Analisi Funzionale - (Foschi) - esame del 13.1.2023

nome e cognome:

Prima di svolgere gli esercizi leggi con attenzione il testo. Scrivi le tue risposte motivando ogni passaggio e **spiegando** in modo chiaro e leggibile le cose che fai. Ricorda di scrivere il tuo nome e numero di matricola su **ogni** foglio (compreso questo) e di riconsegnare al termine dell'esame **tutti** i fogli che hai usato (compresi i fogli di brutta copia, il testo del compito e l'eventuale foglio manoscritto con le formule che hai preparato).

- 1. (8 punti) Siano X e Y due spazi di Banach e sia $S: X \to Y$ un operatore lineare e continuo. Dimostra che le seguenti affermazioni sono equivalenti:
 - Esiste una costante C > 0 tale che $||x||_X \leqslant C ||Sx||_Y$ per ogni $x \in X$.
 - S è iniettivo e l'immagine S(X) è un sottospazio chiuso di Y.
- 2. (8 punti) Sia $T \colon H \to H$ un operatore lineare che agisce su uno spazio di Hilbert H complesso. Supponiamo che

$$\langle Tx, y \rangle = i \langle x, Ty \rangle, \quad \forall x, y \in H,$$

dove i è l'unità immaginaria. Dimostra che T è continuo.

- 3. (8 punti) Una successione $(x_k)_{k\in\mathbb{N}}$ di elementi di uno spazio normato X si dice debolmente di Cauchy quando per ogni funzionale lineare e continuo $\varphi \in X'$ si ha che la successione $(\varphi(x_k))_{k\in\mathbb{N}}$ è di Cauchy nel campo degli scalari. Dimostra che:
 - Ogni successione debolmente di Cauchy è limitata;
 - In uno spazio di Banach riflessivo, ogni successione debolmente di Cauchy è debolmente convergente.
- 4. (8 punti) Siano A e B due intervalli aperti di \mathbb{R} con intersezione non nulla, $A \cap B \neq \emptyset$. Sia $I := A \cup B$ e sia $f \in L^1_{loc}(I)$. Supponiamo che f ristretta ad A possieda derivata debole $g \in L^1_{loc}(A)$ e che f ristretta ad B possieda derivata debole $h \in L^1_{loc}(B)$. Dimostra che:
 - $g \in h$ coincidono (quasi ovunque) su $A \cap B$;
 - f possiede derivata debole su tutto I data da g su A e da h su B.