
ANALISI FUNZIONALE
A.A. 2025–2026 (FOSCHI)
ESERCIZI E PROBLEMI

1. Parte prima: esercizi riguardanti i teoremi fondamentali
dell’analisi funzionale lineare.

1.1. Mappa di dualità. Sia X uno spazio normato reale. Definiamo la mappa
di dualità di X come l’applicazione F che ad ogni elemento x ∈ X associa il
sottoinsieme del duale X ′ definito da

F (x) :=
{
ϕ ∈ X ′ : ∥ϕ∥X′ = ∥x∥ , ϕ(x) = ∥x∥2

}
.

Esercizio 1.1. Verifica che vale anche

F (x) :=
{
ϕ ∈ X ′ : ∥ϕ∥X′ ⩽ ∥x∥ , ϕ(x) = ∥x∥2

}
.

e dimostra che F (x) è sempre non vuoto, chiuso e convesso.

Esercizio 1.2. Verifica che vale anche

FX(x) :=

{
ϕ ∈ X ′ : ∀y ∈ X,

1

2
∥y∥2 − 1

2
∥x∥2 ⩾ ϕ(y − x)

}
.

e dimostra che si ha (ϕ − ψ)(x − y) ⩾ 0 quando x, y ∈ X e ϕ ∈ F (x) e ψ ∈ F (y).
Dimostra che in effetti si ha

(ϕ− ψ)(x− y) ⩾ (∥x∥ − ∥y∥)2 , ∀x, y ∈ X,∀ϕ ∈ F (x),∀ψ ∈ F (y).

Lo spazio X si dice strettamente convesso quando la sua palla unitaria chiusa è
strettamente convessa, ovvero quando per ogni coppia x, y ∈ X con ∥x∥ = ∥y∥ = 1
e x ̸= y e per ogni t c on 0 < t < 1 si ha ∥(1− t)x+ ty∥ < 1.

Esercizio 1.3. Dimostra che se X è strettamente convesso allora FX(x) contiene
sempre un solo elemento.

Esercizio 1.4. Siano X strettamente convesso, x, y ∈ X, F (x) = {ϕ}, F (y) = {ψ}.
Verifica che se (ϕ− ψ)(x− y) = 0 allora ϕ = ψ.

Esercizio 1.5. Considera lo spazio X := {u ∈ C([0, 1];R) : u(0) = 0} dotato della
norma uniforme ∥u∥ := max[0,1] |u(t)|. Sia ϕ : X → R il funzionale lineare definito
da

ϕ(u) :=

∫ 1

0

u(t) dt.

Verifica che ϕ ∈ X ′ e calcola la norma ∥ϕ∥X′ . Esiste una funzione u ∈ X tale che
∥u∥ = 1 e ϕ(u) = ∥ϕ∥X′?

1.2. Convessità.

Esercizio 1.6. Sia X uno spazio normato e sia C ⊆ X un convesso.
• Verifica che l’interno topologico di C è convesso.
• Verifica che la chiusura topologica di C è convessa.
• Dimostra che se x ∈ C e y è interno a C e 0 < t < 1 allora il punto

(1− t)x+ ty è interno a C.
• Dimostra che se C ha interno non vuoto allora la chiusura dell’interno di
C coincide con la chiusura di C.
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Esercizio 1.7. Sia X := C([0, 1] dotato della norma uniforme ∥u∥ := max[0,1] |u(t)|.
Considera il sottoinsieme

C :=

{
u ∈ X :

∫ 1

0

|u(t)|2 dt < 1

}
,

e sia p : X → R il funzionale di Minkowki associato a C.
• Verifica che C è convesso, simmetrico e che 0 ∈ C.
• L’insieme C è limitato in X?
• Dimostra che p è una norma su X.
• La norma p è equivalente alla norma uniforme?

Esercizio 1.8 (Brezis, exercise 1.22, pag. 26). Sia X uno spazio normato e sia A un
sottoinsieme chiuso e non vuoto di X. Consideriamo la funzione dA : X → R che
calcola la distanza di un punto da A,

dA(x) := dist(x,A) := inf
a∈A

∥x− a∥ , ∀x ∈ X.

• Dimostra che dA è Lipschitziana con costante di Lipschitz 1, ovvero che

|dA(x)− dA(y)| ⩽ ∥x− y∥ , ∀x, y ∈ X.

• Dimostra che dA è una funzione convessa se e solo se A è un insieme
convesso.

Esercizio 1.9 (Continuità delle funzioni convesse, [Brezis, exercise 2.1, pag. 49]).
Sia X uno spazio di Banach. Sia f : X →]−∞,+∞] una funzione convessa e
semicontinua inferiormente. Sia p ∈ X tale che f(p) < +∞.

• Dimostra che esistono due costanti R > 0 e M ∈ R tali che

∥x− p∥ ⩽ R =⇒ f(x) ⩽M.

[Suggerimento: per un appropriato ρ > 0 considera gli insiemi

Fn := {x ∈ X : ∥x− p∥ ⩽ ρ, φ(x) ⩽ n} .]
• Dimostra che per ogni r ∈]0, R[ la funzione f è Lipschitziana sulla palla

chiusa B(p, r) (con costante di Lipschitz L := 2(M − f(p))/(R− r)).

Esercizio 1.10 (Brezis, exercise 1.15, pag. 24). Sia X uno spazio vettoriale normato
reale. Sia C un sottoinsieme convesso di X contenente l’origine, 0 ∈ X. Definiamo

C⋆ := {f ∈ X ′ : f(x) ⩽ 1,∀x ∈ C} , C⋆⋆ := {x ∈ X : f(x) ⩽ 1,∀f ∈ C⋆} .

Dimostra che C⋆⋆ = C. Che cosa è C⋆ nel caso in cui C sia un sottospazio lineare
di X?

1.3. Esercizi intorno al Teorema di Hahn-Banach.

Esercizio 1.11 (Brezis, exercise 1.3, pag. 20). Considera lo spazio

X := {f : [0, 1] → C : f è continua, f(0) = 0} .
dotato della norma uniforme ∥f∥X := maxx∈[0,1] |f(x)|. Sia T : X → C il funzionale
definito da T (f) :=

∫ 1

0
f(x) dx.

• Verifica che T ∈ X ′ e calcola la norma ∥T∥X′ .
• Esiste una funzione f ∈ X tale che ∥f∥X = 1 e T (f) = ∥T∥X′?

Esercizio 1.12. Nello spazio di Banach X = ℓ1 (reale) considera i due sottoinsiemi
A e B definiti da

A =
{
(xn)n∈N ∈ ℓ1 : x2k = 0∀k ∈ N

}
,

B =
{
(yn)n∈N ∈ ℓ1 : y2k = 2−ky2k−1∀k ∈ N

}
.
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• Dimostra che la somma A+B è densa in X.
• Verifica che la successione z = (zn)n∈N definita da

z2k−1 = 0, z2k = 2−k, ∀k ∈ N;
non appartiene a A+B.

• Poniamo D := A − z; verifica che l’intersezione B ∩D è vuota. Esiste un
iperpiano chiuso in X che separa B da D?

Esercizio 1.13. Si ripeta l’esercizio 1.12 usando come spazio X lo spazio di Banach
ℓp con 1 < p < ∞ (con norma ℓp) oppure lo spazio di Banach c0 delle successioni
infinitesime (con norma uniforme).

Esercizio 1.14. Sia X uno spazio normato. Sia S un sottospazio di X. Sia ψ ∈ S′

Considera gli insiemi

A := {φ ∈ X ′ : φ|S = ψ|S , ∥φ∥X′ ⩽ ∥ψ∥S′} ,
B := {φ ∈ X ′ : φ|S = ψ|S , ∥φ∥X′ = ∥ψ∥S′} ,
C := {φ ∈ X ′ : φ|S = ψ|S , ∥φ∥X′ ⩾ ∥ψ∥S′} ,

dove φ|S e ψ|S indicano le restrizioni dei funzionali al sottospazio S.
• Verifica che A e B sono convessi.
• Spiega perché se S è denso in X allora A = B = C.
• Spiega perché se S non è denso in X allora B ̸= C.

1.4. Operatore aggiunto.

Esercizio 1.15. Siano X e Y due spazi normati e sia T : X → Y un operatore lineare
e continuo. Definiamo l’operatore aggiunto T ∗ : Y ′ → X ′ ponendo

T ∗[ψ](x) := ψ(Tx), ∀ψ ∈ Y ′,∀x ∈ X.

• Verifica che per ogni ψ ∈ Y ′, l’applicazione lineare x 7→ T ∗[ψ](x) è un
funzionale continuo su X (e dunque T ∗ è ben definito).

• Verifica che T ∗ è continuo e ∥T ∗∥Y ′→X′ ⩽ ∥T∥X→Y .
• Verifica che vale l’uguaglianza ∥T ∗∥Y ′→X′ = ∥T∥X→Y .

1.5. Esercizi intorno ai teoremi di Banach-Steinhaus, mappa aperta e
grafico chiuso.

Esercizio 1.16. Sia c00 lo spazio delle successioni numeriche definitivamente nulle,

c00 := {x = (xn)n∈N : ∃m ∈ N,∀n > m, xn = 0} .
Sia ∥·∥ una qualsiasi norma su c00. Per ogni m ∈ N sia Vm := span {e1, . . . em} lo
spazio vettoriale generato dai primi m elementi della base canonica,

ek := (0, . . . , 0, 1
k-esima posizione

, 0, . . . )

• Spiega perché Vm è chiuso in (c00, ∥·∥).
• Dimostra che Vm ha interno vuoto in (c00, ∥·∥).
• Dimostra che (c00, ∥·∥) non può essere uno spazio di Banach.

Esercizio 1.17 (Brezis, exercise 1.4, pag. 21). Considera lo spazioX delle successioni
a valori scalari infinitesime

X := co :=
{
x = (xn)n∈N ∈ CN : lim

n→∞
xn = 0

}
.

dotato della norma uniforme ∥x∥c0 := maxn∈N |xn|. Sia T : X → C il funzionale
definito da T (x) :=

∑∞
n=1 2

−nxn.
• Verifica che T ∈ X ′ e calcola la norma ∥T∥X′ .
• Esiste una successione x ∈ X tale che ∥x∥X = 1 e T (x) = ∥T∥X′?
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Esercizio 1.18 (Brezis, exercise 1.5, pag. 21). Sia X uno spazio vettoriale normato
di dimensione infinita.

• Dimostra (utilizzando il lemma di Zorn) che esiste una base algebrica (base
di Hamel) di X i cui elementi hanno tutti norma 1.

• Utilizzando la base di Hamel del punto precedente, costruisci un funzionale
lineare T : X → C che non sia continuo.

• Dimostra che se X è Banach la base di Hamel non può essere numerabile.
[Suggerimento: usa il lemma di Baire.]

Esercizio 1.19 (Brezis, exercise 2.8, pag. 50). SiaX uno spazio di Banach. Sia T : X → X ′

un operatore lineare tale che T (x)(x) ⩾ 0 per ogni x ∈ X. Dimostra che T è
continuo. [Suggerimento: applica il teorema del grafico chiuso].

Esercizio 1.20 (Brezis, exercise 2.9, pag. 50). SiaX uno spazio di Banach. Sia T : X → X ′

un operatore lineare tale che T (x)(y) = T (y)(x) per ogni x, y ∈ X. Dimostra che T
è continuo.

Esercizio 1.21. Siano X e Y spazi di Banach e T : X → Y un operatore lineare,
continuo e suriettivo.

• Sia A un qualsiasi sottoinsieme di X. Dimostra che T (A) è chiuso in Y se
e solo se A+ kerT è chiuso in X.

• Sia V un sottospazio chiuso di X e supponiamo che il nucleo kerT abbia
dimensione finita. Domostra che T (V ) è chiuso in Y .

Esercizio 1.22. Siano X, Y , Z spazi di Banach e siano S ∈ L(X;Z), T ∈ L(Y ;Z).
Supponiamo che

kerS ∩ kerT = ∅, kerS + kerT = X.

Dimostra che kerS e kerT sono chiusi.

Esercizio 1.23. Sia V uno spazio vettoriale reale e sia E un suo sottoinsieme tale
che:

• se x, y ∈ E allora x+ y ∈ E;
• se x ∈ E e λ > 0 allora λx ∈ E;
• se x,−x ∈ E allora x = 0.

Definiamo su V la relazione ≲ ponendo x ≲ y se e solo se x− y ∈ E.
• Verifica che ≲ è una relazione d’ordine su V .
• Sia S un sottospazio di V tale che per ogni x ∈ V esiste y ∈ S con x ≲ y.

Sia g : S → R lineare e tale che g(y) ⩾ 0 per ogni y ∈ S ∩ E. Dimostra
che esiste una funzione lineare f : V → R che estende g a tutto V tale che
f(x) ⩾ 0 per ogni x ∈ E.

Esercizio 1.24. Sia R+ =]0,+∞[ e sia X = L∞(R+). Sia w : R+ × R+ → R tale
che per ogni x ∈ R+ si ha che y 7→ w(x, y) ∈ L1(R+). Per ogni f ∈ X definiamo

Tf(x) :=

∫ +∞

0

w(x, y)f(y) dy, ∀x ∈ R+.

Supponiamo che w sia tale per cui l’operatore T mappa X in X.
• Dimostra che T è continuo da X in X. [Suggerimento: usa il teorema di

uniforme limitatezza]
• Verifica che

∥T∥X→X = sup
x∈R+

∫ +∞

0

|w(x, y)| dy.
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Esercizio 1.25 (Brezis, exercise 2.3, pag. 49). Siano X e Y due spazi di Banach.
Sia (Tn)n∈N una successione di operatori lineari e continui Tn : X → Y . Supponiamo
che per ogni x ∈ X la successione (Tn(x))n∈N converga per n → ∞ in Y ad un
limite che indichiamo con T (x). Dimostra che se la successione (xn) converge al
punto x in X allora la successione (Tn(xn))n∈N converge al punto T (x) in Y .

Esercizio 1.26 (Bresiz, exercise 2.4, pag. 49). Siano X e Y due spazi di Banach
reali. Sia B : X × Y → R una forma bilineare tale che:

• per ogni x ∈ X fissato, la mappa y 7→ B(x, y) è continua;
• per ogni y ∈ Y fissato, la mappa x 7→ B(x, y) è continua.

Dimostra che esiste una costante C ⩾ 0 tale che

|B(x, y)| ⩽ C ∥x∥ ∥y∥ .

[Suggerimento: alla forma bilineare B corrisponde in modo canonico un operatore
lineare T : X → Y ′ che risulta (localmente) limitato.]

Esercizio 1.27. Siano X e Y due spazi di Banach e sia S : X → Y un operatore
lineare e continuo. Dimostra che le seguenti affermazioni sono equivalenti:

• Esiste una costante C > 0 tale che ∥x∥X ⩽ C ∥Sx∥Y per ogni x ∈ X.
• S è iniettivo e l’immagine S(X) è un sottospazio chiuso di Y .

1.6. Sottospazi ortogonali. Sia X uno spazio di Banach. Dato un sottoinsieme
S di X indichiamo l’ortogonale di S come il sottoinsieme S⊥ dello spazio duale X ′

definito da

S⊥ := {f ∈ X ′ : f(x) = 0,∀x ∈ S} .

Dato un sottoinsieme T del duale X ′ indichiamo l’ortogonale di T come il sottoin-
sieme T⊥ dello spazio X definito da

T⊥ := {x ∈ X : f(x) = 0,∀f ∈ T} .

Esercizio 1.28 (Brezis, proposition 1.9, pag. 9). Dimostra che:

• S⊥ è sempre un sottospazio vettoriale chiuso di X ′ per ogni sottoinsieme S
di X e si ha

(S⊥)⊥ = spanS;

• T⊥ è sempre un sottospazio vettoriale chiuso di X per ogni sottoinsieme T
di X ′ e si ha

(T⊥)⊥ ⊇ spanT .

Esercizio 1.29 (Brezis, exercise 1.16, pag.24). Considera lo spazio X = ℓ1 e il
suo duale X ′ = ℓ∞. Sia V = c0 il sottospazio di X ′ formato dalle successioni
infinitesime. Calcola esplicitamente chi sono V ⊥ e (V ⊥)⊥. Verifica che (V ⊥)⊥ ̸= V .

Esercizio 1.30 (Bresiz, proposition 2.14, corollary 2.15, theorem 2.16, pag. 40–42).
Sia X uno spazio di Banach e siano V,W due sottospazi chiusi di X. Dimostra che
valgono i seguenti risultati:

• V ∩W = (V ⊥ +W⊥)⊥;
• V ⊥ ∩W⊥ = (V +W )⊥);
• (V ∩W )⊥ ⊇ V ⊥ +W⊥;
• (V ⊥ ∩W⊥)⊥ = V +W ;
• V +W chiuso inX ⇐⇒ V ⊥+W⊥ chiuso inX ′ ⇐⇒ V +W = (V ⊥∩W⊥)⊥

⇐⇒ V ⊥ +W⊥ = (V ∩W )⊥.
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2. Parte seconda: esercizi riguardanti topologie deboli

2.1. Topologie deboli.

Esercizio 2.1 (Brezis, exercise 3.1, pag. 79). Sia X uno spazio di Banach e sia K un
sottoinsieme di X compatto rispetto alla topologia debole di X. Dimostra che K è
limitato.

Esercizio 2.2 (Brezis, exercise 3.3, pag. 80). Sia C un sottoinsieme convesso di uno
spazio di Banach. Dimostra che la chiusura di C nella topologia forte coincide con
la chiusura di C nella topologia debole.

Esercizio 2.3 (Brezis, exercise 3.5, pag. 80). Sia K un sottoinsieme compatto ri-
spetto alla topologia forte di uno spazio di Banach. Dimostra che se una successione
in K converge in senso debole allora converge anche in senso forte.

Esercizio 2.4 (Brezis, exercise 3.7, pag. 80). In uno spazio di Banach, sia A un
sottoinsieme chiuso rispetto alla topologia debole e sia B un sottoinsieme compatto
rispetto alla topologia debole. Dimostra che A+B è chiuso rispetto alla topologia
debole. Se assumiamo inoltre che A e B siano convessi non vuoti e disgiunti,
dimostra che A e B sono strettamente separati da un iperpiano chiuso.

Esercizio 2.5 (Bresiz, exercise 3.10, pag. 81). Siano X e Y due spazi di Banach.
Sia T : X → Y un operatore lineare e continuo. Considera l’operatore aggiun-
to T ⋆ : Y ′ → X ′ definito da

T ⋆(g)(x) := g(Tx), ∀g ∈ Y ′,∀x ∈ X.

• Verifica che T ⋆ è continuo da Y ′ dotato della topologia forte a X ′ dotato
della topologia forte.

• Verifica che T ⋆ è continuo da Y ′ dotato della topologia debole a X ′ dotato
della topologia debole.

2.2. Convergenza debole. Ricordiamo che l’inviluppo convesso di un sottoinsie-
me E di uno spazio normato X è il più piccolo sottoinsieme convesso di X che
contiene E, ovvero coincide con l’intersezione di tutti i convessi che contengono E.

Esercizio 2.6 (Brezis, exercise 3.13, pag. 82). Sia (xn)n∈N una successione in uno
spazio di Banach. Per ogni n ∈ N sia Cn la chiusura dell’inviluppo convesso
dell’insieme {xk : k ⩾ n}.

• Dimostra che se (xn)n∈N converge debolmente al punto p allora
⋂

n∈N Cn = {p}.
• Supponendo che lo spazio sia riflessivo, dimostra che se (xn)n∈N è limitata

e
⋂

n∈N Cn = {p} allora (xn)n∈N converge debolmente al punto p.

Esercizio 2.7 (Brezis, exercise 3.16, pag. 83). Sia X uno spazio di Banach.
• Dimostra che se (fn)n∈N è una successione in X ′ tale che per ogni x ∈ X

la successione (fn(x))n∈N converge, allora esiste un funzionale f ∈ X ′ tale
che (fn)n∈N converge ⋆-debolmente ad f .

• Supponendo che X sia riflessivo, dimostra che se (xn)n∈N è una successione
in X tale che per ogni f ∈ X ′ la successione (f(xn))n∈N converge, allora
esiste un punto x ∈ X tale che (xn)n∈N converge debolmente ad x.

• Costruisci un esempio in uno spazio di Banach non riflessivo di una suc-
cessione per la quale la conclusione del punto precedente è falsa. [Suggeri-
mento: puoi provare con X = c0 e xn la successione formata da n volte 1
e poi tutti 0.]

Esercizio 2.8 (Somme di Cesaro e convergenza debole [Brezis, exercise 3.2, pag. 79]).
Sia (xn)n∈N una successione in uno spazio di Banach debolmente convergente ad
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un punto p. Considera la successione (yn)n∈N delle somme di Cesaro definite da

yn :=
1

n

n∑
k=1

xk.

Dimostra che anche (yn)n∈N converge debolmente al punto p.

Esercizio 2.9 (Brezis, exercise 3.4, pag. 80). Sia (xn)n∈N una successione in uno
spazio di Banach debolmente convergente ad un punto p. Sia C l’inviluppo convesso
dell’insieme dei punti della successione. Dimostra che esiste una successione di punti
di C che converge fortemente a p.

Esercizio 2.10. Sia (xn)n∈N una successione in uno spazio di Banach X. Per
ogni n ∈ N, consideriamo l’insieme Cn definito come la chiusura (in senso forte)
dell’inviluppo convesso dell’insieme {xk : k ⩾ n}.

• Dimostra che se xn converge debolmente a p allora si ha che

(1) ∩n∈NCn = {p} .
• Supponendo che X sia riflessivo, dimostra che se la successione (xn)n∈N è

limitata e vale la condizione (1) allora xn converge debolmente a p.
• Supponendo che X abbia dimensione finita, dimostra che la condizione (1)

implica che xn converge a p (anche senza supporre che la successione sia
limitata).

• Costruisci un esempio esplicito di una successione (xn)n∈N in ℓ2 che non sia
limitata e per la quale si ha che vale la condizione (1) con p = 0.

Esercizio 2.11. Una successione (xk)k∈N di elementi di uno spazio normato X si
dice debolmente di Cauchy quando per ogni funzionale lineare e continuo φ ∈ X ′

si ha che la successione (φ(xk))k∈N è di Cauchy nel campo degli scalari. Dimostra
che:

• Ogni successione debolmente di Cauchy è limitata;
• In uno spazio di Banach riflessivo, ogni successione debolmente di Cauchy

è debolmente convergente.

2.3. Questioni di riflessività, separabilità, metrizzabilità.

Esercizio 2.12. Sia T : X → Y una isometria suriettiva tra due spazi di Banach.
Dimostra che X è riflessivo se e solo se Y è riflessivo.

Esercizio 2.13. Siano (M1, d1) e (M2, d2) due spazi metrici e sia f : M1 →M2 è una
funzione continua. Dimostra che se M1 è separabile allora (f(M1), d2) è separabile.

Esercizio 2.14. Considera l’applicazione f : [0, 1] → L∞([0, 1]) che ad ogni t ∈ [0, 1]
associa f(t) := χ[0,t], la funzione caratteristica dell’intervallo [0, t]. Dimostra che lo
spazio metrico

(
f([0, 1]), ∥·∥∞

)
non è separabile.

Esercizio 2.15. Sia X uno spazio di Banach di dimensione infinita. Dimostra che
X con la topologia debole non è metrizzabile. Ecco di seguito una traccia che puoi
provare a seguire.

• Supponiamo per assurdo che esista una metrica d su X che genera la stessa
topologia della topologia debole, e quindi per ogni n ∈ N la palla metrica
{x ∈ X : d(x, 0) < 1/n} contiene un intorno debole basico di 0.

• Dimostra che allora esiste una successione (ϕn)n∈N nel duale X ′ tale che
ogni funzionale ψ ∈ X ′ è combinazione lineare finita di funzionali ϕn.

• Dedurre dal punto precedente che il duale X ′ ha dimensione finita e quindi
X non può avere dimensione infinita.

Esercizio 2.16. Sia X uno spazio di Banach di dimensione infinita. Dimostra che:
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• Se il duale X ′ è separabile allora esiste una successione (xn)n∈N in X tale
che

(2) ∥xn∥ = 1,∀n ∈ N, e xn converge debolmente a 0.

[Suggerimento: pensa a come è fatta la chiusura debole della sfera uni-
taria {x ∈ X : ∥x∥ = 1} e usa uno dei teoremi che legano separabilità e
metrizzabilità delle palle unitarie.]

• Se X è riflessivo allora esiste una successione (xn)n∈N in X che verifi-
ca le condizioni in (2). [Suggerimento: osserva che puoi restringerti ad
un sottospazio separabile di X e ciò ti permette di ricollegarti al punto
precedente.]

Esercizio 2.17 (Brezis, exercise 3.26, pag. 85). Sia X uno spazio di Banach separa-
bile. Sia (an)n∈N una successione i cui punti formano un sottoinsieme denso in X.
Considera l’operatore lineare T : ℓ1 → X definito da

T (x) =

∞∑
k=1

xkak, ∀x = (xk)k∈N ∈ ℓ1.

Dimostra che T è continuo e suriettivo.

Esercizio 2.18 (Teorema del punto di minima distanza per spazi riflessivi.). Sia X
uno spazio di Banach riflessivo e sia V un suo sottospazio chiuso. Dato q ∈ X, consi-
deriamo la funzione φ(x) := ∥x− q∥ e per ogni λ ∈ R sia Kλ := {x ∈ V : φ(x) ⩽ λ}.

• Verifica che φ è continua, convessa e coerciva.
• Spiega perché gli insiemi Kλ sono limitati e debolmente chiusi.
• Spiega perché Kλ è debolmente compatto.
• Osserva che esiste un λ⋆ ∈ R tale che Kλ⋆

non è vuoto.
• Deduci che esiste un p ∈ Kλ⋆

tale che φ(p) = minx∈Kλ⋆
φ(x).

• Verifica che tale p è un punto di V con minima distanza da q,

∥p− q∥ = min
x∈V

∥x− q∥ .

2.4. Questioni di uniforme convessità.

Esercizio 2.19 (Brezis, exercise 3.29, pag. 86). Sia X uno spazio di Banach unifor-
memente convesso. Dimostra che per ogni M > 0 e per ogni ε > 0 esiste un δ > 0
tale che ∥∥∥∥x+ y

2

∥∥∥∥2 ⩽
1

2
∥x∥2 + 1

2
∥y∥2 − δ

per ogni coppia di vettori x, y ∈ X tali che ∥x∥ ⩽M , ∥y∥ < M e con ∥x− y∥ > ε.

Esercizio 2.20. Sia X uno spazio di Banach uniformemente convesso e sia B la sua
palla unitaria chiusa.

• Dimostra che per ogni ε > 0 e 0 < α < 1/2 esiste δ > 0 (che puo dipendere
da ε e α) tale che: per ogni x, y ∈ B con ∥x− y∥ ⩾ ε e ogni t ∈ [α, 1−α] si
ha ∥(1− t)x+ ty∥ ⩽ 1 − δ. [Suggerimento: quando t ∈ [α, 1/2] può essere
utile considerare il punto z per il quale si ha (1− t)x+ ty = 1

2 (x+ z).]
• Deduci dal punto precedente che X è strettamente convesso.

3. Parte terza: esercizi su spazi Lp e spazi di Hilbert

3.1. Uniforme convessità di Lp.

Esercizio 3.1. Ecco una traccia per una dimostrazione diretta della uniforme con-
vessità di Lp quando 1 < p < 2.
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• Verifica che per ogni p > 1 si ha che esiste una costante positiva Cp tale
che

0 < Cp ⩽
(|t| − 1)1−

p
2

(
|t|p + 1− 21−p |t+ 1|p

) p
2

|1− t|p
, ∀t ∈]− 1, 1[.

[Suggerimento: studia il comportamento asintotico per t → 1− della fun-

zione
tp+1

2 −( t+1
2 )

p

(t−1)2 .]
• Deduci dal punto precedente la seguente disuguaglianza:

(3) |z − w|p ⩽
1

Cp

(
|z|p + |w|p

)1− p
2

(
|z|p + |w|p − 2

∣∣∣z + w

2

∣∣∣p) p
2

, ∀z, w ∈ C.

• Utilizzando la disuguaglianza (3) e la disuguaglianza di Hölder verifica che
Lp è uniformemente convesso.

3.2. Dualità per Lp.

Esercizio 3.2. Sia 1 ⩽ p < ∞. Sia a una funzione misurabile sull’aperto Ω di Rd.
Supponiamo che au ∈ L1(Ω) per ogni u ∈ Lp(Ω). Dimostra che a ∈ Lp′

(Ω) con p′

esponente coniugato di p.

Esercizio 3.3 (Brezis, exercise 2.7, pag. 50). Sia p ∈ [1,+∞] e sia p′ l’esponente
coniugato di p. Sia α = (αn)n∈N una successione di valori scalari. Supponia-
mo che

∑
n∈N |αnxn| < ∞ per ogni successione x = (xn)n∈N ∈ ℓp. Dimostra

che α ∈ ℓp
′
.

Esercizio 3.4. Considera gli spazi vettoriali

X := L3/2(R) ∩ L3(R), Y := L3/2(R) + L3(R).

Definiamo

∥f∥X := ∥f∥L3/2 + ∥f∥L3 , ∥f∥X := inf
f1∈L3/2

f2∈L3

f1+f2=f

∥f1∥L3/2 + ∥f2∥L3 .

Verifica che:
• (X, ∥·∥X) e (Y, ∥·∥Y ) sono spazi di Banach.
• Y si immerge in modo naturale in X ′.
• X si immerge in modo naturale in Y ′.

[Le immersioni naturali degli ultimi due punti possono essere realizzate tramite
l’identificazione di una funzione f con il funzionale lineare Tf definito (quando
possibile) dalla forma canonica di dualità, Tf (g) :=

∫
fg.]

3.3. Successioni di funzioni in Lp.

Esercizio 3.5. Considera la successione di funzioni

fn(x) := sin(nx), ∀n ∈ N,∀x ∈ [0, 1].

Sia 1 ⩽ p ⩽ +∞.
• Verifica che (fn)n∈N è limitata in Lp([0, 1]).
• Verifica che (fn)n∈N converge in senso debole a 0 in Lp([0, 1]).
• Verifica che (fn)n∈N converge in senso debole-⋆ a 0 in L∞([0, 1]).

Esercizio 3.6. Siano 1 < p < ∞ e α > 0. Considera la successione di funzioni
(fn)n∈N in Lp([0, 1]) definita da fn = nαχ[0,1/n]. Verifica che:

• Per quali α e p si ha che fn converge fortemente a 0 in Lp([0, 1])?
• Per quali α e p si ha che fn converge fortemente debolmente a 0 in Lp([0, 1])?
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Esercizio 3.7. Considera la successione di funzioni fn(x) := e−x2(
cos(nx)

)2, defi-
nita per ogni n ∈ N e x ∈ R. Sia 1 < p < +∞.

• Verifica che la successione (fn)n∈N non converge in norma in Lp(R).
• La successione (fn)n∈N possiede sottosuccessioni che convergono in norma

in Lp(R)?
• Verifica che la successione (fn)n∈N converge debolmente in Lp(R).
• Qual’è il limite debole della successione (fn)n∈N in Lp(R)?

Esercizio 3.8 (Brezis, exercise 4.19-1, pag. 124). Sia (fn)n∈N una successione in Lp(R)
e sia f ∈ p(R) con 1 < p < ∞. Supponiamo che fn converga debolmente in Lp

ad f e che ∥fn∥p converga a ∥f∥p per n → ∞. Dimostra che fn converge ad f in
norma Lp.

Esercizio 3.9 (Brezis, exercise 4.19-2, pag. 124). Costruisci una successione (fn)n∈N
in L1(R) tale che:

• fn(x) ⩾ 0 per ogni x ∈ R e per ogni n ∈ N;
• (fn) converge debolmente in L1 ad una funzione f ∈ L1(R);
• ∥fn∥1 converge a ∥f∥1;
• (fn) non converge in norma L1 ad f .

Esercizio 3.10. Sia 1 < p < ∞. Considera la successione di funzioni (fn)n∈N in
Lp([0, 1]) definita da

fn(x) = n
1
p e−nx, ∀n ∈ N,∀x ∈ [0, 1].

Verifica che:
• fn(x) converge puntualmente a 0 quasi ovunque su [0, 1];
• (fn)n∈N è una successione limitata in Lp([0, 1]);
• fn non è convergente in senso forte in Lp([0, 1]);
• dato g ∈ Lp′

([0, 1]), la successioni degli integrali
∫ 1

0
fn(x)g(x) dx converge

a zero per ogni g ∈ Lp′
([0, 1]);

• fn converge debolmente a 0 in Lp([0, 1]).

Esercizio 3.11. Discuti le varie proprietà di convergenza (puntuale, debole, forte)
della successione di funzioni fn(x) = nenx in L1([0, 1]).

Esercizio 3.12. Sia 1 < p < ∞ e sia g ∈ Lp(R). Considera la successione delle
traslate gn(x) := g(x − n), per n ∈ N e x ∈ R. Verifica che (gn)n∈N converge
debolmente a 0 in Lp(R).

Esercizio 3.13. Sia g ∈ C(R) tale che g(x) → 0 per |x| → 0. Considera la succes-
sione delle traslate gn(x) := g(x − n), per n ∈ N e x ∈ R. Verifica che (gn)n∈N
converge a 0 nella topologia debole-⋆ di L∞(R) = (L1(R))′.

Esercizio 3.14. Considera la successione gn = χ[n,n+1] in L1(R). Dimostra che
(gn)n∈N non possiede sottosuccessioni debolmente convergenti in L1(R). [Sugge-
rimento: prova a testare una generica sottosuccessione (gnk

)k∈N con il funzionale
corrispondente alla funzione h :=

∑
k gnk

∈ L∞.]

Esercizio 3.15. Considera la successione (fn)n∈N in L∞([−1, 1]) definita da

fn(x) := e−nx2

, ∀n ∈ N, x ∈ [−1, 1].

• Verifica che fn converge a zero nella topologia debole-⋆ di L∞([−1, 1]).
• Verifica che fn non converge a zero nella topologia debole di L∞([−1, 1]).

[Suggerimento: puoi testare la successione con un funzionale su L∞([−1, 1])
che estende il funzionale su C([−1, 1]) definito da ϕ(f) = f(0).]
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Esercizio 3.16 (Brezis, exercise 3.18, pag. 83). Per ogni n ∈ N sia en la successione
con enk = 0 se k ̸= n e enn = 1,

en = (0, 0, . . . , 0, 1, 0, 0, . . . ), con l’1 nella n-esima posizione.

• Dimostra che en converge debolmente a 0 in ℓp per ogni p ∈]1,∞].
• Dimostra che nessuna sottosuccessione di (en) converge debolmente in ℓ1.

Esercizio 3.17. Sia 1 ⩽ p < ∞. Sia (xn)n∈N una successione di successioni xn =
(xn,k)k∈N ∈ ℓp che converge debolmente alla successione x⋆ = (x⋆,k)k∈N ∈ ℓp.
Dimostra che per ogni k ∈ N la successione (xn,k)n∈N delle coordinate k-esime
converge a x⋆,k in R.

Esercizio 3.18. Considera la successione (xn)n∈N di successioni xn = (xn,k)k∈N
definita da

xn,k =

{
1/k se 1 ⩽ k ⩽ n,

0 se 1 ⩽ n < k.

• Verifica che (xn) converge in senso forte in ℓ2.
• Verifica che (xn) non converge in senso debole in ℓ1.

[Suggerimento: può tornare utile l’esercizio 3.17.]

Esercizio 3.19. Sia T : Lp(R) → Lp(R) un operatore lineare con la seguente proprie-
tà: quando una successione (fn)n∈N di Lp(R) converge puntualmente quasi ovunque
ad una funzione f ∈ Lp(R) allora la successione (Tfn)n∈N converge puntualmente
quasi ovunque alla funzione Tf ∈ Lp(R). Dimostra che T è un operatore continuo.

3.4. Lo spazio delle successioni convergenti. Considera in ℓ∞ il sottospazio c
delle successioni convergenti,

c :=
{
(xn)n∈N : ∃ lim

n→∞
xn

}
.

Esercizio 3.20. Verifica che:
• c è chiuso in ℓ∞;
• c non è riflessivo;
• c è separabile.

Esercizio 3.21. Lo scopo di questo esercizio è di far vedere che il duale di (c, ∥·∥∞) si
può identificare con (ℓ1 ×R). Dati y ∈ ℓ1 e λ ∈ R possiamo costruire un funzionale
ϕy,λ : c→ R ponendo

ϕy,λ(x) := λ lim
n→∞

∞∑
n=1

xnyn

Dimostra le seguenti affermazioni:
• Ty,λ ∈ c′;
• ∥Ty,λ∥c′ = |λ|+ ∥y∥ℓ1 ;
• L’applicazione Φ: ℓ1 × R → c′ che alla coppia (y, λ) associa il funzionale
Φ(y, λ) := ϕy,λ è suriettiva.

4. Proprietà topologiche in Lp

Esercizio 4.1. Sia g : R → R una funzione continua a supporto compatto non iden-
ticamente nulla e a valori non negativi. Sia 1 ⩽ p <∞. Considera gli insiemi

A := {f ∈ Lp(R) : |f(x)| ⩽ g(x) quasi ovunque} ,
B := {f ∈ Lp(R) : |f(x)| ⩾ g(x) quasi ovunque} .

Determina se A e B sono chiusi, debolmente chiusi, compatti, debolmente compatti
in Lp(R).
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Esercizio 4.2. Sia Ω un aperto di Rd con misura di Lebesgue finita. Sia 1 ⩽ p < +∞.
Dimostra le seguenti proposizioni:

• Se A ⊆ Lp(Ω) è chiuso rispetto alla topologia debole di Lp(Ω) allora A ∩
L∞(Ω) è chiuso rispetto alla topologia debole-⋆ di L∞(Ω).

• Sia B ⊆ L∞(Ω) un convesso e limitato in L∞(Ω). Una funzione f ∈ L∞(Ω)
sta nella chiusura debole-⋆ di B se e solo se esiste una successione di funzioni
(fn)n∈N con fn ∈ B che converge ad f in norma Lp.

4.1. Altri esercizi tratti dal Brezis.

Esercizio 4.3 (Brezis, exercise 3.19, pag. 83). Siano p, q ∈]1,∞[. Sia a : R → R una
funzione continua tale che

|a(t)| ⩽ |t|p/q , ∀t ∈ R.

Sia A l’operatore (non lineare) che alla successione x = (x1, x2, x3, . . . ) associa la
successione

A(x) :=
(
a(x1), a(x2), a(x3), . . .

)
.

• Dimostra che A è una mappa continua da ℓp (con topologia forte) in ℓq (con
topologia forte).

• Dimostra che se (xn)n∈N è una successione di elementi di xn ∈ ℓp debol-
mente convergente alla successione x allora (A(xn))n∈N è una successione
in ℓq debolmente convergente alla successione A(x).

• Deduci che A è continua come funzione dalla palla chiusa unitaria di ℓp
dotata della topologia indotta dalla topologia debole allo spazio ℓq dotato
della topologia debole.

Esercizio 4.4 (Brezis, exercise 4.7, pag. 119). Siano 1 ⩽ q ⩽ p ⩽ ∞. Sia a : R → R
una funzione misurabile. Supponiamo che per ogni f ∈ Lp(R) si ha che af ∈ Lq(R).
Dimostra che a ∈ Lr(R) dove r è determinato dalla formula

1

r
=

1

q
− 1

p
.

[Suggerimento: usa il teorema del grafico chiuso.]

Esercizio 4.5 (Brezis, exercise 4.8, pag. 119). Sia V un sottospazio chiuso di L1(R).
Supponiamo anche che

V ⊆
⋃
q>1

Lq(R).

• Dimostra che esiste un esponente p > 1 tale che V ⊆ Lp(R). [Suggerimento:
per ogni n ∈ N considera l’insieme

Vn :=
{
f ∈ V ∩ L1+1/n(R) : ∥f∥1+1/n ⩽ n

}
.]

• Dimostra che esiste una costante C ⩾ 0 tale che ∥f∥p ⩽ C ∥f∥1 per
ogni f ∈ V .

Esercizio 4.6 (Brezis, exercise 4.23, pag. 125). Sia 1 ⩽ p < ∞. Sia f : R → R una
funzione misurabile. Considera l’insieme

C := {u ∈ Lp(R) : u(x) ⩾ f(x) quasi ovunque} .

Dimostra che:
• C è convesso;
• C è chiuso nella topologia forte;
• C è chiuso nella topologia debole.
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4.2. Problemi in spazi di Hilbert.

Esercizio 4.7. Sia T : H → H un operatore lineare che agisce su uno spazio di
Hilbert H complesso. Supponiamo che

⟨Tx, y⟩ = i⟨x, Ty⟩, ∀x, y ∈ H,

dove i è l’unità immaginaria. Dimostra che T è continuo.

Esercizio 4.8 (Brezis, exercise 5.9, pag. 148). Siano A e B due sottoinsiemi chiusi,
non vuoti, convessi e disgiunti di uno spazio di Hilbert e supponiamo inoltre che B
sia limitato. Considera l’insieme C = A−B delle differenze tra punti di A e punti
di B.

• Dimostra che C è chiuso e convesso.
• Sia p⋆ il punto di C con norma minima, che possiamo scrivere come p⋆ = a⋆ − b⋆

per qualche punto a⋆ ∈ A e b⋆ ∈ B. Dimostra che

∥a⋆ − b⋆∥ = dist(A,B) := inf
a∈A
b∈B

∥a− b∥ ,

e determina il punto di A di minima distanza da b⋆ e il punto di B di
minima distanza da a⋆.

• Supponiamo che
∥∥∥ã− b̃

∥∥∥ = dist(A,B) per una coppia di punti ã ∈ A

e b̃ ∈ B. Dimostra che p⋆ = ã− b̃.
• Fai un esempio esplicito di insiemi A e B per i quali la coppia (a⋆, b⋆) è

unica.
• Fai un esempio esplicito di insiemi A e B per i quali la coppia (a⋆, b⋆) non

è unica.
• Trova una dimostrazione semplice della seconda forma geometrica del teo-

rema di Hahn-Banach per il caso di uno spazio di Hilbert.

Esercizio 4.9 (Brezis, exercise 5.28, pag. 154). Sia V un sottospazio vettoriale
denso in uno spazio di Hilbert H separabile. Dimostra che V contiene una base
ortonormale di H.

Esercizio 4.10. Sia H uno spazio di Hilbert. Sia (Cn)n∈N una successione di
sottoinsiemi chiusi, convessi e non vuoti di H tale che

• ogni sottoinsieme contiene il successivo, Cn+1 ⊆ Cn per ogni n ∈ N;
• la loro intersezione è non vuota, C∞ :=

⋂
n∈N Cn ̸= ∅.

Dato un punto x ∈ H, per ogni n ∈ N sia xn ∈ Cn il punto di Cn che ha minima
distanza da x,

∥xn − x∥ = dist(Cn, x) := min
y∈Cn

∥y − x∥ .

Dimostra che:
• l’intersezione C∞ è chiusa e convessa;
• la successione numerica (∥xn − x∥)n∈N è non decrescente e superiormente

limitata;
• la successione (xn)n∈N è limitata in H;
• ogni sottosuccessione della successione (xn)n∈N ammette una sottosucces-

sione debolmente convergente ad un punto di C∞;
• se una sottosuccessione di (xn)n∈N converge debolmente ad un punto allora

tale punto è necessariamente il punto x∞ di C∞ con minima distanza da x;
• tutta la successione (xn) converge fortemente al punto x∞.


