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1. Introduction

The following is inspired to the Introductions of [MS] and [KLV] respectively.
Let R be an arbitrary ring and let us denote the category of right modules over R by Mod-R.

If S is an extension of R, i.e. there is an arbitrary morphism of rings with unit R → S, then the
categories Mod-R and Mod-S are connected by a pair of adjoint functors (f∗, f∗) where f

∗ : Mod-
R → Mod-S, f∗(N) = N⊗RS is the so called extension of scalars functor and f∗ : Mod-S → Mod-
R, f∗(M) = M regarded as an R-module via f , is the restriction of scalars functor. Roughly
speaking, classical descent theory of modules and morphisms is concerned with the description of
the image of f∗. To be more specific we list below three problems of classical descent theory.

(1) (Descent of modules) Let M be a right S-module. Is there any right R-module N such
that M ≃ N ⊗R S as right S-modules?

(2) (Descent of morphisms) Let N and N ′ be right R-modules and let f : N ⊗R S →
N ′ ⊗R S be a morphism of right S-modules. Does there exist a morphism of right R-
modules g : N → N ′ such that f = g ⊗ idS?

(3) (Classifications of S-forms) Given a right R-module N classify all right R-modules N ′

such that N ′ ⊗R S ≃ N ⊗R S.

A well-known example, due to Grothendieck, is faithfully flat descent theory (R → S is now a
faithfully flat extension of commutative rings), see [Gro] and [KO]. The existence of an N ∈ Mod-R
as in the first problem is equivalent to the existence of a “descent datum” on M. Let us briefly recall
the definition of descent datum in this setting. First let us note that we have an algebra morphism
iS : S → S ⊗R S, iS(x) = x⊗ 1. Hence, for any M ∈ Mod-S, the S-modules S ⊗R M and M ⊗R S
are modules over S⊗R S via extension of scalars from S to S⊗R S. Let g : S⊗R M → M ⊗R S be
an arbitrary S ⊗R S-linear map. We define g1 := S ⊗R g and g3 := g ⊗R S and let g2 be the map
from S ⊗R S ⊗R M to M ⊗R S ⊗R S given by

g2(s⊗ t⊗m) =
∑

mj ⊗ t⊗ sj ,

where g(s⊗m) =
∑

mj ⊗ sj . Then a descent datum on M is an S⊗R S-linear map g : S⊗R M →
M ⊗R S such that g2 = g3g1 and

∑
mjsj = m if g(1 ⊗m) =

∑
mj ⊗ sj .(See Theorem 6.17 and

the considerations just above it).
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One can easily describe descent data in another equivalent way. Let σM : M → M ⊗R S be the
map m 7→ m ⊗R 1. Then any S ⊗R S-linear map g : S ⊗R M → M ⊗R S is uniquely determined
by the map gσM : M → M ⊗R S. Let us denote gσM by ρg. Then g is a descent datum if and only
if ρg is a morphism of right S-modules and satisfies the following properties (see Theorem 6.17)

(ρg ⊗R S)ρg = (σM ⊗R S)ρg,

µMρg = IdM ,

This means that (M,ρg) ∈ C (Mod-A) where C is the canonical comonad of the adjunction (f∗, f∗).
In the paper [MS], extending results by Nuss [Nu] on noncommutative rings, the situation

(f∗, f∗) was replaced (AF, AU) where A is a monad over a category A and AF : A → AA is the free
functor while AU : AA → A is the forgetful functor. Let A∗ = (AFAU, AFuAU, λ) be the comonad
on the category AA associated to this adjunction. In this context, it was proved that, if the monad
A is equipped with a “compatible flip” Φ : A2 → A2, then to give an A∗-comodule structure on
an A-module (X,µ) is equivalent to giving a “symmetry” on X, that is an involution AX → AX
satisfying some suitable conditions.

Unfortunately, the following natural example, which is a direct generalization of the classical
case of commutative rings, does not fit into their general context: let C be a braided monoidal
category and let (S,mS , uS) be an algebra in C, then the braiding

cS,S : S ⊗ S → S ⊗ S

induces a natural isomorphism Φ : A2 → A2 on the monad
A = (−⊗R S,−⊗R mS , (−⊗R uS) ◦ r−), but this natural isomorphism is not a flip unless the
braiding is a symmetry and the monoid is commutative. To encompass this example, in [KLV]
the notion of BD-law on a monad A is introduced (see Definitions 6.1) and, given a BD-law Φ on
the monad A, the notion of “compatible flip” is substituted by Φ-braiding on an A-module. In
these notes we prefer to call this quasi Φ-symmetry (see Definitions 6.2) since we could not find
meaningful relation with the usual meaning of a braiding (on the other hand a BD-law on a monad
A could be called a braiding on the monad A). We give a self-contained proof of [KLV, Theorem
3.7] (see Theorem 6.12) which shows that the category of quasi Φ-symmetries is isomorphic to the
category of A∗-comodules.

These are the notes of a short Ph.D. course I gave at the Department of Mathematics and
Computer Science of the University of Ferrara during January and February 2016.

I would like to thank Leonardo Spinosa for a careful reading of them.

2. Monads

Definition 2.1. A monad on a category A is a triple A = (A,mA, uA) , where A : A → A is a
functor, mA : AA → A and uA : A → A are functorial morphisms satisfying the associativity and
the unitality conditions:

(1) mA ◦ (mAA) = mA ◦ (AmA) and mA ◦ (AuA) = A = mA ◦ (uAA) .

Definition 2.2. A morphism between two monads A = (A,mA, uA) and B = (B,mB, uB) on a
category A is a functorial morphism φ : A → B such that

φ ◦mA = mB ◦ (φφ) and φ ◦ uA = uB .

Here φφ = φB ◦Aφ = Bφ ◦ φA.

Example 2.3. Let f : R → S be a morphism of rings. Let RSR denote the R-bimodule structure
on S defined by

r · s = f (r) s s · r = sf (r) for every r ∈ R and s ∈ S.

Since
(s · r) s′ = (sf (r)) s′ = s (f (r) s′) = s (r · s)

the multiplication m : S × S → S on S factorizes through S ⊗R S i.e. there is a group morphism

mS : S ⊗R S → S
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such that mS = τ ◦ m where τ : S × S → S ⊗R S is the canonical map. mS is a morphism of
S-S-bimodules. Clearly we get that

(2) mS ◦ (S ⊗R mS) = mS ◦ (mS ⊗R S)

For any right R-module M let

rM : M → M ⊗R R

denote the usual isomorphism defined by rM (x) = x⊗R 1R. It is easy to check that this defines a
functorial isomorphism

r− : Mod-R → −⊗R R.

Set

uS = −⊗R f : −⊗R R → −⊗R S

and

uA = (−⊗R uS) ◦ r : Mod-R → −⊗R R → −⊗R S

For every right R-module M

uAM : M → M ⊗R S

is defined by

(uAM) (x) = x⊗R 1S for every x ∈ M.

For every x ∈ M and s ∈ S we compute

[(M ⊗R mS) ◦ (uAM ⊗R S)] (x⊗R s) = (M ⊗R mS) (x⊗R 1S ⊗R s)

= (x⊗R s) = (M ⊗R S) (x⊗R s)

so that we get

(3) (M ⊗R mS) ◦ (uAM ⊗R S) = M ⊗R S.

A similar computation gives

(4) (M ⊗R mS) ◦ (uA (M ⊗R S)) = M ⊗R S

Let us consider the triple A = (A,mA, uA) where

A = −⊗R S : Mod-R → Mod-R

mA = −⊗R mS : −⊗R S ⊗R S → −⊗R S

uA = (−⊗R uS) ◦ r− : Mod-R → −⊗R S

We prove that A = (A,mA, uA) is a monad on the category Mod-R. For every M ∈ Mod-R we
compute

[mA ◦ (mAA)] (M) = (M ⊗R mS) ◦ (M ⊗R S ⊗R mS) =

M ⊗R [mS ◦ (S ⊗R mS)]
(2)
= M ⊗R [mS ◦ (mS ⊗R S)]

= (M ⊗R mS) ◦ (M ⊗R mS ⊗R S) = [mA ◦ (AmA)] (M)

[mA ◦ (AuA)]M = [(−⊗R mS) ◦ (uA ⊗R S)]M

= (M ⊗R mS) ◦ (uAM ⊗R S)
3
= M ⊗R S = AM

and

[mA ◦ (uAA)]M = [(−⊗R mS) ◦ (uA (−⊗R S))]M

= (M ⊗R mS) ◦ (uA (M ⊗R S))
4
= M ⊗R S = AM.

Proposition 2.4 ([H]). Let (L,R) be an adjunction with unit η and counit ϵ where L : B → A
and R : A → B. Then A = (RL,RϵL, η) is a monad on the category B.
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Proof. We have to prove that

(RϵL) ◦ (RLRϵL) = (RϵL) ◦ (RϵLRL) and

(RϵL) ◦RLη = RL = (RϵL) ◦ (ηRL) .

In fact we have

(RϵL) ◦ (RLRϵL)
ϵ
= (RϵL) ◦ (RϵLRL)

and

(RϵL) ◦RLη
(L,R)
= RL

(L,R)
= (RϵL) ◦ (ηRL) .

�

Exercise 2.5. Let A,B rings and let M be an B-A-bimodule. Consider the functors

L = −⊗B M : Mod-B → Mod-A

R = HomA (M,−) : Mod-A → Mod-B.

Then (L,R) = (−⊗B M,HomA (M,−)) is an adjunction. Compute the monad RL associated to
this adjunction. Moreover, compute the monad RL in the particular case B = R,A = S, f : R → S
is a ring morphism and M = S endowed with the left B-module structure defined by f .

Definition 2.6. A module for a monad A = (A,mA, uA) on a category A is a pair
(
X,AµX

)
where X ∈ A and AµX : AX → X is a morphism in A such that

(5) AµX ◦
(
AAµX

)
= AµX ◦ (mAX) and X = AµX ◦ (uAX) .

A morphism f between two A-modules
(
X,AµX

)
and

(
X ′,AµX′

)
is a morphism f : X → X ′ in A

such that
AµX′ ◦ (Af) = f ◦ AµX .

We will denote by AA the category of A-modules and their morphisms. This is the so-called
Eilenberg-Moore category which is sometimes also denoted by AA.

Remark 2.7. Let A = (A,mA, uA) be a monad on a category A and let
(
X,AµX

)
∈ AA. From

the unitality property of AµX we deduce that AµX is an epimorphism for every
(
X,AµX

)
∈ AA

and that uAX is mono for every
(
X,AµX

)
∈ AA, i.e. uA is a monomorphism.

Example 2.8. Consider the monad A = (A,mA, uA) on Mod-R of Example 2.3. We want to
understand the category of modules with respect to this monad. The underlying category is
A = Mod-R. Let

(
X,AµX

)
∈ A (Mod-R). This means that

AµX : AX = X ⊗R S → X

is a morphism in Mod-R such that AµX ◦
(
AAµX

)
= AµX ◦ (mAX) and X = AµX ◦ (uAX) . For

every x ∈ X and s ∈ S write xs = AµX (x⊗R s) .Then we get(
AµX ◦

(
AAµX

))
(x⊗R s⊗R s′) = AµX (xs)⊗R s′ = (xs) s′(

AµX ◦ (mAX)
)
(x⊗R s⊗R s′) = AµX (x⊗R ss′) = x (ss′)(

AµX ◦ (uAX)
)
(x) = AµX (x⊗R 1S) = x1S

Let τ : X × S → X ⊗R S denote the canonical map. Then, in view of the equalities above we
have that

(
X,AµX ◦ τ

)
∈ Mod-S. It is easy to see that the assignment

(
X,AµX

)
7→

(
X,AµX ◦ τ

)
defines an isomorphism of categories from AA to Mod-S.

Definition 2.9. Let A = (A,mA, uA) be a monad on A. The functor

AU : AA → A(
X,AµX

)
→ X

f → f

is called the forgetful functor.
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Proposition 2.10. Let A = (A,mA, uA) be a monad on a category A. Let f, g :
(
X,AµX

)
→(

Y,AµY

)
be morphisms in AA. Then

f = g ⇔ AUf = AUg

i.e. the functor AU : AA → A is faithful

Proposition 2.11. Let A = (A,mA, uA) be a monad on a category A. Then AU reflects isomor-
phisms.

Proof. Let f :
(
X,AµX

)
→

(
Y,AµY

)
be a morphism in AA such that AUf is an isomorphism in

A. Since
AµY ◦ (AAUf) = AUf ◦ AµX

we get that

(AUf)
−1 ◦ AµY = AµX ◦

(
A (AUf)

−1
)
.

which entails that (AUf)
−1

gives rise to a morphism g :
(
Y,AµY

)
→

(
X,AµX

)
such that AUg =

(AUf)
−1

. Hence

AU (f ◦ g) = IdY and AU (g ◦ f) = IdX

so that

f ◦ g = Id(Y,AµY ) and g ◦ f = Id(X,AµX).

�

Definition 2.12. Let A = (A,mA, uA) be a monad on A. The functor

AF : A → AA
X → (AX,mAX)
f → Af.

is called the free functor.

Proposition 2.13. Let A = (A,mA, uA) be a monad on A. Then (AF, AU) is an adjunction with
unit the unit uA of the monad A

uA : A → AUAF = A.

The counit λA : AFAU → AA is uniquely determined by setting

AU
(
λA

(
X,AµX

))
= AµX for every

(
X,AµX

)
∈ AA.

Moreover we have

(6) AUλAAF = mA

Proof. Let
(
X,AµX

)
∈ AA. In view of (5) we have

AµX ◦
(
AAµX

)
= AµX ◦ (mAX) .

This means that there exists a morphism

λA

(
X,AµX

)
: (AX,mAX) = AFAU

(
X,AµX

)
→

(
X,AµX

)
such that

AUλA

(
X,AµX

)
= AµX .

It is easy to show that in this way we get a functorial morphism λA : AFAU → AA.
Let

(
X,AµX

)
∈ AA. We compute

[(AUλA) ◦ (uAAU)]
((
X,AµX

))
= (AUλA)

((
X,AµX

))
◦ (uAAU)

((
X,AµX

))
= AµX ◦ uAX

5
= X.

From this we deduce that (AUλA) ◦ (uAAU) = AU .
Let X ∈ A. We compute

AU [(λAAF ) ◦ (AFuA)] (X) = [AU (λAAF ) ◦ (AUAFuA)] (X)
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= AU (λAAF ) (X) ◦ (AUAFuA) (X) = mAX ◦AuAX
1
= X.

From this we deduce that

AU [(λAAF ) ◦ (AFuA)] = AU (AF )

and hence, by Proposition 2.10, that (λAAF ) ◦ (AFuA) = AF .
Fore every

(
X,AµX

)
∈ AA we compute

(AUλAAF )X = AUλA (X,mAX) = mAX.

�

Exercise 2.14. Prove that AFX = (AX,mAX) ∈ AA.

Proposition 2.15. Let A = (A,mA, uA) be a monad on a category A. Then for every Z,W ∈ AA
we have that

Z = W if and only ifAU (Z) = AU (W ) and AU (λAZ) = AU (λAW ) .

In particular, if F,G : X → AA are functors, we have

F = G if and only if AUF = AUG and AU (λAF ) = AU (λAG)

Lemma 2.16. Let (L,R) be an adjunction where L : B → A and R : A → B. and let A =
(A = RL,mA = RϵL, uA = η) be the associated monad on the category B. Then

• for every X ∈ A we have that (RX,RϵX) ∈ AB,
• for every morphism f : X → X ′in A there is a unique morphism R (f) : (RX,RϵX) →

(RX ′, RϵX ′) in AB such that AU
(
R (f)

)
= R (f)

Proof. For every X ∈ A we compute

RϵX ◦RLRϵX
ϵ
= RϵX ◦RϵLRX

and

RϵX ◦ ηRX = RX.

Thus we deduce that (RX,RϵX) ∈ AB. Let f : X → X ′ be a morphism in A. We compute

RϵX ′ ◦RLRf
ϵ
= Rf ◦RϵX.

Thus we deduce that there is a morphism R (f) : (RX,RϵX) → (RX ′, RϵX ′) in AB such that

AU
(
R (f)

)
= R (f). This morphism is unique in view of Proposition 2.10. �

Definitions 2.17. Let (L,R) be an adjunction where L : B → A and R : A → B. and let
A = (A = RL,mA = RϵL, uA = η) be the associated monad on the category B. In view of Lemma
2.16, we can consider the functor

K = RK : A → AB
defined by setting

K (X) = (RX,RϵX) and K (f) = R (f).

This is called the comparison functor of the adjunction (L,R) . Note that AU ◦K = R.
A functor R : A → B which has a left adjoint L : B → A for which the corresponding com-

parison functor K : A → AB is an equivalence of categories is called monadic (tripleable in Beck’s
terminology [[Be2, Definition 3, page 8]]).

Proposition 2.18. Let A = (A,mA, uA) be a monad on a category A. Then the monad associate
to the adjunction (AF, AU) is the monad A and the corresponding comparison functor is the identity
on the category AA. In particular the functor AU is monadic.
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Proof. We already observed that AU ◦ AF = A and that the unit of this adjunction is uA. For
every X ∈ A we compute

AUλAAFX = AUλA (AX,mAX) = mAX.

We deduce that AUλAAF = mA and hence we get that the monad associate to the adjunction
(AF, AU) is the monad A. Let now (X,µ) ∈ AA and we compute

K ((X,µ)) = (AU (X,µ) , AUλ (X,µ)) = (X,µ) .

Let f : (X,µ) → (X ′, µ′) be a morphism in AA. Then K (f) = AU (f) where

AU (f) : K ((X,µ)) = (X,µ) → K ((X ′, µ′)) = (X ′, µ′)

is the unique morphism such that AU
(
AU (f)

)
= AU (f) . SinceAU is faithful, this entails K (f) =

AU (f) = f and we deduce that K = AA. �

3. Comonads

Definition 3.1. A comonad on a category A is a triple C =
(
C,∆C , εC

)
, where C : A → A is

a functor, ∆C : C → CC and εC : C → A are functorial morphisms satisfying the coassociativity
and the counitality conditions(

∆CC
)
◦∆C =

(
C∆C

)
◦∆C and

(
CεC

)
◦∆C = C =

(
εCC

)
◦∆C .

Definition 3.2. A morphism between two comonads C =
(
C,∆C , εC

)
and D =

(
D,∆D, εD

)
on a

category A is a functorial morphism φ : C → D such that

∆D ◦ φ = (φφ) ◦∆C and εD ◦ φ = εC .

Example 3.3. Let
(
C,∆C , εC

)
an A-coring where A is a ring. This means that

• C is an A-A-bimodule
• ∆C : C → C ⊗A C is a morphism of A-A-bimodules
• εC : C → A is a morphism of A-A-bimodules satisfying the following(
∆C ⊗A C

)
◦∆C =

(
C ⊗A ∆C) ◦∆C ,

(
C ⊗A εC

)
◦∆C = r−1

C and
(
εC ⊗A C

)
◦∆C = l−1

C

where rC : C⊗AA → C and lC : A⊗AC → C are the right and left constraints. Let

C = −⊗A C : Mod-A → Mod-A

∆C = −⊗A ∆C : −⊗A C → −⊗A C ⊗A C
εC = r− ◦

(
−⊗A εC

)
: −⊗A C → −⊗A A → −

We prove that C =
(
C,∆C , εC

)
is a comonad on the categoryMod-A. For everyM ∈ Mod-

A we compute [(
∆CC

)
◦∆C

]
(M) =

(
∆CCM

)
◦
(
∆CM

)
=

(
M ⊗A C ⊗A ∆C) ◦ (M ⊗A ∆C) = M ⊗A

[(
C ⊗A ∆C) ◦∆C]

Ccoring
= M ⊗A

[(
∆C ⊗A C

)
◦∆C] = (

M ⊗A ∆C ⊗A C
)
◦
(
M ⊗A ∆C)

=
(
C∆CM

)
◦
(
∆CM

)
=

[(
C∆C

)
◦∆C

]
(M)

and [(
εCC

)
◦∆C

]
(M) =

(
εCCM

)
◦
(
∆CM

)
= rCM ◦

(
M ⊗A C ⊗A εC

)
◦
(
M ⊗A ∆C) = rM⊗AC ◦

(
M ⊗A

[(
C⊗Aε

C) ◦∆C])
Ccoring

= rM⊗AC ◦
(
M ⊗A r−1

C
)
= M ⊗A C = CM[(

CεC
)
◦∆C

]
(M) =

(
CεCM

)
◦
(
∆CM

)
=

([
rM ◦

(
M ⊗A εC

)]
⊗A C

)
◦
(
M ⊗A ∆C)

= (rM ⊗A C) ◦
(
M ⊗A εC ⊗A C

)
◦
(
M ⊗A ∆C)



8 CLAUDIA MENINI

= (rM ⊗A C) ◦
[
M ⊗A

((
εC ⊗A C

)
◦∆C)]

= (rM ⊗A C) ◦
(
M ⊗A l−1

C
)
= M ⊗A C = CM.

Proposition 3.4. Let (L,R) be an adjunction with unit η and counit ϵ where L : B → A and
R : A → B. Then C = (LR,LηR, ϵ) is a comonad on the category A.

Proof. Dual to the proof of Proposition 2.4. �
Definition 3.5. A comodule for a comonad C =

(
C,∆C , εC

)
on a category A is a pair

(
X,CρX

)
where X ∈ A and CρX : X → CX is a morphism in A such that(

CCρX
)
◦ CρX =

(
∆CX

)
◦ CρX and X =

(
εCX

)
◦ CρX .

A morphism between two C-comodules
(
X,CρX

)
and

(
X ′,CρX′

)
is a morphism f : X → X ′ in A

such that
CρX′ ◦ f = (Cf) ◦ CρX .

We denote by CA the category of C-comodule and their morphisms.

Definition 3.6. Let C =
(
C,∆C , εC

)
be a comonad on a categoryA. The functor

CU : CA → A(
X,CρX

)
→ X

f → f

is called the forgetful functor.

Proposition 3.7. Let C =
(
C,∆C , εC

)
be a comonad on a category A. Let f, g :

(
X,CρX

)
→(

Y,CρY
)
be morphisms in CA. Then

f = g ⇔ AUf = AUg

i.e. the functor CU : CA → A is faithful

Proposition 3.8. Let C =
(
C,∆C , εC

)
be a comonad on a category A. Then CU reflects isomor-

phisms.

Proof. Analogous to the proof of Proposition 2.11. �
Definition 3.9. Let C =

(
C,∆C , εC

)
be a comonad on a category A. The functor

CF : A → CA
X →

(
CX,∆CX

)
f → Cf

is called the free functor.

Proposition 3.10. Let C =
(
C,∆C , εC

)
be a comonad on a category A. Then

(CU, CF
)
is an

adjunction with counit the counit εC of the comonad C
εC : C = CUCF → A.

The unit γC : CA → CFCU is defined by setting
CU

(
γC

(
X,CρX

))
= CρX for every

(
X,CρX

)
∈ CA.

Moreover we have
CUγCCF = ∆C .

Lemma 3.11. Let (L,R) be an adjunction where L : B → A and R : A → B. and let C =(
C = LR,∆C = LηR, εC = ϵ

)
be the associated comonad on the category A. Then

• for every Y ∈ B we have that (LY,LηY ) ∈ CA,

• for every morphism f : Y → Y ′in B there is a unique morphism L (f) : (LY,LηY ) →
(LY ′, LηY ′) in CA such that AU

(
L (f)

)
= L (f) .

Proof. Dual to the proof of Lemma 2.16. �
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Definitions 3.12. Let (L,R) be an adjunction where L : B → A and R : A → B and let
C =

(
C = LR,∆C = LηR, εC = ϵ

)
be the associated comonad on the category A. In view of

Lemma 3.11, we can consider the functor

Kco = Kco
L : B → CA

defined by setting

Kco (Y ) = (LY,LηY ) and Kco (f) = L (f).

This is called the cocomparison functor of the adjunction (L,R) . Note that CU ◦Kco = L.
A functor L : B → A which has a right adjoint R : A → B for which the corresponding

cocomparison functor Kco
L : B → CA is an equivalence of categories is called comonadic.

4. Johnstone for Monads

Proposition 4.1 ([Appel] and [J]). Let A = (A,mA, uA) be a monad on a category A and let
B = (B,mB , uB) be a monad on a category B and let Q : A → B be a functor. Then there is a
bijection between the following collections of data

F functors Q̃ : AA → BB that are liftings of Q (i.e. BUQ̃ = QAU)
M functorial morphisms Φ : BQ → QA such that

Φ ◦ (mBQ) = (QmA) ◦ (ΦA) ◦ (BΦ) and Φ ◦ (uBQ) = QuA

given by

a : F → M where a
(
Q̃
)
=

(
BUλBQ̃AF

)
◦ (BQuA)

b : M → F where b (Φ)
((
X,A µX

))
=

(
QX,

(
QAµX

)
◦ (ΦX)

)
and BU [b (Φ) (f)] = Q (AUf) .

Proof. First of all let us note that,

λA ◦ AFAUλA
λA= λA ◦ λAAFAU

so that we get

AUλA ◦ AUAFAUλA = AUλA ◦ AUλAAFAU
(6)
= AUλA ◦mAAU

and hence

(7) AUλA ◦AAUλA = AUλA ◦mAAU

Let Q̃ : AA → BB be a lifting of the functor Q : A → B (i.e. BUQ̃ = QAU).
Define a functorial morphism Φ by setting:

Φ =
(
BUλBQ̃AF

)
◦ (BQuA) : BQ → BUQ̃AF = QAUAF = QA

where uA : A → AUAF = A is also the unit of the adjunction (AF, AU) and λB : BFBU → BB
is the counit of the adjunction. We have to prove that such a Φ satisfies Φ ◦ (mBQ) = (QmA) ◦
(ΦA) ◦ (BΦ) and Φ ◦ (uBQ) = QuA. First, let us note that

(8) QmA = QAUλAAF = BUQ̃λAAF

Now let us compute

(QmA) ◦ (ΦA) ◦ (BΦ) = (QmA) ◦
(
BUλBQ̃AFA

)
◦ (BQuAA)

◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

(8)
=

(
BUQ̃λAAF

)
◦
(
BUλBQ̃AFA

)
◦ (BQuAA)

◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

= BU
[(

Q̃λAAF
)
◦
(
λBQ̃AFA

)
◦ (BFQuAA)

]
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◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

λB= BU
[(

λBQ̃AF
)
◦
(
BFBUQ̃λAAF

)
◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

Q̃lifting
= BU

[(
λBQ̃AF

)
◦ (BFQAUλAAF ) ◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

(8)
= BU

[(
λBQ̃AF

)
◦ (BFQmA) ◦ (BFQuAA)

]
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

Amonad
=

(
BUλBQ̃AF

)
◦
(
BBUλBQ̃AF

)
◦ (BBQuA)

(7)
=

[
(BUλB ◦mBBU) Q̃AF

]
◦ (BBQuA)

=
(
BUλBQ̃AF

)
◦
(
mBBUQ̃AF

)
◦ (BBQuA)

mB=
(
BUλBQ̃AF

)
◦ (BQuA) ◦ (mBQ)

=
(
BUλBQ̃AF

)
◦ (BUBFQuA) ◦ (mBQ)

= Φ ◦ (mBQ) .

Moreover we have

Φ ◦ (uBQ) =
(
BUλBQ̃AF

)
◦ (BQuA) ◦ (uBQ)

uB=
(
BUλBQ̃AF

)
◦ (uBQA) ◦ (QuA)

=
(
BUλBQ̃AF

)
◦ (uBQAUAF ) ◦ (QuA)

Q̃lifting
=

(
BUλBQ̃AF

)
◦
(
uBBUQ̃AF

)
◦ (QuA)

(BF,BU)adj
= QuA.

Conversely, let Φ : BQ → QA be a functorial morphism satisfying Φ◦(mBQ) = (QmA)◦(ΦA)◦(BΦ)

and Φ ◦ (uBQ) = QuA. We define Q̃ : AA → BB by setting, for every (X,µ) ∈ AA,

Q̃ ((X,µ)) = (QX, (Qµ) ◦ (ΦX)) = (QBU (X,µ) , [QAUλA ◦ ΦAU ] (X,µ)) .

Note that, a posteriori, we will have

(9) BUλBQ̃ = QAUλA ◦ ΦAU

We have to check that (Q (X) , (Qµ) ◦ (ΦX)) ∈ BB, that is

µ̃ ◦Bµ̃ = µ̃ ◦ (mBQX) and µ̃ ◦ (uBQX) = QX

where µ̃ = (Qµ) ◦ (ΦX). We compute

µ̃ ◦ (Bµ̃) = (Qµ) ◦ (ΦX) ◦ (BQµ) ◦ (BΦX)

Φ
= (Qµ) ◦ (QAµ) ◦ (ΦAX) ◦ (BΦX)

5
= (Qµ) ◦ (QmAX) ◦ (ΦAX) ◦ (BΦX)

propertyofΦ
= (Qµ) ◦ (ΦX) ◦ (mBQX)

= µ̃ ◦ (mBQX) .
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Moreover we have

µ̃ ◦ (uBQX) = (Qµ) ◦ (ΦX) ◦ (uBQX)

propertyofΦ
= (Qµ) ◦ (QuAX)

5
= QX.

Now, let f : (X,µ) → (X ′, µ′) be a morphism of A-modules, that is a morphism f : X → X ′ in A
such that

µ′ ◦ (Af) = f ◦ µ.
We want to prove that Q (f) lifts to a morphism Q̃ (f) : Q̃ (X,µ) = (QX, (Qµ) ◦ (ΦX)) →
Q̃ (X ′, µ′) = (QX ′, (Qµ′) ◦ (ΦX ′)) of B-modules i.e.

[(Qµ′) ◦ (ΦX ′)] ◦ (BQf)
?
= (Qf) ◦ [(Qµ) ◦ (ΦX)] .

We compute

[(Qµ′) ◦ (ΦX ′)] ◦ (BQf)
Φ
= (Qµ′) ◦ (QAf) ◦ (ΦX)

fmorphA-mod
= (Qf) ◦ (Qµ) ◦ (ΦX) .

Let now check that Q̃ is a lifting of Q. Let (X,µ) ∈ AA and let us compute

BUQ̃ ((X,µ)) = BU (QX, (Qµ) ◦ (ΦX)) = QX = QAU ((X,µ)) .

Let f : (X,µ) → (X ′, µ′) be a morphism in AA. By construction we have

BUQ̃ (f) = QAU (f) : QX → QX ′.

Therefore Q̃ is a lifting of the functor Q.

We have to prove that we have a bijection. Let us start with Q̃ : AA → BB a lifting of the
functor Q : A → B. Then we construct Φ : BQ → QA given by

Φ =
(
BUλBQ̃AF

)
◦ (BQuA)

and using this functorial morphism we define a functor Q : AA → BB as follows: for every (X,µ) ∈
AA

Q ((X,µ)) = (QX, (Qµ) ◦ (ΦX)) .

Since both Q̃ and Q are liftings of Q, we have that BUQ̃ = QAU = BUQ. In view of Proposition

2.15, it remains to prove that BU
(
λBQ

)
= BU

(
λBQ̃

)
. SinceQ (X,µ) = (QBU (X,µ) , [QAUλA ◦ ΦAU ] (X,µ))

for every ((X,µ)) ∈ AA we have that

BUλBQ = QAUλA ◦ ΦAU

We compute

BU
(
λBQ

)
= QAUλA ◦ ΦAU

= (QAUλA) ◦
(
BUλBQ̃AFAU

)
◦ (BQuAAU)

Q̃liftingQ
=

(
BUQ̃λA

)
◦
(
BUλBQ̃AFAU

)
◦ (BQuAAU)

λB=
(
BUλBQ̃

)
◦
(
BUBFBUQ̃λA

)
◦ (BQuAAU)

=
(
BUλBQ̃

)
◦
(
B
[
BUQ̃λA ◦QuAAU

])
=

(
BUλBQ̃

)
◦ (B [QAUλA ◦QuAAU ])

(AF,AU)adj
= BUλBQ̃.
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Conversely, let us start with a functorial morphism Φ : BQ → QA satisfying Φ ◦ (mBQ) =

(QmA)◦ (ΦA)◦ (BΦ) and Φ◦ (uBQ) = QuA. Then we construct a functor Q̃ : AA → BB by setting,
for every (X,µ) ∈ AA,

Q̃ ((X,µ)) = (QX, (Qµ) ◦ (ΦX))

which lifts Q : A → B. Now, we define a functorial morphism Ψ : BQ → QA given by

Ψ =
(
BUλBQ̃AF

)
◦ (BQuA) .

Then we have

Ψ =
(
BUλBQ̃AF

)
◦ (BQuA)

(9)
= (QAUλAAF ) ◦ (ΦAUAF ) ◦ (BQuA)

= (QmA) ◦ (ΦA) ◦ (BQuA)

Φ
= (QmA) ◦ (QAuA) ◦ Φ

Amonad
= Φ.

�

Definition 4.2. A left module functor for a monad A = (A,mA, uA) on a category A is a pair(
Q,AµQ

)
where Q : B → A is a functor and AµQ : AQ → Q is a functorial morphism satisfying:

AµQ ◦
(
AAµQ

)
= AµQ ◦ (mAQ) and Q = AµQ ◦ (uAQ) .

Example 4.3. In the setting of Example 2.3, A = (A,mA, uA) where

A = −⊗R S : Mod-R → Mod-R

mA = −⊗R mS : −⊗R S ⊗R S → −⊗R S

uA = : Mod-R → −⊗R S

Let M be an R-S-bimodule and let Q =: Mod-R → Mod-R. Then Q is a left module functor for
the monad A via the map via the map

AµQ = −⊗R µ
A

M :AQ = −⊗R M ⊗R S −→ Q = −⊗R M

where we denote by µS
M : M ⊗R S −→ M the map induced by the multiplication by S on M .

Corollary 4.4. Let X ,A be categories, let A = (A,mA, uA) be a monad on a category A and
let F : X → A be a functor. Then there exists a bijective correspondence between the following
collections of data:

H Left A-module actions AµF : AF → F
G Functors AF : X → AA such that AUAF = F ,

given by

ã : H → G where AUã
(
AµF

)
= F and AUλAã

(
AµF

)
= AµF i.e.

ã
(
AµF

)
(X) =

(
FX,AµFX

)
and ã

(
AµF

)
(f) = F (f)

b̃ : G → H where b̃ (AF ) = AUλAAF : AF → F.

Proof. Apply Proposition 4.1 to the case A = X ,B = A, A = IdX and B = A. Then Q̃ = AF is
the lifting of F and Φ = AµF satisfies AµF ◦ (mAF ) = AµF ◦

(
AAµF

)
and AµF ◦ (uAF ) = F that

is
(
F,AµF

)
is a left A-module functor. �

Corollary 4.5. Let (L,R) be an adjunction with L : B → A and R : A → B and let A =
(A,mA, uA) be a monad on B. Then there is a bijective correspondence between the following
collections of data

K Functors K : A → AB such that AU ◦K = R,
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L functorial morphism α : AR → R such that (R,α) is a left module functor for the monad
A

given by

Φ : K → L where Φ(K) = AUλAK : AR → R

Ω : L → K where Ω(α) (X) = (RX,αX) and AUΩ(α) (f) = R (f) .

Proof. Apply Corollary 4.4 to the case ”F” = R : A → B where (L,R) is an adjunction with
L : B → A and R : A → B and A = (A,mA, uA) a monad on B. �

5. Distributive laws and lifting of monads

From 4.1 we get

Proposition 5.1. Let A = (A,mA, uA) be a monad on a category A and let B : A → A be a
functor. Then there is a bijection between the following collections of data

F functors B̃ : AA → AA that are liftings of B (i.e. AUB̃ = BAU)
M functorial morphisms Φ : AB → BA such that

Φ ◦ (mAB) = (BmA) ◦ (ΦA) ◦ (AΦ) and Φ ◦ (uAB) = BuA

given by

a : F → M where a
(
B̃
)
=

(
AUλAB̃AF

)
◦ (ABuA)

b : M → F where b (Φ)
((
X,A µX

))
=

(
BX,

(
BAµX

)
◦ (ΦX)

)
and AU [b (Φ) (f)] = BAU (f) .

Definition 5.2. [Be1] Let A = (A,mA, uA) and B = (B,mB, uB) be monads on a category A. A
functorial morphisms Φ : AB → BA such that

(10) Φ ◦ (mAB) = (BmA) ◦ (ΦA) ◦ (AΦ) and Φ ◦ (uAB) = BuA

and

(11) Φ ◦ (AmB) = (mBA) ◦ (BΦ) ◦ (ΦB) and Φ ◦ (AuB) = uBA

is said to be a distributive law of A over B.

Theorem 5.3. Let A = (A,mA, uA) and B = (B,mB , uB) be monads on a category A. Then there
is a bijection between the following collections of data

D distributive laws of A over B
M monads B̂ =

(
B̂,mB̂, uB̂

)
on AA that are lifting of B (i.e. AUB̂ = BAU, AUmB̂ =

mBAU, AUuB̂ = uBAU)

given by

a : D → M where a (Φ) = B̂ where B̂ =
(
B̂,mB̂ , uB̂

)
and

B̂
((
X,A µX

))
=

(
BX,

(
BAµX

)
◦ (ΦX)

)
, AUB̂ (f) = BAU (f)

b : M → D where b
((

B̂,mB̂, uB̂

))
=

(
AUλAB̂AF

)
◦ (ABuA) .

Proof. Let Φ : AB → BA be a distributive law of A over B. By Proposition 5.1 we know that

B̂ : AA → AA defined by setting B̂
((
X,A µX

))
=

(
BX,

(
BAµX

)
◦ (ΦX)

)
, AUB̂ (f) = BAU (f) is

a functor.
Let

(
X,A µX

)
∈ AA and let us prove that mBX : B2X → BX lifts to a morphism mB̂

(
X,A µX

)
in AA from

(
B̂
)2 ((

X,A µX

))
to B̂

((
X,A µX

))
. Note that(

B̂
)2 ((

X,A µX

))
= B̂

(
B̂
((
X,A µX

)))
= B̂

(
BX,

(
BAµX

)
◦ (ΦX)

)
=

(
B2 (X) ,

(
B2AµX

)
◦ (BΦX) ◦ (ΦBX)

)
.
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We compute

(mBX) ◦
(
B2AµX

)
◦ (BΦX) ◦ ΦBX

mB=
(
BAµX

)
◦ (mBAX) ◦ (BΦX) ◦ (ΦBX)

(11)
=

(
BAµX

)
◦ (ΦX) ◦ (AmBX) .

We have to check that in this way we get a functorial morphism mB̂ :
(
B̂
)2

→ B̂. Let f : (X,µ) →
(X ′, µ′) be a morphism in AA. We have to prove that

mB̂ (X ′, µ′) ◦
(
B̂
)2

f =
(
B̂
)
f ◦mB̂ (X,µ)

which amounts, in view of Proposition 2.10, to

AU

[
mB̂ (X ′, µ′) ◦

(
B̂
)2

f

]
= AU

[(
B̂
)
f ◦mB̂ (X,µ)

]
.

We compute

AU

[
mB̂ (X ′, µ′) ◦

(
B̂
)2

f

]
= AUmB̂ (X ′, µ′) ◦ AU

(
B̂
)2

f = mBX
′ ◦B2

AUf

mB= BAUf ◦mBX = AUB̂f ◦ AUmB̂ (X,µ) = AU
[(

B̂
)
f ◦mB̂ (X,µ)

]
.

Let us prove that uBX : X → BX lifts to a morphism uB̂ (X,µ) in AA from
((
X,A µX

))
to

B̂
((
X,A µX

))
. We compute(
BAµX

)
◦ (ΦX) ◦ (AuBX)

(11)
=

(
BAµX

)
◦ (uBAX)

uB= (uBX) ◦A µX .

We have to check that in this way we get a functorial morphism uB̂ : AA → B̂. Let f : (X,µ) →
(X ′, µ′) be a morphism in AA. We have to prove that

uB̂ (X ′, µ′) ◦ f =
(
B̂
)
f ◦ uB̂ (X,µ)

which amounts, in view of Proposition 2.10, to

AU
[
uB̂ (X ′, µ′) ◦ f

]
= AU

[(
B̂
)
f ◦ uB̂ (X,µ)

]
.

We compute

AU
[
uB̂ (X ′, µ′) ◦ f

]
= AUuB̂ (X ′, µ′) ◦ AUf = uBX

′ ◦ AUf
uB= BAUf ◦ uBX

= AU
[(

B̂
)
f ◦ uB̂ (X,µ)

]
.

Now we have to check that B̂ =
(
B̂,mB̂, uB̂

)
is a monad on AA. We compute

AU
[
mB̂ ◦

(
mB̂B̂

)]
= mBAU ◦mBBAU

(B,mB ,uB) is a monad
= mBAU ◦ (BmBAU) = AU

[
mB̂ ◦ B̂mB̂

]
so that, in view of Proposition 2.10, we conclude that

mB̂ ◦
(
mB̂B̂

)
= mB̂ ◦ B̂mB̂ .

We compute

AU
[
mB̂ ◦

(
B̂uB̂

)]
= mBAU ◦BuBAU

(B,mB ,uB) is a monad
= mBAU ◦ uBBAU = AU

[
mB̂ ◦

(
B̂uB̂

)]
so that, in view of Proposition 2.10, we conclude that

mB̂ ◦
(
B̂uB̂

)
= B̂ = mB̂ ◦

(
B̂uB̂

)
.
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Let now B̂ =
(
B̂,mB̂ , uB̂

)
be a monad on AA that is a lifting of B. By Proposition 5.1 we

already know that Φ =
(
AUλAB̂AF

)
◦ (ABuA) is a functorial morphism from AB to BA which

satisfies (10). Let us prove it satisfies also (11). We compute

(mBA) ◦ (BΦ) ◦ (ΦB)

= (mBA) ◦
(
BAUλAB̂AF

)
◦ (BABuA) ◦

(
AUλAB̂AFB

)
◦ (ABuAB)

= (mBAUAF ) ◦
(
BAUλAB̂AF

)
◦ (BAUAFBuA) ◦

(
AUλAB̂AFB

)
◦ (AUAFBuAB)

=
(
AUmB̂AF

)
◦
(
AUB̂λAB̂AF

)
◦
(
AUB̂AFBuA

)
◦
(
AUλAB̂AFB

)
◦ (AUAFBuAB)

= AU
[(
mB̂AF

)
◦
(
B̂λAB̂AF

)
◦
(
B̂AFBuA

)
◦
(
λAB̂AFB

)
◦ (AFBuAB)

]
= AU

[(
mB̂AF

)
◦
[(

B̂λAB̂AF
)
◦
(
B̂AFBuA

)]
◦
(
λAB̂AFB

)
◦ (AFBuAB)

]
λA= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFAUB̂λAB̂AF

)
◦
(
AFAUB̂AFBuA

)
◦ (AFBuAB)

]
= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFAUB̂λAB̂AF

)
◦ (AFBAUAFBuA) ◦ (AFBuAB)

]
= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFAUB̂λAB̂AF

)
◦ AFB (ABuA ◦ uAB)

]
uA= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFAUB̂λAB̂AF

)
◦ AFB (uABA ◦BuA)

]
= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFBAUλAB̂AF

)
◦ AFB (uABA ◦BuA)

]
= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFB

(
AUλAB̂AF ◦ (uABAUAF ◦BuA)

))]
= AU

[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦
(
AFB

((
AUλAB̂AF

)
◦
(
uAAUB̂AF

)
◦BuA

))]
(AUλA)◦(uAAU)=AU

= AU
[(
mB̂AF

)
◦
(
λAB̂B̂AF

)
◦ (AFBBuA)

]
λA= AU

[(
λAB̂AF

)
◦
(
AFAUmB̂AF

)
◦ (AFBBuA)

]
= AU

[(
λAB̂AF

)
◦ (AFmBAUAF ) ◦ (AFBBuA)

]
= AU

[(
λAB̂AF

)
◦ (AFmBA) ◦ (AFBBuA)

]
mB= AU

[(
λAB̂AF

)
◦ (AFBuA) ◦ (AFmB)

]
=

(
AUλAB̂AF

)
◦ (ABuA) ◦ (AmB)

= Φ ◦ (AmB) .

We also compute

Φ ◦ (AuB) =
(
AUλAB̂AF

)
◦ (ABuA) ◦ (AuB)

=
(
AUλAB̂AF

)
◦ (AUAFBuA) ◦ (AUAFuB)

= AU
[(

λAB̂AF
)
◦ AF (BuA ◦ uB)

]
uB= AU

[(
λAB̂AF

)
◦ AF (uBA ◦ uA)

]
= AU

[(
λAB̂AF

)
◦ AF (uBAUAF ◦ uA)

]
= AU

[(
λAB̂AF

)
◦ AF

(
AUuB̂AF ◦ uA

)]
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=AU
[(

λAB̂AF
)
◦
(
AFAUuB̂AF

)
◦ (AFuA)

]
λA= AU

[(
uB̂AF

)
◦ (λAAF ) ◦ (AFuA)

]
(λAAF )◦(AFuA)=AF

= AUuB̂AF = uBAUAF = uBA.

�

6. Descent data and quasi-symmetries associated to a monad

Definitions 6.1. Let A = (A,m, u) be a monad on a category A. Let Φ : A2 → A2 be a functorial
morphism.

We will say that Φ satisfies the Yang-Baxter equation if

(12) AΦ ◦ ΦA ◦AΦ = ΦA ◦AΦ ◦ ΦA
holds true.

We will say that Φ is a BD-law on A [KLV, Definition 2.2] provided it is a distributive law of
A over itself i.e. it satisfies

(13) Φ ◦ (mAA) = (AmA) ◦ (ΦA) ◦ (AΦ) and Φ ◦ (uAA) = AuA

and

(14) Φ ◦ (AmA) = (mAA) ◦ (AΦ) ◦ (ΦA) and Φ ◦ (AuA) = uAA

and it satisfies the Yang-Baxter equation.

Definitions 6.2. Let A = (A,m, u) be a monad on a category A and let Φ : A2 → A2 be a
BD-law on A. Let (X,µ) ∈ AA. A quasi Φ-symmetry on (X,µ) is a morphism c : AX → AX such
that

µ ◦ c ◦ uX = X(15)

Ac ◦ ΦX ◦Ac = ΦX ◦Ac ◦ ΦX(16)

c ◦Aµ = mX ◦Ac ◦ ΦX(17)

We denote by Φ-QSymm(X,µ) the set of quasi Φ-symmetries on (X,µ). Moreover we write
QSymm(A,Φ) for the category having as objects pairs

((X,µ) , c) where (X,µ) ∈ AA and c ∈ Φ-QSymm(X,µ) .

A morphism f : ((X,µ) , c) → ((X ′, µ′) , c′) is a morphism f : (X,µ) → (X ′, µ′) in AA such that
c′ ◦Af = Af ◦ c.

A quasi Φ-symmetry c on (X,µ) is called a Φ-symmetry if c2 = AX. We denote by Φ-
Symm(X,µ) the subset of Φ-QSymm(X,µ) consisting of Φ-symmetries and by Symm(A,Φ) the
full subcategory of QSymm(A,Φ) whose objects are pairs ((X,µ) , c) where (X,µ) ∈ AA and
c ∈ Φ-Symm(X,µ).

Remark 6.3. (X,µ) ∈ AA. In [KLV, Definition 3.3] a quasi Φ-symmetry on (X,µ) is called
Φ-braiding on (X,µ).

Remark 6.4. Let f : B → A be a morphism of rings. Every M ∈ Mod-A has a natural structure
of right B-module defined by setting

m · b = mf (b) for every m ∈ M and b ∈ B.

We will denote by M endowed with this f∗ (M) right B-module structure. It is easy to check
that every morphism of right A-modules g : M → M ′ becomes automatically a morphism f∗ (g) :
f∗ (M) → f∗ (M

′) in Mod-B and in this way we get a functor f∗ : Mod-A → Mod-B . On the
other hand, A has a left B-module structure defined by

b · a = f (b) a for every b ∈ B and a ∈ A.

In this way A becomes a B-A-bimodule. Let L := (−)⊗B A : Mod-B → Mod-A be the extension
of scalars functor and R := HomA (BA,−) : Mod-A → Mod-B be the restriction of scalars functor
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(see 2.5). In the following we will identify R with f∗ through the natural isomorphism of right
B-modules:

νM : HomA (BAA,M) → f∗ (M) , h 7→ h (1A) .

Example 6.5. Let f : B → A be a morphism of rings. Let L := (−)⊗B A = f∗ : Mod-B → Mod-
A be the extension of scalars functor and R := HomA (BA,−) = f∗ : Mod-A → Mod-B be the
restriction of scalars functor (see 2.5). Let A = (RL,m = RϵL, u = η) be the associated monad on
Mod-B (see Proposition 2.4). For any E ∈ Mod-B we have

RLE = E ⊗B A regarded as a right B-module

mE : E ⊗B A⊗B A → E ⊗B A

x⊗ a⊗ a′ 7→ x⊗ aa′

uE : EB → E ⊗B A

x 7→ x⊗ 1.

Assume now that Im (f) is contained in the center of A. Let Φ : (RL)
2 → (RL)

2
, be the functorial

morphism defined by

ΦE = E ⊗B τ : E ⊗B A⊗B A → E ⊗B A⊗B A for any E ∈ Mod-B

where τ : A ⊗B A → A ⊗B A is the usual flip τ(x ⊗ y) = y ⊗ x. Note for ΦE = E ⊗B τ to be a
morphism in Mod-B we need that

x⊗ a′ ⊗ ab = (x⊗ a′ ⊗ a) b = [ΦE (x⊗ a⊗ a′)] b = ΦE ((x⊗ a⊗ a′) b)

= ΦE (x⊗ a⊗ a′b) = x⊗ a′b⊗ a = x⊗ a′ ⊗ ba

which is satisfied in view of our assumption. We compute

RLuE : E ⊗B A → E ⊗B A⊗B A

x⊗ a 7→ x⊗ 1⊗ a

uRLE : E ⊗B A → E ⊗B A⊗B A

x⊗ a 7→ x⊗ a⊗ 1

RLmE : [E ⊗B A⊗B A]⊗B A → [E ⊗B A]⊗B A

x⊗ a⊗ a′ ⊗ a′′ 7→ x⊗ aa′ ⊗ a′′

i.e.

RLm = −⊗B m⊗B A

mRLE : [E ⊗B A]⊗B A⊗B A → [E ⊗B A]⊗B A

x⊗ a⊗ a′ ⊗ a′′ 7→ x⊗ a⊗ a′a′′

i.e.

mRL = −⊗B A⊗B m

ΦRLE : [E ⊗B A]⊗B A⊗B A → [E ⊗B A]⊗B A⊗B A

x⊗ a⊗ a′ ⊗ a′′ 7→ x⊗ a⊗ a′′ ⊗ a′

so that

ΦRL = −⊗B A⊗B τ

RL (ΦE) : [E ⊗B A⊗B A]⊗B A → [E ⊗B A⊗B A]⊗B A

x⊗ a⊗ a′ ⊗ a′′ 7→ x⊗ a′ ⊗ a⊗ a′′

so that

RLΦ = −⊗B τ ⊗B A
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Let us check that Φ satisfies (13). For every x ∈ E, a, a′, a′′ ∈ A we have:

(ΦE ◦mRLE) (x⊗ a⊗ a′ ⊗ a′′) = ΦE (x⊗ a⊗ a′a′′) = x⊗ a′a′′ ⊗ a

[(RLmE) ◦ (ΦRLE) ◦ (RLΦE)] (x⊗ a⊗ a′ ⊗ a′′)

= [(RLmE) ◦ (ΦRLE)] (x⊗ a′ ⊗ a⊗ a′′)

= (RLmE) (x⊗ a′ ⊗ a′′ ⊗ a) = x⊗ a′a′′ ⊗ a

and
[ΦE ◦ (uRLE)] (x⊗ a) = ΦE (x⊗ a⊗ 1) = x⊗ 1⊗ a = (RLuE) (x⊗ a) .

Let us check that Φ satisfies (14). For every x ∈ E, a, a′, a′′ ∈ A we have:

[ΦE ◦ (RLmE)] (x⊗ a⊗ a′ ⊗ a′′) = ΦE (x⊗ aa′ ⊗ a′′) = x⊗ a′′ ⊗ aa′

[(mRLE) ◦ (RLΦE) ◦ (ΦRLE)] (x⊗ a⊗ a′ ⊗ a′′)

= [(mRLE) ◦ (RLΦE)] (x⊗ a⊗ a′′ ⊗ a′)

= (mRLE) (x⊗ a′′ ⊗ a⊗ a′) = x⊗ a′′ ⊗ aa′

so that we get
ΦE ◦ (RLmE) = (mRLE) ◦ (RLΦE) ◦ (ΦRLE) .

We compute

[ΦE ◦ (RLuE)] = (ΦE) (x⊗ 1⊗ a) = x⊗ a⊗ 1 = (uRLE) (x⊗ a) .

Thus we obtain

Φ ◦ (RLm) = (mRL) ◦ (RLΦ) ◦ (ΦRL) and Φ ◦ (RLu) = uRL

Let us check that Φ satisfies (12). We have

RLΦ ◦ ΦRL ◦RLΦ = −⊗B [(τ ⊗B A) ◦ (A⊗B τ) ◦ (τ ⊗B A)]

= −⊗B [(A⊗B τ) ◦ (τ ⊗B A) ◦ (A⊗B τ)] = ΦRL ◦RLΦ ◦ ΦRL.

Thus Φ is a BD-law on Mod-B.

Remark 6.6. Let A = (A,m, u) be a monad on a category A and let Φ : A2 → A2 be a BD-law
on A. For every X ∈ A, ΦX : A2X → A2X is a quasi Φ-symmetry on AF (X) = (AX,mX) . In
fact we have

mX ◦ ΦX ◦ uAX
(13)
= mX ◦AuX = AX

AΦX ◦ ΦAX ◦AΦX
(12)
= ΦAX ◦AΦX ◦ ΦAX

ΦX ◦AmX
(14)
= mAX ◦AΦX ◦ ΦAX

Note that if f : X → X ′ is a morphism in A, then

Af : ((AX,mX) ,ΦAX) → ((AX ′,mX ′) ,ΦAX ′)

is a morphism in QSymm(A,Φ). Then it is easy to show that in this way we obtain a functor

J : A → QSymm(A,Φ)
X 7→ ((AX,mX) ,ΦX)

.

Definition 6.7. Let A = (A,m, u) be a monad on a category A. and let (AF, AU) the correspond-
ing adjunction with unit u and counit λ. Let A∗ = (AFAU, AFuAU, λ) be the comonad on the
category AA associated to this adjunction (Proposition 3.4). Let (X,µ) ∈ AA. A descent datum
on (X,µ) is a morphism

ρ : (X,µ) → AFAU (X,µ) = (AX,mX)

in AA such that ((X,µ) , ρ) ∈ A∗
(AA) i.e. the following equalities are satisfied

mX ◦Aρ = ρ ◦ µ i.e. ρ is a morphism in AA(18)

Aρ ◦ ρ = AuX ◦ ρ(19)
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µ ◦ ρ = IdX(20)

The set of all descent data on (X,µ) will be denoted by Des (X,µ).

Remark 6.8. Let A = (A,m, u) be a monad on a category A. For every X ∈ A, AuX : AFX =
(AX,mX) → (AAX,mAX) is a descent datum on (AX,mX). In fact we have:

mAX ◦AAuX
m
= AuX ◦mX

AAuX ◦AuX
u
= AuAX ◦AuX

mX ◦AuX = AX.

This is the canonical comparison K : A → A∗
(AA) of the adjoint pair (AF, AU) sending X ∈ A to

(AFX, AFuX) = ((AX,mX) , AuX) .

Notations 6.9. Let A = (A,m, u) be a monad on a category A and let Φ : A2 → A2 be a
BD-law on A. We denote by V : QSymm(A,Φ) → AA the forgetful functor and with J : A →
QSymm(A,Φ) the functor defined by (see Remark 6.6)

J (X) = ((AX,mX) ,ΦX) .

Proposition 6.10. [KLV, Theorem 3.7]Let A = (A,m, u) be a monad on a category A and let
Φ : A2 → A2 be a BD-law on A. Then(

A AF→ AA
)
=

(
A J→ QSymm(A,Φ) V→ AA

)
AF = V ◦ J, AF ◦ AU = V ◦ J ◦ AU

and (V, J ◦ AU) is an adjunction with counit λA : AF ◦ AU = V ◦ J ◦ AU → AA and unit β :
QSymm(A,Φ) → J ◦ AU ◦ V

defined by

β ((X,µ) , c) = c ◦ uX for every ((X,µ) , c) ∈ QSymm(A,Φ) .

Moreover the comonad corresponding to the adjunction (V, J ◦ AU) coincides with the comonad
A∗ = (AFAU, AFuAU, λ) corresponding to the adjunction (AF, AU).

Proof. Let X ∈ A. Then

(V ◦ J) (X) = V ((AX,mX) ,ΦX) = (AX,mX) = AF (X) .

Thus AF ◦ AU = V ◦ J ◦ AU . Let now ((X,µ) , c) ∈ QSymm(A,Φ) and let us check that
β ((X,µ) , c) = c ◦ uX is a morphism

β ((X,µ) , c) : ((X,µ) , c) → (J ◦ AU ◦ V ) ((X,µ) , c) = ((AX,mX) ,ΦX)

in QSymm(A,Φ). We compute

c ◦ uX ◦ µ u
= c ◦Aµ ◦ uAX (17)

= mX ◦Ac ◦ ΦX ◦ uAX
(13)
= mX ◦Ac ◦AuX

and

Ac ◦AuX ◦ c (13)
= Ac ◦ ΦX ◦ uAX ◦ c u

= Ac ◦ ΦX ◦Ac ◦ uAX

(16)
= ΦX ◦Ac ◦ ΦX ◦ uAX (13)

= ΦX ◦Ac ◦AuX.

Let us check that in this way we get a functorial morphism β : QSymm(A,Φ) → J ◦ AU ◦ V . Let

f : ((X,µ) , c) → ((X ′, µ′) , c′)

be a morphism in QSymm(A,Φ). We have

(J ◦ AU ◦ V ) (f)β ((X,µ) , c) = Af ◦ c ◦ uX

= c′ ◦Af ◦ uX u
= c′ ◦ uX ′ ◦ f = β ((X ′, µ′) , c′) ◦ f.

Let us know show (V, J ◦ AU) is an adjunction with counit λ = λA and unit β.
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For every ((X,µ) , c) ∈ QSymm(A,Φ) , we compute

AU [λV (((X,µ) , c)) ◦ V β (((X,µ) , c))] = AUλ ((X,µ)) ◦ c ◦ uX

= µ ◦ c ◦ uX (15)
= X = AU [V (((X,µ) , c))]

and for every (X,µ) ∈ AA, we compute

(AU ◦ V ) ([(J ◦ AU)λ (X,µ)] ◦ [β (J ◦ AU) (X,µ)])

= Jµ ◦ (V ◦ AU) [β ((AX,mX) ,ΦX)] = Aµ ◦ ΦX ◦ uAX

(13)
= Aµ ◦AuX 5

= AX = (AU ◦ V ) (J ◦ AU) (X,µ) .

Since both the functors AU and V ◦ AU are faithful, we conclude.
In view of the foregoing, to prove the last statement it remains to prove that

V βJAU = AFuAU.

Let (X,µ) ∈ AA. We compute

(V βJAU) (X,µ) = V βJ (X) = V β (AX,mX,ΦX)

= ΦX ◦ uAX (13)
= AuX = (AFuAU) (X,µ) .

�

Proposition 6.11. Let A = (A,m, u) be a monad on a category A and let Φ : A2 → A2 be a
BD-law on A. For every (X,µ) ∈ AA the assignment

c 7→ c ◦ uX
defines a bijection

Γ (X,µ) : Φ-QSymm(X,µ) → Des (X,µ)

whose inverse Γ′ (X,µ) is defined by setting

Γ′ (X,µ) (ρ) = Aµ ◦ ΦX ◦Aρ.

Moreover if ΦX ◦ ΦX = A2X, then Φ-QSymm(X,µ) = Φ-Symm(X,µ).

Proof. Let c ∈ Φ-QSymm(X,µ) and let us check that c ◦ uX ∈ Des (X,µ). Let us check (18) .

mX ◦A (c ◦ uX) = mX ◦Ac ◦AuX
(13)
= mX ◦Ac ◦ ΦX ◦ uAX

(17)
= c ◦Aµ ◦ uAX

u
= (c ◦ uX) ◦ µ.

Let us check (19) .

AuX ◦ (c ◦ uX)
(13)
= ΦX ◦ (uAX ◦ c) ◦ uX u

= ΦX ◦Ac ◦ uAX ◦ uX
(14)
= (ΦX ◦Ac ◦ ΦX) ◦AuX ◦ uX (16)

= Ac ◦ ΦX ◦ (Ac ◦AuX) ◦ uX
u
= Ac ◦ ΦX ◦ uAX ◦ c ◦ uX (13)

= Ac ◦AuX ◦ c ◦ uX = A (c ◦ uX) ◦ c ◦ uX.

Let us check (20) .

µ ◦ (c ◦ uX)
(15)
= X

Let ρ ∈ Des (X,µ). Let us check that Aµ ◦ ΦX ◦Aρ ∈ Φ-QSymm(X,µ) . Let us check (15)

µ ◦Aµ ◦ ΦX ◦Aρ ◦ uX (5)
= µ ◦mX ◦ ΦX ◦ (Aρ ◦ uX)

u
= µ ◦mX ◦ (ΦX ◦ uAX) ◦ ρ

(13)
= µ ◦mX ◦ (AuX ◦ ρ) (19)

= µ ◦ (mX ◦Aρ) ◦ ρ (18)
= µ ◦ ρ ◦ µ ◦ ρ = X.

Let us check (16)

A2µ ◦AΦX ◦A2ρ ◦
(
ΦX ◦A2µ

)
◦AΦX ◦A2ρ

Φ
= A2µ ◦AΦX ◦

(
A2ρ ◦A2µ

)
◦ ΦAX ◦AΦX ◦A2ρ
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(18)
= A2µ ◦AΦX ◦

(
A2mX ◦A3ρ ◦ ΦAX

)
◦AΦX ◦A2ρ

Φ
= A2µ ◦AΦX ◦ ΦAX ◦A2mX ◦

(
A3ρ ◦AΦX

)
◦A2ρ

Φ
= A2µ ◦AΦX ◦ ΦAX ◦A2mX ◦AΦAX ◦

(
A3ρ ◦A2ρ

)
(19)
= A2µ ◦AΦX ◦ ΦAX ◦A2mX ◦

(
AΦAX ◦A3uX

)
◦A2ρ

Φ
= A2µ ◦AΦX ◦ ΦAX ◦

(
A2mX ◦A3uX

)
◦AΦX ◦A2ρ

= A2µ ◦ (AΦX ◦ ΦAX ◦AΦX) ◦A2ρ

(12)
=

(
A2µ ◦ ΦAX

)
◦AΦX ◦

(
ΦAX ◦A2ρ

) Φ
= ΦX ◦A2µ ◦AΦX ◦A2ρ ◦ ΦX

Let us check (17)

mX ◦A (Aµ ◦ ΦX ◦Aρ) ◦ ΦX
=

(
mX ◦A2µ

)
◦AΦX ◦A2ρ ◦ ΦX

m
= Aµ ◦mAx ◦AΦX ◦

(
A2ρ ◦ ΦX

)
Φ
= Aµ ◦ (mAX ◦AΦX ◦ ΦAX) ◦A2ρ

(14)
= Aµ ◦ ΦX ◦

(
AmX ◦A2ρ

)
(18)
= Aµ ◦ ΦX ◦Aρ ◦Aµ

= (Aµ ◦ ΦX ◦Aρ) ◦Aµ.

Let c ∈ Φ-QSymm(X,µ). Since, by Proposition 6.10, β ((X,µ) , c) = c ◦ uX is a morphism in
QSymm(A,Φ), we have that

(21) Ac ◦AuX ◦ c = ΦX ◦Ac ◦AuX.

We deduce that

(Γ′ (X,µ) ◦ Γ (X,µ)) (c) = Aµ ◦ (ΦX ◦Ac ◦AuX)
(21)
= (Aµ ◦Ac ◦AuX) ◦ c (15)

= c.

Let ρ ∈ Des (X,µ).

(Γ (X,µ) ◦ Γ′ (X,µ)) (ρ) = Aµ ◦ ΦX ◦ (Aρ ◦ uX)
u
= Aµ ◦ ΦX ◦ uAX ◦ ρ

(13)
= Aµ ◦AuX ◦ ρ (5)

= ρ

Assume now that ΦX ◦ ΦX = A2X and let ρ ∈ Des (X,µ). We compute

Aµ ◦ ΦX ◦ (Aρ ◦Aµ) ◦ ΦX ◦Aρ
(18)
= Aµ ◦ ΦX ◦AmX ◦

(
A2ρ ◦ ΦX

)
◦Aρ

Φ
= Aµ ◦ ΦX ◦AmX ◦ ΦAX ◦

(
A2ρ ◦Aρ

)
(19)
= Aµ ◦ ΦX ◦AmX ◦

(
ΦAX ◦A2uX

)
◦Aρ

Φ
= Aµ ◦ ΦX ◦AmX ◦A2uX ◦ ΦX ◦Aρ

= Aµ ◦ ΦX ◦ ΦX ◦Aρ = Aµ ◦Aρ
(20)
= AX.

Since any c ∈ Φ-QSymm(X,µ) is of the form Γ′ (X,µ) (ρ) for ρ = Γ (X,µ) (c), we conclude. �

We now give a new and self-contained proof of the following Theorem.

Theorem 6.12. [KLV, Theorem 3.7] Let A = (A,m, u) be a monad on a category A and let
Φ : A2 → A2 be a BD-law on A. Let Kco be the cocomparison functor Kco of the adjunction
(V, JAU)

Kco : QSymm(A,Φ) →V JAU (AA) =AFAU (AA) =A∗
(AA)
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defined by

Kco (((X,µ) , c)) = (V (((X,µ) , c)) , V β ((X,µ) , c)) = ((X,µ) , c ◦ uX)

is an isomorphism of categories whose inverse is the functor Λ defined by setting

Λ (((X,µ) , ρ)) = ((X,µ) , Aµ ◦ ΦX ◦Aρ) .

In particular the functor V is comonadic.

Proof. In view of Proposition 6.11, we know that ((X,µ) , Aµ ◦ ΦX ◦Aρ) ∈ QSymm(A,Φ) for
every ((X,µ) , ρ) ∈A∗

(AA). Let

f : ((X,µ) , ρ) → ((X ′, µ′) , ρ′)

be a morphism in A∗
(AA). We have

Af ◦ (Aµ ◦ ΦX ◦Aρ) = Aµ′ ◦A2f ◦ ΦX ◦Aρ
Φ
= Aµ′ ◦ ΦX ′ ◦A2f ◦Aρ = (Aµ′ ◦ ΦX ′ ◦Aρ′) ◦Af

so that

f : ((X,µ) , Aµ ◦ ΦX ◦Aρ) → ((X ′, µ′) , Aµ′ ◦ ΦX ′ ◦Aρ′)

is a morphism in QSymm(A,Φ). We deduce that Λ is a functor. In view of Proposition 6.11, we
get that Kco is an isomorphism of categories with inverse Λ. �

Example 6.13. Let f : B → A be a morphism of rings. Let L := (−)⊗BA = f∗ : Mod-B → Mod-
A be the extension of scalars functor and R := HomA (BA,−) = f∗ : Mod-A → Mod-B be the
restriction of scalars functor . Let A = (RL,m = RϵL, u = η) be the associated monad on Mod-B.
Recall from Example (6.5) that for any E ∈ Mod-B we have

RLE = E ⊗B A regarded as a right B-module

mE : E ⊗B A⊗B A → E ⊗B A

x⊗ a⊗ a′ 7→ x⊗ aa′

uE : EB → E ⊗B A

x 7→ x⊗ 1.

Let (E,µ) ∈ A (Mod-B) . Then µ : RLE = E ⊗B A → E is a morphism in Mod-B satisfying

µ ◦ (µ⊗B A) = µ ◦RLµ = µ ◦mE and E = µ ◦ uE

i.e.

(xa) a′ = [µ ◦ (µ⊗B A)] (x⊗ a⊗ a′) = (µ ◦mE) (x⊗ a⊗ a′) = x (aa′)

where, for any x ∈ E and a ∈ A we write xa = µ (x⊗ a) and

x = x1

Let

t : E ×A → E ⊗B A

the canonical projection. Then (E, µ ◦ t) ∈ Mod-A. Let f : (E, µ) → (E′, µ′) be a morphism in

A (Mod-B). This means that f : E → E′ is a morphism in (Mod-B) and f ◦ µ = µ′ ◦ (f ⊗B A) i.e.

f (xa) = f (x) a

i.e. f : (E,µ ◦ t) → (E′, µ′ ◦ t) is a morphism in Mod-A.
Conversely let (M,ν) ∈ Mod-A. Since ν isB-balanced, there is a unique morphism µ : M⊗BA →

M such that ν = µ ◦ t. Hence the assignment (E, µ) 7→ (E, µ ◦ t) yields a category isomorphism

H : A (Mod-B) → Mod-A.

Let (AF, AU) be the adjunction corresponding to our monad A. Then it is easy to check that

Mod-A
H−1

→ A (Mod-B) AU→ Mod-B
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is just the restriction of scalars functor R = HomA (A,−) = f∗ : Mod-A → Mod-B while

Mod-B AF→ A (Mod-B)
H→ Mod-A

coincides with the extension of scalars functor L := (−)⊗B A = f∗ : Mod-B → Mod-A. Therefore
the category isomorphism H induces a category isomorphism

AFAU (A (Mod-B)) → C (Mod-A)

where C is the canonical comonad of the adjunction (L,R) i.e. C =(LR,∆ = LηR = LuR, ε) . For
any M ∈ Mod-A we have

LRM = M ⊗B A regarded as a right A-module

∆M : M ⊗B A → M ⊗B A⊗B A

x⊗ a 7→ x⊗ 1⊗ a

εM : LRM = M ⊗B A → M

x⊗ a 7→ xa.

Let (M,ρ) ∈ C (Mod-A) and for every x ∈ M we write

ρ (x) =
∑

xi ⊗ αi where xi ∈ M and αi ∈ A for every i.

(18) means that

(22)
∑

xi ⊗ αia = ρ (xa) for every x ∈ M and a ∈ A.

(19) means that

(23)
∑

ρ (xi)⊗ αi =
∑

xi ⊗ 1⊗ αi for every x ∈ M

(20) means that

(24)
∑

xiαi = x for every x ∈ M.

Now let us consider the cocomparison functor of the adjunction (L,R)

Kco : Mod-B → C (Mod-A).

For every E ∈ B-Mod we have

Kco (E) := (L(E), Lη(E))

where ρL(E) = Lη(E) : E ⊗B A → E ⊗B A⊗B A and

Lη(E) (x⊗ a) = x⊗ 1⊗ a.

Let e : RM → RLRM = M ⊗B A be the map defined by e (x) = x ⊗ 1. Note that e is a map
in Mod-B. Let E = Ker (ρ− e). We have the exact sequence in Mod-B

0 → E
i→ RM

ρ−e−→ RLRM

and

M cov = E = {x ∈ M | ρ (x) = x⊗ 1} .
It is easy to show that the assignment M 7→ M cov defines a functor

()
cov

: C (Mod-A) → Mod-B.

Theorem 6.14. [CIP, Teorema page 45]Using the assumptions and notations of Example 6.13,
assume also that A is a faithfully flat left B-module. Then the cocomparison functor Kco : Mod-
B → C (Mod-A) is an equivalence of categories with inverse functor

()
cov

: C (Mod-A) → Mod−B.
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Proof. Let (M,ρ) ∈ C (Mod-A). Since A is a flat left B-module we get the exact sequence

0 → M cov ⊗B A → RM ⊗B A
(ρ−e)⊗BA−→ RLRM ⊗B A.

Let us show that Im (ρ) ⊆ M cov ⊗B A i.e. that [(ρ− e)⊗B A] (Im (ρ)) = 0. Let x ∈ M and let

ρ (x) =
∑

xi ⊗ αi where xi ∈ M and αi ∈ A for every i.

We compute

[(ρ− e)⊗B A] (ρ) (x) = [(ρ− e)⊗B A]
(∑

xi ⊗ αi

)
=

∑
ρ (xi)⊗ αi −

∑
xi ⊗ 1⊗ αi

(23)
= 0.

Hence we can consider the corestriction ρ : RM → RLM cov = M cov ⊗B A of ρ to M cov ⊗B A so
that ρ = (i⊗A) ◦ ρ. Clearly ρ is a morphism in Mod-A. Let us show that it is a morphism in
C (Mod-A) from (M,ρ) to Kco (M cov) . For every x ∈ M, let

ρ (x) =
∑

xi ⊗ αi where xi ∈ M and αi ∈ A for every i.

We compute

[(i⊗B A⊗B A) ◦ (ρ⊗B A) ◦ ρ] (x) = [(ρ⊗B A) ◦ ρ] (x) =
∑

ρ (xi)⊗ αi

(23)
=

∑
xi ⊗ 1⊗ αi =

(
(i⊗A⊗A) ◦ ρL(Mcov) ◦ ρ

)
(x) .

Since BA is flat, i⊗B A⊗B A is a monomorphism so that we deduce that

(ρ⊗B A) ◦ ρ = ρL(Mcov) ◦ ρ

and hence ρ is a morphism in C (Mod-A).
Let h : M cov ⊗B A → M be defined by

h (x⊗ a) = xa.

For every x ∈ M, let

ρ (x) =
∑

xi ⊗ αi where xi ∈ M and αi ∈ A for every i.

We compute

(h ◦ ρ) (x) =
∑

xiαi
(24)
= x

and for every x ∈ M cov and a ∈ A

(ρ ◦ h) (x⊗ a) = ρ (xa)
(22)
=

∑
xi ⊗ αia

=
(∑

xi ⊗ αi

)
a

x∈Mcov

= (x⊗ 1) a = x⊗ a.

This proves that ρ is an isomorphism in C (Mod-A) with inverse h.
Let now E ∈ Mod-B and let x ∈ E. Then

ρL(E) (x⊗ 1) = x⊗ 1⊗ 1

so that x⊗ 1 ∈ (E ⊗B A)
cov

and hence we can consider the morphism of right B-modules v : E →
(E ⊗B A)

cov
defined by v (x) = x⊗1. We want to prove that v is an isomorphism in Mod-B. Since

A is a faithfully flat left B-module, in view of [Bou, Proposition 2 page 47], this is equivalent to
show that v ⊗B A is bijective. For every x ∈ E and a ∈ A we have

(v ⊗B A) (x⊗ a) = x⊗ 1⊗ a = ρL(E) (x⊗ a)

so that we deduce that v ⊗B A = ρL(E). By the foregoing we know that ρL(E) is an isomorphism
in Mod-A. �

Notation 6.15. Let R : A → B. We will denote by ImR the full subcategory of B consisting of
those objects B ∈ B such that there is an object A ∈ A and an isomorphism B ∼= RA in B.
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Problem 1. (Descent problem for modules) Let M ∈ A-Mod. Is there any E ∈ B-Mod such that
M ∼= L (E) = E ⊗B A in A-Mod? Such an E will be called a form of M over B.

Theorem 6.16. Using the assumptions and notations of Example 6.13, let f : B → A be a
morphism of rings and assume that A is a faithfully flat left B-module. Then

Obj (Im (L)) = Obj
(
UC [C (Mod-A)

])
.

Proof. In view of Theorem 6.14, Kco : Mod-B → C (Mod-A) is an equivalence of categories so that
Obj (Im (Kco)) = C (Mod-A). Therefore

Obj (Im (L)) = Obj
(
Im

(
UC ◦Kco

))
= Obj

(
UC [C (Mod-A)

])
�

Assume now A and B commutative. All modules over a commutative ring S are considered as
symmetrical S-S-bimodules.

Let M be an A-module and let g : A⊗B M → M ⊗B A be a morphism of A-A-bimodules. Let
g1 = A ⊗B g, g3 = g ⊗B A and define g2 : A ⊗B A ⊗B M → M ⊗B A ⊗B A and g : M → M by
setting

g2 (a⊗ a′ ⊗ x) =
∑

xi ⊗ a′ ⊗ αi where g (a⊗ x) =
∑

xi ⊗ αi.

g (x) =
∑

xiαi where g (1⊗ x) =
∑

xi ⊗ αi.

(g3 ◦ g1) (a⊗ a′ ⊗ x) = g3 (a⊗ g (a′ ⊗ x)) = g3 (a⊗ a′g (1⊗ x))

= g3

(∑
a⊗ a′xi ⊗ αi

)
=

∑
ag (1⊗ a′xi)⊗ αi

where g (1⊗ x) =
∑

xi ⊗ αi

g2 (a⊗ a′ ⊗ x) =
∑

axi ⊗ a′ ⊗ αi

where g (a⊗ x) = ag (1⊗ x) =
∑

axi ⊗ αi where g (1⊗ x) =
∑

xi ⊗ αi

Hence g2 = g3 ◦ g1 means

(25)
∑

ag (1⊗ a′xi)⊗ αi =
∑

axi ⊗ a′ ⊗ αi where g (1⊗ x) =
∑

xi ⊗ αi

while g = IdM means

(26)
∑

xiαi = x where g (1⊗ x) =
∑

xi ⊗ αi.

Let

Γ =

{
g : A⊗B M → M ⊗B A

| g is a morphism of A-A-bimodules g2 = g3 ◦ g1 and g = IdM

}
For every g ∈ Γ consider the map

ρg : M → M ⊗B A

defined by

ρg (x) = g (1⊗ x) .

For every ρ ∈ Des (X,µ) , where µ : A⊗B M → M denotes the map induced by the multiplication
by A on M, consider the map

gρ : A⊗B M → M ⊗B A

defined by

gρ (a⊗ x) = aρ (x) =
∑

axi ⊗ αi where ρ (x) =
∑

xi ⊗ αi

Theorem 6.17. The assignment g 7→ ρg defines a bijection Λ : Γ → Des (M,µ) whose inverse is
defined by the assignment ρ 7→ gρ.
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Proof. Let us check that ρg ∈ Des (M,µ). Let x ∈ M . We write

ρg (x) = g (1⊗ x) =
∑

xi ⊗ αi.

For every a ∈ A, we compute

ρg (xa) = g (1⊗ xa) = g ((1⊗ x) a) = g (1⊗ x) a = ρg (x) a

=
(∑

xi ⊗ αi

)
a =

(∑
xi ⊗ αia

)
so that ρg satisfies (22).

We compute ∑
ρg (xi)⊗ αi =

∑
g (1⊗ xi)⊗ αi

(25)
=

∑
xi ⊗ 1⊗ αi

so that ρg fulfils (23). Moreover, in view of (26) , for every x ∈ X we have∑
xiai = x where ρg (x) = g (1⊗ x) =

∑
xi ⊗ ai.

so that ρg fulfils (24).
Conversely let ρ ∈ Des (M,µ). Let x ∈ M . We write

ρ (x) =
∑

xi ⊗ αi.

Then, for every a ∈ A we have

gρ (a⊗ x) = aρ (x) =
∑

axi ⊗ ai

For every a, a′ ∈ A, we compute∑
agρ (1⊗ a′xi)⊗ αi =

∑
agρ (1⊗ a′xi)⊗ αi =

∑
agρ (1⊗ xia

′)⊗ αi

=
∑

aρ (xia
′)⊗ αi =

∑
aρ (xi) a

′ ⊗ αi
(23)
=

∑
axi ⊗ a′ ⊗ αi

so that gρ fulfils (25). Moreover in view of (24) we have that∑
xiαi = x

so that gρ fulfils (26).
Let now g ∈ Γ and, for every a ∈ A and x ∈ M let us compute

gρg (a⊗ x) = aρg (1⊗ x) = ag (1⊗ x) = g (a⊗ x) .

Therefore we deduce that gρg = g. Let now ρ ∈ Des (M,µ) and, for every x ∈ M let us compute

ρgρ (x) = gρ (1⊗ x) = ρ (x) .

Therefore we deduce that ρ = ρgρ . �
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