ANALISI FUNZIONALE
A.A. 2025-2026 (FOSCHI)
ESERCIZI E PROBLEMI

1. PARTE PRIMA: ESERCIZI RIGUARDANTI I TEOREMI FONDAMENTALI
DELL’ANALISI FUNZIONALE LINEARE.

1.1. Mappa di dualita. Sia X uno spazio normato reale. Definiamo la mappa
di dualita di X come l'applicazione F' che ad ogni elemento z € X associa il
sottoinsieme del duale X’ definito da

Fa)={9€ X": |9l = o], 6(a) = lel*} .
Esercizio 1.1. Verifica che vale anche

F(z) = {6 € X's 18l <llall,6(x) = Il }
e dimostra che F'(x) & sempre non vuoto, chiuso e convesso.

Esercizio 1.2. Verifica che vale anche
1 1
Px(o)i= {0 X' vy € Xog Il - 5 el > oty - )}

e dimostra che si ha (¢ —¢¥)(x —y) > 0 quando z,y € X e ¢ € F(x) e ¢ € F(y).
Dimostra che in effetti si ha

(=)@ —y) = (2] = ly])*, Vaye X,Vo € Flx),v¢ € F(y).

Lo spazio X si dice strettamente convesso quando la sua palla unitaria chiusa ¢
strettamente convessa, ovvero quando per ogni coppia z,y € X con ||z|| = [jy]| =1
ex#yeperognitcon0<t<lsihal|(l—1tz+ty| <l1.

FEsercizio 1.3. Dimostra che se X & strettamente convesso allora F'x(x) contiene
sempre un solo elemento.

FEsercizio 1.4. Siano X strettamente convesso, z,y € X, F(z) = {¢}, F(y) = {¢'}.
Verifica che se (¢ — ¢)(x — y) = 0 allora ¢ = 1.

FEsercizio 1.5. Considera lo spazio X := {u € C([0,1];R): u(0) = 0} dotato della
norma uniforme [|ul| := maxp 1y [u(t)|. Sia ¢: X — R il funzionale lineare definito
da

1
b(u) = / u(t) dt.
0
Verifica che ¢ € X' e calcola la norma ||¢||y,. Esiste una funzione u € X tale che
ull =1 e ¢(u) = [|9]lx?
1.2. Convessita.

Esercizio 1.6. Sia X uno spazio normato e sia C' C X un convesso.

e Verifica che l'interno topologico di C' & convesso.
e Verifica che la chiusura topologica di C' é convessa.
e Dimostra che se x € C' e y ¢ interno a C' e 0 < t < 1 allora il punto
(1 —t)x +ty ¢ interno a C.
e Dimostra che se C' ha interno non vuoto allora la chiusura dell’interno di
C coincide con la chiusura di C.
1
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Esercizio 1.7. Sia X := C([0, 1] dotato della norma uniforme ||ul| := maxpg 17 |u(t)|.
Considera il sottoinsieme

C::{ueX: /01|u(t)|2dt<1},

e sia p: X — R il funzionale di Minkowki associato a C.

Verifica che C' é convesso, simmetrico e che 0 € C.
L’insieme C' ¢ limitato in X7

Dimostra che p € una norma su X.

La norma p é equivalente alla norma uniforme?

FEsercizio 1.8 (Brezis, exercise 1.22, pag. 26). Sia X uno spazio normato e sia A un
sottoinsieme chiuso e non vuoto di X. Consideriamo la funzione d4: X — R che
calcola la distanza di un punto da A,

da(x) = dist(z, A) := igg |z —all, VzelX.

e Dimostra che d4 ¢ Lipschitziana con costante di Lipschitz 1, ovvero che
da(z) —da()| < |z —yll, Vo,yeX.

e Dimostra che ds ¢ una funzione convessa se e solo se A ¢ un insieme
CONnvesso.

FEsercizio 1.9 (Continuita delle funzioni convesse, [Brezis, exercise 2.1, pag. 49]).
Sia X uno spazio di Banach. Sia f: X —]—00,400] una funzione convessa e
semicontinua inferiormente. Sia p € X tale che f(p) < +o0.

e Dimostra che esistono due costanti R > 0 e M € R tali che
lz —pll <R = f(z) <M.
[Suggerimento: per un appropriato p > 0 considera gli insiems
Foi={z e X: |z —pl <p plx) <n} |

e Dimostra che per ogni r €]0, R[ la funzione f & Lipschitziana sulla palla
chiusa B(p,r) (con costante di Lipschitz L :=2(M — f(p))/(R —r)).

FEsercizio 1.10 (Brezis, exercise 1.15, pag. 24). Sia X uno spazio vettoriale normato
reale. Sia C' un sottoinsieme convesso di X contenente 'origine, 0 € X. Definiamo

C*:={feX" f(x)<1,Vz e C}, C*:={reX: f(x)<1,VfeC}.

Dimostra che C** = C. Che cosa & C* nel caso in cui C sia un sottospazio lineare
di X7

1.3. Esercizi intorno al Teorema di Hahn-Banach.
FEsercizio 1.11 (Brezis, exercise 1.3, pag. 20). Considera lo spazio
X :={f:[0,1] —» C: f & continua, f(0) = 0}.
dotato della norma uniforme || f|| y := max,¢jo,1) | f(2)|. Sia T': X — C il funzionale

definito da T(f) := fol f(x)dx.

e Verifica che T' € X' e calcola la norma ||T']| .
e Esiste una funzione f € X tale che ||f||y =1e T(f) = ||T| .7

Esercizio 1.12. Nello spazio di Banach X = ¢* (reale) considera i due sottoinsiemi
A e B definiti da

A= {(In)nEN etz =0Vk € N} ,
B = {(yn)nen € €' yor, = 2 "yop_1Vk € N}.
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e Dimostra che la somma A + B ¢ densa in X.
e Verifica che la successione z = (2, )nen definita da
Zoo1 =0, 20, =27 VkeN;

non appartiene a A + B.
e Poniamo D := A — z; verifica che 'intersezione B N D é vuota. Esiste un
iperpiano chiuso in X che separa B da D?

Esercizio 1.13. Si ripeta 'esercizio 1.12 usando come spazio X lo spazio di Banach
¢P con 1 < p < oo (con norma ¢P) oppure lo spazio di Banach ¢y delle successioni
infinitesime (con norma uniforme).

Esercizio 1.14. Sia X uno spazio normato. Sia S un sottospazio di X. Sia ¢ € S’
Considera gli insiemi

A={pe X" olg=1lg, llellx <lllls},
Bi={pe X" ¢lg=1lg, llollx = I¥lls},
C:={pe X" olg =1l llellx = ¥ls},

dove ¢|g e 9|4 indicano le restrizioni dei funzionali al sottospazio S.

e Verifica che A e B sono convessi.
e Spiega perché se S & denso in X allora A =B =C.
e Spiega perché se S non & denso in X allora B # C.

1.4. Operatore aggiunto.

Esercizio 1.15. Siano X e Y due spazi normati e sia T: X — Y un operatore lineare
e continuo. Definiamo 1’operatore aggiunto T*: Y’ — X’ ponendo
T*[](x) :=¢(Tx), V€Y' VrelX.
e Verifica che per ogni 1) € Y’, lapplicazione lineare x — T*[¢](z) & un
funzionale continuo su X (e dunque T* ¢ ben definito).
e Verifica che 7™ ¢ continuo e [|[T*(|y/_, v, < [T x_y-
e Verifica che vale 'uguaglianza || 7%y, v, = [|T| x_y-

1.5. Esercizi intorno ai teoremi di Banach-Steinhaus, mappa aperta e
grafico chiuso.

Esercizio 1.16. Sia cqq lo spazio delle successioni numeriche definitivamente nulle,

coo = {z = (Tn)nen: IM € N,Vn > m,z, = 0}.

Sia ||-|| una qualsiasi norma su coo. Per ogni m € N sia V,,, := span{ej,...en} lo
spazio vettoriale generato dai primi m elementi della base canonica,
er = (0,...,0, 1 ,0,...)

k-esima posizione

e Spiega perché V, & chiuso in (cqg, |||])-
e Dimostra che V;,, ha interno vuoto in (¢, ||||)-
e Dimostra che (coo, ||-]]) non puo essere uno spazio di Banach.

Esercizio 1.17 (Brezis, exercise 1.4, pag. 21). Considera lo spazio X delle successioni
a valori scalari infinitesime

X :i=c,:= {x = (Tp)nen € cN: lim z, = 0}.

n—oo
dotato della norma uniforme ||z, := max,ey|rn|. Sia T: X — C il funzionale
definito da T'(z) := Y7, 27 "xz),.

e Verifica che T' € X' e calcola la norma ||T']| .
e Esiste una successione € X tale che ||z||y =1e T(x) = ||T| .7
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FEsercizio 1.18 (Brezis, exercise 1.5, pag. 21). Sia X uno spazio vettoriale normato
di dimensione infinita.

e Dimostra (utilizzando il lemma di Zorn) che esiste una base algebrica (base
di Hamel) di X i cui elementi hanno tutti norma 1.

e Utilizzando la base di Hamel del punto precedente, costruisci un funzionale
lineare T': X — C che non sia continuo.

e Dimostra che se X ¢ Banach la base di Hamel non pud essere numerabile.
[Suggerimento: usa il lemma di Baire.]

Esercizio 1.19 (Brezis, exercise 2.8, pag. 50). Sia X uno spazio di Banach. SiaT: X — X’
un operatore lineare tale che T'(z)(x) > 0 per ogni x € X. Dimostra che T &
continuo. [Suggerimento: applica il teorema del grafico chiuso.

FEsercizio 1.20 (Brezis, exercise 2.9, pag. 50). Sia X uno spazio di Banach. SiaT: X — X’
un operatore lineare tale che T'(x)(y) = T(y)(x) per ogni z,y € X. Dimostra che T
& continuo.

Esercizio 1.21. Siano X e Y spazi di Banach e T: X — Y un operatore lineare,
continuo e suriettivo.

e Sia A un qualsiasi sottoinsieme di X. Dimostra che T'(A) ¢ chiuso in Y se
e solo se A+ kerT & chiuso in X.

e Sia V un sottospazio chiuso di X e supponiamo che il nucleo ker T' abbia
dimensione finita. Domostra che T'(V') & chiuso in Y.

FEsercizio 1.22. Siano X, Y, Z spazi di Banach e siano S € £(X;Z), T € L(Y; Z).
Supponiamo che

ker SNkerT = @, ker S + kerT = X.
Dimostra che ker S e ker T sono chiusi.
Esercizio 1.23. Sia V uno spazio vettoriale reale e sia F un suo sottoinsieme tale
che:

e sex,y€ Fallorax+yeF,
e sex € Ee)l>0allora A\x € Ej
e se x,—x € F allora z = 0.

Definiamo su V la relazione < ponendo z < y se e solo se z —y € E.

e Verifica che < ¢ una relazione d’ordine su V.

e Sia S un sottospazio di V tale che per ogni z € V esiste y € S con = < y.
Sia g: S — R lineare e tale che g(y) > 0 per ogni y € SN E. Dimostra
che esiste una funzione lineare f: V — R che estende g a tutto V tale che
f(z) > 0 per ogni x € E.

FEsercizio 1.24. Sia Ry =]0,+o0[ e sia X = L*°(R;). Sia w: Ry x Ry — R tale
che per ogni x € Ry si ha che y — w(z,y) € L'(R,). Per ogni f € X definiamo

+oo
Tf@)= [ wleanfe)d Vo eRs.

Supponiamo che w sia tale per cui 'operatore 7" mappa X in X.

e Dimostra che T' & continuo da X in X. [Suggerimento: usa il teorema di
uniforme limitatezza]
e Verifica che

“+o0
1Tk = sup / o(z, )| dy.
$E]R+ 0
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Esercizio 1.25 (Brezis, exercise 2.3, pag. 49). Siano X e Y due spazi di Banach.
Sia (T, )nen una successione di operatori lineari e continui 7,,: X — Y. Supponiamo
che per ogni z € X la successione (7),(x)),y converga per n — oo in Y ad un
limite che indichiamo con T'(xz). Dimostra che se la successione (z,) converge al
punto z in X allora la successione (T}, (2n)),,cy converge al punto 7'(z) in Y.

FEsercizio 1.26 (Bresiz, exercise 2.4, pag. 49). Siano X e Y due spazi di Banach
reali. Sia B: X XY — R una forma bilineare tale che:

e per ogni x € X fissato, la mappa y — B(x,y) € continua;
e per ogni y € Y fissato, la mappa x — B(z,y) é continua.

Dimostra che esiste una costante C' > 0 tale che
|B(z,y)| < Cllz[ lyl -

[Suggerimento: alla forma bilineare B corrisponde in modo canonico un operatore
lineare T: X — Y' che risulta (localmente) limitato.|

Esercizio 1.27. Siano X e Y due spazi di Banach e sia S: X — Y un operatore
lineare e continuo. Dimostra che le seguenti affermazioni sono equivalenti:

e Esiste una costante C' > 0 tale che ||z]|y < C'[|Sz|, per ogni z € X.
e S ¢ iniettivo e 'immagine S(X) ¢ un sottospazio chiuso di Y.

1.6. Sottospazi ortogonali. Sia X uno spazio di Banach. Dato un sottoinsieme
S di X indichiamo 1’ortogonale di S come il sottoinsieme S+ dello spazio duale X’
definito da

St.={fe X' f(x)=0,Vx € S}.

Dato un sottoinsieme T' del duale X’ indichiamo ’ortogonale di T come il sottoin-
sieme T dello spazio X definito da

TH:={zcX: f(x)=0,Yf €T}.

Esercizio 1.28 (Brezis, proposition 1.9, pag. 9). Dimostra che:

e St ¢ sempre un sottospazio vettoriale chiuso di X’ per ogni sottoinsieme S
di X esiha

(S§4)+ = span S;

e T & sempre un sottospazio vettoriale chiuso di X per ogni sottoinsieme T
di X’ e si ha
(T+)* D spanT.

Esercizio 1.29 (Brezis, exercise 1.16, pag.24). Considera lo spazio X = ! e il
suo duale X’ = ¢*°. Sia V = ¢q il sottospazio di X’ formato dalle successioni
infinitesime. Calcola esplicitamente chi sono V+ e (V1)L. Verifica che (V)L # V.

Esercizio 1.30 (Bresiz, proposition 2.14, corollary 2.15, theorem 2.16, pag. 40-42).
Sia X uno spazio di Banach e siano V, W due sottospazi chiusi di X. Dimostra che
valgono i seguenti risultati:

VAW = VEt+wht;

VinWwt =WV +W)h);

Vow)tovi4wdl,

(VEnwhHt=v+Ww;

V+W chiusoin X <= V++W chiusoin X/ <= V+W = (VInWt)+
= VI+Wt=WVnw)t
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2. PARTE SECONDA: ESERCIZI RIGUARDANTI TOPOLOGIE DEBOLI
2.1. Topologie deboli.

FEsercizio 2.1 (Brezis, exercise 3.1, pag. 79). Sia X uno spazio di Banach e sia K un
sottoinsieme di X compatto rispetto alla topologia debole di X. Dimostra che K &
limitato.

FEsercizio 2.2 (Brezis, exercise 3.3, pag. 80). Sia C' un sottoinsieme convesso di uno
spazio di Banach. Dimostra che la chiusura di C' nella topologia forte coincide con
la chiusura di C nella topologia debole.

FEsercizio 2.3 (Brezis, exercise 3.5, pag. 80). Sia K un sottoinsieme compatto ri-
spetto alla topologia forte di uno spazio di Banach. Dimostra che se una successione
in K converge in senso debole allora converge anche in senso forte.

Esercizio 2.4 (Brezis, exercise 3.7, pag. 80). In uno spazio di Banach, sia A un
sottoinsieme chiuso rispetto alla topologia debole e sia B un sottoinsieme compatto
rispetto alla topologia debole. Dimostra che A + B é chiuso rispetto alla topologia
debole. Se assumiamo inoltre che A e B siano convessi non vuoti e disgiunti,
dimostra che A e B sono strettamente separati da un iperpiano chiuso.

FEsercizio 2.5 (Bresiz, exercise 3.10, pag. 81). Siano X e Y due spazi di Banach.
Sia T: X — Y un operatore lineare e continuo. Considera l'operatore aggiun-
to T*: Y’ — X’ definito da

T*(g)(x) :== g(Tx), YgeY' VxelX.

e Verifica che T* ¢ continuo da Y’ dotato della topologia forte a X’ dotato
della topologia forte.

e Verifica che T* ¢ continuo da Y’ dotato della topologia debole a X’ dotato
della topologia debole.

2.2. Convergenza debole. Ricordiamo che I'inviluppo convesso di un sottoinsie-
me FE di uno spazio normato X ¢ il piu piccolo sottoinsieme convesso di X che
contiene F, ovvero coincide con I'intersezione di tutti i convessi che contengono FE.

FEsercizio 2.6 (Brezis, exercise 3.13, pag. 82). Sia (z,)nen una successione in uno
spazio di Banach. Per ogni n € N sia (), la chiusura dell’inviluppo convesso
dell'insieme {zj: k > n}.
e Dimostra che se (,)nen converge debolmente al punto p allora (), .y Cr. = {p}.
e Supponendo che lo spazio sia riflessivo, dimostra che se (z,,)necn € limitata
e (Ve Cn = {p} allora (2,,)nen converge debolmente al punto p.

Esercizio 2.7 (Brezis, exercise 3.16, pag. 83). Sia X uno spazio di Banach.

e Dimostra che se (fy,)nen € una successione in X' tale che per ogni z € X
la successione (f,,(z))nen converge, allora esiste un funzionale f € X' tale
che (fn)nen converge x-debolmente ad f.

e Supponendo che X sia riflessivo, dimostra che se (z,,)nen € una successione
in X tale che per ogni f € X’ la successione (f(x,))nen converge, allora
esiste un punto x € X tale che (z,)nen converge debolmente ad .

e Costruisci un esempio in uno spazio di Banach non riflessivo di una suc-
cessione per la quale la conclusione del punto precedente é falsa. [Suggeri-
mento: puoi provare con X = ¢y e T, la successione formata da n volte 1
e poi tutti 0.]

FEsercizio 2.8 (Somme di Cesaro e convergenza debole [Brezis, exercise 3.2, pag. 79]).
Sia (2, )nen una successione in uno spazio di Banach debolmente convergente ad
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un punto p. Considera la successione (yp,)nen delle somme di Cesaro definite da

1 n
k=1

Dimostra che anche (y,)nen converge debolmente al punto p.

Esercizio 2.9 (Brezis, exercise 3.4, pag. 80). Sia (z,)nen una successione in uno
spazio di Banach debolmente convergente ad un punto p. Sia C 'inviluppo convesso
dell’insieme dei punti della successione. Dimostra che esiste una successione di punti
di C che converge fortemente a p.

Esercizio 2.10. Sia (z,)neny una successione in uno spazio di Banach X. Per
ogni n € N, consideriamo l'insieme C,, definito come la chiusura (in senso forte)
dell’inviluppo convesso dell’insieme {z: k > n}.

e Dimostra che se x,, converge debolmente a p allora si ha che

(1) MnenCrn = {p} .

e Supponendo che X sia riflessivo, dimostra che se la successione (x,,)nen €
limitata e vale la condizione (1) allora x,, converge debolmente a p.

e Supponendo che X abbia dimensione finita, dimostra che la condizione (1)
implica che x,, converge a p (anche senza supporre che la successione sia
limitata).

e Costruisci un esempio esplicito di una successione (2, ),y in £? che non sia
limitata e per la quale si ha che vale la condizione (1) con p = 0.

FEsercizio 2.11. Una successione (x)ren di elementi di uno spazio normato X si
dice debolmente di Cauchy quando per ogni funzionale lineare e continuo ¢ € X'
si ha che la successione (¢(zk))ken € di Cauchy nel campo degli scalari. Dimostra
che:
e Ogni successione debolmente di Cauchy é limitata;
e In uno spazio di Banach riflessivo, ogni successione debolmente di Cauchy
& debolmente convergente.

2.3. Questioni di riflessivita, separabilita, metrizzabilita.

Esercizio 2.12. Sia T: X — Y una isometria suriettiva tra due spazi di Banach.
Dimostra che X ¢ riflessivo se e solo se Y ¢ riflessivo.

Esercizio 2.13. Siano (M, d;) e (Ma, ds) due spazi metrici e sia f: M; — Ms ¢ una
funzione continua. Dimostra che se M é separabile allora (f(M;),ds) & separabile.

FEsercizio 2.14. Considera l'applicazione f: [0,1] — L*°([0,1]) che ad ogni ¢ € [0, 1]
associa f(t) := X[o,¢], la funzione caratteristica dellintervallo [0,¢]. Dimostra che lo

spazio metrico (f([0,1]), ||||,) non ¢ separabile.

Esercizio 2.15. Sia X uno spazio di Banach di dimensione infinita. Dimostra che
X con la topologia debole non é metrizzabile. Ecco di seguito una traccia che puoi
provare a seguire.
e Supponiamo per assurdo che esista una metrica d su X che genera la stessa
topologia della topologia debole, e quindi per ogni n € N la palla metrica
{z € X: d(z,0) < 1/n} contiene un intorno debole basico di 0.
e Dimostra che allora esiste una successione (¢, )nen nel duale X’ tale che
ogni funzionale ¢ € X’ & combinazione lineare finita di funzionali ¢,,.
e Dedurre dal punto precedente che il duale X’ ha dimensione finita e quindi
X non puo avere dimensione infinita.

Esercizio 2.16. Sia X uno spazio di Banach di dimensione infinita. Dimostra che:
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e Se il duale X’ & separabile allora esiste una successione (2, )nen in X tale
che

(2) lznll = 1,Vn € N, e x, converge debolmente a 0.

[Suggerimento: pensa a come & fatta la chiusura debole della sfera uni-
taria {x € X: ||z|| =1} e usa uno dei teoremi che legano separabilita e
metrizzabilita delle palle unitarie.]

e Se X ¢ riflessivo allora esiste una successione (z,)neny in X che verifi-
ca le condizioni in (2). [Suggerimento: osserva che puoi restringerti ad
un sottospazio separabile di X e cido ti permette di ricollegarti al punto
precedente.

FEsercizio 2.17 (Brezis, exercise 3.26, pag. 85). Sia X uno spazio di Banach separa-
bile. Sia (a,)nen una successione i cui punti formano un sottoinsieme denso in X.
Considera I'operatore lineare T': /! — X definito da

T(x) = Zxkak7 Vo = (z)ken € 0.
k=1

Dimostra che T ¢ continuo e suriettivo.

Esercizio 2.18 (Teorema del punto di minima distanza per spazi riflessivi.). Sia X
uno spazio di Banach riflessivo e sia V' un suo sottospazio chiuso. Dato g € X, consi-
deriamo la funzione ¢(x) := ||z — ¢|| e per ogni A € Rsia K := {x € V': p(z) < A}
Verifica che ¢ é continua, convessa e coerciva.

Spiega perché gli insiemi K sono limitati e debolmente chiusi.

Spiega perché K ¢ debolmente compatto.

Osserva che esiste un A\, € R tale che K, non é vuoto.

Deduci che esiste un p € K}, tale che ¢(p) = mingex,, ©().

Verifica che tale p ¢ un punto di V' con minima distanza da ¢,

lp = qll = min ||z - qf|.
2.4. Questioni di uniforme convessita.

FEsercizio 2.19 (Brezis, exercise 3.29, pag. 86). Sia X uno spazio di Banach unifor-

memente convesso. Dimostra che per ogni M > 0 e per ogni € > 0 esiste un § > 0

tale che

r+y
2

per ogni coppia di vettori z,y € X tali che ||z|| < M, ||y|| < M e con ||z —y|| > e.

2
Loz 1o
< = =
| <30t 3ol

Esercizio 2.20. Sia X uno spazio di Banach uniformemente convesso e sia B la sua
palla unitaria chiusa.

e Dimostra che per ognie > 0e 0 < a < 1/2 esiste § > 0 (che puo dipendere
da € e ) tale che: per ogni z,y € B con ||z —y|| > ceognit € [a,1—a]si
ha ||[(1 —t)z 4+ ty|]| < 1 — 9. [Suggerimento: quando ¢ € o, 1/2] pud essere
utile considerare il punto z per il quale si ha (1 —t)z + ty = 1(z + 2).]

e Deduci dal punto precedente che X é strettamente convesso.

3. PARTE TERZA: ESERCIZI SU SPAZI LP E SPAZI DI HILBERT

3.1. Uniforme convessita di LP.

Esercizio 3.1. Ecco una traccia per una dimostrazione diretta della uniforme con-
vessita di LP quando 1 < p < 2.
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e Verifica che per ogni p > 1 si ha che esiste una costante positiva C,, tale
che

P
2

([t = D5 (P + 1 — 2P |t + 1[P)
1 —t” ’

0<Cp< vt e]—1,1[.

[Suggerimento: studia il comportamento asintotico per ¢ — 1~ della fun-

tp;l_(%)P

Zione W]
e Deduci dal punto precedente la seguente disuguaglianza:
1 _r p\ 5
(3)  le—ul” < (=" + fwp)' (|z”+ jwl? — 2| =5 ) . VzweC
P

e Utilizzando la disuguaglianza (3) e la disuguaglianza di Holder verifica che
LP ¢ uniformemente convesso.

3.2. Dualita per LP.

Esercizio 3.2. Sia 1 < p < co. Sia a una funzione misurabile sull’aperto  di R?.
Supponiamo che au € L'(Q) per ogni u € LP(2). Dimostra che a € L? () con p’
esponente coniugato di p.

Esercizio 3.3 (Brezis, exercise 2.7, pag. 50). Sia p € [1,+o0] e sia p’ l'esponente

coniugato di p. Sia @ = (ap)nen una successione di valori scalari. Supponia-

mo che v lanz,| < oo per ogni successione x = (2,)nen € . Dimostra
/

che a € (P .

Esercizio 3.4. Considera gli spazi vettoriali

X :=L?(R)NL3R), Y :=L%%*R)+ L*R).

Definiamo
Ifllx = fllgsre + W fllgss fllx = inf |l fillgse + [ f2llgs -
fieL®/?
foeL?
fitfo=f

Verifica che:

o (X, [llx) e (Y,]]|ly) sono spazi di Banach.
e Y si immerge in modo naturale in X’.
e X si immerge in modo naturale in Y.

[Le immersioni naturali degli ultimi due punti possono essere realizzate tramite
Uidentificazione di una funzione f con il funzionale lineare Ty definito (quando
possibile) dalla forma canonica di dualita, Ty(g) := [ fg.]

3.3. Successioni di funzioni in LP.

Esercizio 3.5. Considera la successione di funzioni
fn(z) :=sin(nz), Vn e N,Vz e |0,1].
Sia 1 < p < +o0.
e Verifica che (fy)nen € limitata in LP([0, 1]).

e Verifica che (f,)nen converge in senso debole a 0 in LP(]0, 1]).
e Verifica che (f,)nen converge in senso debole-x a 0 in L*°([0, 1]).

Esercizio 3.6. Siano 1 < p < oo e @ > 0. Considera la successione di funzioni
(fn)nen in LP([0,1]) definita da f, = n%x[o,1/n). Verifica che:

e Per quali « e p si ha che f,, converge fortemente a 0 in L?([0, 1])?
e Per quali a e p si ha che f,, converge fortemente debolmente a 0 in LP ([0, 1])?
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FEsercizio 3.7. Considera la successione di funzioni f,(z) := e (cos(nx))2, defi-
nita per ognin e Nez € R. Sia 1 < p < +00.

e Verifica che la successione (f;,)nen non converge in norma in LP(R).

e La successione (f,)nen possiede sottosuccessioni che convergono in norma
in LP(R)?

e Verifica che la successione (f,,)nen converge debolmente in LP(R).

e Qual’e il limite debole della successione (fy,)nen in LP(R)?

Esercizio 3.8 (Brezis, exercise 4.19-1, pag. 124). Sia (f,)nen una successione in LP (R)
esia f € P(R) con 1 < p < oo. Supponiamo che f, converga debolmente in LP

ad f e che | f,||, converga a | f[|, per n — co. Dimostra che f,, converge ad f in

norma LP.

FEsercizio 3.9 (Brezis, exercise 4.19-2, pag. 124). Costruisci una successione (f,,)nen
in L*(R) tale che:

fn(x) > 0 per ogni z € R e per ogni n € N;

(fn) converge debolmente in L! ad una funzione f € L*(R);

[fnlly converge a [[f[[;
(f») non converge in norma L' ad f.

FEsercizio 3.10. Sia 1 < p < oo. Considera la successione di funzioni (f,,)nen in
L?([0,1]) definita da

fn(z) = nre " WneN,Vre [0, 1].

Verifica che:

e f,(x) converge puntualmente a 0 quasi ovunque su [0, 1];

e (fn)nen € una successione limitata in L?([0, 1]);

e f, non ¢ convergente in senso forte in LP([0,1]);

e dato g € L”'([0,1]), la successioni degli integrali fol frn(z)g(x) dz converge
a zero per ogni g € L? ([0,1]);

e f, converge debolmente a 0 in LP([0, 1]).

FEsercizio 3.11. Discuti le varie proprieta di convergenza (puntuale, debole, forte)
della successione di funzioni f,,(z) = ne™® in L'([0,1]).

FEsercizio 3.12. Sia 1 < p < oo e sia g € LP(R). Considera la successione delle
traslate g,(z) := g(z —n), per n € N e z € R. Verifica che (g,)nen converge
debolmente a 0 in LP(R).

Esercizio 3.13. Sia g € C(R) tale che g(z) — 0 per |z| — 0. Considera la succes-
sione delle traslate g,(z) := g(x —n), per n € N e z € R. Verifica che (gn)nen
converge a 0 nella topologia debole-x di L>(R) = (L*(R))’.

Esercizio 3.14. Considera la successione g, = X[p,nt1) i L'(R). Dimostra che
(gn)nen non possiede sottosuccessioni debolmente convergenti in L'(R). [Sugge-
rimento: prova a testare una generica sottosuccessione (g, )ken con il funzionale
corrispondente alla funzione h := 3", g,, € L]

FEsercizio 3.15. Considera la successione (fy,)nen in L ([—1,1]) definita da
fol(z) == e*”mQ, Yn e N,z e [-1,1].

e Verifica che f,, converge a zero nella topologia debole-x di L>([—1, 1]).
e Verifica che f, non converge a zero nella topologia debole di L*([—1,1]).

[
[Suggerimento: puoi testare la successione con un funzionale su L ([—1, 1])
che estende il funzionale su C([—1,1]) definito da ¢(f) = £(0).]
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FEsercizio 3.16 (Brezis, exercise 3.18, pag. 83). Per ogni n € N sia e™ la successione
conep=0sek#neey=1,
=(0,0,...,0,1,0,0,...), con I'l nella n-esima posizione.
e Dimostra che e™ converge debolmente a 0 in ¢P per ogni p €]1, c0].

e Dimostra che nessuna sottosuccessione di (e") converge debolmente in 1.

FEsercizio 3.17. Sia 1 < p < 00. Sia (z,)nen una successione di successioni x,, =
(Tn.k)ken € LP che converge debolmente alla successione z, = (ZTxk)ren € £P.
Dimostra che per ogni k& € N la successione (z, ;)nen delle coordinate k-esime
converge a Ty, in R.

FEsercizio 3.18. Considera la successione (x,)nen di successioni x, = (Tnk)ken
definita da
1/k sel<k<n,
e
ok 0 sel<n<k.

e Verifica che (x,,) converge in senso forte in £2.
e Verifica che (x,,) non converge in senso debole in /1.

[Suggerimento: pud tornare utile I’esercizio 3.17.]
FEsercizio 3.19. Sia T': LP(R) — LP(R) un operatore lineare con la seguente proprie-
ta: quando una successione (fy, )nen di LP(R) converge puntualmente quasi ovunque

ad una funzione f € LP(R) allora la successione (7 f,,)nen converge puntualmente
quasi ovunque alla funzione T'f € LP(R). Dimostra che T' & un operatore continuo.

3.4. Lo spazio delle successioni convergenti. Considera in ¢*° il sottospazio ¢
delle successioni convergenti,

c = {(a?n)neN: Enli_{r;o xn}

FEsercizio 3.20. Verifica che:

e ¢ ¢ chiuso in ¢*°;
e ¢ non é riflessivo;
e ¢ ¢ separabile.

Esercizio 3.21. Lo scopo di questo esercizio ¢ di far vedere che il duale di (c, [|-]| ) si
puo identificare con (¢! x R). Dati y € ¢! e XA € R possiamo costruire un funzionale
¢y, a: ¢ — R ponendo

Gya(z) == A hm anyn

Dimostra le seguenti affermazioni:
e Ty e
o | Tyall, = A+ llyllps
e L’applicazione ®: /! x R — ¢’ che alla coppia (y,\) associa il funzionale
Py, ) := ¢y, » € suriettiva.

4. PROPRIETA TOPOLOGICHE IN LP

Esercizio 4.1. Sia g: R — R una funzione continua a supporto compatto non iden-
ticamente nulla e a valori non negativi. Sia 1 < p < co. Considera gli insiemi

A:={f e LP(R): |f(x)| < g(x)quasi ovunque} ,
B:={f e L’(R): |f(x)|] = g(z) quasi ovunque} .

Determina se A e B sono chiusi, debolmente chiusi, compatti, debolmente compatti
in LP(R).
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Esercizio 4.2. Sia Q un aperto di R? con misura di Lebesgue finita. Sia 1 < p < 4-o0.
Dimostra le seguenti proposizioni:

e Se A C LP(Q) ¢ chiuso rispetto alla topologia debole di LP(Q2) allora A N
L>°(Q) & chiuso rispetto alla topologia debole-x di L>(2).

e Sia B C L*°() un convesso e limitato in L>°(£2). Una funzione f € L>®(2)
sta nella chiusura debole-x di B se e solo se esiste una successione di funzioni
(fn)nen con f, € B che converge ad f in norma LP.

4.1. Altri esercizi tratti dal Brezis.

FEsercizio 4.3 (Brezis, exercise 3.19, pag. 83). Siano p,q €]1,00[. Sia a: R — R una
funzione continua tale che

la(t)] < [H7/7, vteR.

Sia A loperatore (non lineare) che alla successione x = (21,2, 23,...) associa la
successione
A(z) == (a(z1), a(x2), a(ws), . . .).
e Dimostra che A & una mappa continua da ¢? (con topologia forte) in £ (con
topologia forte).
e Dimostra che se (z™),cn € una successione di elementi di ™ € ¢P debol-
mente convergente alla successione z allora (A(z™)),en € una successione
in ¢? debolmente convergente alla successione A(x).
e Deduci che A é continua come funzione dalla palla chiusa unitaria di ¢?
dotata della topologia indotta dalla topologia debole allo spazio £? dotato
della topologia debole.

FEsercizio 4.4 (Brezis, exercise 4.7, pag. 119). Siano 1 < ¢ < p < oo. Siaa: R—= R
una funzione misurabile. Supponiamo che per ogni f € LP(R) si ha che af € LY(R).
Dimostra che a € L"(R) dove r ¢ determinato dalla formula

1 1 1

roq p
[Suggerimento: usa il teorema del grafico chiuso.]
Esercizio 4.5 (Brezis, exercise 4.8, pag. 119). Sia V un sottospazio chiuso di L*(R).
Supponiamo anche che
velrm).
q>1

e Dimostra che esiste un esponente p > 1 tale che V' C LP(R). [Suggerimento:
per ogni n € N considera l'insieme

Vaim {£ € VAL @) flp0 <}
e Dimostra che esiste una costante C' > 0 tale che |f[|, < C|/f]|; per
ogni feV.
Esercizio 4.6 (Brezis, exercise 4.23, pag. 125). Sia 1 < p < co. Sia f: R — R una
funzione misurabile. Considera l'insieme
C:={ue LP(R): u(x) > f(x) quasi ovunque} .
Dimostra che:

o (' & convesso;
e (' ¢é chiuso nella topologia forte;
e (' ¢é chiuso nella topologia debole.



A.F. 2025-2026 - ESERCIZI 13

4.2. Problemi in spazi di Hilbert.

Esercizio 4.7. Sia T: H — H un operatore lineare che agisce su uno spazio di
Hilbert H complesso. Supponiamo che

(Tx,y) = i(z, Ty), Vr,y € H,
dove i ¢ I'unitd immaginaria. Dimostra che T' é continuo.

Esercizio 4.8 (Brezis, exercise 5.9, pag. 148). Siano A e B due sottoinsiemi chiusi,
non vuoti, convessi e disgiunti di uno spazio di Hilbert e supponiamo inoltre che B
sia limitato. Considera l'insieme C' = A — B delle differenze tra punti di A e punti
di B.
e Dimostra che C' é chiuso e convesso.
e Sia p, il punto di C con norma minima, che possiamo scrivere come p, = a, — by
per qualche punto a, € A e b, € B. Dimostra che

llax — by|| = dist(A, B) := inf |la — b||,
a€cA
beB
e determina il punto di A di minima distanza da b, e il punto di B di
minima distanza da a,.

e Supponiamo che HE—EH = dist(A, B) per una coppia di punti a € A

e b € B. Dimostra che p, = a — b.

e Fai un esempio esplicito di insiemi A e B per i quali la coppia (a,bs) €
unica.

e Fai un esempio esplicito di insiemi A e B per i quali la coppia (a, b,) non
€ unica.

e Trova una dimostrazione semplice della seconda forma geometrica del teo-
rema di Hahn-Banach per il caso di uno spazio di Hilbert.

Esercizio 4.9 (Brezis, exercise 5.28, pag. 154). Sia V un sottospazio vettoriale
denso in uno spazio di Hilbert H separabile. Dimostra che V' contiene una base
ortonormale di H.

Esercizio 4.10. Sia H uno spazio di Hilbert. Sia (C))neny una successione di
sottoinsiemi chiusi, convessi e non vuoti di H tale che

e ogni sottoinsieme contiene il successivo, Cp, 11 C C), per ogni n € N;

e la loro intersezione ¢ non vuota, Cy, := ﬂneN C, # .
Dato un punto x € H, per ogni n € N sia x,, € C,, il punto di C,, che ha minima
distanza da x,

l|zn — z|| = dist(Ch, x) := min ||y — ]| .
yeCn

Dimostra che:

e l'intersezione C € chiusa e convessa;

e la successione numerica (||z, — z|[), )y € non decrescente e superiormente
limitata;

e la successione (2, )nen € limitata in H;

e ogni sottosuccessione della successione (z,)neny ammette una sottosucces-
sione debolmente convergente ad un punto di Cy;

e se una sottosuccessione di (2, ),en converge debolmente ad un punto allora
tale punto é necessariamente il punto x, di Cs con minima distanza da x;

e tutta la successione (z,) converge fortemente al punto ..



