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Chapter 1

Categories and Functors

Definition 1.1. A category C consists of:

1) a class of objects denoted by Ob (C).

2) for every C1, C2 ∈ Ob (C) a set HomC (C1, C2), called the set of morphisms
from C1 to C2

3) for every C1, C2, C3 ∈ Ob (C) there is a map

◦ : HomC(C1, C2)× HomC (C2, C3) −→ HomC (C1, C3)
(f, g) 7−→ g ◦ f called the composite of g and f

satisfying the following conditions:

1) if (C1, C2) ̸= (C3, C4), HomC (C1, C2) ∩ HomC (C3, C4) = ∅;

2) if h ∈ HomC (C3, C4), h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

3) for every C ∈ Ob (C), there exists IdC ∈ HomC (C,C) such that for every
f ∈ HomC (C,C

′), f ◦ IdC = f = IdC′ ◦ f .

We also write f : C1 → C2 or C1
f−→ C2 instead of f ∈ HomC (C1, C2).

Moreover if C ∈ Ob (C), we will simply write C ∈ C.

Example 1.2. Sets, together with functions between sets, form the category Sets.
For every algebraic structure you can consider its category: take sets endowed with
that algebraic structure as objects and take morphisms between two objects as mor-
phisms. In this way, you obtain the category of groups, Grps, of rings, Rings, of
right R-modules, Mod-R and so on.

Definition 1.3. A category is called small if the class of its objects is a set; discrete
if, given two objects C1, C2, if C1 = C2 then HomC (C1, C2) = {IdC1}, if C1 ̸= C2

then HomC (C1, C2) = ∅. Let C be a category.
The opposite category of a category C is the category Cop where Ob (Cop) =Ob(C)

and HomCop (C1, C2) = HomC (C2, C1).
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4 CHAPTER 1. CATEGORIES AND FUNCTORS

Definition 1.4. A subcategory D of a category C is a category such that Ob (D) ⊆
Ob (C) and for every D1, D2 ∈ D, HomD (D1, D2) ⊆ HomC (D1, D2). When the
inclusion is an equality, D is called full subcategory of C.

Definition 1.5. Let C be a category. A morphism C1
f−→ C2 is an isomorphism if

there exists a morphism C2
g−→ C1 such that f ◦ g = IdC2 and g ◦ f = IdC1.

Remark 1.6. Let f : C1 → C2 be an isomorphism in a category C and let g, g′ :
C2 → C1 be such that f ◦ g = IdC2 = f ◦ g′ and g ◦ f = IdC1 = g′ ◦ f. Then we have

g′ = g′ ◦ IdC2 = g′ ◦ (f ◦ g) = (g′ ◦ f) ◦ g = IdC1 ◦ g = g.

Hence there exists a unique morphism g : C2 → C1 be such that f ◦ g = IdC2 and
g ◦ f = IdC1. This unique morphism will be denoted by f−1.

Definition 1.7. Let A,B ∈ C and f : A −→ B, then

• f is a monomorphism if, for every g1, g2 : C −→ A such that f ◦ g1 = f ◦ g2,
we have g1 = g2;

• f is an epimorphism if, for every g1, g2 : B −→ C such that g1 ◦ f = g2 ◦ f,
we have g1 = g2.

Proposition 1.8. Let A,B ∈ C and let f : A −→ B. If f is an isomorphism then
f is a monomorphism and an epimorphism.

Proof. Since f is an isomorphism, there exists a morphism f−1 which is a two-sided
inverse of f. First we prove that f is a monomorphism. Let g1, g2 : C −→ A be a
morphism such that f ◦ g1 = f ◦ g2. Then, by composing to the left with f−1 we get
f−1 ◦ f ◦ g1 = f−1 ◦ f ◦ g2 and thus g1 = g2, i.e. f is a monomorphism. Now we want
to prove that f is an epimorphism. Let g1, g2 : B −→ C such that g1 ◦ f = g2 ◦ f.
By composing to the right with f−1 we get g1 ◦ f ◦ f−1 = g2 ◦ f ◦ f−1 from which
follows g1 = g2, i.e. f is an epimorphism.

Exercise 1.9. Let f : A −→ B and g : B −→ C be morphisms in a category C .
Then

• if both f and g are monomorphisms, also g ◦ f is a monomorphism;

• if both f and g are epimorphisms, also g ◦ f is an epimorphism.

Remark 1.10. The converse of Proposition 1.8 doesn’t hold in general, such as
in the case of the inclusion Z → Q in the category of rings. In fact, let C be the
category of rings, let

i : Z −→ Q
be the canonical inclusion and let h1, h2 : Q −→ A be such that

Z i // Q
h1 //
h2

// A
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h1 ◦ i = h2 ◦ i. We will prove that h1 = h2. Let m ∈ Z and let n ∈ N, n ̸= 0. Since
hj is a morphism of rings for j = 1, 2, we have that

1A = hj (1) = hj

(n
n

)
= hj (n)hj

(
1

n

)
and also

1A = hj (1) = hj

(n
n

)
= hj

(
1

n

)
hj (n)

so that

hj

(
1

n

)
= hj (n)

−1 .

Therefore we get

h1

(m
n

)
= mh1

(
1

n

)
= mh1 (n)

−1 = mh2 (n)
−1 = mh2

(
1

n

)
= h2

(m
n

)
that is h1 = h2 so that i is an epimorphism. Now, let g1, g2 : R −→ Z

R
g1 //
g2

// Z i // Q

be such that i ◦ g1 = i ◦ g2. Then g1 = g2 i.e. i is also a monomorphism. Note that
i is not an isomorphism: a non-zero group morphism

f : Q −→ Z

does not exists since Q is divisible but Z is not. In fact, assume there exists a group
morphism

f : D −→ Z

where D is divisible. By definition of divisible group, for every n ∈ N, nD = D.
Since f is a group morphism, f (D) ⊆ Z and thus f (D) = tZ for some t ∈ N \ {0}.
Since f is a group morphism and D is divisible we have that

nf (D) = f (nD) = f (D) = tZ

and therefore
ntZ =tZ.

In particular, for every n ∈ N, there exists yn ∈ Z such that

t = ntyn.

For n = 2 we get
t = 2ty2

and thus
1 = 2y2

contradiction since 2 is not invertible in Z.
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Proposition 1.11. Let A be a ring and let f : L → M be a morphism in Mod-A.
Then

1) f is injective ⇔ f is a monomorphism in Mod-A.

2) f is surjective ⇔ f is an epimorphism in Mod-A.

3) f is an isomorphism⇔ f is an isomorphism inMod-A.⇔ f is both a monomor-
phism and an epimorphism in Mod-A.

Proof. 1) ⇒ . It is trivial.
1) ⇐ . Let x ∈ L such that x ̸= 0. Let us consider the morphism in Mod-A

hx : AA → LA defined by setting hx (a) = xa for every a ∈ A.

Then
hx (1) = x ̸= 0 = 0 (x)

where 0 denotes the zero morphism from A to M . Since f is a monomorphism in
Mod-A, we get

f ◦ hx ̸= f ◦ 0.
It is easy to see that this implies

(f ◦ hx) (1) ̸= 0.

Since (f ◦ hx) (1) = f (x) we conclude.
2) ⇒ . It is trivial.
2) ⇐ . Let p : M → M/Im (f) be the canonical projection. We have to prove

that M = Im (f) i.e. that p = 0 where 0 :M →M/Im (f) is the zero morphism.
Since p ◦ f = 0 ◦ f and since f is an epimorphism in Mod-A, we get that p = 0.
3) It follows easily from 1) and 2).

Notations 1.12. Let A be a ring. In view of the foregoing, from now on

• an injective homomorphism f of right (left) A-modules will also be called a
monomorphism. We will also say that f is mono, for short.

• a surjective homomorphism of right (left) A-modules will also be called an
epimorphism. We will also say that f is mono, for short.

• a bijective homomorphism of right (left) A-modules will also be called an iso-
morphism. We will also say that f is iso, for short.

Definition 1.13. If C is a category, then we define a category C op having the same
objects of C and setting

HomCop (C,C
′) = HomC (C

′, C) , for every C,C ′ ∈ C.

If f ∈ HomCop (C,C
′) = HomC (C

′, C) , g ∈ HomCop (C
′, C ′′) = HomC (C

′′, C ′)

g ◦Cop f
def
= f ◦ g.
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Definition 1.14. Let C and D be categories. A covariant functor F : C → D
between C and D consists of

1) a collection of objects of D
(F (C))C∈C

2) a collection of morphisms in D

(F (f) : F (C1) −→ F (C2))f∈HomC(C1,C2)
for every C1, C2 ∈ C

such that
F (IdC) = IdF (C) and F (g ◦ f) = F (g) ◦ F (f)

for every morphism f ∈ HomC (C1, C2) and g ∈ HomC (C2, C3).

Definition 1.15. Let C and D be categories. A contravariant functor F : C → D
between C and D consists of

1) a collection of objects of D (F (C))C∈C

2) a collection of morphisms in D

(F (f) : F (C2) −→ F (C1))f∈HomC(C1,C2)
for every C1, C2 ∈ C

such that
F (IdC) = IdF (C) and F (g ◦ f) = F (f) ◦ F (g) .

for every morphism f ∈ HomC (C1, C2) and g ∈ HomC (C2, C3).

Proposition 1.16. Let C and D be categories. A contravariant functor F : C → D
is exactly a covariant functor F : Cop → D (or F : C → Dop).

Examples 1.17.

Let ALR be an A-R-bimodule. Then we can consider the following functors.

1) The covariant functor HomR (ALR,−) :Mod-R→Mod-A defined by setting

HomR (ALR,−) (MR) = HomR (ALR,MR) and HomR (ALR,−) (f) = HomR (ALR, f)

for every MR ∈Mod-R and f morphism in Mod-R.

2) The covariant functor −⊗A ALR :Mod-A→Mod-R defined by setting

(−⊗A ALR) (MA) =MA ⊗A ALR and (−⊗A ALR) (f) = f ⊗A ALR

for every MA ∈Mod-A and f morphism in Mod-A.
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3) The contravariant functor HomR (−, ALR) :Mod-R→ A-Mod defined by setting

HomR (−, ALR) (MR) = HomR (MR, ALR) and HomR (−, ALR) (f) = HomR (f, ALR)

for every MR ∈Mod-R and f morphism in Mod-R.

Example 1.18. More generally, let C be a category and let A ∈ C. Let us define the
functor hA = HomC (A, •) : C → Sets mapping the object C to the set HomC (A,C)

and the morphism C1
f−→ C2 to the map

hA (f) = HomC (A, f) : HomC (A,C1) −→ HomC (A,C2)(
A

ξ−→ C1

)
7−→

(
A

ξ−→ C1
f−→ C2

) .

Then hA is a functor. In fact:

• hA (IdC) (ξ) = IdC ◦ ξ = ξ for every ξ : A→ C so that hA (IdC) = IdhA(C);

• hA (g ◦ f) (ξ) = g◦f◦ξ = hA (g) (f ◦ ξ) =
(
hA (g) ◦ hA (f)

)
(ξ), thus hA (g ◦ f) =

hA (g) ◦ hA (f).

Similarly, we can define a contravariant functor hA = HomC (•, A) : C → Sets
which maps an object C ∈ C to the set HomC (C,A) and a morphism f : C1 → C2

to the map

hA (f) = HomC (f, A) : HomC (C2, A) −→ HomC (C1, A)(
C2

ζ−→ A
)
7−→

(
C1

f−→ C2
ζ−→ A

) .

Lemma 1.19. Let F : C1 → C2 and G : C2 → C3, be functors. For every C ∈ C1 we
set

GF (C) = G (F (C))

and for every morphism f : C1 → C2 we set

GF (f) = G (F (f)) .

This gives rise to a functor GF = G ◦ F : C1 → C3 which is

1) covariant whenever both F and G are covariant,

2) covariant whenever both F and G are contravariant,

3) contravariant whenever F is covariant and G is contravariant,

4) contravariant whenever F is contravariant and G is covariant.

Proof. Exercise.
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Notation 1.20. From now on, if not otherwise specified, the world func-
tor will mean covariant functor.

Definitions 1.21. Given two functors C
F

⇒
G
D, a functorial morphism (or natural

transformation) α : F → G is a collection of morphims in D
(
F (C)

αC−→ G (C)
)
C∈C

such that, for every C1
f−→ C2,

αC2 ◦ F (f) = G (f) ◦ αC1

i.e. the following diagram

F (C1)
αC1 //

F (f)
��

G (C1)

G(f)
��

F (C2) αC2

// G (C2)

is commutative. α is called a functorial isomorphism (or natural equivalence) if,
for every C ∈ C, αC is an isomorphism in D. In this case the functors are called
isomorphic and we write F ∼= G.

Exercise 1.22. Let F,G,H : C → D be functors and let α : F → G and β : G→ H
be functorial morphisms. Show that the collection

β ◦ α = (βC ◦ αC)C∈C

is a functorial morphsm from H to F .

Exercise 1.23. Let α : F → G be a functorial isomorphism. Show that the collection
β =

(
(αC)

−1)
C∈C is a functorial isomorphism from G to F .

Notation 1.24. Let α : F → G be a functorial isomorphism. Then the functorial
isomorphism β in Exercise 1.23 will be denoted by α−1.

Example 1.25. Let C be a category and let t : A1 → A2 be a morphism in C. We
will define a functorial morphism ht = HomC (t, •) : hA2 = HomC (A2, •) → hA1 =
HomC (A1, •) by setting, for every C ∈ C

[HomC (t, •)]C = HomC (t, C) : h
A2 (C) = HomC (A2, C)→ hA1 (C) = HomC (A1, C)

(a : A2 → C) 7→ (a ◦ t : A1 → C)

Let us check that HomC (t, •) is a functorial morphism. For every C ∈ C, we will set

[HomC (t, •)]C = HomC (t, C) .

Let f : C1 → C2 be a morphism in C. We have to prove that

hA1 (f) ◦ HomC (t, C1) = HomC (t, C2) ◦ hA2 (f) .

Let a ∈ HomC (A2, C1). We compute[
hA1 (f) ◦ HomC (t, C1)

]
(a) = hA1 (f) (HomC (t, C1) (a)) = hA1 (f) (a ◦ t) = f ◦ (a ◦ t) =

= (f ◦ a) ◦ t =
[
hA2 (f) (a)

]
◦ t = HomC (t, C2)

(
hA2 (f) (a)

)
=
[
HomC (t, C2) ◦ hA2 (f)

]
(a) .
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Exercise 1.26. Let C be a category and let t : A1 → A2 be a morphism in C.
Show that HomC (t, •) : hA2 = HomC (A2, •) → hA1 = HomC (A1, •) is a functorial
isomorphism if and only if t is an isomorphism in C.

Exercise 1.27. Let C be a category and let t : A1 → A2 be a morphism in C. Check
that ht = HomC (•, t) : hA1 → hA2 , defined by setting, for every C ∈ C

[HomC (•, t)]C = HomC (C, t) : hA1 (C) = HomC (C,A1)→ hA2 (C) = HomC (C,A2)

(a : C → A1) 7→ (t ◦ a : C → A2)

is a funtorial morphism.

Definitions 1.28. Let C e D be categories and let F : C → D be a functor. Let
C1, C2 ∈ C and consider the map

FC1
C2

: HomC (C1, C2) → HomD (F (C1) , F (C2))

f 7→ F (f)

The functor F is called

• faithful if FC1
C2 is injective for every C1, C2 ∈ C;

• full if FC1
C2

is surjective for every C1, C2 ∈ C.

Examples 1.29. Let C be a category and let A ∈ C.

• The functor hA = HomC (A, •) : C → Sets is faithful if and only if for every

parallel pair C1

f

⇒
g
C2 where f ̸= g there exists A

ξ−→ C1such that f ◦ξ ̸= g ◦ξ.

In this case A is called a generator for C.

• The functor hA = HomC (•, A) : C → Sets is faithful if and only if for every

parallel pair C1

f

⇒
g
C2 where f ̸= g there exists C2

χ−→ A such that χ◦f ̸= χ◦g.

In this case A is called a cogenerator for C.

Lemma 1.30. Let T : C → D be a functor and let C1
f−→ C2 be a morphism in C.

• If f is an isomorphism in C, then T (f) is an isomorphism in D.

• If T is a full and faithful functor and T (f) is an isomorphism in D, then f is
an isomorphism in C.

Proof. If f is an isomorphism, there exists f−1 and we have

T (f) ◦ T
(
f−1
)

= T
(
f ◦ f−1

)
= T (IdC2) = IdT (C2)

T
(
f−1
)
◦ T (f) = T

(
f−1 ◦ f

)
= T (IdC1) = IdT (C1)
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so that, we get
T
(
f−1
)
= T (f)−1.

Assume now that T is a full and faithful functor and T (f) is an isomorphism in
D. Then there exists h = T (f)−1. Since T is full there exists a g in C such that
h = T (g). Then we have

T (IdC1) = IdT (C1) = h ◦ T (f) = T (g) ◦ T (f) = T (g ◦ f) .

Since T is faithful, we get IdC1 = g ◦ f . Similarly, one proves that f ◦ g = IdC2 and
thus g = f−1

Definitions 1.31. Let F : C → D be a functor. We say that

• F is an equivalence of categories if there is a functor G : D → C such that
FG ∼= IdD and GF ∼= IdC. In this case we also say that (F,G) is an equiva-
lence of categories.

• F is an isomorphism of categories if there is a functor G : D → C such
that FG = IdD and GF = IdC. In this case we also say that (F,G) is an
isomorphism of categories .

Definitions 1.32. Two categories C and D are called

• equivalent if there exist functors F : C → D and G : D → C such that (F,G)
is an equivalence of categories.

• isomorphic if there exist functors F : C → D and G : D → C such that (F,G)
is an isomorphism of categories

Theorem 1.33. Let T : C → D be a functor. Then T is an equivalence of categories
if and only if T is full, faithful and, for every D ∈ D, there exist C ∈ C and an

isomorphism T (C)
ξD−→ D .

Proof. Assume first that T is an equivalence. Then there exist a functor S : D −→ C
and functorial isomorphisms α : ST −→ IdC and β : TS −→ IdD.

T is faithful. Let f, f ′ ∈ HomC (C1, C2) with T (f) = T (f ′). Then ST (f) =
ST (f ′). Since α is a functorial morphism we have

αC2 ◦ ST (f) = f ◦ αC1 and αC2 ◦ ST (f ′) = f ′ ◦ αC1

i.e. the diagram

ST (C1)
αC1 //

ST (f)=ST (f ′)
��

C1

f ′ f

��
ST (C2)

αC2 // C2.
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is commutative. Since α is an isomorphism we deduce that

f = αC2 ◦ ST (f) ◦ α−1
C1

T (f)=T (f ′)
= αC2 ◦ ST (f ′) ◦ α−1

C1
= f ′.

T is full. Let T (C1)
h−→ T (C2). We set

g = αC2 ◦ S (h) ◦ α−1
C1
∈ HomC (C1, C2) .

Since α is a functorial morphism we have

αC2 ◦ ST (g) = g ◦ αC1

i.e. the diagram

ST (C1)
αC1 //

S(h)=ST (g)

��

C1

g

��
ST (C2)αC2

// C2.

is commutative. Since α a functorial isomorphism, we deduce that

ST (g) = α−1
C2
◦ g ◦ αC1

defg
= S (h) .

Since T is an equivalence, so is S. Then, by the previous step, we have that S is
faithful, so that we deduce that h = T (g).

Now, for every D ∈ D we set C = S (D) ∈ C and ξD = βD : TS (D) −→ D.
Conversely assume that T is full, faithful and, for every D ∈ D, there exists

C ∈ C and an isomorphism T (C)
ξD−→ D.

Construction of S : D → C. Let D ∈ D, we set S (D) = C, where C ∈ C is

such that there exists an isomorphism T (C)
ξD−→ D. Here we applied the Axiom of

Choice. Let f : D1 −→ D2 and consider the morphism

f ′ = ξ−1
D2
◦ f ◦ ξD1 : T (C1) −→ T (C2)

Since T is full, there exists a morphism f ′′ : C1 −→ C2 such that T (f ′′) = f ′. Since
T is faithful, f” is unique with respect to this proeperty. Thus we set S (f) = f ′′.
Hence S (f) is uniquely determined by

(1.1) T (S (f)) = ξ−1
D2
◦ f ◦ ξD1

S is a functor. Let f : D1 −→ D2 and g : D2 −→ D3 be morphisms in D. We
have

T (S (f))
(1.1)
= ξ−1

D2
◦ f ◦ ξD1 and T (S (g))

(1.1)
= ξ−1

D3
◦ g ◦ ξD2

i.e. the following diagram

D1
f // D2

g // D3

T (C1)
TS(f)

//

ξD1

OO

T (C2)
TS(g)

//

ξD2

OO

T (C3) ,

ξD3

OO



13

commutes. We deduce that

T (S (g) ◦ S (f)) = TS (g) ◦ TS (f) =
(
ξ−1
D3
◦ g ◦ ξD2

)
◦
(
ξ−1
D2
◦ f ◦ ξD1

)
=

= ξ−1
D3
◦ g ◦ f ◦ ξD1

(1.1)
= T (S (g ◦ f))

so that

T (S (g) ◦ S (f)) = T (S (g ◦ f)) .

We note that both S (g) ◦S (f) and S (g ◦ f) are element of HomD (T (C1) , T (C2)).
Thus, since T is faithful, we obtain that S (g) ◦ S (f) = S (g ◦ f). Moreover, from

T (S (IdD)) = ξ−1
D ◦ IdD ◦ ξD = IdT (S(D)) = T

(
IdS(D)

)
,

we deduce that S (IdD) = IdS(D).

Construction of α : ST → IdC. For every C ∈ C we need to construct an
isomorphism ST (C)

αC−→ C. By definition of ST (C), there exists an isomorphism

TST (C)
ξT (C)−→ T (C). Since T is full and faithful, there exists a unique morphism

ST (C)
αC−→ C such that T (αC)= ξT (C).

We will prove that (αC)C∈C is a functorial isomorphism.

α is a functorial morphism. We have to prove that, for every morphism
h : C1 → C2 in C,

h ◦ αC1 = αC2 ◦ ST (h)

i.e. the following diagram

ST (C1)
αC1 //

ST (h)

��

C1

h

��
ST (C2) αC2

// C2.

is commutative. By applying T , we have

T (h ◦ αC1) = T (h) ◦ T (αC1)

= T (h) ◦ ξT (C1)

and

T (αC2 ◦ ST (h)) = T (αC2) ◦ TST (h)

= ξT (C2) ◦ TST (h) .

By definition of ST (h), we have

T (ST (h))
(1.1)
= ξ−1

T (C2)
◦ T (h) ◦ ξT (C1)
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and thus we get

T (αC2 ◦ ST (h)) = ξT (C2) ◦ TST (h)

= ξT (C2) ◦ ξ−1
T (C2)

◦ T (h) ◦ ξT (C1)

= T (h) ◦ ξT (C1)

= T (h ◦ αC1)

i.e.
T (h ◦ αC1) = T (αC2 ◦ ST (h)) .

Since T is faithful we conclude that α is a functorial morphism.

α is a functorial isomorphism. Since ξT (C) is an isomorphism and ξT (C) =
T (αC) , by applying Lemma 1.30 to the case ”f” = αC , we get that αC is an
isomorphism.

Construction of β : TS → IdD. Let us consider

β = (ξD)D∈D .

β is a functorial morphism. Let f : D1 → D2 be a morphism in D. By
definition of S (f) we get that

ξD2 ◦ TS (f)
(1.1)
= ξD2 ◦

(
ξ−1
D2
◦ f ◦ ξD1

)
= f ◦ ξD1

and hence we deduce that

ξD2 ◦ TS (f) = f ◦ ξD1 .

β is a functorial isomorphism. Since each ξD is an isomorphism, we deduce
that β is a functorial isomorphism.



Chapter 2

Yoneda Lemma

Theorem 2.1 (Yoneda Lemma). Let F : C → Sets be a contravariant functor. Let
A ∈ C and let us consider the contravariant functor

hA = HomC (•, A) : C → Sets

introduced in Example 1.18. Let Hom (hA, F ) be the collection of functorial mor-
phisms from hA to F . Set

αFA : Hom (hA, F ) −→ F (A)(
hA

Γ−→ F
)
7−→ ΓA (IdA) ,

αFA is a bijection and it is natural in A and F where

• αFA natural in A means that αF• : Hom (h•, F ) → F is a functorial morphism
between functors from C to Sets.

• αFA natural in F means that α•
A : Hom (hA, •)→ • (A) is a functorial morphism

between functors from Hom (C, Sets) to Sets.

Proof. Construction of β =
(
αFA
)−1

: F (A) −→ Hom (hA, F ). Let x ∈ F (A). For
every object C in C, we set

β (x)C : hA (C)→ F (C)

β (x)C (f) = F (f) (x) for every f ∈ hA (C) = HomC (C,A)

β (x) is a functorial morphism for every x ∈ F (A). Let x ∈ F (A). For
every morphism g : C1 → C2 in C, we have to prove that

F (g) ◦ β (x)C2

?
= β (x)C1

◦ hA (g) .

i.e. that the following diagram

hA (C2)
β(x)C2 //

hA(g)
��

F (C2)

F (g)
��

hA (C1)
β(x)C1

// F (C1)

15
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commutes. Let f ∈ HomC (C2, A). We compute

[
F (g) ◦ β (x)C2

]
(f) = F (g)

(
β (x)C2

(f)
)
=

= F (g) (F (f) (x)) = [F (f) ◦ F (g)] (x) = F (f ◦ g) (x)

and [
β (x)C1

◦ hA (g)
]
(f) = β (x)C1

(hA (g) (f)) =

= β (x)C1
(f ◦ g) = F (f ◦ g) (x)

so that we get [
F (g) ◦ β (x)C2

]
(f) =

[
β (x)C1

◦ hA (g)
]
(f)

Since this holds for every f ∈ HomC (C2, A), we deduce that F (g) ◦ β (x)C2
=

β (x)C1
◦ hA (g).

β ◦ αF
A =IdHom(hA,F ). Let Γ : hA −→ F be a functorial morphism. Then for

every f : C1 → C2 morphism C we have

ΓC1 ◦ hA (f) = F (f) ◦ ΓC2 .

In particular, for every f : C → A we have

(2.1) ΓC ◦ hA (f) = F (f) ◦ ΓA.

Let us recall that hA (f) (t) = t ◦ f for every t ∈ HomC (A,A) . Therefore we get

ΓC (f) = ΓC (IdA ◦ f) = ΓC (hA (f) (IdA)) =

= [ΓC ◦ hA (f)] (IdA)
(2.1)
= [F (f) ◦ ΓA] (IdA) = F (f) (ΓA (IdA))

which yields

(2.2) ΓC (f) = F (f) (ΓA (IdA))

We have to prove that(
β ◦ αFA

)
(Γ)

?
= IdHom(hA,F ) (Γ) i.e.

β (ΓA (IdA))
defαFA= β

(
αFA (Γ)

) ?
= Γ for every Γ ∈ Hom (hA, F ) .

For every C ∈ C and f : C → A, we compute

β (ΓA (IdA))C (f)
defβ
= F (f) (ΓA (IdA))

(2.2)
= ΓC (f) .

Hence we deduce that
(
β ◦ αFA

)
(Γ) = IdHom(hA,F ) (Γ) .

αF
A◦β =IdF (A). Let x ∈ F (A) . We have

αFA (β (x))
defαFA= β (x)A (IdA)

defβ
= F (IdA) (x)

F isafunct
= IdF (A) (x) = x.
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αF
A is natural in A i.e. αF• : Hom (h•, F ) → F is a functorial morphism

between functors from C to Sets.
First of all let us prove that Hom (h•, F ) is a contravariant functor from C

to Sets. For every A ∈ C, let us set

Hom (h•, F ) (A) = Hom (hA, F )

and for every u : A −→ B let

Hom (h•, F ) (u) = Hom (hu, F ) : Hom (hB, F )→ Hom (hA, F )

(Γ : hB → F ) 7→ (Γ ◦ hu : hA → F )

where hu = HomC (•, u) : hA → hB was defined in Exercise 1.27 by setting, for
every C ∈ C:

huC = [HomC (•, u)]C = HomC (C, u) : hA (C) = HomC (C,A)→ hB (C) = HomC (C,B)

(a : C → A) 7→ (u ◦ a : C → B)

We have

Hom (h•, F ) (IdA) = Hom (hIdA , F ) = Hom (IdhA , F ) = IdHom(hA,F ) = IdHom(h•,F )(A).

Let now u : A −→ B and v : B −→ D be morphisms in C. We have to prove that

Hom (h•, F ) (v ◦ u)
?
= Hom (h•, F ) (u) ◦ Hom (h•, F ) (v)

i.e.
Hom (hv◦u, F )

?
= Hom (hu, F ) ◦ Hom (hv, F ) .

Let Γ ∈ Hom (hD, F ). We compute

[Hom (hu, F ) ◦ Hom (hv, F )] (Γ) = Hom (hu, F ) [Hom (hv, F ) (Γ)] = Hom (hu, F ) (Γ ◦ hv) =
= Γ ◦ hv ◦ hu

Let C ∈ C. Now for every a : C → A we compute

(hv ◦ hu) (a) = hv (hu (a)) = hv (u ◦ a) = v ◦ (u ◦ a) = (v ◦ u) ◦ a = hv◦u (a)

so that we get

[Hom (hu, F ) ◦ Hom (hv, F )] (Γ) = Γ ◦ hv◦u = Hom (hv◦u, F ) (Γ) .

Having established that Hom (h•, F ) is a contravariant functor from C to Sets,
let us prove that αF• : Hom (h•, F )→ F is a functorial morphism. Let u : A −→ B
be a morphism in C. We have to prove that

F (u) ◦ αFB
?
= αFA ◦ Hom (hu, F )
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i.e. that the following diagram

Hom (hB, F )
αFB //

Hom(hu,F )
��

F (B)

F (u)
��

Hom (hA, F )
αFA

// F (A)

commutes. Let Γ : hB → F be a functorial morphism. Then we have

F (u) ◦ ΓB = ΓA ◦ hB (u)

so that we get[
F (u) ◦ αFB

]
(Γ) = F (u)

(
αFB (Γ)

) defαFB= F (u) (ΓB (IdB)) = [F (u) ◦ ΓB] (IdB) =
= [ΓA ◦ hB (u)] (IdB) = Γ (hB (u) (IdB)) = ΓA (IdB ◦ u) = ΓA (u)

and [
αFA ◦ Hom (hu, F )

]
(Γ) = αFA (Hom (hu, F ) (Γ)) = αFA (Γ ◦ hu)

defαFA= (Γ ◦ hu)A (IdA) = ΓA (huA (IdA)) = ΓA (u ◦ IdA) = ΓA (u) .

αFA is natural in F . Let ψ : F → G be a functorial morphism, we have to
prove that

ψA ◦ αFA = αGA ◦ Hom (hu, ψ)

i.e. that the following diagram

Hom (hA, F )
αFA //

Hom(hA,ψ)
��

F (A)

ψA
��

Hom (hA, G)
αGA

// G (A) .

commutes. Let Γ ∈ Hom (hA, F ), we have[
ψA ◦ αFA

]
(Γ) = ψA

(
αFA (Γ)

) defαFA= ψA (ΓA (IdA))

and [
αGA ◦ Hom (hu, ψ)

]
(Γ) = αGA (Hom (hA, ψ) (Γ)) = αGA (ψ ◦ Γ)

defαGA= (ψ ◦ Γ)A (IdA)
= ψA (ΓA (IdA))

so that the diagram commutes and αFA is natural in F .
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Corollary 2.2. Let C be a category and let A,B ∈ C. The map

χ : HomC (A,B) −→ Hom (hA, hB)

t 7→ ht

is bijective.

Proof. By Theorem 2.1 applied to F = hB, we know that

αhBA : Hom (hA, hB) −→ hB (A) = HomC (A,B)(
hA

Γ−→ hB

)
7−→ ΓA (IdA) ,

αhBA is a bijection and it is natural in A and B. For every t ∈ HomC (A,B), let us
compute(
αhBA ◦ χ

)
(t) = αhBA (χ (t)) = αhBA (ht) = htA (IdA) = t ◦ IdA = t = IdHomC(A,B) (t) .

We deduce that
αhBA ◦ χ = IdHomC(A,B).

Since αhBA is bijective, we obtain that also χ is bijective.

Corollary 2.3. Let t : A → B be a morphism in C. Then t is an isomorphism if
and only if ht is a functorial isomorphism.

Proof. Assume that ϕ = ht is a functorial isomorphism. By Corollary 2.2, there
exists a morphism u : B → A in C such that

ϕ−1 = hu.

Using the notations of Corollary 2.2, we have

χ (IdB) = hIdB = IdhB = ϕ ◦ ϕ−1 = ht ◦ hu = ht◦u = χ (t ◦ u)
χ (IdA) = hIdA = IdhA = ϕ−1 ◦ ϕ = hu ◦ ht = hu◦t = χ (u ◦ t) .

In view of Corollary 2.2, we deduce that

IdB = t ◦ u and IdA = u ◦ t.

Conversely assume that there exists u : B → A in C such that

IdB = t ◦ u and IdA = u ◦ t.

Then, given f : C → A and g : C → B we have

(ht ◦ hu) (f) = t ◦ (u ◦ f) = (t ◦ u) ◦ f = f

and
(hu ◦ ht) (g) = u ◦ (t ◦ g) = (u ◦ t) ◦ g = g.
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Corollary 2.4. Let A,B ∈ C, then A ∼= B if and only if hA ∼= hB.

Proof. Assume that hA ∼= hB. Then there exists a functorial morphism ϕ : hA → hB
such that ϕC is an isomorphism for every C ∈ C. By Corollary 2.2, there exists a
morphism t : A → B such that ϕ = ht. By Corollary 2.3 we get that t is an
isomorphism. The converse follows directly from Corollary 2.2.

In a similar way one can prove the following results.

Theorem 2.5 (Covariant Yoneda Lemma). Let F : C → Sets be a covariant functor.
Let A ∈ C and let us consider the covariant functor

hA = HomC (A, •) : C → Sets

introduced in Example 1.18. Let Hom
(
hA, F

)
be the collection of functorial mor-

phisms from hA to F . Set

ΦA : F (A) −→ Hom
(
hA, F

)
t 7−→ ΦA (t) : h

A → F ,

where

ΦA (t)X : HomC (A,X)→ F (X)

f 7−→ F (f) (t)

ΦA is a bijection and it is natural in A i.e.
Φ• : F → Hom (h•, F ) is a functorial morphism between functors from C to Sets.

Corollary 2.6. Let C be a category and let A,B ∈ C. The map

ξ : HomC (A,B) −→ Hom
(
hB, hA

)
t 7→ ht

is bijective

Corollary 2.7. Let t : A → B be a morphism in C. Then t is an isomorphism if
and only if ht is a functorial isomorphism.

Corollary 2.8. Let A,B ∈ C, then A ∼= B if and only if hA ∼= hB.
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Abelian categories

3.1 Kernel

Lemma 3.1. Let C be a category and let f : A −→ B and g : B −→ D be morphisms
in C and let h = g ◦ f . Then

• f is a monomorphism whenever h is a monomorphism,

• g is an epimorphism whenever h is an epimorphism.

Proof. Let C be an object of C, λ1, λ2 : C −→ A and ξ1, ξ2 : D −→ C be morphisms
in C. Assume that

f ◦ λ1 = f ◦ λ2.

Then we have
h ◦ λ1 = g ◦ f ◦ λ1 = g ◦ f ◦ λ2 = h ◦ λ2.

We deduce that λ1 = λ2, whenever h is a monomorphisms.
Now, assume that ξ1 ◦ g = ξ2 ◦ g. Then we have

ξ1 ◦ h = ξ1 ◦ g ◦ f = ξ2 ◦ g ◦ f = ξ2 ◦ h

We deduce that ξ1 = ξ2, whenever h is an epimorphisms.

Definition 3.2. Let C be a category. Two morphisms f : A −→ B and f ′ : A′ −→
B in C are called equivalent, denoted by f ∼ f ′, if there exists an isomorphism
g : A −→ A′ in C such that

f ′ ◦ g = f

i.e. the following diagram

A
g //

f   A
AA

AA
AA

A A′

f ′~~||
||
||
||

B.

is commutative.

21
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Proposition 3.3. In the setting of Definition 3.2 we have

1) The relation ∼ is an equivalence relation whose equivalent classes will be de-
noted by [ ].

2) If f ∼ f ′ then f is a monomorphism if and only if f ′ is a monomorphism.

3) If f ∼ f ′ then f is an epimorphism if and only if f ′ is an epimorphism.

Proof. 1) it is trivial.
2) Since f ∼ f ′ there exists an isomorphism g : A −→ A′ such that

f ′ ◦ g = f.

Assume that f is a monomorphism. Then, by Proposition 1.8 and exercise 1.9,
f ′ = f ◦ g−1 is a monomorphism. Conversely, assume that f ′ is a monomorphism.
Then, by Proposition 1.8 and exercise 1.9, f = f ′ ◦ g is a monomorphism.

3) Similar to 2).

Definition 3.4. Let C be a category and let C ∈ C. A subobject of C is an equiv-
alence class [i : A −→ C] where i is a monomorphism. We will however make an
abuse of notation (and language) by denoting a subobject by (A, i) where i : A −→ C
is some representing monomorphism.

Definition 3.5. Let C be a category. Let h : A −→ B and h′ : A −→ B′ are called
coequivalent , denoted by h

◦∼ h′, if there exists an isomorphism ζ : B −→ B′ such
that

h′ = ζ ◦ h

i.e. the following diagram

B
ζ // B′

A.
h

``AAAAAAAA h′

>>||||||||

is commutative

Proposition 3.6. In the setting of Definition 3.5 we have

1) The relation
◦∼ is an equivalence relation whose equivalent classes will be de-

noted by ⟨ ⟩.

2) If h
◦∼ h′ then h is a monomorphism if and only if h′ is a monomorphism.

3) If h
◦∼ h′ then h is an epimorphism if and only if h′ is an epimorphism.

Proof. Dual to Proposition 3.3.



3.1. KERNEL 23

Definition 3.7. Let C be a category and let C ∈ C. A quotient of C is an equivalence
class ⟨p : C −→ B⟩ where p is an epimorphism.We will however make an abuse of
notation (and language) by denoting a quotient by (B, p) where p : C −→ B is some
representing epimorphism.

Definitions 3.8. Let C be a category.

• An object X ∈ C is called initial object of C if |HomC (X,C)| = 1 for every
C ∈ C.

• An object Z ∈ C is called final object of C if |HomC (C,Z)| = 1 for every
C ∈ C.

• If X = Z is both initial and final object of C then it is called zero of the
category C.

Example 3.9. In Mod-R, {0} is both initial and final object.

Example 3.10. In Rings, Z is initial object. In fact, for any ring R there exists a
unique ring morphism

f : Z −→ R

determined by f (n) = n · f (1Z) = n · 1R.

Lemma 3.11. If an initial (final) object in a category C exists, then is unique up
to isomorphism.

Proof. Assume that X, X ′ are initial objects for the category C. Then, for every
C ∈ C there exists a unique morphism hC : X −→ C and a unique morphism
kC : X ′ −→ C. In particular there exists a unique morphism hX′ : X −→ X ′ and a
unique morphism kX : X ′ −→ X. Then we get

IdX = hX = kX ◦ hX′

and
IdX′ = kX′ = hX′ ◦ kX .

Definition 3.12. A category C is called preadditive if

1) for every A,B ∈ C, HomC (A,B) is an abelian group whose neutral element
will be denoted by 0AB or simply by 0;

2) the composition of maps

HomC (A,B)× HomC (B,C) −→ HomC (A,C)

(f, g) 7→ g ◦ f

is a group morphism, i.e.

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f
g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2.
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Lemma 3.13. Let C be a preadditive category and let X be an object of C. Then the
following are equivalent

(a) X is an initial (final) object in C

(b) HomC (X,C) = {0XC } (HomC (C,X) = {0CX}) for every C ∈ C.

If X is a zero object for C we will write X = 0C.

Lemma 3.14. Let C be a preadditive category. Then, for every morphism f : A −→
B, we have

f ◦ 0CA = 0CB and 0BC ◦ f = 0AC for every C ∈ C

Proof. We have
f ◦ 0CA = f ◦

(
0CA + 0CA

)
= f ◦ 0CA + f ◦ 0CA.

Since HomC (C,B) is a group, we deduce that

f ◦ 0CA = 0CB.

The other statement as an analogous proof.

Notation 3.15. Let C be a preadditive category and let A,B ∈ C. From now on,
we will simply write 0 instead of 0AB whenever there is no risk of confusion.

Proposition 3.16. Let C be a preadditive category and let f : A −→ B be a mor-
phism in C. Then

1) f is a monomorphism if and only if for every g : C −→ A such that f ◦ g = 0
we have g = 0

2) f is an epimorphism if and only if for every h : B −→ D such that h ◦ f = 0
we have h = 0.

Proof. 1) Assume that f is a monomorphism and that there exists g such that
f ◦ g = 0. In view of Lemma 3.14, we have:

f ◦ g = 0 = f ◦ 0.

Since f is a monomorphism we get that g = 0. Conversely, assume that for every g
such that f ◦g = 0 we have g = 0. Let g1, g2 such that f ◦g1 = f ◦g2. Then we have
f ◦ (g1 − g2) = 0 and hence, in view of our assumptions, we get that g1− g2 = 0, i.e.
g1 = g2, so that f is a monomorphism.

2) Similar to 1).

Definition 3.17. Let C be a preadditive category and let f : A −→ B be a morphism
in C. A kernel of f , if it exists, is a pair (K, k) where k : K −→ A satisfies:

1) f ◦ k = 0
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2) universal property of the kernel: if ξ : X −→ A is a morphism in C such that
f ◦ ξ = 0, there exists a morphism ξ′ : X −→ K such that

ξ = k ◦ ξ′

i.e. the following diagram

K
k // A

f // B

X
ξ
′

``A
A
A
A ξ

>>~~~~~~~~

is commutative. Moreover, such ξ′ is unique with respect to this property.

Proposition 3.18. Let C be a preadditive category. If (K, k) is a kernel of f :
A −→ B, then k is a monomorphism.

Proof. Let (K, k) be a kernel of f. Let g : X −→ K be a morphism such that
k ◦ g = 0. We have to prove that g = 0. We have

f ◦ k ◦ g (3.14)
= 0

so that there exists a unique ξ′ : X −→ K such that k◦ξ′ = k◦g. Since k◦g = 0 = k◦0
and ξ′ is unique with respect to the property k◦ξ′ = k◦g, we deduce that ξ′ = g = 0
and thus k is a monomorphism.

Proposition 3.19. Let C be a preadditive category. Assume that (K, k) is a kernel
of f : A −→ B. Then given a pair (K ′, k′) where k′ : K ′ → A, we have that

(K ′, k′) is a kernel of f : A −→ B if and only if the morphisms k and k′ are
equivalent.

Proof. Assume that (K ′, k′) is a kernel of f : A −→ B. Since (K, k) is a kernel of f
and f ◦ k′ = 0, there exists a unique morphism γ : K ′ → K such that

k′ = k ◦ γ.

Since (K ′, k′) is a kernel of f and f ◦k = 0, there is a unique morphism γ′ : K → K ′

such that
k = k′ ◦ γ′.

Therefore we obtain
k ◦ IdK = k = k′ ◦ γ′ = k ◦ γ ◦ γ′

and
k′ ◦ IdK′ = k′ = k ◦ γ = k′ ◦ γ′ ◦ γ.

Since both (K, k) and (K, k′) are kernels of f , by Proposition 3.18, both k and k′

are monomorphisms so that we deduce that

γ ◦ γ′ = IdK and γ′ ◦ γ = IdK′
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i.e. k is equivalent to k′.
Conversely assume that k and k′ are equivalent, i.e. there exists an isomorphism

λ : K → K ′ such that k = k′ ◦ λ. Since (K, k) is a kernel of f , we have

0 = f ◦ k = f ◦ k′ ◦ λ

and since λ is an isomorphism, we deduce that

f ◦ k′ = 0.

Now let ξ : X −→ A such that f ◦ ξ = 0. Then there exists a unique morphism
ξ′ : X −→ K such that ξ = k ◦ ξ′. We have to prove that there exists a morphism
ξ′′ : X −→ K ′ such that ξ = k′ ◦ ξ′′ and such ξ′′ is unique with respect to this
property.

K ′ k′ // A
f // B

K

λ

aaCCCCCCCC
k

>>}}}}}}}}

X;

ξ
′

OO�
�
�

ξ
′′

XX1
1
1
1
1
1
1
1

ξ

GG���������������

We have
ξ = k ◦ ξ′ = k ◦ IdK ◦ ξ′ = k ◦ λ−1 ◦ λ ◦ ξ′ = k′ ◦ ξ′′

where ξ′′ = λ◦ξ′.We now have to prove that ξ′′ is unique. Assume that ξ′′ : X → K ′

is another morphism such that
ξ = k′ ◦ ξ′′.

Then we have

ξ = k′ ◦ ξ′′ = k′ ◦ IdK′ ◦ ξ′′ = k′ ◦ λ ◦ λ−1 ◦ ξ′′ = k ◦ λ−1 ◦ ξ′′

and since
ξ = k ◦ ξ′

where ξ′ is unique with respect to the property ξ = k ◦ ξ′, we deduce that

ξ′ = λ−1 ◦ ξ′′

and thus
ξ′′ = λ ◦ ξ′ = λ ◦ λ−1 ◦ ξ′′ = ξ′′.

Notation 3.20. Let (K, k) be a kernel of a morphism f : A→ B. Then, in view of
Proposition 3.19, k is a monomorphism. Hence k is a representative monomorphism
of a subobject of A which will be denoted by Ker (f). We will also write (K, k) =
Ker (f) to mean that k is a representative of the equivalence class Ker (f) .
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Definition 3.21. Let C be a preadditive category and let f : A −→ B be a morphism
in C. A cokernel of f , if it exists, is a pair (Q,χ) where χ : B −→ Q satisfies:

1) χ ◦ f = 0

2) universal property of the cokernel: if η : B −→ Y is a morphism in C such
that η ◦ f = 0 = 0, there exists a morphism η′ : Q −→ Y such that

η = η′ ◦ χ

i.e. the following diagram

A
f // B

η   @
@@

@@
@@

@
χ // Q

η
′~~~

~
~
~

Y .

is commutative. Moreover, such η′ is unique with respect to this property.

Proposition 3.22. If (Q,χ) is a cokernel of f : A −→ B, then χ is an epimorphism.

Proof. Let g : Q −→ Y be such that g ◦ χ = 0.We have to prove that g = 0. We
have

g ◦ χ ◦ f (3.14)
= 0

so that there exists a unique morphism η′ : Q→ Y such that

g ◦ χ = η′ ◦ χ.

Since g◦χ = 0 = 0◦χ and η′ is unique with respect to the property that g◦χ = η′◦χ,
we deduce that η′ = g = 0 and thus χ is an epimorphism.

Proposition 3.23. Assume that (Q,χ) is a cokernel of f : A −→ B. Then given a
pair (Q′, χ′) where χ′ : B → Q′, we have that

(Q′, χ′) is a cokernel of f : A −→ B if and only if the morphisms χ and χ′ are
coequivalent.

Proof. Assume that (Q′, χ′) is a cokernel of f . Since (Q,χ) is a cokernel of f and
χ′ ◦ f = 0, there exists a unique morphism σ : Q→ Q′ such that

χ′ = σ ◦ χ.

Since (Q′, χ′) is a cokernel of f and η◦f = 0, there is a unique morphism σ′ : Q′ → Q
such that

χ = σ′ ◦ χ′

Therefore we obtain
IdQ ◦ χ = χ = σ′ ◦ χ′ = σ′ ◦ σ ◦ χ
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and
IdQ′ ◦ χ′ = χ′ = σ ◦ χ = σ ◦ σ′ ◦ χ′.

Since both (Q,χ) and (Q′, χ′) are cokernel of f , by Proposition 3.22, both χ and χ′

are epimorphisms so that we deduce that

σ′ ◦ σ = IdQ and σ ◦ σ′ = IdQ′

i.e. χ and χ′ are equivalent morphisms.
Conversely assume that χ and χ′ are coequivalent i.e. there exists an isomor-

phism λ : Q −→ Q′ such that χ′ = λ ◦ χ. Since (Q,χ) is a cokernel of f : A −→ B,
we have

χ′ ◦ f = λ ◦ χ ◦ f = λ ◦ 0 = 0.

Now let η : B −→ Y such that η ◦ f = 0. We have to prove that there exists
η′′ : Q′ −→ Y such that η = η′′ ◦ χ′ and η′′ is unique with respect to this property.
Since (Q,χ) is a cokernel of f and η ◦ f = 0, there exists a unique η′ : Q −→ Y such
that η = η′ ◦ χ. We have

η = η′ ◦ χ = η′ ◦ IdQ ◦ χ = η′ ◦ λ−1 ◦ λ ◦ χ = η′ ◦ λ−1 ◦ χ′ = η′′ ◦ χ′

where η′′ = η′ ◦ λ−1. We prove that such morphism η′′ is unique. Assume that there
exists another morphism η′′ : Q′ −→ Y such that η = η′′ ◦ χ′. We have

η = η′′ ◦ χ′ = η′′ ◦ IdQ′ ◦ χ′ = η′′ ◦ λ ◦ λ−1 ◦ χ′ = η′′ ◦ λ ◦ χ

and since
η = η′ ◦ χ

where η′ is unique with respect to the property η = η′ ◦ χ, we deduce that

η′ = η′′ ◦ λ

and thus
η′′ = η′ ◦ λ−1 = η′′.

Notation 3.24. Let (Q,χ) be a cokernel of a morphism f : A→ B. Then, in view
of Proposition 3.23, χ is an epimorphism. Hence χ is a representative epimorphism
of a quotient of B which will be denote by Coker (f). We will also write (Q,χ) =
Coker (f) to mean that χ is a representative of the equivalent class Coker (f).

Theorem 3.25. Let C be a preadditive category with 0C and let f : A −→ B be a
morphism uin C.

1) Then f is a monomorphism if and only if Ker (f) =
(
0C, 0

0C
A

)
.

2) Then f is an epimorphism if and only if Coker (f) =
(
0C, 0

B
0C

)
.
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Proof. 1) Assume that Ker (f) exists. Suppose that f is a monomorphism. Since
C is a preadditive category, by Lemma 3.14, we have f ◦ 00CA = 00CB . Let now
ξ : X −→ A such that f ◦ ξ = 0XB . Since we also have f ◦ 0XA = 0XB = f ◦ ξ and f is
a monomorphism, we deduce that ξ = 0XA and hence we get

ξ = 0XA = 00CA ◦ 0
X
0C
.

Since 0C is a final object, the unique ξ′ : X → 00C we can choose is 0X0C . Conversely

suppose that
(
0C, 0

0C
A

)
= Ker (f) . Let ξ : X −→ A such that f ◦ ξ = 0XB . . Then

there exists a unique morphism ξ′ : X −→ 0C such that 00CA ◦ ξ′ = ξ, i.e. ξ = 0XA .
2) Similar to 1).

Proposition 3.26. Let C be a preadditive category with 0C and assume that for
every morphism in C there exist both kernel and cokernel. Then, if f : A −→ B is
a morphism in C and (K, k) = Ker (f) and (Q,χ) = Coker (f) we have

1) (K, k) = KerCoker (k),

2) (Q,χ) = CokerKer (χ).

Proof. 1) Let us set (W,w) = Coker (k). We have to prove that (K, k) = Ker (w).
Note that, by definition of, w we have w ◦ k = 0. Let ξ : X −→ A be a morphism
such that w ◦ ξ = 0. We have to prove that there exists ξ′ : X −→ K such that
ξ = k ◦ ξ′ and such ξ′ is unique with respect to this property.

K
k // A

f //

w   A
AA

AA
AA

A B

X
ξ
′

``@
@
@
@ ξ

??��������
W ;

f
′

>>|
|

|
|

Since (W,w) = Coker (k) and f◦k = 0, there exists a unique morphism f ′ : W −→ B
such that f ′ ◦ w = f , then

f ◦ ξ = f ′ ◦ w ◦ ξ = f ′ ◦ 0 = 0.

Since (K, k) = Ker (f) and f ◦ ξ = 0, there exists a unique morphism ξ′ : X −→ K
such that

k ◦ ξ′ = ξ.

2) Similar to 1).

Lemma 3.27. Let C be a preadditive category with 0C and let A
f−→ B

g−→ C in C.

1) If g is a monomorphism and Ker (f) exists, then Ker (f) = Ker (g ◦ f) .

2) If f is an epimorphism and Coker (g) exists, then Coker (g) = Coker (g ◦ f).
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Proof. 1) Let (K, k) = Ker (f) . We prove that (K, k) = Ker (g ◦ f) . By definition
of k we have f ◦k = 0 so that we get g ◦f ◦k = 0. Now, let ξ : X −→ A g ◦f ◦ξ = 0.
Since g is a monomorphism we get that f ◦ ξ = 0 and hence, since (K, k) = Ker (f) ,
there exists a unique morphism ξ′ : X −→ K ′ such that ξ = k′ ◦ ξ′.

2) Let (Q,χ) = Coker (g) and let us prove that (Q,χ) = Coker (g ◦ f) . By
definition of χ we have that 0 = χ ◦ g = 0 so that we get χ ◦ g ◦ f = 0.Now let
η : C −→ Y such that η ◦g ◦f = 0. Since f is an epimorphism, we get that η ◦g = 0.
Since (Q,χ) = Coker (f) , there exists a unique η′ : Q −→ Y such that η = η′◦χ.

Lemma 3.28. Let C be a preadditive category with 0C, let f : A −→ B be a morphism
and assume that there exist (K, k) = Ker (f) and (Q,χ) = Coker (f) . Let α : L −→
K and β : Q −→ P be isomorphisms. Then

1) (L, k ◦ α) = Ker (f)

2) (P, β ◦ χ) = Coker (f) .

Proof. It follows by Propositions 3.19 and 3.23.

Remark 3.29. Let C be a preadditive category with 0C, kernels and cokernels. Let
f : A −→ B be a morphism in C and let (K, k) = Ker (f) and (Q,χ) = Coker (f).
Let (Q′, χ′) = Coker (k) and (K ′, k′) = Ker (χ):

K
k // A

f //

χ
′

�� ρ   B
B

B
B B

χ // Q

Q′
f̄

//___ K ′.

k
′

OO

Since (K ′, k′) = Ker (χ) and χ◦f = 0, there exists a unique morphism ρ : A −→ K ′

such that k′ ◦ ρ = f ; then 0 = f ◦ k = k′ ◦ ρ ◦ k and since k′ is a monomorphism we
have ρ◦k = 0. As (Q′, χ′) = Coker (k) there exists a unique morphism f : Q′ −→ K ′

such that f ◦ χ′ = ρ. Finally we have

f = k′ ◦ ρ = k′ ◦ f ◦ χ′.

In general, f is not an isomorphism.

Definition 3.30. We say that a preadditive category C with 0C, kernels and cokernels
satisfies the Ab property if, for every morphism f , f as in Remark 3.29 is an
isomorphism.

Definition 3.31. A preadditive category C with 0C, kernels and cokernels satisfying
the Ab property is called preabelian category.

Theorem 3.32. Let C be a preadditive category with 0C, kernels and cokernels. Then
C is preabelian, i.e. C satisfies the property Ab, if and only if for every morphism
f : A→ B there exist a kernel (X, ξ) and a cokernel (X, η) such that f = ξ ◦ η. In
this case

(X, ξ) = KerCoker (f) and (X, η) = CokerKer (f) .
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Proof. Let (K, k) = Ker (f) and (Q,χ) = Coker (f) , (K ′, k′) = Ker (χ), (Q′, χ′) =
Coker (k) and f : Q′ → K ′ as in Remark 3.29 so that

f = k′ ◦ f ◦ χ′

i.e. the following diagram

K
k // A

f //

χ
′

�� ρ   B
B

B
B B

χ // Q

Q′
f̄

//___ K ′.

k
′

OO

is commutative.
Assume first that C satisfies property Ab i.e. that f is an isomorphism. Then,

by Lemma 3.28, we have that
(
Q′, f ◦ χ′) = Coker (k). Thus f = k′ ◦

(
f ◦ χ′) where

(K ′, k′) is a kernel and
(
K ′, f ◦ k′

)
is a cokernel.

Conversely, assume that for every morphism f , there exist (X, ξ) = Ker (w) and
(X, η) = Coker (ζ) such that f = ξ ◦ η. Then we can consider the following diagram

K k // A
f //

χ′

��

η

  A
AA

AA
AA

A B
χ // Q

X

ξ
==||||||||

β

!!B
B

B
B

Q′
f̄

//

α

>>~
~

~
~

K ′.

k
′

OO .

Since ξ is a kernel, ξ is a monomorphism so that, by Lemma 3.27, we have

Ker (η) = Ker (ξ ◦ η) = Ker (f) = (K, k) .

Since η is a cokernel, then by Proposition 3.26 we have

(X, η) = CokerKer (η) = Coker (k) .

Since (Q′, χ′) = Coker (k) and cokernels are unique up to isomorphism, there exists
an isomorphism α : Q′ −→ X such that

α ◦ χ′ = η.

Since η is a cokernel, η is an epimorphism so that, by Lemma 3.27, we have

Coker (ξ) = Coker (ξ ◦ η) = Coker (f) = (Q,χ) .

Since ξ is a kernel, by Proposition 3.26,

(X, ξ) = KerCoker (ξ) = Ker (χ) .



32 CHAPTER 3. ABELIAN CATEGORIES

Since Ker (χ) = (K ′, k′) , then there exists an isomorphism β : X −→ K ′ such that

k′ ◦ β = ξ.

Then we have

f = k′ ◦ f ◦ χ′

and
f = ξ ◦ η = k′ ◦ β ◦ α ◦ χ′

and since k′ is a kernel and thus a monomorphism and χ′ is a cokernel and so an
epimorphism, we deduce that

f = β ◦ α

where α and β are isomorphism. Therefore f is also an isomorphism.

Lemma 3.33. Consider the morphisms Z
0ZA−→ A

IdA−→ A and B
IdB−→ B

0BW−→ W in a
preadditive category C with 0C, kernels and cokernels. We have

(A, IdA) = Coker
(
0ZA
)

and (B, IdB) = Ker
(
0BW
)
.

Proof. Clearly IdA ◦ 0ZA = 0ZA. Now, let η : A −→ Y such that η ◦ 0ZA = 0ZY .
Clearly η = η ◦ IdA. Let η′ : A −→ Y such that η = η′ ◦ IdA. Then η′ = η. Thus
(A, IdA) = Coker

(
0ZA
)
.

Clearly 0BW ◦ IdB = 0BW . Let λ : X −→ B be a morphism such that 0BW ◦λ = 0XW .
Then, of course, we have IdB ◦ λ = λ and thus (B, IdB) = Ker

(
0BW
)
.

Proposition 3.34. Let C be a preabelian category and let f : A −→ B. Then

1) f is an isomorphism if and only if f is a monomorphism and an epimorphism;

2) f is a monomorphism if and only if (A, f) = KerCoker (f);

3) f is an epimorphism if and only if (B, f) = CokerKer (f).

Proof. 1) In view of Proposition 1.8, we already know that an isomorphism is both
a monomorphism and an epimorphism .

Conversely, let f be a monomorphism and an epimorphism. Then, by Theorem
3.25, we have Ker (f) =

(
0C, 0

0C
A

)
and Coker (f) =

(
0C, 0

B
0C

)
. Since by Lemma 3.33

Ker
(
0B0C
)
= (B, IdB) and Coker

(
00CA
)
= (A, IdA), the decomposition of Remark 3.29

is given by f = IdB ◦ f ◦ IdA = f which is an isomorphism since C is preabelian.
Thus f is an isomorphism.

2) Assume that f is a monomorphism. By Theorem 3.32,

f = ξ ◦ η.

where (X, ξ) = KerCoker (f) and (X, η) = CokerKer (f).
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Since f is a monomorphism, by Lemma 3.1, also η is a monomorphism. Since
(X, η) is a cokernel, by Proposition 3.22, η is an epimorphism. Therefore, by 1), η
is an isomorphism so that, in view of 1) in Lemma 3.28, we get

KerCoker (f) = (A, ξ ◦ η) = (A, f) .

Conversely if (A, f) = KerCoker (f), then, by Proposition 3.18, f is a monomor-
phism

3) It is analogous to 2) and it is left as an exercise to the reader.

Definitions 3.35. Let C be a preadditive category C with 0C, kernels and cokernels

• The image of a morphism f , that will be denoted by Im (f), is defined by setting

Im (f) = KerCoker (f) .

• The coimage of a morphism f , that will be denoted by Coim (f), is defined by
setting

Coim (f) = CokerKer (f) .

Corollary 3.36. Let C be a preabelian category and let f : A → B be a morphism
in C. Then

Im (f) ∼= Coim (f) .

Moreover

1) f is a monomorphism if and only if Im (f) = (A, f).

2) f is an epimorphism if and only if Coim (f) = (B, f).

Proof. The first statement follows by the property Ab. 1) and 2) are obtained by
applying Proposition 3.34.

3.2 Products, Coproducts and Biproducts

Definition 3.37. Let (Ci)i∈I be a family of objects in the category C. A product of
such a family in C is an ordered pair

(
P, (πi)i∈I

)
where

1) P ∈ C

2) πi : P −→ Ci is a morphism in C for every i ∈ I

3) if (fi)i∈I is a family of morphisms in C where fi : X −→ Ci, then there exists
a unique morphism f : X −→ P such that

πi ◦ f = fi
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for every i ∈ I, i.e. the following diagrams

P
πi

  A
AA

AA
AA

A

X

f
??~

~
~

~

fi
// Ci.

are commutative.

Theorem 3.38. Let
(
P, (πi)i∈I

)
and

(
P ′, (π′

i)i∈I
)
be products in the category C of

the family (Ci)i∈I . Then there exists a morphism α : P ′ −→ P such that πi ◦α = π′
i

for every i ∈ I. Moreover this morphism is unique with respect to this property and
it is an isomorphism.

Proof. Apply definition of product to
(
P, (πi)i∈I

)
and ”fi” = π′

i. Then there exists
a unique morphism α : P ′ −→ P such that πi ◦ α = π′

i for every i ∈ I. Now, apply
definition of product to

(
P ′, (π′

i)i∈I
)
and ”fi” = πi. Then there exists a unique

morphism β : P −→ P ′ such that π′
i ◦ β = πi. Then we have

πi ◦ α ◦ β = πi and π
′
i ◦ β ◦ α = π′

i.

P

πi ��?
??

??
??

?
β // P

′ α // P

πi����
��
��
��

Ci .

By definition of product there exists a unique morphism f : P −→ P such that
πi ◦ f = πi. Since

πi ◦ IdP = πi = πi ◦ (α ◦ β) ,
we get α ◦ β = IdP . Similarly, there exists a unique morphism f : P ′ −→ P ′ such
that π′

i ◦ f = π′
i. Since

π′
i ◦ IdP ′ = π′

i = π′
i ◦ (β ◦ α) ,

we deduce that β ◦ α = IdP ′ . Therefore α is an isomorphism.

Notation 3.39. In the following, we denote a product of the family (Ci)i∈I in C by(∏
i∈I Ci, (πi)i∈I

)
. The unique morphism f is denoted by ∆(fi)i∈I and it is called

diagonal morphism of the family of morphisms (fi)i∈I .

Notation 3.40. Let C be a preadditive category C and assume that the product(∏
i∈I Ci, (πi)i∈I

)
of the family (Ci)i∈I exists. For every j ∈ I consider the family

of morphisms (δji)i∈I where δji = IdCj if j = i and δji = 0
Cj
Ci

if j ̸= i.We denote by
ej : Cj −→

∏
i∈I Ci the diagonal morphism of the family of morphisms (δji)i∈I . This

means that

πi ◦ ej = 0
Cj
Ci

: Cj −→ Ci if i ̸= j

πi ◦ ej = IdCj : Cj −→ Cj if i = j.
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Proposition 3.41. Let C be a preadditive category C. If the product
(∏

i∈I Ci, (πi)i∈I
)

of the family (Ci)i∈I exists, then every πi is an epimorphism.

Proof. Let us fix a j ∈ I and let g, h : Cj −→ X be such that

(3.1) g ◦ πj = h ◦ πj.

We get

g = g ◦ IdCj = g ◦ πj ◦ ej
(3.1)
= h ◦ πj ◦ ej = h ◦ IdCj = h

and thus πj is an epimorphism.

Exercise 3.42. Let C be a preadditive category C with 0C and assume that the product(∏
i∈I Ci, (πi)i∈I

)
of the family (Ci)i∈I exists. Let

α, β : X →
∏
i∈I

Ci

be morphisms in C. Show that

α = β ⇐⇒ πi ◦ α = πi ◦ β for every ι ∈ I.

Definition 3.43. Let (Cj)j∈I be a family of objects in a category C. A coproduct

of such a family in C is an ordered pair
(
H, (εi)i∈I

)
where

1) H ∈ C

2) εi : Ci −→ H is a morphism in C for every i ∈ I

3) if (fi)i∈I is a family of morphisms in C where fi : Ci −→ Y , then there exists
a unique morphism f : H −→ Y such that f ◦ εi = fi for every i ∈ I, i.e. the
following diagrams

H
f

  A
A

A
A

Ci

ϵi

>>}}}}}}}}

fi
// Y .

are commutative.

Theorem 3.44. Let
(
H, (εi)i∈I

)
and

(
H ′, (ε′i)i∈I

)
be coproducts of a family (Ci)i∈I

of objects in a category C. Then there exists a morphism α : H −→ H ′ such that
α ◦ εi = ε′i for every i ∈ I. Moreover this morphism is unique withrespect to this
property and it is an isomorphism.

Proof. Apply definition of coproduct to
(
H, (εi)i∈I

)
and ”fi” = ε′i. Then there exists

a unique morphism α : H −→ H ′ such that α ◦ εi = ε′i for every i ∈ I. Now, apply
definition of coproduct to

(
H ′, (ε′i)i∈I

)
and ”fi” = εi. Then there exists a unique

morphism β : H ′ −→ H such that β ◦ ε′i = εi. Then we have

β ◦ α ◦ εi = εi and α ◦ β ◦ ε′i = ε′i.
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By definition of coproduct there exists a unique morphism f : H −→ H such that
f ◦ εi = εi. Since

IdH ◦ εi = εi = (β ◦ α) ◦ εi,

we get β ◦ α = IdH . Similarly, there exists a unique morphism f : H ′ −→ H ′ such
that f◦ = ε′i. Since

IdH′ ◦ ε′i = ε′i = (α ◦ β) ◦ ε′i,

we deduce that α ◦ β = IdH′ . Therefore α is an isomorphism.

Remark 3.45. A coproduct of a family (Ci)i∈I in C is a product of the family (Ci)i∈I
in Co.

Notation 3.46. We denote by
(⨿

i∈I Ci, (εi)i∈I
)
the coproduct of the family (Ci)i∈I

in C and by ∇ (fi)i∈I the unique morphism f and it is called codiagonal morphism.

Notation 3.47. Let C be a preadditive category C with 0C and assume that the
coproduct

(⨿
i∈I Ci, (εi)i∈I

)
of the family (Ci)i∈I exists. For every j ∈ I consider the

family of morphisms (δji)i∈I where δji = IdCj if j = i and δji = 0
Cj
Ci

if j ̸= k. We
denote by pj :

⨿
i∈I Ci −→ Cj the codiagonal morphism of the family of morphisms

(δji)i∈I . This means that

pj ◦ εi = 0CiCj : Ci −→ Cj if i ̸= j

pj ◦ εi = IdCj : Cj −→ Cj if i = j.

Proposition 3.48. Let C be a preadditive category C. If the coproduct
(⨿

i∈I Ci, (εi)i∈I
)

of the family (Ci)i∈I exists, then every εi is a monomorphism.

Proof. Let us fix a j ∈ I and let g, h : X −→ Cj be such that

(3.2) εj ◦ g = εj ◦ h.

We get

g = IdCj ◦ g = pj ◦ εj ◦ g
(3.2)
= pj ◦ εj ◦ h = IdCj ◦ h = h

and thus εj is an monomorphism.

Exercise 3.49. Let C be a preadditive category C and assume that the coproduct(⨿
i∈I Ci, (εi)i∈I

)
of the family (Ci)i∈I exists. Let

α, β :
⨿

i∈I
Ci → X

be morphisms in C. Show that

α = β ⇐⇒ α ◦ εi = β ◦ εi for every ι ∈ I.
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Definition 3.50. Let C be a preadditive category with 0C, let I = {1, . . . , n} and
let (Ci)i∈I be a family of objects in C. A biproduct of such a family in C is a triple(
Q, (εi)i∈I , (πi)i∈I

)
where

1) Q ∈ C

2) εi : Ci −→ Q and πi : Q −→ Ci are morphisms in C for every i ∈ I such that

πk ◦ εj = δjk
∑
k∈I

εk ◦ πk = IdQ

where δjk = IdCj if j = k and δjk = 0
Cj
Ck

if j ̸= k.

Lemma 3.51. Let
(
Q, (εi)i∈I , (πi)i∈I

)
be a biproductof a family (Ci)i∈I of objects in

C where I = {1, . . . , n} . Then
(
Q, (εi)i∈I

)
is a coproduct of the family (Ci)i∈I and(

Q, (πi)i∈I
)
is a product of the family (Ci)i∈I .

Proof. Let us show that
(
Q, (εi)i∈I

)
is a coproduct of the family (Ci)i∈I . Let (fi : Ci → X)i∈I

be a family of morphism in C.

Theorem 3.52. Let
(
Q, (εi)i∈I , (πi)i∈I

)
and

(
Q′, (ε′i)i∈I , (π

′
i)i∈I

)
be biproducts of a

family (Ci)i∈I of objects in a preadditive category C where I = {1, . . . , n} . Then
there exists a morphism α : Q −→ Q′ such that

α ◦ εi = ε′i for every i ∈ I.

Moreover α is unique with respect to this property, and π′
i ◦ α = πi for every i ∈ I

and α is an isomorphism.

Proof. By Lemma 3.51, both
(
Q, (εi)i∈I

)
and

(
Q′, (ε′i)i∈I

)
are coproducts of the

family (Ci)i∈I . By Theorem 3.44, there is a morphism α : Q −→ Q′ such that
α ◦ εi = ε′i for every i ∈ I. Moreover this morphism is unique with respect to this
property and it is an isomorphism. We have

π′
i◦α = π′

i◦α◦IdQ = π′
i◦α◦

∑
j∈I

εj◦πj = π′
i◦
∑
j∈I

α◦εj◦πj =
∑
j∈I

π′
i◦ε′j◦πj =

∑
j∈I

δij◦πj = πi.

Notation 3.53. Let I = {1, . . . , n}. In the following, we denote by
(×i∈I Ci, (εi)i∈I , (πi)i∈I

)
the biproduct of the family (Ci)i∈I in C.

Theorem 3.54. Let C be a preadditive category, let I = {1, . . . , n} and let (Ci)i∈I
be a family of objects in C. The following statements are equivalent:

(a) there exists the product of the family (Ci)i∈I in C;

(b) there exists the biproduct of the (Ci)i∈I family in C;
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(c) there exists the coproduct of the family (Ci)i∈I in C.

Moreover, if one of the statements holds, every product is a biproduct, every
coproduct is a biproduct and every biproduct is both product and coproduct in C.
Proof. (a) ⇒ (b). Consider the family of morphisms (ei)i∈I of notation 3.40. We
will prove that

(∏
i∈I Ci, (ei)i∈I , (πi)i∈I

)
is the biproduct of the family (Ci)i∈I in C.

By construction, we have that
πi ◦ ej = δij

so that the first property of the biproduct holds. Now we have to prove that
∑

k∈I ek◦
πk = Id∏

i∈I Ci
. In fact we have

πi ◦

(∑
k∈I

ek ◦ πk

)
=
∑
k∈I

πi ◦ ek ◦ πk =
∑
k∈I

δik ◦ πk = πi for every i ∈ I

Since we also have
πi ◦ Id∏

i∈I Ci
= πi, for every i ∈ I,

by the uniqueness of the morphism t such

πi ◦ t = πi, for every i ∈ I,

that we deduce that ∑
k∈I

ek ◦ πk = Id∏
i∈I Ci

.

(b)⇒ (a). It follows by Lemma 3.51.
(c) ⇒ (b). .Consider the family of morphisms (pi)i∈I of notation 3.47 . We will

prove that
(⨿

i∈I Ci, (εi)i∈I , (pi)i∈I
)
is the biproduct of the family (Ci)i∈I in C. By

construction, we have that
pj ◦ εi = δij

so that the first property of the biproduct holds. Now we have to prove that
∑

k∈I εk◦
pk = Id⨿

i∈I Cii
. In fact we have(∑

k∈I

εk ◦ pk

)
◦ εi =

∑
k∈I

εk ◦ pk ◦ εi =
∑
k∈I

εk ◦ δik = εi, for every i ∈ I,

Since we also have
Id⨿

i∈I Ci
◦ εi = εi, for every i ∈ I,

by the uniqueness of the morphism t such

t ◦ εi = εi, for every i ∈ I,

that we deduce that ∑
k∈I

εk ◦ pk = Id⨿
i∈I Cii

.

(b)⇒ (c). It follows by Lemma 3.51.

Definition 3.55. An abelian category is a preabelian category where every finite
family of objects has a product.
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3.3 Exact sequences

Definition 3.56. Let C be a preabelian category and let f : A −→ B and g : B −→ C
be morphisms in C. The sequence

A
f−→ B

g−→ C

is called exact if Ker (g) = Im (f) .

Lemma 3.57. Let A
f−→ B

g−→ C be an exact sequence in a preabelian category C.
Then

1) g ◦ f = 0;

2) f is a monomorphism ⇔ (A, f) = Ker (g) ;

3) g is an epimorphism ⇔ (C, g) = Coker (f) .

Proof. 1) Let (K, k) = Ker (g) and let (Q,χ) = Coker (f). Since the sequence is
exact, we have

(K, k) = Ker (g) = Im (f) = KerCoker (f) = Ker (χ) .

and χ ◦ f (Q,χ)=Coker(f)
= 0 there exists a unique morphism ξ : A −→ K such that

f = k ◦ ξ and thus

g ◦ f = g ◦ k ◦ ξ (K,k)=Ker(g)
= 0 ◦ ξ = 0

since (K, k) = Ker (g).
2) If f is a monomorphism, by Proposition 3.34, we have (A, f) = KerCoker (f) =

Im (f) = Ker (g). The converse follows in vie of Proposition 3.18.
3) If g is an epimorphism, by Proposition 3.34, we have

(C, g) = CokerKer (g) = CokerIm (f)

= CokerKerCoker (f) = Coker (f)

where the last equality holds by Proposition 3.34 since Coker (f) is an epimorphism.
The converse follows in view of Proposition 3.22.

Definition 3.58. A sequence of morphisms

0C → C1
f−→ C

g−→ C2 → 0C

in a preabelian category C is called short exact if we have

1) 0C → C1
f−→ C is exact, i.e. Im

(
00CC1

)
= Ker (f) ;

2) C1
f−→ C

g−→ C2 is exact, i.e. Im (f) = Ker (g) ;
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3) C
g−→ C2 → 0C is exact, i.e. Im (g) = Ker

(
0C2
0C

)
.

Lemma 3.59. Let C be a preabelian category. Then Ker
(
0AB
)

= (A, IdA) and

Im
(
0AB
)
=
(
0C, 0

0C
B

)
.

Proof. The first equality follows by Lemma 3.33. Moreover we have

Im
(
0AB
)
= KerCoker

(
0AB
)
= Ker (IdB) =

(
0C, 0

0C
B

)
where the second equality follows by 3.33 and the third one by Theorem 3.25

Lemma 3.60. Let C be a preabelian category and let f : A→ B be a morphism in
C. Then the following are equivalent:

(a) f is an epimorphism;

(b) Im (f) = Ker
(
0B0C
)
;

(c) Im (f) = (B, IdB).

Proof. (a) ⇒ (b) In view of Theorem 3.25 f is an epimorphism if and only if
Coker (f) =

(
0C, 0

B
0C

)
. Thus if f is an epimorphism, we have Im (f) = KerCoker (f) =

Ker
(
0B0C
)
.

(b)⇔ (c) By Lemma 3.59, Ker
(
0B0C
)
= (B, IdB) .

(c)⇒ (a) If Im (f) = Ker
(
0B0C
)
, we have

Coker (f)
3.26
= CokerKerCoker (f) = CokerIm (f) = Coker (IdB)

3.25
=
(
0C, 0

C2
0C

)
.

In view of Theorem 3.25, f is an epimorphism.

Proposition 3.61. A sequence of morphisms

0C → C1
f−→ C

g−→ C2 → 0C

in a preabelian category C is short exact if and only if

1)
(
0C, 0

0C
C1

)
= Ker (f) i.e. f is a monomorphism;

2) Im (f) = Ker (g) ;

3) Im (g) = (C2, IdC2) i.e. g is an epimorphism.

Proof. By Lemma 3.59, we have Im
(
00CC1

)
=
(
0C, 0

0C
C1

)
and Ker

(
0C2
0C

)
= (C2, IdC2).

The, by Theorem 3.25 f is a monomorphism if and only if Ker (f) =
(
0C, 0

0C
A

)
and

by Lemma 3.60 g is an epimorphism if and only if Im (g) = (C2, IdC2) .
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Proposition 3.62. A sequence of morphisms

0C → C1
f−→ C

g−→ C2 → 0C

in a preabelian category C is short exact if and only if

1) (C1, f) = Ker (g);

2) (C2, g) = Coker (f) .

Proof. Assume that the sequence is exact. Then, by Proposition 3.61, f is mono,

g is epi. Then, since the sequence C1
f−→ C

g−→ C2 is exact, by Lemma 3.57, we
get (C1, f) = Ker (g) and (C2, g) = Coker (f). Conversely, assume that 1) and 2)
hold. Then, by Proposition 3.18, f is a monomorphism and, by Proposition 3.22, g
is an epimorphism. Moreover, in view of 2) Im (f) = KerCoker (f) = Ker (g) . By
Proposition 3.61, we conclude.

Theorem 3.63. Let 0C → C1
f−→ C

g−→ C2 → 0C be an exact sequence in an
abelian category

0C // C1 f
//

ϵ1 $$II
III

III
II

C

α

���
�
� g

//

λ
xx R_l

C2
//

γ

yy R_l
0

C1 × C2;

π2

::uuuuuuuuuu

Then the following statements are equivalent:

(a) there exists λ : C −→ C1 such that λ ◦ f = IdC1, i.e. f splits;

(b) there exists γ : C2 −→ C such that g ◦ γ = IdC2, i.e. g cosplits;

(c) there exists an isomorphism α : C −→×i∈{1,2}Ci such that

α ◦ f = ε1 and π2 ◦ α = g.

If (a) holds, we can consider α = ε1 ◦ λ + ε2 ◦ g. If (b) holds, we can consider
α−1 = f ◦ π1 + γ ◦ π2.

Proof. (a)⇒ (c). We set I = {1, 2} .
Construction of α. Assume that λ : C −→ C1 and λ ◦ f = IdC1 . Let

α = ε1 ◦ λ+ ε2 ◦ g.

We have
α ◦ f = ε1 ◦ λ ◦ f + ε2 ◦ g ◦ f = ε1 ◦ IdC1 + ε2 ◦ 0 = ε1

i.e.

(3.3) α ◦ f = ε1
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and
π2 ◦ α = π2 ◦ ε1 ◦ λ+ π2 ◦ ε2 ◦ g = g

i.e.

(3.4) π2 ◦ α = g.

We also have
π1 ◦ α = π1 ◦ ε1 ◦ λ+ π2 ◦ ε2 ◦ g = λ

i.e.

(3.5) π1 ◦ α = λ.

α is an epimorphism. Let ξ :×i∈I Ci −→ X be a morphism such that
ξ ◦ α = 0 then

ξ ◦ ε1
(3.3)
= ξ ◦ α ◦ f = 0

so that
0 = ξ ◦ α = ξ ◦ ε1 ◦ λ+ ξ ◦ ε2 ◦ g = ξ ◦ ε2 ◦ g

and since g is an epimorphism, we deduce that ξ ◦ ε2 = 0. Then

ξ = ξ ◦ Id×i∈I
Ci

= ξ ◦ (ε1 ◦ π1 + ε2 ◦ π2)

= ξ ◦ ε1 ◦ π1 + ξ ◦ ε2 ◦ π2 = 0
×i∈I

Ci

X

i.e. α is an epimorphism.
α is a monomorphism. Let ζ : X −→ C be a morphism such that α ◦ ζ = 0.

Then, composing with π2, we have

0 = π2 ◦ α ◦ ζ
(3.4)
= g ◦ ζ.

Since the given sequence is exact, by Proposition 3.61, we have that (C1, f) =
Ker (g). By the universal property of the kernel, there exists a unique morphism
η : X −→ C1 such that

f ◦ η = ζ

so that

0 = α ◦ ζ = α ◦ f ◦ η (3.3)
= ε1 ◦ η.

Since ε1 is a monomorphism, we get that η = 0 and thus

ζ = f ◦ η = f ◦ 0 = 0,

i.e. α is a monomorphism. By Proposition 3.34, we deduce that α is an isomorphism.
(b)⇒ (c) .
Construction of β. Assume there exists γ : C2 −→ C such that

g ◦ γ = IdC2 .
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Let
β = f ◦ π1 + γ ◦ π2.

Then we have
β ◦ ε1 = (f ◦ π1 + γ ◦ π2) ◦ ε1 = f

and
β ◦ ε2 = (f ◦ π1 + γ ◦ π2) ◦ ε2 = γ.

Moreover we have

g ◦ β = g ◦ f ◦ π1 + g ◦ γ ◦ π2 = 0 ◦ π1 + IdC2 ◦ π2 = π2

i.e.

(3.6) g ◦ β = π2

β is an epimorphism. Let ξ : C −→ X be a morphism such that ξ ◦ β = 0. We
have to prove that ξ = 0. We have

0 = ξ ◦ β = ξ ◦ β ◦ Id×i∈I
Ci

= ξ ◦ β ◦ (ε1 ◦ π1 + ε2 ◦ π2)

= ξ ◦ β ◦ ε1 ◦ π1 + ξ ◦ β ◦ ε2 ◦ π2
= 0 ◦ ε1 ◦ π1 + ξ ◦ γ ◦ π2 = ξ ◦ γ ◦ π2

and since π2 is an epimorphism we get that

ξ ◦ γ = 0.

Since g is an epimorphism by Lemma 3.57 we have (C2, g) = Coker (f) so that from

0 = ξ ◦ β ◦ ε1 = ξ ◦ f

we infer there exists a unique η : C2 −→ X such that ξ = η ◦ g. Then we have

η = η ◦ IdC2 = η ◦ g ◦ γ = ξ ◦ γ = 0.

Thus
ξ = η ◦ g = 0 ◦ g = 0.

β is a monomorphism. Let ζ : X −→×i∈I Ci be a morphism such that

β ◦ ζ = 0, we have to prove that ζ = 0X×i∈I
Ci
. We compute

π2 ◦ ζ = g ◦ β ◦ ζ = g ◦ 0 = 0.

Then we have

ζ = Id×i∈I
Ci
◦ ζ = (ε1 ◦ π1 + ε2 ◦ π2) ◦ ζ = ε1 ◦ π1 ◦ ζ + ε2 ◦ π2 ◦ ζ = ε1 ◦ π1 ◦ ζ.
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Moreover 0 = β ◦ ζ = β ◦ ε1 ◦ π1 ◦ ζ = f ◦ π1 ◦ ζ and since f is a monomorphism we
deduce that

π1 ◦ ζ = 0.

Thus

ζ = ε1 ◦ π1 ◦ ζ = ε1 ◦ 0 = 0.

By Proposition 3.34, we deduce that β is an isomorphism. Set

α = β−1

From

β ◦ ε1 = f and g ◦ β 3.6
= π2

we deduce that

α ◦ f = ε1 and π2 ◦ α = g.

(c)⇒ (a). Assume that there exists an isomorphism α : C −→×i∈{1,2}Ci such

that

α ◦ f = ε1 and π2 ◦ α = g.

We set λ = π1 ◦ α. Then

λ ◦ f = π1 ◦ α ◦ f = π1 ◦ ε1 = IdC1 .

(c)⇒ (b). Assume that there exists an isomorphism α : C −→×i∈{1,2}Ci such

that

α ◦ f = ε1 and π2 ◦ α = g.

We set γ = α−1 ◦ ε2. Then we get

g ◦ γ = g ◦ α−1 ◦ ε2 = π2 ◦ ε2 = IdC2 .

Definition 3.64. If one of the conditions in Theorem 3.63 holds, we say that the
exact sequence

0C → C1
f−→ C

g−→ C2 → 0C

splits.

Corollary 3.65. The sequence

0C → C1
ε1−→ ×

i∈{1,2}
Ci

π2−→ C2 → 0C

is exact and splits.
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Proof. First we prove that the sequence is exact. By Proposition 3.48 and Propo-
sition 3.41 ε1 is a monomorphism and π2 is an epimorphism. Thus, Im (ε1) =
KerCoker (ε1) = ε1. We prove that (C1, ε1) = Ker (π2) . We already have that

π2 ◦ ε1 = 0. Let ξ : X −→×i∈{1,2}Ci such that π2 ◦ ξ = 0. We have to prove

that there exists ξ : X −→ C1 such that ξ = ε1 ◦ ξ. We have

ξ = Id×i∈{1,2}
Ci
◦ ξ = ε1 ◦ π1 ◦ ξ + ε2 ◦ π2 ◦ ξ = ε1 ◦ π1 ◦ ξ.

Thus we set ξ = π1 ◦ ξ. Assume now that there exists another morphism ξ such that

ξ = ε1 ◦ ξ. Since also ξ = ε1 ◦ ξ and ε1 is a monomorphism, we deduce that ξ = ξ. In
order to prove that it splits let us consider λ = π1 or γ = ε2, from that we deduce
α = Id×i∈{1,2}

Ci
.
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Limits and Colimits

4.1 Limits

Definition 4.1. A category is called small if the class of objects is actually a set.

Definition 4.2. Let F : I → C be a covariant functor where I is a small category.
A cone on F is an ordered pair (

X, (αI)I∈I
)

where

• X is an object of C

• (αI)I∈I is a family of morphisms of C

• αI : X −→ F (I) for every I ∈ I

such that for every morphism I
λ−→ J in I, the following diagram is commutative

X
αI

||yy
yy
yy
yy αJ

##F
FF

FF
FF

FF

F (I)
F (λ)

// F (J) .

.

In this case the family of morphisms (αI)I∈I is called compatible with F .

Definition 4.3. Let F : I → C be a covariant functor where I is a small cate-
gory. A limit (also called projective limit) of the functor F is a cone

(
X, (αI)I∈I

)
on F satisfying the following universal property: for any cone

(
Y, (ξI)I∈I

)
on F ,

there exists a morphism ξ : Y −→ X such that, for every I, the following diagram
commutes

Y

ξI ""F
FF

FF
FF

FF
ξ // X

αI{{xx
xx
xx
xx
x

F (I) .

.

Moreover such ξ is unique with respect to this property.

46
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Proposition 4.4. Let
(
X, (αI)I∈I

)
and

(
X ′, (α′

I)I∈I
)
be limits of F. Then there

exists a unique morphism α : X ′ −→ X such that αI ◦α = α′
I for every I. Moreover

α is an isomorphism.

Proof. Exercise.

Notation 4.5. In the following we denote by lim←−F the limit of F whenever it exists.

Example 4.6. Let I be a small and discrete category (i.e. Hom (I, I) = {IdI} and
Hom (I, J) = ∅ if I ̸= J). Then a functor F : I → C identifies with a family (CI)I∈I
of objects of C. In this case a cone on F is an ordered pair

(
X, (αI)I∈I

)
where

αI : X → CI is a morphism in C for every I ∈ I.

Therefore, in this case,

lim←−F =
∏
I∈I

F (I)

Example 4.7. Let I = {I, J,K} with morphisms uIK : I −→ K and uJK : J −→
K and the identity maps. Then a functor F : I → C identifies with a couple of
morphisms

γ1 = F
(
uIK
)
: C1 = F (I)→ C3 = F (K) , γ2 = F

(
uJK
)
: C2 = F (J)→ C3 = F (K) .

A cone on F identifies with a 4-tuple (X, ξ1 : X → C1, ξ2 : X → C2, ξ3 : X → C3)
such that

γ1 ◦ ξ1 = ξ3 = γ2 ◦ ξ2.
Thus a cone on F further identifies with a triple (X, ξ1 : X → C1, ξ2 : X → C2) such
that

γ1 ◦ ξ1 = γ2 ◦ ξ2.
In this case the limit of F is a triple (P, π1 : P → C1, π2 : P → C2) such that

γ1 ◦ π1 = γ2 ◦ π2

with the property that, given any triple (X, ξ1 : X → C1, ξ2 : X → C2) such that

γ1 ◦ ξ1 = γ2 ◦ ξ2,

there exists a unique ξ : X → P such that

π1 ◦ ξ = ξ1 and π2 ◦ ξ = ξ2.

In this case lim←−F is called the pullback of γ1 and γ2.

If the arrival category is preadditive and γ1 = 0
F (I)
F (K), then a cone on F further

identifies with a pair (X, ξ2 : P → C2) such that

γ2 ◦ ξ2 = 0.

Consequently the pullback in this case is just Ker (γ2).
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Proposition 4.8. Let C be a preadditive category with 0C and let F : I → C be
a covariant functor where I is a small category. Assume that C has kernels and
products of families of objects labeled by I or by Hom (I), the set of morphisms
between objects of I. Then lim←−F exists in C.
Proof. For every λ ∈ Hom (I), λ : I → J we set

s (λ) = I and t (λ) = J .

Let us consider the products(∏
I∈I

F (I) , (pI)I∈I

)
and

 ∏
λ∈Hom(I)

F (t (λ)) ,
(
qt(λ)

)
λ∈Hom(I)

 .

Note that, if λ ∈ Hom (I), the diagram∏
I∈I F (I)

ps(λ)

xxppp
ppp

ppp
p pt(λ)

&&NN
NNN

NNN
NN

F (s (λ))
F (λ)

// F (t (λ))

is, in general, non commutative. For every λ ∈ Hom (I), we set

πλ = F (λ) ◦ ps(λ) − pt(λ) :
∏
I∈I

F (I) −→ F (t (λ)) .

By the universal property of
∏

λ∈Hom(I) F (t (λ)), there exists a unique morphism

π = ∆(πλ)λ∈Hom(I) :
∏
I∈I

F (I)−→
∏

λ∈Hom(I)

F (t (λ))

such that

(4.1) qt(λ) ◦ π = πλ for every λ ∈ Hom (I) .

Let
(K, k) = Ker (π)

and, for every I ∈ I, set

kI = pI ◦ k : K −→ F (I) .∏
λ∈Hom(I) F (t (λ))

qt(λ)

((QQ
QQQ

QQQ
QQQ

Q

K k //

kJ

!!C
CC

CC
CC

CC
∏

I∈I F (I)
pJ

xxrrr
rrr

rrr
r

πλ
//

π
66lllllll

F (t (λ))

F (J)

X

ξ

YY2
2
2
2
2
2
2
2
ξJ

OO α

AA�
�

�
�

�
�

�
�

�



4.1. LIMITS 49

We want to prove that (
K, (kI)I∈I

)
= lim←−F .(

K, (kI)I∈I
)
is a cone. For every λ ∈ Hom (I), we compute

F (λ) ◦ ks(λ) = F (λ) ◦ ps(λ) ◦ k

Since (K, k) = Ker (π) we have(
F (λ) ◦ ps(λ) − pt(λ)

)
◦ k = πλ ◦ k

(4.1)
= qt(λ) ◦ π ◦ k = qt(λ) ◦ 0 = 0

so that we get
F (λ) ◦ ps(λ) ◦ k = pt(λ) ◦ k = kt(λ)

which infers
F (λ) ◦ ks(λ) = kt(λ).

We prove that the universal property holds. Let
(
X, (ξI)I∈I

)
be a cone on F i.e.

ξt(λ) = F (λ) ◦ ξs(λ) for every λ ∈ Hom (I) .

Construction of ξ :X → K. By the universal property of
∏

I∈I F (I), there
exists a unique morphism

η = ∆(ξI)I∈I : X −→
∏
I∈I

F (I) such that pI ◦ η = ξI for every I ∈ I.

We want to prove that π ◦ η = 0 which is equivalent to qt(µ) ◦ π ◦ η = 0 for every
µ ∈ Hom (I). For every µ ∈ Hom (I) we have

qt(µ) ◦ π ◦ η =
(
F (µ) ◦ ps(µ) − pt(µ)

)
◦ η = F (µ) ◦ ps(µ) ◦ η − pt(µ) ◦ η

= F (µ) ◦ ξs(µ) − ξt(µ) = 0

where the last equality follows because
(
X, (ξJ)J∈I

)
is a cone on F . Since (K, k) =

Ker (π), by the universal property of the kernel, there exists a unique morphism
ξ : X −→ K such that k ◦ ξ = η.

kJ ◦ ξ = ξJ and ξ is unique. For every J ∈ I, we have:

kJ ◦ ξ = pJ ◦ k ◦ ξ = pJ ◦ η = ξJ .

Now, let ξ′ be another morphism such that

kJ ◦ ξ′ = ξJ for every J ∈ I.

Then, for every J ∈ I, we have:

pJ ◦ k ◦ ξ′ = kJ ◦ ξ′ = ξJ = pJ ◦ η

which yields, in view of Exercise 3.42, that

k ◦ ξ′ = η.

Then the universal property of the kernel infers that ξ′ = ξ.



50 CHAPTER 4. LIMITS AND COLIMITS

Corollary 4.9. Let C be an abelian category. Then C has limits labeled by small
categories I such that Hom (I) is a finite set. In particular C has pullbacks.

Proof. Since Hom (I) is a finite set, also Ob (C) is finite. It follows by Proposition
4.8. The last assertion follows in view of Example 4.7.

Definition 4.10. A category C is called complete if for every small category I and
for every covariant functor F : I → C, there exists lim←−F .

Theorem 4.11. Let C be a preadditive category with 0C. Then C is complete if and
only if C has products and kernels.

Proof. In view of Example 4.6 and Example 4.7, if C is complete it has products
and kernels.

Conversely, let us assume that C has arbitrary products and kernels.
Let F : I → C be a covariant functor. Then, by Proposition 4.8, lim←−F exists in

C.

Definition 4.12. Let (I,≤) be a partially ordered set. We consider the small cat-
egory I = I (I,≤) having I as the set of objects and whose homomorphism are
defined by setting

HomI (i, j) =
{
uij
}

if and only if i ≤ j.

A functor F : I◦ → C is called inverse system in C labeled by I = I (I,≤).

Definition 4.13. The limit of an inverse system F : I◦ → C is called an inverse
limit.

4.14. Let (I,≤) be a partially ordered set and let F : Iop → C be an inverse system
in C labeled by I = I (I,≤). For every i ∈ I set

Ci = F (i)

and for every i, j ∈ I, i ≤ j, set

βji = F
(
uij
)
: Cj → Ci for every i, j ∈ I, i ≤ j.

Then we have

βji ◦ βkj = F
(
uij
)
◦ F

(
ujk
)
= F

(
ujk ◦ u

i
j

)
= F

(
uik
)
= βki for every i, j, k ∈ I, i ≤ j ≤ k and

βii = IdCi for every i ∈ I.

Hence an inverse system in C labeled by I = I (I,≤) identifies with an ordered pair(
(Ci)i∈I ,

(
βji
)
i,j∈I,i≤j

)
where
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• (Ci)i∈I is a family of objects of C,

•
(
βji
)
i,j∈I,i≤j is a family of morphisms in C such that

βji : Cj → Ci for every i, j ∈ I, i ≤ j.

βji ◦ β
j
k = βki for every i, j, k ∈ I, i ≤ j ≤ k and

βii = IdCi for every i ∈ I.

Then an inverse limit of such an inverse system is an ordered pair
(
L, (λi)i∈I

)
where each λi : L→ Ci is a morphism in C such that

βji ◦ λj = λi for every i, j ∈ I, i ≤ j

and with the property that if X is a set and (ξi)i∈I is a family of morphism
ξi : X → Ci such that

βji ◦ ξj = ξi for every i, j ∈ I, i ≤ j

then there exists a unique morphism ξ : X → L such that

λi ◦ ξ = ξi for every i ∈ I.

In this case we denote this limit also by

lim←−
(
(Ci)i∈I ,

(
βji
)
i,j∈I,i≤j

)
.

Exercise 4.15. Let (I,≤) = (N,≤). Show that an inverse system in C labeled
by I = I (N,≤) identifies with

(
(Cn)n∈N , (β

n+1
n )n∈N

)
were (Cn)n∈Nis a sequence of

objects and (βn+1
n )n∈N is a sequence of morphisms of C , where

βn+1
n : Cn+1 → Cn for every n ∈ N.

Therefore an inverse limit for such an inverse system is a couple
(
L, (λn)n∈N

)
where

each λn : L→ Cn is a morphism in C such that

βn+1
n ◦ λn+1 = λn

and with the property that if X is a set and (ξn)n∈N is a family of morphism ξn :
X → Cn such that

βn+1
n ◦ ξn+1 = ξn

then there exists a unique morphism ξ : X → L such that

λn ◦ ξ = ξn for every n ∈ N.

In this case we denote this limit also by

lim←−
(
Cn, β

n+1
n

)
n∈N

or even by
lim←−Cn.



52 CHAPTER 4. LIMITS AND COLIMITS

Exercise 4.16. Let
(
(Cn)n∈N , (β

n+1
n )n∈N

)
be an inverse system in a category C with

arbitrary kernels and products. Let us consider the product(∏
n∈N

Cn, (pn)n∈N

)

of the family (Cn)n∈N. For every m ∈ N we set

πm = βm+1
m ◦ pm+1 − pm :

∏
n∈N

Cn −→ Cm.

Let π :
∏

n∈NCn−→
∏

m∈NCm be the diagonal morphism of the (πm)m∈N. Let

(K, k) = Ker (π) .

Show that the limit of the inverse system
(
(Cn)n∈N , (β

n+1
n )n∈N

)
is(

K, (pm ◦ k)m∈N
)
.

Example 4.17. Let A be a ring and let I be a left ideal of a ring A. For every
n ∈ N, let

βn+1
n : A/In+1 −→ A/In

be the left A-module homomorphism defined by

βn+1
n

(
a+ In+1

)
= a+ In for every a ∈ A.

Then (
(A/In)n∈N ,

(
βn+1
n

)
n∈N

)
is an inverse system in A-Mod. We have

lim←−A/I
n =

{
(an + In)n∈N ∈

∏
n∈N

A/In | βn+1
n

(
an+1 + In+1

)
= an + In for every n ∈ N

}

=

{
(an + In)n∈N ∈

∏
n∈N

A/In | an+1 − an ∈ In for every n ∈ N

}
.

If A is a commutative local ring and I is its maximal ideal, then lim←−A/I
nis called

completion of A in the I-adic topology.

Exercise 4.18. Show that if A = k[X] and I = (X), then

lim←−A/I
n ∼= k[[X]].
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4.19. If I is a small category and C is an arbitrary category, one can define the
functor category Fun (I, C), whose objects are the functors F : I → C and the
morphisms are the functorial morphisms between such functors (Exercise: check
that Fun (I, C) is a category). The set of all functorial morphisms F → G will be
written HomFun (F,G). Note that HomFun (F,G) is indeed a set since there is an
obvious identification with a subset of∏

I∈I

HomC (F (I) , G (I)) .

Definition 4.20. Let C and D be preadditive categories. A functor F : C → D is
called additive if, for all morphisms f, g : C → C ′ in C, we have

F (f + g) = F (f) + F (g)

4.21. If I and C are preadditive categories and I is small, we will denote by
Hom (I, C) the full subcategory of Fun (I, C) consisting of all additive functors.

Definition 4.22. Let F : C → D be an additive functor between abelian categories

C and D. We say that F is e right exact if, for every exact sequence C ′ α′
−→ C

α′′
−→

C ′′ −→ 0 in C , the sequence F (C ′)
F (α′)−→ F (C)

F (α′′)−→ F (C ′′) −→ 0 is exact in D.
Definition 4.23. Let F : C → D be an additive functor between abelian categories

C and D. We say that F is e left exact if, for every exact sequence 0 −→ C ′ α′
−→

C
α′′
−→ C ′′ in C , the sequence 0 −→ F (C ′)

F (α′)−→ F (C)
F (α′′)−→ F (C ′′) is exact in D.

Exercise 4.24. Let F : C → D be an additive functor and let 0 −→ C ′ α′
−→

C
α′′
−→ C ′′ −→ 0 be a split short exact sequence in C. Prove that the sequence

0 −→ F (C ′)
F (α′)−→ F (C)

F (α′′)−→ F (C ′′) −→ 0 is a split short exact sequence in D.
Remark 4.25. If ϕ : F → G is a functorial morphism between covariant functors
from I to C which admit limits

(
lim←−F, (αI)I∈I

)
and

(
lim←−G, (βI)I∈I

)
respectively,

then the diagram,

F (I)

F (λ)

��

ϕI // G (I)

G(λ)

��

lim←−F

αI
;;wwwwwwwww

αJ ##G
GG

GG
GG

G

F (J)
ϕJ

// G (J) ;

is commutative i.e. lim←−F is a cone on G with morphisms ϕI ◦αI . Then there exists
a unique morphism lim←−ϕ : lim←−F −→ lim←−G such that

lim←−F
lim←−ϕ

//

ϕIαI $$H
HH

HH
HH

H
lim←−G

βIzzvv
vv
vv
vv

G (I) .
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If C is complete we can consider the functor lim←− : Fun (I, C)→ C.

Theorem 4.26. Let C be a complete preabelian category and let F,G,H : I → C be

functors, where I is a small category. Assume that F
ϕ−→ G

ψ−→ H are functorial
morphisms such that, for every I ∈ I, the sequence

0C → F (I)
ϕI−→ G (I)

ψI−→ H (I)

is exact. Then the sequence

0C → lim←−F
lim←−ϕ

−→ lim←−G
lim←−ψ

−→ lim←−H

is also exact.

Proof. lim←−ϕ is a monomorphim. Let ξ : X −→ lim←−F be a morphism such that
lim←−ϕ ◦ ξ = 0. Then, for every I ∈ I, we have

0 = βI ◦
(
lim←−ϕ

)
◦ ξ = ϕI ◦ αI ◦ ξ.

Since ϕI is a monomorphism, we deduce that,for every I ∈ I,

αI ◦ ξ = 0

so that

ξ = 0.

Im
(
lim←−ϕ

)
= Ker

(
lim←−ψ

)
. Since lim←−ϕ is a monomorphism and C is preabelian

by Proposition 3.34, we have(
lim←−F, lim←−ϕ

)
= KerCoker

(
lim←−ϕ

)
= Im

(
lim←−ϕ

)
.

Thus we have to prove that(
lim←−F , lim←−ϕ

)
= Ker

(
lim←−ψ

)
.

We prove that lim←−ψ ◦ lim←−ϕ = 0. In fact, for every I ∈ I,we have

γI ◦
(
lim←−ψ ◦ lim←−ϕ

)
= ψI ◦ βI ◦ lim←−ϕ = ψI ◦ ϕI ◦ αI = 0

since by assumption the sequence 0C → F (I)
ϕI−→ G (I)

ψI−→ H (I) is exact. Now,
let ξ : X −→ lim←−G be a morphism such that lim←−ψ ◦ ξ = 0. Then, for every I ∈ I,
γI ◦ lim←−ψ ◦ ξ = 0 and thus 0 = γI ◦ lim←−ψ ◦ ξ = ψI ◦ βI ◦ ξ. We have to prove that
there exists ξ′ : X −→ lim←−F such that ξ = lim←−ϕ ◦ ξ

′. Since ϕI is a monomorphism,
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we have (F (I) , ϕI) = KerCoker (ϕI) = Im (ϕI) = Ker (ψI), thus, for every I ∈ I,
there exists a unique morphism X

λI−→ F (I) such that ϕI ◦ λI = βI ◦ ξ:

0 // lim←−F

αI

��

lim←−ϕ
// lim←−G

βI

��

lim←−ψ
// lim←−H

γI

��

X

ξ
′bbD

D
D
D ξ

<<zzzzzzzz

λI||y
y
y
y

0 // F (I)
ϕI

// G (I)
ψI

// H (I) .

Then we have a family of morphisms (λI). We prove that
(
X, (λI)I∈I

)
is a cone on

F . Given a morphism I
µ−→J , we have to prove that λJ = F (µ) ◦ λI or equivalently

ϕJ ◦ λJ = ϕJ ◦ F (µ) ◦ λI , since ϕJ is a monomorphism. Since
(
lim←−G, (βI)I∈I

)
is a

cone on G, we have

ϕJ ◦ λJ = βJ ◦ ξ = G (µ) ◦ βI ◦ ξ = G (µ) ◦ ϕI ◦ λI = ϕJ ◦ F (µ) ◦ λI .

By the universal property of lim←−F , there exists a unique morphism ξ′ : X −→ lim←−F
such that αI ◦ ξ′ = λI , for every I ∈ I. We now have to prove that lim←−ϕ ◦ ξ

′ = ξ.
For every I ∈ I, we have

βI ◦ lim←−ϕ ◦ ξ
′ = ϕI ◦ αI ◦ ξ′ = ϕI ◦ λI = βI ◦ ξ

from which we deduce that lim←−ϕ ◦ ξ
′ = ξ. Assume now that there exists another

morphism ξ′′ such that lim←−ϕ ◦ ξ
′′ = ξ. Since we also have lim←−ϕ ◦ ξ

′ = ξ and lim←−ϕ is
a monomorphism, we deduce that ξ′′ = ξ′.

4.2 Colimits

Definition 4.27. Let F : I → C be a covariant functor where I is a small category.
A cocone on F is an ordered pair (

X, (αI)I∈I
)

where

• X is an object of C

• (αI)I∈I is a family of morphisms of C

• αI : F (I) −→ X for every I ∈ I
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such that for every morphism I
λ−→ J in I, the following diagram is commutative

X

F (I)

αI

<<yyyyyyyy

F (λ)
// F (J) .

αJ

ccFFFFFFFFF

.

In this case the family of morphisms (αI)I∈I is called compatible with F .

Definition 4.28. Let F : I → C be a covariant functor where I is a small category.
A colimit (also called inductive limit) of the functor F is a cocone

(
X, (αI)I∈I

)
on F satisfying the following universal property: for any cocone

(
Y, (ξI)I∈I

)
on F ,

there exists a morphism ξ : X −→ Y such that, for every I, the following diagram
commutes

F (I)
αI

||yy
yy
yy
yy ξI

""E
EE

EE
EE

E

X
ξ // Y .

.

Moreover such ξ is unique with respect to this property.

Proposition 4.29. Let
(
X, (αI)I∈I

)
and

(
X ′, (α′

I)I∈I
)
be limits of F. Then there

exists a unique isomorphism α : X −→ X ′ such that α ◦ αI = α′
I for every I.

Moreover α is an isomorphism.

Proof. Exercise.

Notation 4.30. In the following we denote by lim−→F the colimit of F whenever it
exists.

Example 4.31. Let I be a small and discrete category (i.e. Hom (I, I) = {IdI}
and Hom (I, J) = ∅ if I ̸= J). Then a functor F : I → C identifies with a family
(CI)I∈I of objects of C. In this case a cocone on F is an ordered pair

(
X, (αI)I∈I

)
where

αI : CI → X is a morphism in C for every I ∈ I.
Therefore, in this case,

lim−→F =
⨿
I∈I

F (I) .

Example 4.32. Let I = {I, J,K} with morphisms vIK : K −→ I and vJK : K −→
J and the identity maps. Then a functor F : I → C identifies with a couple of
morphisms

ϑ1 = F
(
vIK
)
: C3 = F (K)→ C1 = F (I) , ϑ2 = F

(
vJK
)
: C3 = F (K)→ C2 = F (J) .

A cocone on F identifies with a 4-tuple (X,λ1 : C1 → X,λ2 : C2 → X,λ3 : C3 → X)
such that

λ1 ◦ ϑ1 = λ3 = λ2 ◦ ϑ2.
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Thus a cocone on F further identifies with a triple (X,λ1 : X → C1, λ2 : X → C2)
such that

λ1 ◦ ϑ1 = λ2 ◦ ϑ2.

In this case the colimit of F is a triple (E, η1 : C1 → E, η2 : C2 → E) such that

η1 ◦ ϑ1 = η2 ◦ ϑ2

with the property that, given any triple (X,λ1 : C1 → X,λ2 : C2 → X) such that

λ1 ◦ ϑ1 = λ2 ◦ ϑ2,

there exists a unique λ : E → X such that

λ ◦ η1 = λ1 and λ ◦ η2 = λ2.

In this case lim−→F is called the pushout of ϑ1 and ϑ2.
If the arrival category is preadditive and ϑ2 = 0, then a cone on F further

identifies with a pair (X,λ1 : C2 → X) such that

λ1 ◦ ϑ1 = 0.

Consequently the pullback in this case is just Coker (ϑ1).

Definition 4.33. A category C is called cocomplete if for every small category I
and for every covariant functor F : I → C, there exists lim−→F .

Theorem 4.34. Let C be a preadditive category with 0C. Then C is cocomplete if
and only if C has coproducts and cokernels.

Proof. In view of Example 3.49 and Example 4.32, if C is cocomplete it has coprod-
ucts and cokernels.

Conversely, let us assume that C has arbitrary coproducts and cokernels.
Let F : I → C be a covariant functor.
Construction of lim−→ F . Denote by Hom (I) the set of morphisms between

objects of I. For every λ ∈ Hom (I), λ : I → J we set

s (λ) = I and t (λ) = J .

Let us consider the coproducts(⨿
I∈I

F (I) , (εI)I∈I

)
and

 ⨿
λ∈Hom(I)

F (s (λ)) ,
(
es(λ)

)
λ∈Hom(I)

 .

Note that, if λ ∈ Hom (I), the diagram

F (s (λ))
εs(λ) //

F (λ) &&LL
LLL

LLL
LL

⨿
I∈I F (I)

F (t (λ))

εt(λ)

88pppppppppp
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is, in general, non commutative. For every λ ∈ Hom (I), we set

ηλ = εt(λ) ◦ F (λ)− εs(λ) : F (s (λ)) −→
⨿
I∈I

F (I) .

By the universal property of
⨿

λ∈Hom(I)
F (s (λ)), there exists a unique morphism

η = ∇ (ηλ)λ∈Hom(I) :
⨿

λ∈Hom(I)

F (s (λ))−→
⨿
I∈I

F (I)

such that

(4.2) η ◦ eλ = ηλ for every λ ∈ Hom (I) .

Let
(Q,χ) = Coker (η)

and, for every I ∈ I, set

χI = χ ◦ εI : K −→ F (I) .

F (s (λ))

eλ ((QQ
QQQ

QQQ
QQQ

QQ

ηλ //
⨿

I∈I F (I)
χ //

ϑ

��:
:

:
:

:
:

:
:

:
Coker (η) = 0

ξ

���
�
�
�
�
�
�
�
�
�

⨿
λ∈Hom(I) F (s (λ))

η

66lllllll
F (J)

εJ

eeLLLLLLLLLL χJ

88qqqqqqqqqqq

ξJ
��
X

We want to prove that (
Q, (χI)I∈I

)
= lim−→F.

(
Q, (χI)I∈I

)
is a cocone. For every λ ∈ Hom (I), we compute

χt(λ) ◦ F (λ) = χ ◦ εt(λ) ◦ F (λ)

Since (Q,χ) = Coker (η) we have

χ ◦
(
εt(λ) ◦ F (λ)− εs(λ)

)
= χ ◦ ηλ

(4.2)
= χ ◦ η ◦ ελ = 0 ◦ ελ = 0

so that we get
χ ◦ εt(λ) ◦ F (λ) = χ ◦ εs(λ) = χs(λ)

which infers
χt(λ) ◦ F (λ) = χs(λ).

We prove that the universal property holds. Let
(
X, (ξI)I∈I

)
be a cocone on F i.e.

ξt(λ) ◦ F (λ) = ξs(λ) for every λ ∈ Hom (I) .
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Construction of ξ :Q→X. By the universal property of , there exists a
unique morphism

ϑ = ∇ (ξI)I∈I :
⨿
I∈I

F (I) −→ X such that ϑ ◦ εI = ξI for every I ∈ I.

We want to prove that ϑ ◦ η = 0 which is equivalent to ϑ ◦ η ◦ eλ = 0 for every
λ ∈ Hom (I). For every λ ∈ Hom (I) we have

ϑ ◦ η ◦ eλ = ϑ ◦ ηλ = ϑ ◦ εt(λ) ◦ F (λ)− ϑ ◦ εs(λ)
= ξt(λ)F (λ)− ξt(µ) = 0

where the last equality follows because
(
X, (ξJ)J∈I

)
is a cocone on F . Since (Q,χ) =

Coker (η), by the universal property of the cokernel, there exists a unique morphism
ξ : Q −→ X such that ξ ◦ χ = ϑ.

ξ◦χJ= ξJ and ξ is unique. For every J ∈ I, we have:

ξ◦χJ = ξ◦χ ◦ εJ = ϑ ◦ εJ = ξJ .

Now, let ξ′ be another morphism such that

ξ′◦χJ == ξJ for every J ∈ I.

Then, for every J ∈ I, we have:

ξ′ ◦ χ ◦ εJ = ξ′◦χJ = ξJ = ϑ ◦ εJ

which yields, in view of Exercise 3.49, that

ξ′ ◦ χ = ϑ.

Then the universal property of the cokernel infers that ξ′ = ξ.

Definition 4.35. Let (I,≤) be a partially ordered set. We consider the small cat-
egory I = I (I,≤) having I as the set of objects and whose homomorphism are
defined by setting

HomI (i, j) =
{
uij
}

if and only if i ≤ j.

A functor F : I → C is called a direct system in C labeled by I = I (I,≤).

Definition 4.36. The colimit of a direct system F : I → C is called a direct limit.

4.37. Let (I,≤) be a partially ordered set and let F : I → C be a direct system in C
labeled by I = I (I,≤). For every i ∈ I set

Ci = F (i)
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and for every i, j ∈ I, i ≤ j, set

γij = F
(
uij
)
: Ci → Cj for every i, j ∈ I, i ≤ j.

Then we have

γjk ◦ γ
i
j = F

(
ujk
)
◦ F

(
uij
)
= F

(
ujk ◦ u

i
j

)
= F

(
uik
)
= γik for every i, j, k ∈ I, i ≤ j ≤ k and

γii = IdCi for every i ∈ I.

Hence a direct system in C labeled by I = I (I,≤) identifies with an ordered pair(
(Ci)i∈I ,

(
γij
)
i,j∈I,i≤j

)
where

• (Ci)i∈I is a family of objects of C,

•
(
γij
)
i,j∈I,i≤j is a family of morphisms in C such that

γij : Ci → Cj for every i, j ∈ I, i ≤ j.

γjk ◦ γ
i
j = γik for every i, j, k ∈ I, i ≤ j ≤ k and

γii = IdCi for every i ∈ I.

Then a direct limit of such a direct system is an ordered pair
(
L, (λi)i∈I

)
where

each λi : Ci → L is a morphism in C such that

λj ◦ γij = λi for every i, j ∈ I, i ≤ j

and with the property that if X is a set and (ξi)i∈I is a family of morphism
ξi : Ci → X such that

ξj ◦ γij = ξi for every i, j ∈ I, i ≤ j

then there exists a unique morphism ξ : L→ X such that

ξ ◦ γi = ξi for every i ∈ I.

In this case we denote this direct limit also by

lim−→
(
(Ci)i∈I ,

(
γij
)
i,j∈I,i≤j

)
.
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Remark 4.38. If ϕ : F → G is a functorial morphism between covariant functors
from I to C which admit colimits

(
lim−→F, (αI)I∈I

)
and

(
lim−→G, (βI)I∈I

)
respectively,

then the diagram

F (I)

F (λ)

��

ϕI // G (I)

G(λ)

��

βI

##G
GG

GG
GG

GG

lim−→G

F (J)
ϕJ

// G (J)

βJ

;;wwwwwwww

is commutative i.e. lim−→G is a cocone on F with morphisms βI ◦ ϕI . Then there
exists a unique morphism lim−→ϕ : lim−→F −→ lim−→G such that

lim−→F
lim−→ϕ

// lim−→G

F (I) .

αI

ddHHHHHHHH βI◦ϕI

::vvvvvvvv

If C is cocomplete we can consider the functor lim−→ : Fun (I, C)→ C.

Example 4.39. Let R be a ring and let
(
(Mi)i∈I ,

(
f ij :Mi →Mj

)
i,j∈I,i≤j

)
be a

direct system in Mod-R. Assume that (I,≤) is a direct set i.e. for every i, j ∈ I
there exists a k ∈ I such that i ≤ k and j ≤ k. Let

·∪
i∈I

Mi =

{
(x, i) ∈

(∪
i∈I

Mi

)
× I | x ∈Mi

}

be the disjoint union of the family (Mi)i∈I . We define an equivalence relation ∼ on

this disjoint union by setting, for every (x, i) and (y, j) in
·∪
i∈I
Mi

(x, i) ∼ (y, j)⇔ there is a k ∈ I such that f ik (x) = f jk (y) .

Let

L =

·∪
i∈I
Mi

∼
.

and let

π :
·∪
i∈I

Mi →

·∪
i∈I
Mi

∼
= L
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be the canonical projection. For each (x, i) ∈
·∪
i∈I
Mi we set

[(x, i)] = π ((x, i)) .

We define a right R-module structure on L by setting

[(x, i)] + [(y, j)] =
[(
f ik (x) + f jk (y)

)]
where i ≤ k, j ≤ k

and

[(x, i)] · r = [(xr, i)] for every r ∈ R.

It is straightforward to prove that these are good definitions and that L becomes a

right R-module. For every j ∈ I let εj :Mj →
·∪
i∈I
Mi be the canonical injection i.e.

εj (x) = (x, j) for every x ∈Mj.

Set

λi = εj ◦ π.

Then it is easy to show that
(
L, (λi)i∈I

)
is the direct limit of the direct system(

(Mi)i∈I ,
(
f ij :Mi →Mj

)
i,j∈I,i≤j

)
.

Exercise 4.40. Let R be a ring and let
(
(Mi)i∈I ,

(
f ij :Mi →Mj

)
i,j∈I,i≤j

)
be a

direct system in Mod-R. Let M =
⊕
i∈I
Mi and, for every i ∈ I, let εi : Mi → M

be the canonical injection. For every i, j ∈ I,, let ηi≤j = εj ◦ f ij − εi and let H =∑
i,j∈I
i≤j

Im (ηi≤j). Set L = M
H
, let π :M → M

H
be the canonical projection and, for every

i ∈ I, let λi = π ◦ εi :Mi → L. Show that(
L, (λi)i∈I

)
= lim−→

(
(Mi)i∈I ,

(
f ij :Mi →Mj

)
i,j∈I,i≤j

)
.

Theorem 4.41. Let C be a cocomplete preabelian category and let F,G,H : I → C
be functors, where I is a small category. Assume that F

ϕ−→ G
ψ−→ H are functorial

morphisms such that, for every I ∈ I, the sequence

F (I)
ϕI−→ G (I)

ψI−→ H (I)→ 0C

is exact. Then the sequence

lim−→F
lim−→ϕ

−→ lim−→G
lim−→ψ

−→ lim−→H → 0C

is also exact.
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Proof. lim−→ψ is an epimorphism. Let ξ : lim−→H −→ X be a morphism such that
ξ ◦ lim−→ψ = 0. Then, for every I ∈ I, we have

0 = ξ ◦
(
lim−→ψ

)
◦ βI = ξ ◦ γI ◦ ψI .

Since ψI is an epimorphism, we deduce that, for every I ∈ I,

ξ ◦ γI = 0

so that
ξ = 0.

We prove that
Coker

(
lim−→ϕ

)
=
(
lim−→H, lim−→ψ

)
from which it will follow that

Im
(
lim−→ϕ

)
= KerCoker

(
lim−→ϕ

)
= Ker

(
lim−→ψ

)
We prove that lim−→ψ ◦ lim−→ϕ = 0. Since, by assumption, the sequence F (I)

ϕI−→
G (I)

ψI−→ H (I)→ 0C is exact, for every I ∈ I,we have(
lim−→ψ ◦ lim−→ϕ

)
◦ αI = lim−→ψ ◦ βI ◦ ϕI = γI ◦ ψI ◦ ϕI = 0.

This means that
lim−→ψ ◦ lim−→ϕ = 0

Now, let ξ : lim−→G −→ X be a morphism such that ξ ◦
(
lim−→ϕ

)
= 0. Then, for every

I ∈ I, we have ξ ◦
(
lim−→ϕ

)
◦ αI = 0 and thus

0 = ξ ◦
(
lim−→ϕ

)
◦ αI = ξ ◦ βI ◦ ϕI .

We have to prove that there exists ξ′ : lim−→H −→ X such that ξ = ξ′ ◦ lim−→ψ. Since
ψI is an epimorphism, we have that (H (I) , ψI) = CokerKer (ψI) = CokerIm (ϕI) =
CokerKerCoker (ϕI) = Coker (ϕI), thus, for every I ∈ I, there exists a unique

morphism H (I)
λI−→ X such that λI ◦ ψI = ξ ◦ βI :

lim−→F
lim−→ϕ

// lim−→G
lim−→ψ

//

ξ

""D
DD

DD
DD

D
lim−→H

ξ
′

||x
x
x
x

// 0

X

F (I)
ϕI

//

αI

OO

G (I)
ψI

//

βI

OO

H (I) .

λI

ccFFFFFFFFF

γI

OO

Then we have a family of morphisms (λI)I∈I . We prove that
(
X, (λI)I∈I

)
is a

cocone on H. Given a morphism I
µ−→J , we have to prove that λJ ◦ H (µ) =
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λI or equivalently λJ ◦ H (µ) ◦ ψI = λI ◦ ψI , since ψI is an epimorphism. Since(
lim−→G, (βI)I∈I

)
is a cocone on G, we have

λI ◦ ψI = ξ ◦ βI = ξ ◦ βJ ◦G (µ) = λJ ◦ ψJ ◦G (µ) = λJ ◦H (µ) ◦ ψI .

By the universal property of lim−→H, there exists a unique morphism ξ′ : lim−→H −→ X
such that ξ′ ◦ γI = λI , for every I ∈ I. We now have to prove that ξ′ ◦ lim−→ψ = ξ.
For every I ∈ I, we have

ξ′ ◦ lim−→ψ ◦ βI = ξ′ ◦ γI ◦ ψI = λI ◦ ψI = ξ ◦ βI

from which we deduce that ξ′ ◦ lim−→ψ = ξ. Assume now that there exists another
morphism ξ′′ such that ξ′′ ◦ lim−→ψ = ξ. Since we also have ξ′ ◦ lim−→ψ = ξ and lim−→ψ is
an epimorphism, we deduce that ξ′′ = ξ′.



Chapter 5

Adjoint functors

Let L : B → A and R : A → B be covariant functors.Then we define functors

HomA (L (•) ,N) : Bop ×A −→ Sets,
HomB (•, R (N)) : Bop ×A −→ Sets,

by setting

HomA (L (•) ,N) (B,A) = HomA (L (B) , A)

HomB (•, R (N)) (B,A) = HomB (B,R (A))

for every (B,A) ∈ Bop × A . Given (f, g) ∈ HomBop×A ((B1, A1) , (B2, A2)) i.e.
f ∈ HomB (B2, B1) and g ∈ HomA (A1, A2) we set

HomA (L (•) ,N) (f, g) = HomA (L (f) , g)

HomB (•, R (N)) (f, g) = HomB (f,R (g))

where

HomA (L (f) , g) : HomA (L (B1) , A1) −→ HomA (L (B2) , A2)(
L (B1)

ξ−→ A1

)
7−→

(
L (B2)

L(f)−→ L (B1)
ξ−→ A1

g−→ A2

)
= g ◦ ξ ◦ L (f)

HomB (f,R (g)) : HomB (B1, R (A1)) −→ HomB (B2, R (A2))(
B1

ζ−→ R (A1)
)
7−→

(
B2

f−→ B1
ζ−→ R (A1)

R(g)−→ R (A2)
)

= R (g) ◦ ζ ◦ f

Definition 5.1. Let L : B → A and R : A → B be covariant functors. The pair
of functors (L,R) is called an adjunction if there exists a functorial isomorphism
Λ : HomA (L (•) ,N) → HomB (•, R (N)), i.e. for every A ∈ A and B ∈ B, there
exist an isomorphism ΛBA :HomA (L (B) , A)→HomB (B,R (A)) such that, for every
f ∈ HomB (B2, B1) and g ∈ HomA (A1, A2) we have

(5.1) HomB (f,R (g)) ◦ ΛB1
A1

= ΛB2
A2
◦ HomA (L (f) , g) ,

65
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HomB (L (B1) , A1)

HomB(L(f),g)
��

Λ
B1
A1 // HomA (A1, R (B1))

HomA(f,R(g))
��

HomB (L (A2) , B2)
Λ
B2
A2

// HomA (A2, R (B2)) ,

i.e. for every ξ : L (B1) −→ A1

(5.2) ΛB2
A2

[g ◦ ξ ◦ (L (f))] = R (g) ◦ ΛB1
A1

(ξ) ◦ f .

The equality (5.2) is equivalent to the following equalities

ΛBA2
(g ◦ ξ) = R (g) ◦ ΛBA1

(ξ)(5.3)

ΛB2
A [ξ ◦ L (f)] = ΛB1

A (ξ) ◦ f(5.4)

Definition 5.2. Let L : B → A and R : A → B be covariant functors. We say that
L is a left adjoint of R, or equivalently, that R is a right adjoint to L if the pair
(L,R) is an adjunction.

Example 5.3. Let RMS be a bimodule,

R = HomS (RMS, •) : Mod-S → Mod-R

and
L = • ⊗R RMS : Mod-R→ Mod-S.

We set

ΛBA : HomS (B ⊗RM,A) −→ HomR (B,HomS (M,A))(
B ⊗RM

ξ−→ A
)
7−→

 B −→ HomS (M,A)

a 7−→
(
M −→ A
m 7−→ ξ (a⊗m)

) 
and

ΓBA : HomR (B,HomS (M,A)) −→ HomS (B ⊗RM,A)(
B

ζ−→ HomS (M,A)
)
7−→

(
B ⊗RM −→ A
a⊗m 7−→ ζ (a) (m)

)
.

We will prove that ΓBA is the inverse of ΛBA.
ΛBA (ξ) (a) is a morphism in Mod-S. Let α = ΛBA (ξ) (a). We have

α (m1s1 +m2s2) = ξ (a⊗ (m1s1 +m2s2))

= ξ (a⊗ (m1s1) + a⊗ (m2s2))

= ξ ((a⊗m1) s1 + (a⊗m2) s2)

= ξ (a⊗m1) s1 + ξ (a⊗m2) s2

= α (m1) s1 + α (m2) s2
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for every m1,m2 ∈M and s1, s2 ∈ S.
ΛBA (ξ) is a morphism in Mod-R. Let a1, a2 ∈ B and r1, r2 ∈ R. We have

ΛBA (ξ) (a1r1 + a2r2) (m) = ξ ((a1r1 + a2r2)⊗m)

= ξ (a1r1 ⊗m+ a2r2 ⊗m)

= ξ (a1r1 ⊗m) + ξ (a2r2 ⊗m)

= ξ (a1 ⊗ r1m) + ξ (a2 ⊗ r2m)

= ΛBA (ξ) (a1) (r1m) + ΛBA (ξ) (a2) (r2m)

= ΛBA (ξ) (a1) r1(m) + ΛBA (ξ) (a2) r2(m).

ΓBA (ζ) is well-defined. We have to prove that the assignment (a,m) 7→
ζ (a) (m) is balanced. Additivity is trivial, moreover

ζ (ar) (m) = (ζ (a) r) (m) since ζ is a morphism in Mod-R

= ζ (a) (rm) by definition of · in (HomS (M,A))R .

ΓBA (ζ) is a morphism in Mod-S. We have

ΓBA (ζ) ((a1 ⊗m1) s1 + (a2 ⊗m2) s2) = ΓBA (ζ) (a1 ⊗m1s1 + a2 ⊗m2s2)

= ΓBA (ζ) (a1 ⊗m1s1) + ΓBA (ζ) (a2 ⊗m2s2)

= ζ (a1) (m1s1) + ζ (a2) (m2s2)

= ζ (a1) (m1) s1 + ζ (a2) (m2) s2

= ΓBA (ζ) (a1 ⊗m1) s1 + ΓBA (ζ) (a2 ⊗m2) s2.

ΓBA =
(
ΛBA
)−1

. Given ξ ∈HomS (B ⊗RM,A) , ξ : B ⊗RM −→ A, we have

ΓBA
(
ΛBA (ξ)

)
(a⊗m) = ΓBA (a 7→ (m 7→ ξ (a⊗m))) (a⊗m)

= (a⊗m 7→ ξ (a⊗m)) (a⊗m)

= ξ (a⊗m) .

Given ζ ∈HomS (B ⊗RM,A) , ζ : B −→HomS (M,A), we have

ΛBA
(
ΓBA (ζ)

)
(ā) (m̄) = ΛBA (a⊗m 7→ ζ (a) (m)) (a) (m)

= (a 7→ (m 7→ ζ (a) (m))) (a) (m)

= (m 7→ ζ (a) (m)) (m)

= ζ (a) (m)

(L,R) is an adjunction. We have to prove that the diagram

HomS (A1 ⊗RM,B1)

HomS(f⊗RM,g)
��

Λ
B1
A1 // HomR (A1,HomS (M,B1))

HomR(f,HomS(M,g))
��

HomS (A2 ⊗RM,B2)
Λ
B2
A2

// HomR (A1,HomS (M,B2)) .
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is commutative. Starting from ξ : B1 ⊗RM −→ A:

HomR (f,HomS (M, g))
(
ΛB1
A1

(ξ)
)
= HomR (f,HomS (M, g)) (a1 7→ (m 7→ ξ (a1 ⊗m)))

= HomS (M, g) (a1 7→ (m 7→ ξ (a1 ⊗m))) f

= HomS (M, g) (a2 7→ (m 7→ ξ (f (a2)⊗m)))

= a2 7→ (m 7→ gξ (f (a2)⊗m))

and

ΛB2
A2

(HomS (f ⊗RM, g) (ξ)) = ΛB2
A2

(gξ (f ⊗RM))

= ΛB2
A2

(a2 ⊗m 7→ gξ (f (a2)⊗m))

= a2 7→ (m 7→ gξ (f (a2)⊗m)) .

is also a functorial isomorphism.

Theorem 5.4. If (L,R) and (L′, R) are adjunctions, then L ∼= L′.

Proof. Let Λ : HomA (L (•) ,N) → HomB (•, R (N)) and Λ′ : HomA (L (•) ,N) →
HomB (•, R (N)) be the functor isomorphisms.
Construction of the isomorphism.

λ =: (Λ′)−1 Λ : HomA (L (•) ,N) → HomA (L′ (•) ,N) is a functorial isomor-
phism as both Λ and (Λ′)−1 are. Hence, given f : B2 −→ B1, g : A1 −→ A2 and
ξ : L (B1) −→ A1, we have that

λB2
A2
◦ HomA (L (f) , g) = HomA (L′ (f) , g) ◦ λB1

A1
i.e.(5.5)

λB2
A2

[g ◦ ξ ◦ L (f)] = g ◦ λB1
A1

(ξ) ◦ L′ (f)(5.6)

HomA (L (B1) , A1)

HomA(L(f),g)
��

λ
B1
A1 // HomA (L′ (B1) , A1)

HomA(L′(f),g)
��

HomA (L (B2) , A2)
λ
B2
A2

// HomA (L′ (B2) , A2) :

.

The equality (5.6) is equivalent to the following equalities

λBA2
(g ◦ ξ) = g ◦ λBA1

(ξ)(5.7)

λB2
A [ξ ◦ L (f)] = λB1

A (ξ) ◦ L′ (f) .(5.8)

In particular, for g = L (f) , B = B2 and ξ = IdL(B2), we get from (5.7) that

(5.9) λB2

L(B1)
[L (f)] = L (f) ◦ λB2

L(B2)

(
IdL(B2)

)
.

For A = L (B1) and ξ = IdL(B1), we get from (5.8) that

(5.10) λB2

L(B1)
(L (f)) = λB1

L(B1)

(
IdL(B1)

)
◦ L′ (f) ,
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and for A1 = L (B), A2 = L′ (B) and ξ = IdL(B), we get from (5.7) that

(5.11) λBL′(B) (g) = g ◦ λBL(B)

(
IdL(B)

)
We define χ : L′ −→ L, by setting

χB = λBL(B)

(
IdL(B)

)
.

χ : L′ → L is a morphism of functors. We have to prove that

L (f) ◦ χB2 = χB1 ◦ L′ (f)

L′ (B2)

L′(f)
��

χB2 // L (B2)

L(f)
��

L′ (B1) χB1

// L (B1)

.

We compute

L (f) ◦ χB2 = L (f) ◦ λB2

L(B2)

(
IdL(B2)

) (5.9)
= λB2

L(B1)
(L (f))

χB1 ◦ L′ (f) = λB1

L(B1)

(
IdL(B1)

)
◦ L′ (f)

(5.10)
= λB2

L(B1)
(L (f)) .

χ is a functorial isomorphism. We construct the inverse of χ. We set

ζB =
(
ΛBL′(B)

)−1 ◦ Λ′B
L′(B)

(
IdL′(B)

)
: L (B) −→ L′ (B)

We compute

ζB ◦ χB = ζB ◦ λBL(B)

(
IdL(B)

) (5.11)
= λBL′(B) (ζB) =

=
(
Λ′B
L′(B)

)−1 ◦ ΛBL′(B) ◦
(
ΛBL′(B)

)−1 ◦ Λ′B
L′(B)

(
IdL′(B)

)
= IdL′(B).

By symmetry, we also get χB ◦ ζB = IdL(B).

In an analogous way, one can prove the following result.

Theorem 5.5. If (L,R) and (L,R′) are adjunctions, then R ∼= R′.

Theorem 5.6. Let (L,R) be an adjunction where L : B → A and R : A → B and
let

Λ : HomA (L (•) ,N)→ HomB (•, R (N)) .
be a functorial isomorphism. Let

ηB = ΛBL(B)

(
IdL(B)

)
: B → RL (B) .

Then η : IdB → RL is a functorial morphism (called unit of the adjunction). Let

ϵA =
(
Λ
R(A)
A

)−1 (
IdR(A)

)
: LR (A)→ A

Then ϵ : LR→ IdA is a morphism functorial (called counit of the adjunction).
Moreover we have
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1)

(5.12) ΛBA (γ) = R (γ) ◦ ηB, for every γ ∈ HomA (L (B) , A)

2)

(5.13)
(
ΛBA
)−1

(φ) = ϵA ◦ L (φ) , for every φ ∈ HomB (B,R (A))

3)

(5.14) ϵL(B) ◦ L (ηB) = IdL(B)

4)

(5.15) R (ϵA) ◦ ηR(A) = IdR(A)

for every B ∈ B, A ∈ A, f : B −→ R (A) and g : L (B) −→ A.

Proof. Let f : B2 → B1. We have to prove that

RL (f) ◦ ηB2 = ηB1 ◦ f

B2

f

��

ηB2 // RL (B2)

RL(f)
��

B1 ηB1

// RL (B1) :

.

By (5.3) applied to the case when g = L (f) : L (B2) → L (B1) and ξ = IdL(B2) :
L (B2)→ L (B2), we get

ΛB2

L(B1)

[
L (f) ◦ IdL(B2)

]
= RL (f) ◦ ΛB2

L(B2)

(
IdL(B2)

)
so that

(5.16) ΛB2

L(B1)
[L (f)] = RL (f) ◦ ΛB2

L(B2)

(
IdL(B2)

)
We have

ΛB2

L(B1)
(L (f))

(5.16)
= RL (f) ◦ ΛB2

L(B2)

(
IdL(B2)

)
= RL (f) ◦ ηB2 .

By (5.4) applied to the case when ξ = IdL(B1) : L (B1)→ L (B1) and f = f : B2 →
B1, we get

ΛB1

L(B1)

(
IdL(B1)

)
◦ f = ΛB2

L(B1)

[
IdL(B1) ◦ (L (f))

]
so that

(5.17) ΛB1

L(B1)

(
IdL(B1)

)
◦ f = ΛB2

L(B1)
[(L (f))]
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ηB1 ◦ f = ΛB1

L(B1)

(
IdL(B1)

)
◦ f (5.17)

= ΛB2

L(B1)
(L (f)) .

Let g : A1 −→ A2. We have to prove that

g ◦ ϵA1 = ϵA2 ◦ LR (g)

LR (B1)

LR(g)
��

ϵB1 // B1

g

��
LR (B2) ϵB2

// B2

.

Since Λ is an isomorphism, we will equivalently prove that

Λ
R(A1)
A2

(g ◦ ϵA1) = Λ
R(A1)
A2

(ϵA2 ◦ LR (g)) .

By (5.3) applied to the case when g = g : A1 → A2, ξ = ϵA1 : RL (A1) → A1 =
IdL(B1) : L (B1)→ L (B1) , f = IdR(A1) : R (A1)→ R (A1) , we get

(5.18) R (g) ◦ ΛR(A1)
A1

(ϵA1) = Λ
R(A1)
A2

(g ◦ ϵA1)

Λ
R(A1)
A2

(g ◦ ϵA1)
(5.18)
= R (g)◦ΛR(A1)

A1
(ϵA1) =

[
R (g) ◦ ΛR(A1)

A1
◦
(
Λ
R(A1)
A1

)−1
] (

IdR(A1)

)
= R (g) .

By (5.4) applied to the case when f = R (g) : R (A1) → R (A2) and ξ = ϵA2 :
LR (A2)→ A2, we get

(5.19) Λ
R(A1)
A2

(ϵA2 ◦ LR (g)) = Λ
R(A2)
A2

(ϵA2) ◦R (g)

Λ
R(A1)
A2

(ϵA2 ◦ LR (g))
(5.19)
= Λ

R(A2)
A2

(ϵA2) ◦R (g)

=

[
Λ
R(A2)
A2

◦
(
Λ
R(A2)
A2

)−1
] (

IdR(A2)

)
◦R (g) = R (g) .

1) R (γ) ◦ ηB = R (γ) ◦ ΛBL(B)

(
IdL(B)

) (5.3)
= ΛBA (γ) .

2) In order to prove 2) we apply to both terms Λ which is an isomorphism:

ΛBA (ϵA ◦ L (φ))
(5.4)
= Λ

R(A)
A (ϵA) ◦ φ =

[
Λ
R(A)
A ◦

(
Λ
R(A)
A

)−1
] (

IdR(A)

)
◦ φ = φ.

3) By applying 2) to the first term of the equality we have

ϵL(B) ◦ L (ηB)
2)
=
(
ΛBL(B)

)−1
(ηB) =

[(
ΛBL(B)

)−1 ◦ ΛBL(B)

] (
IdL(B)

)
= IdL(B).

4) By applying 1) to the first term of the equality we get

R (ϵA) ◦ ηR(A)
1)
= Λ

R(A)
A (ϵA) = Λ

R(A)
A

(
Λ
R(A)
A

)−1 (
IdR(A)

)
= IdR(A).
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Theorem 5.7. Let L : B → A and R : A → B be covariant functors, η : IdB → RL
and ϵ : LR→ IdA functorial morphisms such that, for every B ∈ B and A ∈ A, we
have

ϵL(B) ◦ L (ηB) = IdL(B)

and

R (ϵA) ◦ ηR(A) = IdR(A)

Then (L,R) is an adjunction with unit η and counit ϵ. Namely, for every B ∈ B
and A ∈ A,

HomA (L (B) , A)
ΛBA−→ HomB (B,R (A))

defined by setting

ΛBA (ξ) = R (ξ) ◦ ηB
is a natural isomorphism with inverse

HomB (B,R (A))
ΓBA−→ HomA (L (B) , A)

defined by setting

ΓBA (ζ) = ϵA ◦ L (ζ) .

Proof. ΓB
A =

(
ΛB

A

)−1
. Given ξ : L (B) −→ A and ζ : B −→ R (A), since ϵ and η

are functorial morphisms, we have:

ΓBA
(
ΛBA (ξ)

)
= ΓBA (R (ξ) ◦ ηB)
= ϵA ◦ L (R (ξ) ◦ ηB)
= ϵA ◦ LR (ξ) ◦ (L (ηB))
ϵ
= ξ ◦ ϵL(B) ◦ L (ηB)

= ξ

and

ΛBA
(
ΓBA (ζ)

)
= ΛBA (ϵA ◦ L (ζ))

= R (ϵA ◦ L (ζ)) ◦ ηB
= (R (ϵA)) ◦RL (ζ) ◦ ηB
η
= R (ϵA) ◦ ηR(A) ◦ ζ
= ζ

Λ gives rise to an adjunction. Given f : B2 −→ B1, g : A1 −→ A2 and
ξ : L (B1) −→ A1, we have:

ΛB2
A2

(g ◦ ξ ◦ L (f)) = R (g ◦ ξ ◦ L (f)) ◦ ηB2

= R (g) ◦R (ξ) ◦RL (f) ◦ ηB2
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R (g) ◦ ΛB1
A1

(ξ) ◦ f = R (g) ◦R (ξ) ◦ ηB1 ◦ f
η
= R (g) ◦R (ξ) ◦RL (f) ◦ ηB2

η and ϵ are unit and counit. The unit of the adjunction (L,R) is

ΛBL(B)

(
IdL(B)

)
= R

(
IdL(B)

)
◦ ηB = ηB,

whereas the counit is(
Λ
R(A)
A

)−1 (
IdR(A)

)
= Γ

R(A)
A

(
IdR(A)

)
= ϵA ◦ L

(
IdR(A)

)
= ϵA.

Theorem 5.8. Let L : B → A and R : A → B be covariant functors determining an
equivalence between B and A, i.e. there are functorial isomorphisms η : IdB → RL
and ρ : LR → IdA. Then (L,R) is an adjunction with unit η and counit ϵ, where

ϵA = ρA ◦ L
(
η−1
R(A)

)
◦ ρ−1

LR(A), for every A ∈ A.

Proof. We will prove that the hypothesis of Theorem 5.7 hold. First we want to
prove that

(5.20) ηRL(B) = RL (ηB) and ρLR(A) = LR (ρA) .

In fact we have
ηRL(B) ◦ ηB

η
= RL (ηB) ◦ ηB

and
ρLR(A) ◦ ρA = LR (ρA) ◦ ρA

and since η and ρ are iso we conclude. Then we have:

ϵL(B) ◦ L (ηB) = ρL(B) ◦ L
(
η−1
RL(B)

)
◦ ρ−1

LRL(B) ◦ L (ηB)

ρ−1

= ρL(B) ◦ L
(
η−1
RL(B)

)
◦ LRL (ηB) ◦ ρ−1

L(B)

(5.20)
= ρL(B) ◦ L

(
η−1
RL(B)

)
◦ L
(
ηRL(B)

)
◦ ρ−1

L(B)

= IdL(B)

R (ϵA) ◦ ηR(A) = R
(
ρA ◦ L

(
η−1
R(A)

)
◦ ρ−1

LR(A)

)
◦ ηR(A)

= R (ρA) ◦RL
(
η−1
R(A)

)
◦R

(
ρ−1
LR(A)

)
◦ ηR(A)

(5.20)
= R (ρA) ◦RL

(
η−1
R(A)

)
◦RLR

(
ρ−1
A

)
◦ ηR(A)

η
= R (ρA) ◦RL

(
η−1
R(A)

)
◦ ηRLR(A) ◦R

(
ρ−1
A

)
= R (ρA) ◦RL

(
η−1
R(A)

)
◦RL

(
ηR(A)

)
◦R

(
ρ−1
A

)
= IdR(A)
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Theorem 5.9. Let (L,R) be an adjunction, L : B −→ A, R : A −→ B and let
F : I −→ A be a functor where I is a small category. Assume that there exists(
lim←−F, (αI)I∈I

)
in A. Then

(
R
(
lim←−F

)
, (R (αI))I∈I

)
is the limit of RF : I −→ B.

Proof. First of all we prove that
(
R
(
lim←−F

)
, (R (αI))I∈I

)
is a cone. Since

(
lim←−F, (αI)I∈I

)
is a cone on F we have that

αJ = F (λ) ◦ αI for every morphism λ : I → J.

By applying R, we get
R (αJ) = RF (λ) ◦R (αI) .

Let now
(
X, (ξI : X −→ RF (I))I∈I

)
be a cone on RF .

There exists X
ξ−→ R

(
lim←−F

)
. Since

(
X, (ξI)I∈I

)
is a cone we have

ξJ = RF (λ) ◦ ξI

so that, by applying L, we get

L (ξJ) = LRF (λ) ◦ L (ξI) .

We have

LRF (I)
ϵF (I) //

LRF (λ)

��

F (I)

F (λ)

��

L (X)

L(ξI)
99ssssssssss

L(ξJ ) %%KK
KKK

KKK
KK

LRF (J)
ϵF (J) // F (J) ,

where ϵ is the counit of the adjunction. Thus L (X) is a cone on F with morphisms
ϵF (I) ◦ L (ξI) and thus there exists a unique morphism

ζ : L (X) −→ lim←−F

such that
αI ◦ ζ = ϵF (I) ◦ L (ξI) .

Let
ξ = ΛXlim←−F (ζ) = R (ζ) ◦ ηX

where Λ is the isomorphism of the adjunction (L,R) . Thus ξ : X −→ R
(
lim←−F

)
.

We will prove that R (αI) ◦ ξ = ξI . By the properties of the adjunction we have

R (αI) ◦ ξ = R (αI) ◦ ΛXlim←−F (ζ)
(5.3)
= ΛXF (I) (αI ◦ ζ) = ΛXF (I)

(
ϵF (I) ◦ L (ξI)

)
= ΛXF (I)

(
ϵF (I) ◦ L (ξI)

)
=

(5.4)
= Λ

RF (I)
F (I)

(
ϵF (I)

)
◦ ξI = Λ

RF (I)
F (I)

((
Λ
RF (I)
F (I)

)−1 (
IdRF (I)

))
◦ ξI = ξI .
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ξ is unique. Let ξ′ : X −→ R
(
lim←−F

)
be another morphism such that

R (αI) ◦ ξ′ = ξI , i.e. we have R (αI) ◦ ξ′ = ξI = R (αI) ◦ ξ. Since ΛXlim←−F is an

isomorphism, there exists a unique ζ ′ : LX −→ lim←−F such that ξ′ = ΛXlim←−F (ζ ′).

Then we have

R (αI) ◦ ξ′ = R (αI) ◦ ΛXlim←−F (ζ ′)
(5.3)
= ΛXF (I) (αI ◦ ζ ′)

and
R (αI) ◦ ξ = R (αI) ◦ ΛXlim←−F (ζ) = ΛXF (I) (αI ◦ ζ) .

.Since ΛXF (I) is an isomorphism, we get αI ◦ ζ ′ = αI ◦ ζ for every I ∈ I, thus, by
uniqueness of lim←−F , ζ = ζ ′ and ξ = ξ′.

Corollary 5.10. Let (L,R) be an adjunction, L : B −→ A, R : A −→ B . Assume
that both B and A are preadditive with zero. If P is a pullback, then R (P ) is also
a pullback.

Corollary 5.11. Let (L,R) be an adjunction, L : B −→ A, R : A −→ B. Assume
that both B and A are preadditive with zero and both L and R are additive. If Ker (f)
exists in A, then also Ker (R (f)) exists and R (Ker (f)) = (Ker (R (f))) .

Proof. A kernel is a particular kind of pullback.

Proposition 5.12. Let (L,R) be an adjunction, L : B −→ A, R : A −→ B .
Assume that both A and B are abelian and both Land R are additive. Then R is a
left exact functor.

Proof. Let 0 −→ A′ α′
−→ A

α′′
−→ A′′ be an exact sequence in A . This means that

(A′, α′) = Ker (α”) .

By Corollary 5.11, we get that

(R (A′) , R (α′)) = Ker
(
R
(
α”
))

which means that the sequence 0 −→ R (A′)
R(α′)−→ R (A)

R(α′′)−→ R (A′′) is exact in
A.

Theorem 5.13. Let (L,R) be an adjunction, L : B −→ A, R : A −→ B and let
G : I −→ B be a functor where I is a small category. Assume that there exists(
lim−→G, (αI)I∈I

)
in A. Then

(
L
(
lim−→F

)
, (L (αI))I∈I

)
is the limit of LF : I −→ A.

Proof. It is analogous to that of Theorem 5.9 and it is left as an exercise to the
reader.

Corollary 5.14. In the assumption of Theorem 5.9, in particular if X is a pushout,
then L (X) is also a pushout.



76 CHAPTER 5. ADJOINT FUNCTORS

Proof. A pullback is a particular kind of colimit.

Corollary 5.15. In the assumption of Theorem 5.9 we have L (Coker (f)) = (CokerL (f)) .

Proof. A cokernel is a particular kind of pushout.

Proposition 5.16. Let (L,H) be an adjunction, L : B −→ A, H : A −→ B .
Assume that both B and A are abelian and both L and H are additive. Then L is a
right exact functor.

Proof. Let B′ α′
−→ B

α′′
−→ B′′ −→ 0 be an exact sequence in B . This means that

(B′′, α′′) = Coker (α′) .

By Corollary 5.15, we get that

(L (B′′) , L (α′′)) = Coker (L (α′))

which means that the sequence L (B′)
L(α′)−→ L (B)

L(α′′)−→ L (B′′) −→ 0 is exact in
A.

Lemma 5.17. Let (L,R) be an adjunction with unit η and counit ϵ, where L : B →
A and R : A → B. For every Y ∈ B the following conditions are equivalent:

(1) L−,Y =
(
ΛY−
)−1 ◦ HomB (−, ηY ) is a functorial isomorphism

(2) HomB (−, ηY ) is a functorial isomorphism

(3) ηY is an isomorphism.

Proof. Since (L,R) is an adjunction, ΛZX : HomA (LY,X) → HomB (Y,RX) is an
isomorphism for every X ∈ A and for every Z ∈ B, so that (1) is equivalent to (2).
(2)⇒ (3) Since HomB (−, ηY ) is a functorial isomorphism, in particular HomB (RLY, ηY ) :
HomB (RLY, Y ) → HomB (RLY,RLY ) is an isomorphism. Thus, there exists f ∈
HomB (RLY, Y ) such that (ηY )◦f = IdRLY . Moreover we also have HomB (Y, ηY ) (IdY ) =
ηY = (ηY ) ◦ f ◦ (ηY ) = HomB (Y, ηY ) (f ◦ (ηY )) . Since HomB (−, ηY ) is a func-
torial isomorphism, also HomB (Y, ηY ) is an isomorphism. Thus we deduce that
IdY = f ◦ (ηY ) . Hence ηY is an isomorphism with two-sided inverse f : RLY → Y .
(3)⇒ (2) Let h be the two-sided inverse of ηY. Then HomB (−, h) is the inverse of
the functor HomB (−, ηY ) . In fact

HomB (−, h) ◦ HomB (−, ηY ) = HomB (−, h ◦ ηY ) = HomB (−, IdY )
HomB (−, ηY ) ◦ HomB (−, h) = HomB (−, ηY ◦ h) = HomB (−, IdRLY ) .

Proposition 5.18. Let (L,R) be an adjunction with unit η and counit ϵ, where
L : B → A and R : A → B. Then L is full and faithful if and only if η is a
functorial isomorphism.
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Proof. Note that, for every f ∈ HomB (Y, Y
′) we have

LY,Y ′ (f) =
[(
ΛYLY ′

)−1 ◦ HomB (Y, ηY
′)
]
(f) =

(
ΛYLY ′

)−1
(ηY ′ ◦ f) =

= (ϵLY ′) ◦ (LηY ′) ◦ (Lf) (L,R)adj
= Lf.

To be full and faithful for L means that the map

ϕ : HomB (Y, Y
′) −→ HomA (LY,LY ′)

f 7→ L (f)

is bijective for every Y, Y ′ ∈ B. Since this ϕ (f) = L (f) = LY,Y ′ (f) , ϕ is an
isomorphism if and only if LY,Y ′ is an isomorphism for every Y, Y ′ ∈ B and, by
Lemma 5.17, if and only if ηY ′ is an isomorphism for every Y ′ ∈ B.

Lemma 5.19. Let (L,R) be an adjunction with unit η and counit ϵ, where L : B →
A and R : A → B. For every X ∈ A the following conditions are equivalent:

(1) RX,− = ΛRX− ◦ HomA (ϵX,−) is a functorial isomorphism

(2) HomA (ϵX,−) is a functorial isomorphism

(3) ϵX is an isomorphism.

Proof. Exercise.

Proposition 5.20. Let (L,R) be an adjunction with unit η and counit ϵ, where
L : B → A and R : A → B. Then R is full and faithful if and only if ϵ is a
functorial isomorphism.

Proof. Exercise.

Lemma 5.21. Let f : X → Y and g : Y → X be morphisms in a category C.
Assume that g ◦ f = IdX and that f ◦ g is an isomorphism. Then f and g are
isomorphisms and g = f−1.

Proof. From g ◦ f = IdX we infer that f ◦ g ◦ f ◦ g = f ◦ IdX ◦ g = f ◦ g i.e.

f ◦ g ◦ f ◦ g = f ◦ g.

Hence
f ◦ g = (f ◦ g)−1 ◦ f ◦ g ◦ f ◦ g = (f ◦ g)−1 ◦ f ◦ g = IdY .

Proposition 5.22. Let (L,R) be an adjunction with unit η and counit ϵ, where
L : B → A and R : A → B. Then the following assertions are equivalent.

(a) ϵL is a functorial isomorphism.
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(b) Lη is a functorial isomorphism.

(c) Rϵ is a functorial isomorphism.

(d) ηR is a functorial isomorphism.

(e) RϵL is a functorial isomorphism.

(f) RLη is a functorial isomorphism.

(g) ηRL is a functorial isomorphism.

(h) LRϵ is a functorial isomorphism.

(i) ϵLR is a functorial isomorphism.

(l) LηR is a functorial isomorphism.

(m) LRϵL is a functorial isomorphism.

(n) LRLη is a functorial isomorphism.

(o) LηRL is a functorial isomorphism.

(p) ϵLRL is a functorial isomorphism.

Proof. Since (L,R) is an adjunction, formulas 5.14 and 5.15

ϵL ◦ Lη = L

Rϵ ◦ ηR = R

hold. Hence (a)⇔ (b) and (c)⇔ (d) . Moreover we get

RϵL ◦RLη = RL(5.21)

RϵL ◦ ηRL = RL(5.22)

from which we deduce that (e)⇔ (f) ⇔ (g) and, if any of them holds, we also
have

(5.23) RLη = ηRL.

Always from formulas 5.14 and 5.15, we get

ϵLR ◦ LηR = LR(5.24)

LRϵ ◦ LηR = LR(5.25)

from which we deduce that (h)⇔ (i)⇔ (l) and, if any of them holds, we also have

(5.26) ϵLR = LRϵ.
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Now, from formulas (5.21), (5.22) and (5.24)we get

LRϵL ◦ LRLη = LRL(5.27)

LRϵL ◦ LηRL = LRL(5.28)

ϵLRL ◦ LηRL = LRL(5.29)

from which we deduce that (m)⇔ (n)⇔ (o)⇔ (p) . Moreover if one of them holds
hold, we obtain

(5.30) LRLη = LηRL.

and

LRϵL = ϵLRL

Let α : F → G be a functorial morphism. Then, by naturality of ϵ, we get the
commutative diagram

LRF
ϵF→ F

LRα ↓ ↓ α
LRG

ϵG→ G

and, by naturality of η, we get the commutative diagram

F
ηF→ RLF

α ↓ ↓ RLα
G

ηG→ RLG

so that we have

ϵG ◦ LRα = α ◦ ϵF
ηG ◦ α = RLα ◦ ηF.

In particular, we get

ϵLR ◦ LRLη = Lη ◦ ϵL
ηR ◦Rϵ = RLRϵ ◦ ηRLR

and

ϵG ◦ LRα = α ◦ ϵF
ηG ◦ α = RLα ◦ ηF.

(e) ⇔ (a) and (e) ⇔ (c) Clearly we have only to prove that (e) ⇒ (a) and
(e)⇒ (c). Since (e) holds, we know that RLη = ηRL are isomorphisms. Hence also
LηRL is an isomorphism i.e. (o) holds so that LRϵL = ϵLRL and LRLη = LηRL
are isomorphisms.
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By naturality of ϵ we know that the diagram

LRL
ϵL→ L

LRLη ↓ ↓ Lη
LRLRL

ϵLRL→ LRL

is commutative i.e.
Lη ◦ ϵL = ϵLRL ◦ LRLη

and hence it is an isomorphism. Since ϵL ◦ Lη = L, by Lemma 5.21 we get that
both ϵL and Lη are isomorphisms.

By (e) ⇔ (g) we know that RLη is iso, so that from RLRϵ ◦ RLηR = RLR we
deduce that RLRϵ is also an iso. By naturality of η we know that the diagram

RLR
ηRL→ RLRLR

Rϵ ↓ ↓ RLRϵ
R

ηR→ RLR

is commutative i.e.
ηR ◦Rϵ = ηRLR ◦RLRϵ

From (e) ⇔ (f) we deduce that also ηRLR is an iso i.e. ηR ◦ Rϵ is an iso. From
Lemma 5.21 we conclude.

Hence we have proved that (a) = (b) = (c) = (d) = (e) = (f) = (g)
(h)⇔ (c) Clearly we have only to prove that (h)⇒ (c) . From

LRϵ ◦ LηR = LR

ϵLR ◦ LηR = LR

we deduce that LηR is also an iso and LRϵ = ϵLR is an iso. Hence RϵLR is an iso
and from RϵLR ◦ ηRLR = RLR also ηRLR is an iso. We have

LRLR
ϵLR→ LR

LRLηR ↓ ↓ LηR
LRLRLR

ϵLRLR→ LRLR

ϵLRLR ◦ LRLηR = LηR ◦ ϵLR

ηR ◦Rϵ = ηRLR ◦RLRϵ = ηRLR ◦RϵLR

so that ηR ◦Rϵ is an iso. From Lemma 5.21 we conclude.
(p)⇔ (a) Clearly we have only to prove that (o)⇒ (a) . Since (o)⇔ (n), LRLη

is an iso so that, from
Lη ◦ ϵL = ϵLRL ◦ LRLη

we deduce that Lη ◦ ϵL is an iso. From Lemma 5.21 we conclude.
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Proposition 5.23. Let L : B → A be a category equivalence with inverse H : A →
B. Assume that σ : IdB → HL and ρ : LH → IdA be functorial isomorphisms.
Then (L,H) is an adjunction with unit η = σ and counit ε = ρ ◦ Lη−1H ◦ ρ−1LH.
Alternatively (L,H) is an adjunction with unit η = σ−1HL ◦Hε−1L ◦ σ and counit
ε = ρ

Proof. Let η = σ and ε = ρ ◦ Lη−1H ◦ ρ−1LH. We have

εL ◦ Lη = ρL ◦ Lη−1HL ◦ ρ−1LHL ◦ Lη
ρ−1

= ρL ◦ Lη−1HL ◦ LHLη ◦ ρ−1L

η−1

= ρL ◦ Lη ◦ Lη−1 ◦ ρ−1L = IdL.

From

(5.31) ηHL ◦ η = HLη ◦ η

we get
ηHL = HLη

Similarly from
ρLH ◦ ρ = LHρ ◦ ρ

(5.32) ρLH = LHρ

Hε = Hρ ◦HLη−1H ◦Hρ−1LH ◦ ηH (5.31)
= Hρ ◦ η−1HLH ◦Hρ−1LH ◦ ηH

(η−1)
= η−1H ◦HLHρ ◦Hρ−1LH ◦ ηH (5.32)

= η−1H ◦HρLH ◦Hρ−1LH ◦ ηH = IdH

Let η = σ−1HL ◦Hε−1L ◦ σ and ε = ρ. We compute

Hε ◦ ηH = Hε ◦ σ−1HLH ◦Hε−1LH ◦ σH
σ−1

= σ−1H ◦HLHε ◦Hε−1LH ◦ σH
(5.32)
= σ−1H ◦HεLH ◦Hε−1LH ◦ σH = IdH

and

εL ◦ Lη = εL ◦ Lσ−1HL ◦ LHε−1L ◦ Lσ
(5.31)
= εL ◦ LHLσ−1 ◦ ε−1LHL ◦ Lσ ε−1

=

= εL ◦ ε−1L ◦ Lσ−1 ◦ Lσ = IdL

Lemma 5.24. Let (L,R) be an adjunction where L : B → A and R : A → B such
that R is an equivalence of categories. Then L is also an equivalence of categories.

Proof. By assumption R : A → B is an equivalence of category with inverse L′ : B →
A. By Proposition 5.23 we know that (L′, R) is an adjunction. By the uniqueness
of the adjoint we have that L ≃ L′ which is an equivalence. Thus L is also an
equivalence of categories.
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5.1 Some results on equalizers and coequalizers

Definition 5.25. A functorial morphism α : C → D is called functorial monomor-
phism, or simply a monomorphism, if for every β, γ : B → C such that α◦β = α◦γ
we have β = γ.

Definition 5.26. A functorial morphism α : A → B is called functorial epimor-
phism, or simply an epimorphism, if for every β, γ : B → C such that β ◦α = γ ◦α
we have β = γ.

Definition 5.27. Let A a category, let Y, Z ∈ A and let f, g : Y → Z be morphisms
in A. We say that (E, e) is the equalizer in A of the parallel pair (f, g) , and we
write (E, e) = EquA (f, g) , if

1) e : E → Y

2)

E
e // Y

f //
g

// Z

i.e. f ◦ e = g ◦ e

3) satisfies the universal property, i.e. for every X ∈ A and x : X → Y such
that f ◦ x = g ◦ x, there exists a unique morphism in A ξ : X → E such that
x = e ◦ ξ.

Remark 5.28. In case there exists (E, e) = EquA (f, g) , e is a monomorphism. In
fact, let α, β : W → E be morphisms in A such that e ◦ α = e ◦ β. Then we have

f ◦ e ◦ α eequ
= g ◦ e ◦ α

so that e◦α equalizes (f, g) . Since (E, e) = EquA (f, g) there exist a unique morphism
δ : W → E such that e ◦ α = e ◦ δ. In particular, we take δ = α. But we also have

e ◦ α = e ◦ β

so that we can also have δ = β. By the uniqueness of the morphism δ we deduce that
δ = α = β.

Definition 5.29. Let A a category, let Y, Z ∈ A and let f, g : Y → Z be morphisms
in A. We say that (Q, q) is the coequalizer in A of the parallel pair (f, g) , and we
write (Q, q) = CoequA (f, g) , if

1) q : Z → Q

2)

Y
f //
g

// Z
q // Q

i.e. q ◦ f = q ◦ g
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3) satisfies the universal property, i.e. for every T ∈ A and χ : Z → T such
that χ ◦ f = χ ◦ g, there exists a unique morphism in A γ : Q→ T such that
χ = γ ◦ q.

Exercise 5.30. In case there exists (Q, q) = CoequA (f, g) , q is an epimorphism.

Remark 5.31. Let A be a preadditive category, let Y, Z ∈ A and let f, g : Y →
Z be a parallel pair of morphisms in A. Then EquA (f, g) = Ker (f − g) and
CoequA (f, g) = Coker (f − g) .

Definition 5.32. Let A and B be categories, let B,C : A → B be functors and
β, γ : B → C be functorial morphisms. We say that (E, i) = EquFun (β, γ) if

1) i : E → B

2)

E
i // B

β //
γ

// C

i.e. β ◦ i = γ ◦ i

3) satisfies the universal property, i.e., for every functorial morphism x : X → B
such that β ◦ x = γ ◦ x, there exists a unique functorial morphism ξ : X → E
such that x = i ◦ ξ.

Definition 5.33. Let A and B be categories, let B,C : A → B be functors and
β, γ : B → C be functorial morphisms. We say that (Q, q) = CoequFun (β, γ) if

1) q : C → Q

2)

B
β //
γ

// C
q // Q

i.e. q ◦ β = q ◦ γ

3) satisfies the universal property, i.e., for every functorial morphism ω : C →W
such that ω ◦ β = ω ◦ γ, there exists a unique functorial morphism ζ : Q→W
such that ω = ζ ◦ q.

Lemma 5.34. Let A and B be categories, let F, F ′ : A → B be functors and α, β :
F → F ′ be functorial morphisms. If, for every X ∈ A, there exists CoequB(αX, βX),
then there exists the coequalizer (C, c) = CoequFun(α, β) in the category of functors.
Moreover, for any object X in A, we have (CX, cX) = CoequB(αX, βX).
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Proof. Define a functor C : A → B with object map (CX, cX) = CoequB(αX, βX)
for every X ∈ A. For a morphism f : X → X ′ in A, naturality of α and β implies
that

(F ′f) ◦ (αX) = (αX ′) ◦ (Ff) and (F ′f) ◦ (βX) = (βX ′) ◦ (Ff)
and hence

(cX ′) ◦ (F ′f) ◦ (αX) = (cX ′) ◦ (αX ′) ◦ (Ff) ccoequ= (cX ′) ◦ (βX ′) ◦ (Ff)
= (cX ′) ◦ (F ′f) ◦ (βX)

i.e. (cX ′) ◦ (F ′f) coequalizes the parallel morphisms βX and αX. In light of this
fact, by the universal property of the coequalizer (CX, cX) , Cf : CX → CX ′ is
defined as the unique morphism in B such that (Cf) ◦ (cX) = (cX ′) ◦ (F ′f). By
construction, c is a functorial morphism F ′ → C such that c ◦ α = c ◦ β. It remains
to prove universality of c. Let H : A → B be a functor and let χ : F ′ → H be
a functorial morphism such that χ ◦ α = χ ◦ β. Then, for any object X in A,
(χX)◦ (αX) = (χX)◦ (βX). Since (CX, cX) = CoequB(αX, βX), there is a unique
morphism ξX : CX → HX such that (ξX) ◦ (cX) = χX. The proof is completed
by proving naturality of ξX in X. Take a morphism f : X → X ′ in A. Since c and
χ functorial morphisms,

(Hf) ◦ (ξX) ◦ (cX) = (Hf) ◦ (χX)
χ
= (χX ′) ◦ (F ′f)

= (ξX ′) ◦ (cX ′) ◦ (F ′f) = (ξX ′) ◦ (Cf) ◦ (cX).

Since cX is a epimorphism, we get that ξ is a functorial morphism.

Lemma 5.35. Let Z,Z ′,W,W ′ : A → B be functors, let a, b : Z → W and a′, b′ :
Z ′ → W ′ be functorial morphisms, let φ : Z → Z ′ and ψ : W → W ′ be functorial
isomorphisms such that

ψ ◦ a = a′ ◦ φ and ψ ◦ b = b′ ◦ φ.

Assume that there exist (E, i) = EquFun (a, b) and (E ′, i′) = EquFun (a
′, b′). Then φ

induces an isomorphism φ̂ : E → E ′ such that φ ◦ i = i′ ◦ φ̂.

E
φ̂ //

i
��

E ′

i′

��
Z

φ //

b
��

a

��

Z ′

b′

��
a′

��
W

ψ //W ′

E
φ̂99K E ′

↓ i ↓ i′

Z
φ−→ Z ′

a � b a′ � b′

W
ψ−→ W ′
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Proof. Let us define φ̂. Let us compute

a′ ◦ φ ◦ i = ψ ◦ a ◦ i defi
= ψ ◦ b ◦ i = b′ ◦ φ ◦ i

and since (E ′, i′) = EquFun (a
′, b′) there exists a unique functorial morphism φ̂ :

E → E ′ such that
i′ ◦ φ̂ = φ ◦ i.

Note that φ̂ is mono since so are i and i′ and φ is an isomorphism. Consider
φ−1 : Z ′ → Z and ψ−1 : W ′ →W . Then we have

a ◦ φ−1 = ψ−1 ◦ a′ and b ◦ φ−1 = ψ−1 ◦ b′.

Let us compute

a ◦ φ−1 ◦ i′ = ψ−1 ◦ a′ ◦ i′ defi′
= ψ−1 ◦ b′ ◦ i′ = b ◦ φ−1 ◦ i′

and since (E, i) = EquFun (a, b) there exists a unique functorial morphism φ̂′ : E ′ →
E such that

i ◦ φ̂′ = φ−1 ◦ i′.
Then we have

i ◦ φ̂′ ◦ φ̂ = φ−1 ◦ i′ ◦ φ̂ = φ−1 ◦ φ ◦ i = i

and since i is a monomorphism we deduce that

φ̂′ ◦ φ̂ = IdE.

Similarly
i′ ◦ φ̂ ◦ φ̂′ = φ ◦ i ◦ φ̂′ = φ ◦ φ−1 ◦ i′ = i′

and since i′ is a monomorphism we obtain that

φ̂ ◦ φ̂′ = IdE′ .

Lemma 5.36. Let Z,Z ′,W,W ′ : A → B be functors, let a, b : Z → W and a′, b′ :
Z ′ → W ′ be functorial morphisms, let φ : Z → Z ′ and ψ : W → W ′ be functorial
isomorphisms such that

ψ ◦ a = a′ ◦ φ and ψ ◦ b = b′ ◦ φ.

Assume that there exist (C, p) = CoequFun (a, b) and (C ′, p′) = CoequFun (a
′, b′).

Then ψ induces an isomorphism ψ̂ : C → C ′ such that ψ̂ ◦ p = p′ ◦ ψ.

Z
φ //

b
��

a

��

Z ′

b′

��
a′

��
W

ψ //

p

��

W ′

p′

��
C

ψ̂ // C ′
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Z
φ−→ Z ′

a � b a′ � b′

W
ψ−→ W ′

↓ p ↓ p′

C
ψ̂99K C ′

Proof. Dual to Lemma 5.35. (Exercise).

Lemma 5.37. Let K : B → A be a full and faithful functor and let f, g : X → Y
be morphisms in B. If (KC,Kc) = CoequA (Kf,Kg) then (C, c) = CoequB (f, g).

Proof. Since K is faithful, from (Kc)◦ (Kf) = (Kc)◦ (Kg) we get that c◦f = c◦g.
Let q : Y → Q be a morphism in B such that q ◦ f = q ◦ g. Then in A we get
(Kq) ◦ (Kf) = (Kq) ◦ (Kg) and hence there exists a unique morphism ξ : KC →
KQ such that ξ ◦ (Kc) = Kq. Since ξ ∈ HomA (KC,KQ) and K is full, there
exists a morphism ζ ∈ HomB (C,Q) such that ξ = Kζ. Since K is faithful, from
(Kζ) ◦ (Kc) = Kq we get ζ ◦ c = q. From the uniqueness of ξ, the one of ζ easily
follows.

Lemma 5.38. Let α, γ : F → G be functorial morphisms where F,G : A → B
are functors. Assume that, for every X ∈ A there exists CoequB (αX, γX). Let
(C, c) = CoequFun (α, γ) , where c : G→ C. Then, for every X ∈ A and Z ∈ B we
have that

(HomB (CX,Z) ,HomB (cX,Z)) = EquSets (HomB (αX,Z) ,HomB (γX,Z))

which means that

(HomB (C,−) ,HomB (c,−)) = EquFun (HomB (α,−) ,HomB (γ,−))

where

HomB (C,−) and EquFUn (HomB (α,−) ,HomB (γ,−)) : Aop × B → Sets.

Proof. We have that

HomB (αX,Z) ◦ HomB (cX,Z) = HomB ((cX) ◦ (αX) , Z)

= HomB ((cX) ◦ (γX) , Z) = HomB (γX,Z) ◦ HomB (cX,Z)

i.e. HomB (cX,Z) equalizes HomB (αX,Z) and HomB (γX,Z) , for every X ∈ A and
Z ∈ B. Let now ζ : Q → HomB (GX,Z) be a map such that HomB (αX,Z) ◦ ζ =
HomB (γX,Z) ◦ ζ. Then, for every X ∈ A, Z ∈ B and for every q ∈ Q we have

ζ (q) ◦ (αX) = HomB (αX,Z) (ζ (q)) = HomB (γX,Z) ◦ (ζ (q))
= ζ (q) ◦ (γX) .
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Then, for every X ∈ A and Z ∈ B there exists a unique morphism ξq : CX → Z in
B such that

ξq ◦ (cX) = ζ (q)

i.e.
HomB (cX,Z) (ξq) = ζ (q) .

The assignment q 7→ ξq defines a map ξ : Q→ HomB (CX,Z) such that

HomB (cX,Z) ◦ ξ = ζ.



Chapter 6

MONADS

6.1 Contractible (co)equalizers

Definition 6.1. Let A a category, let Y, Z ∈ A and let f, g : Y → Z be morphisms
in A. We say that (E, e) is the equalizer in A of the parallel pair (f, g) , and we
write (E, e) = EquA (f, g) , if

1) e : E → Y

2)

E e // Y
f //
g

// Z

i.e. f ◦ e = g ◦ e

3) satisfies the universal property, i.e. for every X ∈ A and x : X → Y such
that f ◦ x = g ◦ x, there exists a unique morphism in A ξ : X → E such that
x = e ◦ ξ.

Remark 6.2. In case there exists (E, e) = EquA (f, g) , e is a monomorphism. In
fact, let α, β : W → E be morphisms in A such that e ◦ α = e ◦ β. Then we have

f ◦ e ◦ α eequ
= g ◦ e ◦ α

so that e◦α equalizes (f, g) . Since (E, e) = EquA (f, g) there exist a unique morphism
δ : W → E such that e ◦ α = e ◦ δ. In particular, we take δ = α. But we also have

e ◦ α = e ◦ β

so that we can also have δ = β. By the uniqueness of the morphism δ we deduce that
δ = α = β.

Definition 6.3. Let A a category, let Y, Z ∈ A and let f, g : Y → Z be morphisms
in A. We say that (Q, q) is the coequalizer in A of the parallel pair (f, g) , and we
write (Q, q) = CoequA (f, g) , if

88
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1) q : Z → Q

2)

Y
f //
g

// Z
q // Q

i.e. q ◦ f = q ◦ g

3) satisfies the universal property, i.e. for every T ∈ A and χ : Z → T such
that χ ◦ f = χ ◦ g, there exists a unique morphism in A γ : Q→ T such that
χ = γ ◦ q.

Exercise 6.4. In case there exists (Q, q) = CoequA (f, g) , q is an epimorphism.

Remark 6.5. Let A be a preadditive category, let Y, Z ∈ A and let f, g : Y →
Z be a parallel pair of morphisms in A. Then EquA (f, g) = Ker (f − g) and
CoequA (f, g) = Coker (f − g) .
Definition 6.6. 1) [McL, page 151] Recall that a functor R : A → B creates co-
equalizer for a pair f, g : A→ A′ in A whenever to each coequalizer (Z, ζ : RA′ → Z)
of (Rf,Rg) in B there is a unique object A′′ in A and a unique morphism γ : A′ → A′′

such that

• RA′′ = Z,

• Rγ = ζ and

• (A′′, γ) is a coequalizer of (f, g) in A.

2) [BW, page 94] Let C be a category. A contractible coequalizer is a 8-tuple
(C,X, Y, c, d0, d1, u, v) where

X

d0 //

d1
// Y

voo
c // C
u

oo

d0−→
X

v← Y
c

�
u

C

d1−→
such that

d0 ◦ v = IdY

d1 ◦ v = u ◦ c
c ◦ u = IdC

c ◦ d0 = c ◦ d1.

3) [BW, page 95] (cf. [Man1, Definitions 1.8 page 167]). An R-contractible
coequalizer pair is a pair of morphisms (d0, d1) from X to Y for which there is a
contractible coequalizer

Rd0−→
RX

v← RY
c

�
u

C

Rd1−→

.



90 CHAPTER 6. MONADS

Note that here the definition differs from [BW, page 95] as we have C and not RC
as coequalizer.

4) [BW, 3.6 page 98] A reflexive pair is a pair of morphisms (d0, d1) from X to
Y such that if d0 and d1 have a common right inverse i.e. there is e : Y → X such
that d0 ◦ e = d1 ◦ e = IdY .

Proposition 6.7. [BW, Proposition 3.4, page 94]Let C be a category and let (C,X, Y, c, d0, d1, u, v)
be a contractible coequalizer. Then (C, c) = CoequC (d0, d1) .

Proof. Let χ : Y → Q such that

χ ◦ d0 = χ ◦ d1.

We have
χ = χ ◦ IdY = χ ◦ d0 ◦ v = χ ◦ d1 ◦ v = (χ ◦ u) ◦ c.

Then, let us set
χ′ = χ ◦ u : C → Q

so that
χ = χ′ ◦ c.

Let now χ′′ : C → Q such that χ′′ ◦ c = χ. Then

χ′′ = χ′′ ◦ IdC = χ′′ ◦ c ◦ u = χ ◦ u = χ′.

Proposition 6.8. [BW, Proposition 3.4, page 94]Let C be a category, let (C,X, Y, c, d0, d1, u, v)
be a contractible coequalizer and let F : C → D be a functor, then

FX

Fd0 //

Fd1
// FY

Fvoo
Fc // FC
Fu

oo

Fd0→

FX
Fv← FY

Fc

�
Fu

FC

Fd1→
is a contractible coequalizer in D.

Proof. Since (C,X, Y, c, d0, d1, u, v) is a contractible coequalizer we have

d0 ◦ v = IdY

d1 ◦ v = u ◦ c
c ◦ u = IdC

c ◦ d0 = c ◦ d1.

By applying the functor F to them, the equalities still hold.
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Lemma 6.9. Let (L : B → A, R : A → B) be an adjunction with unit η and counit ϵ.
Then (LB,LRLRLB,LRLB, ϵLB,LRϵLB, ϵLRLB,LηB,LRLηB) is a contractible
coequalizer.

LRϵLB−→

LRLRLB
LRLηB← LRLB

ϵLB

�
LηB

LB

ϵLRLB−→

.

Proof. We have

LRϵLB ◦ LRLηB = IdLRLB

ϵLRLB ◦ LRLηB = LηB ◦ ϵLB
ϵLB ◦ LηB = IdLB

ϵLB ◦ LRϵLB = ϵLB ◦ ϵLRLB.

Lemma 6.10. Let (L : B → A, R : A → B) be an adjunction. Let η and ϵ be the unit
and counit of (L,R) respectively. Let (B, µ : RLB → B) ∈ RLB. Then (ϵLB,Lµ) is
a reflexive R-contractible coequalizer pair. In particular

RϵLB−→
RLRLB

ηRLB← RLB
µ

�
ηB

B

RLµ−→

.

is a contractible coequalizer whence preserved by any functor.

Proof. Let us check it is a reflexive R-contractible coequalizer pair. We have Lµ ◦
LηB = IdLB = ϵLB ◦LηB so that (ϵLB,Lµ) is a reflexive pair. Let us check it is an
R-contractible coequalizer pair. Since (B, µ) ∈ RLB we have µ ◦ RLµ = µ ◦ RϵLB
and µ◦ηB = IdB. Moreover we have RϵLB◦ηRLB = IdRLB, RLµ◦ηRLB = ηB◦µ.
Thus (ϵLB,Lµ) is a reflexive R-contractible coequalizer pair.

Corollary 6.11. Let (L : B → A, R : A → B) be an adjunction. Let η and ϵ be the
unit and counit of (L,R) respectively. Then

RϵLRA−→

RLRLRA
ηRLRA← RLRA

RϵA

�
ηRA

RA

RLRϵA−→

.

is a contractible coequalizer whence preserved by any functor.

Proof. Since (RA,RϵA) ∈ RLB, we can apply Lemma 6.10.
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6.2 Monads

Definition 6.12. A monad on a category A is a triple A = (A,mA, uA) , where
A : A → A is a functor, mA : AA → A and uA : A → A are functorial morphisms
satisfying the associativity and the unitality conditions:

mA ◦ (mAA) = mA ◦ (AmA) and mA ◦ (AuA) = A = mA ◦ (uAA) .

Definition 6.13. A morphism between two monads A = (A,mA, uA) and B =
(B,mB, uB) on a category A is a functorial morphism φ : A→ B such that

φ ◦mA = mB ◦ (φφ) and φ ◦ uA = uB.

Here φφ = φB ◦ Aφ = Bφ ◦ φA.
Example 6.14. Let (A,mA, uA) an R-ring where R is an algebra over a commuta-
tive ring k. This means that

• A is an R-R-bimodule

• mA : A⊗R A→ A is a morphism of R-R-bimodules

• uA : R→ A is a morphism of R-R-bimodules satisfying the following

mA◦(mA ⊗R A) = mA◦(A⊗R mA) ,mA◦(A⊗R uA) = rA and mA◦(uA ⊗R A) = lA

where rA : A⊗RR→ A and lA : R⊗RA→ A are the right and left constraints.
Let

A = −⊗R A :Mod-R→Mod-R

mA = −⊗R mA : −⊗R A⊗R A→ −⊗R A

uA = (−⊗R uA) ◦ r−1 : − → −⊗R R→ −⊗R A

We prove that A = (A,mA, uA) is a monad on the category Mod-R. For every
M ∈Mod-R we compute

[mA ◦ (mAA)] (M) = (M ⊗R mA) ◦ (M ⊗R A⊗R mA) =M ⊗R [mA ◦ (A⊗R mA)]

= M ⊗R [mA ◦ (mA ⊗R A)] = (M ⊗R mA) ◦ (M ⊗R mA ⊗R A)

= [mA ◦ (AmA)] (M)

[mA ◦ (AuA)] (M) = (M ⊗R mA) ◦
[
(M ⊗R uA) ◦ r−1

M

]
⊗R A

= (M ⊗R mA) ◦ (M ⊗R uA ⊗R A) ◦
(
r−1
M ⊗R A

)
= (M ⊗R [mA ◦ (uA ⊗R A)]) ◦

(
r−1
M ⊗R A

)
= (M ⊗R lA) ◦

(
r−1
M ⊗R A

)
=M ⊗R A = AM

and

[mA ◦ (uAA)] (M) = (M ⊗R mA) ◦ (M ⊗R A⊗R uA) ◦ r−1
M⊗RA

= (M ⊗R [mA ◦ (A⊗R uA)]) ◦ r−1
M⊗RA

= (M ⊗R rA) ◦ r−1
M⊗RA =M ⊗R A = AM.
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Exercise 6.15. Let R,A be rings.Let uA : R → A be a ring homomorphism. Let
us denote by m the multiplication of A and by mA : A ⊗R A → A the well-defined
induced map. Prove that (A,mA, uA) is an R-ring.

Exercise 6.16. Prove that every ring is a Z-ring.

Proposition 6.17 ([H]). Let (L,R) be an adjunction with unit η and counit ϵ where
L : B → A and R : A → B. Then RL = (RL,RϵL, η) is a monad on the category B.

Proof. We have to prove that

(RϵL)◦ (RLRϵL) = (RϵL)◦ (RϵLRL) and (RϵL)◦RLη = RL = (RϵL)◦ (ηRL) .

In fact we have

(RϵL) ◦ (RLRϵL) ϵ
= (RϵL) ◦ (RϵLRL)

and

(RϵL) ◦RLη (L,R)
= RL

(L,R)
= (RϵL) ◦ (ηRL) .

Exercise 6.18. Let A,B rings and let M be an A-B-bimodule. Consider the func-
tors

L = −⊗AM :Mod-A→Mod-B

R = HomB (M,−) :Mod-B →Mod-A.

Then (L,R) = (−⊗AM,HomB (M,−)) is an adjunction. Compute the monad RL
associated to this adjunction. Moreover, compute the monad RL in the particular
case A = B = R and M è un R-ring.

Definition 6.19. A left module functor for a monad A = (A,mA, uA) on a category
A is a pair

(
Q, AµQ

)
where Q : B → A is a functor and AµQ : AQ → Q is a

functorial morphism satisfying:

AµQ ◦
(
AAµQ

)
= AµQ ◦ (mAQ) and Q = AµQ ◦ (uAQ) .

Example 6.20. Let A be an R-ring. Let A = A⊗R− be a monad associated to the
R-ring and let Q =M⊗R− where M is a left A-module. Then Q is a left A-module
functor via the map

AQ = (A⊗RM ⊗R −) −→ Q = (M ⊗R −)
a⊗R m⊗R − 7→ am⊗R −

where we denote by am the multiplication of an element a ∈ A with an element
m ∈M .
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Definition 6.21. A right module functor for a monad A = (A,mA, uA) on a cat-
egory A is a pair

(
P, µAP

)
where P : A → B, is a functor and µAP : PA → P is a

functorial morphism such that

µAP ◦
(
µAPA

)
= µAP ◦ (PmA) and P = µAP ◦ (PuA) .

Remark 6.22. Let A = (A,mA, uA) be a monad on a category A and let
(
Q, AµQ

)
be a left A-module functor and

(
P, µAP

)
be a right A-module functor. By the unitality

property of AµQ and µAP we deduce that they are both epimorphism.

Definition 6.23. For two monads A = (A,mA, uA) on a category A and B =
(B,mB, uB) on a category B, a A-B-bimodule functor is a triple

(
Q, AµQ, µ

B
Q

)
, where

Q : B → A is a functor and
(
Q, AµQ

)
is a left A-module,

(
Q,µBQ

)
is a right B-module

such that in addition
AµQ ◦

(
AµBQ

)
= µBQ ◦

(
AµQB

)
.

Definition 6.24. A module for a monad A = (A,mA, uA) on a category A is a pair(
X, AµX

)
where X ∈ A and AµX : AX → X is a morphism in A such that

AµX ◦
(
AAµX

)
= AµX ◦ (mAX) and X = AµX ◦ (uAX) .

A morphism between two A-modules
(
X, AµX

)
and

(
X ′, AµX′

)
is a morphism f :

X → X ′ in A such that
AµX′ ◦ (Af) = f ◦ AµX .

We will denote by AA the category of A-modules and their morphisms. This is the
so-called Eilenberg-Moore category which is sometimes also denoted by AA.

Remark 6.25. Let A = (A,mA, uA) be a monad on a category A and let
(
X, AµX

)
∈

AA. From the unitality property of AµX we deduce that AµX is epi for every(
X, AµX

)
∈ AA and that uAX is mono for every

(
X, AµX

)
∈ AA, i.e. uA is a

monomorphism.

Example 6.26. Let A be an R-ring. and Let A = − ⊗R A : Mod-R → Mod-R be
the monad associated. We want to understand the category of modules with respect
to this monad. The underlying category is A =Mod-R. Let X ∈Mod-R. We need
a map

AµX : AX = X ⊗R A→ X

x⊗R a 7→ xa.

This means that X is endowed with a right A-module structure so that AA =Mod-A.

Example 6.27. Let A be an R-ring. and Let A = A ⊗R − : R-Mod → R-Mod be
the monad associated. We want to understand the category of modules with respect
to this monad. The underlying category is A = R-Mod. Let X ∈ R-Mod. We need
a map

AµX : AX = A⊗R X → X

a⊗R x 7→ ax.

This means that X is endowed with a left A-module structure so that AA = A-Mod.
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Definition 6.28. Corresponding to a monad A = (A,mA, uA) on A, there is an
adjunction (AF, AU) where AU is the forgetful functor and AF is the free functor

AU : AA → A AF : A → AA(
X, AµX

)
→ X X → (AX,mAX)

f → f f → Af.

Note that AUAF = A. The unit of this adjunction is given by the unit uA of the
monad A:

uA : A → AUAF = A.

The counit λA : AFAU → AA of this adjunction is defined by setting

AU
(
λA
(
X, AµX

))
= AµX for every

(
X, AµX

)
∈ AA.

In fact, for every
(
X, AµX

)
∈ AA we need to define a morphism in AA between

AFAU
(
X, AµX

)
→
(
X, AµX

)
i.e. between

(AX,mAX)→
(
X, AµX

)
.

This needs to be a morphism of A-modules between the underlying objects AX and
X. Therefore, we define λA

(
X, AµX

)
as morphism on the underlying objects to be

AU
(
λA
(
X, AµX

))
= AµX for every

(
X, AµX

)
∈ AA.

Then, the adjunction relations are the following

(λAAF ) ◦ (AFuA) = AF and (AUλA) ◦ (uAAU) = AU.

Exercise 6.29. Prove that AFX = (AX,mAX) ∈ AA.

Exercise 6.30. Let (L,R) be an adjunction and let A = (RL,RϵL, η) be the monad
associated to the adjunction. Prove that (R,Rϵ) is a left A-module functor and that
(L, ϵL) is a right A-module functor.

Proposition 6.31. Let A = (A,mA, uA) be a monad on a category A. Then AU is
a faithful functor. Moreover, given Z,W ∈ AA we have that

Z =W if and only ifAU (Z) = AU (W ) and AU (λAZ) = AU (λAW ) .

In particular, if F,G : X → AA are functors, we have

F = G if and only if AUF = AUG and AU (λAF ) = AU (λAG)

Proposition 6.32. Let A = (A,mA, uA) be a monad on a category A and let(
X, AµX

)
be a module for A. Then we have(

X, AµX
)
= CoequA

(
AAµX ,mAX

)
.

In particular if
(
Q,A µQ

)
is a left A-module functor, then we have(
Q,A µQ

)
= CoequFun

(
AAµQ,mAQ

)
.
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Proof. Note that

AAX

mAX //

AµX

// AX
uAAXoo

AµX // X
uAX
oo

mAX→

AAX
uAAX← AX

AµX
�
uAX

X

AAµX→

is a contractible coequalizer and thus, by Proposition 6.7,
(
X, AµX

)
= CoequA

(
AAµX ,mAX

)
.

Let now
(
Q,A µQ

)
be a left A-module functor where Q : B → A. Then, by the fore-

going, for every Y ∈ B we have that(
QY, AµQY

)
=
(
QY, AµQY

)
= CoequA

(
AAµQY ,mAQY

)
= CoequA

(
AAµQY,mAQY

)
.

Then, by Lemma 5.34, we have that
(
Q,A µQ

)
= CoequFun

(
AAµQ,mAQ

)
.

Proposition 6.33. Let A = (A,mA, uA) be a monad on a category A and let
(
P, µAP

)
be a right A-module functor, then we have

(6.1)
(
P, µAP

)
= CoequFun

(
µAPA,PmA

)
.

Proof. Note that

PAA

PmA //

µAPA
// PA

PAuAoo
µAP // P
PuA
oo

PmA→

PAA
PAuA← PA

µAP
�
PuA

P

µAPA→

is a contractible coequalizer and thus, by Proposition 6.7,
(
P, µAP

)
= CoequFun

(
µAPA,PmA

)
.

Proposition 6.34. Let A = (A,mA, uA) be a monad on a category A and let
(AF, AU) be the adjunction associated. Then AU reflects isomorphisms.

Proof. Let f :
(
X, AµX

)
→
(
Y, AµY

)
be a morphism in AA such that AUf has a

two-sided inverse f−1 in A. Since
AµX′ ◦ (Af) = f ◦ AµX

we get that
f−1 ◦ AµX′ = AµX ◦

(
Af−1

)
.
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6.3 On Beck’s Theorem

Lemma 6.35. [Bo2, Corollary 4.1.4] Let (L : B → A, R : A → B) be an adjunction.
Then the forgetful functor U : RLB → B reflects the isomorphisms.

Proof. Let f : (B, µ) → (B′, µ′) be a morphism in RLB such that Uf is an isomor-
phism. We have that

µ′ ◦RLUf = Uf ◦ µ

so that [
(Uf)−1] ◦ µ′ = µ ◦RL

[
(Uf)−1]

which entails that (Uf)−1 gives rise to a morphism g : (B′, µ′) → (B, µ) such that
Ug = (Uf)−1 . Hence

U (f ◦ g) = IdB′ and U (g ◦ f) = IdB

so that
f ◦ g = Id(B′,µ′) and g ◦ f = Id(B,µ).

Definition 6.36. Let (L,R) be an adjunction where L : B → A and R : A → B
and let A = (A = RL,mA = RϵL, uA = η) be the associated monad on the category
B. We can consider the functor

K = RK : A → AB

defined by setting

K (X) = (RX,RϵX) and K (f) = R (f) .

This is called the comparison functor of the adjunction (L,R) . Note that AU◦K = R

Proposition 6.37 (Beck). [BW, Theorem 3.13, page 100] Let (L,R) be an ad-
junction where L : B → A and R : A → B. Consider the comparison functor
K : A → RLB. Then K is full and faithful if and only if for every A ∈ A we have
that (A, ϵA) = CoequA (LRϵA, ϵLRA).

Proof. Let U : RLB → B be the forgetful functor. Let A ∈ A. By Corollary 6.11,

RLRLRA
RLRϵA

⇒
RϵLRA

RLRA
RϵA−→ RA.

is a contractible coequalizer. In particular it is preserved by L so that LRϵA is an
epimorphism.

Suppose that K is full and faithful and let us prove that

LRLRA
LRϵA

⇒
ϵLRA

LRA
ϵA−→ A
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is a coequalizer too. Clearly ϵA coequalizes (LRϵA, ϵLRA). Let ω : LRA →
W be a morphism in A which coequalizes (LRϵA, ϵLRA) . Then Rω coequalizes
(RLRϵA,RϵLRA) so that there is a unique morphism ω̂ : RA → RW such that
ω̂ ◦RϵA = Rω. Let us check that ω̂ is a morphism in RLB. We have

ϵW ◦ Lω̂ ◦ LRϵA = ϵW ◦ LRω = ω ◦ ϵLRA = ω ◦ LRϵA.

Since LRϵA is an epimorphism, we get ϵW ◦ Lω̂ = ω. Thus

RϵW ◦RLω̂ = Rω = ω̂ ◦RϵA

so that ω̂ is a morphism in RLB i.e. it defines a morphism ω1 : KA→ KW in RLB
such that Uω1 = ω̂. Since K is full there is a morphism h : A → W such that
ω1 = Kh. Then, from ω̂ ◦RϵA = Rω, we have

UKh ◦ UKϵA = UKω

so that, since U and K are both faithful, we get

h ◦ ϵA = ω.

Let us check that h is the unique morphism with this property. Let h′ : A→W be
such that h′ ◦ ϵA = ω. By applying R we get Rh′ ◦RϵA = Rω. Since ω̂ ◦RϵA = Rω
and RϵA is an epimorphism, we get Rh′ = ω̂. Thus

UKh′ = Rh′ = ω̂ = UKh

whence h′ = h.
Conversely, suppose that

LRLRA
LRϵA

⇒
ϵLRA

LRA
ϵA−→ A

is a coequalizer and let us prove that K : A → RLB is full and faithful. Let
f : KA→ KA′ be a morphism in RLB. Then Uf : RA→ RA′ is such that

(6.2) RϵA′ ◦RLUf = Uf ◦RϵA.

Then

ϵA′ ◦ LUf ◦ LRϵA = ϵA′ ◦ L [Uf ◦RϵA] = ϵA′ ◦ L [RϵA′ ◦RLUf ]
= ϵA′ ◦ LRϵA′ ◦ LRLUf
= ϵA′ ◦ ϵLRA′ ◦ LRLUf
= ϵA′ ◦ LUf ◦ ϵLRA

so that there is a unique morphism f̂ : A→ A′ such that f̂ ◦ ϵA = ϵA′ ◦ LUf. Thus

UKf̂ = Rf̂ = Rf̂ ◦RϵA ◦ ηRA = RϵA′ ◦RLUf ◦ ηRA (6.2)
= Uf ◦RϵA ◦ ηRA = Uf
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so that Kf̂ = f i.e. K is full. Let g, g′ : A → A′ be morphisms in A such that
Kg = Kg′. Then Rg = Rg′. Thus LRg = LRg′ and hence

g ◦ ϵA = ϵA′ ◦ LRg = ϵA′ ◦ LRg′ = g′ ◦ ϵA.

Since ϵA is an epimorphism, we get that g = g′ i.e. K is faithful.

Remark 6.38. A functor R : A → B which has a left adjoint L : B → A for which
the corresponding comparison functor K : A → RLB

is full and faithful is called of descent type.

Theorem 6.39. Let (L : B → A, R : A → B) be an adjunction. Let η and ϵ be
the unit and counit of (L,R) respectively. Consider the comparison functor K :
A → RLB. Set S := {(Lµ, ϵLB) | (B, µ : RLB → B) ∈ RLB} . Then the following
assertions are equivalent.

(a) K has a left adjoint, say Λ,
(b) For each element in S we can choose a specific coequalizer in A.
Assume that (b) holds.
Then, for every (B, µ) ∈ RLB, Λ (B, µ) is defined to be the coequalizer

LRLB
Lµ

⇒
ϵLB

LB
π(B,µ)−→ Λ (B, µ)

and for every morphism f : (B, µ) → (B′, µ′) the morphism Λ (f) : Λ (B, µ) →
Λ (B′, µ′) is uniquely defined by

Λ (f) ◦ π (B, µ) = π (B′, µ′) ◦ LU (f) .

Moreover the unit η1 and the counit ϵ1 of the adjunction (Λ, K) are uniquely defined
by

(6.3) Uη1 (B, µ) ◦ µ = Rπ (B, µ) ,

(6.4) ϵ1A ◦ πKA = ϵA,

and we have

(6.5) π (B, µ) = ϵΛ (B, µ) ◦ LUη1 (B, µ) .

Furthermore, Λ is full and faithful if and only if R preserves coequalizers of elements
in S.

Proof. Let U : RLB → B be the forgetful functor. Then U◦K = R. Let (B, µ : RLB → B) ∈
RLB and consider the pair

LRLB
Lµ

⇒
ϵLB

LB.
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Assume that (Lµ, ϵLB) has a specific coequalizer that will be denoted by (Λ (B, µ) , π (B, µ) : LB → Λ (B, µ)) .
Let f : (B, µ)→ (B′, µ′) be a morphism in RLB. Then U (f) : B → B′ is such that

U (f) ◦ µ = µ′ ◦RLU (f)

so that
LU (f) ◦ Lµ = Lµ′ ◦ LRLU (f) .

Moreover, by naturality of the counit we have

LU (f) ◦ ϵLB = ϵLB′ ◦ LRLU (f) .

Thus

π (B′, µ′) ◦ LU (f) ◦ Lµ = π (B′, µ′) ◦ Lµ′ ◦ LRLU (f)

= π (B′, µ′) ◦ ϵLB′ ◦ LRLU (f)

= π (B′, µ′) ◦ LU (f) ◦ ϵLB

so that there is a unique morphism Λ (f) : Λ (B, µ)→ Λ (B′, µ′) such that

Λ (f) ◦ π (B, µ) = π (B′, µ′) ◦ LU (f) .

Let f ′ : (B′, µ′)→ (B′′, µ′′) be a morphism in RLB. Then

Λ (f ′) ◦ Λ (f) ◦ π (B, µ) = Λ (f ′) ◦ π (B′, µ′) ◦ LU (f)

= π (B′′, µ′′) ◦ LU (f ′) ◦ LU (f)

= π (B′′, µ′′) ◦ LU (f ′ ◦ f)
= Λ (f ′ ◦ f) ◦ π (B, µ) .

Since π (B, µ) is an epimorphism, we obtain Λ (f ′) ◦ Λ (f) = Λ (f ′ ◦ f) . Moreover

Λ
(
Id(B,µ)

)
◦ π (B, µ) = π (B, µ) ◦ LU

(
Id(B,µ)

)
= π (B, µ)

so that Λ
(
Id(B,µ)

)
= IdΛ(B,µ). Let us check that (Λ, K) is an adjunction. We produce

the unit and counit of this adjunction.
By Lemma 6.10, we have the following coequalizer in B

RLRLB
RLµ

⇒
RϵLB

RLB
µ−→ B.

Since π (B, µ) coequalizes (Lµ, ϵLB), we have thatRπ (B, µ) coequalizes (RLµ,RϵLB).
Then there is a unique map α (B, µ) : B → RΛ (B, µ) such that

(6.6) α (B, µ) ◦ µ = Rπ (B, µ) .

Let us check that α (B, µ) is a morphism in RLB. We have

ϵΛ (B, µ) ◦ Lα (B, µ) = ϵΛ (B, µ) ◦ Lα (B, µ) ◦ Lµ ◦ LηB = ϵΛ (B, µ) ◦ LRπ (B, µ) ◦ LηB
= π (B, µ) ◦ ϵLB ◦ LηB = π (B, µ)
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so that

(6.7) ϵΛ (B, µ) ◦ Lα (B, µ) = π (B, µ)

and hence

RϵΛ (B, µ) ◦RLα (B, µ) = Rπ (B, µ) = α (B, µ) ◦ µ

i.e. α (B, µ) is a morphism in RLB. Thus α (B, µ) defines a morphism η1 (B, µ) :
(B, µ) → KΛ (B, µ) such that U (η1 (B, µ)) = α (B, µ). Note that from (6.6) one
gets (6.3). Let us check that η1 (B, µ) is natural. Let f : (B, µ) → (B′, µ′) be a
morphism in RLB. Then

RΛf ◦ α (B, µ) ◦ µ = RΛf ◦Rπ (B, µ) = Rπ (B′, µ′) ◦RLUf
= α (B′, µ′) ◦ µ′ ◦RLUf
= α (B′, µ′) ◦ U (f) ◦ µ

so that

RΛf ◦ α (B, µ) = α (B′, µ′) ◦ Uf

whence

KΛf ◦ η1 (B, µ) = η1 (B′, µ′) ◦ f.

Now since U (η1 (B, µ)) = α (B, µ), from (6.7) we deduce (6.5).

We have seen that for all B ∈ B we have an equalizer

LRLB
Lµ

⇒
ϵLB

LB
π(B,µ)−→ Λ (B, µ) .

Apply this to B = KA for all A ∈ A to get the coequalizer

LRLRA
LRϵA

⇒
ϵLRA

LRA
πKA−→ ΛKA.

By naturality of ϵ, we have that ϵA coequalizes (LRϵA, ϵLRA) so that there is a
unique morphism ϵ1A : ΛKA → A such that (6.4) holds. Let us check that ϵ1A is
natural in A. Let g : A→ A′ be a morphism in A. Then

g ◦ ϵ1A ◦ πKA = g ◦ ϵA = ϵA′ ◦ LRg
= ϵ1A′ ◦ πKA′ ◦ LRg
= ϵ1A′ ◦ πKA′ ◦ LUKg
= ϵ1A′ ◦ ΛKg ◦ πKA.

Since πKA is an epimorphism, we get

g ◦ ϵ1A = ϵ1A′ ◦ ΛKg.
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For (B, µ : RLB → B) ∈ RLB,

ϵ1Λ (B, µ) ◦ Λη1 (B, µ) ◦ π (B, µ)
= ϵ1Λ (B, µ) ◦ πKΛ (B, µ) ◦ LUη1 (B, µ)
= ϵ1Λ (B, µ) ◦ πKΛ (B, µ) ◦ Lα (B, µ)

= ϵΛ (B, µ) ◦ Lα (B, µ)
(6.7)
= π (B, µ)

so that
ϵ1Λ (B, µ) ◦ Λη1 (B, µ) = IdΛ(B,µ).

For all A ∈ A,

UKϵ1A ◦ Uη1KA
= UKϵ1A ◦ Uη1KA ◦RϵA ◦ ηRA
= Rϵ1A ◦ αKA ◦RϵA ◦ ηRA

(6.6)
= Rϵ1A ◦RπKA ◦ ηRA

(6.4)
= RϵA ◦ ηRA

= IdRA.

Thus
Kϵ1A ◦ η1KA = IdKA.

We have so proved that (Λ, K) is an adjuntion.
Conversely, assume that K has a left adjoint Λ. For (B, µ) in RLB, we set

π (B, µ) := ϵΛ (B, µ) ◦ LUη1 (B, µ) .

Let us check that

LRLB
Lµ

⇒
ϵLB

LB
π(B,µ)−→ Λ (B, µ)

is a coequalizer. Note that µ : RLB → B is a morphism in RLB

π (B, µ) ◦ Lµ = ϵΛ (B, µ) ◦ LUη1 (B, µ) ◦ Lµ
= ϵΛ (B, µ) ◦ L

[
Uη1 (B, µ) ◦ µ

]
η1(B,µ)∈RLB

= ϵΛ (B, µ) ◦ L
[
RϵΛ (B, µ) ◦RLUη1 (B, µ)

]
= ϵΛ (B, µ) ◦ LRϵΛ (B, µ) ◦ LRLUη1 (B, µ)
= ϵΛ (B, µ) ◦ ϵLRΛ (B, µ) ◦ LRLUη1 (B, µ)
= ϵΛ (B, µ) ◦ LUη1 (B, µ) ◦ ϵLB
= π (B, µ) ◦ ϵLB

Let ζ : LB → Z be a morphism in A which equalizes (Lµ, ϵLB) . Set

ζ̂ := Rζ ◦ ηB : B → RZ.
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Let us check that ζ̂ is a morphism in RLB. We have

(6.8) ϵZ ◦ Lζ̂ = ϵZ ◦ LRζ ◦ LηB = ζ ◦ ϵLB ◦ LηB = ζ

so that

RϵZ ◦RLζ̂ (6.8)
= Rζ = Rζ ◦RϵLB ◦ ηRLB = R (ζ ◦ ϵLB) ◦ ηRLB

= R (ζ ◦ Lµ) ◦ ηRLB = Rζ ◦RLµ ◦ ηRLB = Rζ ◦ ηB ◦ µ = ζ̂ ◦ µ

Hence ζ̂ : B → RZ defines a morphism ϑ : (B, µ)→ KZ such that Uϑ = ζ̂. Then(
ϵ1Z ◦ Λϑ

)
◦ π (B, µ) = ϵ1Z ◦ Λϑ ◦ ϵΛ (B, µ) ◦ LUη1 (B, µ)

= ϵZ ◦ LRϵ1Z ◦ LRΛϑ ◦ LUη1 (B, µ)
= ϵZ ◦ LRϵ1Z ◦ LUKΛϑ ◦ LUη1 (B, µ)
= ϵZ ◦ LUKϵ1Z ◦ LUη1KZ ◦ LUϑ
= ϵZ ◦ Lζ̂

(6.8)
= ζ

so that (ϵ1Z ◦ Λϑ) ◦ π (B, µ) = ζ. Let us check that the unique morphism ϕ :
Λ (B, µ)→ Z such that ϕ ◦ π (B, µ) = ζ is exactly ϵ1Z ◦Λϑ. Consider the canonical
isomorphism Φ : A (Λ (B, µ) , Z)→ RLB ((B, µ) , KZ) ,Φ (x) = Kx◦η1 (B, µ). Thus,
in order to prove that ϕ = ϵ1Z ◦ Λϑ it suffices to check that Φ (ϕ) = Φ (ϵ1Z ◦ Λϑ)
i.e.

Kϕ ◦ η1 (B, µ) = Kϵ1Z ◦KΛϑ ◦ η1 (B, µ) .

Note that the latter term is Kϵ1Z ◦KΛϑ ◦ η1 (B, µ) = Kϵ1Z ◦ η1KZ ◦ϑ = ϑ so that
we have to prove that

Kϕ ◦ η1 (B, µ) = ϑ.

or equivalently

UKϕ ◦ Uη1 (B, µ) = ζ̂ .

Consider the canonical isomorphism Θ : A (LB,Z)→ B (B,RZ) ,Θ(y) = Ry ◦ ηB.

Since ζ̂ := Rζ ◦ ηB = Θ(ζ), in order to prove the last displayed equality it suffices
to check that

Θ−1
[
UKϕ ◦ Uη1 (B, µ)

]
= ζ

i.e. that ϵZ ◦ L [UKϕ ◦ Uη1 (B, µ)] = ζ. We have

ϵZ ◦ L
[
UKϕ ◦ Uη1 (B, µ)

]
= ϵZ ◦ LRϕ ◦ LUη1 (B, µ)
= ϕ ◦ ϵΛ (B, µ) ◦ LUη1 (B, µ) = ϕ ◦ π (B, µ) = ζ.

We have so proved that (Λ (B, µ) , π (B, µ)) is a coequalizer for (Lµ, ϵLB) .

Let us prove the last part of the statement.
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Assume that R preserves coequalizers of elements in S and let us prove that Λ
is full and faithful i.e. that η1 (B, µ) is an isomorphism for every (B, µ) ∈ RLB.
Consider the following coequalizer

LRLB
Lµ

⇒
ϵLB

LB
π(B,µ)−→ Λ (B, µ)

By assumption we have a coequalizer

RLRLB
RLµ

⇒
RϵLB

RLB
Rπ(B,µ)−→ RΛ (B, µ) .

Since µ coequalizes (RLµ,RϵLB) , there is a unique morphism ξ : RΛ (B, µ) → B
such that ξ ◦Rπ (B, µ) = µ. Let α (B, µ) = Uη1 (B, µ). Then

IdB = µ ◦ ηB = ξ ◦Rπ (B, µ) ◦ ηB (6.3)
= ξ ◦ α (B, µ) ◦ µ ◦ ηB = ξ ◦ .

Moroever

α (B, µ) ◦ ξ ◦Rπ (B, µ) = α (B, µ) ◦ µ (6.3)
= Rπ (B, µ) .

Since Rπ (B, µ) is an epimorphism, we get α (B, µ) ◦ ξ = IdRΛ(B,µ). Therefore
α (B, µ) = Uη1 (B, µ) is an isomorphism. By Lemma 6.35 we deduce that η1 (B, µ)
is an isomorphism.

Conversely, assume that Λ is full and faithful. Let (B, µ : RLB → B) ∈ RLB
and consider the coequalizer

LRLB
Lµ

⇒
ϵLB

LB
π(B,µ)−→ Λ (B, µ) .

Let us check it is preserved by R. Clearly Rπ (B, µ) coequalizes (RLµ,RϵLB) .
Let δ : RLB → D be a morphism in B that coequalizes (RLµ,RϵLB). Set ξ :=
η1 (B, µ)−1 : KΛ (B, µ)→ (B, µ) and let α (B, µ) = Uη1 (B, µ). Then

[δ ◦ ηB ◦ Uξ] ◦Rπ (B, µ)
(6.3)
= [δ ◦ ηB ◦ Uξ] ◦ α (B, µ) ◦ µ

= δ ◦ ηB ◦ µ = δ ◦RLµ ◦ ηRLB = δ ◦RϵLB ◦ ηRLB = δ.

Let now ω : RΛ (B, µ)→ D be a morphism such that ω ◦Rπ (B, µ) = δ. Then

δ ◦ ηB ◦ Uξ

= ω ◦Rπ (B, µ) ◦ ηB ◦ Uξ (6.3)
= ω ◦ α (B, µ) ◦ µ ◦ ηB ◦ Uξ

= ω ◦ α (B, µ) ◦ Uξ = ω ◦ Uη1 (B, µ) ◦ Uξ = ω.

Therefore (RΛ (B, µ) , Rπ (B, µ)) is the coequalizer of (RLµ,RϵLB).



6.3. ON BECK’S THEOREM 105

Corollary 6.40. Let (L : B → A, R : A → B) be an adjunction. Let η and ϵ be the
unit and counit of (L,R) respectively. Consider the comparison functor K : A →
RLB and assume that (2) in Theorem 6.39 holds and denote by Λ : RLB → A the
left adjoint of K constructed therein. Let U : RLB → B be the forgetful functor and
let F : B →RLB be the free functor. Then we have

UK = R, KL = F and ΛF = L.

Moreover, for all A ∈ A,

(ΛKA, πKA) = CoequA (LRϵA, ϵLRA) .

Proof. For every A ∈ A, we have KA = (RA,RϵA) and for every B ∈ B, we have
FB = (RLB,RϵLB). Hence the first two equalities are trivial. Now, by Lemma
6.9, (LB,LRLRLB,LRLB, ϵLB,LRϵLB, ϵLRLB,LηB,LRLηB) is a contractible
coequalizer. In diagram:

LRϵLB−→

LRLRLB
LRLηB← LRLB

ϵLB

�
LηB

LB

ϵLRLB−→

.

In particular (LB, ϵLB) is the coequalizer of

LRLRLB
LRϵLB

⇒
ϵLRLB

LRLB.

By the construction of Λ given in Theorem 6.39, we deduce that ΛFB = LB, for
every B ∈ B, and that

(ΛKA, πKA) = CoequA (LRϵA, ϵLRA), for every A ∈ A.

Theorem 6.41 (Beck). [BLV, Theorem 2.1] Let (L : B → A, R : A → B) be an
adjunction. Let η and ϵ be the unit and counit of (L,R) respectively. Consider the
comparison functor K : A → RLB. The following assertions are equivalent:

(1) K is a category isomorphism.
(2) K is an equivalence and for any isomorphism f : RX → B in the category

B there exists a unique pair (A, g : X → A) , where A is an object in A and g a
morphism in A, such that RA = B and Rg = f .

Proof. Let U : RLB → B be the forgetful functor. Note that both in (1) and (2) the
functor K is, in particular, an equivalence so that, in view of Proposition 6.37 and
Theorem 6.39 we have that

• for every A ∈ A we have that (A, ϵA) = CoequA (LRϵA, ϵLRA),

• each element in S := {(Lµ, ϵLB) | (B, µ : RLB → B) ∈ RLB} has a coequal-
izer in A,
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• R preserves coequalizers of elements in S.

(1) ⇒ (2). Let Λ be a left adjoint of K such that ΛK = IdA and KΛ =
Id

RLB. Note that the unit and counit of the adjunction (Λ, K) are the identity
funtorial morphism ϵ1 : ΛK → IdA and η1 : Id

RLB → KΛ. Let f : RX → B
be an isomorphism in the category B. It is clear that B can be regarded as an
object in RLB via µ := f ◦ RεX ◦ RLf−1 : RLB → B. Moreover f defines a
morphism f̂ : KX → (B, µ) such that Uf̂ = f . Clearly f̂ is an isomorphism. Now
(B, µ) = KΛ (B, µ) = KA where A := Λ (B, µ). Thus B = UKA = RA. Set

g := Λf̂ : X → A. Then Rg = UKΛf̂ = Uf̂ = f . Let now (A′, g′ : X → A′) be

another pair such that RA′ = B and Rg′ = f. Since f̂ is an isomorphism, we have
that g = Λf̂ is an isomorphism. Consider

τ := g′ ◦ g−1 : A→ A′

Then
UKτ = Rτ = Rg′ ◦R

(
g−1
)
= f ◦ (Rg)−1 = IdRA.

We have f = Uf̂ = UKΛf̂ = RΛf̂ so that

RϵA′◦RLf = R (ϵA′ ◦ Lf) = R
(
ϵA′ ◦ LRΛf̂

)
= R

(
Λf̂ ◦ ϵX

)
= RΛf̂◦RϵX = f◦RϵX = µ◦RLf.

Since RLf is an isomorphism we get RϵA′ = µ so that

KA′ = (RA′, RϵA′) = (B, µ) = KΛ (B, µ) = KA

and hence A′ = A. Since UKτ = IdRA = UKIdA, we get τ = IdA so that g′ = g.
(2) ⇒ (1). Since K has a left adjoint, by Theorem 6.39 the class S has a

specific coequalizer. Thus we can consider the left adjoint Λ of K as constructed
in Theorem 6.39. Let η1 and ϵ1 be the unit and counit of (Λ, K) respectively.
Let (B, µ : RLB → B) ∈ RLB. Let f (B, µ) : RΛ (B, µ) → B denote the inverse of
Uη1 (B, µ). By hypothesis there exists a unique pair (Λ′ (B, µ) , g (B, µ) : Λ (B, µ)→ Λ′ (B, µ)) ,
where Λ′ (B, µ) is an object inA and g (B, µ) a morphism inA, such thatRΛ′ (B, µ) =
B and Rg (B, µ) = f (B, µ). Since f (B, µ) is an isomorphism and R = UK, we have
that g (B, µ) is an isomorphism too.

By (6.3) and (6.5), we have

RϵΛ (B, µ) ◦RLUη1 (B, µ) = Uη1 (B, µ) ◦ µ

so that
f (B, µ) ◦RϵΛ (B, µ) = µ ◦RLf (B, µ) .

Using this equality we get

RϵΛ′ (B, µ) ◦RLf (B, µ) = R [ϵΛ′ (B, µ) ◦ Lf (B, µ)] = R [ϵΛ′ (B, µ) ◦ LRg (B, µ)] = R [g (B, µ) ◦ ϵΛ (B, µ)]

= Rg (B, µ) ◦RϵΛ (B, µ) = f (B, µ) ◦RϵΛ (B, µ) = µ ◦RLf (B, µ) .
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Since f (B, µ) is an isomorphism, we obtain RϵΛ′ (B, µ) = µ so that

KΛ′ (B, µ) = (RΛ′ (B, µ) , RϵΛ′ (B, µ)) = (B, µ) .

Let A ∈ A and set α := ϵ1A ◦ (gKA)−1 : Λ′KA → A. We have that RΛ′KA =
UKΛ′KA = UKA = RA and

Rα = Rϵ1A◦R (gKA)−1 = Rϵ1A◦fKA−1 = Rϵ1A◦Uη1KA = U
[
Kϵ1A ◦ η1KA

]
= IdRA.

By uniqueness in the assumption, we get (Λ′KA,α) = (A, IdA).
For all h : (B, µ)→ (B′, µ′) , set

Λ′h := g (B′, µ′) ◦ Λh ◦ g (B, µ)−1 .

Then we get a functor Λ′ : RLB → A which is an inverse of K.

Proposition 6.42. [Li, Proposition 3, page 83] Let (A,m : AA→ A, u : IdC → A)
be a monad on a category C and let f, g : (M,µ) → (N, ν) be a pair of morphisms
in AC. Let U : AC → C be the forgetful functor and assume that

1) (Uf, Ug) has a coequalizer (C, c : N → C) in C.
2) (AC,Ac) = CoequC (AUf,AUg) .
3) AAc is an epimorphism in C.
Then there is a unique morphism τ : AC → C such that c◦ν = τ ◦Ac. Moroever

(C, τ) ∈ AC, c defines a morphism ĉ : (N, ν) → (C, τ) in AC such that Uĉ = c and
((C, τ) , ĉ) = Coequ

AC (f, g).

Proof. Let us consider

AM
AUf

⇒
AUg

AN
Ac→ AC

µ ↓ ν ↓

M
Uf

⇒
Ug

N
c→ C

We have

c ◦ ν ◦ AUf = c ◦ Uf ◦ µ = c ◦ Ug ◦ µ = c ◦ ν ◦ AUg.

Since (AC,Ac) = CoequC (AUf,AUg) there exists a unique morphism τ : AC → C
such that

τ ◦ Ac = c ◦ ν.
Let us prove that (C, τ) ∈ AC. We have

bgτ ◦ Aτ ◦ AAc = τ ◦ Ac ◦ Aν = c ◦ ν ◦ Aν
= c ◦ ν ◦mN = τ ◦ Ac ◦mN = τ ◦mC ◦ AAc.

Since AAc is an epimorphism in C, we get τ ◦ Aτ = τ ◦mC. Moreover we have

τ ◦ uC ◦ c = τ ◦ Ac ◦ uN = c ◦ ν ◦ uN = c
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and since c is an epimorphism, we get τ ◦ uC = IdC so that (C, τ) ∈ AC.
Since τ ◦ Ac = c ◦ ν, c defines a morphism ĉ : (N, ν) → (C, τ) in AC such that

Uĉ = c. Let us check that ((C, τ) , ĉ) = Coequ
AC (f, g). We have

U (ĉ ◦ f) = Uĉ ◦ Uf = c ◦ Uf = c ◦ Ug = Uĉ ◦ Ug = U (ĉ ◦ g)

so that ĉ ◦ f = ĉ ◦ g. Let ω : (N, ν) → (Z, ζ) be a morphism in AC such that
ω ◦ f = ω ◦ g. Then Uω coequalizes (Uf, Ug) so that there is a unique morphism
w : C → Z such that w ◦ c = Uω. We have

w ◦ τ ◦ Ac = w ◦ c ◦ ν = Uω ◦ ν = ζ ◦ AUω = ζ ◦ Aw ◦ Ac.

Since Ac is an epimorphism, we obtain w ◦ τ = ζ ◦Aw so that w defines a morphism
ŵ : (C, τ)→ (Z, ζ) such that Uŵ = w. We have

U (ŵ ◦ ĉ) = Uŵ ◦ Uĉ = w ◦ c = Uω

so that ŵ ◦ ĉ = ω. Let us check that ŵ is unique. Let α : (C, τ) → (Z, ζ) be a
morphism in AC such that α ◦ ĉ = ω. Then

Uα ◦ c = U (α ◦ ĉ) = Uω = w ◦ c = Uŵ ◦ c.

Since c is an epimorphism we get Uα = Uŵ and hence α = ŵ.

Theorem 6.43 (Beck). [BLV, Theorem 2.1 page 5] Let (L : B → A, R : A → B) be
an adjunction. Let η and ϵ be the unit and counit of (L,R) respectively. Consider
the comparison functor K : A → RLB. The following assertions are equivalent:

(1) K is an equivalence.
(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer pair

we can choose a specific coequalizer in A, which is preserved by R.
(3) R reflects isomorphisms and for every element in S := {(Lµ, ϵLB) | (B, µ : RLB → B) ∈ RLB}

we can choose a specific coequalizer in A which is preserved by R.
(4) For every A ∈ A we have that (A, ϵA) = CoequA (LRϵA, ϵLRA). For every

element in S := {(Lµ, ϵLB) | (B, µ : RLB → B) ∈ RLB} we can choose a specific
coequalizer in A which is preserved by R.

Proof. (1)⇔ (4) . It follows by Proposition 6.37 and Theorem 6.39.
(1) ⇒ (2). Let Λ : RLB → A be a left adjoint of K. Let η1 and ϵ1 be the

unit and counit of (Λ, K) respectively. Assume that f : A → A′ is a morphism
in A such that Rf is an isomorphism. Since Rf = UKf is an isomorphism, so is
Kf : KA→ KA′. Since ϵ1A′ ◦ΛKf = f ◦ ϵ1A and the counit is an isomorphism, we
get that f is an isomorphism. Let (d0, d1) from A to A′ be a reflexive R-contractible
coequalizer pair. Since the pair is reflexive there is a morphism e : A′ → A such
that d0 ◦e = d1 ◦e = IdA′ . Since it is an R-contractible coequalizer pair, there exists
C ∈ C and morphism v : RA′ → RA, c : RA′ → C and u : C → RA′

Rd0−→
RA

v← RA′
c

�
u

C

Rd1−→

.
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such that

Rd0 ◦ v = IdRA′ ,

Rd1 ◦ v = u ◦ c,
c ◦ u = IdC ,

c ◦Rd0 = c ◦Rd1.

In particular (C, c) = CoequB (Rd0, Rd1) = CoequB (UKd0, UKd1) . Since

RA
Rd0
⇒
Rd1

RA′ c→ C

is an R-contractible coequalizer pair, in view of Proposition 6.8 and Proposition6.7,
it is preserved by any functor.

RLRA
RLRd0
⇒

RLRd1

RLRA′ RLc→ RLC

In particular (RLC,RLc) = CoequB (RLRd0, RLRd1) = CoequB (RLUKd0, RLUKd1)
and also RLRLc is an epimorphism.

Apply Proposition 6.42 to the monad (RL,RϵL, η) on the category B and to the
pair Kd0, Kd1 : KA→ KA′. Thus

there is a unique morphism m : RLC → C such that

m ◦RLc = c ◦RϵA′.

Moreover (C,m) ∈ RLB, c defines a morphism ĉ : KA′ → (C,m) in RLB such
that Uĉ = c and ((C,m) , ĉ) = Coequ

RLB (Kd0, Kd1). Since Λ is an equivalence
we have that (Λ (C,m) ,Λĉ) = CoequA (ΛKd0,ΛKd1). Set A′′′ := Λ (C,m) and
γ := Λĉ ◦ (ϵ1A′)

−1
: A′ → A′′′. Since ϵ1A′ ◦ ΛKdi = di ◦ ϵ1A and ϵ1A is an

isomorphism, it is clear that (A′′′, γ) = CoequA (d0, d1).
We have

Uη1 (C,m)−1 ◦Rγ = Uη1 (C,m)−1 ◦RΛĉ ◦R
(
ϵ1A′)−1

= Uη1 (C,m)−1 ◦ UKΛĉ ◦
(
Rϵ1A′)−1

= Uĉ ◦
(
Uη1KA′)−1 ◦

(
UKϵ1A′)−1

= Uĉ = c.

so that

(6.9) Rγ = Uη1 (C,m) ◦ c.

Since (C,m) ∈ RLB, we have an isomorphism

η1 (C,m) : (C,m)→ KΛ8 (C,m) = (RΛ (C,m) , RϵΛ (C,m)) = (RA′′′, RϵA′′′) .



110 CHAPTER 6. MONADS

Since (C, c) is a coequalizator of (Rd0, Rd1) in B, by (6.9) we deduce that (RA′′′, Rγ)
is a coequalizator of (Rd0, Rd1) in B.

(2) ⇒ (3). Let (B, µ : RLB → B) ∈ RLB. By Lemma 6.10, (ϵLB,Lµ) is a
reflexive R-contractible coequalizer pair. By assumption, (ϵLB,Lµ) has a specific
coequalizer in A, which is preserved by R.

(3) ⇒ (4) .Let A ∈ A. Then (B, µ) := (RA,RϵA) ∈ RLB. By assumption
(ϵLRA,LRϵA) has a specific coequalizer (C, c) in A, which is preserved by R. Since
ϵA coequalizes (ϵLRA,LRϵA) , there is a unique morphism h : C → A such that
h ◦ c = ϵA. Then Rh ◦ Rc = RϵA. By Corollary 6.11 and Proposition 6.7, we know
that (RA,RϵA) is the coequalizer of (RϵLRA,RLRϵA) in B. Since also (RC,Rc) is
the coequalizer of (RϵLRA,RLRϵA) in B, we have that Rh is an isomorphism. Since
R reflects isomorphisms we obtain that h is an isomorphism too so that (A, ϵA) =
CoequA (LRϵA, ϵLRA).

Remark 6.44. A functor R : A → B which has a left adjoint L : B → A for which
the corresponding comparison functor K : A → RLB

is an equivalence of categories is called monadic ( tripleable in Beck’s terminology
[[Be, Definition 3, page 8]]). For this reason Theorem 6.43 is also called ”Beck’s
Precise Tripleability Theorem” (cfr.[BW, Theorem 3.14, page 101]).

6.4 Johnstone for Monads

Proposition 6.45 ([Appel] and [J]). Let A = (A,mA, uA) be a monad on a category
A and let B = (B,mB, uB) be a monad on a category B and let Q : A → B be a
functor. Then there is a bijection between the following collections of data

F functors Q̃ : AA → BB that are liftings of Q (i.e. BUQ̃ = QAU)

M functorial morphisms Φ : BQ→ QA such that

Φ ◦ (mBQ) = (QmA) ◦ (ΦA) ◦ (BΦ) and Φ ◦ (uBQ) = QuA

given by

a : F →M where a
(
Q̃
)
=
(
BUλBQ̃AF

)
◦ (BUBFQuA)

b : M→ F where BUb (Φ) = QAU and BUλBb (Φ) = (QAUλA) ◦ Φ
b : M→ F where b (Φ)

((
X,A µX

))
=
(
QX,

(
QAµX

)
◦ (ΦX)

)
and b (Φ) (f) = Q (f) .

Proof. Let Q̃ : AA → BB be a lifting of the functor Q : A → B (i.e. BUQ̃ = QAU).

Define a functorial morphism ϕ : BFQ→ Q̃AF as the composite

ϕ :=
(
λBQ̃AF

)
◦ (BFQuA)
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where uA : A → AUAF = A is also the unit of the adjunction (AF, AU) and λB :

BF BU → BB is the counit of the adjunction. Let now define

Φ
def
= BUϕ : BUBFQ = BQ→ BUQ̃AF = QAUAF = QA.

We have to prove that such a Φ satisfies Φ ◦ (mBQ) = (QmA) ◦ (ΦA) ◦ (BΦ) and
Φ ◦ (uBQ) = QuA. First, let us compute

(QmA) ◦ (ΦA) ◦ (BΦ) = (QmA) ◦
(
BUλBQ̃AFA

)
◦ (BUBFQuAA)

◦
(
BBUλBQ̃AF

)
◦ (BBUBFQuA)

AUλAAF= (QAUλAAF ) ◦
(
BUλBQ̃AFA

)
◦ (BUBFQuAA) ◦

(
BBUλBQ̃AF

)
◦ (BBUBFQuA)

Q̃lifting
=

(
BUQ̃λAAF

)
◦
(
BUλBQ̃AFA

)
◦ (BUBFQuAA) ◦

(
BBUλBQ̃AF

)
◦ (BBUBFQuA)

= BU
[(
Q̃λAAF

)
◦
(
λBQ̃AFA

)
◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

λB= BU
[(
λBQ̃AF

)
◦
(
BFBUQ̃λAAF

)
◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

Q̃lifting
= BU

[(
λBQ̃AF

)
◦ (BFQAUλAAF ) ◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

AUλAAF= BU
[(
λBQ̃AF

)
◦ (BFQmA) ◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

Amonad
=

(
BUλBQ̃AF

)
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

Q̃isBmod
=

(
BUλBQ̃AF

)
◦
(
mBBUQ̃AF

)
◦ (BBQuA)

mB=
(
BUλBQ̃AF

)
◦ (BQuA) ◦ (mBQ)

=
(
BUλBQ̃AF

)
◦ (BUBFQuA) ◦ (mBQ)

= (BUϕ) ◦ (mBQ)

= Φ ◦ (mBQ) .
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Moreover we have

Φ ◦ (uBQ) = (BUϕ) ◦ (uBQ)

=
(
BUλBQ̃AF

)
◦ (BUBFQuA) ◦ (uBQ)

uB=
(
BUλBQ̃AF

)
◦ (uBQAUAF ) ◦ (QuA)

Q̃lifting
=

(
BUλBQ̃AF

)
◦
(
uBBUQ̃AF

)
◦ (QuA)

(BF,BU)adj
= QuA.

Conversely, let Φ be a functorial morphism satisfying Φ ◦ (mBQ) = (QmA) ◦ (ΦA) ◦
(BΦ) and Φ ◦ (uBQ) = QuA. We define Q̃ : AA → BB by setting, for every(
X,A µX

)
∈ AA,

Q̃
((
X,A µX

))
=
(
QX,

(
QAµX

)
◦ (ΦX)

)
.

We have to check that
(
Q (X) ,

(
QAµX

)
◦ (ΦX)

)
∈ BB, that is

BµQ̃X ◦
(
BBµQ̃X

)
= BµQ̃X ◦ (mBQX) and BµQ̃X ◦ (uBQX) = QX.

We compute

BµQ̃X ◦
(
BBµQ̃X

)
=
(
QAµX

)
◦ (ΦX) ◦

(
BQAµX

)
◦ (BΦX)

Φ
=
(
QAµX

)
◦
(
QAAµX

)
◦ (ΦAX) ◦ (BΦX)

Xmodule
=

(
QAµX

)
◦ (QmAX) ◦ (ΦAX) ◦ (BΦX)

propertyofΦ
=

(
QAµX

)
◦ (ΦX) ◦ (mBQX)

= BµQ̃X ◦ (mBQX) .

Moreover we have

BµQ̃X ◦ (uBQX) =
(
QAµX

)
◦ (ΦX) ◦ (uBQX)

propertyofΦ
=

(
QAµX

)
◦ (QuAX)

Xmodule
= QX.

Now, let f :
(
X, AµX

)
→
(
Y, AµY

)
a morphism of left A-modules, that is a morphism

f : X → Y in A such that

AµY ◦ (Af) = f ◦ AµX .

We have to prove that Q̃ (f) : Q̃X =
(
QX,B µQX

)
→ Q̃Y =

(
QX,B µQY

)
is a

morphism of left B-modules. We set Q̃ (f) = Q (f) and we compute

BµQ̃Y ◦
(
BQ̃f

)
?
=
(
Q̃f
)
◦ BµQ̃X
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i.e. by definition of the functor Q̃

BµQY ◦ (BQf)
?
= (Qf) ◦ BµQX

BµQY ◦ (BQf) =
(
QAµY

)
◦ (ΦY ) ◦ (BQf)

Φ
=
(
QAµY

)
◦ (QAf) ◦ (ΦX)

fmorphA-mod
= (Qf) ◦

(
QAµX

)
◦ (ΦX)

= (Qf) ◦ BµQX .

Let now check that Q̃ is a lifting of Q. Let
(
X,A µX

)
∈ AA and compute

BUQ̃
((
X,A µX

))
= BU

(
QX,B µQX

)
= QX = QAU

((
X,A µX

))
and thus on the objects

BUQ̃ = QAU.

Let f :
(
X,A µX

)
→
(
Y,A µY

)
∈ AA be a morphism, we have

BUQ̃ (f) : QX → QY = QAU (f) : QX → QY.

Therefore Q̃ is a lifting of the functor Q.
We have to prove that it is a bijection. Let us start with Q̃ : AA → BB a lifting

of the functor Q : A → B. Then we construct Φ : BQ→ QA given by

Φ =
(
BUλBQ̃AF

)
◦ (BUBFQuA)

and using this functorial morphism we define a functor Q : AA → BB as follows: for
every

(
X,A µX

)
∈ AA

Q
((
X,A µX

))
=
(
QX,

(
QAµX

)
◦ (ΦX)

)
.

Since both Q̃ and Q are lifting of Q, we have that BUQ̃ = QAU = BUQ. We have

to prove that BU
(
λBQ

)
= BU

(
λBQ̃

)
. Let Z ∈ AA. We compute

BU
(
λBQZ

)
= (QAUλAZ) ◦

(
BUλBQ̃AFAUZ

)
◦ (BUBFQuAAUZ)

Q̃liftingQ
=

(
BUQ̃λAZ

)
◦
(
BUλBQ̃AFAUZ

)
◦ (BUBFQuAAUZ)

λB=
(
BUλBQ̃Z

)
◦
(
BUBF BUQ̃λAZ

)
◦ (BUBFQuAAUZ)

=
(
BUλBQ̃Z

)
◦ (BUBF B [QAUλAZ ◦QuAAUZ])

(uA,λA)adj
= BUλBQ̃Z.
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Conversely, let us start with a functorial morphism Φ : BQ → QA satisfying Φ ◦
(mBQ) = (QmA) ◦ (ΦA) ◦ (BΦ) and Φ ◦ (uBQ) = QuA. Then we construct a functor

Q̃ : AA → BB by setting, for every
(
X,A µX

)
∈ AA,

Q̃
((
X,A µX

))
=
(
QX,

(
QAµX

)
◦ (ΦX)

)
which lifts Q : A → B. Now, we define a functorial morphism Ψ : BQ→ QA given
by

Ψ =
(
BUλBQ̃AF

)
◦ (BUBFQuA) .

Then we have

Ψ =
(
BUλBQ̃AF

)
◦ (BUBFQuA)

defQ̃
= (QAUλAAF ) ◦ (ΦAF ) ◦ (BUBFQuA)

= (QmA) ◦ (ΦA) ◦ (BQuA)
Φ
= (QmA) ◦ (QAuA) ◦ Φ

Amonad
= Φ.

Corollary 6.46. Let X ,A be categories, let A = (A,mA, uA) be a monad on a cate-
gory A and let F : X → A be a functor. Then there exists a bijective correspondence
between the following collections of data:

H Left A-module actions AµF : AF → F

G Functors AF : X → AA such that AUAF = F ,

given by

ã : H → G where AUã
(
AµF

)
= F and AUλAã

(
AµF

)
= AµF i.e.

ã
(
AµF

)
(X) =

(
FX, AµFX

)
and ã

(
AµF

)
(f) = F (f)

b̃ : G → H where b̃ (AF ) = AUλAAF : AF → F.

Proof. Apply Proposition 6.45 to the case A = X ,B = A, A = IdX and B = A.
Then Q̃ = AF is the lifting of F and Φ = AµF satisfies AµF ◦(mAF ) =

AµF ◦
(
AAµF

)
and AµF ◦ (uAF ) = F that is

(
F, AµF

)
is a left A-module functor.

Corollary 6.47. Let (L,R) be an adjunction with L : B → A and R : A → B
and let A = (A,mA, uA) be a monad on B. Then there is a bijective correspondence
between the following collections of data

K Functors K : A → AB such that AU ◦K = R,
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L functorial morphism α : AR→ R such that (R,α) is a left module functor for
the monad A

given by

Φ : K→ L where Φ (K) = AUλAK : AR→ R

Ω : L→ K where Ω (α) (X) = (RX,αX) and AUΩ (α) (f) = R (f) .

Proof. Apply Corollary 6.46 to the case ”F” = R : A → B where (L,R) is an
adjunction with L : B → A and R : A → B and A = (A,mA, uA) a monad on B.

6.5 The comparison functor for monads

The dual version, for comonads, of this subsection can be found in [GT].

Proposition 6.48. Let (L,R) be an adjunction where L : B → A and R : A → B
with unit η and counit ϵ and let A = (A,mA, uA) be a monad on the category B.
There exists a bijective correspondence between the following collections of data:

M monad morphisms ψ : A = (A,mA, uA)→ RL = (RL,RϵL, η)

R functorial morphism r : LA→ L such that (L, r) is a right module functor for
the monad A

L functorial morphism l : AR → R such that (R, l) is a left module functor for
the monad A

given by

Θ : M→ R where Θ(ψ) = (ϵL) ◦ (Lψ)
Ξ : R→M where Ξ (r) = (Rr) ◦ (ηA)
Γ : M→ L where Γ (ψ) = (Rϵ) ◦ (ψR)
Λ : L→M where Λ (l) = (lL) ◦ (Aη) .

Proof. For a given ψ ∈M, we compute

Θ (ψ) ◦ (Θ (ψ)A) = (ϵL) ◦ (Lψ) ◦ (ϵLA) ◦ (LψA)
ϵ
= (ϵL) ◦ (ϵLRL) ◦ (LRLψ) ◦ (LψA)

ϵ,ψ
= (ϵL) ◦ (LRϵL) ◦ (Lψψ) ψmorphmon

= (ϵL) ◦ (Lψ) ◦ (LmA) = Θ (ψ) ◦ (LmA)

and

Θ (ψ) ◦ (LuA) = (ϵL) ◦ (Lψ) ◦ (LuA)
ψmorphmon

= (ϵL) ◦ (Lη) = L.
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Therefore we deduce that Θ (ψ) ∈ R. For a given r ∈ R, we compute

(RϵL) ◦ (Ξ (r) Ξ (r))
Ξ(r)
= (RϵL) ◦ (RLΞ (r)) ◦ (Ξ (r)A)

= (RϵL) ◦ (RLRr) ◦ (RLηA) ◦ (RrA) ◦ (ηAA)
ϵ
= (Rr) ◦ (RϵLA) ◦ (RLηA) ◦ (RrA) ◦ (ηAA)

(L,R)
= (Rr) ◦ (RrA) ◦ (ηAA) (L,r)

= (Rr) ◦ (RLmA) ◦ (ηAA)
η
= (Rr) ◦ (ηA) ◦mA = Ξ (r) ◦mA

and

Ξ (r) ◦ uA = (Rr) ◦ (ηA) ◦ uA
η
= (Rr) ◦ (RLuA) ◦ η

(L,r)
= η.

Therefore we deduce that Ξ (r) ∈M. For a given ψ ∈M, we compute

Γ (ψ) ◦ [AΓ (ψ)] = (Rϵ) ◦ (ψR) ◦ (ARϵ) ◦ (AψR)
ψ
= (Rϵ) ◦ (RLRϵ) ◦ (ψRLR) ◦ (AψR) ϵ,ψ= (Rϵ) ◦ (RϵLR) ◦ (ψψR)

ψmorphmon
= (Rϵ) ◦ (ψR) ◦ (mAR) = Γ (ψ) ◦ (mAR)

and
Γ (ψ) ◦ (uAR) = (Rϵ) ◦ (ψR) ◦ (uAR)

ψmorphmon
= (Rϵ) ◦ (ηR) = R.

Therefore we deduce that Γ (ψ) ∈ L. For a given l ∈ L, we compute

(RϵL) ◦ (Λ (l) Λ (l))
Λ(l)
= (RϵL) ◦ (Λ (l)RL) ◦ (AΛ (l))

= (RϵL) ◦ (lLRL) ◦ (AηRL) ◦ (AlL) ◦ (AAη)
l
= (lL) ◦ (ARϵL) ◦ (AηRL) ◦ (AlL) ◦ (AAη)

(L,R)
= (lL) ◦ (AlL) ◦ (AAη) (R,l)

= (lL) ◦ (mARL) ◦ (AAη)
mA= (lL) ◦ (Aη) ◦mA = Λ (l) ◦mA

and

Λ (l) ◦ uA = (lL) ◦ (Aη) ◦ uA
uA= (lL) ◦ (uARL) ◦ η

(R,l)
= η.

Therefore we deduce that Λ (l) ∈M. Let now ψ ∈M and let us calculate

ΞΘ (ψ) = (RϵL) ◦ (RLψ) ◦ (ηA) η
= (RϵL) ◦ (ηRL) ◦ ψ = ψ.

Let now r ∈ R and let us calculate

ΘΞ (r) = (ϵL) ◦ (LRr) ◦ (LηA) ϵ
= r ◦ (ϵLA) ◦ (LηA) = r.

Let now ψ ∈M and let us calculate

ΛΓ (ψ) = (RϵL) ◦ (ψRL) ◦ (Aη) ψ
= (RϵL) ◦ (RLη) ◦ ψ = ψ.

Let now l ∈ L and let us calculate

ΓΛ (l) = (Rϵ) ◦ (lLR) ◦ (AηR) l
= l ◦ (ARϵ) ◦ (AηR) = l.
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Theorem 6.49. Let (L,R) be an adjunction where L : B → A and R : A → B
and let A = (A,mA, uA) be a monad on the category B. There exists a bijective
correspondence between the following collections of data:

K Functors K : A → AB such that AU ◦K = R

M monad morphisms ψ : A = (A,mA, uA)→ RL = (RL,RϵL, η)

given by

Ψ : K→M where Ψ(K) = ([AUλAK]L) ◦ (Aη)
Υ : M→ K where Υ(ψ) (X) = (RX, (RϵX) ◦ (ψRX)) and Υ(ψ) (f) = Rf.

Proof. By Corollary 6.47, there exists a bijective correspondence between K and the
collection L of functorial morphisms α : AR → R such that (R,α) is a left module
functor for the monad A given by

Φ : K→ L where Φ (K) = AUλAK : AR→ R

Ω : L→ K where Ω (α) (X) = (RX,αX) and AUΩ (α) (f) = Rf.

By Proposition 6.48, there exists a bijective correspondence between L and the
collection M of monad morphisms ψ : A = (A,mA, uA)→ RL = (RL,RϵL, η) given
by

Λ : L→M where Λ (l) = (lL) ◦ (Aη)
Γ : M→ L where Γ (ψ) = (Rϵ) ◦ (ψR) .

We compute
(Λ ◦ Φ) (K) = (AUλAKL) ◦ (Aη) = Ψ (K)

and

[(Ω ◦ Γ) (ψ)] (X) = (RX, (RϵX) ◦ (ψRX)) = Υ (ψ) (Y )

[(Ω ◦ Γ) (ψ)] (f) = Rf = Υ(ψ) (f) .

Remark 6.50. When A = RL = (RL,RϵL, η) and ψ = IdRL the functor K =
Υ(ψ) : A → RLB such that RLU ◦K = R is called the Eilenberg-Moore comparison
functor.

Corollary 6.51. Let A = (A,mA, uA) and B = (B,mB, uB) be monads on a category
B. There exists a bijective correspondence between the following collections of data:

K Functors K : AB → BB such that BU ◦K = AU ,

M monad morphisms ψ : A→ B
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given by

Ψ : K →M where Ψ(K) = ([AUλAK] AF ) ◦ (AuA)
Υ : M→K where Υ(ψ) (X) = (AUX, (AUλAX) ◦ (ψAUX)) and Υ(ψ) (f) = AU (f) .

Proof. Apply Theorem 6.49 to the case ”R” = AU : AB → B and ”L” = AF : B →
AB and note that (RL,RϵL, η) = (AUAF, AUλAAF, uA) = (A,mA, uA).

Proposition 6.52. Let (L,R) be an adjunction where L : B → A and R : A → B,
let A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA) →
RL = (RL,RϵL, η) be a monad morphism. Let r = Θ(ψ) = (ϵL) ◦ (Lψ) and l =
Γ (ψ) = (Rϵ)◦(ψR). Then the isomorphism aX,Y : HomA (LY,X)→ HomB (Y,RX)
of the adjunction (L,R) induces an isomorphism

ã−,Y : EquHomA(LY ,−)

(
HomA (rY,−) ,HomA

(
LAµY ,−

))
→ HomAB

((
Y, AµY

)
, Kψ−

)
for every

(
Y, AµY

)
∈ AB.

Proof. Let

aX,Y : HomA (LY,X)→ HomB (Y,RX)

be the isomorphism of the adjunction (L,R), for every Y ∈ B and for every X ∈ A.
Recall that aX,Y (ξ) = (Rξ) ◦ (ηY ) and a−1

X,Y (ζ) = (ϵX) ◦ (Lζ) .
Let us check that we can apply Lemma 5.35 to the case Z = HomA (LY,−) , Z ′ =

HomB (Y,R−) , W = HomA (LAY,−) , W ′ = HomB (AY,R−) , a = HomA (rY,−) ,
b = HomA

(
LAµY ,−

)
, a′ = (Γ (ψ)−)◦(A−), b′ = HomB

(
AµY , R−

)
, E = EquFun

(
HomA (rY,−) ,HomA

(
LAµY ,−

))
and
E ′ = EquFun

(
(Γ (ψ)−) ◦ (A−) ,− ◦ AµY

)
and φ = a−,Y , ψ = a−,AY , .

E = EquFun

(
HomA (rY,−) ,HomA

(
LAµY ,−

)) ã−,Y //

i
��

E ′ = EquFun

(
(Γ (ψ)−) ◦ (A−) ,− ◦ AµY

)
i′

��
Z = HomA (LY,−)

a−,Y //

b=HomA(LAµY ,−)
��

a=HomA(rY,−)

��

Z ′ = HomB (Y,R−)
b′=HomB(AµY ,R−)
��

a′=(Γ(ψ)−)◦(A−)
��

W = HomA (LAY,−)
a−,AY //W ′ = HomB (AY,R−)

E = EquFun

(
HomA (rY,−) ,HomA

(
LAµY ,−

)) ã−,Y99K E ′ = EquFun

(
(Γ (ψ)−) ◦ (A−) ,− ◦ AµY

)
↓ i ↓ i′

Z = HomA (LY,−)
a−,Y−→ Z ′ = HomB (Y,R−)

a = HomA (rY,−) � b = HomA
(
LAµY ,−

)
a′ = (Γ (ψ)−) ◦ (A−) � b′ = HomB

(
AµY , R−

)
W = HomA (LAY,−)

a−,AY−→ W ′ = HomB (AY,R−)
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For every
(
Y, AµY

)
∈ AB, X ∈ A and for every ξ ∈ HomA (LY,X) , since l = Γ (ψ) =

(Rϵ) ◦ (ψR) and r = Θ(ψ) = (ϵL) ◦ (Lψ) , we have

([(Γ (ψ)X) ◦ (A−)] ◦ aX,Y ) (ξ)
defa
= [(Γ (ψ)X) ◦ (A−)] ((Rξ) ◦ (ηY ))

= (Γ (ψ)X) ◦ (ARξ) ◦ (AηY ) = (RϵX) ◦ (ψRX) ◦ (ARξ) ◦ (AηY )
ψ
=

= (RϵX) ◦ (RLRξ) ◦ (RLηY ) ◦ (ψY )
ϵ
= (Rξ) ◦ (RϵLY ) ◦ (RLηY ) ◦ (ψY )

= (Rξ) ◦ (ψY ) = (Rξ) ◦ (RϵLY ) ◦ (ηRLY ) ◦ (ψY )
η
= (Rξ) ◦ (RϵLY ) ◦ (RLψY ) ◦ (ηAY )

defr
= (Rξ) ◦ (RrY ) ◦ (ηAY ) = aX,AY (ξ ◦ rY ) = [aX,AY ◦ HomA (rY,X)] (ξ)

so that we obtain

[(Γ (ψ)X) ◦ (A−)] ◦ aX,Y = aX,AY ◦ HomA (rY,X) .

Now, let us compute[
HomB

(
AµY , RX

)
◦ aX,Y

]
(ξ)

defa
= HomB

(
AµY , RX

)
((Rξ) ◦ (ηY )) =

= (Rξ) ◦ (ηY ) ◦ AµY
and on the other hand(
aX,AY ◦ HomA

(
LAµY , X

))
(ξ) = aX,AY

(
ξ ◦
(
LAµY

)) defa
= (Rξ) ◦

(
RLAµY

)
◦ (ηAY )

η
= (Rξ) ◦ (ηY ) ◦ AµY

so that we get

HomB
(
AµY , RX

)
◦ aX,Y = aX,AY ◦ HomA

(
LAµY , X

)
.

Since Kψ (X) = Υ (ψ) (X) = (RX, (RϵX) ◦ (ψRX)), for every ζ ∈ HomB (Y,RX)
we have

[(Γ (ψ)X) ◦ (A−)] (ζ) = (Γ (ψ)X) ◦ (Aζ) = (RϵX) ◦ (ψRX) ◦ (Aζ) = AµRX ◦ (Aζ)

and
HomB

(
AµY , RX

)
(ζ) = ζ ◦ AµY

so that

[(Γ (ψ)X) ◦ (A−)] (ζ) = HomB
(
AµY , RX

)
(ζ) if and only if

ζ ∈ HomAB
((
Y, AµY

)
, (RX, (RϵX) ◦ (ψRX))

)
.

Thus we get

EquHomB(Y,RX)

(
(Γ (ψ)X) ◦ (A−) ,− ◦ AµY

)
=
{
f ∈ HomB (Y,RX) | (Γ (ψ)X) ◦ (Aζ) = ζ ◦ AµY

}
=
{
f ∈ HomB (Y,RX) | (RϵX) ◦ (ψRX) ◦ (Aζ) = ζ ◦ AµY

}
=
{
f ∈ HomB

(
AU
(
Y,A µY

)
,A U (KψX)

)
| Aµ

AU(KψX) ◦ (Aζ) = ζ ◦ AµY
}

HomAB
((
Y, AµY

)
, KψX

)
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so that EquFun

(
(Γ (ψ)−) ◦ (A−) ,HomB

(
AµY , R−

))
= HomAB

((
Y, AµY

)
, Kψ−

)
.

Proposition 6.53. Let (L,R) be an adjunction where L : B → A and R : A → B,
let A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA) →
RL = (RL,RϵL, η) be a monad morphism. Let r = Θ(ψ) = (ϵL) ◦ (Lψ). Then the
functor Kψ = Υ(ψ) : A → AB has a left adjoint Dψ : AB → A if and only, for
every

(
Y, AµY

)
∈ AB, there exists CoequA

(
rY, LAµY

)
. In this case, there exists a

functorial morphism dψ : LAU → Dψ such that

(Dψ, dψ) = CoequFun (rAU,LAUλA)

and thus [
Dψ

((
Y, AµY

))
, dψ

(
Y, AµY

)]
= CoequA

(
rY, LAµY

)
.

Proof. Assume first that, for every
(
Y, AµY

)
∈ AB, there exists CoequA

(
rY, LAµY

)
.

By Proposition 6.52, the isomorphism aX,Y : HomA (LY,X) → HomB (Y,RX) of
the adjunction (L,R) induces an isomorphism

ãX,Y : EquSets

(
HomA (rY,X) ,HomA

(
LAµY , X

))
→ HomAB

((
Y, AµY

)
, KψX

)
.

Let
(
Dψ

((
Y, AµY

))
, dψ

(
Y, AµY

))
denote the coequalizer

LAY
rY //

LAµY

// LY
dψ(Y,AµY )

// Dψ

(
Y, AµY

)
where dψ

(
Y, AµY

)
: LY → Dψ

((
Y, AµY

))
is the canonical projection. Then, by

Lemma 5.38, we have(
HomA

(
Dψ

((
Y, AµY

))
, X
)
,HomA

(
dψ
((
Y, AµY

))
, X
))

= EquSets

(
HomA (rY,X) ,HomA

(
LAµY , X

))
.

Thus, for every
(
Y, AµY

)
∈ AB and for every X ∈ A, aX,Y induces an isomor-

phism ãX,Y : HomA
(
Dψ

((
Y, AµY

))
, X
)
→ HomAB

((
Y, AµY

)
, KψX

)
such that the

following diagram is commutative

(6.10) HomA
(
Dψ

((
Y, AµY

))
, X
) ãX,Y //

HomA(dψ((Y,AµY )),X)
��

HomAB
((
Y, AµY

)
, KψX

)
��

HomA (LY,X)
aX,Y //

HomA(LAµY ,X)
��

HomA(rY,X)
��

HomB (Y,RX)

HomB(AµY ,RX)
��

(Γ(ψ)X)◦(A−)
��

HomA (LAY,X)
aX,AY // HomB (AY,RX)

HomA
(
Dψ

((
Y, AµY

))
, X
) ãX,Y99K HomAB

((
Y, AµY

)
, KψX

)
HomA

(
dψ
((
Y, AµY

))
, X
)
↓ ↓

HomA (LY,X)
aX,Y−→ HomB (Y,RX)

� �
HomA (LAY,X)

aX,AY−→ HomB (AY,RX)
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i.e. (Dψ, Kψ) is an adjunction.
Conversely, assume now that the functor Kψ = Υ(ψ) : A → AB has a left adjoint
Dψ : AB → A. Let η̃ : IdAB → KψDψ be the unit of the adjunction (Dψ, Kψ) and let

dψ = a−1
Dψ ,AU

(AUη̃) = (ϵDψ) ◦ (LAUη̃) : LAU → Dψ.

We will prove that

(Dψ, dψ) = CoequFun (rAU,LAUλA) .

First of all let us compute

dψ ◦ (rAU) = dψ ◦ (ϵLAU) ◦ (LψAU) = (ϵDψ) ◦ (LAUη̃) ◦ (ϵLAU) ◦ (LψAU)
ϵ
= (ϵDψ) ◦ (LRϵDψ) ◦ (LRLAUη̃) ◦ (LψAU)

ψ
= (ϵDψ) ◦ (LRϵDψ) ◦ (LψAUKψDψ) ◦ (LAAUη̃)

= (ϵDψ) ◦ (LRϵDψ) ◦ (LψRDψ) ◦ (LAAUη̃)

and also

dψ ◦ (LAUλA) = (ϵDψ) ◦ (LAUη̃) ◦ (LAUλA)
η̃morphAB= (ϵDψ) ◦ (LAUλAKψDψ) ◦ (LAAUη̃)

defKψ
= (ϵDψ) ◦ (LRϵDψ) ◦ (LψRDψ) ◦ (LAAUη̃)

so that

dψ ◦ (rAU) = dψ ◦ (LAUλA) .

Now, we will prove that the following diagram is commutative

HomA
(
Dψ

((
Y, AµY

))
, X
) ã

X,(Y,AµY ) //

HomA(dψ((Y,AµY )),X)
��

HomAB
((
Y, AµY

)
, KψX

)
AU

��
HomA (LY,X)

aX,Y // HomB (Y,RX) .

HomA
(
Dψ

((
Y, AµY

))
, X
) ã

X,(Y,AµY )
99K HomAB

((
Y, AµY

)
, KψX

)
HomA

(
dψ
((
Y, AµY

))
, X
)
↓ ↓

HomA (LY,X)
aX,Y−→ HomB (Y,RX) .

In fact, for every ζ ∈ HomA
(
Dψ

((
Y, AµY

))
, X
)
, we have

AUãX,(Y,AµY ) (ζ)
defã
= AU

[
(Kψζ) ◦

(
η̃
(
Y, AµY

))]
= (AUKψζ) ◦

(
AUη̃

(
Y, AµY

))
defKψ
= (Rζ) ◦

(
AUη̃

(
Y, AµY

))
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and on the other hand[
aX,Y ◦ HomA

(
dψ
((
Y, AµY

))
, X
)]

(ζ) = aX,Y
(
ζ ◦ dψ

(
Y, AµY

))
defdψ
= aX,Y

(
ζ ◦
(
ϵDψ

(
Y, AµY

))
◦
(
LAUη̃

(
Y, AµY

)))
defa
= (Rζ) ◦

(
RϵDψ

(
Y, AµY

))
◦
(
RLAUη̃

(
Y, AµY

))
◦ (ηY )

η
= (Rζ) ◦

(
RϵDψ

(
Y, AµY

))
◦
(
ηAUKψDψ

(
Y, AµY

))
◦
(
AUη̃

(
Y, AµY

))
defKψ
= (Rζ) ◦

(
RϵDψ

(
Y, AµY

))
◦
(
ηRDψ

(
Y, AµY

))
◦
(
AUη̃

(
Y, AµY

))
(L,R)
= (Rζ) ◦

(
AUη̃

(
Y, AµY

))
so that, for every

(
Y, AµY

)
∈ AB we have[

AU ◦ ã−,(Y,AµY )

]
=
[
a−,Y ◦ HomA

(
dψ
((
Y, AµY

))
,−
)]
.

Since a−,Y and ã−,(Y,AµY ) are isomorphisms, we deduce that HomA
(
dψ
((
Y, AµY

))
,−
)

is mono. Applying the commutativity of this diagram in the particular case of(
Y, AµY

)
= KψX, we get that

(ϵ̃X) ◦ (dψKψX) = HomA (dψKψX,X) ((ϵ̃X))

= HomA (dψKψX,X)
(
ã−1
X,KψX

(
IdKψX

))
=
[
HomA (dψKψX,X) ◦ ã−1

X,KψX

] (
IdKψX

)
= a−1

X,AUKψXAU
(
IdKψX

)
= a−1

X,RX

(
IdAUKψX

)
= a−1

X,RX (IdRX) = ϵX

i.e.

(6.11) (ϵ̃X) ◦ (dψKψX) = ϵX.

Now, we have to prove the universal property of the coequalizer. Let X ∈ A and
let ξ : LY → X be a morphism in A such that ξ ◦ (rY ) = ξ ◦

(
LAµY

)
that is

ξ ◦ (ϵLY ) ◦ (LψY ) = ξ ◦
(
LAµY

)
.

This means that ξ ∈ EquSets
(
HomA (rY,X) ,HomA

(
LAµY , X

))
≃ HomAB

((
Y, AµY

)
, KψX

)
by Proposition 6.52. Then, aX,Y (ξ) ∈ HomAB

((
Y, AµY

)
, (RX, (RϵX) ◦ (ψRX))

)
=

HomAB
((
Y, AµY

)
, KψX

)
. We want to prove that there exists a unique morphism

ξ′ : Dψ

(
Y, AµY

)
→ X such that ξ′ ◦

(
dψ
(
Y, AµY

))
= ξ. By hypothesis we have that

the map

HomA
(
Dψ

((
Y, AµY

))
, X
) ã

X,(Y,AµY ) // HomAB
((
Y, AµY

)
, KψX

)
HomA

(
Dψ

((
Y, AµY

))
, X
) ãX,(Y,AµY )−→ HomAB

((
Y, AµY

)
, KψX

)
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is bijective. Hence, given (Rξ)◦(ηY ) ∈ HomAB
((
Y, AµY

)
, KψX

)
, ã−1

X,(Y,AµY )
((Rξ) ◦ (ηY )) =

(ϵ̃X) ◦ (DψRξ) ◦ (DψηY ) ∈ HomA
(
Dψ

((
Y, AµY

))
, X
)
. We want to prove that

(ϵ̃X) ◦ (DψRξ) ◦ (DψηY ) ◦
(
dψ
((
Y, AµY

)))
= ξ.

In fact we have

(ϵ̃X) ◦ (DψRξ) ◦ (DψηY ) ◦
(
dψ
(
Y, AµY

))
dψ
= (ϵ̃X) ◦

(
dψ
(
RX, AµRX

))
◦ (LRξ) ◦ (LηY )

= (ϵ̃X) ◦ (dψKψX) ◦ (LRξ) ◦ (LηY )

(6.11)
= (ϵX) ◦ (LRξ) ◦ (LηY )

ϵ
= ξ ◦ (ϵLY ) ◦ (LηY )

(L,R)
= ξ.

Let us denote by ξ′ = (ϵ̃X) ◦ (DψRξ) ◦ (DψηY ) the morphism such that ξ′ ◦(
dψ
(
Y, AµY

))
= ξ. We have to prove that ξ′ is unique with respect to this property.

Let ξ′′ : Dψ

(
Y, AµY

)
→ X be another morphism in A such that ξ′′◦dψ

(
Y, AµY

)
= ξ.

Then we have

HomA
(
dψ
(
Y, AµY

)
, X
)
(ξ′′) = ξ′′ ◦ dψ

(
Y, AµY

)
= ξ = ξ′ ◦ dψ

(
Y, AµY

)
= HomA

(
dψ
(
Y, AµY

)
, X
)
(ξ′)

and since HomA
(
dψ
(
Y, AµY

)
, X
)
is mono, we deduce that

ξ′′ = ξ′.

Corollary 6.54. Let (L,R) be an adjunction where L : B → A and R : A → B. Let
r = Θ(IdRL) = ϵL. Then the functor K = Υ(IdRL) : A → RLB has a left adjoint D :

RLB → A if and only, for every
(
Y, RLµY

)
∈ RLB, there exists CoequA

(
ϵLY, LRLµY

)
.

In this case, there exists a functorial morphism d : LRLU → D such that

(D, d) = CoequFun (ϵLRLU,LRLUλRL)

and thus [
D
((
Y, RLµY

))
, d
(
Y, RLµY

)]
= CoequA

(
ϵLY, LRLµY

)
.

Proof. We can apply Proposition 6.53 where ”ψ” = IdRL.

Remark 6.55. In the setting of Proposition 6.53, for every X ∈ A, we note that
the counit of the adjunction (Dψ, Kψ) is given by

ϵ̃X = ã−1
X,KψX

(
IdKψX

)
: DψKψ (X)→ X.
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We will consider diagram (6.10) in the particular case of
(
Y, AµY

)
= KψX. Note

that, since KψX = (RX, (RϵX) ◦ (ψRX)) = (RX, lX) , we have

(DψKψ (X) , dψKψ (X)) = (Dψ (RX, lX) , dψKψ (X)) = CoequB (rRX,LlX)

= CoequB ((ϵLRX) ◦ (LψRX) , (LRϵX) ◦ (LψRX))

i.e.

(6.12) (DψKψ (X) , dψKψ (X)) = CoequB (rRX,LlX)

where l = Γ (ψ) = (Rϵ) ◦ (ψR) . We compute

(ϵ̃X) ◦ (dψKψX) = HomA (dψKψX,X) ((ϵ̃X))

= HomA (dψKψX,X)
(
ã−1
X,KψX

(
IdKψX

))
=
[
HomA (dψKψX,X) ◦ ã−1

X,KψX

] (
IdKψX

)
(6.10)
= a−1

X,KψXAU
(
IdKψX

)
= a−1

X,KψX

(
IdAUKψX

)
= a−1

X,KψX
(IdRX) = ϵX

so that
(ϵ̃X) ◦ (dψKψX) = ϵX.

Since ϵ̃X = ã−1
X,KψX

(
IdKψX

)
and ã−1

X,KψX
is an isomorphism, we deduce that ϵ̃X :

DψKψ (X)→ X is defined as the unique morphism such that

(6.13) (ϵ̃X) ◦ (dψKψX) = ϵX.

On the other hand, for every
(
Y, AµY

)
∈ AB, the unit of the adjunction (Dψ, Kψ) ,

η̃ : AB → KψDψ, is given by

η̃
(
Y, AµY

)
= ãDψ(Y,AµY ),Y

(
IdDψ(Y,AµY )

)
:
(
Y, AµY

)
→ KψDψ

((
Y, AµY

))
.

Then by commutativity of the diagram (6.10), we deduce that

AUη̃
(
Y, AµY

)
= AUãDψ(Y,AµY ),Y

(
IdDψ(Y,AµY )

)
= aDψ(Y,AµY ),Y ◦ HomA

(
dψ
((
Y, AµY

))
, Dψ

(
Y, AµY

)) (
IdDψ(Y,AµY )

)
= aDψ(Y,AµY ),Y

(
dψ
((
Y, AµY

)))
=
(
Rdψ

(
Y, AµY

))
◦ (ηY ) .

Thus we obtain that

(6.14) AUη̃
(
Y, AµY

)
=
(
Rdψ

(
Y, AµY

))
◦ (ηY ) .

Observe that, for every Y ∈ B we have that AF (Y ) = (AY,mAY ) . Moreover

(DψAF (Y ) , dψAF (Y )) = (Dψ (AY,mAY ) , dψ (AY,mAY ))

= CoequA (rAY, LmAY )
(6.1)
= (LY, rY )
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so that we get

(6.15) (DψAF, dψAF ) = (L, r) .

In particular

(6.16) dψ (AY,mAY ) = rY.

Corollary 6.56. In the setting of Proposition 6.53, assume that, for every
(
Y, AµY

)
∈

AB, there exists CoequA
(
rY, LAµY

)
. Then, for every Y ∈ B we have

AUη̃ (AY,mAY ) = ψY

and hence

AUη̃AF = ψ

where η̃ denotes the unit of the adjunction (Dψ, Kψ).

Proof. Let us calculate

AUη̃ (AY,mAY )
(6.14)
= (Rdψ (AY,mAY )) ◦ (ηAY )

(6.16)
= (RrY ) ◦ (ηAY ) = Ξ (r) (Y ) = ψY.

Corollary 6.57. In the setting of Proposition 6.53, assume that, for every
(
Y, AµY

)
∈

AB, there exists CoequA
(
rY, LAµY

)
. Then Dψ is full and faithful if and only if η̃ is

a functorial isomorphism.

Proof. By Proposition 6.53, (Dψ, Kψ) is an adjunction with unit η̃ : AB → KψDψ.
Then we can apply Proposition 5.18.

Lemma 6.58. In the setting of Proposition 6.53, assume that, for every
(
Y, AµY

)
∈

AB, there exists CoequA
(
rY, LAµY

)
.Then, for every

(
Y, AµY

)
∈ AB, the following

diagram

AAAU
(
Y, AµY

) mAAU(Y,AµY )
//

AAUλA(Y,AµY )
//

ψAAU(Y,AµY )
��

AAU
(
Y, AµY

) AUλA(Y,AµY )
//

ψAU(Y,AµY )
��

AU
(
Y, AµY

)
AUη̃(Y,AµY )
��

RLAAU
(
Y, AµY

) RrAU(Y,AµY )
//

RLAUλA(Y,AµY )
// RLAU

(
Y, AµY

) Rdψ(Y,AµY )
// RDψ

(
Y, AµY

)

AAAU
(
Y, AµY

) mAAU(Y,AµY )
⇒

AAUλA(Y,AµY )

AAU
(
Y, AµY

) AUλA(Y,AµY )
→ AU

(
Y, AµY

)
ψAAU

(
Y, AµY

)
↓ ↓ ψAU

(
Y, AµY

)
↓ AUη̃

(
Y, AµY

)
RLAAU

(
Y, AµY

) RrAU(Y,AµY )
⇒

RLAUλA(Y,AµY )

RLAU
(
Y, AµY

) Rdψ(Y,AµY )
→ RDψ

(
Y, AµY

)
serially commutes. Therefore we get

(AUη̃) ◦ (AUλA) = (Rdψ) ◦ (ψAU) and (ψAU) ◦ (mAAU) = (RrAU) ◦ (ψAAU)
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Proof. Let us compute

AUη̃
(
Y, AµY

)
◦ AµY

(6.14)
=
(
Rdψ

(
Y, AµY

))
◦ (ηY ) ◦ AµY

η
=
(
Rdψ

(
Y, AµY

))
◦
(
RLAµY

)
◦ (ηAY )

ψmorphmonads
=

(
Rdψ

(
Y, AµY

))
◦
(
RLAµY

)
◦ (ψAY ) ◦ (uAAY )

defdψ
=
(
Rdψ

(
Y, AµY

))
◦ (RrY ) ◦ (ψAY ) ◦ (uAAY )

defr
=
(
Rdψ

(
Y, AµY

))
◦ (RϵLY ) ◦ (RLψY ) ◦ (ψAY ) ◦ (uAAY )

ψmorphmonads
=

(
Rdψ

(
Y, AµY

))
◦ (ψY ) ◦ (mAY ) ◦ (uAAY )

Amonad
=

(
Rdψ

(
Y, AµY

))
◦ (ψY )

so that we deduced

AUη̃
(
Y, AµY

)
◦ AµY =

(
Rdψ

(
Y, AµY

))
◦ (ψY )

and thus

(AUη̃) ◦ (AUλA) = (Rdψ) ◦ (ψAU) .

Let us calculate

(ψAU) ◦ (mAAU)
ψmonadsmorph

= (RϵLAU) ◦ (RLψAU) ◦ (ψAAU)

defr
= (RrAU) ◦ (ψAAU) .

Theorem 6.59. Let (L,R) be an adjunction where L : B → A and R : A → B, let
A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA)→ RL =
(RL,RϵL, η) be a monad morphism. Let r = Θ(ψ) = (ϵL) ◦ (Lψ). Assume that, for
every

(
Y, AµY

)
∈ AB, there exists CoequA

(
rY, LAµY

)
. Then we can consider the

functor Kψ = Υ(ψ) : A → AB. Its left adjoint Dψ : AB → A is full and faithful if
and only if

1) R preserves the coequalizer

(Dψ, dψ) = CoequFun (rAU,LAUλA)

2) ψ : A→ RL is a monad isomorphism.

Proof. Recall that, by Corollary 6.56,

(6.17) AUη̃AF = ψ.

By Corollary 6.57, Dψ is full and faithful if and only if η̃ is a functorial isomorphism.
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Let us assume that η̃ is a functorial isomorphism, hence ψ is an isomorphism
too. Recall that, by Lemma 6.58, we have

(6.18) (AUη̃) ◦ (AUλA) = (Rdψ) ◦ (ψAU)

so that

(6.19) (AUλA) =
(
AUη̃

−1
)
◦ (Rdψ) ◦ (ψAU)

Let us consider the diagram

RLAAU
RrAU //

RLAUλA
// RLAU

Rdψ // RDψ

RLAAU
RrAU

⇒
RLAUλA

RLAU
Rdψ−→ RDψ

We have to prove that (RDψ, Rdψ) = CoequFun (RrAU,RLAUλA). Since R is a
functor, we clearly have (Rdψ) ◦ (RrAU) = (Rdψ) ◦ (RLAUλA). Let Q : AB → X be
a functor and let χ : RLAU → Q be a functorial morphism such that

χ ◦ (RrAU) = χ ◦ (RLAUλA) .

We compute

χ ◦ (ψAU) = χ ◦ (ψAU) ◦ (mAAU) ◦ (uAAAU)
ψmorpmonads

= χ ◦ (RϵLAU) ◦ (ψψAU) ◦ (uAAAU)

= χ ◦ (RϵLAU) ◦ (RLψAU) ◦ (ψAAU) ◦ (uAAAU)
defr
= χ ◦ (RrAU) ◦ (ψAAU) ◦ (uAAAU)

χ
= χ ◦ (RLAUλA) ◦ (ψAAU) ◦ (uAAAU)

ψ
= χ ◦ (ψAU) ◦ (AAUλA) ◦ (uAAAU)

uA= χ ◦ (ψAU) ◦ (uAAU) ◦ (AUλA)
ψmorpmonads

= χ ◦ (ηAU) ◦ (AUλA)
(6.19)
= χ ◦ (ηAU) ◦

(
AUη̃

−1
)
◦ (Rdψ) ◦ (ψAU) .

Since ψ is an isomorphism we deduce that

χ =
[
χ ◦ (ηAU) ◦

(
AUη̃

−1
)]
◦ (Rdψ) .

Let now ω : RDψ → Q be a functorial morphism such that

χ = ω ◦ (Rdψ) .

We compute [
χ ◦ (ηAU) ◦

(
AUη̃

−1
)]
◦ (AUη̃) ◦ (AUλA)

(6.18)
=
[
χ ◦ (ηAU) ◦

(
AUη̃

−1
)]
◦ (Rdψ) ◦ (ψAU)

= χ ◦ (ψAU) = ω ◦ (Rdψ) ◦ (ψAU)
(6.18)
= ω ◦ (AUη̃) ◦ (AUλA)
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and since AUλA is an epimorphism (it is a coequalizer) and η̃ is an isomorphism, we
deduce that

ω = χ ◦ (ηAU) ◦
(
AUη̃

−1
)
.

Conversely, assume that 1) and 2) hold. Then ψ is a functorial isomorphism. Con-
sider the diagram

AAAU
(
Y, AµY

) mAAU(Y,AµY )
//

AAUλA(Y,AµY )
//

ψAAU(Y,AµY )
��

AAU
(
Y, AµY

) AUλA(Y,AµY )
//

ψAU(Y,AµY )
��

AU
(
Y, AµY

)
AUη̃(Y,AµY )
��

RLAAU
(
Y, AµY

) RrAU(Y,AµY )
//

RLAUλA(Y,AµY )
// RLAU

(
Y, AµY

) Rdψ(Y,AµY )
// RDψ

(
Y, AµY

)

AAAU
(
Y, AµY

) mAAU(Y,AµY )
⇒

AAUλA(Y,AµY )

AAU
(
Y, AµY

) AUλA(Y,AµY )
→ AU

(
Y, AµY

)
ψAAU

(
Y, AµY

)
↓ ↓ ψAU

(
Y, AµY

)
↓ AUη̃

(
Y, AµY

)
RLAAU

(
Y, AµY

) RrAU(Y,AµY )
⇒

RLAUλA(Y,AµY )

RLAU
(
Y, AµY

) Rdψ(Y,AµY )
→ RDψ

(
Y, AµY

)
of Lemma 6.58 where the first row is always a coequalizer (see Proposition 6.32) and
the last row is also a coequalizer by the assumption 1). Then we can apply Lemma
5.36 and hence we get that AUη̃ is a functorial isomorphism. Since,by Proposition
6.34, AU reflects isomorphism we deduce that η̃ is a functorial isomorphism.

Corollary 6.60. Let (L,R) be an adjunction where L : B → A and R : A → B.
Let r = Θ(IdRL) = ϵL. Assume that, for every

(
Y, RLµY

)
∈ RLB, there exists

CoequA
(
ϵLY, LRLµY

)
. Then we can consider the functor K = Υ(IdRL) : A → RLB.

Its left adjoint D : RLB → A is full and faithful if and only if R preserves the
coequalizer

(D, d) = CoequFun (ϵLRLU,LRLUλRL) .

Proof. We can apply Theorem 6.59 with ”ψ” = IdRL.

Theorem 6.61. Let (L,R) be an adjunction where L : B → A and R : A → B,
let A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA) →
RL = (RL,RϵL, η) be a monad morphism. Let r = Θ(ψ) = (ϵL) ◦ (Lψ) and
l = Γ (ψ) = (Rϵ) ◦ (ψR). Assume that, for every

(
Y, AµY

)
∈ AB, there exists

CoequA
(
rY, LAµY

)
. Then we can consider the functor Kψ = Υ(ψ) : A → AB and

its left adjoint Dψ : AB → A. The functor Kψ is an equivalence of categories if and
only if

1) R preserves the coequalizer

(Dψ, dψ) = CoequFun (rAU,LAUλA)

2) R reflects isomorphisms and
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3) ψ : A→ RL is a monad isomorphism.

Proof. If Kψ is an equivalence then, by Lemma 5.24, Dψ is an equivalence of cate-
gories so that, by Theorem 6.59, 1) and 3) hold. By Proposition 6.34, the functor

AU reflects isomorphisms. Since R = AU ◦Kψ we get that 2) holds.
Conversely assume that 1), 2) and 3) hold. By Theorem 6.59 , Dψ is full and

faithful and hence by Corollary 6.57 η̃ is a functorial isomorphism. Let us prove that
ϵ̃ is an isomorphism as well. Since R reflects isomorphisms, it is enough to prove
that Rϵ̃ is an isomorphism. As observed in Remark 6.55, ϵ̃X : DψKψ (X) → X is
defined as the unique morphism such that

(ϵ̃X) ◦ (dψKψX) = ϵX.

Hence we get

(6.20) (Rϵ̃X) ◦ (RdψKψX) = RϵX

so that
(Rϵ̃X) ◦ (RdψKψX) ◦ (ηRX) = (RϵX) ◦ (ηRX) = RX.

We will prove that (RdψKψX) ◦ (ηRX) is also a left inverse of Rϵ̃X. We have

(RdψKψX) ◦ (ηRX) ◦ (Rϵ̃X) ◦ (RdψKψX)

(6.20)
= (RdψKψX) ◦ (ηRX) ◦ (RϵX)

(L,R)adj
= (RdψKψX)

and since R preserves coequalizers (Dψ, dψ) = CoequFun (rAU,LAUλA), RdψKψX
is an epimorphism, so that

(RdψKψX) ◦ (ηRX) ◦ (Rϵ̃X) = RDψKψX

so that Rϵ̃ is a functorial isomorphism.

Definition 6.62. Let A = (A,mA, uA) be a monad on the category B and let(
R, AµR

)
be a left A-module functor. We say that

(
R, AµR

)
is an A-coGalois functor

if R has a left adjoint L and if the canonical morphism

cocan :=
(
AµRL

)
◦ (Aη) : A→ RL

is a monad isomorphism, where η denotes the unit of the adjunction (L,R).

Corollary 6.63. Let
(
R, AµR

)
be a left A-coGalois functor where R : A → B

preserves coequalizers, R reflects isomorphisms and A = (A,mA, uA) is a monad on
B. Assume that, for every

(
Y, AµY

)
∈ AB, there exists CoequA

(
rY, LAµY

)
where

r = (ϵL) ◦ (Lcocan) where L is the left adjoint of R and ϵ is the counit of the
adjunction (L,R). Then we can consider the functor Kcocan : A → AB and its left
adjoint Dcocan : AB → A. Then the functor Kcocan is an equivalence of categories.
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Proof. We can apply Theorem 6.61 to the case ψ = cocan.

Theorem 6.64 ( Beck’s Theorem for monads). Let (L,R) be an adjunction where
L : B → A and R : A → B. Let r = Θ(IdRL) = ϵL and assume that, for every(
Y, RLµY

)
∈ RLB, there exists CoequA

(
ϵLY, LRLµY

)
. Then we can consider the

functor K = Υ(IdRL) : A → RLB and its left adjoint D : RLB → A. The functor K
is an equivalence of categories if and only if

1) R preserves the coequalizer

(D, d) = CoequFun (ϵLRLU,LRLUλRL) .

2) R reflects isomorphisms.

Proof. Apply Theorem 6.61 taking ψ = IdRL.

Definition 6.65. Let A = (A,mA, uA) be a monad on the category B and let R :
A → B be a functor. The functor R is called ψ-monadic if it has a left adjoint
L : B → A for which there exists ψ : A → RL a monad morphism such that the
functor Kψ = Υ(ψ) : A → AB is an equivalence of categories.

Definition 6.66. Let R : A → B be a functor. The functor R is called monadic if
it has a left adjoint L : B → A for which the functor K = Υ(IdRL) : A → RLB is
an equivalence of categories.

Lemma 6.67. Let A = (A,mA, uA) be a monad on the category B and let R : A → B
be a ψ-monadic functor and let

(6.21) X
c0 //
c1

// X ′

X
c0
⇒
c1

X ′

be an R-contractible coequalizer pair in A. Then (6.21) has a coequalizer c : X ′ → X ′′

in A and

RX
Rc0 //
Rc1

// RX ′ Rc // RX ′′

RX
Rc0
⇒
Rc1

RX ′ Rc→ RX ′′

is a coequalizer in B.

Proof. Since R is a ψ-monadic functor, we know that Kψ = Υ(ψ) : A → AB is an
equivalence of categories. Then instead of considering

X
c0 //
c1

// X ′
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X
c0
⇒
c1

X ′

in the category A, we can consider

KψX
Kψc0 //
Kψc1

// KψX
′

KψX
Kψc0

⇒
Kψc1

KψX
′

in AB, which is a AU -contractible coequalizer pair. Let us denote by
(
Y, AµY

)
:=

KψX and
(
Y ′, AµY ′

)
:= KψX

′ so that we can rewrite the AU -contractible coequalizer
pair as follows (

Y, AµY
) Kψc0 //

Kψc1
//
(
Y ′, AµY ′

)
.

(
Y, AµY

) Kψc0

⇒
Kψc1

(
Y ′, AµY ′

)
.

We want to prove that this pair has a coequalizer in AB. Since the pair (Kψc0, Kψc1)
is a AU -contractible coequalizer pair, we have that

RX

Rc0 //

Rc1
// RX

′voo
q // Q
u

oo

Rc0→
RX

v← RX ′
q

�
u

Q

Rc1→

is a contractible coequalizer in B, i.e.

Y

Rc0 //

Rc1
// Y

′voo
q // Q
u

oo

Rc0→
Y

v← Y ′
q

�
u

Q

Rc1→

is a contractible coequalizer and thus, by Proposition 6.7, a coequalizer in B. Let
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us consider the following diagram

AAY
AARc0 //
AARc1

//

mAY

��
AAµY
��

AAY ′ AAq //

mAY
′

��
AAµY ′

��

AAQ

mAQ

��
AAµQ
��

AY
ARc0 //
ARc1

//

AµY
��

AY ′ Aq //

AµY ′

��

AQ

AµQ
��

Y
Rc0 //
Rc1

// Y ′ q // Q.

AAY
AARc0
⇒

AARc1

AAY ′ AAq−→ AAQ

mAY � AAµY mAY
′ � AAµY ′ mAQ � AAµQ

AY
ARc0
⇒
ARc1

AY ′ Aq−→ AQ

↓ AµY ↓ AµY ′ ↓ AµQ
Y

Rc0
⇒
Rc1

Y ′ q−→ Q.

By Proposition 6.8, all the rows are contractible coequalizers. Since Rc0 = AUKψc0
and Rc1 = AUKψc1, we have that the lower left square serially commutes. More-
over, since we also have that mA is a functorial morphism, the upper left square
serially commutes. We also have that q ◦ AµY ′ coequalizes (ARc0, ARc1) and, since
(AQ,Aq) = CoequB (ARc0, ARc1) , by the universal property of the coequalizer,
there exists a unique morphism AµQ : AQ→ Q such that

(6.22) AµQ ◦ (Aq) = q ◦ AµY ′ .

Let us prove that
(
Q, AµQ

)
∈ AB and thus formula (6.22) will say that q is a

morphism in AB. Since mA is a functorial morphism and by definition of AµQ, the
upper right square serially commutes. We have

AµQ ◦
(
AAµQ

)
◦ (AAq) (6.22)

= AµQ ◦ (Aq) ◦
(
AAµY ′

)
(6.22)
= q ◦ AµY ′ ◦

(
AAµY ′

) AµY ′ass
= q ◦ AµY ′ ◦ (mAY

′)

(6.22)
= AµQ ◦ (Aq) ◦ (mAY

′)
mA= AµQ ◦ (mAQ) ◦ (AAq)

and since AAq is an epimorphism we get

AµQ ◦
(
AAµQ

)
= AµQ ◦ (mAQ)

that is that AµQ is associative. Moreover we have

AµQ ◦ (uAQ) ◦ q
uA= AµQ ◦ (Aq) ◦ (uAY ′)

(6.22)
= q ◦ AµY ′ ◦ (uAY ′) = q
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and since q is an epimorphism we get that

AµQ ◦ (uAQ) = Q

so that AµQ is also unital. Therefore
(
Q, AµQ

)
∈ AB and q is a morphism in AB.

Now we want to prove that it is a coequalizer in AB. Let
(
Z, AµZ

)
∈ AB and

χ :
(
Y ′, AµY ′

)
→
(
Z, AµZ

)
be a morphism in AB such that χ ◦ (Kψc0) = χ ◦ (Kψc1) .

Then, by regarding χ as a morphism in B we also have that

χ ◦ (Rc0) = χ ◦ (Rc1) .

Since (Q, q) = CoequB (Rc0, Rc1) , there exists a unique morphism ξ : Q → Z such
that

ξ ◦ q = χ.

Now we want to prove that ξ is a morphism in AB. In fact, let us consider the
following diagram

AY ′ Aq //

AµY ′
��

AQ
Aξ //

AµQ
��

AZ

AµZ
��

Y ′ q // Q
ξ // Z.

AY ′ Aq−→ AQ
Aξ−→ AZ

↓ AµY ′ ↓ AµQ ↓ AµZ
Y ′ q−→ Q

ξ−→ Z.

Since q ∈ AB, the left square commutes. Since χ ∈ AB we have

AµZ ◦ (Aξ) ◦ (Aq) = AµZ ◦ (Aχ) = χ ◦ AµY ′ = ξ ◦ q ◦ AµY ′

so that we have

ξ ◦ AµQ ◦ (Aq)
(6.22)
= ξ ◦ q ◦ AµY ′ = AµZ ◦ (Aξ) ◦ (Aq)

and since Aq is an epimorphism, we deduce that

ξ ◦ AµQ = AµZ ◦ (Aξ)

i.e. ξ ∈ AB. Therefore (Q, q) = Coequ
AB (Kψc0, Kψc1). Now, since Kψ : A → AB,

there exist X ′′, c ∈ A such that

KψX
′′ = Q and Kψc = q

and thus (X ′′, c) = CoequA (c0, c1). Moreover, since

RX

Rc0 //

Rc1
// RX

′voo
q // Q
u

oo
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Rc0→
RX

v← RX ′
q

�
u

Q

Rc1→
is a contractible coequalizer and (Q, q) = (AUKψX

′′, AUKψc) , we deduce that
(AUKψX

′′, AUKψc) is a contractible coequalizer of (Rc0, Rc1). Then (RX ′′, Rc) is a
contractible coequalizer of (Rc0, Rc1) so that (RX ′′, Rc) = CoequB (Rc0, Rc1).

Theorem 6.68 (Generalized Beck’s Precise Tripleability Theorem). Let R : A → B
be a functor and let A = (A,mA, uA) be a monad on the category B. Then R is ψ-
monadic if and only if

1) R has a left adjoint L : B → A,

2) ψ : A→ RL is a monad isomorphism where RL = (RL,RϵL, η) with η and ϵ
unit and counit of (L,R) ,

3) for every
(
Y, AµY

)
∈ AB, there exist CoequA

(
rY, LAµY

)
, where r = Θ(ψ) =

(ϵL) ◦ (Lψ) , and R preserves the coequalizer

CoequFun (rAU,LAUλA) ,

4) R reflects isomorphisms.

In this case in A there exist coequalizers of R-contractible coequalizer pairs and
R preserves them.

Proof. Assume first that R is ψ-monadic. Then by definition R has a left adjoint
L : B → A and a monad morphism ψ : A→ RL such that the functor Kψ =
Υ(ψ) : A → AB is an equivalence of categories. Let K ′

ψ be an inverse of Kψ.
Then in particular K ′

ψ : AB → A is a left adjoint of Kψ so that, by Proposition

6.53, for every
(
Y, AµY

)
∈ AB, there exists CoequA

(
rY, LAµY

)
where r = Θ(ψ) =

(ϵL)◦(Lψ) and thus
(
K ′
ψ, k

′
ψ

)
= CoequFun (rAU,LAUλA) where k

′
ψ

(
Y, AµY

)
: LY →

CoequFun (rAU,LAUλA) is the canonical projection. Then we can apply Theorem
6.61 to get that R preserves the coequalizer

(
K ′
ψ, k

′
ψ

)
= CoequFun (rAU,LAUλA) ,

R reflects isomorphisms and ψ : A→ RL is a monads isomorphism.
Conversely, by assumption 1) R has a left adjoint L : B → A so that (L,R) is

an adjunction and by 2) there exist CoequA
(
rY, LAµY

)
, for every

(
Y, AµY

)
∈ AB

so that we can apply Proposition 6.53. Thus the functor Kψ = Υ(ψ) : A → AB
has a left adjoint Dψ : AB → A. Now, by applying Theorem 6.61 in the converse
direction, we deduce that Kψ = Υ(ψ) : A → AB is an equivalence of categories, i.e.
R is monadic. If R is ψ-monadic, by Lemma 6.67, in A there exist coequalizers of
reflexive R-contractible coequalizer pairs and R preserves them.

Corollary 6.69 (Beck’s Precise Tripleability Theorem). Let R : A → B be a func-
tor. Then R is monadic if and only if



6.6. BECK1 FOR MONADS 135

1) R has a left adjoint L : B → A,

2) for every
(
Y, RLµY

)
∈ RLB, there exist CoequA

(
ϵLY, LRLµY

)
and R preserves

the coequalizer
CoequFun (ϵLRLU,LRLUλRL) ,

3) R reflects isomorphisms.

In this case in A there exist coequalizers of R-contractible coequalizer pairs and
R preserves them.

Proof. Apply Theorem 6.68 to the case that ψ = IdRL.

6.6 BECK1 for Monads

Lemma 6.70. Let (L,R) be an adjunction, where L : B → A and R : A → B, with
unit η and counit ϵ. Then for every X ∈ A,
(RX,RLRX,RLRLRX,RϵX,RϵLRX,RLRϵX, ηRX, ηRLRX) is a contractible co-
equalizer and in particular, for every X ∈ A

(RX,RϵX) = CoequB (RϵLRX,RLRϵX) .

Proof. Consider the following diagram

RLRLRX
RϵLRX //

RLRϵX
// RLRX

RϵX //ηRLRXoo RX
ηRX
oo

and let us compute

(RϵLRX) ◦ (ηRLRX) = IdRLRX

(RLRϵX) ◦ (ηRLRX)
η
= (ηRX) ◦ (RϵX)

(RϵX) ◦ (ηRX) = IdRX

(RϵX) ◦ (RϵLRX)
ϵ
= (RϵX) ◦ (RLRϵX) .

Thus (RX,RLRX,RLRLRX,RϵX,RϵLRX,RLRϵX, ηRX, ηRLRX) is a contractible
coequalizer for every X ∈ A and by Proposition 6.7 we get that (RX,RϵX) =
CoequB (RϵLRX,RLRϵX) .

Lemma 6.71. Let (L,R) be an adjunction where L : B → A and R : A → B, let
A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA) →
RL = (RL,RϵL, η) be a monad morphism. Let Kψ = Υ(ψ) = (R, (Rϵ) ◦ (ψR)) and
AUKψ (f) = AUΥ(ψ) (f) = R (f) for every morphism f in A. For every X ∈ A we
have

(6.23) (KψX,KψϵX) = Coequ
AB (KψϵLRX,KψLRϵX) .
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Proof. By Lemma 6.70 we have that (RX,RϵX) = CoequB (RϵLRX,RLRϵX). Let
χ : KψLRX = (RLRX, (RϵLRX) ◦ (ψRLRX)) → Q be a morphism in AB such
that

χ ◦ (KψϵLRX) = χ ◦ (KψLRϵX) .

Then

(6.24) (AUχ) ◦ (RϵLRX) = (AUχ) ◦ (RLRϵX)

and hence there exists a unique ω : AUKψX = RX → AUQ in B such that

(6.25) AUχ = ω ◦ (RϵX) = ω ◦ (AUKψϵX)

Let us prove that ω gives rise to a morphism in AB. Since χ is a morphism in AB
we have that

(6.26) (AUχ) ◦ (RϵLRX) ◦ (ψRLRX) = (AUλAQ) ◦ (AAUχ)

Let us compute

(AUλAQ) ◦ (Aω) ◦ (ARϵX)
(6.25)
= (AUλAQ) ◦ (AAUχ)

(6.26)
= (AUχ) ◦ (RϵLRX) ◦ (ψRLRX)

(6.24)
= (AUχ) ◦ (RLRϵX) ◦ (ψRLRX)

ψ
= (AUχ) ◦ (ψRX) ◦ (ARϵX)

(6.25)
= ω ◦ (RϵX) ◦ (ψRX) ◦ (ARϵX)

so that

(AUλAQ) ◦ (Aω) ◦ (ARϵX) = ω ◦ (RϵX) ◦ (ψRX) ◦ (ARϵX) .

Since (ARϵX) ◦ (AηRX) = ARX, we deduce that ARϵX is epi and thus

(AUλAQ) ◦ (Aω) = ω ◦ (RϵX) ◦ (ψRX)

i.e. ω : AUKψX = RX → AUQ is a morphism of left A-modules.

Proposition 6.72. Let (L,R) be an adjunction where L : B → A and R : A → B,
let A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA) →
RL = (RL,RϵL, η) be a monad morphism. Let Kψ = Υ(ψ) = (R, (Rϵ) ◦ (ψR))
and AUKψ (f) = AUΥ(ψ) (f) = R (f) for every morphism f in A. If ψY is

an epimorphism for every Y ∈ B, the assignment K̃LRX,X′ : HomA (LRX,X ′) →
HomAB (KψLRX,KψX

′) defined by setting

K̃LRX,X′ (f) = Kψ (f)

is an isomorphism whose inverse is defined by

K̃−1
LRX,X′ (h) = (ϵX ′) ◦ (LAUh) ◦ (LηRX) .
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Proof. Let f ∈ HomA (LRX,X ′). We compute

K̃−1
LRX,X′

(
K̃LRX,X′ (f)

)
= (ϵX ′) ◦ (LAUKψf) ◦ (LηRX)

= (ϵX ′) ◦ (LRf) ◦ (LηRX)
ϵ
= f ◦ (ϵLRX) ◦ (LηRX) = f.

Let h ∈ HomAB (KψLRX,KψX
′). This means that

(AUh) ◦ (RϵLRX) ◦ (ψRLRX) = (RϵX ′) ◦ (ψRX ′) ◦ (AAUh)

ψ
= (RϵX ′) ◦ (RLAUh) ◦ (ψRLRX)

Since ψY is an epimorphism for every Y ∈ B, we deduce that

(6.27) (AUh) ◦ (RϵLRX) = (RϵX ′) ◦ (RLAUh)

We compute

(RϵX ′) ◦ (RLAUh) ◦ (RLηRX)
(6.27)
= (AUh) ◦ (RϵLRX) ◦ (RLηRX)

= AUh

and thus

(KψϵX
′) ◦ (KψLAUh) ◦ (KψLηRX) = h

i.e.

K̃LRX,X′

(
K̃−1
LRX,X′ (h)

)
= Kψ

(
K̃−1
LRX,X′ (h)

)
= (KψϵX

′) ◦ (KψLAUh) ◦ (KψLηRX) = h.

Proposition 6.73. Let (L,R) be an adjunction where L : B → A and R : A → B,
let A = (A,mA, uA) be a monad on the category B and let ψ : A = (A,mA, uA) →
RL = (RL,RϵL, η) be a monad morphism. Let Kψ = Υ(ψ) = (R, (Rϵ) ◦ (ψR)) and
AUKψ (f) = AUΥ(ψ) (f) = R (f) for every morphism f in A. If Kψ is full and
faithful then, for every X ∈ A, we have

(X, ϵX) = CoequA (LRϵX, ϵLRX) .

Proof. By Lemma 6.71 we have

(KψX,KψϵX) = Coequ
AB (KψϵLRX,KψLRϵX) .

Then we can apply Lemma 5.37 and deduce that (X, ϵX) = CoequB (ϵLRX,LRϵX) .
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Theorem 6.74 (Generalized Beck’s Theorem for Monads). Let (L,R) be an ad-
junction where L : B → A and R : A → B, let A = (A,mA, uA) be a monad on
the category B and let ψ : A = (A,mA, uA) → RL = (RL,RϵL, η) be a monads
morphism such that ψY is an epimorphism for every Y ∈ B. Let Kψ = Υ(ψ) =
(R, (Rϵ) ◦ (ψR)) and AUKψ (f) = AUΥ(ψ) (f) = R (f) for every morphism f in A.
Then Kψ : A → AB is full and faithful if and only if for every X ∈ A we have that
(X, ϵX) = CoequA (LRϵX, ϵLRX) .

Proof. If Kψ is full and faithful then we can apply Proposition 6.73 to get that for
every X ∈ A we have that (X, ϵX) = CoequA (LRϵX, ϵLRX) .

Conversely assume that for everyX ∈ A we have that (X, ϵX) = CoequA (LRϵX, ϵLRX) .

We want to prove that K̃X,X′ is bijective for every X,X ′ ∈ A. Let us consider the
following diagram

0

��

0

��
HomA (X,X ′)

K̃X,X′
//

HomA(ϵX,X′)
��

HomAB (KψX,KψX
′)

HomAB(KψϵX,KψX′)
��

HomA (LRX,X ′)
K̃LRX,X′

//

HomAB(ϵLRX,X
′)

��
HomA(LRϵX,X′)

��

HomAB (KψLRX,KψX
′)

HomAB(KψϵLRX,KψX′)
��

HomAB(KψLRϵX,KψX′)
��

HomA (LRLRX,X ′)
K̃LRLRX,X′

// HomAB (KψLRLRX,KψX
′)

0 0
↓ ↓

HomA (X,X ′)
K̃X,X′
−→ HomAB (KψX,KψX

′)
HomA (ϵX,X ′) ↓ ↓ HomAB (KψϵX,KψX

′)

HomA (LRX,X ′)
K̃LRX,X′
−→ HomAB (KψLRX,KψX

′)
HomA (LRϵX,X ′) � HomA (ϵLRX,X ′) HomAB (KψLRϵX,KψX

′) � HomAB (KψϵLRX,KψX
′)

HomA (LRLRX,X ′)
K̃LRLRX,X′
−→ HomAB (KψLRLRX,KψX

′)

Since (X, ϵX) = CoequA (LRϵX, ϵLRX) the left column of the diagram is exact by
Lemma 5.38. By Lemma 6.71 we have (KψX,KψϵX) = Coequ

AB (KψϵLRX,KψLRϵX)
so that also the right column is exact by Lemma 5.38. Let f ∈ HomA (X,X ′) and
g ∈ HomA (LRX,X ′). Since

Kψ (f ◦ (ϵX)) = (Kψf) ◦ (KψϵX)

Kψ (g ◦ (ϵLRX)) = (Kψg) ◦ (KψϵLRX) and Kψ (g ◦ (LRϵX)) = (Kψg) ◦ (KψLRϵX)

the diagram is serially commutative. By Proposition 6.72, K̃LRX,X′ and K̃LRLRX,X′

are isomorphisms and so is K̃X,X′ by Lemma 5.35.
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Corollary 6.75 (Beck’s Theorem for Monads). Let (L,R) be an adjunction where
L : B → A and R : A → B. Then K = Υ(IdRL) : A → RLB is full and faithful if
and only if for every X ∈ A we have that (X, ϵX) = CoequA (LRϵX, ϵLRX) .

6.7 Grothendieck

Let Cbe an abelian category. Following Grothendieck’s terminology we say that

AB3= cocomplete⇒ C has inductive limits
AB3∗=complete⇒ C has projective limits
AB4=the direct sum

⊕
i∈I fiof a family (fi)i∈I of monomorphisms is a monomor-

phism=direct sums are left exact
AB4∗=the direct product

∏
i∈I fiof a family (fi)i∈I of epimorphisms is an epi-

omorphism=direct product are left exact.
AB5=direct inductive limits are exact.

Theorem 6.76. (Popescu Proposition 8.5 page 54)Let Cbe an AB3-category and an

AB3∗-category. TFAE.
(a) For any family of objects (Xi)i∈I of C,the canonical morphism t :

⊕
i∈I
Xi −→

∏
i∈I
Xi is a monomorphism.

(b) If (Xi)i∈I is a family of objects of C and f : Y →
⊕
i∈I
Xi is a morphism such

that pif = 0 for any i ∈ I, then f = 0

Following Mitchell, we say that Cis a C2-category if Cis both an AB3-category

and an AB3∗-category satisfying the equivalent conditions of the previous Theorem.

Theorem 6.77. (Popescu Corollary 8.10 page 61) Let Cbe an AB5-category and an

AB3∗-category. then is aCis a C2-category.
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