

Note that W⊥⊥ = W while X = X⊥⊥ whenever V is finite dimensional.

Lemma 15.3. Let V1 and V2 be vector spaces over a field k and let X1 ≤ V ∗1 and
X2 ≤ V ∗2 . Then we have

(X1 ⊗X2)
⊥ = V1 ⊗ (X2)

⊥ + (X1)
⊥ ⊗ V2 in V1 ⊗ V2.

Proof. Clearly we have∩
ξ∈X1⊗X2

Ker (ξ) ⊆
∩

ξ1∈X1,ξ2∈X2

Ker (ξ1 ⊗ ξ2)

Let ξ ∈ X1 ⊗X2. Then ξ =
∑n

i=1 ξ
i
1 ⊗ ξi2 where n ∈ N, n ≥ 1, ξi1 ∈ X1 and ξi2 ∈ X2

for every i = 1, . . . , n. Then

n∩
i=1

Ker
(
ξi1 ⊗ ξi2

)
⊆ Ker (ξ)

so that we have ∩
ξ1∈X1,ξ2∈X2

Ker (ξ1 ⊗ ξ2) ⊆
∩

ξ∈X1⊗X2

Ker (ξ)

and we deduce that

(15.2) (X1 ⊗X2)
⊥ =

∩
ξ∈X1⊗X2

Ker (ξ) =
∩

ξ1∈X1,ξ2∈X2

Ker (ξ1 ⊗ ξ2)

Recall that, by Proposition 1.38,for every ξ∗1 ∈ X∗1 , ξ
∗
2 ∈ X∗2 , the assignment ξ1⊗ξ2 7→

ξ∗1 (ξ1) ξ
∗
2 (ξ2) defines a k-linear map Λξ∗1 ,ξ∗2 : X1 ⊗X2 → k. Moreover the assignment

ξ∗1 ⊗ ξ∗2 7→ Λξ∗1 ,ξ∗2 defines an injective k-linear map

Λ = ΛX1,X2 : X
∗
1 ⊗X∗2 → (X1 ⊗X2)

∗ .

For every i = 1, 2, let Γi : Vi → X∗i be the map defined by setting

Γi (vi) = ṽi|Xi
where ṽi : Vi → k is the evaluation map.
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Let πi : Vi → Vi ⊗ Vi/X
⊥
i be the canonical projection. Since Ker (Γi) = X⊥i , there

exists an injective map Γi : Vi/X
⊥
i → X∗i such that Γi ◦ πi = Γi. Let

T = Λ ◦
(
Γ1 ⊗ Γ2

)
◦ (π1 ⊗ π2) : V1 ⊗ V2 → (X1 ⊗X2)

∗

For every i = 1, 2, let ξi ∈ Xi and vi ∈ Vi. We compute

[T (v1 ⊗ v2)] (ξ1 ⊗ ξ2)
{[
Λ ◦

(
Γ1 ⊗ Γ2

)
◦ (π1 ⊗ π2)

]
(v1 ⊗ v2)

}
(ξ1 ⊗ ξ2) =

= [(Λ ◦ Γi) (v1 ⊗ v2)] (ξ1 ⊗ ξ2) = Λ
(
ṽ1|X1

⊗ ṽ2|X2

)
(ξ1 ⊗ ξ2) = ξ1 (v1)⊗ ξ2 (v2) .

Then, by using (15.2) , we deudce that

Ker (T ) =
∩

ξ∈X1⊗X2

Ker (ξ) =
∩

ξ1∈X1,ξ2∈X2

Ker (ξ1 ⊗ ξ2) = (X1 ⊗X2)
⊥

On the other hand, since Λ ◦
(
Γ1 ⊗ Γ2

)
is injective, we get

Ker (T ) = Ker (π1 ⊗ π2) = V1 ⊗X⊥2 +X⊥1 ⊗ V2

Lemma 15.4. Let V be a vector space over a field k and let

{0} = V0 ⊆ V1 ⊆ V2 ⊆ ...

be an ascending chain of subspaces of V . Then

n∩
i=0

(V ⊗ Vn−i + Vi ⊗ V ) =
n∑
i=1

Vi ⊗ Vn+1−i.

Proof. We have

(V ⊗ Vn + V0 ⊗ V ) ∩ (V ⊗ V0 + Vn ⊗ V ) =

= (V ⊗ Vn + {0} ⊗ V ) ∩ (V ⊗ {0}+ Vn ⊗ V )

= (V ⊗ Vn) ∩ (Vn ⊗ V )

= Vn ⊗ Vn.

Therefore we get

n∩
i=0

(V ⊗ Vn−i + Vi ⊗ V ) = (V ⊗ Vn + V0 ⊗ V ) ∩ (
n−1∩
i=1

V ⊗ Vn−i + Vi ⊗ V ) ∩ (V ⊗ V0 + Vn ⊗ V )

= (Vn ⊗ Vn) ∩ (
n−1∩
i=1

V ⊗ Vn−i + Vi ⊗ V )

=
n−1∩
i=1

(Vn ⊗ Vn−i + Vi ⊗ Vn).
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Thus we may assume

V = Vn =
∪
i6n

Vi.

and we have to prove that

n−1∩
i=1

(Vn ⊗ Vn−i + Vi ⊗ Vn) =
n∑
i=1

Vi ⊗ Vn+1−i.

Now for i = 1, . . . , n, let Wi ⊆ Vi be such that

Vi = Vi−1 ⊕Wi.

Then

Vi =
i⊕

a=1

Wa

so that

Vn ⊗ Vn−i + Vi ⊗ Vn =

(
n⊕
a=1

Wa

)
⊗

(
n−i⊕
b=1

Wb

)
+

(
i⊕

a=1

Wa

)
⊗

(
n⊕
b=1

Wb

)

=
n⊕
a=1

n−i⊕
b=1

(Wa ⊗Wb) +
i⊕

a=1

n⊕
b=1

(Wa ⊗Wb) =

=
i⊕

a=1

n−i⊕
b=1

(Wa ⊗Wb) +
n⊕
a=i

n−i⊕
b=1

(Wa ⊗Wb)

+
i⊕

a=1

n−i⊕
b=1

(Wa ⊗Wb) +
i⊕

a=1

n⊕
b=i

(Wa ⊗Wb)

=
i⊕

a=1

n−i⊕
b=1

(Wa ⊗Wb) +
n⊕
a=i

n−i⊕
b=1

(Wa ⊗Wb) +
i⊕

a=1

n⊕
b=i

(Wa ⊗Wb)

=
n⊕
a=1

n−i⊕
b=1

(Wa ⊗Wb) +
i⊕

a=1

n⊕
b=i

(Wa ⊗Wb)

=
⊕
a≤i
or

b≤n−i

Wa ⊗Wb

i.e.

(15.3) Vn ⊗ Vn−i + Vi ⊗ Vn =
⊕
a≤i
or

b≤n−i

Wa ⊗Wb
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Now

(15.4)
n∩
i=0

⊕
a≤i
or

b≤n−i

(Wa ⊗Wb) =
⊕

a+b≤n+1

(Wa ⊗Wb)

In fact it is clear that⊕
a+b≤n+1

(Wa ⊗Wb) ⊆
⊕
a≤i
or

b≤n−i

(Wa ⊗Wb) for every i = 0, . . . , n

Conversely let x ∈
n∩
i=0

⊕
a≤i
or

b≤n−i

(Wa ⊗Wb) . Since x ∈ Vn ⊗ Vn and Vn =
n⊕
t=1

Wt we can

write

x =
n∑

t,s=1

xt ⊗ ys where xt ∈ Wt and ys ∈ Ws.

Assume that x /∈
⊕

a+b≤n+1

(Wa ⊗Wb). Then there exist t and s such that 1 ≤ t, s ≤ n,

t+ s > n+ 1 and xt ⊗ ys ̸= 0.
Let k ∈ N such that either n = 2k or n = 2k + 1.
Assume that t ≤ k. Then if s ≤ n − k we would get t + s ≤ n. Therefore

n− k < s. If k = n− (n− k) ≤ s then we would get n = n− k + k < s. Therefore
n− k < s implies s < k and hence t+ s < 2k ≤ n.Contradiction.

Assume that k < t. Since

x ∈
⊕
a≤k
or

b≤n−k

(Wa ⊗Wb)

we deduce that s ≤ n− k. Now if n− k ≤ t we would get n = n− k + k < t. Thus
t < n − k and hence t + s < n − k + n − k = n + n − 2k ≤ n + 1. Contradiction.
Therefore (15.4) is proved. Let us show that

(15.5)
⊕

a+b≤n+1

(Wa ⊗Wb) =
n∑
i=1

Vi ⊗ Vn+1−i.

In fact if a+ b ≤ n+ 1, then Wb ⊆ Vn+1−a and hence

Wa ⊗Wb ⊆ Va ⊗ Vn+1−a.

On the other hand

Vi⊗Vn+1−i =

(
i⊕

a=1

Wa

)
⊗

(
n+1−i⊕
b=1

Wb

)
=

i⊕
a=1

n+1−i⊕
b=1

(Wa ⊗Wb) ⊆
⊕

a+b≤n+1

(Wa ⊗Wb) .
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Therefore we get

n∩
i=0

(V⊗Vn−i+Vi⊗V )
(15.3)
=

n∩
i=0

⊕
a≤i
or

b≤n−i

(Wa ⊗Wb)
(15.4)
=

⊕
a+b≤n+1

(Wa ⊗Wb)
(15.5)
=

n∑
i=1

Vi⊗Vn+1−i.

Lemma 15.5. Let D be a subspace of a vector space C over a field k and let I, J,X
and Y be subspaces of D. Then we have:

(I ⊗D +D ⊗ J) ∩ (X ⊗ Y ) = (I ∩X)⊗ Y +X ⊗ (J ∩ Y )

In particular for D = C and X = Y = E we get

(I ⊗ C + C ⊗ J) ∩ (E ⊗ E) = (I ∩ E)⊗ E + E ⊗ (J ∩ E).

Proof. Let pI : D → D/I and pJ : D → D/J be the canonical projections. Then
we have

(I ⊗D +D ⊗ J) ∩ (X ⊗ Y ) = Ker (pI ⊗ pJ) ∩ (X ⊗ Y ) = Ker (pI ⊗ pJ)|X⊗Y =

= Ker
(
pI|X ⊗ pJ |Y

)
= Ker

(
pI|X

)
⊗ Y +X ⊗Ker

(
pJ |Y

)
=

= (I ∩X)⊗ Y +X ⊗ (J ∩ Y ) .

Lemma 15.6. Let (W 1
i )i∈I be a finite family of subspaces of a vector space V1 and

let (W 1
i )i∈I be a finite family of subspaces of a vector space V2. Then

∩
j∈J,i∈I

(
V1 ⊗W 2

j +W 1
i ⊗ V2

)
= V1 ⊗

(∩
j∈J

W 2
j

)
+

(∩
i∈I

W 1
i

)
⊗ V2.

Proof. For every i ∈ I and j ∈ J , let p1i : V1 → V1/W
1
i and p2j : V2 → V2/W

2
j be the

canonical projection. Then

V1 ⊗W 2
j +W 1

i ⊗ V2 = Ker
(
p1i ⊗ p2j

)
so that ∩

j∈J,i∈I

(
V1 ⊗W 2

j +W 1
i ⊗ V2

)
=

∩
i∈I,j∈J

Ker
(
p1i ⊗ p2j

)
= Ker (∆)

where

∆ : V1 ⊗ V2 →
∏

i∈I,j∈J

V1/W
1
i ⊗ V2/W

2
j
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is the diagonal morphism of the family
(
p1i ⊗ p2j

)
i∈I,j∈J . Let ∆1 : V1 →

∏
i∈I
V1/W

1
i

be the diagonal morphism of the family (p1i )i∈I and let ∆2 : V2 →
∏
j∈J

V2/W
2
j be the

diagonal morphism of the family
(
p2j
)
j∈I . Let

Φ :
∏

i∈I,j∈J

V1/W
1
i ⊗ V2/W

2
j →

∏
i∈I

V1/W
1
i ⊗

∏
j∈J

V2/W
2
j

be the canonical isomorphism. Then

Ker (∆) = Ker (Φ ◦∆) = Ker (∆1 ⊗∆2)

Therefore we obtain∩
j∈J,i∈I

(
V1 ⊗W 2

j +W 1
i ⊗ V2

)
= Ker (∆1 ⊗∆2) = V1 ⊗Ker (∆2) + Ker (∆1)⊗ V2 =

= V1 ⊗

(∩
j∈J

W 2
j

)
+

(∩
i∈I

W 1
i

)
⊗ V2.
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