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Chapter 1

Categories and Functors

Definition 1.1. A category C consists of:

1) a class of objects denoted by Ob (C).

2) for every C1,Cy € Ob(C) a set Home (Cy,Cy), called the set of morphisms
from C4 to Cy

3) for every Cy,Cy,C5 € Ob (C) there is a map
o: Home(Cy,Cy) x Home (Co, C3) — Home (C1, C3)

(f9) — go f called the composite of g and f

satisfying the following conditions:
1) Zf (Cl, 02) 7& (Cg, 04), HOIHC (Cl, Cg) N HOIIlc (03, 04) = @,’
2) if h € Home (C5,Cy), ho(go f) = (hog)o f;

3) for every C € Ob(C), there exists Idc € Home (C,C) such that for every
f c Homc (C, Cl), f o IdC = f = Idc/ o f

We also write f: Cy — Cy or C i> Cy instead of f € Home (Cy, Cs).
Moreover if C' € Ob (C), we will simply write C' € C.

Example 1.2. Sets, together with functions between sets, form the category Sets.
For every algebraic structure you can consider its category: take sets endowed with
that algebraic structure as objects and take morphisms between two objects as mor-
phisms. In this way, you obtain the category of groups, Grps, of rings, Rings, of
right R-modules, Mod-R and so on.

Definition 1.3. A category is called small if the class of its objects is a set; discrete
if, given two objects Cy,Cy, if C1 = Cy then Home (C1,Cy) = {Id¢g, }, if C1 # Cs
then Home (C4, Cy) = &. Let C be a category.

The opposite category of a category C is the category C°P where Ob (C°P) =0Ob(C)
and Homeor (C, Cy) = Home (Cy, C).
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Definition 1.4. A subcategory D of a category C is a category such that Ob (D) C
Ob (C) and for every D1, Dy € D, Homp (Dq, Ds) C Home (Dq, Dy). When the
inclusion is an equality, D s called full subcategory of C.

Definition 1.5. Let C be a category. A morphism C EEIN Cs is an isomorphism if
there exists a morphism Cy — Cy such that f o g =1Id¢, and go f = Idg,.

Remark 1.6. Let f : Cy — Cs be an isomorphism in a category C and let g,q :
Cy — C1 be such that fog=1dc, = fog and go f =1de, = ¢’ o f. Then we have

g =g oldg,=g'o(fog)=(4of)og=1dc,0g=y.
Hence there ezists a unique morphism g : Co — Cy be such that fog = Ide, and

go f=1dg,. This unique morphism will be denoted by f~1.
Definition 1.7. Let A, B €C and f: A — B, then

e f is a monomorphism if, for every gi,go : C —> A such that f o g, = f o g,
we have g1 = go;

e f is an epimorphism if, for every g1,9o : B — C' such that g1 o f = go 0 f,
we have g1 = gs.

Proposition 1.8. Let A,B € C and let f : A — B. If [ is an isomorphism then
f is a monomorphism and an epimorphism.

Proof. Since f is an isomorphism, there exists a morphism f~! which is a two-sided
inverse of f. First we prove that f is a monomorphism. Let g1,92 : C — A be a
morphism such that fog; = fogs. Then, by composing to the left with f~! we get
fltofogi = f~to fogy and thus g, = go, i.e. f is a monomorphism. Now we want
to prove that f is an epimorphism. Let g;,¢92 : B — C' such that gy o f = g9 0 f.
By composing to the right with f~! we get g1 0 fo f71 = gy 0 f o f~! from which
follows g1 = g9, i.e. f is an epimorphism. O]

Exercise 1.9. Let f : A — B and g : B — C be morphisms in a category C .
Then

e if both f and g are monomorphisms, also g o f is a monomorphism;
e if both f and g are epimorphisms, also g o f is an epimorphism.

Remark 1.10. The converse of Proposition I8 doesn’t hold in general, such as
in the case of the inclusion Z — Q in the category of rings. In fact, let C be the
category of rings, let

17— Q
be the canonical inclusion and let hy, hy : Q — A be such that

h1

Z—-Q A

ho



hi ot = hyoi. We will prove that hy = hy. Let m € Z and let n € N, n # 0. Since
hj is a morphism of rings for j = 1,2, we have that
n 1
1A = hj (1) = hj (ﬁ) = h,j (n) hj E and also

n 1

1= = (2) =y (3) w0

n n

so that

Therefore we get

()= () = = = (2) 12

that ©s hy = hy so that v is an epimorphism. Now, let g1,g : R — 7

g1

R

Z*l>(@

92

be such thatio g, =10 gy. Then g1 = go t.e. 1 is also a monomorphism. Note that
1 18 not an isomorphism: a non-zero group morphism

f:Q—27Z

does not exists since Q is divisible but Z is not. In fact, assume there exists a group
morphism
f:D—2Z7Z

where D s divisible. By definition of divisible group, for every n € N, nD = D.
Since f is a group morphism, f (D) C Z and thus f (D) = tZ for some t € N\ {0}.
Since f is a group morphism and D is divisible we have that

nf (D)= f(nD) = f (D) = iZ

and therefore
ntZ, =t7.

In particular, for every n € N, there exists y, € Z such that

t = ntyp,.
Forn =2 we get

t= Qtyg
and thus

1 =2y,

contradiction since 2 is not invertible in 7.
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Proposition 1.11. Let A be a ring and let f : L — M be a morphism in Mod-A.
Then

1) f is injective < f is a monomorphism in Mod-A.
2) f is surjective < f is an epimorphism in Mod-A.

3) f is an isomorphism < f is an isomorphism in Mod-A. < f is both a monomor-
phism and an epimorphism in Mod-A.

Proof. 1) = . It is trivial.
1) <= . Let x € L such that x # 0. Let us consider the morphism in Mod-A

hy : Ay — L, defined by setting h, (a) = za for every a € A.

Then
hy (1) =2 #0=0(z)
where 0 denotes the zero morphism from A to M. Since f is a monomorphism in
Mod-A, we get
foh,# foo.

It is easy to see that this implies

(f o hx) (1> # 0.

Since (f o hy) (1) = f (x) we conclude.
2) = . It is trivial.
2) < . Let p: M — M/Im(f) be the canonical projection. We have to prove
that M =Im (f) i.e. that p =0 where 0 : M — M/Im (f) is the zero morphism.
Since po f = 0o f and since f is an epimorphism in Mod-A, we get that p = 0.
3) It follows easily from 1) and 2). O

Notations 1.12. Let A be a ring. In view of the foregoing, from now on

e an injective homomorphism [ of right (left) A-modules will also be called a
monomorphism. We will also say that f is mono, for short.

e a surjective homomorphism of right (left) A-modules will also be called an
epimorphism. We will also say that f is mono, for short.

e a bijective homomorphism of right (left) A-modules will also be called an iso-
morphism. We will also say that f is iso, for short.

Definition 1.13. If C is a category, then we define a category C °P having the same
objects of C and setting

Homeer (C,C") = Home (C', C), for every C,C" € C.
[f f € HOmcop (07 C/) = HOIHC (Cla O) g € Homcop (Cla C//) = HOmC (OH7 Cl)

def
goce f = fog.



Definition 1.14. Let C and D be categories. A covariant functor F' : C — D
between C and D consists of

1) a collection of objects of D
(F(O))cec

2) a collection of morphisms in D
(F(f) : F(C1) — F(C2)) tetome(cr.0n) Jor every C1,Cr € C

such that
F(ldc) =1dpc) and F (go f) = F(g) o F (f)

for every morphism f € Home (C,Cy) and g € Home (Cy, C3).

Definition 1.15. Let C and D be categories. A contravariant functor F' : C — D
between C and D consists of

1) a collection of objects of D (F (C))cee
2) a collection of morphisms in D
(F(f) : F(C2) — F(C1)) tetiome(cr.0n) Jor every C1,Co €C

such that
F(lde) = ldpc) and F'(go f) = F(f)o F(g).

for every morphism f € Home (Cy,Cy) and g € Home (Cy, C3).

Proposition 1.16. Let C and D be categories. A contravariant functor F: C — D
is exactly a covariant functor F : C® — D (or F': C — D).

Examples 1.17.

Let aLr be an A-R-bimodule. Then we can consider the following functors.

1) The covariant functor Hompg (aLg,—) : Mod-R — Mod-A defined by setting
Hompg (4Lg, —) (Mg) = Hompg (4Lg, Mr) and Hompg (4Lg, —) (f) = Hompg (4Lg, f)
for every Mr € Mod-R and f morphism in Mod-R.
2) The covariant functor — @4 aLgr : Mod-A — Mod-R defined by setting
(= ®a aLlr) (Ma) = Ma®4 aLlr and (— ®a aLgr) (f) = f ®a alr

for every M4 € Mod-A and f morphism in Mod-A.
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3) The contravariant functor Hompg (—, ALg) : Mod-R — A-Mod defined by setting
Hompg (—, aLr) (Mgr) = Hompg (Mg, ALg) and Homp (—, ALr) (f) = Hompg (f, ALR)
for every Mr € Mod-R and f morphism in Mod-R.

Example 1.18. More generally, let C be a category and let A € C. Let us define the
functor h* = Home (A, e) : C — Sets mapping the object C to the set Home (A, C)

and the morphism Cy AN Cy to the map
hA (f) = Home (A, f) : Home (A,Cy) — Home (A, Cs)
(4-50a) — (A5abo)
Then h* is a functor. In fact:
o WA (Ide) (§) =1dg o & = € for every £ : A — C so that h (Id¢) = Idpacy;
)

o ht(go f) (&) =gofol =h(g)(fo&)=(h*(g)0h*(f)) (&), thush® (go f) =
h (g) o b (f).

Similarly, we can define a contravariant functor hy = Home (e, A) : C — Sets
which maps an object C € C to the set Home (C, A) and a morphism f : C; — Cy
to the map

ha(f) =Home (f,A): Home (Cy, A) — Hom¢ (Ch, A)

Lemma 1.19. Let F': C; — Cy and G : Cy — Cs, be functors. For every C' € C; we
set

GF (C) = G (F (C))

and for every morphism f : C7 — Csy we set

This gives rise to a functor GF' = G o F' : C; — C3 which is

1) covariant whenever both F' and G are covariant,
2) covariant whenever both F' and G are contravariant,
3) contravariant whenever F' is covariant and G is contravariant,

4) contravariant whenever F is contravariant and G is covariant.

Proof. Exercise. O



Notation 1.20. From now on, if not otherwise specified, the world func-
tor will mean covariant functor.

F
Definitions 1.21. Given two functors C = D, a functorial morphism (or natural
G

transformation) o : F' — G is a collection of morphims in D (F ) 2% @ (C)>c .
S

such that, for every C i> Cs,
ac, o F (f) =G (f)oac,

i.e. the following diagram
F(Cy) =G (Cy)
F(f)i J/G(f)
F(Ch) 557 G (Gy)
is commutative. « is called a functorial isomorphism (or natural equivalence) if,

for every C' € C, ac is an isomorphism in D. In this case the functors are called
isomorphic and we write ' = G.

Exercise 1.22. Let F,G,H : C — D be functors and leta : FF — G and f: G — H
be functorial morphisms. Show that the collection

6 o = (ﬂc o aC)CGC
is a functorial morphsm from H to F'.

Exercise 1.23. Let a : ' — G be a functorial isomorphism. Show that the collection
B = ((ac)fl)CGC is a functorial isomorphism from G to F.

Notation 1.24. Let o : F — G be a functorial isomorphism. Then the functorial
isomorphism (3 in Exercise TZ3 will be denoted by o~ L.

Example 1.25. Let C be a category and let t : Ay — Ay be a morphism in C. We
will define a functorial morphism h' = Home (t,e) : h2 = Home (Ay, e) — hht =
Home (A1, ®) by setting, for every C € C

[Homg (¢, )], = Home (t,C) : b2 (C') = Home (A3, C) — b (C) = Homg (A}, O)
(a: Ay = C)—(aot: Ay — C)

Let us check that Home (t, ®) is a functorial morphism. For every C' € C, we will set
[Home (t, )], = Home (¢,C) .
Let f : C; — Cy be a morphism in C. We have to prove that
Rt (f) o Home (t, Cy) = Home (t, Cy) o b2 (f).
Let a € Home (Ay, Cy). We compute
[hAl (f) o Home (¢,C1)] (a) = A (f) (Home (¢, Cy) (a)) = k' (f) (aot) = fo(aot) =
= (foa)ot=[n"2(f)(a)] ot = Home (t,Cs) (K2 (f) (a)) = [Home (t,C2) o b2 (f)] (a) .
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Exercise 1.26. Let C be a category and let t : Ay — As be a morphism in C.
Show that Home (t, ) : h2 = Home (As, @) — ht = Home (Ay, ) is a functorial
1somorphism if and only if t is an isomorphism in C.

Exercise 1.27. Let C be a category and let t : Ay — As be a morphism in C. Check
that hy = Home (e,t) : ha, — ha,, defined by setting, for every C' € C

[Home (e,t)], = Home (C,t) : ha, (C) = Home (C, A1) = ha, (C) = Home (C, Ay)
(a:C = Ay) = (toa:C — Ap)

1s a funtorial morphism.

Definitions 1.28. Let C e D be categories and let F' : C — D be a functor. Let
C1,Cy € C and consider the map

Fg;:Homc (01,02) — HOmD<F(Cl)aF(02))
fo= F(f)

The functor F is called
e faithful if FCCQ1 15 injective for every Cy,Cs € C;
o full if FCC; is surjective for every Cy,Cy € C.
Examples 1.29. Let C be a category and let A € C.
o The functor h* = Home (A, e) : C — Sets is faithful if and only if for every

!
parallel pair C; = Cy where f # g there exists A LN Cisuch that fo& # goé.

g
In this case A is called a generator for C.

e The functor hy = Home (8, A) : C — Sets is faithful if and only if for every
f

parallel pair Cy = Cy where f # g there exists Cy == A such that xof # xog.
g

In this case A is called a cogenerator for C.

Lemma 1.30. Let T : C — D be a functor and let C4 i> Cs be a morphism in C.

o If f is an isomorphism in C, then T (f) is an isomorphism in D.

o IfT is a full and faithful functor and T (f) is an isomorphism in D, then f is
an isomorphism in C.

Proof. If f is an isomorphism, there exists f~! and we have

T(f)oT () = T(fof™)=Tdg) =Idrc,
T(f)eT(f) = T(fof)=T(1de)=1Idrc,
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so that, we get
() =T"

Assume now that 7" is a full and faithful functor and 7' (f) is an isomorphism in
D. Then there exists h = T(f)~". Since T is full there exists a g in C such that
h =T (g). Then we have

T (Ide,) = ldp,y =hoT (f)=T(g9)oT (f)=T(gof).

Since 7' is faithful, we get Ide, = g o f. Similarly, one proves that f o g = Id¢, and
thus g = f~! O

Definitions 1.31. Let F': C — D be a functor. We say that

e F' is an equivalence of categories if there is a functor G : D — C such that
FG = 1dp and GF = 1d¢. In this case we also say that (F,G) is an equiva-
lence of categories.

e [ is an isomorphism of categories if there is a functor G : D — C such
that FG = Idp and GF = 1d¢. In this case we also say that (F,G) is an
isomorphism of categories .

Definitions 1.32. Two categories C and D are called

e cquivalent if there ezist functors F': C — D and G : D — C such that (F,G)
15 an equivalence of categories.

e isomorphic if there exist functors F: C — D and G : D — C such that (F, Q)
18 an isomorphism of categories

Theorem 1.33. LetT : C — D be a functor. Then T is an equivalence of categories
if and only if T is full, faithful and, for every D € D, there exist C € C and an

isomorphism T (C) D

Proof. Assume first that 7' is an equivalence. Then there exist a functor S': D — C
and functorial isomorphisms a : ST — Id¢ and 3 : T'S — Idp.
T is faithful. Let f, f' € Home (Cy, Cs) with T (f) = T (f’). Then ST (f) =

ST (f"). Since « is a functorial morphism we have
ac, OST(f) = anCI and ac, OST(f,) = f/O@a

i.e. the diagram
acl

ST (Ol) — 01
ST(f)=ST(f/)i f’lf

ac,

ST (Cy) "2 O,
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is commutative. Since « is an isomorphism we deduce that
f=ac,oS8T(f)oag "= ag, 0 ST (f)oag! = £,
T is full. Let T (Cy) -2 T (Cy). We set
g=ac, 08 (h)oag €Home (C,Ch).
Since « is a functorial morphism we have
ac, 0 ST (9) = goacg

i.e. the diagram
ag

ST (Cl) ;> 01
S(h)ST(g)i lg
ST (Cy) — Cs.

aCZ

is commutative. Since a a functorial isomorphism, we deduce that
ST (9) = aglogoac, = S (h).

Since T is an equivalence, so is S. Then, by the previous step, we have that S is
faithful, so that we deduce that h =T (g).
Now, for every D € D we set C' = S (D) € C and {p = fp : T'S (D) — D.
Conversely assume that T is full, faithful and, for every D € D, there exists
C' € C and an isomorphism 7" (C) SLNYY
Construction of S: D — C. Let D € D, we set S(D) = C, where C € C is
such that there exists an isomorphism 7" (C') 2y D. Here we applied the Axiom of
Choice. Let f: Dy — Dy and consider the morphism

=& ofolp, : T (Cr) — T(Cy)

Since T is full, there exists a morphism f” : C; — Cy such that T'(f”) = f’. Since
T is faithful, f” is unique with respect to this proeperty. Thus we set S (f) = f”.
Hence S (f) is uniquely determined by

(1.1) T(S(f)) =¢p,ofo&p,

S is a functor. Let f: Dy — D, and g : Dy — D3 be morphisms in D. We
have

T(S(f) S €5l o fotp and T (S () B &5l ogon,

i.e. the following diagram

D,—! -p,— 2 .p,
TﬁDl T£D2 T£D3
T(C) 7575 T (Co) 55T (Cs),
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commutes. We deduce that

T(S(g)oS(f) = TS(9)oTS(f)=({p,090Ep,) 0 (Ep, 0 f0én,) =
)

= &logofotn D T(S(gof))

so that
T(S5(9)oS(f))=T(S(gof)).

We note that both S (g) oS (f) and S (g o f) are element of Homp (7' (Cy), T (Cy)).
Thus, since T is faithful, we obtain that S (g) o S (f) = S (g o f). Moreover, from

T (S (Idp)) = &5 o ldp 0 &p = Idpspy) = T (Ids(p))

we deduce that S (Idp) = Idg(p).

Construction of a: ST — Ide. For every C € C we need to construct an

isomorphism ST (C) =% C. By definition of ST (C), there exists an isomorphism

TST (C) Qo (C). Since T is full and faithful, there exists a unique morphism

ST (C) 2% C such that T (a¢) = Er(c)-

We will prove that (o) is a functorial isomorphism.

a is a functorial morphism. We have to prove that, for every morphism
h:Cy— CyinC,
hoao, = ag, o ST (h)

i.e. the following diagram
ac

ST (C}) —2= ¢y

ST(h)l lh
(

ST (Cy) —= Cb.

QC2

is commutative. By applying T', we have

T(h, o &Cl) = T(h) o T(Oécl)
= T(h) oéT(Cl)

and

T (ag, 0 ST (h)) =T (ac,) o TST (h)
= fT(Cz) @) TST (h) .

By definition of ST (h), we have

(=)

T (ST (h)) = 57_“(102) oT (h)o Ericy)
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and thus we get

T(ac, o ST (h)) = &r(cy) o TST (h)
= &1 © &y © T (R) © éron
T (h) o &r(cy)
T (h ° aC1>
ie.
T (hoac,) = T(ac, o ST (h).
Since T is faithful we conclude that « is a functorial morphism.

a is a functorial isomorphism. Since {7(c) is an isomorphism and {7y =
T (a¢), by applying Lemma 230 to the case ” f” = «a¢, we get that ac is an
isomorphism.

Construction of 3: TS — Idp. Let us consider

p= (§D>DED‘

£ is a functorial morphism. Let f : D; — D, be a morphism in D. By
definition of S (f) we get that

€0, 0TS (f) = €p, 0 (€p1 0 fotp,) = fon,
and hence we deduce that
SDQ OTS(f) :fong'

g is a functorial isomorphism. Since each £p is an isomorphism, we deduce
that g is a functorial isomorphism. m



Chapter 2

Yoneda Lemma

Theorem 2.1 (Yoneda Lemma). Let F': C — Sets be a contravariant functor. Let
A € C and let us consider the contravariant functor

ha = Home (o, A) : C — Sets
introduced in Example TI8. Let Hom (ha, F') be the collection of functorial mor-
phisms from hy to F. Set
o : Hom (hy, F) —  F(A)
(ha 5 F) — Talidy),

ol is a bijection and it is natural in A and F where

o off natural in A means that of : Hom (he, F) — F is a functorial morphism
between functors from C to Sets.

e of{ natural in F means that o : Hom (h4, ) — e (A) is a functorial morphism
between functors from Hom (C, Sets) to Sets.

: F'(A) — Hom (ha, F'). Let x € F'(A). For

Proof. Construction of 5 = (ai)_l

every object C'in C, we set
fx)e : ha(C)— F(C)
B@)c (f) = F(f)(x) for every f € ha(C)=Home (C, A)

f (z) is a functorial morphism for every =z € F'(A). Let x € F(A). For
every morphism g : C; — Cy in C, we have to prove that

2

F(g)op (@cz = (x)cl ohal(g).
i.e. that the following diagram

B(@)c,
ha(Cy) —2 F (Cy)

hA(g)J/ lF (9)

hA (Cl)m) F (01)

15
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commutes. Let f € Home (Cy, A). We compute
[F(9)0 B(2)c,] () = F (9) (8 (2)c, () =

and

so that we get

[F(9) 0 B(2)c,] (f) = [B ()¢, o hal(g)] (f)
Since this holds for every f € Homge (Ca, A), we deduce that F'(g) o B (v),, =
B (x)cl oha(g).

Boak =Iduom(ha,r). Let I' : hy — F be a functorial morphism. Then for
every f:Cy — C5 morphism C we have

Loy oha(f) = F(f)olc,.
In particular, for every f : C' — A we have
(2.1) Lcoha(f)=F(f)ola.
Let us recall that ha (f) (t) =t o f for every t € Home (A, A) . Therefore we get

Lo (f) =To(Idao f) =Tc (ha(f)(Ida)) =
()

=[Tcoha(f)](Ida) ="[F(f)olal(Ids) = F (f) (Ta(Ida))
which yields
(2.2) Lo (f)=F(f)(Ta(Ida))

We have to prove that

(Boaj)(T) = Idtom(n,,ry (I') ie.
defoai

B(Ta(1d4)) “=* B (ol (T)) =T for every T' € Hom (ha, F).

For every C' € C and f : C' — A, we compute

B(Ta(da))e (f) S F(f)(Ta(lda))

Hence we deduce that (8o o) (T') = Iduomn,,r) (T') -
oaof3 =Idp(a). Let € F (A). We have

(@)

e (f).

defai

of (B (2) "= B(2), (1da) E F (Ida) (x) "B Tdpa) (2) = 2
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of is natural in A i.e. o : Hom(h,,F) — F is a functorial morphism
between functors from C to Sets.

First of all let us prove that Hom (he, F') is a contravariant functor from C
to Sets. For every A € C, let us set

Hom (he, F') (A) = Hom (hy, F)
and for every u: A — B let

Hom (he, F') (u) = Hom (hy, F') : Hom (hg, F') — Hom (ha, F')
(C':hg > F)— T'ohy:ha— F)

where h, = Home (e, u) : ha — hp was defined in Exercise Z2 by setting, for
every C' € C:

hy, = [Home (o, u)], = Home (C,u) : ha (C) = Home (C, A) = hp (C) = Home (C, B)

(a:C— A)— (uoa:C — B)

uc

We have

Hom (he, F') (Id4) = Hom (hia,, ') = Hom (Idp,, ) = Idtom(na,r) = Idtom(he,7)(4)-

Let now u: A — B and v : B — D be morphisms in C. We have to prove that
Hom (he, F') (v o u) ~ Hom (he, F') (u) o Hom (hs, F) (v)

ie.
Hom (hpoe, F) = Hom (hy, F) o Hom (hy, F) .

Let I' € Hom (hp, F'). We compute

[Hom (A, F') o Hom (h,, F')] (I') = Hom (h,, F') [Hom (h,, F') (I')] = Hom (h,,, F') (I" o h,) =
= T'oh,oh,

Let C' € C. Now for every a : C' — A we compute
(hy o hy) (a) = hy (hy(a)) =hy(uoa) =vo(uoa)=(vou)oa=hy,(a)
so that we get
[Hom (A, F') o Hom (hy, F)] (T') =T 0 hyo,, = Hom (hyeu, F) (T) .

Having established that Hom (he, F') is a contravariant functor from C to Sets,
let us prove that al’ : Hom (h,, ') — F is a functorial morphism. Let v : A — B
be a morphism in C. We have to prove that

F(u)oak = oy o Hom (h,, F)
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i.e. that the following diagram

okl

Hom (hg, F) 2~ F (B)
Hom(hu,F)i \LF(U)
Hom (hy, F) — F (A)

commutes. Let I': hg — F be a functorial morphism. Then we have
F(U)OFB :FAOhB(U)
so that we get
[F (u) o o] () = F (u) (af (1)) “2 F (1) (s (1d5) = [F (u) o '] (Idg) =
=[Taohp(u)](Idg) =T (hp (u) (Idg)) =Ts (Idgou) =4 (u)
and
[o)} o Hom (R, F)] (T') = oy (Hom (hy, F) (I')) = oy (T o hy,)
ey (Fohy)y(Ida) =Ta (hua(Ida)) =Ta(uolds) =14 (u).

ol is natural in F. Let ¢: F — G be a functorial morphism, we have to
prove that

Y40k = af o Hom (hy, )
i.e. that the following diagram

Hom (h4, )*>F(A)
Hom(hA,w)\L Ya
Hom (A4, G) —=G(A).

commutes. Let I' € Hom (h 4, F), we have

[a0af] (D) =24 (e () =" ¥4 (Ta(Ida))
and
[ o Hom (hy, )] () = o&f (Hom (ha, ) (') = a§ (o)

L (o), ()
=14 (L4 (Ida))

so that the diagram commutes and o is natural in F. ]
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Corollary 2.2. Let C be a category and let A, B € C. The map

X : Home (A, B) — Hom (hy, hg)
t— hy

15 bijective.
Proof. By Theorem B applied to F' = hp, we know that

o' . Hom (ha,hg) — hp(A) =Home (A, B)
(hAiﬂzB) — T4 (Ida),

aZB is a bijection and it is natural in A and B. For every t € Home¢ (A, B), let us
compute

(O/Z;B o X) ) =a? (x () = o () = hy, (1da) =t oIds =t = Idpome(an) (t) -

We deduce that
OCZB o X = IdHome(4,B)-

Since 0/;13 is bijective, we obtain that also x is bijective. O

Corollary 2.3. Lett : A — B be a morphism in C. Then t is an isomorphism if
and only if hy is a functorial isomorphism.

Proof. Assume that ¢ = h; is a functorial isomorphism. By Corollary 232, there
exists a morphism v : B — A in C such that

¢t = hy.
Using the notations of Corollary 222, we have

X(IdB) = hIdB:Ith:¢O¢_1:htohu:htou:X(tou)
x(Ids) = ha, =1dy, =0 o =h,0h =hue = x(uot).

In view of Corollary 24, we deduce that
Idg =towand Idy = uot.
Conversely assume that there exists v : B — A in C such that
Idg =towand Idy = uot.
Then, given f:C — A and g : C — B we have
(htohy) (f) =to(uof)=(tou)of=f

and
(huohy)(g9) =uo(tog)=(uot)og=g.



20 CHAPTER 2. YONEDA LEMMA

Corollary 2.4. Let A, B € C, then A= B if and only if ha = hp.

Proof. Assume that hy = hg. Then there exists a functorial morphism ¢ : hy — hp
such that ¢¢ is an isomorphism for every C' € C. By Corollary 2, there exists a
morphism ¢ : A — B such that ¢ = h;. By Corollary B3 we get that ¢ is an
isomorphism. The converse follows directly from Corollary Z72. [

In a similar way one can prove the following results.

Theorem 2.5 (Covariant Yoneda Lemma). Let F': C — Sets be a covariant functor.
Let A € C and let us consider the covariant functor

h* = Home (A, e) : C — Sets

introduced in Frample I8. Let Hom (hA,F) be the collection of functorial mor-
phisms from hy to F. Set

®y: F(A) —  Hom (h*,F)
t o O ()Rt F,

where

Ou(t)y : Home (A X)— F(X)
fo— F()Q)

® 4 is a bijection and it is natural in A i.e.
&, : ' — Hom (h*, F') is a functorial morphism between functors from C to Sets.

Corollary 2.6. Let C be a category and let A, B € C. The map

¢ : Home (A, B) — Hom (h”, h*)
t R

15 bijective

Corollary 2.7. Lett : A — B be a morphism in C. Then t is an isomorphism if
and only if h' is a functorial isomorphism.

Corollary 2.8. Let A,B € C, then A= B if and only if h* = hB.
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Abelian categories

3.1 Kernel

Lemma 3.1. Let C be a category and let f : A — B and g : B — D be morphisms
in C and let h=go f . Then

e f is a monomorphism whenever h is a monomorphism,

e g is an epimorphism whenever h is an epimorphism.

Proof. Let C' be an object of C, A, Ay : €' — A and &;,& : D — C be morphisms
in C. Assume that
f e} )\1 = f e} )\2.

Then we have
hod=gofodi=gofol="hol.

We deduce that Ay = Ay, whenever A is a monomorphisms.
Now, assume that & o g = & o g. Then we have

§ioh=§ogof=E&ogof=E&oh
We deduce that & = &, whenever h is an epimorphisms. O]

Definition 3.2. Let C be a category. Two morphisms f: A — B and f' : A —
B in C are called equivalent, denoted by f ~ f', if there exists an isomorphism
g: A— A" in C such that

i.e. the following diagram

15 commutative.

21
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Proposition 3.3. In the setting of Definition B2 we have

1) The relation ~ is an equivalence relation whose equivalent classes will be de-
noted by | ].

2) If f ~ f' then f is a monomorphism if and only if f' is a monomorphism.
3) If f ~ f' then f is an epimorphism if and only if ' is an epimorphism.

Proof. 1) it is trivial.
2) Since f ~ f’ there exists an isomorphism g : A — A’ such that

flog=1.

Assume that f is a monomorphism. Then, by Proposition ¥ and exercise [,
f' = fog!is a monomorphism. Conversely, assume that f’ is a monomorphism.
Then, by Proposition [ and exercise I, f = f’ o g is a monomorphism.

3) Similar to 2). O

Definition 3.4. Let C be a category and let C' € C. A subobject of C is an equiv-
alence class [i : A — C] where i is a monomorphism. We will however make an
abuse of notation (and language) by denoting a subobject by (A, 1) wherei: A — C
18 some representing monomorphism.

Definition 3.5. Let C be a category. Let h: A — B and h' : A — B’ are called
coequivalent , denoted by h ~ k', if there exists an isomorphism ¢ : B — B’ such
that

h'=Coh

i.e. the following diagram
¢

N

B B’

18 commutative

Proposition 3.6. In the setting of Definition B we have

1) The relation ~ is an equivalence relation whose equivalent classes will be de-
noted by ().

2) If h ~ R’ then h is a monomorphism if and only if h' is a monomorphism.
8) If h ~ K then h is an epimorphism if and only if ' is an epimorphism.

Proof. Dual to Proposition B33. O]
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Definition 3.7. Let C be a category and let C € C. A quotient of C' is an equivalence
class (p : C'— B) where p is an epimorphism. We will however make an abuse of
notation (and language) by denoting a quotient by (B, p) where p : C'— B is some
representing epimorphism.

Definitions 3.8. Let C be a category.
e An object X € C is called initial object of C if [Home (X,C)| = 1 for every

CelcC.

e An object Z € C is called final object of C if |Home (C,Z)| = 1 for every
CecC.

o If X = Z is both initial and final object of C then it is called zero of the
category C.

Example 3.9. In Mod-R, {0} is both initial and final object.

Example 3.10. In Rings, 7Z is initial object. In fact, for any ring R there exists a
unique ring morphism

f:Z—R
determined by f (n) =n- f(1z) =n- 1g.

Lemma 3.11. If an initial (final) object in a category C exists, then is unique up
to isomorphism.

Proof. Assume that X, X’ are initial objects for the category C. Then, for every
C € C there exists a unique morphism he : X — C and a unique morphism
ko : X' — C. In particular there exists a unique morphism Ay : X — X’ and a
unique morphism kyx : X’ — X. Then we get

IdX == hX = k'Xth/

and
IdX/ = kX’ = hX/ o ]fx.

Definition 3.12. A category C is called preadditive if

1) for every A, B € C, Home¢ (A, B) is an abelian group whose neutral element
will be denoted by 0% or simply by 0;
2) the composition of maps
Home (A, B) x Home (B, C') — Home (4, C)
(f,9)—=gof
1S a group morphism, i.e.
(g1+g)of=giof+gaof
go(fi+fo)=gofit+gofo
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Lemma 3.13. Let C be a preadditive category and let X be an object of C. Then the
following are equivalent

(a) X is an initial (final) object in C
(b) Home (X,C) = {08} (Home (C, X) = {05}) for every C € C.
If X is a zero object for C we will write X = Oc.

Lemma 3.14. Let C be a preadditive category. Then, for every morphism f: A —
B, we have
fo05 =05 and 05 o f = 02 for every C € C

Proof. We have
fo0G=fo(05+05)=fo0f+fo0f.

Since Home (C, B) is a group, we deduce that
fo09 =0%.
The other statement as an analogous proof. O]

Notation 3.15. Let C be a preadditive category and let A, B € C. From now on,
we will simply write 0 instead of 04 whenever there is no risk of confusion.

Proposition 3.16. Let C be a preadditive category and let f: A — B be a mor-
phism in C. Then

1) f is a monomorphism if and only if for every g : C' — A such that fog=0
we have g =0

2) f is an epimorphism if and only if for every h : B — D such that ho f =0
we have h = 0.

Proof. 1) Assume that f is a monomorphism and that there exists g such that
fog=0.In view of Lemma BT4, we have:

feg=0=7fo00.

Since f is a monomorphism we get that ¢ = 0. Conversely, assume that for every g
such that fog = 0 we have g = 0. Let g1, g2 such that fog; = fogs. Then we have
fo(g1 —g2) =0 and hence, in view of our assumptions, we get that g; — go = 0, i.e.
g1 = g2, so that f is a monomorphism.

2) Similar to 1). O

Definition 3.17. Let C be a preadditive category and let f : A — B be a morphism
in C. A kernel of f, if it exists, is a pair (K, k) where k: K — A satisfies:

1) fok=0
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2) universal property of the kernel: if £ : X — A is a morphism in C such that
fo& =0, there exists a morphism &' : X — K such that

§=kog
i.e. the following diagram
K k AL B
k\
é'/ h N /5
X

is commutative. Moreover, such & is unique with respect to this property.

Proposition 3.18. Let C be a preadditive category. If (K, k) is a kernel of f :
A — B, then k is a monomorphism.

Proof. Let (K,k) be a kernel of f. Let g : X — K be a morphism such that
ko g = 0. We have to prove that g = 0. We have

fokog(ﬂ::m)o

so that there exists a unique ¢’ : X — K such that kof’ = kog. Since kog = 0 = ko0
and &’ is unique with respect to the property ko’ = kog, we deduce that & =g =0
and thus k is a monomorphism. O]

Proposition 3.19. Let C be a preadditive category. Assume that (K, k) is a kernel
of f: A— B. Then given a pair (K', k') where k' : K — A, we have that

(K',K") is a kernel of f : A — B if and only if the morphisms k and k' are
equivalent.

Proof. Assume that (K', k') is a kernel of f: A — B. Since (K, k) is a kernel of f
and f o k' = 0, there exists a unique morphism v : K’ — K such that

K =kon.

Since (K’, k') is a kernel of f and fok = 0, there is a unique morphism 7' : K — K’
such that
k=kKo~y.

Therefore we obtain

koldy =k=Fkoy =koyoy
and

Eoldg =K =koy=£k oq on.
Since both (K, k) and (K, k) are kernels of f, by Proposition BI8, both k and &’

are monomorphisms so that we deduce that

vov =1Idg and 7' oy = Idg
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i.e. k is equivalent to k’.
Conversely assume that k& and k" are equivalent, i.e. there exists an isomorphism
A K — K’ such that k = k' o \. Since (K, k) is a kernel of f, we have

O=fok=fok' oA
and since A is an isomorphism, we deduce that
fok =0.

Now let € : X — A such that f o & = 0. Then there exists a unique morphism
& X — K such that £ = ko&. We have to prove that there exists a morphism
& . X — K’ such that £ = k' o £ and such £’ is unique with respect to this

property.
' K f
K A B
\ A k
\
\
é_l/ \\ ,[AS’ 5
¢
A
We have

E=kot =koldgo& =koltolo& =FKo¢"

where £” = Ao&’. We now have to prove that & is unique. Assume that &” : X — K’
is another morphism such that

E=FKog"

Then we have

=Kol =k oldg ol =K odod ol =koX o

and since
§=kog
where ¢’ is unique with respect to the property £ = k o &', we deduce that
f=x1oF
and thus

"=Xo& =XoXlogl=¢"
m
Notation 3.20. Let (K, k) be a kernel of a morphism f: A — B. Then, in view of
Proposition B3I, k is a monomorphism. Hence k is a representative monomorphism

of a subobject of A which will be denoted by Ker (f). We will also write (K, k) =

Ker (f) to mean that k is a representative of the equivalence class Ker (f) .
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Definition 3.21. Let C be a preadditive category and let f : A — B be a morphism
in C. A cokernel of f, if it exists, is a pair (Q, x) where x : B — Q salisfies:

1) xof=0

2) universal property of the cokernel: if n : B — Y is a morphism in C such
that no f =0 =0, there exists a morphism n' : Q — Y such that

n=nox

1.e. the following diagram

is commutative. Moreover, such n' is unique with respect to this property.

Proposition 3.22. If(Q, x) is a cokernel of f : A — B, then x is an epimorphism.

Proof. Let g : Q — Y be such that g o x = 0.We have to prove that ¢ = 0. We

have
g
goxof =0

so that there exists a unique morphism 7’ : Q — Y such that
gox=1ox

Since gox = 0 = 0oy and 7’ is unique with respect to the property that gox = n'ox,
we deduce that 7’ = g = 0 and thus y is an epimorphism. O]

Proposition 3.23. Assume that (Q, x) is a cokernel of f : A — B. Then given a
pair (@', x") where X' : B — @', we have that

(@', X)) is a cokernel of f : A — B if and only if the morphisms x and x' are
coequivalent.

Proof. Assume that (@', x’) is a cokernel of f. Since (Q,x) is a cokernel of f and
X' o f =0, there exists a unique morphism o : ) — @’ such that

X' =oox.

Since (@', X') is a cokernel of f and no f = 0, there is a unique morphism o’ : Q' — @
such that
x=0"ox
Therefore we obtain
Idgox=x=0"ox'=0d'00c0y
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and
Idgox'=x'=cox=000" 0y

Since both (@, x) and (@', x’) are cokernel of f, by Proposition BZ2, both y and y’
are epimorphisms so that we deduce that

cdoo=1Idy and ocoo' =Idy

i.e. x and Yy’ are equivalent morphisms.

Conversely assume that x and x’ are coequivalent i.e. there exists an isomor-
phism A : @ — @’ such that x’ = X o x. Since (Q, x) is a cokernel of f: A — B,
we have

Xof=Xoxof=Xo0=0.

Now let n : B — Y such that no f = 0. We have to prove that there exists
n” : Q" — Y such that n = n” o X’ and 7" is unique with respect to this property.
Since (Q, x) is a cokernel of f and no f = 0, there exists a unique ' :  — Y such
that n = 1’ o x. We have

n=nox=1nocldgox=nor"orox=n0r"ox =1"0x

where 1" = 1’ o A=1. We prove that such morphism 7" is unique. Assume that there
exists another morphism 7” : Q' — Y such that n = 7" o x'. We have

n=n"ox =n"cldgox =" 0loA oy =n"0Noy
and since
n=nox
where 71’ is unique with respect to the property n =7’ o x, we deduce that
W =1"o\

and thus

1

n=noXt=19q"
0

Notation 3.24. Let (Q,x) be a cokernel of a morphism f: A — B. Then, in view
of Proposition [ZZ3, x is an epimorphism. Hence x is a representative epimorphism
of a quotient of B which will be denote by Coker (f). We will also write (Q,x) =
Coker (f) to mean that x is a representative of the equivalent class Coker (f).

Theorem 3.25. Let C be a preadditive category with Oc and let f : A — B be a
morphism uin C.

1) Then f is a monomorphism if and only if Ker (f) = (Oc, 0?4‘3).

2) Then f is an epimorphism if and only if Coker (f) = (OC, OOB;).
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Proof. 1) Assume that Ker (f) exists. Suppose that f is a monomorphism. Since
C is a preadditive category, by Lemma BT4, we have f o OOAC = O%C. Let now
€: X — A such that fo& = 0%. Since we also have fo 0% = 0% = fo¢ and f is
a monomorphism, we deduce that £ = 0% and hence we get

¢ =0% =0% o0

Since O¢ is a final object, the unique & : X — 0% we can choose is Oé(c. Conversely
suppose that (OC,O%) = Ker (f) . Let £ : X — A such that fo& = 0%. . Then
there exists a unique morphism & : X — 0¢ such that OOAC ol =¢ ie. £=07.

2) Similar to 1). O

Proposition 3.26. Let C be a preadditive category with Oc and assume that for
every morphism in C there exist both kernel and cokernel. Then, if f: A — B is
a morphism in C and (K, k) = Ker (f) and (Q, x) = Coker (f) we have

1) (K, k) = KerCoker (k),
2) (Q, x) = CokerKer ().

Proof. 1) Let us set (W, w) = Coker (k). We have to prove that (K, k) = Ker (w).
Note that, by definition of, w we have wo k = 0. Let £ : X — A be a morphism
such that w o & = 0. We have to prove that there exists ¢ : X — K such that
& =ko¢& and such £ is unique with respect to this property.

K k A ! B
\\ / \ /1
fl\\ ¢ w //f/

X W,

Since (W, w) = Coker (k) and fok = 0, there exists a unique morphism f': W — B
such that f'ow = f, then

fot=fowot=fo0=0.

Since (K, k) = Ker (f) and f o £ = 0, there exists a unique morphism ¢ : X — K
such that

kot =¢.
2) Similar to 1). O

Lemma 3.27. Let C be a preadditive category with Oc and let A B cnc.

1) If g is a monomorphism and Ker (f) ezists, then Ker (f) = Ker(go f).

2) If f is an epimorphism and Coker (g) exists, then Coker (g) = Coker (g o f).
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Proof. 1) Let (K, k) = Ker (f). We prove that (K, k) = Ker(go f). By definition
of k we have fok = 0 so that we get go fok =0. Now, let £ : X — A gofo& =0.
Since g is a monomorphism we get that fo& = 0 and hence, since (K, k) = Ker (f),
there exists a unique morphism & : X — K’ such that £ = k' o ¢'.

2) Let (Q,x) = Coker(g) and let us prove that (Q,x) = Coker(go f). By
definition of y we have that 0 = x o g = 0 so that we get y ogo f = 0.Now let
n: C — Y such that nogo f = 0. Since f is an epimorphism, we get that nog = 0.
Since (@, x) = Coker (f), there exists a unique 1’ : Q — Y such that n = n'ox. O

Lemma 3.28. Let C be a preadditive category with Oc, let f : A — B be a morphism
and assume that there exist (K, k) = Ker (f) and (Q, x) = Coker (f). Let o : L —
K and 8 : (Q — P be isomorphisms. Then

1) (L koa) = Ker (f)
2) (P, ox) = Coker (f).
Proof. 1t follows by Propositions BET9 and B=23. [

Remark 3.29. Let C be a preadditive category with Oc, kernels and cokernels. Let
f:+A— B be a morphism in C and let (K, k) = Ker (f) and (Q, x) = Coker (f).
Let (Q', x") = Coker (k) and (K', k") = Ker (x):

f
K- A- B—X-0
Xll N Tk/
Q/*}>K/.

Since (K', k') = Ker (x) and xo f = 0, there exists a unique morphism p: A — K’
such that k' op = f; then 0 = fok = k' o pok and since k' is a monomorphism we
have pok = 0. As (Q',X') = Coker (k) there exists a unique morphism f : Q' — K’
such that f o X' = p. Finally we have

f=Kop=FKofox.
In general, f is not an isomorphism.

Definition 3.30. We say that a preadditive category C with Oc, kernels and cokernels

satisfies the Ab property if, for every morphism f, f as in Remark s an
1somorphism.

Definition 3.31. A preadditive category C with O¢, kernels and cokernels satisfying
the Ab property is called preabelian category.

Theorem 3.32. Let C be a preadditive category with Oc, kernels and cokernels. Then
C is preabelian, i.e. C satisfies the property Ab, if and only if for every morphism
f A — B there exist a kernel (X,€) and a cokernel (X,n) such that f =&omn. In
this case

(X, &) = KerCoker (f) and (X,n) = CokerKer (f).
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Proof. Let (I,k) = Ker (f) and (@,x) = Coker (), (K', ') = Ker (x), (@',x') =
Coker (k) and f : Q" — K’ as in Remark so that

f=FKofox

i.e. the following diagram

is commutative.

Assume first that C satisfies property Ab i.e. that f is an isomorphism. Then,
by Lemma BZ8, we have that (Q’, fo X/) = Coker (k). Thus f =K' o (? o X’) where
(K', k') is a kernel and (K, f o k') is a cokernel.

Conversely, assume that for every morphism f, there exist (X, &) = Ker (w) and
(X, n) = Coker (¢) such that f = £ on. Then we can consider the following diagram

K—*-A !
\ %

X' X
/’l \\

s N
/ A\

f

B—2-Q.
k/
B

K'.

Ql
Since ¢ is a kernel, € is a monomorphism so that, by Lemma B=Z7, we have
Ker (1) = Ker (€ o) = Ker (f) = (K, k).
Since 7 is a cokernel, then by Proposition we have
(X,n) = CokerKer (n) = Coker (k) .

Since (@', x") = Coker (k) and cokernels are unique up to isomorphism, there exists
an isomorphism « : ) — X such that

aox =mn.
Since 7 is a cokernel, n is an epimorphism so that, by Lemma B=X1, we have
Coker (§) = Coker (€ on) = Coker (f) = (Q, x) -
Since ¢ is a kernel, by Proposition BZ24,

(X, &) = KerCoker (§) = Ker (x) .
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Since Ker (x) = (K’, k'), then there exists an isomorphism S : X — K’ such that
Kop=¢.

Then we have

and
f=ton=KoBoaoy

and since k' is a kernel and thus a monomorphism and y’ is a cokernel and so an
epimorphism, we deduce that

f=poa

where o and [ are isomorphism. Therefore f is also an isomorphism. O

0% 0B
Lemma 3.33. Consider the morphisms Z — A YA A and B2 B W in a
preadditive category C with Oc, kernels and cokernels. We have

(A,1d4) = Coker (04) and (B,ldg) = Ker (0}}).

Proof. Clearly Id4 o 04 = 04. Now, let n : A — Y such that no 04 = 0Z.
Clearly n = nolds. Let ¥ : A — Y such that n = 7’ o Ids. Then ' = 5. Thus
(A,Ida) = Coker (0%) .

Clearly 05, oIdg = 05,. Let A : X — B be a morphism such that 05 o A = 05,.
Then, of course, we have Idg o A = A and thus (B, Idg) = Ker (O{?V). O

Proposition 3.34. Let C be a preabelian category and let f: A —> B. Then

1) f is an isomorphism if and only if f is a monomorphism and an epimorphism;
2) f is a monomorphism if and only if (A, f) = KerCoker (f);

3) [ is an epimorphism if and only if (B, f) = CokerKer (f).

Proof. 1) In view of Proposition R, we already know that an isomorphism is both
a monomorphism and an epimorphism .

Conversely, let f be a monomorphism and an epimorphism. Then, by Theorem
B3, we have Ker (f) = (0c, OOAC) and Coker (f) = (O, OOB;). Since by Lemma
Ker (O(’i) = (B,1dg) and Coker (0?40) = (A,1d,), the decomposition of Remark
is given by f = Idg o f oIdy = f which is an isomorphism since C is preabelian.
Thus f is an isomorphism.

2) Assume that f is a monomorphism. By Theorem B=32,

f=¢&on.
where (X, &) = KerCoker (f) and (X, n) = CokerKer (f).
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Since f is a monomorphism, by Lemma BT, also 7 is a monomorphism. Since
(X,n) is a cokernel, by Proposition BZ2, n is an epimorphism. Therefore, by 1), n
is an isomorphism so that, in view of 1) in Lemma BZR, we get

KerCoker (f) = (A,£on) = (A, f).

Conversely if (A, f) = KerCoker (f), then, by Proposition BI8, f is a monomor-
phism
3) It is analogous to 2) and it is left as an exercise to the reader. O

Definitions 3.35. Let C be a preadditive category C with O¢, kernels and cokernels

e Theimage of a morphism f, that will be denoted by Im (f), is defined by setting

Im (f) = KerCoker (f).

e The coimage of a morphism f, that will be denoted by Coim (f), is defined by
setting

Coim (f) = CokerKer (f).

Corollary 3.36. Let C be a preabelian category and let f : A — B be a morphism
in C. Then

Im (f) = Coim (f).
Moreover
1) f is a monomorphism if and only if Im (f) = (A, f).
2) f is an epimorphism if and only if Coim (f) = (B, f).

Proof. The first statement follows by the property Ab. 1) and 2) are obtained by
applying Proposition BZ34. [

3.2 Products, Coproducts and Biproducts

Definition 3.37. Let (Cj),.; be a family of objects in the category C. A product of
such a family in C is an ordered pair (P, (m)iel) where

1) PecC
2) m;: P — C; is a morphism in C for every i € I

8) if (fi);er is a family of morphisms in C where f; : X — Cj, then there exists
a unique morphism f : X — P such that

mof=fi
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for every i € I, i.e. the following diagrams
P
f /4 X
7
Ve

X fi

;.
are commutative.

Theorem 3.38. Let (P, (m;),;) and (P, (7}),c;) be products in the category C of
the family (C;),c; - Then there exists a morphism o : P' — P such that m;0 a0 = 7]
for every i € I. Moreover this morphism is unique with respect to this property and
it is an isomorphism.

Proof. Apply definition of product to (P, (75)c I) and ” f;” = w. Then there exists
a unique morphism « : P* — P such that m; o « = 7 for every i € I. Now, apply
definition of product to (P’ , (ﬂg)id) and " f;” = m;. Then there exists a unique
morphism 3 : P — P’ such that 7} o § = m;. Then we have

moaofB=m and o foa=m..

p_f.p_ . p
c, .

By definition of product there exists a unique morphism f : P — P such that
m; o f = m;. Since

moldp =m =m0 (aof),
we get « o § = Idp. Similarly, there exists a unique morphism f : P — P’ such
that 7} o f = 7}. Since

moldp =7 =mo(foa),
we deduce that g o o = Idp/. Therefore « is an isomorphism. m

Notation 3.39. In the following, we denote a product of the family (C;),c; in C by
(ITic; Ci, (m);cr). The unique morphism f is denoted by A (fi),c; and it is called

diagonal morphism of the family of morphisms (f;),c; -

Notation 3.40. Let C be a preadditive category C and assume that the product
(Hiel C;, (m)ig) of the family (C;),., ewists. For every j € I consider the family
of morphisms (85:),c; where §;; = Idc; if j =i and §j; = Ogj if 7 # i.We denote by
ej : Cj — [l,c; Ci the diagonal morphism of the family of morphisms (6;:),., . This
means that

el

moe; =00 :C; —Ci  ifi#]

7Tio€j:IdeZCj—>Cj Zf@:j
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Proposition 3.41. Let C be a preadditive category C. If the product (Hie[ C;, (m;)ie])
of the family (C;),, ewists, then every m; is an epimorphism.

Proof. Let us fix a j € I and let g,h : C; — X be such that
(3.1) gomj=hom;,.
We get
_ _ =) _ _
g=goldg, =gomjoe; = homjoe; =holdg, =h
and thus ; is an epimorphism. O

Exercise 3.42. Let C be a preadditive category C with Oc and assume that the product
(ITic; Cis (mi)ser) of the family (Ci),e; exists. Let

a,ﬁ:X—>HC’Z~

iel
be morphisms in C. Show that
a=p<=moa=m;of forevery. e I.

Definition 3.43. Let (Cj)jg be a family of objects in a category C. A coproduct
of such a family in C is an ordered pair (H, (ei)id) where

1) HeC
2) €;: C; — H is a morphism in C for every i € I

8) if (fi)ies s a family of morphisms in C where f; : C; — Y, then there exists
a unique morphism f: H — 'Y such that f oeg; = f; for every i € I, i.e. the
following diagrams

are commutative.

Theorem 3.44. Let (H, (c;),c;) and (H',(g}),c;) be coproducts of a family (C),.;
of objects in a category C. Then there exists a morphism o : H — H' such that
aoeg; = ¢, for every i € 1. Moreover this morphism is unique withrespect to this
property and it is an isomorphism.

Proof. Apply definition of coproduct to (H ,(€0);e 1) and ” f;” = €. Then there exists
a unique morphism « : H — H’ such that a o g; = €} for every i € I. Now, apply
definition of coproduct to (H ' (€1) e I) and 7 f;” = ;. Then there exists a unique
morphism 8 : H' — H such that f o] = ¢;. Then we have

foaoe; =¢; and aofoc, =¢.
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By definition of coproduct there exists a unique morphism f : H — H such that
foeg; =¢;. Since
Idyoeg;=¢;=(foa)og,

we get o« = Idy. Similarly, there exists a unique morphism f : H' — H' such
that fo = ¢]. Since

ldy o), =€, = (oo f)oe],
we deduce that o § = Idy:. Therefore « is an isomorphism. O

Remark 3.45. A coproduct of a family (C;),.; in C is a product of the family (C;)
in C°.

iel
Notation 3.46. We denote by ([1,c; Ci, (€:);c;) the coproduct of the family (C;),c,
in C and by V (f;);c; the unique morphism f and it is called codiagonal morphism.

Notation 3.47. Let C be a preadditive category C with O¢ and assume that the
coproduct (]_L.GI C;, (5i)ie1) of the family (C;),., exists. For every j € I consider the
family of morphisms (0j:),.; where 6;; = Id¢, if j =i and 0j = Ogj if 1 # k. We
denote by p; : [1,c; Ci — C; the codiagonal morphism of the family of morphisms
(0ji);e; - This means that

pjogi=0g :Ci—C;  ifi#]
ij€iZIdeZCj—>Cj ZfZ:j

Proposition 3.48. Let C be a preadditive category C. If the coproduct (11;c; Ci, (€1)ic;)
of the family (Cj),., exists, then every &; is a monomorphism.

Proof. Let us fix a j € I and let g,h : X — C; be such that
(3.2) gjog=cjoh.

We get
_ _ =) _ _

and thus €; is an monomorphism. O

Exercise 3.49. Let C be a preadditive category C and assume that the coproduct
(Hie[ Ci, (a)id) of the family (C;),c, ewists. Let

a, B HieIC’i —- X
be morphisms in C. Show that

a=p<= aog; =fog; forevery.r e l.
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Definition 3.50. Let C be a preadditive category with Oc, let I = {1,...,n} and
let (C;),e; be a family of objects in C. A biproduct of such a family in C is a triple
(Q: (€i)icr» (Mi)ser) where

1) QecC

2) e C; — Q and m; : Q —> C; are morphisms in C for every i € I such that

T O&; = Ojk E €kO7Tk:IdQ
kel

where 0, = Idc, if j =k and dj = Ogi ifj# k.

Lemma 3.51. Let (Q, (€:),c;, (mi);c;) be a biproductof a family (C;),c; of objects in
C where I = {1,...,n}. Then (Q, (£:);c;) is a coproduct of the family (C;),.; and
(Q. (7i),e;) is a product of the family (C;),; -

Proof. Let us show that (Q, (;),c;) is a coproduct of the family (C;),; . Let (f; : C; — X)
be a family of morphism in C. ]

el

Theorem 3.52. Let (Q, (€:);cr - (Ti);e;) and (@', ())icr, (7h);e;) be biproducts of a
family (C;),c; of objects in a preadditive category C where I = {1,...,n}. Then
there exists a morphism o : Q — Q' such that

aog; =¢, for everyi € I.

Moreover « is unique with respect to this property, and w o o = m; for every i € I
and o 18 an isomorphism.

Proof. By Lemma BEAQl, both (Q, (Ei)iel) and (Q’, (52)1‘61) are coproducts of the
family (C;);c;- By Theorem BZA, there is a morphism a : @ — @' such that
aog; = ¢, for every ¢ € I. Moreover this morphism is unique with respect to this
property and it is an isomorphism. We have

moa = moaoldg = W;O@OZ gjom; = Wgoz aogjom; = Z Tiogiom; = Z d;j0m; = ;.
jel jel jer jel
O
Notation 3.53. Let I = {1,...,n}. In the following, we denote by ( ><L,€I Ci, (€i)ier 5 (7TZ'>Z»€I>
the biproduct of the family (C;),.; in C.

Theorem 3.54. Let C be a preadditive category, let I = {1,...,n} and let (C;)
be a family of objects in C. The following statements are equivalent:

1€l

(a) there exists the product of the family (C;),c; in C;

(b) there exists the biproduct of the (C;),c; family in C;
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(c) there exists the coproduct of the family (C;),c; in C.

Moreover, if one of the statements holds, every product is a biproduct, every
coproduct is a biproduct and every biproduct is both product and coproduct in C.

Proof. (a) = (b). Consider the family of morphisms (e;),.; of notation BZ0. We
will prove that ([T,c; Ci, (€:);e; - (i),e;) is the biproduct of the family (C;),.; in C.
By construction, we have that

T; 0 €5 = 52

so that the first property of the biproduct holds. Now we have to prove that »,_; ezo
mp = Idy,_, ¢;- In fact we have

71'1-0(2 €kO7Tk>: E 7TiO€kO7Tk:E (5iko7rk:7rif0reveryz'ef

kel kel
Since we also have

m; © IdHieI ¢, = m;, for every i € I,
by the uniqueness of the morphism ¢ such
mot =m;, foreveryi eI,

that we deduce that
Zek O T = Idnielci.

kel
(b) = (a). It follows by Lemma B=31.

(c) = (b). .Consider the family of morphisms (p;);.; of notation BZ7 . We will
prove that ([1,c; Ci, (€:);c; » (Pi);c;) is the biproduct of the family (C;),.; in C. By
construction, we have that

pj © & = 0ij

so that the first property of the biproduct holds. Now we have to prove that ), ;€0
pr = Idpy,_, c,;- In fact we have

(Zskopk> ogi:ngopkogi:Z%o&k:&, for every ¢ € I,

kel kel kel

Since we also have
Idy,., ¢, o0& = ¢, for every i € I,

by the uniqueness of the morphism ¢ such
toe; =¢;, for every 1 € I,

that we deduce that
Z ELOPE = Iduiel Cii-

kel

b) = (c). It follows by Lemma BTl O]
(b) = () y

Definition 3.55. An abelian category is a preabelian category where every finite
family of objects has a product.
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3.3 Exact sequences

Definition 3.56. Let C be a preabelian category andlet f : A — Bandg: B — C
be morphisms in C. The sequence

ALt
is called exact if Ker (g) = Im (f).

Lemma 3.57. Let A X5 B -2 C' be an exact sequence in a preabelian category C.
Then

1) go f=0;
2) f is a monomorphism < (A, f) = Ker (g) ;
3) g is an epimorphism < (C, g) = Coker (f).

Proof. 1) Let (K, k) = Ker(g) and let (Q,x) = Coker (f). Since the sequence is
exact, we have

(K, k) =Ker(g) = Im (f) = KerCoker (f) = Ker (x) .

and x o f (@=LRD () there exists a unique morphism ¢ : A — K such that

f =ko& and thus
(K,k)::Ker(g)

gof=gokot 00&=0

since (K, k) = Ker (g).

2) If f is a monomorphism, by Proposition B34, we have (A, f) = KerCoker (f) =
Im (f) = Ker (g). The converse follows in vie of Proposition BTS.

3) If g is an epimorphism, by Proposition B34, we have

(C, g) = CokerKer (g) = CokerIm (f)
= CokerKerCoker (f) = Coker (f)

where the last equality holds by Proposition BZ3a since Coker (f) is an epimorphism.
The converse follows in view of Proposition BZ22. O

Definition 3.58. A sequence of morphisms

0c = C -1 ¢ 45 Cy = 0c
in a preabelian category C is called short exact if we have
1) 0c — Cy L0 is eract, i.e. Im (0%01) = Ker (f);

2) ¢ AN N Csy is exact, i.e. Im (f) = Ker (g);
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3) C % Cy — Oc is exact, i.e. Im (g) = Ker (OOCCQ) .

Lemma 3.59. Let C be a preabelian category. Then Ker (03) = (A,1da) and
Im (03) = (0c, 0%).

Proof. The first equality follows by Lemma BZ33. Moreover we have
Im (04) = KerCoker (03) = Ker (Idg) = (0c, 0%)
where the second equality follows by B=33 and the third one by Theorem BZ3 [

Lemma 3.60. Let C be a preabelian category and let f : A — B be a morphism in
C. Then the following are equivalent:

(a) f is an epimorphism;
(b) Im (f) = Ker (0g,);
(c) Im (f) = (B,1dp).

Proof. (a) = (b) In view of Theorem BZA f is an epimorphism if and only if
Coker (f) = (0¢,08.). Thusif f is an epimorphism, we have Im (f) = KerCoker (f) =
Ker (063;).

(b) < (c) By Lemma B39, Ker (0f,) = (B,1dg).

(¢) = (a) If Im (f) = Ker (0F,), we have

Coker (f) = CokerKerCoker (f) = Cokerlm (f) = Coker (Idg) = (0c,052) .
In view of Theorem B3, f is an epimorphism. O
Proposition 3.61. A sequence of morphisms

O0c — C1 —15 € %5 Cy — 0c

in a preabelian category C is short exact if and only if
1) (OC,OOCCI) = Ker (f) i.e. f is a monomorphism;
2) Im (f) = Ker(g);
3) Im(g) = (Cy,1de,) i.e. g is an epimorphism.
Proof. By Lemma B5d, we have Im (02531) = (Oc,()%‘jl) and Ker (00002) = (Cy,Idgy).

The, by Theorem BZ3 f is a monomorphism if and only if Ker (f) = (0, 02{) and
by Lemma g is an epimorphism if and only if Im (¢) = (Cs, Idc,) . O
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Proposition 3.62. A sequence of morphisms
0 — Cy 15 C 25 Cy — 0
in a preabelian category C is short exact if and only if

1) (Ch, f) = Ker(g);
2) (Cy,g9) = Coker (f).

Proof. Assume that the sequence is exact. Then, by Proposition BTG, f is mono,

g is epi. Then, since the sequence C SEINYG RN Cs is exact, by Lemma BL4, we
get (C1, f) = Ker(g) and (Cy,g) = Coker (f). Conversely, assume that 1) and 2)
hold. Then, by Proposition BIX, f is a monomorphism and, by Proposition B222, ¢
is an epimorphism. Moreover, in view of 2) Im (f) = KerCoker (f) = Ker (g). By
Proposition B&1, we conclude. [

Theorem 3.63. Let 0 — C4 NEANG RN Cy — 0¢ be an exact sequence in an

abelian category
A X

s~ ~ Vi ~
R B e e
e
X\ Y /
01X02,'

Then the following statements are equivalent:

Oc

(a) there exists A : C'— Cy such that Ao f =1d¢,, i.e. [ splits;
(b) there exists vy : Co — C' such that g oy = Ide,, i.e. g cosplits;
(c) there exists an isomorphism o : C' — ><ie{1,2} C; such that

ao f=¢e and Ty 0 = g.

If (a) holds, we can consider o = €1 0 A+ €90 g. If (b) holds, we can consider
al=fom +vyom,.

Proof. (a) = (c). We set I = {1,2}.
Construction of a. Assume that A\ : ' — €} and Ao f = Id¢,. Let

a=c10X+e90g0.

We have
aof=colof+eogof=croldg +e200=¢;

1.e.

(3.3) aof=e
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and

MO0 =Ty0E 0N+ Ty0E0g =g
ie.
(3.4) Te 0 = g.

We also have
MO =T 00N+ TMp0EQ0 g =\

ie.
(3.5) moa =M\
« is an epimorphism. Let £ : >§€I C; — X be a morphism such that
Eoa =0 then
Eoey (g)foaof:()

so that
0=foa=EfoegioA+Eoegog=E§oez0yg

and since ¢ is an epimorphism, we deduce that £ o g9 = 0. Then

f:goldxvgcﬁ,:50(61071'14—62071'2)

Xielci
=fogiom +§oeom=0g

i.e. «a is an epimorphism.
a is a monomorphism. Let ( : X — C be a morphism such that «o( = 0.
Then, composing with m, we have

OZWQOQOC(B:Z)QOC.

Since the given sequence is exact, by Proposition BB, we have that (C, f) =
Ker(g). By the universal property of the kernel, there exists a unique morphism
n: X — C} such that

Jon=¢

so that
0=aol=aofon = con.

Since ¢ is a monomorphism, we get that n = 0 and thus
(=fon=fo0=0,

i.e. avis a monomorphism. By Proposition BZ334, we deduce that « is an isomorphism.

(b) = (¢) -

Construction of 5. Assume there exists v : Co — C' such that

gon =lde,.
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Let
B=fom +7yom.

Then we have

Boel = (fom+yom)oe, = f
and

foey=(fom +yom)oey =1.

Moreover we have
gof=gofom+goyom=0o0m +Idg, om =

le.

(3.6) gof=m

f is an epimorphism. Let £ : ' — X be a morphism such that £ o 5 = 0. We
have to prove that & = 0. We have

Ozéoﬁzgoﬁoldxielg =§ofo(e10om +e30m)
=¢ofogiom +Eo0foegomy

=0oeciom +€oyom=Eoyom

and since 7, is an epimorphism we get that
Eoy=0.
Since ¢ is an epimorphism by Lemma B4 we have (Cy, g) = Coker (f) so that from
0=¢ofoer=¢of

we infer there exists a unique 77 : Co — X such that £ = no g. Then we have

n=mnoldg, =nogoy=§oy=0.

Thus
§=nog=00g=0.
£ is a monomorphism. Let (: X — )(ie ; C; be a morphism such that
B o =0, we have to prove that ( = O)§< .- We compute
iel '
mo(=gofo(=go0=0.

Then we have

C:Idx ciOC:(51O7T1+€207T2)0C:5107T1OC+5207T20C:€107T10C-
iel
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Moreover 0 = fo( = foegyom o = fom o( and since f is a monomorphism we
deduce that
mo(=0.

Thus
(=¢como(=¢c,00=0.

By Proposition B23, we deduce that 3 is an isomorphism. Set

a=p"

From
Boe = fand gof = m

we deduce that
aof=¢c and moa=yg.

(¢) = (a). Assume that there exists an isomorphism o : C' — X C; such

that

€{1,2}
aof=c¢ and Ty 0 = g.
We set A = m; o . Then

Aof=moaof=moe =Idg,.

(¢) = (b). Assume that there exists an isomorphism a : C' — Xe{m} C; such
that
aof=¢ and Ty o = g.

We set v = a~! o gy. Then we get
goy=goa 'ogy=moey =ldg,.
]

Definition 3.64. If one of the conditions in Theorem BG3 holds, we say that the
exact sequence

0 — Cy 15 € -4 ¢y — 0c
splits.
Corollary 3.65. The sequence

Oc—>011> >< Ci&CQ%OC
1€{1,2}

1 exact and splits.
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Proof. First we prove that the sequence is exact. By Proposition B8 and Propo-
sition BZM £; is a monomorphism and 7y is an epimorphism. Thus, Im(g;) =
KerCoker (¢1) = ¢;. We prove that (C,e1) = Ker(mg). We already have that
mpoe; = 0. Let £ : X — ><ie{12} C; such that m 0o & = 0. We have to prove
that there exists £ : X — C} such that & = g, o £&. We have
§:Id>< .0 =¢comof+eyomol =g omol.
ie{1,2} "
Thus we set & = m o&. Assume now that there exists another morphism E such that
€ =e,0&. Since also € = 1 0& and ¢, is a monomorphism, we deduce that € = £. In

order to prove that it splits let us consider A = m; or v = &5, from that we deduce

iefr,2y
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Limits and Colimits

4.1 Limits

Definition 4.1. A category is called small if the class of objects is actually a set.

Definition 4.2. Let F': Z — C be a covariant functor where I is a small category.
A cone on F is an ordered pair

(X7 (O‘I)Jez)

where
e X is an object of C
o (ar);er 95 a family of morphisms of C
o a;: X — F(I) foreveryl € T

such that for every morphism [ 25 Jin Z, the following diagram is commutative

X

VR
5 F(J).

F(I)

F

In this case the family of morphisms (o) o7 is called compatible with F.

Definition 4.3. Let F : T — C be a covariant functor where I is a small cate-
gory. A limit (also called projective limit) of the functor F is a cone (X, (ar);er)
on F satisfying the following universal property: for any cone (Y, (51)161) on F,
there exists a morphism & 'Y — X such that, for every I, the following diagram

commutes
Y d X.
SN
F (I ) .

Moreover such & is unique with respect to this property.

46
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Proposition 4.4. Let (X, (ar);o7) and (X', (o);c7) be limits of F. Then there
exists a unique morphism o : X' — X such that ajoa = oy for every I. Moreover
« s an isomorphism.

Proof. Exercise. m
Notation 4.5. In the following we denote by @F the limit of F' whenever it exists.

Example 4.6. Let Z be a small and discrete category (i.e. Hom (I, 1) = {Id;} and
Hom (I,J) = @ if I # J). Then a functor F : T — C identifies with a family (Ct) ;.1
of objects of C. In this case a cone on F' is an ordered pair (X, (O‘I)IGI) where

ay : X — Cr is a morphism in C for every I € T.

Therefore, in this case,

lim F =[] F (1)

1€l

Example 4.7. Let T = {I,J, K} with morphisms ul, : I — K and uj, : J —
K and the identity maps. Then a functor F' : T — C identifies with a couple of
morphisms

Y1=F(ug):Ci=F({)—=Cy=F(K),y2=F(u}) : Co=F(J) = C; =F(K).

A cone on F identifies with a 4-tuple (X,& : X — C1,& : X — Cy,&3: X — C3)
such that

Mo =& =7 0.

Thus a cone on F' further identifies with a triple (X, & : X — C1,& : X — C5) such
that

Y1081 =206,
In this case the limit of F' is a triple (P,m : P — Cy,my : P — C3) such that
Y1 OT1 = 72072
with the property that, given any triple (X, & : X — C1,& : X — C3) such that
Y1081 =208,
there exists a unique & : X — P such that
m ol =¢& and mp o = &s.

In this case @F is called the pullback of v and ~s.

If the arrival category is preadditive and v, = O?EQ), then a cone on F further

identifies with a pair (X, & : P — Cy) such that

Y2 © 52 = 0.
Consequently the pullback in this case is just Ker (7).
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Proposition 4.8. Let C be a preadditive category with Oc and let F : Z — C be
a covariant functor where T is a small category. Assume that C has kernels and
products of families of objects labeled by T or by Hom (Z), the set of morphisms
between objects of Z. Then @Fexists i C.

Proof. For every A € Hom (Z), A\ : I — J we set
s(A)=1Tand t(\) = J.

Let us consider the products

(HF ,(p1 H) and ] F« )+ (@) setom)

1eT AeHom(Z)

Note that, if A € Hom (Z), the diagram
[ier (1)

F(s(A)

F(X)
is, in general, non commutative. For every A € Hom (I) we set

m=F (N opsn —py : [[F () (t(N).
IeT

By the universal property of || reHom(z) £ (t(N)), there exists a unique morphism

=AM semom : | [ F D) — [] F
IeT AeHom(Z)
such that
(4.1) @ (n) o ™ = my for every A € Hom (7).
Let

(K, k) = Ker (m)
and, for every I € Z, set
kir=prok: K — F(I).

HAEHom(I) F(t (A))
x_-7 %\\
) -
K Myex 7 (1) . F((Y)

N2 pJ ,
\ /
e F(J) a

NoA

\ & v

NV
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We want to prove that
(K, (kI)IeI) - @F
(K, (k1);ez) is a cone. For every A € Hom (Z), we compute
F()\) o) ks()\) =F ()\) Ops()\) ok
Since (K, k) = Ker (7) we have

o
(F(A) opsny —rny) 0k =ma ok = Gy omok =qxo0=0

so that we get
F()\) opsix) Ok =pyny 0 k = ki)

which infers

F'(A) 0 ksny = k-
We prove that the universal property holds. Let (X , (&1) IGI) be a cone on F ie.
&y = F(X) 0 &) for every A € Hom (7).

Construction of ¢ :X — K. By the universal property of [[,.; F (1), there
exists a unique morphism

n=A¢)er: X — HF(I) such that py on = &; for every I € 7.
Iez

We want to prove that m on = 0 which is equivalent to g,y o m on = 0 for every
p € Hom (Z). For every p € Hom (Z) we have

Gy 0 mon = (F (1) 0 Dsuy) — Prwy) © 1M = F (1) © Do) © 1 — Peuy © 1
= F (1) 0 &y — &y = 0

where the last equality follows because (X, (£),.7) is a cone on F. Since (K, k) =
Ker (), by the universal property of the kernel, there exists a unique morphism
¢: X — K such that ko & = 1.

kyo& =¢; and € is unique. For every J € Z, we have:

kjof=pjokol=pjon=2¢;.

Now, let £ be another morphism such that
kjo& =¢&; for every J € I.

Then, for every J € Z, we have:

prokol =kjol =& =pson
which yields, in view of Exercise B22, that

ko& =n.

Then the universal property of the kernel infers that & = &. m
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Corollary 4.9. Let C be an abelian category. Then C has limits labeled by small
categories I such that Hom (Z) is a finite set. In particular C has pullbacks.

Proof. Since Hom (Z) is a finite set, also Ob (C) is finite. It follows by Proposition
IR. The last assertion follows in view of Example B72. O

Definition 4.10. A category C is called complete if for every small category T and
for every covariant functor F': T — C, there exists I&HF

Theorem 4.11. Let C be a preadditive category with Oc. Then C is complete if and
only if C has products and kernels.

Proof. In view of Example B8 and Example B4, if C is complete it has products
and kernels.

Conversely, let us assume that C has arbitrary products and kernels.

Let F': Z — C be a covariant functor. Then, by Proposition I3, l#mF exists in
C. O

Definition 4.12. Let (I,<) be a partially ordered set. We consider the small cat-
egory I = I (I,<) having I as the set of objects and whose homomorphism are
defined by setting

Homyz (i, j) = {u}} if and only if i < j.
A functor F' : I° — C is called inverse system in C labeled by Z =7 (1, <).

Definition 4.13. The limit of an inverse system F : Z° — C is called an inverse
limit.

4.14. Let (I,<) be a partially ordered set and let F : T — C be an inverse system
in C labeled by T =7 (I,<). For everyi € I set

C; = F (i)
and for every i,j € 1,1 < j, set
63 = F(u;) :C; — G for every i,5 € I,i < j.
Then we have

@goﬁ]’?:F(u?)oF(ui) :F(uioué) :F(uﬁc) = B for every i,j,k € I,i <j <k and

j
ﬁf = Id¢, for everyi e 1.

Hence an inverse system in C labeled by T =T (I, <) identifies with an ordered pair

((Ci)ie[ ) (Bg)i,jel,iﬁj)

where
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o (Ci)er is a family of objects of C,

° (5g)i,j€“.§j 1s a family of morphisms in C such that

/Bf:Cj—)Ci for everyi,j € 1,1 <.

550@1:/@5 for every 1,5,k € 1,1 <5<k and
Bt =1dg, for everyi € I.

Then an wnverse limit of such an inverse system is an ordered pair (L, ()‘i>iel)
where each \; : L — C; is a morphism in C such that

ﬂgO)\j:)\i for everyi,jel, i<y

and with the property that if X is a set and (&;),c; is a family of morphism
& o X — C; such that

Blo&=¢& foreveryi,jel,i<j
then there exists a unique morphism & : X — L such that
No&=¢& foreveryi € l.

In this case we denote this limit also by
@ ((Ci)ielv (ﬁij)i’jej,iSJ) :

Exercise 4.15. Let (I,<) = (N, <). Show that an inverse system in C labeled
by T = I (N, <) identifies with ((Cn),cn» (B2™),en) were (Cr),cnis a sequence of
objects and (6:{“)%1\] s a sequence of morphisms of C , where

Bt Chyy — Cy for every n € N.

Therefore an inverse limit for such an inverse system is a couple (L, ()\n)neN) where
each A\, : L — C,, is a morphism in C such that

n+1 o
Bn o )\n+1 - )\n

and with the property that if X is a set and (&,),cy 95 a family of morphism &, :
X — (), such that

S;H_l o €n+1 = fn

then there exists a unique morphism & : X — L such that
Ao & =E&, for everyn € N.
In this case we denote this limit also by
lim (G, B3), e

or even by

HmC,.
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Exercise 4.16. Let ((Cy), o, (B27),cn) be an inverse system in a category C with

arbitrary kernels and products. Let us consider the product
(H Cn’ (p”)nEN)
neN

of the family (C,), cn- For every m € N we set

Tm = Bm—’—l O Pm41 — Pm - H C,, — C,.
neN

Let m: [],en Cn—T1,nen Cm be the diagonal morphism of the (mpy,) Let

(K, k) = Ker (m).

Show that the limit of the inverse system ((Cp),cx > (B, en) i

(K, (pm o k), cn) -

Example 4.17. Let A be a ring and let J be a left ideal of a ring A. For every
n €N, let

Brtt . A/t s A"
be the left A-module homomorphism defined by

Bt (a+ 3" =a+ 3" for every a € A.

Then
(A1) e (B )

is an inverse system in A-Mod. We have

Hm A/3" = {(an +3") en € H AT B (apgr + 3" = a, + T for every n € N}

neN

- {(an +3")en € HA/ﬁ" | ans1 — an, € J" for every n € N} .

neN

If A is a commutative local ring and J is its mazimal ideal, then 1&1/1/ J"is called
completion of A in the J-adic topology.

Exercise 4.18. Show that if A = k[X]| and T = (X), then

lim 4/3" = k[[X]]



4.1. LIMITS 23

4.19. If T is a small category and C is an arbitrary category, one can define the
functor category Fun (IZ,C), whose objects are the functors F : T — C and the
morphisms are the functorial morphisms between such functors (Exercise: check
that Fun (Z,C) is a category). The set of all functorial morphisms F — G will be
written Hompy, (F,G). Note that Hompy, (F,G) is indeed a set since there is an
obuvious identification with a subset of

[[Home (F(1),G (1))

Definition 4.20. Let C and D be preadditive categories. A functor F': C — D is
called additive if, for all morphisms f,g: C — C' in C, we have

F(f+g9)=F(f)+F(g)

4.21. If T and C are preadditive categories and Z is small, we will denote by
Hom (Z,C) the full subcategory of Fun (Z,C) consisting of all additive functors.
Definition 4.22. Let F : C — D be an additive functor between abelian categories
C and D. We say that F' is e right exact if, for every exact sequence C' o
C" — 0 in C , the sequence F (C") P g () ) F(C") — 0 is exact in D.
Definition 4.23. Let F': C — D be an additive functor between abelian categories

O[/

C and D. We say that F is e left exact if, for every exact sequence 0 — C' —
cerine , the sequence 0 — F (C") ey F(C) ) p (C") is exact in D.

Oél

Exercise 4.24. Let ' : C — D be an additive functor and let 0 — C' —
C 25 C" — 0 be a split short exact sequence in C. Prove that the sequence
0— F(C) Hed) g (C) gy (C") — 0 is a split short exact sequence in D.

Remark 4.25. If ¢ : F' — G is a functorial morphism between covariant functors
from T to C which admit limits (Lm F, (O‘I)Iez) and (Lm G, (ﬂl)lez) respectively,
then the diagram,

1

P (1) G (I
Lm F F(X) G(N)
P(J) =G (]);

15 commutative i.e. LmF 18 a cone on G with morphisms ¢ro«ay. Then there exists
a unique morphism lim ¢ : lim [ — I'LHG such that

Jm ¢

et
1)

lim

mF
¢m

G (

I'&nG
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If C is complete we can consider the functor lgl :Fun (Z,C) — C.

Theorem 4.26. Let C be a complete preabelian category and let F,G,H : T — C be

functors, where T is a small category. Assume that F G H are functorial
morphisms such that, for every I € I, the sequence

0c — F(I) 25 G (1) 25 H (D)

1s exact. Then the sequence

. fmé Jmy
OC—>1&nF—>1£1G—>1£1H

18 also exact.

Proof. lim ¢ is a monomorphim. Let £ : X — LmF be a morphism such that
l'glgzﬁ o é: 0. Then, for every I € Z, we have

0=pro(lmg)of=¢roasof.
Since ¢y is a monomorphism, we deduce that,for every I € Z,
aroé =0

so that
£E=0.

Im (Lm QS) = Ker (@ w) . Since l&n ¢ is a monomorphism and C is preabelian
by Proposition BZ34, we have

(M F, @¢) = KerCoker (1&1 ¢) = Im (l&n ¢) .
Thus we have to prove that
(ln F. i 6) = Ker (jim ).
We prove that l'&nw o 1&1@5 = 0. In fact, for every I € Z,we have
Y1 © (lgmﬂolgmﬁ) =tropfrolim¢=1roproar =0
since by assumption the sequence 0c — F' (1) RINYE: (I) RINY 4 (I) is exact. Now,
let £: X — l'glG be a morphism such that 1&1@/} o0& = 0. Then, for every I € Z,

710@1/105 = 0 and thus 0 :’yIOI.&le€:@/}IOﬁIO€. We have to prove that
there exists &' : X —» l&nF such that & = l&qqﬁ o ¢’. Since ¢ is a monomorphism,
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we have (F' (I),¢;) = KerCoker (¢;) = Im (¢;) = Ker (¢;), thus, for every I € Z,
there exists a unique morphism X AR (I) such that ¢y o A\ = o &:

1

jim ¢ Lim )
0—lmF " lmG -~ ~lmH
\~\§’
e
ar X Br VI
2 Ar
0——=F(I) G(I)TH(I).

Then we have a family of morphisms (A\;). We prove that (X, (A;);c7) is a cone on

F. Given a morphism 5., we have to prove that \; = F (1) o Ar or equivalently
GgoA;=¢y0F (u)o A, since ¢y is a monomorphism. Since (1&1 G, (B1)rer) is a
cone on Gz, we have

proX; =810 =G (p)oBro§ =G (u)opro;=dyoF () oA
By the universal property of lim F', there exists a unique morphism & : X — lim F

such that ay o & = A;, for every I € Z. We now have to prove that l'&n(b of =¢.
For every I € Z, we have

ﬁlo@¢o§’:¢loalo§':¢IoAl :ﬂlof
from which we deduce that lim¢ o & = £. Assume now that there exists another

morphism &” such that 1£1¢ o ¢” = £. Since we also have 1£1gz5 o0& =¢ and 1£1¢ is
0

a monomorphism, we deduce that £” = ¢’.

4.2 Colimits

Definition 4.27. Let F' : T — C be a covariant functor where Z is a small category.
A cocone on F' is an ordered pair

(X> (aI)IeI)

where

e X s an object of C
o (ar);er s a family of morphisms of C

o ay: F(I)— X foreveryl €T
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such that for every morphism [ 25 Jin T, the following diagram is commutative

X )
RN
o F(J).

F(I)

F

In this case the family of morphisms (ay),c7 is called compatible with F.

Definition 4.28. Let F' : Z — C be a covariant functor where I is a small category.
A colimit (also called inductive limit) of the functor F is a cocone (X, (c);er)
on F' satisfying the following universal property: for any cocone (Y, (SI)IGI) on F,
there exists a morphism & : X — Y such that, for every I, the following diagram

commutes
F (I ) .
X
X < Y.

Moreover such & is unique with respect to this property.

Proposition 4.29. Let (X, (ar);7) and (X', (a));er) be limits of F. Then there
exists a unique isomorphism o« : X — X' such that a o ay = o for every I.
Moreover a is an isomorphism.

Proof. Exercise. O]

Notation 4.30. In the following we denote by hﬂF the colimit of F' whenever it
exists.

Example 4.31. Let Z be a small and discrete category (i.e. Hom (I,1) = {Id;}
and Hom (I, J) = @ if I # J). Then a functor F : T — C identifies with a family
(C1)er of objects of C. In this case a cocone on F is an ordered pair (X, (o) ;er)
where

ay : Cr — X 1s a morphism in C for every I € T.

Therefore, in this case,

lim F =[] F ().

1€l

Example 4.32. Let T = {I,J, K} with morphisms vk : K — I and v} : K —
J and the identity maps. Then a functor F : T — C identifies with a couple of
morphisms

h=F(vg):C3=F(K)—=Ci=F(),9=F (v}):C3=F(K) = Cy=F(J).

A cocone on F identifies with a 4-tuple (X, A1 : C1 = X, Ao : Cy — X, A3 : C3 — X))
such that
)\10191 :>\3:)\20192.
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Thus a cocone on F' further identifies with a triple (X, A\ : X — C1, A2 : X — ()
such that
A10191 :)\20192.

In this case the colimit of F is a triple (E,n : C1 — E,ny : Cy — FE) such that
oty =1 oy
with the property that, given any triple (X, A1 : C1 — X, Ay : Cy — X)) such that
A1 o) = Ag 01y,
there exists a unique \ : E — X such that
Aomn = A and Aony = Aa.

In this case th 1s called the pushout of ¥y and 5.
If the arrival category is preadditive and v¥9 = 0, then a cone on F further
identifies with a pair (X, A1 : Co — X)) such that

)\1 o ’191 = 0.
Consequently the pullback in this case is just Coker (7).

Definition 4.33. A category C is called cocomplete if for every small category T
and for every covariant functor F' : T — C, there exists hﬂF

Theorem 4.34. Let C be a preadditive category with Oc. Then C is cocomplete if
and only if C has coproducts and cokernels.

Proof. In view of Example B49 and Example B=32, if C is cocomplete it has coprod-
ucts and cokernels.

Conversely, let us assume that C has arbitrary coproducts and cokernels.

Let F': Z — C be a covariant functor.

Construction of lim . Denote by Hom (Z) the set of morphisms between
objects of Z. For every A € Hom (Z), A : [ — J we set

s(A)=1Tand t(\) =J.

Let us consider the coproducts

<H F (I) , (€I)I€I> and H F (S ()‘)) ) (eS(A)))\eHom(I)

1€ A€Hom(Z)

Note that, if A € Hom (Z), the diagram

Es(N)

ez (1)

FOY %

F (V)
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is, in general, non commutative. For every A € Hom (Z), we set

=& o F'(A) — &5 1 F(s(N) —>HF(I)-

1€l

By the universal property of []  F (s (\)), there exists a unique morphism

A€Hom(T)
1=V (1\) xcHom(D) : H F(s(A) — H F(I)
AEHom(Z) IeT
such that
(4.2) noey =ny for every A € Hom (7).
Let

(Q,x) = Coker (1)
and, for every I € Z, set

xr=xoer: K — F(I).

F (s (V) & e F (D) X Coker (5) = 0
- k4 \ \ g s
X _ - n \NEJ x.z//
- \
[ etom@ F (s(A)) N P
\ s
N s
\ lfJ Y
\ ¥
X

We want to prove that
(Q: (xr)jer) = lim I

(Q. (X1)7ez) is a cocone. For every A € Hom (Z), we compute
Xt © F'(A) = x o gny o ()

Since (@, x) = Coker () we have

xo (e 0 F(A) —€50n)) =X OM (E)XOUO€A =0o0ey=0
so that we get
X w0 F(A) = X o0& = Xs(n)
which infers
Xt © 1 (A) = Xsn)-
We prove that the universal property holds. Let (X , (&) Iez) be a cocone on F i.e.

&y © FL(A) = &) for every A € Hom (7).
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Construction of ¢ :Q—X. By the universal property of , there exists a
unique morphism

V=V (&) er HF(I) — X such that Y oe; = & for every I € .

1€l

We want to prove that ¥ o n = 0 which is equivalent to ¥ o poey = 0 for every
A € Hom (Z). For every A € Hom (Z) we have

Yonoey=von =000 F (X)) —doeyy
:gt()\)F(A) _ft(u) =0

where the last equality follows because (X, (£;),.7) is a cocone on F. Since (Q, x) =

Coker (n), by the universal property of the cokernel, there exists a unique morphism
£ : () — X such that £ oy = 41.
Eoxy=&; and ¢ is unique. For every J € Z, we have:

foxy =8oxoe;=voe; =¢;.

Now, let £ be another morphism such that
Eoyxy == &5 for every J € T.

Then, for every J € Z, we have:

oxoey=Eox; =& =Voey
which yields, in view of Exercise B9, that

ox=1.

Then the universal property of the cokernel infers that £ = . n

Definition 4.35. Let (I,<) be a partially ordered set. We consider the small cat-
egory T = Z(I1,<) having I as the set of objects and whose homomorphism are
defined by setting

Homz (i, 7) = {u;} if and only if i < j.
A functor F : T — C is called a direct system in C labeled by Z =7 (I, <).
Definition 4.36. The colimit of a direct system F' :Z — C is called a direct limit.

4.37. Let (1,<) be a partially ordered set and let F': T — C be a direct system in C
labeled by T =7 (I,<). For everyi € I set

C; = F (i)
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and for every i,j € 1,1 < j, set

7} = F(uz) :Cy = Cj foreveryi,jel,i<j.
Then we have

%JC'OW;-:F(U{C)oF(u;) :F(uiou;) :F(uﬁf) zy,ifor every 1,5,k € I,1 < j <k and
vi = 1de, for everyic I.

Hence a direct system in C labeled by T =T (1, <) identifies with an ordered pair
<(Ci)iel7 (Vé)i,jel,i§j>
where
o (Ci)er is a family of objects of C,
. (fy;.)ije”q is a family of morphisms in C such that

Vi Ci — C; for every i, j € 1,i < j.

Y0y = for every i, j k€ I,i < j <k and
vi = 1de, for everyic I.

Then a direct limit of such a direct system is an ordered pair (L, ()\i)iel) where
each \; : C; — L is a morphism in C such that

)\joy; =\ foreveryi,jel,i<j

and with the property that if X is a set and (&),c; is a family of morphism
& - Cy — X such that

o =& foreveryi,jel,i<j
then there exists a unique morphism & : L — X such that
Eon; =& for everyi € 1.

In this case we denote this direct limit also by

@ ((Ci)ie[’ (’yji')i,jel,iﬁj> '
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Remark 4.38. If ¢ : F' — G is a functorial morphism between covariant functors
from T to C which admit colimits (hﬂ F, (og)l-g) and (hﬂ G, (BI)IGI) respectively,
then the diagram

F(I)—* G

K

F(X) G(N) hﬂ G
e
F(J)———GJ)

15 commutative i.e. liﬂG 18 a cocone on F with morphisms B; o ¢;. Then there

exists a unique morphism hggb : hA’IF — @G such that
lgqﬁ

liny G
).

If C is cocomplete we can consider the functor hg :Fun(Z,C) — C.

lig

F
NG

F(I

Example 4.39. Let R be a ring and let ((Mi)zG[? (fi:M; — Mj)ijdiq) be a

direct system in Mod-R. Assume that (I,<) is a direct set i.e. for everyi,j € I
there exists a k € I such that i <k and j < k. Let

UMi: {(m) € (UM) x1I|xe MZ}

el el

be the disjoint union of the family (M;) We define an equivalence relation ~ on

il
this disjoint union by setting, for every (x,1) and (y,j) in |JM;
il

(,1) ~ (y,7) < there is a k € I such that fi (z) = fl (y).

Let
UM;
[ — i€l
and let

| UM,
T LJ]\/[z NS L

~Y

el
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be the canonical projection. For each (x,i) € |JM; we set
i€l

(2, 0)] = 7 ((, 7).

We define a right R-module structure on L by setting

(e, )] + [y, )] = [(fi () + L. ()] where i <k,j <k
and
[(z,9)] - = [(zr,i)] for everyr € R.
It is straightforward to prove that these are good definitions and that L becomes a

right R-module. For every j € I let €; : M; — |JM; be the canonical injection i.e.
el

gj(z) = (z,]j) for every x € M;.
Set
Ai=c¢jor.
Then it is easy to show that (L, ();)
((Mi)iel’ (sz P M = Mj)i,jej,igj)

Z.61) is the direct limit of the direct system

Exercise 4.40. Let R be a ring and let ((Mi)iel, (fj’ : M; — Mj)ije]i<j> be a

direct system in Mod-R. Let M = @ M; and, for everyi € I, let e; : M; — M
iel

be the canonical injection. For every i,j € I,, let ni<; = €; 0 fj’f —¢; and let H =

'ZI Im (n;<;). Set L = %, let w: M — % be the canonical projection and, for every

1,)€

i<j

1€, let \j=mog;: M; — L. Show that

(L, (N)jeg) = Ling (<Mi)i€I’ (sz M — Mj)iJELiSJ) '

Theorem 4.41. Let C be a cocomplete preabelian category and let F,G,H : T — C

be functors, where I is a small category. Assume that F 26 Y H are functorial
morphisms such that, for every I € I, the sequence

F(I) 25 G (1) 25 H(I) — 0c
18 exact. Then the sequence
lim ¢ lim %
lim F =5 lim G = limy H — 0

18 also exact.



4.2. COLIMITS 63

Proof. lignw is an epimorphism. Let ¢ : ling — X be a morphism such that
o liénw = 0. Then, for every I € Z, we have

0:§O<1i_n>ﬂ¢)051=50710¢1-

Since 17 is an epimorphism, we deduce that, for every [ € 7,

oy =0
so that
£=0.
We prove that
Coker (hg gb) = (hgq H, M¢)
from which it will follow that
Im (ling ¢) = KerCoker (lim ¢) = Ker (lim¢))

We prove that lign/; o ligld) = 0. Since, by assumption, the sequence F' () o

G (1) RNy (I) — O¢ is exact, for every I € Z ,we have

(hﬂlbohgﬂb) oo =limy o frodr=nrroyrodr=0.
This means that
ing 0ty = 0
Now, let & : li_ngG — X be a morphism such that & o (h_n; gb) = 0. Then, for every
I €7, we have £ o (hggb) o« =0 and thus

Ozfo(hgld))oaI:foﬁloqﬁf-

We have to prove that there exists £ : ligH — X such that £ = ¢ o lig?ﬁ- Since
1y is an epimorphism, we have that (H (I),v;) = CokerKer (¢/;) = Cokerlm (¢;) =
CokerKerCoker (¢;) = Coker (¢r), thus, for every I € Z, there exists a unique

morphism H (I) Ay X such that A\; oy = €0 By

lim ¢ lim
lim F = lim G = lim H ——0
¢ ¢ -
\ »
ay Br X VI
X
F(I)——=G ) ——— H (I)

Then we have a family of morphisms ()\;);.,. We prove that (X, ()\I)IEZ) is a
cocone on H. Given a morphism I-+J, we have to prove that \; o H (y) =
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Ar or equivalently A\j o H (p) o1y = A; o 1)y, since vy is an epimorphism. Since
(%ﬂ G, (61)161) is a cocone on (G, we have

Aror=¢8o0fBr=860B;0G () =Aj0v;0G (1) =Ayo0H (i) oy

By the universal property of hﬂ H, there exists a unique morphism & : lim H — X
such that £ o, = Ay, for every I € Z. We now have to prove that &' o IEB@/) =¢£.
For every I € Z, we have

floligﬂﬂoﬁf25/0’710@/112)\101/11:5051

from which we deduce that & olim = £. Assume now that there exists another
morphism £” such that £’ o liglw = £. Since we also have £ o liglw = ¢ and %ﬂw is
an epimorphism, we deduce that & = ¢'. m



Chapter 5

Adjoint functors

Let L: B— A and R: A— B be covariant functors.Then we define functors

Homy (L (e),A): B”xA — Sets,
Hompg (o, R(A)): B” x A — Sets,

by setting

Homy (L (o), A)(B,A) = Homyu(L(B),A)
Homp (e, R(A)) (B, A) = Homg (B, R(A))

for every (B,A) € B” x A . Given (f,g) € Homger, 4 ((B1,41),(Bs, Ay)) i.e.
f € Hompg (B2, By) and g € Hom 4 (A1, A2) we set

Homy (L (f), 9)
Homg (f, R (g))

Homy (L (o), 4)(f, 9
Hompg (o, R (A)) (f, 9)

~—

where

Homa (L (f),g) : Homu (L (B1), Ay) Hom (L (By) , A2)
(L (Bo) ™M () 54, % AQ)
=go&olL(f)
HOHIB (BQ,R(AQ))

=R(g)oCof

Definition 5.1. Let L : B —+ A and R : A — B be covariant functors. The pair
of functors (L, R) is called an adjunction if there exists a functorial isomorphism
A : Homy (L (e),A) — Homg (e, R(A)), i.e. for every A € A and B € B, there
exist an isomorphism A% :Hom 4 (L (B), A) —Hompg (B, R (A)) such that, for every
f € Hompg (Bsy, B1) and g € Hom 4 (A1, Ay) we have

(L (B1) N Al)
Homg (f, R(g)) : Hompg (B1, R(A1))
(B - R(A))

Lol

(5.1) Hompg (f,R(g))oAﬁi :AﬁioHomA (L(f),q),

65
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Homy (L (B1), A;) — 2= Homyu (41, R (B1))
HomB(L(f)»g)l iHomA(f,R(g))
HOmB (L (AQ) y Bg) F) HOHIA (AQ, R (Bg)) s
i.e. for every & : L(By) — Ay
(5.2) AR2lgo&o(L(f)]=R(g)oAL (o f.
The equality (B32) is equivalent to the following equalities
(5.3) A%, (go€) = R(g)oAZ, (6)
(5.4) AR LN =AL(©)of

Definition 5.2. Let L : B — A and R : A — B be covariant functors. We say that
L is a left adjoint of R, or equivalently, that R is a right adjoint to L if the pair
(L, R) is an adjunction.

Example 5.3. Let g Mg be a bimodule,

R = Homg (g Mg, ) : Mod-S — Mod-R

and
L =e®p rMs: Mod-R — Mod-S.
We set
A% Homg (B ®r M,A) —> Hompg (B, Homg (M, A))
B — Homg (M, A)
(BonM 5 4) — (M= A
“ m +— {(a®@m)
and

'S . Hompg (B,Homg (M, A)) — Homg (B ®r M, A)

(B = Homs (1, 4))  — (Ba%fny - g(af(m) )

We will prove that T'% is the inverse of A%.
A5 (&) (a) is a morphism in Mod-S. Let a = A5 (&) (a). We have

a (mysy + mase) = & (a ® (Mys1 + mass))

(a® (my1s1) +a® (massz))
((a ®my) 81+ (a ®@my) s2)
(a®@my)s1+ & (a®my) s

(mq) s1+ a(ma) s9

§
£
=&
§
«
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for every my,ms € M and sq,s9 € S.
AL (€) is a morphism in Mod-R. Letaj,ay € B and r,ro € R. We have

AL (€) (arr1 + agry) (m)

((a1r1 + asry) @ m)

(@171 @ m + agry @ m)
(a1m1 ® m) + € (agra @ m)
(a1 @ rym) + & (ag ® rom)
4 (6) (a1) §) (az) (ram)
4 (6) (a1) §) (az) r2(m).

'8 (¢) is well-defined. We have to prove that the assignment (a,m)
¢ (a) (m) is balanced. Additivity is trivial, moreover

rim) + A7 (€
ri(m) + A% (€

I
>>mmmm

¢ (ar) (m) = (C(a)r)(m) since ¢ is a morphism in Mod-R
= ((a) (rm) by definition of - in (Homg (M, A))y.

'8 (¢) is @ morphism in Mod-S. We have

I'5(€) ((a1 @ my) 81+ (a2 @ ma) s9) = T4 (¢) (a1 @ mys1 + az @ mass)
=T%(¢) (a1 ® mas1) + T4 (¢) (a2 @ masy)
= ((ay) (mys1) + ¢ (az) (Masq)
= ((ay) (mq) s1 + ¢ (az) (m2) s2
=T7% (0) (a1 ®my) s1 4+ 5 (¢) (a2 ® my) 5.

g = (Af)_l. Given € €EHomg (B ®g M, A),{: Br M — A, we have
L3 (AZ(9) @@ m) =T (ar (m = & (a®m))) (@@ m)
=(a@m—£(a®@m))(a®m)
=¢{(a@m).
Given ( €Homg (B ®gr M, A),(: B —Homg (M, A), we have
A% (PZ(Q) @) (m) = AZ (a®@m = ((a) (m)) (@) (M)
= (@ (m—((a) (m))) (@) (m)
= (m — ¢(a) (m)) (m)
= ¢ (a) (m)
(L, R) is an adjunction. We have to prove that the diagram

Bi

Homg (A1 ®p M, By) —*> Homp, (A1, Homg (M, By))
HOIHS (f®RM7g)l lHOHlR(f,HOmS(M,g))

HOIIlS (A2 Xpr M, BQ) ﬁ- HOII]R (Al, HOIHS (M, BQ)) .

Ag
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is commutative. Starting from £ : By g M — A:

Hompg (f, Homg (M, g)) (Aﬁi (S)) = Homg (f, Homg (M, g)) (a1 = (m — £ (a1 @ m)))
= Homg (M, g) (a1 — (m +— (a1 ®@m))) f
= Homg (M, g) (a2 = (m — £ (f (a2) ® m)))
= az — (m— g (f (a2) ® m))

and

A%2 (Homg (f @k M, g) (€)) = A%2 (g€ (f @5 M))
= Aﬁi (ag @ m = g€ (f (az) ®m))
=ag = (m+— g&§ (f (az) ®m)).

18 also a functorial isomorphism.
Theorem 5.4. If (L, R) and (L', R) are adjunctions, then L = L'.

Proof. Let A : Homy (L (o), A) — Homgp (e, R(A)) and A’ : Homy (L (o), A) —
Homp (o, R (A)) be the functor isomorphisms.
Construction of the isomorphism.

A=: (A)""A:Homy (L (e),A) — Homy (L' (), A) is a functorial isomor-
phism as both A and (A/)_1 are. Hence, given f : By — By, g : Ay — Ay and
¢:L(By) — Aj, we have that

(5.5) Aj2oHomyu (L(f),g) = Homu(L'(f),g)o A5 ie,
(5.6) Milgo€oL(f)] = goXR (&) oL'(f)
A
Hom 4 (L (By), Ay) — Hom 4 (L' (By) , A1)
HomA(L(f)vg)l lHomA(L’(f),g)
Hom 4 (L (Bz) , As) S Hom (L' (Bz) , A2):
Ag

The equality (B@) is equivalent to the following equalities

(5.7) A, (go&) = go)i (&)
NE[EoL(f)] = M (oL (f).

In particular, for g = L (f), B = By and £ = Idy(p,), we get from (E7) that
(5.9) Nipy [L (D= L(f) o Aitp,) (Idrsy) -
For A =L (By) and § = Id(p,), we get from (B3) that

(5.10) Nty (L () = A,y (desy) o L' (f)



and for Ay = L(B), Ay = L' (B) and £ = Id (), we get from (B72) that
(5.11) Aim) (9) = g0 M) (1dis)
We define y : I’ — L, by setting
XB — AE(B) (IdL(B)) .
x: L' — L is a morphism of functors. We have to prove that

L(f)OXBQZXB1OL/(f)

XBg

L/ (BQ) EEE—— L (BQ) .
L/(f)l lL(f)
L' (By) TBfL (B1)

We compute

L(f)oxz = L(f) o A%, (Idusy) S A2, (L(F))

1 (630) B,
X, o L' (f) = Mg, (i) o L' (f) =" A,y (L(f)) -
X is a functorial isomorphism. We construct the inverse of y. We set
-1
Ce = (ADp) o N (Idyw) : L(B) — L' (B)
We compute

==
(Boxp=(_po )\E(B) (Idrm)) == Af,(B) () =

B\l B B -1 B
= (A,L’(B)) e} AL’(B) o (AL’(B)) o) AIL/(B) (IdL’(B)) == IdL’(B)-
By symmetry, we also get xp o (g = Idp(p).
In an analogous way, one can prove the following result.

Theorem 5.5. If (L, R) and (L, R') are adjunctions, then R = R'.

69

Theorem 5.6. Let (L, R) be an adjunction where L : B — A and R : A — B and

let
A : Homy (L (e),A) — Homg (o, R(A)) .

be a functorial isomorphism. Let

ns = A g (Idrm) : B— RL(B).

Then n :1dg — RL is a functorial morphism (called unit of the adjunction). Let

-1
€A = (Ai(A)> (IdR(A)) : LR (A) — A

Then € : LR — 1d4 is a morphism functorial (called counit of the adjunction).
Moreover we have
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1)
(5.12) A% () =R(y)onp, for everyy € Homa (L (B), A)
2)
(5.13) (A) " (p) =eao L(p), for every o € Homg (B, R (A))
3)
(5.14) erp) o L (np) = 1drm
4)
(5.15) R(ea) 0 nr(ay = Idra)

for every Be B, A€ A, f:B— R(A) and g: L(B) — A.

Proof. Let f: By — B;. We have to prove that

RL(f)OnB2:nB1of

)
By (B33) applied to the case when g = L(f) : L (B;) — L(B1) and £ = Idgg,) :

L (Bs) — L(B3), we get
Angl) [L(f)oldyp,)| =RL(f)o AngQ) (Idz(y))
so that
(5.16) AffBl) [L(f)]=RL(f)o Af(QBQ) (IdL(Bz))
We have
2 (6m) 5
AP (L) =Y RL(f) 0 A2y, (1dus) = RL(f) 0 i,

By (B3) applied to the case when { = Idyp,) : L(By) = L(By) and f = f: By —
By, we get
Altgy (i) o f = A2 [[dis,) o (L(f))]

so that

(5.17) Aptpy (Wiesy)) o f = Afgg ) (L (f))]
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1 6L 4 By
B, © f = Af(Bl) (IdL(Bl)) © f = Af(Bl) (L (f)) .
Let g : Ay — A,. We have to prove that
go€s =€a,0LR(g)

EBI

LR (Bl) I B1 .

LR(g)l lg

LR (BQ) 6?) BQ
Since A is an isomorphism, we will equivalently prove that
R(A R(A
MG (goea) = AL (ea, 0 LR (9)).

By (B3) applied to the case when g = g : Ay — A3, & = €4, : RL(A)) — A =
Idyp,) : L(B1) = L(B1), f =Idga,) : R(A1) = R(A), we get

(5.18) R(g) o A (e4)) = AT (goey)

~1
Alngl) (g o €A1) (E:EE) R (g)OA}jEAl) (€A1) — |:R <g) o AIZEAl) o <A§5A1)> ] (IdR(Al)) —R <g) .

By (B3) applied to the case when f = R(g) : R(A1) — R(Ay) and & = ey, :
LR (Ay) — Ay, we get

(5.19) A (€4, 0 LR (9)) = A (€4,) 0 R (g)

(B19)
AR (e, 0 LR (g) = AT (c0,) 0 R (g)

~1
= [A%A?) ° <A§§A2)> ] (Idg(a,)) © R(9) = R(g).

(B3)
1) R(y)onp =R (7)o AL (Idus) = Af (7).
2) In order to prove 2) we apply to both terms A which is an isomorphism:

m _1
Af(eao L) B ALY (ea) o = [Ai?“” o (A5 ] (1drc) o9 = .

3) By applying 2) to the first term of the equality we have

-1

e © L (nB) 2 (AE(B)) (nB) = [(AE(B)YI © AE(B)} (IdL(B)) = IdL(B)'

4) By applying 1) to the first term of the equality we get

1 -1
R(ea) o ey = AL (ea) = A5 (Ai(A)> (dpea) = Tdpcay.
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Theorem 5.7. Let L : B — A and R : A — B be covariant functors, n:1dg — RL
and € : LR — Id 4 functorial morphisms such that, for every B € B and A € A, we
have

e © L (np) = Idpp)
and
R (€4) o Nray = Idpga)

Then (L, R) is an adjunction with unit n and counit . Namely, for every B € B
and A € A,

Homu (L (B), A) 4 Homg (B, R (A))
defined by setting
AL =R(&ons

18 a natural isomorphism with inverse

Homyg (B, R(A)) ~% Hom (L (B), A)

defined by setting
T3 (¢) =eaoL(Q).

Proof. T = (AR)_l. Given £ : L(B) — A and ( : B — R(A), since € and 7
are functorial morphisms, we have:

P4 (AZ (&) =T5 (R() ong)
=€a0L(R(§)ong)
=es0 LR () o (L (np))
=Eoeyp oL (ngp)
=<

and

AZ (T Q) = Al (eao L(C))
= R(eao L(())ons
= (R (ea)) o RL(¢) o mp
< R(ea) o nray o
=(

A gives rise to an adjunction. Given f: By — By, g : Ay — A and
¢:L(By) — Aj, we have:

A% (go€oL(f))=R(go&oL(f))ons,
= R(g) o R(&) o RL(f) o ns,
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R(g)o AL (§)of=R(g)oR(&)ons o f
<L R(g)o R (&) o RL(f) o na,
n and € are unit and counit. The unit of the adjunction (L, R) is
AL (i) = R (Idim) o np = 18,

whereas the counit is

-1
(Af(A)> (1drey) = T4 (Idaw) = eao L (1dpe) = ea.
O

Theorem 5.8. Let L : B — A and R : A — B be covariant functors determining an
equivalence between B and A, i.e. there are functorial isomorphisms n : Idg — RL
and p : LR — Id4. Then (L, R) is an adjunction with unit n and counit €, where

€a=paol (W}E(ﬁ@) o pz}%(A), for every A € A.

Proof. We will prove that the hypothesis of Theorem b7 hold. First we want to
prove that

(5.20) nrie) = RL (np) and prray = LR (pa) -
In fact we have
NriB) © M5 = RL (nB) o np
and
PLr(A) © pa = LR (pa) o pa
and since 1 and p are iso we conclude. Then we have:

ey © L(ng) = prmy oL (m}i(g)) © PZzlaL(B) o L (ns)
-1
"~ primy o L (b ) © LRL (n5) © oty

(6=m) _ _
= pup oL (nRi(B)> oL (nRL(B)) °© pL(lB)

R(ea) onpuy =R <PA oL (m}@) °© PZE(A)> © TIrR(A)
= R(pa)o RL (771;(1,4)> oR <p211{(,4)> O NR(A)
(B=2m) _ _
=" R(pa)o RL <77R(1A)> oRLR (pAl) O NR(A)
/A -1 -1
(oo R (15l otz o R 57

= R(pa) o RL (m}lA)> o RL (naw) o R (p4')
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Theorem 5.9. Let (L, R) be an adjunction, L : B — A, R : A — B and let
F :7Z — A be a functor where T is a small category. Assume that there exists
(1&1 F,(ar)er) in A. Then (R (1&1 F),(R(oq));er) is the limit of RF : T — B.

Proof. First of all we prove that (R (1&1 F),(R(ar));er) is acone. Since (1&1 F,(or)er)
is a cone on F' we have that

ay = F (\) o ag for every morphism A : [ — J.

By applying R, we get
R(ay) = RF (Ao R(ay).

Let now (X, (& : X — RF (I));.7) be a cone on RF.
There exists X — R (1&1& F). Since (X, (&);er) is a cone we have

{1 =RF(A)o&
so that, by applying L, we get

L(€)) = LRF (N o L(&).

We have
LRF(I)—=" .~ F(I)
o
L(X) LRF(\) F())
LRF (J)—=2 L F(J),

where € is the counit of the adjunction. Thus L (X) is a cone on F’ with morphisms
er(ry © L (&) and thus there exists a unique morphism

¢: L(X) — limF

such that
aro( = €F(1) © L (fl) .
Let

€= Miur (O = R(O o nx

where A is the isomorphism of the adjunction (L, R). Thus £ : X — R (@ F).
We will prove that R (aj) o & = ;. By the properties of the adjunction we have

R(aj)o& = R(aj)o A@F Ot Az (e 0 ¢) = Mgy (eray © L (&1)) = Agiry (eray 0 L (€1)) =

(B3) , RF(I) RF(I) RE(1)\
= AF(I) (EF(I)) o0& = AF(I) ((AF(I) > (IdRF(I))> olr=¢r.
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¢ is unique. Let & @ X — R(Lm F) be another morphism such that
R(aj)o& = &, ie. we have R(aj) o0& = & = R(ay) o €. Since A{f 1 is an
isomorphism, there exists a unique (' : LX — Jm F" such that & = A@l 7 ().
Then we have

R(Oé]) Ogl = R(Oé]) OAX

jm F (¢ = A%((I) (aro(’)

and
R(ar)o& = R(ay) OA@F(C) = Ai«“(([) (aro().

Since Ai«“(([) is an isomorphism, we get oy o (' = «ay o ¢ for every I € Z, thus, by
uniqueness of leF, (=("and £ =¢. ]

Corollary 5.10. Let (L, R) be an adjunction, L : B — A, R: A — B . Assume
that both B and A are preadditive with zero. If P is a pullback, then R (P) is also
a pullback.

Corollary 5.11. Let (L, R) be an adjunction, L : B — A, R: A — B. Assume
that both B and A are preadditive with zero and both L and R are additive. If Ker (f)
exists in A, then also Ker (R (f)) ezists and R (Ker (f)) = (Ker (R(f))).

Proof. A kernel is a particular kind of pullback. n

Proposition 5.12. Let (L, R) be an adjunction, L : B — A, R : A — B .
Assume that both A and B are abelian and both Land R are additive. Then R is a
left exact functor.

al

Proof. Let 0 — A" — A " A" be an exact sequence in A . This means that
(A", /) = Ker ().

By Corollary BT, we get that

”»

(R(A),R(d/)) = Ker (R (d))

which means that the sequence 0 — R (A') B R(A) R R (A") is exact in
A. O

Theorem 5.13. Let (L, R) be an adjunction, L : B — A, R : A — B and let
G : T — B be a functor where T is a small category. Assume that there exists
(im G, (ar)eg) in A Then (L (im F), (L (1)) eq) s the limit of LF : T — A.

Proof. Tt is analogous to that of Theorem B and it is left as an exercise to the
reader. 0

Corollary 5.14. In the assumption of Theorem B2, in particular if X is a pushout,
then L (X) is also a pushout.
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Proof. A pullback is a particular kind of colimit. n
Corollary 5.15. In the assumption of Theorem B2 we have L (Coker (f)) = (CokerL (f)) .
Proof. A cokernel is a particular kind of pushout. O

Proposition 5.16. Let (L,H) be an adjunction, L : B — A, H : A — B .
Assume that both B and A are abelian and both L and H are additive. Then L is a
right exact functor.

a/

Proof. Let B — B % B” — 0 be an exact sequence in B . This means that
(B",a") = Coker (a) .
By Corollary T3, we get that
(L(B"),L(a")) = Coker (L (a'))

which means that the sequence L (B’) He L (B) Het) L(B") — 0 is exact in

A. O

Lemma 5.17. Let (L, R) be an adjunction with unit n and counit €, where L : B —
A and R: A— B. For every Y € B the following conditions are equivalent:

(1) L_y = (Ai_/)*1 o Homg (—,nY") is a functorial isomorphism
(2) Hompg (—,nY") is a functorial isomorphism
(3) nY is an isomorphism.

Proof. Since (L, R) is an adjunction, A% : Homy (LY, X) — Homg (Y, RX) is an
isomorphism for every X € A and for every Z € B, so that (1) is equivalent to (2).

(2) = (3) Since Hompg (—, nY’) is a functorial isomorphism, in particular Homg (RLY,nY) :
Homgp (RLY,Y) — Hompg (RLY, RLY) is an isomorphism. Thus, there exists f €
Homgp (RLY,Y ) such that (nY)of = Idgpy. Moreover we also have Homg (Y, nY) (Idy) =
nY = (nY)o fo(nY) = Homp(Y,nY)(fo(nY)). Since Homg (—,nY) is a func-
torial isomorphism, also Homg (Y,7Y") is an isomorphism. Thus we deduce that

Idy = fo(nY). Hence nY is an isomorphism with two-sided inverse f : RLY — Y.

(3) = (2) Let h be the two-sided inverse of nY. Then Homp (—, h) is the inverse of

the functor Homp (—,nY’) . In fact

Homgpg (—, h) o Homg (—,nY) = Hompg (—, h o nY) = Homp (—, Idy)
HOIHB (—, T]Y) o HOmB (—, h) = HOIIlB (—, 7’]Y o h) = HOI’HB (—, IdRLy) .

]

Proposition 5.18. Let (L, R) be an adjunction with unit n and counit €, where
L:B— Aand R : A — B. Then L is full and faithful if and only if n is a
functorial isomorphism.
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Proof. Note that, for every f € Homgp (Y,Y”) we have

-1 ~1
Ly (f) = [(Afy) ™ o Homg (¥, 5¥")] (/) = (ALy) ™ (Y0 f) =
— (eLY')o (LyY") o (Lf) "2 1.
To be full and faithful for L means that the map

¢ : Homp (Y,Y') — Hom, (LY, LY”)
f=L(f)

is bijective for every Y,Y’ € B. Since this ¢ (f) = L(f) = Lyy (f), ¢ is an
isomorphism if and only if Lyy s is an isomorphism for every Y)Y’ € B and, by
Lemma BT, if and only if nY” is an isomorphism for every Y’ € B. ]

Lemma 5.19. Let (L, R) be an adjunction with unit n and counit €, where L : B —
A and R: A— B. For every X € A the following conditions are equivalent:

(1) Rx._ = AR o Homy (eX, —) is a functorial isomorphism
(2) Homy (X, —) is a functorial isomorphism
(3) €X is an isomorphism.

Proof. Exercise. ]

Proposition 5.20. Let (L, R) be an adjunction with unit n and counit €, where
L:B— Aand R: A — B. Then R is full and faithful if and only if € is a

functorial isomorphism.
Proof. Exercise. ]

Lemma 5.21. Let f : X — Y and g : Y — X be morphisms in a category C.
Assume that g o f = Idx and that f o g is an isomorphism. Then f and g are
isomorphisms and g = 1.

Proof. From go f = Idx we infer that fogo fog= foldyog= fogi.e.
fogofog=1foy.

Hence
fog=(fog) lofogofog=(fog) 'ofog=Idy.
O

Proposition 5.22. Let (L, R) be an adjunction with unit n and counit €, where
L:B— Aand R: A— B. Then the following assertions are equivalent.

(a) €L is a functorial isomorphism.
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(b) Ln is a functorial isomorphism.
(c) Re is a functorial isomorphism.
(d) nR is a functorial isomorphism.
(e) ReL is a functorial isomorphism.
(f) RLn is a functorial isomorphism.
(g8) nRL is a functorial isomorphism.
(h) LRe is a functorial isomorphism.
(i) €LR is a functorial isomorphism.
(1) LnR is a functorial isomorphism.
(m) LReL is a functorial isomorphism.
(n) LRLn is a functorial isomorphism.
(o) LnRL is a functorial isomorphism.

(p) eLRL is a functorial isomorphism.
Proof. Since (L, R) is an adjunction, formulas 514 and 613

eLoln = L
ReonR = R

hold. Hence (a) < (b) and (¢) < (d) . Moreover we get

(5.21) ReLoRLy = RL
(5.22) ReLonRL = RL

from which we deduce that (e¢) < (f) < (¢) and, if any of them holds, we also
have

(5.23) RLn =nRL.
Always from formulas BT4 and B3, we get

(5.24) eLRoLnR = LR
(5.25) LReoLyR = LR

from which we deduce that (h) < (i) < (1) and, if any of them holds, we also have

(5.26) eLR = LRe.



79

Now, from formulas (B220), (E=22) and (B=2d)we get

(5.27) LReLoLRLy = LRL
(5.28) LReLoILnRL = LRL
(5.29) eLRLoInRL = LRL

from which we deduce that (m) < (n) < (o) < (p). Moreover if one of them holds
hold, we obtain

(5.30) LRLn = LnRL.

and
LRel, = eLRL

Let a : FF — G be a functorial morphism. Then, by naturality of e, we get the

commutative diagram
el

LRF = F
LRa | I a
LRG S ¢

and, by naturality of n, we get the commutative diagram

F " RLF
al J RLa
¢ % RLG

so that we have

cGoLRay = «aoeF
nGoa = RLaonF.

In particular, we get

eLRo LRLn = Lnoel
nRoRe = RLReonRLR

and

eGoLRa = «aoelF
nGoa = RLaonkF.

(e) & (a) and (e) < (c) Clearly we have only to prove that (e) = (a) and
(e) = (c). Since (e) holds, we know that RLn = nRL are isomorphisms. Hence also
LnRL is an isomorphism i.e. (0) holds so that LRelL = e LRL and LRLn = LnRL

are isomorphisms.
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By naturality of € we know that the diagram

el

LRL 5% L
LRLn | +Ln

LRLRI ““8F

1s commutative i.e.
LnoelL =eLRLo LRLn

and hence it is an isomorphism. Since €L o Ln = L, by Lemma B0 we get that
both el and Ln are isomorphisms.

By (e) < (g) we know that RLn is iso, so that from RLRe o RLnR = RLR we
deduce that RLRe is also an iso. By naturality of n we know that the diagram

nRL

RLR "™ RLRLR
Re | | RLRe
R ™ RLR

1s commutative i.e.

nRo Re =nRLR o RLRe

From (e) < (f) we deduce that also nRLR is an iso i.e. nR o Re is an iso. From
Lemma B2 we conclude.

Hence we have proved that (a) = (b) = (¢) = (d) = (e) = (f) = (9)

(h) & (c¢) Clearly we have only to prove that (h) = (¢). From

LReoInR = LR
eLRoILnR = LR

we deduce that LnR is also an iso and LRe = eLR is an iso. Hence ReL R is an iso
and from ReLRonRLR = RLR also nRLR is an iso. We have

LRLR ' LR
LRInR | L LnR
eLRLR

LRLRLR ~— LRLR

¢LRLR o LRLyR = LnR o ¢LR

nRo Re=nRLRo RLRe =nRLR o ReLR

so that nR o Re is an iso. From Lemma B2 we conclude.
(p) < (a) Clearly we have only to prove that (o) = (a). Since (0) < (n), LRLn
is an iso so that, from
LnoelL =eLRLo LRLn

we deduce that Lno el is an iso. From Lemma EZ21 we conclude. O]
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Proposition 5.23. Let L : B — A be a category equivalence with inverse H : A —
B. Assume that o : Idg — HL and p : LH — Id4 be functorial isomorphisms.
Then (L, H) is an adjunction with unit n = o and counit e = po Ly 'H o p™'LH.
Alternatively (L, H) is an adjunction with unit n = o *HL o He 'L o o and counit
E=p
Proof. Let n =0 and e = po Ln~'H o p~*LH. We have
eLolLn=pLolLn'HLop 'LHLo Ly
' pLoLy‘HLoLHLyo p~'L
(. pLoLnolLntop 'L =1Id;.
From
(5.31) nHLon=HLnon
we get
nHL = HLn
Similarly from
pLHop=LHpop
(5.32) pLH = LHp

He=HpoHLy 'Ho Hp 'LH o nH ="

—1
() 0 'HoHLHpo Hp 'LH o nH =

Hpon *HLH o Hp 'LH onH

n'HoHpLH o Hp 'LH onH =1dy
Let n=0'HLo He 'Loo and € = p. We compute
HeonH = Heoo 'HLH o He 'LHooH

o1

— 0 'HoHLHeo He 'LHocoH

=) o \H o HeLH o He 'LH o o H = 1dy

and

eLoln=cLoLo 'HLoLHe 'Lo Lo

) o LHLo oc'LHL o Lo =

—cLoe 'LoLotoLo=1d;
n

Lemma 5.24. Let (L, R) be an adjunction where L : B — A and R : A — B such
that R is an equivalence of categories. Then L is also an equivalence of categories.

Proof. By assumption R : A — B is an equivalence of category with inverse L' : B —
A. By Proposition B23 we know that (L', R) is an adjunction. By the uniqueness
of the adjoint we have that L ~ L’ which is an equivalence. Thus L is also an
equivalence of categories. [
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5.1 Some results on equalizers and coequalizers

Definition 5.25. A functorial morphism « : C — D is called functorial monomor-
phism, or simply a monomorphism, if for every 5,7 : B — C such that aof3 = aory
we have [ = ~.

Definition 5.26. A functorial morphism o : A — B is called functorial epimor-
phism, or simply an epimorphism, if for every 3,7 : B — C such that foa =~vo«
we have = 7.

Definition 5.27. Let A a category, letY,Z € A and let f,q:Y — Z be morphisms
in A. We say that (E,e) is the equalizer in A of the parallel pair (f,qg), and we

write (E,e) = Equ 4 (f,9), if
1) e: E—=Y
2)

i.e. foe=goe

3) satisfies the universal property, i.e. for every X € A and x : X — Y such
that f ox = gox, there exists a unique morphism in A € : X — E such that
r=eok.

Remark 5.28. In case there exists (E,e) = Equy (f,g), e is a monomorphism. In

fact, let a, 8 : W — E be morphisms in A such that eo o = e o 3. Then we have
foeoa 2 goeoa

so that eoaw equalizes (f, g) . Since (E,e) = Equ 4 (f, g) there exist a unique morphism
0: W — FE such that eo o = e o 4. In particular, we take 6 = a. But we also have

eoa=ceof

so that we can also have d = 3. By the uniqueness of the morphism & we deduce that

0=a=20.

Definition 5.29. Let A a category, let Y, Z € A and let f,g:Y — Z be morphisms
in A. We say that (Q,q) is the coequalizer in A of the parallel pair (f,g), and we

write (Q,q) = Coequy (f, 9), if
1) ¢q: Z—=0Q
2)

i.e. gof=qoyg
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3) satisfies the universal property, i.e. for every T € A and x : Z — T such
that x o f = x o g, there exists a unique morphism in A v : Q — T such that

X=7°4.
Exercise 5.30. In case there ezists (Q,q) = Coequ 4 (f,g), q is an epimorphism.

Remark 5.31. Let A be a preadditive category, let Y, Z € A and let f,g : Y —
Z be a parallel pair of morphisms in A. Then Equ,(f,g) = Ker(f —g) and

Coequy (f, g) = Coker (f —g).

Definition 5.32. Let A and B be categories, let B,C : A — B be functors and
B,7 : B — C be functorial morphisms. We say that (E,i) = Equg,, (8,7) if

1) i:E— B

2)

i.e. foi=ro01%
3) satisfies the universal property, i.e., for every functorial morphism x : X — B

such that §ox = v ox, there exists a unique functorial morphism & : X — E
such that x =10 €.

Definition 5.33. Let A and B be categories, let B,C' : A — B be functors and
B, : B — C be functorial morphisms. We say that (Q,q) = Coequp,, (5,7) if

1) ¢:C—Q

2)

c—1-Q

i.e. qoff=qovy

3) satisfies the universal property, i.e., for every functorial morphism w : C' — W
such that wo B = wory, there exists a unique functorial morphism ¢ : QQ — W
such that w = (o q.

Lemma 5.34. Let A and B be categories, let F, F' : A — B be functors and o, 3 :
F — F’ be functorial morphisms. If, for every X € A, there exists Coequg(aX, fX),

then there exists the coequalizer (C, c) = Coequp,, (e, B) in the category of functors.
Moreover, for any object X in A, we have (CX,cX) = Coequg(aX, X).
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Proof. Define a functor C': A — B with object map (CX,cX) = Coequg(aX, 5X)
for every X € A. For a morphism f : X — X’ in A, naturality of o and 8 implies
that

(F'f) o (aX) = (aX") o (Ff) and (F'f)o (8X) = (BX") o (F[)

and hence

(eX) o (F'f)o(aX) = (eX)o(aX)o(Ff) "= (eX') o (BX") o (Ff)
= (cX")o(F'f) o (BX)

ie. (cX') o (F'f) coequalizes the parallel morphisms X and aX. In light of this
fact, by the universal property of the coequalizer (CX,cX), Cf : CX — CX'is
defined as the unique morphism in B such that (C'f) o (¢X) = (¢X') o (F'f). By
construction, ¢ is a functorial morphism F’/ — C' such that coa = co . It remains
to prove universality of ¢. Let H : A — B be a functor and let y : I/ — H be
a functorial morphism such that y o &« = x o 5. Then, for any object X in A,
(xX)o(aX) = (xX)o(BX). Since (CX,cX) = Coequg(aX, fX), there is a unique
morphism £X : CX — HX such that (£X) o (¢X) = xX. The proof is completed
by proving naturality of £X in X. Take a morphism f: X — X’ in A. Since ¢ and
x functorial morphisms,

(Hf)o (6X) o (cX) = (Hf)o (xX) = (xX") o (F'f)
= (§X) o (cX) o (F'f) = (X) o (Cf) o (eX).
Since c¢X is a epimorphism, we get that ¢ is a functorial morphism. O

Lemma 5.35. Let Z, 72’ W,W' : A — B be functors, let a,b: Z — W and a',b" :
7' — W' be functorial morphisms, let p : Z — Z' and b : W — W' be functorial
1somorphisms such that

oa=dop and  Yob=1"bop.

Assume that there exist (E,i) = Equg,, (a,b) and (E',i") = Equp,, (a’,b'). Then ¢
induces an isomorphism @ : E — E' such that ¢ o1 =10 Q.

L
W YW
@
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Proof. Let us define . Let us compute
a’ogpoi:@Doaoidéﬁqﬁoboi:b/ogooi

and since (E',i") = Equp,, (¢/,V') there exists a unique functorial morphism @ :
E — E’ such that

i'op=poi.
Note that @ is mono since so are i and i’ and ¢ is an isomorphism. Consider
o1 Z'— Zand ¢y~ : W — W. Then we have

acpt=ylod and bopt=ytol.
Let us compute

_ . _ .y defi’ | _ . _ .
aoy 102/21/) 1oa’oz’ e:Z'QD 1Ob/OZ/:bOg0 102/

and since (E, i) = Equp,, (a,b) there exists a unique functorial morphism ¢’ : E/ —
E such that
io@l:@—loz‘/‘
Then we have
ioPop=¢ploilop=plopoi=1i
and since 7 is a monomorphism we deduce that

Similarly
{0fo@ =poiof =poploi =1

and since i’ is a monomorphism we obtain that

]

Lemma 5.36. Let Z, 72’ W,W' : A — B be functors, let a,b: Z — W and a’',b" :
7' — W' be functorial morphisms, let p : Z — Z' and b : W — W’ be functorial
isomorphisms such that

Ypoa=dop and  Yob="bop.
Assume that there exist (C,p) = Coequp,, (a,b) and (C',p") = Coequp,,, (a’,1).

~

Then 1 induces an isomorphism 7:/1\ :C'— " such that Y op =p o).

A L A

I

w w’

[,

Co
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z 7

allb a ||V
WS W
Lp v
v :
¢ --» C
Proof. Dual to Lemma B33. (Exercise). O

Lemma 5.37. Let K : B — A be a full and faithful functor and let f,g: X —Y
be morphisms in B. If (KC, Kc) = Coequy (K f, Kg) then (C,c) = Coequg (f,g)-

Proof. Since K is faithful, from (Kc¢)o (K f) = (Kc¢)o(Kg) we get that co f = cog.
Let ¢ : Y — @ be a morphism in B such that go f = qo g. Then in A we get
(Kq)o (K f) = (Kq)o (Kg) and hence there exists a unique morphism ¢ : KC' —
K@ such that £ o (Kc¢) = Kq. Since £ € Homy (KC, KQ) and K is full, there
exists a morphism ¢ € Hompg (C, Q) such that £ = K. Since K is faithful, from
(K)o (Kc) = Kq we get ( o c = ¢q. From the uniqueness of £, the one of ( easily
follows. O

Lemma 5.38. Let o,y : F — G be functorial morphisms where F,G : A — B
are functors. Assume that, for every X € A there exists Coequgz (aX,vX). Let
(C,c) = Coequpy, (a,7), where ¢ : G — C. Then, for every X € A and Z € B we
have that

(Homg (CX, Z) ,Hompg (cX, Z)) = Equg,, (Homp (aX, Z),Hom, (vX, Z))
which means that
(Homs (€, —) , Homg (¢, —)) = B, (Homg (o, —), Hom, (7, —))
where
Homp (C,—) and Equpy, (Homg (o, —) , Hom, (v, —)) : A? x B — Sets.
Proof. We have that

Homg (aX, Z) o Homg (¢X, Z) = Homg ((cX) o (aX), Z)
= Homg ((¢X) o (7X),Z) = Homp (7X, Z) o Homp (c¢X, Z)

i.e. Homg (X, Z) equalizes Hompg (o X, Z) and Hompg (7X, Z) , for every X € A and
Z € B. Let now ¢ : Q@ — Homg (GX, Z) be a map such that Homp (aX,Z) o ¢ =
Hompg (vX, Z) o (. Then, for every X € A, Z € B and for every ¢ € ) we have

¢ (q) o (aX) = Homp (aX, Z) (¢ (q)) = Homp (vX, Z) o (C (q))
= ((q) o (vX).



5.1. SOME RESULTS ON EQUALIZERS AND COEQUALIZERS 87

Then, for every X € A and Z € B there exists a unique morphism &, : CX — Z in
B such that
§q 0 (cX) =C(q)
le.
Homg (X, Z) (&) = ¢ (q) -
The assignment ¢ — ¢, defines a map & : Q — Homg (CX, Z) such that

Homg (¢ X, Z) 0 £ = (.



Chapter 6
MONADS

6.1 Contractible (co)equalizers

Definition 6.1. Let A a category, let Y, Z € A and let f,g:Y — Z be morphisms
in A. We say that (E,e) is the equalizer in A of the parallel pair (f,qg), and we

write (E,e) = Equy (f,9), if
l)e:E—=Y
2)

i.e. foe=goe

3) satisfies the universal property, i.e. for every X € A and x : X — Y such
that f ox = gox, there exists a unique morphism in A € : X — E such that
r=eok.

Remark 6.2. In case there exists (E,e) = Equ, (f,g), e is a monomorphism. In
fact, let a, 8 : W — E be morphisms in A such that e o o = e o 3. Then we have

eequ
foeoa = goeon

so that eoar equalizes (f, g) . Since (E,e) = Equy (f, g) there exist a unique morphism
0: W — FE such that e o o = e o . In particular, we take 6 = a. But we also have

eoa=ceof

so that we can also have 6 = . By the uniqueness of the morphism d we deduce that

0=a=20.

Definition 6.3. Let A a category, let Y, Z € A and let f,g:Y — Z be morphisms
in A. We say that (Q,q) is the coequalizer in A of the parallel pair (f,g), and we

write (Q,q) = Coequy (f, 9), if

38
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1) ¢:Z—=Q
2)

Z-1-0Q

i.e. gof=qoyg
3) satisfies the universal property, i.e. for every T € A and x : Z — T such
that x o f = x o g, there exists a unique morphism in A v : Q — T such that
X=70¢
Exercise 6.4. In case there exists (Q,q) = Coequy (f,9g), q is an epimorphism.

Remark 6.5. Let A be a preadditive category, let Y, Z € A and let f,g : Y —
Z be a parallel pair of morphisms in A. Then Equ, (f,9) = Ker(f —g) and

Coequ 4 (f, g) = Coker (f — g) .

Definition 6.6. 1) [McD, page 151] Recall that a functor R : A — B creates co-
equalizer for a pair f,g: A — A" in A whenever to each coequalizer (Z,( : RA" — 7))
of (Rf, Rg) in B there is a unique object A" in A and a unique morphism~ : A" — A”
such that

e RA" =7,
o Ry =( and
o (A", v) is a coequalizer of (f,qg) in A.

2) [BX, page 94] Let C be a category. A contractible coequalizer is a 8-tuple
(C,X,Y,c,dy,dy,u,v) where

do
do — .
X v Y ==C X & v =cC
dy & “
—
such that
dyov = Idy
diov = wmoc
cou = Ide
COdO = COdl.

3) [BW, page 95] (c¢f. [Mand, Definitions 1.8 page 167]). An R-contractible
coequalizer pair is a pair of morphisms (dy,dy) from X to'Y for which there is a
contractible coequalizer
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Note that here the definition differs from [BYM, page 95] as we have C and not RC
as coequalizer.

4) B, 3.6 page 98] A reflexive pair is a pair of morphisms (dy,dy) from X to
Y such that if dy and di have a common right inverse i.e. there ise:Y — X such
that dyoe = d; o e = Idy.

Proposition 6.7. [BIU, Proposition 3.4, page 94]Let C be a category and let (C, X, Y, ¢, dy, dy, u, v)
be a contractible coequalizer. Then (C,c) = Coequy, (do, d1) .

Proof. Let x : Y — @ such that

yody=xod.
We have

x=xoldy =xodyov=xodiov=(xou)oc.
Then, let us set
X =xou:C—Q
so that
x=xoc

Let now x” : C' — @ such that x” o ¢ = x. Then

X”:X”Oldc:X”OCOUZXOUZX/.
[l

Proposition 6.8. [BIU, Proposition 3.4, page 94]/Let C be a category, let (C, XY, ¢, dy, dy,u,v)
be a contractible coequalizer and let F': C — D be a functor, then

Fdy P
FX_. Fo " py—>FC

_— Fu

Fo Fc
Yy = FC

Fu

FX

1 a contractible coequalizer in D.

Proof. Since (C, X,Y, ¢, dy,dy,u,v) is a contractible coequalizer we have

doov = Idy
diov = wuoc
cou = Id¢g
cody = codj.

By applying the functor F' to them, the equalities still hold. O
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Lemma 6.9. Let (L : B— A, R: A — B) be an adjunction with unit n and counit e.
Then (LB, LRLRLB, LRLB,eLB, LReLB,eLRLB, LnB, LRILnB) is a contractible

coequalizer.

LReLB
LRLyB eLB
LRLRLB < LRLB = LB.
LnB
¢LRLB

Proof. We have

LReLBo LRInB = Idpgrrps
eLRLBo LRInB = LnBoelLB
eLBoILnB = Idip
eLBoLReLB = eLBoeLRLB.

]

Lemma 6.10. Let (L : B — A, R: A — B) be an adjunction. Letn and € be the unit
and counit of (L, R) respectively. Let (B,pu: RLB — B) € grBB. Then (eLB, Lu) is
a reflexive R-contractible coequalizer pair. In particular
ReLB
=
m
RLRLB "&" RLB = B

nB
RLpu
—

s a contractible coequalizer whence preserved by any functor.

Proof. Let us check it is a reflexive R-contractible coequalizer pair. We have Lu o
LnB =1d;p = eLBo LnB so that (eLB, Lu) is a reflexive pair. Let us check it is an
R-contractible coequalizer pair. Since (B, pu) € rrB we have o RLyy = o ReLB
and ponB = Idg. Moreover we have ReLBonRLB = Idgrp, RLpponRLB = nBopu.
Thus (eLB, Lu) is a reflexive R-contractible coequalizer pair. ]

Corollary 6.11. Let (L: B — A, R: A — B) be an adjunction. Let n and € be the
unit and counit of (L, R) respectively. Then

ReLRA
—
ReA
RLRLRA "4 RIRA = RA .
nRA
RLReA
-

s a contractible coequalizer whence preserved by any functor.

Proof. Since (RA, ReA) € rrB, we can apply Lemma BEI0. ]
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6.2 Monads

Definition 6.12. A monad on a category A is a triple A = (A,ma,ua), where
A:A— Aisa functor, my : AA — A and us : A — A are functorial morphisms
satisfying the associativity and the unitality conditions:

ma o (maA) =myo(Amy) and myo (Aus) =A=myo (usA).

Definition 6.13. A morphism between two monads A = (A,ma,us) and B =
(B,mp,ug) on a category A is a functorial morphism ¢ : A — B such that

poma=mpo(pp) and @ous=up.
Here oo = pBo Ap = Bp o pA.

Example 6.14. Let (A, ma,ua) an R-ring where R is an algebra over a commuta-
tive ring k. This means that

o A is an R-R-bimodule
e my:ARrA — A is a morphism of R-R-bimodules
e up : R— A is a morphism of R-R-bimodules satisfying the following
mao(ma @r A) = mao(A®gma), mac(A@grua) =7a and mao(upr g A) =lx

wherers : AQr R — A andly : RQrA — A are the right and left constraints.

Let
A = —®@pA: Mod-R — Mod-R
ma = —®RmA:—®RA®RA—>—®RA
uy = (—®pua)or':——= —®rR——Q®rA

We prove that A = (A, ma,ua) is a monad on the category Mod-R. For every

M € Mod-R we compute

[mao(maA) (M) = (M®&grma)o(M®prA®prma)=M Rp[ma o (AQrma)
= M KR [mA o (mA KR A)] = (M Rr mA) o (M Xr MmA QR A)
= [mao (Amy)] (M)

(mao (Aua)] (M) = (M ®@gma)o [(M®gus)oryt] @A

= (M ®gma)o(M@rus®rA)o (ry @rA)
= (M ®pg[mao(usr ®rA)]) o (7“;41 Rr A)

= (M ®gla)o(ry ®rA) =M @r A =AM
and

[mao (uaA)] (M) = (M ®gma)o(M®RrAQgua)oryg A
(M ®p [ma o (A®gua)]) 0 Ti/g, A
= (M ®gra)oryp,a=MerA=AM.
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Exercise 6.15. Let R, A be rings.Let uy : R — A be a ring homomorphism. Let
us denote by m the multiplication of A and by ma : A @r A — A the well-defined
induced map. Prove that (A,ma,uwa) is an R-ring.

Exercise 6.16. Prove that every ring is a Z-ring.

Proposition 6.17 ([H)). Let (L, R) be an adjunction with unit n and counit ¢ where
L:B—AandR: A— B. Then RL = (RL, ReL,n) is a monad on the category B.

Proof. We have to prove that
(ReL)o(RLReL) = (ReL)o(ReLRL) and (ReL)oRLn= RL = (ReL)o(nRL).
In fact we have

(ReL) o (RLReL) = (ReL) o (ReLRL)

and
(ReL) o RLy "2 RL Y2 (ReL) o (nRL).

]

Exercise 6.18. Let A, B rings and let M be an A-B-bimodule. Consider the func-
tors

L = —®4M:Mod-A— Mod-B
R = Homp(M,—): Mod-B — Mod-A.

Then (L, R) = (— ®4 M,Hompg (M, —)) is an adjunction. Compute the monad RL
associated to this adjunction. Moreover, compute the monad RIL in the particular
case A= B =R and M ¢é un R-ring.

Definition 6.19. A left module functor for a monad A = (A, ma,ua) on a category
A is a pair (Q,AMQ) where Q : B — A is a functor and “pg : AQ — Q is a
functorial morphism satisfying:

g o (Alug) =g o (maQ) and Q ="pgo (usQ).

Example 6.20. Let A be an R-ring. Let A = A®pgr — be a monad associated to the
R-ring and let Q = M ®g — where M is a left A-module. Then Q is a left A-module
functor via the map

AQ:(A®3M®R—)—>Q:(M®R—)

aR@RrmQr — — am Qr —

where we denote by am the multiplication of an element a € A with an element
m € M.



94 CHAPTER 6. MONADS

Definition 6.21. A right module functor for a monad A = (A, ma,us) on a cat-
egory A is a pair (P, ,uﬁ) where P : A — B, is a functor and p% : PA — P is a
functorial morphism such that

pp o (ppA) = ppo (Pma) and P = ppo(Pua).

Remark 6.22. Let A = (A, ma,ua) be a monad on a category A and let (Q,AMQ)
be a left A-module functor and (P, ,u‘]i) be a right A-module functor. By the unitality
property of “ug and p we deduce that they are both epimorphism.

Definition 6.23. For two monads A = (A,ma,us) on a category A and B =
(B,mp,ug) on a category B, a A-B-bimodule functor is a triple (Q, g, ,ug) , where

Q : B— Ais a functor and (Q, A,uQ) s a left A-module, (Q, ug) is a right B-module
such that in addition

g o (Ang) = ng o ("neB).
Definition 6.24. A module for a monad A = (A, ma,ua) on a category A is a pair
(X, A,uX) where X € A and “px : AX — X is a morphism in A such that

Yx o (Atux) =px o (maX) and X ="px o (uaX).
A morphism between two A-modules (X, A,uX) and (X’,A,uX/) s a morphism f :
X — X" in A such that
Aaxr o (Af) = fopx.
We will denote by s A the category of A-modules and their morphisms. This is the

so-called Eilenberg-Moore category which is sometimes also denoted by A®.

Remark 6.25. Let A = (A, ma,ua) be a monad on a category A and let (X, A,uX) €
»A. From the unitality property of 4ux we deduce that “ux is epi for every
(X,AMX) € aA and that uy X is mono for every (X, A,uX) € zA, e, uy is a
monomorphism.

Example 6.26. Let A be an R-ring. and Let A = — ®r A : Mod-R — Mod-R be
the monad associated. We want to understand the category of modules with respect
to this monad. The underlying category is A = Mod-R. Let X € Mod-R. We need
a map
Ay AX =X @pA—= X
T Xprat— xa.

This means that X is endowed with a right A-module structure so that 4 A = Mod-A.

Example 6.27. Let A be an R-ring. and Let A = A ®r — : R-Mod — R-Mod be
the monad associated. We want to understand the category of modules with respect
to this monad. The underlying category is A = R-Mod. Let X € R-Mod. We need
a map
Ay tAX =A®p X = X
aX@pr T — ax.

This means that X is endowed with a left A-module structure so that 4 A = A-Mod.
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Definition 6.28. Corresponding to a monad A = (A, ma,us) on A, there is an
adjunction (A F, \U) where yU is the forgetful functor and xF is the free functor

AU : A.A - A AF A — A.A
(X, 4ux) — X X = (AX,muX)
f - f f— Af.

Note that \UyF = A. The unit of this adjunction is given by the unit uy of the
monad A:
uAiA%AUAF:A.

The counit Ag : aF AU — oA of this adjunction is defined by setting
AU ()\A (X,A,ux)) =y for every (X,AMX) € A
In fact, for every (X, A,uX) € oA we need to define a morphism in 5 A between
aFoU (X, Mpx) = (X, Mux)

i.e. between
(AX,maX) = (X, px) .

This needs to be a morphism of A-modules between the underlying objects AX and
X. Therefore, we define A4 (X, A/LX) as morphism on the underlying objects to be

KU ()\A (X,A,ux)) =Aux for every (X, Aux) € 4 A
Then, the adjunction relations are the following
(AaaF) o (aFuy) = o F and (AUAA) 0 (uapU) = 4U.
Exercise 6.29. Prove that y\F X = (AX,maX) € ,A.

Exercise 6.30. Let (L, R) be an adjunction and let A = (RL, ReL,n) be the monad
associated to the adjunction. Prove that (R, Re) is a left A-module functor and that
(L,eL) is a right A-module functor.

Proposition 6.31. Let A = (A, ma,ua) be a monad on a category A. Then U is
a faithful functor. Moreover, given Z,W € A we have that

Z =W if and only ifaU (Z) = AU (W) and p\U (AaZ) = pU (AaW).
In particular, if F,G : X — 4 A are functors, we have
F =G if and only if \UF = y\UG and pU (M F) = ,U (M G)

Proposition 6.32. Let A = (A, ma,ua) be a monad on a category A and let
(X, A,uX) be a module for A. Then we have

(X, AMX) = Coequ 4 (AAuX,mAX) .
In particular if (Q,A ,uQ) s a left A-module functor, then we have

(Q’A 'LLQ) = COeunun (AAMQ) mAQ) .
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Proof. Note that

WmAX AMX
AAX A AX —=X

— us X
X
mi>X
A
AX nx
AAX " AX =2 X
upsX
AA_;;X

is a contractible coequalizer and thus, by Proposition 672, (X A X) = Coequ 4 (AAM X, maX ) :
Let now (Q,A ,uQ) be a left A-module functor where Q : B — A. Then, by the fore-
going, for every Y € B we have that

(QY, A,uQY) = (QY, Aqu) = Coequ 4 (AAqu,mAQY) = Coequ 4 (AA,uQY,mAQY) )
Then, by Lemma B=34, we have that (Q,A ,uQ) = Coequp,, (AA,LLQ, mAQ). O]

Proposition 6.33. Let A = (A, m4,ua) be a monad on a category A and let (P, ué)
be a right A-module functor, then we have

(6.1) (P, up) = Coedupy, (upA, Prma).

Proof. Note that

Pmy

uh
PAA_ TAua “ ppg——sp
T aa Pua
HpA
PE)A
p
PA
PAA &4 PA =2 P
Pua
A4
g

is a contractible coequalizer and thus, by Proposition 672, (P, /Lﬁ) = Coequp,, (uﬁA, Pm A) .
m

Proposition 6.34. Let A = (A,ma,ua) be a monad on a category A and let
(oF, aU) be the adjunction associated. Then pU reflects isomorphisms.

Proof. Let f : (X, A;LX) — (Y, A,Uy) be a morphism in 5 A such that ,Uf has a
two-sided inverse f~! in A. Since

Yo (Af) = folux

we get that
Sy = 4pux o (Af7).
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6.3 On Beck’s Theorem

Lemma 6.35. [Ba3, Corollary 4.1.4] Let (L : B — A, R : A — B) be an adjunction.
Then the forgetful functor U : g B — B reflects the isomorphisms.

Proof. Let f: (B,u) — (B, 1) be a morphism in gyB such that U f is an isomor-
phism. We have that
(o RLUf =Ufop

so that
[(Uf) ] ou' =uoRL{US)™]

which entails that (U f)™" gives rise to a morphism g : (B, /) — (B, j1) such that
Ug = (Uf)"". Hence

U(fog) :IdB/ and U(gof) IIdB
so that

f 0g= Id(B/JL’) and go f = Id(B#).

[

Definition 6.36. Let (L, R) be an adjunction where L : B — A and R : A — B
and let A = (A= RL,ms = ReL,uy =n) be the associated monad on the category
B. We can consider the functor

K=rK: A— B
defined by setting
K (X)=(RX, ReX) and K(f)=R(f).
This is called the comparison functor of the adjunction (L, R). Note that \UoK = R

Proposition 6.37 (Beck). [BW, Theorem 3.13, page 100] Let (L,R) be an ad-
gunction where L : B — A and R : A — B. Consider the comparison functor
K : A— gB. Then K is full and faithful if and only if for every A € A we have
that (A,eA) = Coequy (LReA,eLRA).

Proof. Let U : g B — B be the forgetful functor. Let A € A. By Corollary BT,

ReA

RLReA
RLRLRA = RLRA — RA.
ReLRA

is a contractible coequalizer. In particular it is preserved by L so that LReA is an
epimorphism.
Suppose that K is full and faithful and let us prove that

LReA cA
LRLRA = LRA— A
eLRA



98 CHAPTER 6. MONADS

is a coequalizer too. Clearly €A coequalizes (LReA,eLRA). Let w : LRA —
W be a morphism in A which coequalizes (LReA,eLRA). Then Rw coequalizes
(RLReA, ReLRA) so that there is a unique morphism @ : RA — RW such that
W o ReA = Rw. Let us check that & is a morphism in g;,B. We have

eWolLwo LReA=eW o LRw=woelLRA=wo LReA.
Since LReA is an epimorphism, we get el o Lw = w. Thus
ReW o RLo = Rw = W o ReA

so that @ is a morphism in gz B i.e. it defines a morphism w! : KA — KW in r.B
such that Uw! = @. Since K is full there is a morphism h : A — W such that
w! = Kh. Then, from & o ReA = Rw, we have

UKhoUKeA=UKuw
so that, since U and K are both faithful, we get
hoeA=w.

Let us check that A is the unique morphism with this property. Let h' : A — W be
such that h' o eA = w. By applying R we get Rh/ o ReA = Rw. Since @ o ReA = Rw
and ReA is an epimorphism, we get Rh' = &. Thus

UKht = Rh =0 =UKh

whence h/ = h.
Conversely, suppose that

LReA A
LRLRA = LRA — A

eLRA

is a coequalizer and let us prove that K : A — pgyB is full and faithful. Let
f: KA — KA be amorphism in g, 3. Then Uf : RA — RA’ is such that

(6.2) ReA' o RLUf = Uf o ReA.
Then

€eA'o LUfo LReA = €eA'oL[Ufo ReA] =¢A' o L[ReA' o RLU f]
= ¢A'o LReA' o LRLUf
= €A oeLRA o LRLUf
= eA'oLUfoeLRA

so that there is a unique morphism ]?: A — A’ such that on €A =¢A o LUf. Thus

UKf=Rf=RfoReAonRA = ReA' o RLUf onRAS Ufo ReAonRA =Uf
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so that K]/C\: fie K is full. Let g,g/ : A — A’ be morphisms in A such that
Kg= Kg'. Then Rg = Rg’. Thus LRg = LRg' and hence

goeA=eA o LRg=¢cA o LRy = g’ o€A.
Since €A is an epimorphism, we get that g = ¢’ i.e. K is faithful. m

Remark 6.38. A functor R : A — B which has a left adjoint L : B — A for which
the corresponding comparison functor K : A — g B
is full and faithful is called of descent type.

Theorem 6.39. Let (L:B — A R: A— B) be an adjunction. Let n and € be
the unit and counit of (L, R) respectively. Consider the comparison functor K :
A — gpB. Set S := {(Lu,eLB) | (B,u: RLB — B) € g B}. Then the following
assertions are equivalent.

(a) K has a left adjoint, say A,

(b) For each element in S we can choose a specific coequalizer in A.

Assume that (b) holds.

Then, for every (B, u) € grpB, A (B, ) is defined to be the coequalizer

L
LRLB = LB ™24 A (B, 1)

eLB

and for every morphism f : (B,u) — (B',u') the morphism A(f) : A(B,u) —
A (B’ i) is uniquely defined by

A(f)om(B,p)=m (B, 1) o LU(f).

Moreover the unit n' and the counit €' of the adjunction (A, K) are uniquely defined
by

(6.3) Un' (B, p) o= R (B, ),

(6.4) c'AomKA = €A,
and we have
(6.5) m (B, p) = eA (B, p) o LUN" (B, 1)

Furthermore, A is full and faithful if and only if R preserves coequalizers of elements

in S.
Proof. Let U : g, B — B be the forgetful functor. Then UoK = R. Let (B, : RLB — B) €
rrB and consider the pair

Ly
LRLB = LB.
eLB
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Assume that (Lu, eLB) has a specific coequalizer that will be denoted by (A (B, ) ,m (B, p) : LB — A (E
Let f:(B,u) — (B, ) be a morphism in grB. Then U (f) : B — B’ is such that

U(f)op=poRLU(f)

so that
LU (f)o Lu= Ly o LRLU (f).

Moreover, by naturality of the counit we have

LU (f) 0 eLB = ¢LB' o LRLU ().

Thus
7 (B 1) o LU (f)o Ly = (B',i)o Ly o LRLU (f)
= 7w (B y)oelLB o LRLU (f)
— w(B)o LU (f) o cLB

so that there is a unique morphism A (f) : A (B, u) — A (B', /) such that
A(f) o (Bo) =7 (B ) o LU ().
Let f': (B, i) — (B”, ") be a morphism in gB. Then

A(f) o A(f)om(B,p) = om (B, u)e LU(f)
B, ") o Lv (f) e LU (f)
B, ") o LU (f"o f)

frofyem (B, ).
Since 7 (B, ) is an epimorphism, we obtain A (f') o A (f) = A(f’ o f). Moreover

A(S
™ (
™ (
A(

A (Idy) om (B, p) = (B, p) o LU (Idp,,)) = 7 (B, 1)

so that A (Id(p ) = Ida(s,). Let us check that (A, K) is an adjunction. We produce
the unit and counit of this adjunction.
By Lemma B0, we have the following coequalizer in B

RLp "
RLRLB = RLB — B.
ReLB

Since 7 (B, p1) coequalizes (L, eLB), we have that Rr (B, ) coequalizes (RLu, ReLB).
Then there is a unique map « (B, p) : B — RA (B, ) such that

(6.6) a(B,p)opu=Rr(B,pu).
Let us check that a (B, p) is a morphism in g, B. We have

eA(B,p)o Lo (B,p) = eN(B,p)o La(B,p)o Lo LnB =eN(B,p)o LR (B,p) o LnB
= 7w(B,u)oeLBolLnB =7 (B,u)
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so that
(6.7) €A (B, ) o La (B, u) =m (B, )

and hence
ReA (B, p) o RLao(B, p) = R (B, i) = (B, ) o b

i.e. a(B,u) is a morphism in zrB. Thus « (B, u) defines a morphism n' (B, i) :
(B,u) — KA (B, ) such that U (n' (B,u)) = a(B,u). Note that from (@) one
gets (E33). Let us check that n' (B, ) is natural. Let f : (B,u) — (B',1) be a
morphism in r;B. Then

RAfoa(B,u)ou = RAfoRrm(B,u)=Rr(B',u')o RLUf
= a(B,p)ou o RLUf
a(B,y)oU(f)on

so that
RAfoa(B,u)=a(B ,py)oUf

whence
KAfon' (B,p)=n"(B',1)of.

Now since U (' (B, 1)) = a (B, u), from (E22) we deduce (E3).
We have seen that for all B € B we have an equalizer

L
LRLB = LB™ % A(B, ).

eLB

Apply this to B = KA for all A € A to get the coequalizer

LReA TKA
LRLRA = LRA — AKA.

eLRA

By naturality of €, we have that eA coequalizes (LReA,eLRA) so that there is a
unique morphism ¢' A : AKA — A such that (63d) holds. Let us check that ' A is
natural in A. Let g : A — A’ be a morphism in A. Then

goe!AorKA = goeA=¢eA oLRg
= A onKA oLRg
= A onKA oLUKyg
= A oAKgormKA.

Since TK A is an epimorphism, we get

goe!A=¢€e'A' 0 AKy.
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For (B,u: RLB — B) € g1B,

e'A(B, p) o An' (B, p) o7 (B, )
= ¢ A(B,u)onKA (B, p) o LUR' (B, )
= ¢ A(B,u)onKA (B, p)o La (B, )

= A(B.p)oLa(B.p) = 7 (B,p)

so that
€' A (B, p) o An* (B, p) = Idas -
For all A € A,
UKe'AoUn'KA
= UKe'AoUn'KAo ReAonRA
= Re'AoaKAo ReAonRA
= Re'Ao RtKAonRA
= ReAonRA
= Idga.
Thus

Ke'Aon' KA =1dga.

We have so proved that (A, K) is an adjuntion.
Conversely, assume that K has a left adjoint A. For (B, u) in g1 B, we set

7 (B, ) = e\ (B, ) o LUN" (B, 1) .

Let us check that

Lu (B,
LRLB = LB =% A(B, u)
eLB

is a coequalizer. Note that u: RLB — B is a morphism in g; B

m(B,p)o Ly = eA(B,p)o LUn" (B, p) o Ly

= eA(B,p)o L [Un" (B, p) o ]
1
TEERE N (B, ) o L [ReA (B, 1) o RLUR' (B, )]

= e\ (B,p) o LReA (B, ) o LRLUn* (B, 1)
= eAN(B,u) o eLRA (B, ) o LRLUn (B, 1)
= eA(B,u)o LUn* (B, ) o eLB
= w(B,u)oelB

Let ¢ : LB — Z be a morphism in A which equalizes (Lu, eLB) . Set

(:=RConB:B— RZ.
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Let us check that Zis a morphism in g;B. We have
(6.8) ¢ZoL{=eZoLR(oLnB =(_oeLBoLnB =
so that

ReZoRLC=2 RC = RCoReLBonRLB = R(CoeLB)onRLB
= R(CoLu)onRLB = RCoRLponRLB = RConBopu=_{opu

Hence E: B — RZ defines a morphism 9 : (B, ) — KZ such that Uv = E Then

(€' ZoAd)orm (B,u) = €ZoAdoeA(B,u)oLUn' (B,p)
= eZoLRe'Z o LRAY o LUN" (B, p)
= e¢ZoLRe'Z o LUKAY o LUn* (B, 1)
€Zo LUKe'Z o LUN'KZ o LUY

¢Z o LC
(63)
= ¢

so that (e!ZoA¥) o w(B,u) = (. Let us check that the unique morphism ¢ :
A (B, 1) — Z such that o7 (B, u) = ( is exactly €' Z o AY. Consider the canonical
isomorphism @ : A (A (B, u),Z) = piB((B,p),KZ),® (z) = Kzon' (B, 1). Thus,
in order to prove that ¢ = €' Z o A9 it suffices to check that ® (¢) = @ (e Z o AV)
ie.

Kpon' (B,u)=Ke'ZoKANjon' (B,u).

Note that the latter term is Ke!Z o KAYon' (B,u) = Ke*Zon'KZ o1l = ¥ so that
we have to prove that

Koon' (B,p)=1.
or equivalently
UK¢oUn' (B, ) =C.

Consider the canonical isomorphism © : A(LB,Z) — B(B,RZ),0 (y) = Ry onB.
Since Z:: R( onB = 0O ((), in order to prove the last displayed equality it suffices
to check that

O [UKpoUn' (B, )] = ¢

i.e. that eZ o LIUK® o Un' (B, )] = ¢. We have
eZoL[UK¢oUn' (B,u)] = €ZoLRpoLUn"(B,p)
= ¢oeN(B,p)o LUn' (B,p) =dom(B,pu)= (.

We have so proved that (A (B, ), 7 (B, pn)) is a coequalizer for (Lu,eLB).
Let us prove the last part of the statement.
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Assume that R preserves coequalizers of elements in S and let us prove that A
is full and faithful i.e. that n' (B, p) is an isomorphism for every (B,u) € prB.
Consider the following coequalizer

L
LRLB = LB™ % A (B, )

eLB

By assumption we have a coequalizer

RL
RLRLB — RLB ™5

ReLB

"RA(B, ).

Since p coequalizes (RLu, ReLB), there is a unique morphism £ : RA (B, u) — B
such that £ o R (B, ) = p. Let a(B,p) = Un' (B, u). Then

Idp = pionB = Eo R (B,p)onB S €oa(B,p)oponB=_¢o.

Moroever

o (B,p)o&o Rr(B,p) =a (B, ou'S Rr(B,p).

Since R (B, ) is an epimorphism, we get o (B,pu) o & = Idgacs,. Therefore
a(B,pu) =Un' (B, ) is an isomorphism. By Lemma E33 we deduce that n' (B, p)
is an isomorphism.

Conversely, assume that A is full and faithful. Let (B,u: RLB — B) € griB
and consider the coequalizer

L (B,u)
LRLB = LB = A(B,pu).
eLB

Let us check it is preserved by R. Clearly Rm (B, pu) coequalizes (RLu, ReLB) .
Let 0 : RLB — D be a morphism in B that coequalizes (RLu, ReLB). Set £ :=
n' (B,u)™" : KA (B, 1) = (B, p) and let o (B, ) = Un' (B, ). Then
[0 onBoUglo R (B, u)
= [sonBoUoa(B,u)onu
= donBou=90oRLpuonRLB =60 ReLBonRLB = 6.
Let now w : RA (B, 1) — D be a morphism such that w o R (B, u) = 6. Then

donBoU¢
= woRn(B,p)onBoUt S woa(B,u)ouonBole
= woa(B,u)oUt =woln' (B,p)oUt = w.

Therefore (RA (B, ), Rm (B, 1)) is the coequalizer of (RLu, ReLB). O
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Corollary 6.40. Let (L: B — A, R: A — B) be an adjunction. Let n and € be the
unit and counit of (L, R) respectively. Consider the comparison functor K : A —
reB and assume that (2) in Theorem holds and denote by A : pB — A the
left adjoint of K constructed therein. Let U : rr,B — B be the forgetful functor and
let F': B =B be the free functor. Then we have

UK=R  KL—=F and AF=L.
Moreover, for all A € A,
(AKA,7KA) = Coequy (LReA,eLRA).

Proof. For every A € A, we have KA = (RA, ReA) and for every B € B, we have
FB = (RLB, ReLB). Hence the first two equalities are trivial. Now, by Lemma
69, (LB, LRLRLB,LRLB,cLB,LReLB,eLRLB, LnB, LRLnB) is a contractible
coequalizer. In diagram:

LReLLB

—
eLB
LRLRLB """ [RLB = LB .
LnB
eLRLB
=

In particular (LB, eLB) is the coequalizer of

LReLB
LRLRLB = LRLB.
¢LRLB

By the construction of A given in Theorem BZ3d, we deduce that AFB = LB, for
every B € B, and that
(AKA,mKA) = Coequy (LReA,eLRA), for every A € A. ]

Theorem 6.41 (Beck). [BLY, Theorem 2.1] Let (L:B — A, R: A— B) be an
adjunction. Let n and € be the unit and counit of (L, R) respectively. Consider the
comparison functor K : A — grB. The following assertions are equivalent:

(1) K is a category isomorphism.

(2) K is an equivalence and for any isomorphism f : RX — B in the category
B there exists a unique pair (A,g: X — A), where A is an object in A and g a
morphism in A, such that RA= B and Rg = f.

Proof. Let U : g.B — B be the forgetful functor. Note that both in (1) and (2) the
functor K is, in particular, an equivalence so that, in view of Proposition B234 and
Theorem we have that

e for every A € A we have that (A,eA) = Coequ 4 (LReA,eLRA),

e cach element in S := {(Ly,eLB) | (B, : RLB — B) € g B} has a coequal-
izer in A,
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e IR preserves coequalizers of elements in S.

(1) = (2). Let A be a left adjoint of K such that AK = Idy and KA =
Id,, 5. Note that the unit and counit of the adjunction (A, K) are the identity
funtorial morphism €' : AKX — Id4 and n' : Id,,5 — KA. Let f : RX — B
be an isomorphism in the category B. It is clear that B can be regarded as an
object in grB via p := fo ReX o RL]i‘l : RLB — B. Moreover f defines a
morphism f: KX — (B, u) such that Uf = f. Clearly f is an isomorphism. Now
(B,u) = KA(B,u) = KA where A := A(B,p). Thus B = UKA = RA. Set
g:=Af:X — A Then Rg = UKAf = Uf = f. Let now (A, ¢ : X — A) be
another pair such that RA" = B and Rg' = f. Since fis an isomorphism, we have
that ¢ = Af is an isomorphism. Consider

Ti=gogl: A=A

Then
UKT=Rr=RgoR(g")=fo(Rg) " =Idga.

We have f = Uf = UKAf = RAf so that
ReA'oRLf = R(¢A' o Lf) = R (eA’ o LRAf) — R (Afo (—:X) — RAFoReX = foReX — puoRLY.
Since RLf is an isomorphism we get ReA’ = p so that

KA = (RA' ReA’) = (B,u) = KA(B,u) = KA

and hence A’ = A. Since UKT = Idga = UKIdy, we get 7 = Id4 so that ¢’ = g.
(2) = (1). Since K has a left adjoint, by Theorem the class S has a
specific coequalizer. Thus we can consider the left adjoint A of K as constructed
in Theorem E39. Let n' and €' be the unit and counit of (A, K) respectively.
Let (B,u: RLB — B) € grB. Let f(B,pu) : RA(B, 1) — B denote the inverse of
Un' (B, ). By hypothesis there exists a unique pair (A’ (B, 1), g (B, ) : A(B,u) = AN (B, i),
where A’ (B, i) is an object in A and ¢ (B, 1) a morphism in A, such that RA" (B, u) =
Band Rg (B, ) = f (B, ). Since f (B, u) is an isomorphism and R = UK, we have
that ¢ (B, ) is an isomorphism too.
By (E3) and (E3), we have

ReA (B, p) o RLUN' (B, ) = Un' (B, p) o

so that
f(B,p) o ReA(B,p) = po RLf (B, ).
Using this equality we get

RelN (B,p) o RLf (B,p) = RIeN (B,p)o Lf (B,p)] = R[N (B, p) o LRg (B, n)] = R[g (B, p) o €A
= Rg(B,p)o ReA (B, ) = f (B, ) o ReA (B, ) = ppo RLf (B, ).
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Since f (B, p) is an isomorphism, we obtain ReA’ (B, u) = u so that
KN (B,M) = (RA/ (B=M)7R€A/ (B,,u)) = (B’/i) :

Let A€ Aandset a :=eAo(gKA) ™" : NKA — A We have that RA'KA =
UKNKA=UKA=RA and

Ra = Re'AoR (gKA) ™" = Re'AofKA™ = Re'AoUn' KA = U [Ke'Aon'KA] =1dga.

By uniqueness in the assumption, we get (MK A, o) = (A,1d,).
For all h: (B,u) — (B, 1), set

Nh:=g(B,i)oAhog(B,u) .
Then we get a functor A’ : g B — A which is an inverse of K. O

Proposition 6.42. [Li, Proposition 3, page 83] Let (A,m : AA — Aju:1de — A)
be a monad on a category C and let f,g: (M,pn) — (N,v) be a pair of morphisms
in AC. Let U : 4C — C be the forgetful functor and assume that

1) (Uf,Ug) has a coequalizer (C,c: N — C) inC.

2) (AC, Ac) = Coequ, (AU f, AUg) .

3) AAc is an epimorphism in C.

Then there is a unique morphism 7 : AC — C such that cov = 7o Ac. Moroever
(C,7) € AC, ¢ defines a morphism ¢ : (N,v) — (C,7T) in oC such that Uc = ¢ and
((C,7) ) = Cocan i (£, 9).

Proof. Let us consider

AM = AN = AC
AUg

pd vl
Uf .

M = N — (C
Ug

We have
covoAUf =coUfou=colUgou=covoAUyg.

Since (AC, Ac) = Coequ, (AU f, AUg) there exists a unique morphism 7 : AC' — C
such that
ToAc=couv.

Let us prove that (C,7) € 4C. We have

bgr 0o AT 0o AAc =70 Aco Av =covo Av

=covomN =70AcomN =71omC o AAc.
Since AAc is an epimorphism in C, we get 7 o AT = 7 o mC. Moreover we have

TouCoc=71o0AcouN =covouN =c¢
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and since ¢ is an epimorphism, we get 7 o uC = Id¢ so that (C,7) € 4C.
Since 7 0 Ac = co v, ¢ defines a morphism ¢ : (N,v) — (C,7) in 4C such that
Uc = c. Let us check that ((C,7),¢) = Coequ . (f,g). We have

U(cof)=UcoUf=coUf=colUg=UcoUg=U (cog)

so that ¢o f = €og. Let w : (N,v) — (Z,() be a morphism in 4C such that
wo f=wog. Then Uw coequalizes (U f,Ug) so that there is a unique morphism
w : C — Z such that woc = Uw. We have

woToAc=wocov=Uwov =_oAUw = (o Aw o Ac.

Since Ac is an epimorphism, we obtain wo 7 = (o Aw so that w defines a morphism
w: (C,7) = (Z,¢) such that Uw = w. We have

U(oc)=UwolUc=woc=Uw

so that W o¢ = w. Let us check that @ is unique. Let a : (C,7) — (Z,() be a
morphism in 4C such that ao¢ = w. Then

Uaxoc=U(aoc)=Uw=woc=Uwoc.
Since ¢ is an epimorphism we get Ua = Uw and hence o = . O

Theorem 6.43 (Beck). [BLU, Theorem 2.1 page 5] Let (L : B — A, R : A — B) be
an adjunction. Let n and € be the unit and counit of (L, R) respectively. Consider
the comparison functor K : A — grr.B. The following assertions are equivalent:

(1) K is an equivalence.

(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer pair
we can choose a specific coequalizer in A, which is preserved by R.

(3) R reflects isomorphisms and for every element in S := {(Lu,eLB) | (B,u: RLB — B) € g B}
we can choose a specific coequalizer in A which is preserved by R.

(4) For every A € A we have that (A, eA) = Coequ 4 (LReA,eLRA). For every
element in S := {(Lp,eLB) | (B, : RLB — B) € gB} we can choose a specific
coequalizer in A which is preserved by R.

Proof. (1) < (4). It follows by Proposition 6232 and Theorem G=39.

(1) = (2). Let A : rpzB — A be a left adjoint of K. Let n' and €' be the
unit and counit of (A, K) respectively. Assume that f : A — A’ is a morphism
in A such that Rf is an isomorphism. Since Rf = UK f is an isomorphism, so is
Kf:KA— KA Since ¢! AoAK f = foe'A and the counit is an isomorphism, we
get that f is an isomorphism. Let (dy,d;) from A to A’ be a reflexive R-contractible
coequalizer pair. Since the pair is reflexive there is a morphism e : A’ — A such
that dyoe = dyoe = Id 4. Since it is an R-contractible coequalizer pair, there exists
C € C and morphism v : RA" - RA, ¢c: RA' - C and u: C — RA’

N
RA & RA = C .
iy

u
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such that

Rdyov = Idgy,

Rdiov = woc,
cou = Idg,

coRdy = coRd;.

In particular (C, ¢) = Coequg (Rdy, Rd,) = Coequg (UKdy, UK d,) . Since

Rdo c
RA = RA — C
Rdy

is an R-contractible coequalizer pair, in view of Proposition E8 and PropositionBEa,
it is preserved by any functor.

RLRdy Rle
RLRA = RLRA" = RLC

RLRd,

In particular (RLC, RLc) = Coequgz (RLRdy, RLRd;) = Coequg (RLUKdy, RLUKd,)
and also RLRLc is an epimorphism.

Apply Proposition B42 to the monad (RL, ReL,n) on the category B and to the
pair Kdy, Kd; : KA — KA’. Thus

there is a unique morphism m : RLC' — C such that

mo RLc=co ReA’.

Moreover (C,m) € grpB, ¢ defines a morphism ¢ : KA" — (C,m) in grB such
that Uc = ¢ and ((C,m),c) = Coequ, 5 (Kdy, Kdy). Since A is an equivalence
we have that (A (C,m),A¢) = Coequy (AKdy, AKdy). Set A” = A(C,m) and
v = ACo (el4)™ + A — A”. Since €'4A o AKd; = d; o ¢'A and ¢'A is an
isomorphism, it is clear that (A", ) = Coequ 4 (do, dy).
We have
Unt (C,m) " oRy = Un'(C,m) " oRACOR (elA’)_1
— Up' (C,m) ' o UKACo (R A
= Uco (Un'KA) " o (UK A)™
= Uc=c.
so that
(6.9) Ry =Un'(C,m)oc.

Since (C,m) € rrB, we have an isomorphism

n' (C,m) : (C,m) — KA8(C,m) = (RA (C,m), ReA (C,m)) = (RA"”, ReA").
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Since (C, ¢) is a coequalizator of (Rdy, Rd) in B, by (E9) we deduce that (RA”, Rv)
is a coequalizator of (Rdy, Rd;) in B.

(2) = (3). Let (B,u: RLB — B) € grBB. By Lemma EI0, (LB, Lu) is a
reflexive R-contractible coequalizer pair. By assumption, (eLB, Lu) has a specific
coequalizer in A, which is preserved by R.

(3) = (4).Let A € A. Then (B,u) = (RA,ReA) € grB. By assumption
(eLRA, LReA) has a specific coequalizer (C, ¢) in A, which is preserved by R. Since
€A coequalizes (eLRA, LReA), there is a unique morphism h : C' — A such that
hoc=¢€A. Then Rho Rc = ReA. By Corollary B0 and Proposition B2, we know
that (RA, ReA) is the coequalizer of (ReLRA, RLReA) in B. Since also (RC, Rc) is
the coequalizer of (ReLRA, RLReA) in B, we have that Rh is an isomorphism. Since
R reflects isomorphisms we obtain that A is an isomorphism too so that (A,eA) =

Coequy (LReA,eLRA). O

Remark 6.44. A functor R : A — B which has a left adjoint L : B — A for which
the corresponding comparison functor K : A — g B

is an equivalence of categories is called monadic (tripleable in Beck’s terminology
[[Bd, Definition 3, page 8]]). For this reason Theorem 043 is also called ”Beck’s
Precise Tripleability Theorem” (cfr.[BYM, Theorem 3.14, page 101]).

6.4 Johnstone for Monads
Proposition 6.45 ([Appel] and [d]). Let A = (A, ma,ua) be a monad on a category

A and let B = (B, mp,up) be a monad on a category B and let Q : A — B be a
functor. Then there is a bijection between the following collections of data

F functors Q : n A — B that are liftings of Q (i.e. 2UQ = QaU)
M functorial morphisms ® : BQ — QA such that
Qo (mpQ) = (Qma) o (PA) o (BD) and Do (upQ) = Qua

given by

a : F — M wherea (@) = (BUAB@AF> o (gUpFQuy,)
M — F where gUb (®) = QU and gUApb () = (QaUI4) 0 P
M — F where b(®) (X, px)) = (QX, (Q%ux) o (2X)) and b(®) (f)

Proof. Let Q : 4 A — 5B be a lifting of the functor Q : A — B (i.e. sUQ = QaU).
Define a functorial morphism ¢ : g F'(Q — QuF as the composite

¢ = (/\B@AF> o (pF'Quy)

Q).
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where ug : A — pAUpF = A is also the unit of the adjunction (,F,,U) and Ap :
pFgU — B is the counit of the adjunction. Let now define

oY LU sUsFQ = BQ — gUQWF = QuUAF = QA.

We have to prove that such a ® satisfies ® o (mpQ) = (Qma) o (PA) o (BP) and
® o (upQ) = Quy. First, let us compute

(Qma) o (24) 0 (BE) = (Qma) o (sUAsGaFA) 0 (UsFQuad)
° (BBU)\B@AF> o (BeUpFQu,)
B (QUUALF) o (sUAsQuFA)
o (sUsFQuaA) o (BBU)\B@AF> o (BeUpFQu.)
Qifting (EU@/\AAF> o (EUAB@AFA>
0 (sUsFQuaA) o (BsUNsQuF ) o (BsUsFQua)
LU [(@)\AAF> o (AB@AFA> ° (BFQuAA)]
° (BBU)\B@AF> o (BBQuy)
250 [(AsQuF) o (sFUQAAF) o (sFQuaA)]
o (BBU)\B@AF> o (BBQuy)
WL 0 [(ABQaF) © (sFQUALLF) © (sFQuaA)]
o (BsUNs@uF) o (BBQua)
LU [(AsQuF) 0 (aFQma) © (sFQuad)|
o (BaUAsQuF) o (BBQua)
e (UARQAF) o (BaUAQAF) o (BBQu.)
W2t (UAsQuF) o (msUQLF) o (BBQu.)
2 (sUAsQ4F) 0 (BQua) © (msQ)
= (sUAsQuF) © (2UsFQua) © (msQ)

= (8U®) o (m5Q)
=do (mBQ) .
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Moreover we have

® o (upQ
= (BU/\BQAF

- (]BU)\B@AF

~—

= (8U¢) o (upQ)
o (BUrFQua) o (upQ)

o (upQAUxF) o (Qua)

Qliftin ~ ~
G (IBU/\BQAF) o (UBIBUQAF> o (Qua)
(]BFﬂBiJ)adj Qua.
Conversely, let @ be a functorial morphism satisfying ® o (mpQ) = (Q@ma) o (PA) o
(B®) and @ o (upQ) = Qua. We define @ : A — B by setting, for every
(XaA ;uX) € AAa

N———

é ((X7AMX)) = (QXa (QA,UX> o (q)X)) .
We have to check that (Q (X), (Q%ux) o (X)) € B, that is
Bligx © (BBM@X> = Bugy o (mpQX) and Pugy o (upQX) = QX.

We compute

ngx o (BBMQX> = (Q"px) o (2X) 0 (BQ"pux) o (BPX)
2 (Qux) o (QAMux) o (PAX) o (BOX)
R (Qx) 0 (QmaX) o (RAX) o (BEX)
PP (@ ux) © (8X) 0 (msQX)
= BN@X o (mpQX).
Moreover we have
Pugy o (upQX) = (Q"1x) o (#X) 0 (upQX)
propertyof® (QAMX) o (QUAX)
Xmodule OX.

Now, let f : (X A X) — (Y, A,uy) a morphism of left A-modules, that is a morphism
f:X =Y in A such that

Ay o (Af) = folux.

We have to prove that @(f) L QX = (QX.B puox) — QY = (QX.P poy) is a
morphism of left B-modules. We set Q (f) = Q (f) and we compute

gy o (BOS) £ (Qr) o "ngx
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i.e. by definition of the functor @

Blgy o (BQS) = (Qf) o Prox

BMQY © (BQf) = (QAMY) o (‘I’Y> © (BQf)
2 (Q"py) o (QAS) o (X))
JrombA et (1) o (Q*pux) o (X))
= (Qf) © BMQX-

Let now check that @ is a lifting of ). Let (X,A uX) € pA and compute

sUQ (X" ix)) = 8U (QX.P pox) = QX = QuU (X" px))
and thus on the objects B
pUQ = QaU.
Let f: (X,A uX) — (Y,A ﬂy) € aA be a morphism, we have
sUQ(f): QX = QY = QuU(f): QX = QY.

Therefore @ is a lifting of the functor Q. B
We have to prove that it is a bijection. Let us start with @) : , A — gB a lifting
of the functor @ : A — B. Then we construct ® : BQ) — QA given by

@ = (8UAsQuF) © (sUsFQua)

and using this functorial morphism we define a functor @) : 4 A — B as follows: for
every (X,*px) € 4 A

Since both @ and @ are lifting of O, we have that BU@ = QuU = gUQ. We have
to prove that gU ()\B@) =gU ()\B@>. Let Z € y A. We compute
2U (AsQ2) = (QuUAZ) © (sUNsQuFAUZ) 0 (sUsFQuaslUZ)
QlitingQ (BU@/\AZ> o (BU/\B@AFAUZ> o (sUsFQuanUZ)
2 (aUAQ7) o (sUsFsUQAZ) o (sUsFQuanUZ)
- (BU)\B@Z) o (sUsFp [QuUAAZ 0 QuanUZ))

a2 Q2.
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Conversely, let us start with a functorial morphism ® : BQ — QA satistying ® o
(mpQ) = (Qma)o (PA)o (BP) and P o (upQ) = Qu. Then we construct a functor

Q : s A — B by setting, for every (X,A [Lx) € 4A,

Q (X" nx)) = (QX, (Q"ux) o (X))

which lifts @ : A — B. Now, we define a functorial morphism ¥ : BQ) — QA given
by

¥ = (sUAsQuF) © (2UsFQua).
Then we have
v = (IB%U)\B@AF> o (BU]BFQUA)

di@ (QAU)\AAF) o ((I)AF) o (]BUBFQUA>
= (Qma) o (PA) o (BQua)
k4 (Q@ma) o (QAus) 0 P
Am;nad .
O

Corollary 6.46. Let X', A be categories, let A = (A, ma,ua) be a monad on a cate-
gory A and let F : X — A be a functor. Then there exists a bijective correspondence
between the following collections of data:

H Left A-module actions App : AF — F

G Functors 4 F : X — p A such that \U,F = F,
given by

a:H — G where yUa (Aup) = F and yUXjsa (AMF) = A,up i.e.
a(Ypur) (X) = (FX,*upX) anda (“ur) (f) = F (f)
b:G — H where b(4F) = psUMaF : AF — F.
Proof. Apply Proposition B23 to the case A = X', B = A, A = Idy and B = A.

Then @ = 4F is the lifting of F' and ® = 45 satisfies A/LFo(mAF) =A4upo (AAMF)
and App o (usF) = F that is (F, A,LLF) is a left A-module functor. O

Corollary 6.47. Let (L, R) be an adjunction with L : B — A and R : A — B
and let A = (A, ma,uas) be a monad on B. Then there is a bijective correspondence
between the following collections of data

R Functors K : A — 4B such that .U o K = R,
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£ functorial morphism a : AR — R such that (R, «) is a left module functor for
the monad A

given by

¢ : R— £ where ®(K) =, UMK : AR — R
Q £ — K where Q(a) (X) = (RX,aX) and J2UQ (o) (f) = R(f).

Proof. Apply Corollary B8 to the case "F” = R : A — B where (L, R) is an
adjunction with L : B - Aand R: A — Band A = (A, ma,us) amonad on B. [

6.5 The comparison functor for monads
The dual version, for comonads, of this subsection can be found in [GI].
Proposition 6.48. Let (L, R) be an adjunction where L : B — A and R : A — B

with unit n and counit € and let A = (A,ma,us) be a monad on the category B.
There exists a bijective correspondence between the following collections of data:

M monad morphisms ¢ : A = (A, ma,us) - RL = (RL, ReL,n)

R functorial morphism r : LA — L such that (L,r) is a right module functor for
the monad A

£ functorial morphism | : AR — R such that (R,1) is a left module functor for

the monad A
given by
© : M — R where O () = (eL) o (L))
= R — M where Z(r) = (Rr) o (nA)
r M — £ where I' () = (Re) o (YR)
A o £ — M where A(l) = (IL) o (An)

Proof. For a given 1 € 91, we compute
O (1) o (© () A) = (eL) o (L)) o (eLA) o (LpA)
= (eL) o (eLRL) o (LRL) o (L A)
2 (eL) o (LReL) o (Lywp) ™™ (cL) o (L) o (Lma) = © () o (Lm.a)

and

O () o (Lua) = (eL) o (L)) o (Luy) “™E"" (eL) o (Ln) = L.
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Therefore we deduce that © (1) € . For a given r € R, we compute

(ReL) o (Z(r)E(r) = (ReL) o (RLE(r)) o (2 (r) A)
= (ReL)o (RLRr)o (RLnA)o (RrA)o(nAA)
= (Rr)o (ReLA)o (RLnA) (RrA) o (nAA)
"(Rr) o (RrA) o (nAA) 2 (Rr) o (RLm.) o (1AA)
L (Rr)o(nA)omy =Z(r)oma

(L

and
Z(r)ous = (Rr)o (nA)ouys = (Rr)o (RLuy)on (L) n.
Therefore we deduce that = (r) € 9. For a given ¢ € 9, we compute
I'(¥) o [A' ()] = (Re) o (Y R) o (ARe) o (A¢R)
(Re) o (RLRe) o (WRLR) o (AYR) < (Re) o (ReLR) o (y3R)
PIOE (Re) o () o (maR) =T (v) o (maR)

e

and
[ () o (uaR) = (Re) o ($R) o (uaR) "™ E"" (Re) o (4R) = R.

Therefore we deduce that I' (¢) € £. For a given [ € £, we compute
(ReL) o (A1) A (1)) ¥ (ReL) o (A (1) RL) o (AA (1))
= (ReL) o (ILRL) o (AnRL) o (AlL) o (AAn)
L (IL) o (AReL) o (AnRL) o (AlL) o (AAn)
B (1LY o (AIL) o (AAp) "2 (IL) o (maRL) o (AAn)
ma (IL)o (An)omya =A(l)omy

and
(R,D)

A(l)ous = (IL) o (An)ous 2 (IL) o (usRL) o1 = 1.
Therefore we deduce that A (1) € 9. Let now ¢ € M and let us calculate
26 () = (ReL) o (RL¥) o (34) L (ReL) o (nRL) 0 ) = ¥,
Let now r € R and let us calculate
OZ (r) = (eL) o (LRr) o (LnA) =1 o (eLA) o (LnA) = r.
Let now ¢ € 9 and let us calculate
AT (i) = (ReL) o (yRL) o (An) £ (ReL) o (RLn) o 1) = .
Let now [ € £ and let us calculate

TA(l) = (Re) o (ILR) o (AnR) £ L o (ARe) o (AnR) = L.
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Theorem 6.49. Let (L, R) be an adjunction where L : B — A and R : A — B
and let A = (A,mu,ua) be a monad on the category B. There exists a bijective
correspondence between the following collections of data:

R Functors K : A — oB such that \U o K = R
M monad morphisms ¥ : A = (A, ma,us) — RL = (RL, ReL,n)

given by

U R — M where U (K) = ([AUMAK] L) o (An)
T : M — KR where T (¢) (X) = (RX, (ReX) o (YRX)) and Y (¥) (f) = Rf.

Proof. By Corollary B4, there exists a bijective correspondence between K and the
collection £ of functorial morphisms « : AR — R such that (R, «) is a left module
functor for the monad A given by

¢ : R — £ where ®(K)=,UMK: AR — R
Q £ — K where Q (o) (X) = (RX,aX) and ,UQ (o) (f) = Rf.

By Proposition BZ8, there exists a bijective correspondence between £ and the
collection Mt of monad morphisms 1) : A = (A, ma,us) — RL = (RL, ReL,n) given
by

A £ — 9 where A(l) = (IL) o (An)
I' © 9 — £ where I'(¢) = (Re) o (YR).

We compute

(Ao ®) (K) = (WUAKL) o (Ay) = U (K)

and

[(QoD) ()] (X) = (RX,(ReX)o ($RX)) =T (¢) (V)
[(QoD) ()] (f) = Rf=T)(f).

]

Remark 6.50. When A = RL = (RL, ReL,n) and ¢ = Idgy the functor K =
T (¢) : A — gLB such that gU o K = R is called the Eilenberg-Moore comparison
functor.

Corollary 6.51. Let A = (A, ma,us) andB = (B, mp,up) be monads on a category
B. There exists a bijective correspondence between the following collections of data:

K Functors K : \B — gB such that gU o K = ,U,

M monad morphisms 1 : A — B



118 CHAPTER 6. MONADS
given by

U K— M where ¥ (K) = ([\UNaK]| o F) 0 (Auy)
T : M— K where Y (¢) (X) = (WUX, (WAUIAX) 0 (0aUX)) and Y () (f) = aU (f) .

Proof. Apply Theorem B9 to the case "R” = ,U : 4B — B and "L” = ,F : B —
B and note that (RL, ReL,n) = (AUpAF, A\UMapF,un) = (A, ma,un). O

Proposition 6.52. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,us) be a monad on the category B and let 1 : A = (A, ma,us) —
RL = (RL, ReL,n) be a monad morphism. Let r = © (¢) = (eL) o (L) and | =
I'(¢) = (Re)o(YR). Then the isomorphism axy : Homy (LY, X)) — Homp (Y, RX)
of the adjunction (L, R) induces an isomorphism

a_y : EqUyom , 1y - (Homy (rY, =) ,Homu (L py, —)) — Hom, s (Y, *py) , Ky—)
for every (Y, A,uy) € B.

Proof. Let
axy : Homy (LY, X) — Homg (Y, RX)

be the isomorphism of the adjunction (L, R), for every Y € B and for every X € A.
Recall that axy (€) = (RE) o (nY) and ayly (¢) = (eX) o (L().
Let us check that we can apply Lemma B33 to the case Z = Homy (LY, —), Z' =
Hompg (Y, R—), W = Homy (LAY, —), W' = Homgp (AY, R—), a = Homy (rY, —),
b = Hom4 (LA,uy, —) ,a = (T (¥) —)o(A—), b = Homg (A,uy, R—) , E = Equp,, (HomA (rY, —) ,Homy
and
E' = Baug, ((T($) =) 0 (A=), — 0 Apny) and g = a_y, ¥ = a_ay,.

a_

E = gy, (Hom.g (1Y, =) Homs (LY —)) "~ B' = By, (T () ) o (A) . — o )
Z =Homy (LY, —) 7" = Homg (Y, R—)
a=Hom 4(rY,—) \ub—HomA (LA;LY ,—) a'=T(¢)—)o(A—) il b’=Homp (Auy,R—)

W = Hom (LAY, —) oAy W' = Hompg (AY, R—)

E = Equg,, (Hom (1Y, —) Homy (Lipy, —)) =55 E' = Equp, (T($) =) 0 (A=), — 0 “py)
Li L
Z = Homy (LY, ) = Z' = Homg (Y, R—)
a =Homyu (1Y, —) || b=Homy (L*py, —) a = (I'(¢) =)o (A=) || ¥ = Homg (*py, R—)
W = Hom4 (LAY, —) Ay W’ = Homg (AY, R—)
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For every (Y,4py) € 4B, X € Aand for every ¢ € Homu (LY, X), sincel =T (¢) =
(Re) o (YR) and r = O (¢0) = (eL) o (Ly)), we have
([T () X) o (A=) 0 axy) (§) = (T () X) o (A=) ((RE) o ()

= (I (1) X) 0 (AR€) o (AnY) = (ReX) o ($RX) 0 (ARE) o (AnY) £

o (RLRE) o (RLnY) o (vY) = (RE) o (ReLY) o (RLNY) o (¢Y)
= (RE) o (YY) = (RE) o (ReLY) o (NRLY ) o (¢Y) = (RE) o (ReLY') o (RLYY ) o (nAY)

L (RE) o (RrY) o (nAY) = ax.ay (£ 07Y) = [ax.ay o Homy (rY, X)] (€)
so that we obtain

[(T' () X)o(A—)]oaxy = ax.ay o Homu (1Y, X).

Now, let us compute

[Homg (4115, RX) 0 axy] (€) “=" Homg ( py, RX) ((RE) o (nY)) =
= (R&) o (nY) o py
and on the other hand
(ax.ay o Homu (L4py, X)) (€) = axay (€0 (Luy)) ' (RE) o (RL py) o (7AY)
= (RE) o (nY) oy
so that we get
Homg (Auy, RX) oaxy = ax.ay © Homy4 (LAuy,X) )
Since Ky (X) = T (¢) (X) = (RX, (ReX) o (RX)), for every ¢ € Homg (Y, RX)
we have
(T () X) 0 (A-)] (§) = (T (¢) X) 0 (AQ) = (ReX) o (RX) 0 (AC) = i o (AC)
and
Homp (A,uy,RX) (()=¢Co Ay
so that
(T (1) X) o (A=)] (¢) = Homp (*py, RX) (¢) if and only if
¢ € Hom, 5 ((Y,"py) , (RX, (ReX) o (Y RX))).
Thus we get
EdqUgomg (v,rx) ((F( Y)X)o (A=), —o AMY)
= {f € Homg (Y, RX) | (T (¢) X) o (AC) = C o “puy }
= {/ € Homp (Y, RX) | (ReX) o (VRX) 0 (AC) = C o *py }
= {f - HOHIB (AU (KA /uLy) A U (KwX)) | A'LLAU(KU,X) e} (AC) = C o A/Ly}
Hom, 5 (Y, py) , Ky X)
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so that Equp, ((I'(¥) =)o (A=), Homg (*uy, R—)) = Hom,s ((V,*uy), Ky—).

]
Proposition 6.53. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,us) be a monad on the category B and let 1 : A = (A, ma,us) —
RL = (RL, ReL,n) be a monad morphism. Let r = O () = (eL) o (Lyp). Then the
functor Ky = Y (¢) : A — 4B has a left adjoint Dy, : o8B — A if and only, for
every (Y, A/Ly) € aB, there exists Coequ 4 (TY, LA,uy). In this case, there exists a
functorial morphism dy, : LyU — Dy, such that

(Dw, dT/)) = Coeunun (T’AU, LAUAA)
and thus
[DTZJ ((Y7 AMY)) 7d1/1 (Y7 AIU’Y):| = Coequ_A (7‘}/, LA:U’Y) .
Proof. Assume first that, for every (Y, A[Ly) € B, there exists Coequ 4 (rY, LA[Ly>.

By Proposition B52, the isomorphism axy : Homy (LY, X) — Homg (Y, RX) of
the adjunction (L, R) induces an isomorphism

ax,y : Equgy, (Homu (rY, X) Hom 4 (L py, X)) — Hom, s (Y, *py) . Ky X) .
Let (Dw ((Y, Auy)) ,dy, (Y, A,uy)) denote the coequalizer

rY dy(YAny)

LY

LAY

Dy (Y, " pay)

LAy
where dy, (Y, A,uy) LY — Dy ((Y, Auy)) is the canonical projection. Then, by
Lemma B=38, we have

(Hom (D, ((V-Apy)) . X) Homa (d (Y. 1)) . X))
= Equggs (HomA (rY, X) ,Homy (LA,uy, X)) .
Thus, for every (Y, A/Ly) € B and for every X € A, axy induces an isomor-

phism axy : Hom4 (D¢ ((Y, A,uy)) ,X) — Hom, 5 ((Y, A,uy) ,KwX) such that the

following diagram is commutative

(610)  Homa (Dy (V2 4r)) X) 7 Homgs (¥ Aar)  KuX)
Hom 4 dw YAW J{
Hom 4 (LY, X) ey Homg (Y, RX)
HomA(rKX)uHomA(LAW,X) <F(w>X)0(A—)uHomB(Aw,RX)
Hom (LAY, X) Ay Homg (AY, RX)
Hom g (Dy ((Y,4py)), X) =25 Hom,g (Y, 4y ) , Ky X)
Hom (¢, ((V-4w)). X)L !

Homy (LY, X) Hompg (Y, RX)
I I
Hom 4 (LAY, X) Ay Homp (AY, RX)
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i.e. (Dy,Ky) is an adjunction.
Conversely, assume now that the functor Ky, = T (¢) : A — 4B has a left adjoint
Dy : aB— A. Let 77 : 1d,5 = KDy be the unit of the adjunction (Dy, K) and let

dy = ap. i (8UN) = (eDy) o (LaU7) : LaU = Dy

We will prove that
(Dy, dy) = Coequpy, (ralU, LAUXA) .
First of all let us compute
dy o (ral) = dy o (eLaU) o (LpaU) = (eDy) o (LaUn) o (eLaU) o (LpaU)
= (eDy) o (LReDy) o (LRLAUT) o (LipaU)
Y (eDy) o (LReDy) o (LyaUK,Dy) o (LALUT)

and also

dy o (LaUA) = (€Dy) o (LaUR) o (LaUMa) ™ 2™F (eDy) o (LaUNAK,Dy) o (LALUT)

defKy,

so that
dwo (T’AU) = dd,o (LAU)\A)

Now, we will prove that the following diagram is commutative

Homua (Dy (Y, 4v)) X)) - Hom,s (¥, 4y ) Ko X)
HomA(dw((Y,A,uy)),X)l lAU
Hom (LY, X) Sl Homj (Y, RX) .
Ax, (v Auy)
Hom 4 (D¢ ((Y, A,uy)) ,X) -3 Hom, 5 ((Y, A,uy) ,K¢X)
Hom (d (¥ 4ynv)) . X) 4 !
Hom 4 (LY, X) = Homp (Y, RX) .

In fact, for every ¢ € Homy (Dw ((Y, A,uy)) 7X) , we have

wUlix vy (O) LU [(KpC) o (71 (Y, iy ))] = (WU KC) o (WU7 (Y, y))
CE (R o (5 U7 (Y, Apry))
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and on the other hand

[ax,y o Hom (dy ((Y, A,uy)) X)) =axy (Cody (Y, A“Y))
e (G0 (D () (U ;)
e (RE) o (ReDy (Y, py)) o (RLAUT (Y, ) © (nY)
L (RC) o (ReDy (Y, py)) © (maU Ky Dy (Y, piy)) o (aU7 (Y. " pry))
detKy (RC) o (ReDy (Y, py)) o (nRDy (Y, *piy)) o (aU7f (Y, " 1iy))

UL (ReY o (U (Y, Ay )

so that, for every (Y, Auy) € AB we have

(400 v ] = [y © Homa (dy (V. 1)) . )]

Since a_y and a_ (y 4, are isomorphisms, we deduce that Hom 4 (dw ((Y, A,uy)) , —)
is mono. Applying the commutativity of this diagram in the particular case of
(Y, A,uy) = Ky X, we get that

(EX) o (d¢K¢X) = HOHIA (dwKwX, X) ((gX))
— Homy (dy Ky X, X) (535&)( (IdeX))
— |:HOH1A (dde,X, X) o ZL/)_QIK#)X] (Idex)
= a;(,lAUKV,XAU (IdeX) = a)_c,lRX (IdAUKwX)
= axipy (Idpx) = €X
ie.
(6.11) (€X) o (dypKypX) = €eX.

Now, we have to prove the universal property of the coequalizer. Let X € A and
let £ : LY — X be a morphism in A such that £ o (rY) = £ o (L4py) that is

Eo(eLY)o (LypY)=¢o (LA,uy) .

This means that € Equg,,, (Homu (rY, X)), Homu (L*py, X)) ~ Hom,s ((V,*py ), Ky X)
by Proposition E52. Then, ay,y (§) € Hom,s ((Y,*ny) , (RX, (ReX) o (yRX))) =

Hom, 5 ((Y, A,uy) , Ky X ) We want to prove that there exists a unique morphism

¢ Dy (Y, A,uy) — X such that £’ o (dw (Y, A,uy)) = £. By hypothesis we have that

the map

Ax,(vAuy)

Homu (Dy ((Y,py)), X)

HOIHAB ((Y, A/,Ly) s K¢X)

Ax (v Apy)

Homy (Dy ((Y."'py)) ., X) ~—="" Hom,s (Y, 1) , Ky X)
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is bijective. Hence, given (R€)o(nY) € Hom, s ((Y, *uy ), Ky X), @y X YAy ((Rﬁ) o(nY)) =
(€X) o (DyRE) o (DynY) € Homu (Dy ((Y,*py)), X) . We want to prove that
(€X) o (DyRE) o (DynY') o (dy (Y, pv))) = €.

In fact we have

(€X) o (DyRE) o (DynY) o (dy (Y, py))

£ (€X) o (dy (RX,prx)) o (LRE) o (LnY)
= (€X) o (dyKyX) o (LRE) o (LnY)
= (eX) o (LRE) o <LnY>

<o (eLY)o (Lny) e,

Let us denote by & = (€X) o (DyRE) o (DynY) the morphism such that & o
(dw (Y, A,uy)) = &. We have to prove that £’ is unique with respect to this property.
Let & : Dy (Y,*py) — X be another morphism in A such that £”ody, (Y, 4py) = &.
Then we have

Homiy (dy (Y, py) , X) (€") =& ody (Y. "yy) =& =& ody (Y, 1v)
= Hom (dy (Y, 1), X) (€)

and since Hom 4 (dw (Y, A,uy) . X ) is mono, we deduce that
g// — 5/
n

Corollary 6.54. Let (L, R) be an adjunction where L : B — A and R : A — B. Let
r =0 (Idgy,) = €L. Then the functor K =Y (Idgy) : A — giLB has a left adjoint D :
rB = A if and only, for every (Y, ™ py) € ruB, there exists Coequ 4 (€LY, L® iy ).
In this case, there exists a functorial morphism d : Lgi .U — D such that

(D, d) = Coeunun (ELR]LU, L]R]LU)\RL)

and thus
[D ((Y, RLuy)) ,d (Y, RL,uy)] = Coequ 4 (eLY, LRLuy) .

Proof. We can apply Proposition B3 where 7" = Idgg. O

Remark 6.55. In the setting of Proposition B3, for every X € A, we note that
the counit of the adjunction (Dy, Ky) is given by

eX = aXKLZ,X (Idex) DwKw(X)—)X
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We will consider diagram (B1Q) in the particular case of (Y, A,uy) = KyX. Note
that, since Ky X = (RX, (ReX) o (YRX)) = (RX,1X), we have
(DypKy (X)), dpKy (X)) = (Dy(RX,1X),dyKy (X)) = Coequg (rRX, LIX)
= Coequg ((eLRX) o (LY RX),(LReX) o (LYYRX))
i.€.
(6.12) (DypKy (X),dypKy (X)) = Coequg (rRX, LIX)
where | =T (1) = (Re) o (YR). We compute
(€X) o (dyKyX) = Homy (dy Ky X, X) ((€X))
= Hom (dy K, X, X) (5},1wa (IdeX)>
_ [Hom A (dy K, X, X) oa;(}m] (Idg, x)

) a)_{,leXAU (IdeX) - a)_(,lK@oX (IdAUK‘/’X)

= axy,x (Idrx) = €X

so that

Since €X = 5;(}KwX (Idk,x) and 'd)_(,qubX is an isomorphism, we deduce that €X :
DyKy (X) — X is defined as the unique morphism such that

(6.13) (€X) o (dyKyX) = eX.

On the other hand, for every (Y,*py) € uB, the unit of the adjunction (Dy, Ky),
n:aBB = KyDy, is given by

(Y Ay ) = apy vy (pywaum)) = (Y, y) = KyDy (Y py)
Then by commutativity of the diagram (E0), we deduce that

aUn (Y’ AMY) = AUaDw(Y,AuY%Y (IdDw(Y,AHY))
= ap,(v.Auy)y © Homu (dy (Y, y)) , Dy (Y y)) (1dp, v4p)
= ap,vau)y (dy (V. 0y))) = (Rdy (Y, py)) o (nY).

Thus we obtain that

(6.14) 2UT (Y, py) = (Rdy (Y, py)) o (nY) .

Observe that, for every Y € B we have that ,F (Y) = (AY, maY). Moreover
(DypaF (V) dya ' (Y)) = (Dy (AY, maY) , dy (AY, maY))

= Coequ  (rAY, Lm,Y) = (LY, rY)
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so that we get
(615) (DwAF7 deF) = (L, T) .
In particular
(616) d¢ (AY, mAY) =rY.
Corollary 6.56. In the setting of Proposition E2a3, assume that, for every (Y, A[Ly) €
AB, there exists Coequ 4 (TY, LAuy). Then, for every Y € B we have
AUN(AY,maY) =¢Y
and hence
AUNWF =1
where 1 denotes the unit of the adjunction (Dy, Ky).
Proof. Let us calculate

WU (AY,maY) = (Rdy (AY, maY)) o (AY)

= (RrY) o (nAY) =2 (r) (V) = ¥
0

Corollary 6.57. In the setting of Proposition G223, assume that, for every (Y, A/Ly) €
aB, there exists Coequ 4 (rY, LAuy). Then Dy, is full and faithful if and only if 1 is

a functorial isomorphism.

Proof. By Proposition B33, (Dy, Ky) is an adjunction with unit 7 : 48 — Ky D,.

Then we can apply Proposition BIR. O

Lemma 6.58. In the setting of Proposition E2a3, assume that, for every (Y, Auy) €

AB, there exists Coequ 4 (TY, LA,uy).Then, for every (Y, A,uy) € AB, the following

diagram

masU(Y,A A
AALT (Y, A,uy) anU(YAny) AU (Y, AMY) aUNA (Y Apy) U (Y, A,uy)
AUNA(Y Ay
wAAU(Y,Aw)l lwAU(Y,Aw) \LAUﬁ(yvAMY)
RroU(Y, Ay ) Ry (Y, Apy )
RLAWU (Ya A,UY) RL,U (Y> A,UY) RD, (Y, A,MY)
RLAU)\A(Y,A,uy)
mAAU<Y,AuY) A
AALU (Y, Apy) = AU (Y, Ay W) (Y, Ay
ApUAA (Y, Apy)
VAU (Y, Ay ) | LaU (Y, Auy) 1 aU7 (Y, Ay)
RT’AU(KAMY) A
RLAU (V) = RLU W Aw) S Rp, v )

RLA\UXA(Y,Apy)

serially commutes. Therefore we get

(aUn) 0 (aUAa) = (Rdy) o (paU) and  (paU) 0 (mapU) = (RralU) o (pAsU)
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Proof. Let us compute
WU (Y, py) o Ay = (Rdy (Y, py)) o (Y) oy
L (Rdy (Y, ny)) o (RL py) o (nAY)
PmomLon (R (Y, Apy)) o (RLApy) o (AY) o (usAY)
“Z (Rdy (Y, py)) o (RY) 0 ($AY) 0 (ugAY)
L (Rdy (Y, 11y)) o (ReLY ) o (RLYY ) o (Y AY) 0 (us AY)
oI (R (Y, Ay )) © (1Y) 0 (maY) o (usAY)
A (Rdy (Y, py)) © (Y)

so that we deduced

aUn (Ya AMY) © AMY = (Rdw (Y, AMY)) o (YY)

and thus
(aUn) o (aUN4) = (Rdy) o (¥aU) .

Let us calculate

(al) 0 (manl) "L P (ReLLU) o (RLAU) 0 (ALD)
de:fr (RT’AU) O (@Z)AAU> .

]

Theorem 6.59. Let (L, R) be an adjunction where L : B — A and R : A — B, let
A = (A, my,ua) be a monad on the category B and let v : A = (A, ma,uq) — RL =
(RL, ReL,n) be a monad morphism. Letr = O (1) = (eL) o (Ly). Assume that, for
every (Y, Auy) € aB, there exists Coequ 4 (T’Y, LAuy). Then we can consider the
functor Ky =Y (¢) : A — aB. Its left adjoint Dy, : 4B — A is full and faithful if
and only if

1) R preserves the coequalizer
(Dy, dy) = Coequp,, (ral, LaAUX4)
2) ¥ : A — RL is a monad isomorphism.
Proof. Recall that, by Corollary B4,
(6.17) AUNWE = 1.

By Corollary 2310, D, is full and faithful if and only if 7} is a functorial isomorphism.
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Let us assume that 77 is a functorial isomorphism, hence v is an isomorphism
too. Recall that, by Lemma EBS, we have

(618) (AUﬁ) O (AU)\A> = (Rdw) O (wAU)
so that
(6.19) (AUNA) = (AU'”rvfl) o (Rdy) o (pal)

Let us consider the diagram

RrpU
RLALU ———= RL,U —~ RD,
RLoUMA
Rrp U Rdy,
RLALU =  RL,U % RD,
RL,UXp

We have to prove that (RDy, Rdy) = Coequp,, (RraU,RL\UX4). Since R is a
functor, we clearly have (Rdy) o (RryU) = (Rdy) o (RLyUMX,4). Let Q : o8B — X be
a functor and let x : RL,U — @ be a functorial morphism such that

X © (RTAU) =X©° (RLAU)\A) .

We compute

Ymorpmonads

X o (YaU) = x o (YaU) o (maalU) o (ugApU) X © (ReLpU) o (p1pU) o (ugApU)
= x 0 (ReLpU) o (RLYAU) o (WALU) o (uaAsU) < y o (RralU) o (WALU) o (usApU)
X\ o (RLyUM) 0 (YALU) 0 (uaAsU) L x 0 (¥aU) 0 (AnUa) o (uaAnU)

2 x 0 (YaU) o (uanl) o (4 UA4)

RS o (nal) © (wUAA)
= o (nal) o (aU77") 0 (Rdy) o (YuU).
Since 1 is an isomorphism we deduce that

X = [xomal)o (U7 )] o (Rdy).
Let now w : RD, — @ be a functorial morphism such that
X =wo (Rdy).

We compute

[x o (mal)o (aUN )] o (aUM) 0 (aUNa)
= [xo mal) o (WUT )] o (Rdy) o (4:,U)
= xo (YalU) = wo (Rdy) o (¥al) = o (aUN) o (aUAA)

(
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and since 4U M4 is an epimorphism (it is a coequalizer) and 7 is an isomorphism, we
deduce that

w=xo0 U)o (LU7").
Conversely, assume that 1) and 2) hold. Then 1 is a functorial isomorphism. Con-
sider the diagram

mapU (YA A
AN (V. Ay ) = 00) g (v 220y )
AU (YA py)
wAAU(Y,Auy)l J/MU(Y,A;W) lAUﬁ(Y,Aw)
RMU(Y,AW) Rdw(Y,AW)
RLANU (Y7 A,UY) RL\U (Y7 AMY) RDw (Y; AMY)
RLAU,\A(Y,AW)
ma U(Y,A/.L ) A
AU (VAny) = miaey) U 0 vy
ApUAA(Y A py)
VAU (Y, Apy) | L sl (Y, *puy) 1 aU7 (Y, Ay)
RrpU(Y, Ay ) A
RLALU (Y, *p1y) = RLWU (Vi Any) 5" RD, (v Auy)

RLA\UXA(YApy)

of Lemma where the first row is always a coequalizer (see Proposition B332) and
the last row is also a coequalizer by the assumption 1). Then we can apply Lemma
B30 and hence we get that U7 is a functorial isomorphism. Since,by Proposition
634, \U reflects isomorphism we deduce that 7 is a functorial isomorphism. m

Corollary 6.60. Let (L, R) be an adjunction where L : B — A and R : A — B.
Let r = ©(Idgy) = €L. Assume that, for every (Y, RLuy) € rLB, there exists
Coequy (eLY, L™y ). Then we can consider the functor K =Y (IdgL) : A — riB.
Its left adjoint D : gB — A is full and faithful if and only if R preserves the
coequalizer

(D, d) = COunFun (ELRLU, L]R]LUARL) .
Proof. We can apply Theorem with 7¢” = IdgL. O

Theorem 6.61. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,ua) be a monad on the category B and let ¢ : A = (A,ma,ua) —
RL = (RL,ReL,n) be a monad morphism. Let r = O (¢)) = (eL) o (L) and
I = T(¥) = (Re) o (YR). Assume that, for every (Y,uy) € 4B, there emists
Coequ 4 (TY, LA,uy). Then we can consider the functor Ky, =Y (¢) : A — 4B and
its left adjoint Dy, = 4B — A. The functor Ky is an equivalence of categories if and

only if
1) R preserves the coequalizer

(Dy, dy) = Coequp,, (ralU, LyUX,)

2) R reflects isomorphisms and
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3) ¥ : A — RL is a monad isomorphism.

Proof. 1f K is an equivalence then, by Lemma 524, D,, is an equivalence of cate-
gories so that, by Theorem B39, 1) and 3) hold. By Proposition B34, the functor
AU reflects isomorphisms. Since R = ,U o K, we get that 2) holds.

Conversely assume that 1),2) and 3) hold. By Theorem , Dy is full and
faithful and hence by Corollary E&4 7 is a functorial isomorphism. Let us prove that
€ is an isomorphism as well. Since R reflects isomorphisms, it is enough to prove
that Re is an isomorphism. As observed in Remark E53, €X : Dy Ky (X) — X is
defined as the unique morphism such that

(FX) o (dy Ky X) = eX.
Hence we get
(6.20) (ReX) o (RdyKyX) = ReX
so that
(REX) o (RdyKyX) o (nRX) = (ReX) o (nRX) = RX.
We will prove that (Rd,K,X) o (nRX) is also a left inverse of ReX. We have
(RdyK,X) o (nRX) o (REX) o (RdyK,X)

(6=zm)

= (RdyKyX)o(nRX) o (ReX)
D (R, I, X)
and since R preserves coequalizers (Dy,dy) = Coequp,, (ralU, LaUMy), RdyKyX
is an epimorphism, so that

(RdyKyX)o(nRX) o (ReX) =RDyKyX
so that Re is a functorial isomorphism. O]

Definition 6.62. Let A = (A, ma,us) be a monad on the category B and let
(R, A,uR) be a left A-module functor. We say that (R, AUR) 1s an A-coGalois functor
if R has a left adjoint L and if the canonical morphism

cocan = (ANRL) o(An): A — RL
is a monad isomorphism, where n denotes the unit of the adjunction (L, R).

Corollary 6.63. Let (R, A,uR) be a left A-coGalois functor where R : A — B
preserves coequalizers, R reflects isomorphisms and A = (A, ma,uy) is a monad on
B. Assume that, for every (Y, A[I,y) € B, there exists Coequ 4 (TY, LA[,I,y) where
r = (eL) o (Lcocan) where L is the left adjoint of R and € is the counit of the
adjunction (L, R). Then we can consider the functor Kioean : A — aB and its left
adjoint Depean = aB — A. Then the functor K .oean 1S an equivalence of categories.
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Proof. We can apply Theorem GG to the case ¢ = cocan. O]

Theorem 6.64 ( Beck’s Theorem for monads). Let (L, R) be an adjunction where
L:B—Aand R: A — B. Let r = ©(IdgL) = €L and assume that, for every
(Y, RLuy) € rLB, there exists Coequ 4 (eLY, LRLuy). Then we can consider the
functor K =Y (Idgr) : A — gLB and its left adjoint D : gi.B — A. The functor K
18 an equivalence of categories if and only if

1) R preserves the coequalizer

(D, d) = COunFun (ELRLU, LR]LU)\RL) .

2) R reflects isomorphisms.

Proof. Apply Theorem E&1 taking v = Idgg. O

Definition 6.65. Let A = (A, ma,us) be a monad on the category B and let R :
A — B be a functor. The functor R is called ¥-monadic if it has a left adjoint
L : B — A for which there exists 1 : A — RIL a monad morphism such that the
functor Ky, =T (¢) : A — 4B is an equivalence of categories.

Definition 6.66. Let R : A — B be a functor. The functor R is called monadic if
it has a left adjoint L : B — A for which the functor K = Y (Idgp) : A — gruB is
an equivalence of categories.

Lemma 6.67. Let A = (A, ma,ua) be a monad on the category B and let R : A — B
be a Y-monadic functor and let

[&0]

(6.21) X X'

c1
co
X = X

be an R-contractible coequalizer pair in A. Then (B220) has a coequalizer ¢ : X' — X"
in A and

Re
RX RO RX' B Rx7
Reo Re
RX = RX' RX"
Req

18 a coequalizer in B.

Proof. Since R is a ¢-monadic functor, we know that K, = T (¢0) : A — pB is an
equivalence of categories. Then instead of considering

(&)

X X'

C1
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X = X

Cc1

in the category A, we can consider

Kyco

Ky X Ky X'

chl

KwCO
KyX = KX’

Kyc

in B, which is a pU-contractible coequalizer pair. Let us denote by (Y, A,uy) =
KX and (Y’ , Auy/) := KX’ so that we can rewrite the ,U-contractible coequalizer

pair as follows
Kw Cco

(K AHJY) Kyel (Y/’ A'uy/) :
(ViAmy) = (" Ay
chl

We want to prove that this pair has a coequalizer in 4. Since the pair (Kyco, Kyc1)
is a gU-contractible coequalizer pair, we have that

Rco q
RX— * _RX'==Q

_)
RX & RX' = Q

Y— ' V'==Q

=
S

1

Y = Q
h

is a contractible coequalizer and thus, by Proposition B2, a coequalizer in B. Let
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us consider the following diagram

AARc
AAY : AAY" Ada AAQ
AARcy :
mAYLLAAMY mAY’\u/AA,uy/ maQ: \LAAMQ
ARc, v
AY . AY? Ad AQ
ARC1
Auyl AMY’ l AMQ
v Reg v/ q é
Rey '
AARe
AAY — AAY” Adq AAQ
AARcy
maY || A%puy maY' || A%y maQ || AAuQ
ARC() Aq
AY = AY! AQ
ARcq
Ly b Ay J AMQ
Rc
y — % N 0.
Req

By Proposition B3, all the rows are contractible coequalizers. Since Rcy = yU K co
and Rcy = p\UK c;, we have that the lower left square serially commutes. More-
over, since we also have that m, is a functorial morphism, the upper left square
serially commutes. We also have that q o Ay coequalizes (ARcy, ARc1) and, since
(AQ, Aq) = Coequgz (ARco, ARcy), by the universal property of the coequalizer,
there exists a unique morphism A,uQ : AQ — @ such that

(6.22) g o (Ag) = qo pyr.

Let us prove that (Q,AMQ) € aB and thus formula (E222) will say that ¢ is a
morphism in 4B. Since my is a functorial morphism and by definition of /g, the
upper right square serially commutes. We have

(=23)
g o (AA,uQ) o (AAq) "= “ugo (Ag)o (AA,uy/)
[aw | ALy rass
(:)qupy/o (AA[Ly/> PE™ o Ay o (maY!)
&=

" 405 0 (Ag) o (maY") ™2 Apg o (maQ) o (AAg)

and since AAq is an epimorphism we get

A A A
pg o (A%q) = “ug o (maQ)
that is that “pg is associative. Moreover we have

AMQ o (uaQ)oq = AMQ o (Aq) o (usY’)

()
= qo?uyr o (uaY') =gq
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and since ¢ is an epimorphism we get that

g o (uaQ) = Q

so that “pg is also unital. Therefore (Q,AMQ) € AB and ¢ is a morphism in ,B.
Now we want to prove that it is a coequalizer in ,B. Let (Z, A,uz) € ,B and
x: (Y, *uy) = (Z,4pz) be a morphism in 4B such that x o (Kyco) = x o (Kycr).
Then, by regarding y as a morphism in B we also have that

X © (Rcog) = x o (Rey) .

Since (@, q) = Coequg (Rco, Rey) , there exists a unique morphism & : ) — Z such
that

§oq=x.
Now we want to prove that & is a morphism in ,B. In fact, let us consider the
following diagram

AY' 29 A9 2 Az
A#Y,J/ e Auzl
vt .0 .7
Ay A 49 S Az
b Ay T 1z
3

yy L Q = Z
Since q € oB, the left square commutes. Since xy € 4B we have
Az 0 (A€) o (Aq) = "z o (Ax) = x oy = Eo g0y
so that we have

£0ug o (Ag) = €0 qotuy = Az 0 (A€) 0 (Ag)

and since Aq is an epimorphism, we deduce that
§o AMQ =z o (AE)

i.e. £ € pB. Therefore (Q,q) = Coequ,; (Kyco, Kyc1). Now, since Ky : A — 4B,
there exist X”, ¢ € A such that

Ky X" =Q and Kyc=q
and thus (X", ¢) = Coequ 4 (o, ¢1). Moreover, since

Rceo

RX— ' _RX'==Q
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I

e

q
RX RX' = @

=

C

—

is a contractible coequalizer and (Q,q) = (AUKyX", AsUKyc), we deduce that
(WUK X", AUKyc) is a contractible coequalizer of (Rcy, Rep). Then (RX”, Re) is a
contractible coequalizer of (Rco, Rey) so that (RX”, Re) = Coequg (Reg, Rep). O

Theorem 6.68 (Generalized Beck’s Precise Tripleability Theorem). Let R : A — B
be a functor and let A = (A,ma,uys) be a monad on the category B. Then R is -
monadic if and only if

1) R has a left adjoint L : B — A,

2) ¥ : A — RL is a monad isomorphism where RL = (RL, ReL,n) with n and €
unit and counit of (L, R),

3) for every (Y, A,uy) € B, there exist Coequ 4 (rY, LA,uy) , where r = O () =
(eL) o (L3), and R preserves the coequalizer

Coequpy,, (ralU, LaUMa),

4) R reflects isomorphisms.

In this case in A there exist coequalizers of R-contractible coequalizer pairs and
R preserves them.

Proof. Assume first that R is ¥»-monadic. Then by definition R has a left adjoint
L : B -+ A and a monad morphism ¢ : A — RILL such that the functor K, =
T(¢) : A — aB is an equivalence of categories. Let K, be an inverse of K.
Then in particular K, : 4B — A is a left adjoint of Ky so that, by Proposition
653, for every (Y, Auy) € AB, there exists Coequ 4 (TY, LA[Ly) where 71 = O (¢) =
(eL)o(L1)) and thus (K{b, k;b) = Coequp,, (ral, LaUXa) where k;; (Y, y) : LY —
Coequp,, (raU, LaUM,) is the canonical projection. Then we can apply Theorem
BTG to get that R preserves the coequalizer (K{p, k;}) = Coequp,, (ralU, LyaUM4),
R reflects isomorphisms and v : A — RIL is a monads isomorphism.

Conversely, by assumption 1) R has a left adjoint L : B — A so that (L, R) is
an adjunction and by 2) there exist Coequ 4 (rY, LAuy) , for every (Y, A,uy) € B
so that we can apply Proposition B53. Thus the functor Ky, = T (¢) : A — 4B
has a left adjoint Dy : 4B — A. Now, by applying Theorem BB in the converse
direction, we deduce that Ky =T (¢) : A — 4B is an equivalence of categories, i.e.
R is monadic. If R is 1)-monadic, by Lemma BG4, in A there exist coequalizers of
reflexive R-contractible coequalizer pairs and R preserves them. O]

Corollary 6.69 (Beck’s Precise Tripleability Theorem). Let R : A — B be a func-
tor. Then R is monadic if and only if
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1) R has a left adjoint L : B — A,

2) for every (Y, RL,uy) € r1.B, there exist Coequ 4 (ELY, LRLuy) and R preserves
the coequalizer
Coeunun (ELR]LU, LRILU)\RL> 5

3) R reflects isomorphisms.

In this case in A there exist coequalizers of R-contractible coequalizer pairs and
R preserves them.

Proof. Apply Theorem to the case that ¢ = Idgy. O

6.6 BECK1 for Monads

Lemma 6.70. Let (L, R) be an adjunction, where L : B — A and R : A — B, with
unit n and counit €. Then for every X € A,
(RX,RLRX,RLRLRX,ReX, ReLRX, RLReX,nRX,nRLRX) is a contractible co-

equalizer and in particular, for every X € A
(RX, ReX) = Coequg (ReLRX, RLReX) .

Proof. Consider the following diagram

ReLRX hex
RLRLRX _ "BLEX  RI RX —= RX
RLReX nix

and let us compute

(ReLRX) o (nRLRX) = Idgrx
(RLReX)o (nRLRX) £ (nRX) o (ReX)
(ReX) o (nRX) = Idpy
(ReX) o (ReLRX) = (ReX) o (RLReX).

Thus (RX, RLRX, RLRLRX, ReX, ReLRX, RLReX,nRX,nRLRX) is a contractible
coequalizer for every X € A and by Proposition E20 we get that (RX, ReX) =
Coequg (ReLRX, RLReX) . O

Lemma 6.71. Let (L, R) be an adjunction where L : B — A and R : A — B, let
A = (A,ma,ua) be a monad on the category B and let ¢ : A = (A, ma,us) —
RL = (RL, ReL,n) be a monad morphism. Let K, =Y (¢) = (R, (Re) o (YR)) and
ZWUKy (f) =aUY () (f) = R(f) for every morphism f in A. For every X € A we
have

(6.23) (KyX, KyeX) = Coequ, s (KyeLRX, Ky LReX) .
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Proof. By Lemma BE70 we have that (RX, ReX) = Coequg (ReLRX, RLReX). Let
X 1 KyLRX = (RLRX,(ReLRX)o (¢ RLRX)) — @ be a morphism in ,B such
that

X0 (KyeLRX) = y o (KyLReX) .

Then

(6.24) (AUx) o (ReLRX) = (4Ux) o (RLReX)

and hence there exists a unique w : \UK ;X = RX — ,UQ in B such that
(6.25) AUx =wo (ReX) =wo (WUKyeX)

Let us prove that w gives rise to a morphism in 4B. Since x is a morphism in 4B
we have that

(6.26) (WUx) o (ReLRX) o (WRLRX) = (4 UMQ) o (AxUYX)

Let us compute

(L UMQ) 0 (Aw) 0 (AReX) "= (LUMAQ) 0 (AuUY)

= (,Ux) o (ReLRX) o (WRLRX)
=V (,UX) o (RLReX) o ($RLRX)
L (4UX) o (YRX) o (AReX)

= o (ReX) o (WRX) o (AReX)

[l

so that
(WUMAQ) 0 (Aw) 0 (AReX) = wo (ReX) o ()RX) o (AReX) .
Since (AReX) o (AnRX) = ARX, we deduce that AReX is epi and thus
(aUAQ) © (Aw) = w o (ReX) o (Y RX)
ie. w:a\UKy,X = RX — 4UQ is a morphism of left A-modules. m

Proposition 6.72. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,us) be a monad on the category B and let 1 : A = (A, ma,us) —
RL = (RL,ReL,n) be a monad morphism. Let Ky, = YT (¢) = (R, (Re)o (YR))
and \UKy (f) = aUY () (f) = R(f) for every morphism f in A. If Y is
an epimorphism for every Y € B, the assignment lELRX’X/ : Homy (LRX, X') —
Hom, 3 (KyLRX, Ky X') defined by setting

’ELRX,X’ (f) = Kw (f)

18 an isomorphism whose inverse is defined by

Kiby o (B) = (€X') o (LyUh) o (LnRX).
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Proof. Let f € Homy (LRX, X’). We compute
Kihexo (Runxxr () = (X)) o (LUK, f) o (LnRX)
= (eX')o (LRf)o (LnRX) = fo (eLRX) o (LnRX) = f.
Let h € Hom, g (K, LRX, K, X'). This means that
(AUh) o (ReLRX) o (YRLRX) = (ReX") o (yRX') o (ApUh)
Y (ReX") o (RLyUR) o (WRLRX)
Since Y is an epimorphism for every Y € B, we deduce that
(6.27) (AUh) o (ReLRX) = (ReX') o (RLAUR)
We compute

= (

(ReX') o (RLAUR) o (RLyRX) "= (WUh) o (ReLRX) o (RLyRX)

AUR

and thus
(K¢€X/) ©) (KwLAUh) e} (K¢L77RX) =h

ie.
’ELRX,X’ <]€Z]1%X,X’ (h)> = Kw (IEZ}%X,X/ (h))
= (KyeX') o (KyLyUh) o (KyLnRX) = h.
[
Proposition 6.73. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,us) be a monad on the category B and let 1 : A = (A, ma,us) —
RL = (RL, ReL,n) be a monad morphism. Let Ky, =T () = (R, (Re) o (YR)) and

WUKy (f) = aUY (¥) (f) = R(f) for every morphism f in A. If Ky is full and
faithful then, for every X € A, we have

(X,eX) = Coequ, (LReX,eLRX) .
Proof. By Lemma B2 we have
(KypX, KyeX) = Coequ, 5 (KyeLRX, Ky LReX) .

Then we can apply Lemma b=37 and deduce that (X, eX) = Coequg (eLRX, LReX).
[l
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Theorem 6.74 (Generalized Beck’s Theorem for Monads). Let (L, R) be an ad-
Junction where L : B — A and R : A — B, let A = (A,ma,us) be a monad on
the category B and let ¢ : A = (A,ma,ua) - RL = (RL,ReL,n) be a monads
morphism such that Y is an epimorphism for every Y € B. Let Ky = T (¢) =
(R, (Re) o (YR)) and JUKy (f) = aUY () (f) = R(f) for every morphism f in A.
Then Ky : A — aB is full and faithful if and only if for every X € A we have that
(X,eX) = Coequy (LReX,eLRX).

Proof. If Ky is full and faithful then we can apply Proposition E223 to get that for
every X € A we have that (X, eX) = Coequy (LReX,eLRX).

Conversely assume that for every X € A we have that (X, eX) = Coequ, (LReX,eLRX).
We want to prove that K x.x/ 1s bijective for every X, X’ € A. Let us consider the
following diagram

0 0
| |
Hom g (X, X") oo B ~Hom, 5 (K, X, Ky X')
HomA(eX,X’)l B lHomAB (KyeX,KyX")
K ’
Hom (LRX, X") i Hom, 5 (KyLRX, Ky X')
HomA(LReX,X’)uHomAB(eLRX,X') HomAB(KwLReX,KwX')uHomAB(KweLRX,wa/)
3 ,
Hom (LRLRX, X') . Hom, 3 (K, LRLRX, K, X")
0 0
. .
R
Hom (X, X) =3 Hom, 5 (KX, K, X")
Hom 4 (e X, X') | I Hom, 5 (KyeX, Ky X')
S
Homy (LRX, X') T Hom, 5 (K, LRX, Ky X")
Hom 4 (LReX, X") || Homy (eLRX, X") Hom, g (KyLReX, Ky, X') || Hom,p (KyeLRX, K
K ,
Homy (LRLRX, X') P Hom, s (KyLRLRX, K, X')

Since (X, eX) = Coequ 4 (LReX,eLRX) the left column of the diagram is exact by
Lemma B33, By Lemma B0 we have (Ky X, KyeX) = Coequ, 5 (KyeLRX, Ky LReX)
so that also the right column is exact by Lemma B3R. Let f € Hom4 (X, X’) and
g € Homy (LRX, X"). Since

Ky (f o (eX)) = (Kyf) o (KyeX)
Ky (go (eLRX)) = (Kyg) o (KyeLRX) and K, (go (LReX)) = (Kyg) o (KyLReX)

the diagram is serially commutative. By Proposition BZ72, I%LRX’ x and /ELRLRX’ X7
are isomorphisms and so is Kx x» by Lemma BZ33. O]
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Corollary 6.75 (Beck’s Theorem for Monads). Let (L, R) be an adjunction where
L:B—Aand R: A— B. Then K =Y (Idgy) : A — guB is full and faithful if
and only if for every X € A we have that (X,eX) = Coequy (LReX,eLRX).

6.7 Grothendieck

Let Cbe an abelian category. Following Grothendieck’s terminology we say that

AB3= cocomplete= C has inductive limits

AB3*=complete=- C has projective limits

AB4=the direct sum €, , fiof a family (f;),.; of monomorphisms is a monomor-
phism=direct sums are left exact

AB4*=the direct product [[,.; fiof a family (f;),.; of epimorphisms is an epi-
omorphism=direct product are left exact.

ABb=direct inductive limits are exact.

Theorem 6.76. (Popescu Proposition 8.5 page 54)Let Cbe an AB3-category and an

AB3*-category. TFAFE.
(a) For any family of objects (X;),c; of C.,the canonical morphism t : @ X; —
il
[1X; is a monomorphism.
iel
(b) If (Xi),c; is a family of objects of C and f Y — @ X, is a morphism such
il
that p;f =0 for any i € I, then f =0

Following Mitchell, we say that Cis a Csy-category if Cis both an AB3-category

and an AB3*-category satisfying the equivalent conditions of the previous Theorem.

Theorem 6.77. (Popescu Corollary 8.10 page 61) Let Cbe an AB5-category and an

AB3*-category. then is aCis a Cy-category.
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