(CO)MONADS AND DESCENT

CLAUDIA MENINI

Contents

L. Introduction 1
2. Monads 2
3. Comonads 7
4. Johnstone for Monads 9
5. Distributive laws and lifting of monads 13
6. Descent data and quasi-symmetries associated to a monad 16
References 26

1. Introduction

The following is inspired to the Introductions of [|BS] and [$[\mathbf{K L D}]$ respectively.
Let R be an arbitrary ring and let us denote the category of right modules over R by Mod- R. If S is an extension of R, i.e. there is an arbitrary morphism of rings with unit $R \rightarrow S$, then the categories Mod- R and Mod-S are connected by a pair of adjoint functors (f^{*}, f_{*}) where $f^{*}: \operatorname{Mod}$ $R \rightarrow \operatorname{Mod}-S, f^{*}(N)=N \otimes_{R} S$ is the so called extension of scalars functor and $f^{*}: M o d-S \rightarrow$ Mod$R, f^{*}(M)=M$ regarded as an R-module via f, is the restriction of scalars functor. Roughly speaking, classical descent theory of modules and morphisms is concerned with the description of the image of f^{*}. To be more specific we list below three problems of classical descent theory.
(1) (Descent of modules) Let M be a right S-module. Is there any right R-module N such that $M \simeq N \otimes_{R} S$ as right S-modules?
(2) (Descent of morphisms) Let N and N^{\prime} be right R-modules and let $f: N \otimes_{R} S \rightarrow$ $N^{\prime} \otimes_{R} S$ be a morphism of right S-modules. Does there exist a morphism of right R modules $g: N \rightarrow N^{\prime}$ such that $f=g \otimes i d_{S}$?
(3) (Classifications of S-forms) Given a right R-module N classify all right R-modules N^{\prime} such that $N^{\prime} \otimes_{R} S \simeq N \otimes_{R} S$.
A well-known example, due to Grothendieck, is faithfully flat descent theory ($R \rightarrow S$ is now a faithfully flat extension of commutative rings), see [Gro] and [KC]]. The existence of an $N \in \operatorname{Mod}-R$ as in the first problem is equivalent to the existence of a "descent datum" on M. Let us briefly recall the definition of descent datum in this setting. First let us note that we have an algebra morphism $i_{S}: S \rightarrow S \otimes_{R} S, i_{S}(x)=x \otimes 1$. Hence, for any $M \in M o d-S$, the S-modules $S \otimes_{R} M$ and $M \otimes_{R} S$ are modules over $S \otimes_{R} S$ via extension of scalars from S to $S \otimes_{R} S$. Let $g: S \otimes_{R} M \rightarrow M \otimes_{R} S$ be an arbitrary $S \otimes_{R} S$-linear map. We define $g_{1}:=S \otimes_{R} g$ and $g_{3}:=g \otimes_{R} S$ and let g_{2} be the map from $S \otimes_{R} S \otimes_{R} M$ to $M \otimes_{R} S \otimes_{R} S$ given by

$$
g_{2}(s \otimes t \otimes m)=\sum m_{j} \otimes t \otimes s_{j}
$$

where $g(s \otimes m)=\sum m_{j} \otimes s_{j}$. Then a descent datum on M is an $S \otimes_{R} S$-linear map $g: S \otimes_{R} M \rightarrow$ $M \otimes_{R} S$ such that $g_{2}=g_{3} g_{1}$ and $\sum m_{j} s_{j}=m$ if $g(1 \otimes m)=\sum m_{j} \otimes s_{j}$. (See Theorem $\left.\quad . \square\right]$ the considerations just above it).

Date: March 24, 2016.

One can easily describe descent data in another equivalent way. Let $\sigma_{M}: M \rightarrow M \otimes_{R} S$ be the map $m \mapsto m \otimes_{R} 1$. Then any $S \otimes_{R} S$-linear map $g: S \otimes_{R} M \rightarrow M \otimes_{R} S$ is uniquely determined by the map $g \sigma_{M}: M \rightarrow M \otimes_{R} S$. Let us denote $g \sigma_{M}$ by ρ_{g}. Then g is a descent datum if and only if ρ_{g} is a morphism of right S-modules and satisfies the following properties (see Theorem [.].)

$$
\begin{aligned}
\left(\rho_{g} \otimes_{R} S\right) \rho_{g} & =\left(\sigma_{M} \otimes_{R} S\right) \rho_{g}, \\
\mu_{M} \rho_{g} & =\operatorname{Id}_{M},
\end{aligned}
$$

This means that $\left(M, \rho_{g}\right) \in \mathbb{C}(\operatorname{Mod}-A)$ where \mathbb{C} is the canonical comonad of the adjunction $\left(f^{*}, f_{*}\right)$.
In the paper [प्[J], extending results by Nuss [N1] on noncommutative rings, the situation $\left(f^{*}, f_{*}\right)$ was replaced $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ where \mathbb{A} is a monad over a category \mathcal{A} and ${ }_{\mathbb{A}} F: \mathcal{A} \rightarrow_{\mathbb{A}} \mathcal{A}$ is the free functor while ${ }_{\mathbb{A}} U:_{\mathbb{A}} \mathcal{A} \rightarrow \mathcal{A}$ is the forgetful functor. Let $\mathbb{A}^{*}=\left({ }_{\mathbb{A}} F_{\mathbb{A}} U,{ }_{\mathbb{A}} F u_{\mathbb{A}} U, \lambda\right)$ be the comonad on the category ${ }_{\mathbb{A}} \mathcal{A}$ associated to this adjunction. In this context, it was proved that, if the monad \mathbb{A} is equipped with a "compatible flip" $\Phi: A^{2} \rightarrow A^{2}$, then to give an \mathbb{A}^{*}-comodule structure on an \mathbb{A}-module (X, μ) is equivalent to giving a "symmetry" on X, that is an involution $A X \rightarrow A X$ satisfying some suitable conditions.

Unfortunately, the following natural example, which is a direct generalization of the classical case of commutative rings, does not fit into their general context: let \mathcal{C} be a braided monoidal category and let $\left(S, m_{S}, u_{S}\right)$ be an algebra in C, then the braiding

$$
c_{S, S}: S \otimes S \rightarrow S \otimes S
$$

induces a natural isomorphism $\Phi: A^{2} \rightarrow A^{2}$ on the monad
$\mathbb{A}=\left(-\otimes_{R} S,-\otimes_{R} m_{S},\left(-\otimes_{R} u_{S}\right) \circ r_{-}\right)$, but this natural isomorphism is not a flip unless the braiding is a symmetry and the monoid is commutative. To encompass this example, in [$\mathbb{K} \mathbb{Z}$] the notion of BD-law on a monad \mathbb{A} is introduced (see Definitions 6) and, given a BD-law Φ on the monad \mathbb{A}, the notion of "compatible flip" is substituted by Φ-braiding on an \mathbb{A}-module. In these notes we prefer to call this quasi Φ-symmetry (see Definitions σ. 2) since we could not find meaningful relation with the usual meaning of a braiding (on the other hand a BD-law on a monad \mathbb{A} could be called a braiding on the monad \mathbb{A}). We give a self-contained proof of $\mathbb{K} \mathbb{Z}$, Theorem $3.7]$ (see Theorem [5] ${ }^{[1]}$) which shows that the category of quasi Φ-symmetries is isomorphic to the category of \mathbb{A}^{*}-comodules.

These are the notes of a short Ph.D. course I gave at the Department of Mathematics and Computer Science of the University of Ferrara during January and February 2016.

I would like to thank Leonardo Spinosa for a careful reading of them.

2. Monads

Definition 2.1. A monad on a category \mathcal{A} is a triple $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$, where $A: \mathcal{A} \rightarrow \mathcal{A}$ is a functor, $m_{A}: A A \rightarrow A$ and $u_{A}: \mathcal{A} \rightarrow A$ are functorial morphisms satisfying the associativity and the unitality conditions:

$$
\begin{equation*}
m_{A} \circ\left(m_{A} A\right)=m_{A} \circ\left(A m_{A}\right) \quad \text { and } \quad m_{A} \circ\left(A u_{A}\right)=A=m_{A} \circ\left(u_{A} A\right) \tag{1}
\end{equation*}
$$

Definition 2.2. A morphism between two monads $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ and $\mathbb{B}=\left(B, m_{B}, u_{B}\right)$ on a category \mathcal{A} is a functorial morphism $\varphi: A \rightarrow B$ such that

$$
\varphi \circ m_{A}=m_{B} \circ(\varphi \varphi) \quad \text { and } \quad \varphi \circ u_{A}=u_{B} .
$$

Here $\varphi \varphi=\varphi B \circ A \varphi=B \varphi \circ \varphi A$.
Example 2.3. Let $f: R \rightarrow S$ be a morphism of rings. Let ${ }_{R} S_{R}$ denote the R-bimodule structure on S defined by

$$
r \cdot s=f(r) s \quad s \cdot r=s f(r) \quad \text { for every } r \in R \text { and } s \in S
$$

Since

$$
(s \cdot r) s^{\prime}=(s f(r)) s^{\prime}=s\left(f(r) s^{\prime}\right)=s(r \cdot s)
$$

the multiplication $m: S \times S \rightarrow S$ on S factorizes through $S \otimes_{R} S$ i.e. there is a group morphism

$$
m_{S}: S \otimes_{R} S \rightarrow S
$$

such that $m_{S}=\tau \circ m$ where $\tau: S \times S \rightarrow S \otimes_{R} S$ is the canonical map．m_{S} is a morphism of S－S－bimodules．Clearly we get that

$$
\begin{equation*}
m_{S} \circ\left(S \otimes_{R} m_{S}\right)=m_{S} \circ\left(m_{S} \otimes_{R} S\right) \tag{2}
\end{equation*}
$$

For any right R－module M let

$$
r_{M}: M \rightarrow M \otimes_{R} R
$$

denote the usual isomorphism defined by $r_{M}(x)=x \otimes_{R} 1_{R}$ ．It is easy to check that this defines a functorial isomorphism

$$
r_{-}: M o d-R \rightarrow-\otimes_{R} R .
$$

Set

$$
u_{S}=-\otimes_{R} f:-\otimes_{R} R \rightarrow-\otimes_{R} S
$$

and

$$
u_{A}=\left(-\otimes_{R} u_{S}\right) \circ r_{-}: M o d-R \rightarrow-\otimes_{R} R \rightarrow-\otimes_{R} S
$$

For every right R－module M

$$
u_{A} M: M \rightarrow M \otimes_{R} S
$$

is defined by

$$
\left(u_{A} M\right)(x)=x \otimes_{R} 1_{S} \quad \text { for every } x \in M
$$

For every $x \in M$ and $s \in S$ we compute

$$
\begin{gathered}
{\left[\left(M \otimes_{R} m_{S}\right) \circ\left(u_{A} M \otimes_{R} S\right)\right]\left(x \otimes_{R} s\right)=\left(M \otimes_{R} m_{S}\right)\left(x \otimes_{R} 1_{S} \otimes_{R} s\right)} \\
=\left(x \otimes_{R} s\right)=\left(M \otimes_{R} S\right)\left(x \otimes_{R} s\right)
\end{gathered}
$$

so that we get

$$
\begin{equation*}
\left(M \otimes_{R} m_{S}\right) \circ\left(u_{A} M \otimes_{R} S\right)=M \otimes_{R} S \tag{3}
\end{equation*}
$$

A similar computation gives

$$
\begin{equation*}
\left(M \otimes_{R} m_{S}\right) \circ\left(u_{A}\left(M \otimes_{R} S\right)\right)=M \otimes_{R} S \tag{4}
\end{equation*}
$$

Let us consider the triple $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ where

$$
\begin{aligned}
A & =-\otimes_{R} S: \text { Mod- } R \rightarrow \text { Mod- } R \\
m_{A} & =-\otimes_{R} m_{S}:-\otimes_{R} S \otimes_{R} S \rightarrow-\otimes_{R} S \\
u_{A} & =\left(-\otimes_{R} u_{S}\right) \circ r_{-}: \text {Mod- } R \rightarrow-\otimes_{R} S
\end{aligned}
$$

We prove that $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ is a monad on the category Mod－R ．For every $M \in \operatorname{Mod}-R$ we compute

$$
\begin{aligned}
{\left[m_{A} \circ\left(m_{A} A\right)\right](M)=} & \left(M \otimes_{R} m_{S}\right) \circ\left(M \otimes_{R} S \otimes_{R} m_{S}\right)= \\
& M \otimes_{R}\left[m_{S} \circ\left(S \otimes_{R} m_{S}\right)\right] \stackrel{(\boldsymbol{\nabla})}{=} M \otimes_{R}\left[m_{S} \circ\left(m_{S} \otimes_{R} S\right)\right] \\
= & \left(M \otimes_{R} m_{S}\right) \circ\left(M \otimes_{R} m_{S} \otimes_{R} S\right)=\left[m_{A} \circ\left(A m_{A}\right)\right](M) \\
{\left[m_{A} \circ\left(A u_{A}\right)\right] M=} & {\left[\left(-\otimes_{R} m_{S}\right) \circ\left(u_{A} \otimes_{R} S\right)\right] M } \\
= & \left(M \otimes_{R} m_{S}\right) \circ\left(u_{A} M \otimes_{R} S\right) \text { 国 } M \otimes_{R} S=A M
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[m_{A} \circ\left(u_{A} A\right)\right] M } & =\left[\left(-\otimes_{R} m_{S}\right) \circ\left(u_{A}\left(-\otimes_{R} S\right)\right)\right] M \\
& =\left(M \otimes_{R} m_{S}\right) \circ\left(u_{A}\left(M \otimes_{R} S\right)\right) \stackrel{\text { 罗 }}{=} M \otimes_{R} S=A M
\end{aligned}
$$

Proposition 2.4 （［四］）．Let (L, R) be an adjunction with unit η and counit ϵ where $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$ ．Then $\mathbb{A}=(R L, R \in L, \eta)$ is a monad on the category \mathcal{B} ．

Proof. We have to prove that

$$
\begin{gathered}
(R \epsilon L) \circ(R L R \epsilon L)=(R \epsilon L) \circ(R \epsilon L R L) \text { and } \\
(R \epsilon L) \circ R L \eta=R L=(R \epsilon L) \circ(\eta R L) .
\end{gathered}
$$

In fact we have

$$
(R \epsilon L) \circ(R L R \epsilon L) \stackrel{\epsilon}{=}(R \epsilon L) \circ(R \epsilon L R L)
$$

and

$$
(R \epsilon L) \circ R L \eta \stackrel{(L, R)}{=} R L \stackrel{(L, R)}{=}(R \epsilon L) \circ(\eta R L)
$$

Exercise 2.5. Let A, B rings and let M be an B - A-bimodule. Consider the functors

$$
\begin{aligned}
L & =-\otimes_{B} M: M o d-B \rightarrow M o d-A \\
R & =\operatorname{Hom}_{A}(M,-): M o d-A \rightarrow M o d-B
\end{aligned}
$$

Then $(L, R)=\left(-\otimes_{B} M, \operatorname{Hom}_{A}(M,-)\right)$ is an adjunction. Compute the monad $\mathbb{R} \mathbb{L}$ associated to this adjunction. Moreover, compute the monad $\mathbb{R} \mathbb{L}$ in the particular case $B=R, A=S, f: R \rightarrow S$ is a ring morphism and $M=S$ endowed with the left B-module structure defined by f.

Definition 2.6. A module for a monad $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ on a category \mathcal{A} is a pair $\left(X,{ }^{A} \mu_{X}\right)$ where $X \in \mathcal{A}$ and ${ }^{A} \mu_{X}: A X \rightarrow X$ is a morphism in \mathcal{A} such that

$$
\begin{equation*}
{ }^{A} \mu_{X} \circ\left(A^{A} \mu_{X}\right)={ }^{A} \mu_{X} \circ\left(m_{A} X\right) \quad \text { and } \quad X={ }^{A} \mu_{X} \circ\left(u_{A} X\right) \tag{5}
\end{equation*}
$$

A morphism f between two \mathbb{A}-modules $\left(X,{ }^{A} \mu_{X}\right)$ and $\left(X^{\prime},{ }^{A} \mu_{X^{\prime}}\right)$ is a morphism $f: X \rightarrow X^{\prime}$ in \mathcal{A} such that

$$
{ }^{A} \mu_{X^{\prime}} \circ(A f)=f \circ{ }^{A} \mu_{X} .
$$

We will denote by ${ }_{\mathbb{A}} \mathcal{A}$ the category of \mathbb{A}-modules and their morphisms. This is the so-called Eilenberg-Moore category which is sometimes also denoted by $\mathcal{A}^{\mathbb{A}}$.

Remark 2.7. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A} and let $\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A}$. From the unitality property of ${ }^{A} \mu_{X}$ we deduce that ${ }^{A} \mu_{X}$ is an epimorphism for every $\left(X,{ }^{A} \mu_{X}\right) \in_{\mathbb{A}} \mathcal{A}$ and that $u_{A} X$ is mono for every $\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A}$, i.e. u_{A} is a monomorphism.

Example 2.8. Consider the monad $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ on $M o d-R$ of Example [2]. We want to understand the category of modules with respect to this monad. The underlying category is $\mathcal{A}=\operatorname{Mod}-R$. Let $\left(X,{ }^{A} \mu_{X}\right) \in_{\mathbb{A}}(\operatorname{Mod}-R)$. This means that

$$
{ }^{A} \mu_{X}: A X=X \otimes_{R} S \rightarrow X
$$

is a morphism in Mod- R such that ${ }^{A} \mu_{X} \circ\left(A^{A} \mu_{X}\right)={ }^{A} \mu_{X} \circ\left(m_{A} X\right)$ and $X={ }^{A} \mu_{X} \circ\left(u_{A} X\right)$. For every $x \in X$ and $s \in S$ write $x s={ }^{A} \mu_{X}\left(x \otimes_{R} s\right)$.Then we get

$$
\begin{gathered}
\left({ }^{A} \mu_{X} \circ\left(A^{A} \mu_{X}\right)\right)\left(x \otimes_{R} s \otimes_{R} s^{\prime}\right)={ }^{A} \mu_{X}(x s) \otimes_{R} s^{\prime}=(x s) s^{\prime} \\
\left({ }^{A} \mu_{X} \circ\left(m_{A} X\right)\right)\left(x \otimes_{R} s \otimes_{R} s^{\prime}\right)={ }^{A} \mu_{X}\left(x \otimes_{R} s s^{\prime}\right)=x\left(s s^{\prime}\right) \\
\left({ }^{A} \mu_{X} \circ\left(u_{A} X\right)\right)(x)={ }^{A} \mu_{X}\left(x \otimes_{R} 1_{S}\right)=x 1_{S}
\end{gathered}
$$

Let $\tau: X \times S \rightarrow X \otimes_{R} S$ denote the canonical map. Then, in view of the equalities above we have that $\left(X,{ }^{A} \mu_{X} \circ \tau\right) \in M o d-S$. It is easy to see that the assignment $\left(X,{ }^{A} \mu_{X}\right) \mapsto\left(X,{ }^{A} \mu_{X} \circ \tau\right)$ defines an isomorphism of categories from ${ }_{\mathbb{A}} \mathcal{A}$ to Mod-S.

Definition 2.9. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on \mathcal{A}. The functor

$$
\begin{array}{ccc}
{ }_{\mathbb{A}} U: & { }^{\mathbb{A} \mathcal{A}} & \rightarrow \mathcal{A} \\
& \left(X,{ }^{A} \mu_{X}\right) & \rightarrow \\
f & \rightarrow & f
\end{array}
$$

is called the forgetful functor.

Proposition 2.10. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A}. Let $f, g:\left(X,{ }^{A} \mu_{X}\right) \rightarrow$ $\left(Y,{ }^{A} \mu_{Y}\right)$ be morphisms in ${ }_{\mathbb{A}} \mathcal{A}$. Then

$$
f=g \Leftrightarrow{ }_{\mathbb{A}} U f={ }_{\mathbb{A}} U g
$$

i.e. the functor ${ }_{\mathbb{A}} U:{ }_{\mathbb{A}} \mathcal{A} \rightarrow \mathcal{A}$ is faithful

Proposition 2.11. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A}. Then $\mathbb{A}^{A} U$ reflects isomorphisms.

Proof. Let $f:\left(X,{ }^{A} \mu_{X}\right) \rightarrow\left(Y,{ }^{A} \mu_{Y}\right)$ be a morphism in ${ }_{\mathbb{A}} \mathcal{A}$ such that ${ }_{\mathbb{A}} U f$ is an isomorphism in \mathcal{A}. Since

$$
{ }^{A} \mu_{Y} \circ\left(A_{\mathbb{A}} U f\right)={ }_{\mathbb{A}} U f \circ{ }^{A} \mu_{X}
$$

we get that

$$
\left({ }_{\mathbb{A}} U f\right)^{-1} \circ{ }^{A} \mu_{Y}={ }^{A} \mu_{X} \circ\left(A\left({ }_{\mathbb{A}} U f\right)^{-1}\right) .
$$

which entails that $\left({ }_{\mathbb{A}} U f\right)^{-1}$ gives rise to a morphism $g:\left(Y,{ }^{A} \mu_{Y}\right) \rightarrow\left(X,{ }^{A} \mu_{X}\right)$ such that ${ }_{\mathbb{A}} U g=$ $\left({ }_{\mathbb{A}} U f\right)^{-1}$. Hence

$$
{ }_{\mathbb{A}} U(f \circ g)=\operatorname{Id}_{Y} \quad \text { and } \quad{ }_{\mathbb{A}} U(g \circ f)=\operatorname{Id}_{X}
$$

so that

$$
\left.f \circ g=\operatorname{Id}_{\left(Y,{ }^{A} \mu_{Y}\right)} \quad \text { and } \quad g \circ f=\operatorname{Id}_{(X, A} \mu_{X}\right) .
$$

Definition 2.12. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on \mathcal{A}. The functor

$$
\begin{array}{rlcc}
\mathbb{A} F: \mathcal{A} & \rightarrow & \mathbb{A} \mathcal{A} \\
X & \rightarrow & \left(A X, m_{A} X\right) \\
f & \rightarrow & A f .
\end{array}
$$

is called the free functor.
Proposition 2.13. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on \mathcal{A}. Then $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ is an adjunction with unit the unit u_{A} of the monad \mathbb{A}

$$
u_{A}: \mathcal{A} \rightarrow_{\mathbb{A}} U_{\mathbb{A}} F=A
$$

The counit $\lambda_{A}:{ }_{\mathbb{A}} F_{\mathbb{A}} U \rightarrow_{\mathbb{A}} \mathcal{A}$ is uniquely determined by setting

$$
{ }_{\mathbb{A}} U\left(\lambda_{A}\left(X,{ }^{A} \mu_{X}\right)\right)={ }^{A} \mu_{X} \text { for every }\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A} .
$$

Moreover we have

$$
\begin{equation*}
{ }_{\mathbb{A}} U \lambda_{A \mathbb{A}} F=m_{A} \tag{6}
\end{equation*}
$$

Proof. Let $\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A}$. In view of (四) we have

$$
{ }^{A} \mu_{X} \circ\left(A^{A} \mu_{X}\right)={ }^{A} \mu_{X} \circ\left(m_{A} X\right) .
$$

This means that there exists a morphism

$$
\lambda_{A}\left(X,{ }^{A} \mu_{X}\right):\left(A X, m_{A} X\right)={ }_{\mathbb{A}} F_{\mathbb{A}} U\left(X,{ }^{A} \mu_{X}\right) \rightarrow\left(X,{ }^{A} \mu_{X}\right)
$$

such that

$$
\mathbb{A}_{\mathbb{A}} U \lambda_{A}\left(X,{ }^{A} \mu_{X}\right)={ }^{A} \mu_{X}
$$

It is easy to show that in this way we get a functorial morphism $\lambda_{A}:{ }_{\mathbb{A}} F_{\mathbb{A}} U \rightarrow{ }_{\mathbb{A}} \mathcal{A}$.
Let $\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A}$. We compute

$$
\begin{gathered}
{\left[\left({ }_{\mathbb{A}} U \lambda_{A}\right) \circ\left(u_{A \mathbb{A}} U\right)\right]\left(\left(X,{ }^{A} \mu_{X}\right)\right)=\left({ }_{\mathbb{A}} U \lambda_{A}\right)\left(\left(X,{ }^{A} \mu_{X}\right)\right) \circ\left(u_{A \mathbb{A}} U\right)\left(\left(X,{ }^{A} \mu_{X}\right)\right)} \\
={ }^{A} \mu_{X} \circ u_{A} X \stackrel{\text { 気 }}{=} .
\end{gathered}
$$

From this we deduce that $\left({ }_{\mathbb{A}} U \lambda_{A}\right) \circ\left(u_{A \mathbb{A}} U\right)={ }_{\mathbb{A}} U$.
Let $X \in \mathcal{A}$. We compute

$$
{ }_{\mathbb{A}} U\left[\left(\lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F u_{A}\right)\right](X)=\left[{ }_{\mathbb{A}} U\left(\lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} U_{\mathbb{A}} F u_{A}\right)\right](X)
$$

$$
={ }_{\mathbb{A}} U\left(\lambda_{A \mathbb{A}} F\right)(X) \circ\left({ }_{\mathbb{A}} U_{\mathbb{A}} F u_{A}\right)(X)=m_{A} X \circ A u_{A} X \stackrel{\underline{凹}}{=} X .
$$

From this we deduce that

$$
{ }_{\mathbb{A}} U\left[\left(\lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F u_{A}\right)\right]={ }_{\mathbb{A}} U\left({ }_{\mathbb{A}} F\right)
$$

and hence, by Proposition [.]. that $\left(\lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F u_{A}\right)={ }_{\mathbb{A}} F$.
Fore every $\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A}$ we compute

$$
\left({ }_{\mathbb{A}} U \lambda_{A \mathbb{A}} F\right) X={ }_{\mathbb{A}} U \lambda_{A}\left(X, m_{A} X\right)=m_{A} X
$$

Exercise 2.14. Prove that ${ }_{\mathbb{A}} F X=\left(A X, m_{A} X\right) \in{ }_{\mathbb{A}} \mathcal{A}$.
Proposition 2.15. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A}. Then for every $Z, W \in{ }_{\mathbb{A}} \mathcal{A}$ we have that

$$
Z=W \text { if and only } i f_{\mathbb{A}} U(Z)={ }_{\mathbb{A}} U(W) \text { and }{ }_{\mathbb{A}} U\left(\lambda_{A} Z\right)={ }_{\mathbb{A}} U\left(\lambda_{A} W\right)
$$

In particular, if $F, G: \mathcal{X} \rightarrow \mathbb{A}^{\mathcal{A}}$ are functors, we have

$$
F=G \text { if and only if } \mathbb{A} U F={ }_{\mathbb{A}} U G \text { and } \mathbb{A}_{\mathbb{A}} U\left(\lambda_{A} F\right)={ }_{\mathbb{A}} U\left(\lambda_{A} G\right)
$$

Lemma 2.16. Let (L, R) be an adjunction where $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$. and let $\mathbb{A}=$ $\left(A=R L, m_{A}=R \epsilon L, u_{A}=\eta\right)$ be the associated monad on the category \mathcal{B}. Then

- for every $X \in \mathcal{A}$ we have that $(R X, R \in X) \in{ }_{\mathbb{A}} \mathcal{B}$,
- for every morphism $f: X \rightarrow X^{\prime}$ in \mathcal{A} there is a unique morphism $\overline{R(f)}:(R X, R \epsilon X) \rightarrow$ $\left(R X^{\prime}, R \epsilon X^{\prime}\right)$ in $\mathbb{A}_{\mathbb{B}}$ such that ${ }_{\mathbb{A}} U(\overline{R(f)})=R(f)$
Proof. For every $X \in \mathcal{A}$ we compute

$$
R \epsilon X \circ R L R \epsilon X \stackrel{\epsilon}{=} R \epsilon X \circ R \epsilon L R X
$$

and

$$
R \epsilon X \circ \eta R X=R X
$$

Thus we deduce that $(R X, R \epsilon X) \in{ }_{\mathbb{A}} \mathcal{B}$. Let $f: X \rightarrow X^{\prime}$ be a morphism in \mathcal{A}. We compute

$$
R \epsilon X^{\prime} \circ R L R f \stackrel{\epsilon}{=} R f \circ R \epsilon X
$$

Thus we deduce that there is a morphism $\overline{R(f)}:(R X, R \epsilon X) \rightarrow\left(R X^{\prime}, R \in X^{\prime}\right)$ in ${ }_{\mathbb{A}} \mathcal{B}$ such that ${ }_{\mathbb{A}} U(\overline{R(f)})=R(f)$. This morphism is unique in view of Proposition

Definitions 2.17. Let (L, R) be an adjunction where $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$. and let $\mathbb{A}=\left(A=R L, m_{A}=R \epsilon L, u_{A}=\eta\right)$ be the associated monad on the category \mathcal{B}. In view of Lemma [2.]6, we can consider the functor

$$
K={ }_{R} K: \mathcal{A} \rightarrow{ }_{\mathbb{A}} \mathcal{B}
$$

defined by setting

$$
K(X)=(R X, R \in X) \quad \text { and } \quad K(f)=\overline{R(f)}
$$

This is called the comparison functor of the adjunction (L, R). Note that ${ }_{\mathbb{A}} U \circ K=R$.
A functor $R: \mathcal{A} \rightarrow \mathcal{B}$ which has a left adjoint $L: \mathcal{B} \rightarrow \mathcal{A}$ for which the corresponding comparison functor $K: \mathcal{A} \rightarrow_{\mathbb{A}} \mathcal{B}$ is an equivalence of categories is called monadic (tripleable in Beck's terminology [[Be2], Definition 3, page 8]]).

Proposition 2.18. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A}. Then the monad associate to the adjunction $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ is the monad \mathbb{A} and the corresponding comparison functor is the identity on the category $\mathbb{A}_{\mathbb{A}} \mathcal{A}$. In particular the functor ${ }_{\mathbb{A}} U$ is monadic.

Proof. We already observed that ${ }_{\mathbb{A}} U \circ{ }_{\mathbb{A}} F=A$ and that the unit of this adjunction is u_{A}. For every $X \in \mathcal{A}$ we compute

$$
{ }_{\mathbb{A}} U \lambda_{A \mathbb{A}} F X={ }_{\mathbb{A}} U \lambda_{A}\left(A X, m_{A} X\right)=m_{A} X
$$

We deduce that ${ }_{\mathbb{A}} U \lambda_{A \mathbb{A}} F=m_{A}$ and hence we get that the monad associate to the adjunction $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ is the monad \mathbb{A}. Let now $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$ and we compute

$$
K((X, \mu))=\left({ }_{\mathbb{A}} U(X, \mu),{ }_{\mathbb{A}} U \lambda(X, \mu)\right)=(X, \mu) .
$$

Let $f:(X, \mu) \rightarrow\left(X^{\prime}, \mu^{\prime}\right)$ be a morphism in ${ }_{\mathbb{A}} \mathcal{A}$. Then $K(f)=\overline{\mathbb{A}^{U}(f)}$ where

$$
\overline{\mathbb{A} U(f)}: K((X, \mu))=(X, \mu) \rightarrow K\left(\left(X^{\prime}, \mu^{\prime}\right)\right)=\left(X^{\prime}, \mu^{\prime}\right)
$$

is the unique morphism such that ${ }_{\mathbb{A}} U\left(\overline{{ }_{\mathbb{A}} U(f)}\right)={ }_{\mathbb{A}} U(f)$. Since $\mathbb{A}_{\mathbb{A}} U$ is faithful, this entails $K(f)=$ $\overline{{ }_{\mathbb{A}} U(f)}=f$ and we deduce that $K={ }_{\mathbb{A}} \mathcal{A}$.

3. Comonads

Definition 3.1. A comonad on a category \mathcal{A} is a triple $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$, where $C: \mathcal{A} \rightarrow \mathcal{A}$ is a functor, $\Delta^{C}: C \rightarrow C C$ and $\varepsilon^{C}: C \rightarrow \mathcal{A}$ are functorial morphisms satisfying the coassociativity and the counitality conditions

$$
\left(\Delta^{C} C\right) \circ \Delta^{C}=\left(C \Delta^{C}\right) \circ \Delta^{C} \quad \text { and } \quad\left(C \varepsilon^{C}\right) \circ \Delta^{C}=C=\left(\varepsilon^{C} C\right) \circ \Delta^{C}
$$

Definition 3.2. A morphism between two comonads $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ and $\mathbb{D}=\left(D, \Delta^{D}, \varepsilon^{D}\right)$ on a category \mathcal{A} is a functorial morphism $\varphi: C \rightarrow D$ such that

$$
\Delta^{D} \circ \varphi=(\varphi \varphi) \circ \Delta^{C} \quad \text { and } \quad \varepsilon^{D} \circ \varphi=\varepsilon^{C} .
$$

Example 3.3. Let $\left(\mathcal{C}, \Delta^{\mathcal{C}}, \varepsilon^{\mathcal{C}}\right)$ an A-coring where A is a ring. This means that

- \mathcal{C} is an A - A-bimodule
- $\Delta^{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C} \otimes_{A} \mathcal{C}$ is a morphism of A - A-bimodules
- $\varepsilon^{\mathcal{C}}: \mathcal{C} \rightarrow A$ is a morphism of A - A-bimodules satisfying the following
$\left(\Delta^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ \Delta^{\mathcal{C}}=\left(\mathcal{C} \otimes_{A} \Delta^{\mathcal{C}}\right) \circ \Delta^{\mathcal{C}},\left(\mathcal{C} \otimes_{A} \varepsilon^{\mathcal{C}}\right) \circ \Delta^{\mathcal{C}}=r_{\mathcal{C}}^{-1} \quad$ and $\quad\left(\varepsilon^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ \Delta^{\mathcal{C}}=l_{\mathcal{C}}^{-1}$ where $r_{\mathcal{C}}: \mathcal{C} \otimes_{A} A \rightarrow \mathcal{C}$ and $l_{\mathcal{C}}: A \otimes_{A} \mathcal{C} \rightarrow \mathcal{C}$ are the right and left constraints. Let

$$
\begin{aligned}
C & =-\otimes_{A} \mathcal{C}: \text { Mod- } A \rightarrow \text { Mod- } A \\
\Delta^{C} & =-\otimes_{A} \Delta^{\mathcal{C}}:-\otimes_{A} \mathcal{C} \rightarrow-\otimes_{A} \mathcal{C} \otimes_{A} \mathcal{C} \\
\varepsilon^{C} & =r_{-} \circ\left(-\otimes_{A} \varepsilon^{\mathcal{C}}\right):-\otimes_{A} \mathcal{C} \rightarrow-\otimes_{A} A \rightarrow-
\end{aligned}
$$

We prove that $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ is a comonad on the category Mod- A. For every $M \in \operatorname{Mod}$ A we compute

$$
\begin{gathered}
{\left[\left(\Delta^{C} C\right) \circ \Delta^{C}\right](M)=\left(\Delta^{C} C M\right) \circ\left(\Delta^{C} M\right)} \\
=\left(M \otimes_{A} \mathcal{C} \otimes_{A} \Delta^{\mathcal{C}}\right) \circ\left(M \otimes_{A} \Delta^{\mathcal{C}}\right)=M \otimes_{A}\left[\left(\mathcal{C} \otimes_{A} \Delta^{\mathcal{C}}\right) \circ \Delta^{\mathcal{C}}\right] \\
\stackrel{\mathcal{C} \text { coring }}{=} M \otimes_{A}\left[\left(\Delta^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ \Delta^{\mathcal{C}}\right]=\left(M \otimes_{A} \Delta^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ\left(M \otimes_{A} \Delta^{\mathcal{C}}\right) \\
=\left(C \Delta^{C} M\right) \circ\left(\Delta^{C} M\right)=\left[\left(C \Delta^{C}\right) \circ \Delta^{C}\right](M)
\end{gathered}
$$

and

$$
\begin{gathered}
{\left[\left(\varepsilon^{C} C\right) \circ \Delta^{C}\right](M)=\left(\varepsilon^{C} C M\right) \circ\left(\Delta^{C} M\right)} \\
=r_{C M} \circ\left(M \otimes_{A} \mathcal{C} \otimes_{A} \varepsilon^{\mathcal{C}}\right) \circ\left(M \otimes_{A} \Delta^{\mathcal{C}}\right)=r_{M \otimes_{A} \mathcal{C}} \circ\left(M \otimes_{A}\left[\left(\mathcal{C} \otimes_{A} \varepsilon^{\mathcal{C}}\right) \circ \Delta^{\mathcal{C}}\right]\right) \\
\stackrel{\mathcal{C} \text { coring }}{=} r_{M \otimes_{A} \mathcal{C}} \circ\left(M \otimes_{A} r_{\mathcal{C}}^{-1}\right)=M \otimes_{A} \mathcal{C}=C M \\
{\left[\left(C \varepsilon^{C}\right) \circ \Delta^{C}\right](M)=\left(C \varepsilon^{C} M\right) \circ\left(\Delta^{C} M\right)} \\
=\left(\left[r_{M} \circ\left(M \otimes_{A} \varepsilon^{\mathcal{C}}\right)\right] \otimes_{A} \mathcal{C}\right) \circ\left(M \otimes_{A} \Delta^{\mathcal{C}}\right) \\
=\left(r_{M} \otimes_{A} \mathcal{C}\right) \circ\left(M \otimes_{A} \varepsilon^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ\left(M \otimes_{A} \Delta^{\mathcal{C}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\left(r_{M} \otimes_{A} \mathcal{C}\right) \circ\left[M \otimes_{A}\left(\left(\varepsilon^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ \Delta^{\mathcal{C}}\right)\right] \\
= & \left(r_{M} \otimes_{A} \mathcal{C}\right) \circ\left(M \otimes_{A} l_{\mathcal{C}}^{-1}\right)=M \otimes_{A} \mathcal{C}=C M
\end{aligned}
$$

Proposition 3.4. Let (L, R) be an adjunction with unit η and counit ϵ where $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$. Then $\mathbb{C}=(L R, L \eta R, \epsilon)$ is a comonad on the category \mathcal{A}.
Proof. Dual to the proof of Proposition [2.4.
Definition 3.5. A comodule for a comonad $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ on a category \mathcal{A} is a pair $\left(X,{ }^{C} \rho_{X}\right)$ where $X \in \mathcal{A}$ and ${ }^{C} \rho_{X}: X \rightarrow C X$ is a morphism in \mathcal{A} such that

$$
\left(C^{C} \rho_{X}\right) \circ{ }^{C} \rho_{X}=\left(\Delta^{C} X\right) \circ{ }^{C} \rho_{X} \quad \text { and } \quad X=\left(\varepsilon^{C} X\right) \circ{ }^{C} \rho_{X}
$$

A morphism between two \mathbb{C}-comodules $\left(X,{ }^{C} \rho_{X}\right)$ and $\left(X^{\prime},{ }^{C} \rho_{X^{\prime}}\right)$ is a morphism $f: X \rightarrow X^{\prime}$ in \mathcal{A} such that

$$
{ }^{C} \rho_{X^{\prime}} \circ f=(C f) \circ{ }^{C} \rho_{X} .
$$

We denote by ${ }^{\mathbb{C}} \mathcal{A}$ the category of \mathbb{C}-comodule and their morphisms.
Definition 3.6. Let $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ be a comonad on a category \mathcal{A}. The functor

$$
\begin{array}{cccc}
{ }^{\mathbb{C}} U: & { }^{\mathbb{C}} \mathcal{A} & \rightarrow & \mathcal{A} \\
& \left(X,{ }^{C} \rho_{X}\right) & \rightarrow & X \\
& f & \rightarrow & f
\end{array}
$$

is called the forgetful functor.
Proposition 3.7. Let $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ be a comonad on a category \mathcal{A}. Let $f, g:\left(X,{ }^{C} \rho_{X}\right) \rightarrow$ $\left(Y,{ }^{C} \rho_{Y}\right)$ be morphisms in ${ }^{\mathbb{C}} \mathcal{A}$. Then

$$
f=g \Leftrightarrow{ }_{\mathbb{A}} U f={ }_{\mathbb{A}} U g
$$

i.e. the functor ${ }^{\mathbb{C}} U:{ }^{\mathbb{C}} \mathcal{A} \rightarrow \mathcal{A}$ is faithful

Proposition 3.8. Let $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ be a comonad on a category \mathcal{A}. Then ${ }^{\mathbb{C}} U$ reflects isomorphisms.

Proof. Analogous to the proof of Proposition W.
Definition 3.9. Let $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ be a comonad on a category \mathcal{A}. The functor

$$
\begin{array}{rlcc}
{ }^{\mathbb{C}} F: & \mathcal{A} & \rightarrow & { }^{\mathbb{C}} \mathcal{A} \\
X & \rightarrow & \left(C X, \Delta^{C} X\right) \\
f & \rightarrow & C f
\end{array}
$$

is called the free functor.
Proposition 3.10. Let $\mathbb{C}=\left(C, \Delta^{C}, \varepsilon^{C}\right)$ be a comonad on a category \mathcal{A}. Then $\left({ }^{\mathbb{C}} U,{ }^{\mathbb{C}} F\right)$ is an adjunction with counit the counit ε^{C} of the comonad \mathbb{C}

$$
\varepsilon^{C}: C={ }^{\mathbb{C}} U^{\mathbb{C}} F \rightarrow \mathcal{A} .
$$

The unit $\gamma^{C}:{ }^{\mathbb{C}} \mathcal{A} \rightarrow{ }^{\mathbb{C}} F^{\mathbb{C}} U$ is defined by setting

$$
{ }^{\mathbb{C}} U\left(\gamma^{C}\left(X,{ }^{C} \rho_{X}\right)\right)={ }^{C} \rho_{X} \text { for every }\left(X,{ }^{C} \rho_{X}\right) \in{ }^{\mathbb{C}} \mathcal{A}
$$

Moreover we have

$$
{ }^{\mathbb{C}} U \gamma^{C \mathbb{C}} F=\Delta^{C} .
$$

Lemma 3.11. Let (L, R) be an adjunction where $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$. and let $\mathbb{C}=$ $\left(C=L R, \Delta^{C}=L \eta R, \varepsilon^{C}=\epsilon\right)$ be the associated comonad on the category \mathcal{A}. Then

- for every $Y \in \mathcal{B}$ we have that $(L Y, L \eta Y) \in{ }^{\mathbb{C}} \mathcal{A}$,
- for every morphism $f: Y \rightarrow Y^{\prime}$ in \mathcal{B} there is a unique morphism $\overline{L(f)}:(L Y, L \eta Y) \rightarrow$ $\left(L Y^{\prime}, L \eta Y^{\prime}\right)$ in ${ }^{\mathbb{C}} \mathcal{A}$ such that ${ }_{\mathbb{A}} U(\overline{L(f)})=L(f)$.
Proof. Dual to the proof of Lemma [.]6].

Definitions 3.12. Let (L, R) be an adjunction where $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$ and let $\mathbb{C}=\left(C=L R, \Delta^{C}=L \eta R, \varepsilon^{C}=\epsilon\right)$ be the associated comonad on the category \mathcal{A}. In view of Lemma [.]. ${ }^{[1}$, we can consider the functor

$$
K^{c o}=K_{L}^{c o}: \mathcal{B} \rightarrow{ }^{\mathbb{C}} \mathcal{A}
$$

defined by setting

$$
K^{c o}(Y)=(L Y, L \eta Y) \quad \text { and } \quad K^{c o}(f)=\overline{L(f)}
$$

This is called the cocomparison functor of the adjunction (L, R). Note that ${ }^{\mathbb{C}} U \circ K^{\text {co }}=L$.
A functor $L: \mathcal{B} \rightarrow \mathcal{A}$ which has a right adjoint $R: \mathcal{A} \rightarrow \mathcal{B}$ for which the corresponding cocomparison functor $K_{L}^{\text {co }}: \mathcal{B} \rightarrow{ }^{\mathbb{C}} \mathcal{A}$ is an equivalence of categories is called comonadic.

4. Johnstone for Monads

 $\mathbb{B}=\left(B, m_{B}, u_{B}\right)$ be a monad on a category \mathcal{B} and let $Q: \mathcal{A} \rightarrow \mathcal{B}$ be a functor. Then there is a bijection between the following collections of data
\mathcal{F} functors $\widetilde{Q}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow_{\mathbb{B}} \mathcal{B}$ that are liftings of Q (i.e. $\mathbb{B} U \widetilde{Q}=Q_{\mathbb{A}} U$)
\mathcal{M} functorial morphisms $\Phi: B Q \rightarrow Q A$ such that

$$
\Phi \circ\left(m_{B} Q\right)=\left(Q m_{A}\right) \circ(\Phi A) \circ(B \Phi) \quad \text { and } \quad \Phi \circ\left(u_{B} Q\right)=Q u_{A}
$$

given by

$$
\begin{gathered}
a: \mathcal{F} \rightarrow \mathcal{M} \text { where } a(\widetilde{Q})=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right) \\
b: \mathcal{M} \rightarrow \mathcal{F} \text { where } b(\Phi)\left(\left(X,{ }^{A} \mu_{X}\right)\right)=\left(Q X,\left(Q^{A} \mu_{X}\right) \circ(\Phi X)\right) \\
\text { and }{ }_{\mathbb{B}} U[b(\Phi)(f)]=Q\left({ }_{\mathbb{A}} U f\right) .
\end{gathered}
$$

Proof. First of all let us note that,

$$
\lambda_{A} \circ{ }_{\mathbb{A}} F_{\mathbb{A}} U \lambda_{A} \stackrel{\lambda_{A}}{=} \lambda_{A} \circ \lambda_{A \mathbb{A}} F_{\mathbb{A}} U
$$

so that we get

$$
{ }_{\mathbb{A}} U \lambda_{A} \circ_{\mathbb{A}} U_{\mathbb{A}} F_{\mathbb{A}} U \lambda_{A}={ }_{\mathbb{A}} U \lambda_{A} \circ_{\mathbb{A}} U \lambda_{A \mathbb{A}} F_{\mathbb{A}} U \stackrel{(\mathbf{(\mathbf { D })}}{=}{ }_{\mathbb{A}} U \lambda_{A} \circ m_{A \mathbb{A}} U
$$

and hence

$$
\begin{equation*}
{ }_{\mathbb{A}} U \lambda_{A} \circ A_{\mathbb{A}} U \lambda_{A}={ }_{\mathbb{A}} U \lambda_{A} \circ m_{A \mathbb{A}} U \tag{7}
\end{equation*}
$$

Let $\widetilde{Q}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow{ }_{\mathbb{B}} \mathcal{B}$ be a lifting of the functor $Q: \mathcal{A} \rightarrow \mathcal{B}$ (i.e. $\left.{ }_{\mathbb{B}} U \widetilde{Q}=Q_{\mathbb{A}} U\right)$.
Define a functorial morphism Φ by setting:

$$
\Phi=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right): B Q \rightarrow_{\mathbb{B}} U \widetilde{Q}_{\mathbb{A}} F=Q_{\mathbb{A}} U_{\mathbb{A}} F=Q A
$$

where $u_{A}: \mathcal{A} \rightarrow_{\mathbb{A}} U_{\mathbb{A}} F=A$ is also the unit of the adjunction $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ and $\lambda_{B}:{ }_{\mathbb{B}} F_{\mathbb{B}} U \rightarrow_{\mathbb{B}} \mathcal{B}$ is the counit of the adjunction. We have to prove that such a Φ satisfies $\Phi \circ\left(m_{B} Q\right)=\left(Q m_{A}\right) \circ$ $(\Phi A) \circ(B \Phi)$ and $\Phi \circ\left(u_{B} Q\right)=Q u_{A}$. First, let us note that

$$
\begin{equation*}
Q m_{A}=Q_{\mathbb{A}} U \lambda_{A \mathbb{A}} F={ }_{\mathbb{B}} U \widetilde{Q} \lambda_{A \mathbb{A}} F \tag{8}
\end{equation*}
$$

Now let us compute

$$
\begin{aligned}
&\left(Q m_{A}\right) \circ(\Phi A) \circ(B \Phi)=\left(Q m_{A}\right) \circ\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F A\right) \circ\left(B Q u_{A} A\right) \\
& \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& \stackrel{(\mathbb{区})}{=}\left(\mathbb{B} U \widetilde{Q} \lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F A\right) \circ\left(B Q u_{A} A\right) \\
& \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
&={ }_{\mathbb{B}} U\left[\left(\widetilde{Q} \lambda_{A \mathbb{A}} F\right) \circ\left(\lambda_{B} \widetilde{Q}_{\mathbb{A}} F A\right) \circ\left({ }_{\mathbb{B}} F Q u_{A} A\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& {\stackrel{\lambda_{B}}{=}}_{\mathbb{B}} U\left[\left(\lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} F_{\mathbb{B}} U \widetilde{Q} \lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} F Q u_{A} A\right)\right] \\
& \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& \stackrel{\widetilde{Q} \text { lifting }}{=}{ }_{\mathbb{B}} U\left[\left(\lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} F Q_{\mathbb{A}} U \lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} F Q u_{A} A\right)\right] \\
& \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& \stackrel{(\mathbb{区})}{=}{ }_{\mathbb{B}} U\left[\left(\lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} F Q m_{A}\right) \circ\left({ }_{\mathbb{B}} F Q u_{A} A\right)\right] \\
& \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& \stackrel{A \text { monad }}{=}\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& \stackrel{(\mathbb{(®)}}{=}\left[\left({ }_{\mathbb{B}} U \lambda_{B} \circ m_{B \mathbb{B}} U\right) \widetilde{Q}_{\mathbb{A}} F\right] \circ\left(B B Q u_{A}\right) \\
& =\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(m_{B \mathbb{B}} U \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B B Q u_{A}\right) \\
& \stackrel{m_{B}}{=}\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right) \circ\left(m_{B} Q\right) \\
& =\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{B}} U_{\mathbb{B}} F Q u_{A}\right) \circ\left(m_{B} Q\right) \\
& =\Phi \circ\left(m_{B} Q\right) .
\end{aligned}
$$

Moreover we have

$$
\begin{gathered}
\Phi \circ\left(u_{B} Q\right)=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right) \circ\left(u_{B} Q\right) \\
\stackrel{u_{B}}{=}\left(\mathbb{B} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(u_{B} Q A\right) \circ\left(Q u_{A}\right) \\
=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(u_{B} Q_{\mathbb{A}} U_{\mathbb{A}} F\right) \circ\left(Q u_{A}\right) \\
\stackrel{\widetilde{Q} \text { lifting }}{=}\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(u_{B \mathbb{B}} U \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(Q u_{A}\right) \\
\stackrel{(\mathbb{B} F, \mathbb{B} U) \text { adj }}{=} Q u_{A} .
\end{gathered}
$$

Conversely, let $\Phi: B Q \rightarrow Q A$ be a functorial morphism satisfying $\Phi \circ\left(m_{B} Q\right)=\left(Q m_{A}\right) \circ(\Phi A) \circ(B \Phi)$ and $\Phi \circ\left(u_{B} Q\right)=Q u_{A}$. We define $\widetilde{Q}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow{ }_{\mathbb{B}} \mathcal{B}$ by setting, for every $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$,

$$
\widetilde{Q}((X, \mu))=(Q X,(Q \mu) \circ(\Phi X))=\left(Q_{\mathbb{B}} U(X, \mu),\left[Q_{\mathbb{A}} U \lambda_{A} \circ \Phi_{\mathbb{A}} U\right](X, \mu)\right)
$$

Note that, a posteriori, we will have

$$
\begin{equation*}
{ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}=Q_{\mathbb{A}} U \lambda_{A} \circ \Phi_{\mathbb{A}} U \tag{9}
\end{equation*}
$$

We have to check that $(Q(X),(Q \mu) \circ(\Phi X)) \in_{\mathbb{B}} \mathcal{B}$, that is

$$
\tilde{\mu} \circ B \widetilde{\mu}=\tilde{\mu} \circ\left(m_{B} Q X\right) \quad \text { and } \quad \widetilde{\mu} \circ\left(u_{B} Q X\right)=Q X
$$

where $\widetilde{\mu}=(Q \mu) \circ(\Phi X)$. We compute

$$
\begin{gathered}
\widetilde{\mu} \circ(B \widetilde{\mu})=(Q \mu) \circ(\Phi X) \circ(B Q \mu) \circ(B \Phi X) \\
\stackrel{\Phi}{=}(Q \mu) \circ(Q A \mu) \circ(\Phi A X) \circ(B \Phi X) \\
\stackrel{\text { D }}{=}(Q \mu) \circ\left(Q m_{A} X\right) \circ(\Phi A X) \circ(B \Phi X) \\
\stackrel{\text { propertyof } \Phi}{=}(Q \mu) \circ(\Phi X) \circ\left(m_{B} Q X\right) \\
=\widetilde{\mu} \circ\left(m_{B} Q X\right) .
\end{gathered}
$$

Moreover we have

$$
\begin{gathered}
\tilde{\mu} \circ\left(u_{B} Q X\right)=(Q \mu) \circ(\Phi X) \circ\left(u_{B} Q X\right) \\
\text { propertyof } \Phi \\
= \\
(Q \mu) \circ\left(Q u_{A} X\right) \\
=Q X .
\end{gathered}
$$

Now, let $f:(X, \mu) \rightarrow\left(X^{\prime}, \mu^{\prime}\right)$ be a morphism of \mathbb{A}-modules, that is a morphism $f: X \rightarrow X^{\prime}$ in \mathcal{A} such that

$$
\mu^{\prime} \circ(A f)=f \circ \mu .
$$

We want to prove that $Q(f)$ lifts to a morphism $\widetilde{Q}(f): \widetilde{Q}(X, \mu)=(Q X,(Q \mu) \circ(\Phi X)) \rightarrow$ $\widetilde{Q}\left(X^{\prime}, \mu^{\prime}\right)=\left(Q X^{\prime},\left(Q \mu^{\prime}\right) \circ\left(\Phi X^{\prime}\right)\right)$ of \mathbb{B}-modules i.e.

$$
\left[\left(Q \mu^{\prime}\right) \circ\left(\Phi X^{\prime}\right)\right] \circ(B Q f) \stackrel{?}{=}(Q f) \circ[(Q \mu) \circ(\Phi X)]
$$

We compute

$$
\begin{gathered}
{\left[\left(Q \mu^{\prime}\right) \circ\left(\Phi X^{\prime}\right)\right] \circ(B Q f) \stackrel{\Phi}{=}\left(Q \mu^{\prime}\right) \circ(Q A f) \circ(\Phi X)} \\
\quad f \text { morph } A-\bmod (Q f) \circ(Q \mu) \circ(\Phi X)
\end{gathered}
$$

Let now check that \widetilde{Q} is a lifting of Q. Let $(X, \mu) \in_{\mathbb{A}} \mathcal{A}$ and let us compute

$$
{ }_{\mathbb{B}} U \widetilde{Q}((X, \mu))={ }_{\mathbb{B}} U(Q X,(Q \mu) \circ(\Phi X))=Q X=Q_{\mathbb{A}} U((X, \mu)) .
$$

Let $f:(X, \mu) \rightarrow\left(X^{\prime}, \mu^{\prime}\right)$ be a morphism in ${ }_{\mathbb{A}} \mathcal{A}$. By construction we have

$$
{ }_{\mathbb{B}} U \widetilde{Q}(f)=Q_{\mathbb{A}} U(f): Q X \rightarrow Q X^{\prime}
$$

Therefore \widetilde{Q} is a lifting of the functor Q.
We have to prove that we have a bijection. Let us start with $\widetilde{Q}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow{ }_{\mathbb{B}} \mathcal{B}$ a lifting of the functor $Q: \mathcal{A} \rightarrow \mathcal{B}$. Then we construct $\Phi: B Q \rightarrow Q A$ given by

$$
\Phi=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right)
$$

and using this functorial morphism we define a functor $\bar{Q}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow{ }_{\mathbb{B}} \mathcal{B}$ as follows: for every $(X, \mu) \in$ ${ }_{\mathbb{A}} \mathcal{A}$

$$
\bar{Q}((X, \mu))=(Q X,(Q \mu) \circ(\Phi X)) .
$$

Since both \widetilde{Q} and \bar{Q} are liftings of Q, we have that $\mathbb{B}_{\mathbb{B}} U \widetilde{Q}=Q_{\mathbb{A}} U={ }_{\mathbb{B}} U \bar{Q}$. In view of Proposition [2..n], it remains to prove that ${ }_{\mathbb{B}} U\left(\lambda_{B} \bar{Q}\right)={ }_{\mathbb{B}} U\left(\lambda_{B} \widetilde{Q}\right)$. Since $\bar{Q}(X, \mu)=\left(Q_{\mathbb{B}} U(X, \mu),\left[Q_{\mathbb{A}} U \lambda_{A} \circ \Phi_{\mathbb{A}} U\right](X, \mu)\right)$ for every $((X, \mu)) \in_{\mathbb{A}} \mathcal{A}$ we have that

$$
{ }_{\mathbb{B}} U \lambda_{B} \bar{Q}=Q_{\mathbb{A}} U \lambda_{A} \circ \Phi_{\mathbb{A}} U
$$

We compute

$$
\begin{aligned}
& { }_{\mathbb{B}} U\left(\lambda_{B} \bar{Q}\right)=Q_{\mathbb{A}} U \lambda_{A} \circ \Phi_{\mathbb{A}} U \\
& =\left(Q_{\mathbb{A}} U \lambda_{A}\right) \circ\left(\mathbb{B} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F_{\mathbb{A}} U\right) \circ\left(B Q u_{A \mathbb{A}} U\right) \\
& \stackrel{\widetilde{Q} \text { lifting } Q}{=}\left({ }_{\mathbb{B}} U \widetilde{Q} \lambda_{A}\right) \circ\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F_{\mathbb{A}} U\right) \circ\left(B Q u_{A \mathbb{A}} U\right) \\
& \stackrel{\lambda_{B}}{=}\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}\right) \circ\left({ }_{\mathbb{B}} U_{\mathbb{B}} F_{\mathbb{B}} U \widetilde{Q} \lambda_{A}\right) \circ\left(B Q u_{A \mathbb{A}} U\right) \\
& =\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}\right) \circ\left(B\left[{ }_{\mathbb{B}} U \widetilde{Q} \lambda_{A} \circ Q u_{A \mathbb{A}} U\right]\right) \\
& =\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}\right) \circ\left(B\left[Q_{\mathbb{A}} U \lambda_{A} \circ Q u_{A \mathbb{A}} U\right]\right) \\
& (\stackrel{A}{A}, \stackrel{A}{=}))^{\operatorname{adj}}{ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q} .
\end{aligned}
$$

Conversely, let us start with a functorial morphism $\Phi: B Q \rightarrow Q A$ satisfying $\Phi \circ\left(m_{B} Q\right)=$ $\left(Q m_{A}\right) \circ(\Phi A) \circ(B \Phi)$ and $\Phi \circ\left(u_{B} Q\right)=Q u_{A}$. Then we construct a functor $\widetilde{Q}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow_{\mathbb{B}} \mathcal{B}$ by setting, for every $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$,

$$
\widetilde{Q}((X, \mu))=(Q X,(Q \mu) \circ(\Phi X))
$$

which lifts $Q: \mathcal{A} \rightarrow \mathcal{B}$. Now, we define a functorial morphism $\Psi: B Q \rightarrow Q A$ given by

$$
\Psi=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right)
$$

Then we have

$$
\begin{gathered}
\Psi=\left({ }_{\mathbb{B}} U \lambda_{B} \widetilde{Q}_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right) \\
\stackrel{(\mathbf{(})}{=}\left(Q_{\mathbb{A}} U \lambda_{A \mathbb{A}} F\right) \circ\left(\Phi_{\mathbb{A}} U_{\mathbb{A}} F\right) \circ\left(B Q u_{A}\right) \\
=\left(Q m_{A}\right) \circ(\Phi A) \circ\left(B Q u_{A}\right) \\
\stackrel{\Phi}{=}\left(Q m_{A}\right) \circ\left(Q A u_{A}\right) \circ \Phi \\
A \stackrel{\text { monad }}{=} \Phi .
\end{gathered}
$$

Definition 4.2. A left module functor for a monad $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ on a category \mathcal{A} is a pair $\left(Q,{ }^{A} \mu_{Q}\right)$ where $Q: \mathcal{B} \rightarrow \mathcal{A}$ is a functor and ${ }^{A} \mu_{Q}: A Q \rightarrow Q$ is a functorial morphism satisfying:

$$
{ }^{A} \mu_{Q} \circ\left(A^{A} \mu_{Q}\right)={ }^{A} \mu_{Q} \circ\left(m_{A} Q\right) \quad \text { and } \quad Q={ }^{A} \mu_{Q} \circ\left(u_{A} Q\right)
$$

Example 4.3. In the setting of Example [2.3], $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ where

$$
\begin{aligned}
A & =-\otimes_{R} S: \text { Mod- } R \rightarrow \text { Mod- } R \\
m_{A} & =-\otimes_{R} m_{S}:-\otimes_{R} S \otimes_{R} S \rightarrow-\otimes_{R} S \\
u_{A} & =: \text { Mod- } R \rightarrow-\otimes_{R} S
\end{aligned}
$$

Let M be an R-S-bimodule and let $Q=: \operatorname{Mod}-R \rightarrow \operatorname{Mod}-R$. Then Q is a left module functor for the monad \mathbb{A} via the map via the map

$$
{ }^{A} \mu_{Q}=-\otimes_{R} \mu_{M}^{A}: A Q=-\otimes_{R} M \otimes_{R} S \longrightarrow Q=-\otimes_{R} M
$$

where we denote by $\mu_{M}^{S}: M \otimes_{R} S \longrightarrow M$ the map induced by the multiplication by S on M.
Corollary 4.4. Let \mathcal{X}, \mathcal{A} be categories, let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A} and let $F: \mathcal{X} \rightarrow \mathcal{A}$ be a functor. Then there exists a bijective correspondence between the following collections of data:
\mathcal{H} Left \mathbb{A}-module actions ${ }^{A} \mu_{F}: A F \rightarrow F$
\mathcal{G} Functors ${ }_{A} F: \mathcal{X} \rightarrow_{\mathbb{A}} \mathcal{A}$ such that ${ }_{\mathbb{A}} U_{A} F=F$,
given by

$$
\begin{gathered}
\tilde{a}: \mathcal{H} \rightarrow \mathcal{G} \text { where }{ }_{\mathbb{A}} U \widetilde{a}\left({ }^{A} \mu_{F}\right)=F \text { and }_{\mathbb{A}} U \lambda_{A} \widetilde{a}\left({ }^{A} \mu_{F}\right)={ }^{A} \mu_{F} \text { i.e. } \\
\widetilde{a}\left({ }^{A} \mu_{F}\right)(X)=\left(F X,{ }^{A} \mu_{F} X\right) \text { and } \widetilde{a}\left({ }^{A} \mu_{F}\right)(f)=F(f) \\
\widetilde{b}: \mathcal{G} \rightarrow \mathcal{H} \text { where } \widetilde{b}\left({ }_{A} F\right)={ }_{\mathbb{A}} U \lambda_{A A} F: A F \rightarrow F .
\end{gathered}
$$

Proof. Apply Proposition $\mathbb{1}$ do the case $\mathcal{A}=\mathcal{X}, \mathcal{B}=\mathcal{A}, \mathbb{A}=\operatorname{Id}_{\mathcal{X}}$ and $\mathbb{B}=\mathbb{A}$. Then $\widetilde{Q}={ }_{A} F$ is the lifting of F and $\Phi={ }^{A} \mu_{F}$ satisfies ${ }^{A} \mu_{F} \circ\left(m_{A} F\right)={ }^{A} \mu_{F} \circ\left(A^{A} \mu_{F}\right)$ and ${ }^{A} \mu_{F} \circ\left(u_{A} F\right)=F$ that is $\left(F,{ }^{A} \mu_{F}\right)$ is a left \mathbb{A}-module functor.

Corollary 4.5. Let (L, R) be an adjunction with $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$ and let $\mathbb{A}=$ $\left(A, m_{A}, u_{A}\right)$ be a monad on \mathcal{B}. Then there is a bijective correspondence between the following collections of data
\mathfrak{K} Functors $K: \mathcal{A} \rightarrow{ }_{\mathbb{A}} \mathcal{B}$ such that ${ }_{\mathbb{A}} U \circ K=R$,
\mathfrak{L} functorial morphism $\alpha: A R \rightarrow R$ such that (R, α) is a left module functor for the monad A
given by

$$
\begin{aligned}
& \Phi: \mathfrak{K} \rightarrow \mathfrak{L} \text { where } \Phi(K)={ }_{\mathbb{A}} U \lambda_{A} K: A R \rightarrow R \\
& \Omega
\end{aligned}: \mathfrak{L} \rightarrow \mathfrak{K} \text { where } \Omega(\alpha)(X)=(R X, \alpha X) \text { and }{ }_{\mathbb{A}} U \Omega(\alpha)(f)=R(f) .
$$

Proof. Apply Corollary $L: \mathcal{B} \rightarrow \mathcal{A}$ and $R: \mathcal{A} \rightarrow \mathcal{B}$ and $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ a monad on \mathcal{B}.

5. Distributive laws and lifting of monads

From n.d we get
Proposition 5.1. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ be a monad on a category \mathcal{A} and let $B: \mathcal{A} \rightarrow \mathcal{A}$ be a functor. Then there is a bijection between the following collections of data
\mathcal{F} functors $\widetilde{B}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow_{\mathbb{A}} \mathcal{A}$ that are liftings of $B\left(\right.$ i.e. $\left.{ }_{\mathbb{A}} U \widetilde{B}=B_{\mathbb{A}} U\right)$
\mathcal{M} functorial morphisms $\Phi: A B \rightarrow B A$ such that

$$
\Phi \circ\left(m_{A} B\right)=\left(B m_{A}\right) \circ(\Phi A) \circ(A \Phi) \quad \text { and } \quad \Phi \circ\left(u_{A} B\right)=B u_{A}
$$

given by

$$
\begin{gathered}
a: \mathcal{F} \rightarrow \mathcal{M} \text { where } a(\widetilde{B})=\left({ }_{\mathbb{A}} U \lambda_{A} \widetilde{B}_{\mathbb{A}} F\right) \circ\left(A B u_{A}\right) \\
b: \mathcal{M} \rightarrow \mathcal{F} \text { where } b(\Phi)\left(\left(X,{ }^{A} \mu_{X}\right)\right)=\left(B X,\left(B^{A} \mu_{X}\right) \circ(\Phi X)\right) \\
\text { and } \mathbb{A}_{\mathbb{A}} U[b(\Phi)(f)]=B_{\mathbb{A}} U(f) .
\end{gathered}
$$

Definition 5.2. [ل] Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ and $\mathbb{B}=\left(B, m_{B}, u_{B}\right)$ be monads on a category \mathcal{A}. A functorial morphisms $\Phi: A B \rightarrow B A$ such that

$$
\begin{equation*}
\Phi \circ\left(m_{A} B\right)=\left(B m_{A}\right) \circ(\Phi A) \circ(A \Phi) \quad \text { and } \quad \Phi \circ\left(u_{A} B\right)=B u_{A} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi \circ\left(A m_{B}\right)=\left(m_{B} A\right) \circ(B \Phi) \circ(\Phi B) \quad \text { and } \quad \Phi \circ\left(A u_{B}\right)=u_{B} A \tag{11}
\end{equation*}
$$

is said to be a distributive law of \mathbb{A} over \mathbb{B}.
THEOREM 5.3. Let $\mathbb{A}=\left(A, m_{A}, u_{A}\right)$ and $\mathbb{B}=\left(B, m_{B}, u_{B}\right)$ be monads on a category \mathcal{A}. Then there is a bijection between the following collections of data
\mathcal{D} distributive laws of \mathbb{A} over \mathbb{B}
\mathcal{M} monads $\widehat{\mathbb{B}}=\left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right)$ on ${ }_{\mathbb{A}} \mathcal{A}$ that are lifting of \mathbb{B} (i.e. ${ }_{\mathbb{A}} U \widehat{B}=B_{\mathbb{A}} U,_{\mathbb{A}} U m_{\widehat{B}}=$ $\left.m_{B \mathbb{A}} U,_{\mathbb{A}} U u_{\widehat{B}}=u_{B \mathbb{A}} U\right)$
given by

$$
\begin{aligned}
a & : \mathcal{D} \rightarrow \mathcal{M} \text { where } a(\Phi)=\widehat{\mathbb{B}} \text { where } \widehat{\mathbb{B}}=\left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right) \text { and } \\
\widehat{B}\left(\left(X,{ }^{A} \mu_{X}\right)\right) & =\left(B X,\left(B^{A} \mu_{X}\right) \circ(\Phi X)\right),{ }_{\mathbb{A}} U \widehat{B}(f)=B_{\mathbb{A}} U(f) \\
b & : \mathcal{M} \rightarrow \mathcal{D} \text { where } b\left(\left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right)\right)=\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\widehat{A}} F\right) \circ\left(A B u_{A}\right) .
\end{aligned}
$$

Proof. Let $\Phi: A B \rightarrow B A$ be a distributive law of \mathbb{A} over \mathbb{B}. By Proposition we know that $\widehat{B}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow{ }_{\mathbb{A}} \mathcal{A}$ defined by setting $\widehat{B}\left(\left(X,{ }^{A} \mu_{X}\right)\right)=\left(B X,\left(B^{A} \mu_{X}\right) \circ(\Phi X)\right),{ }_{\mathbb{A}} U \widehat{B}(f)=B_{\mathbb{A}} U(f)$ is a functor.

Let $\left(X,{ }^{A} \mu_{X}\right) \in{ }_{\mathbb{A}} \mathcal{A}$ and let us prove that $m_{B} X: B^{2} X \rightarrow B X$ lifts to a morphism $m_{\widehat{B}}\left(X,{ }^{A} \mu_{X}\right)$ in $_{\mathbb{A}} \mathcal{A}$ from $(\widehat{B})^{2}\left(\left(X,{ }^{A} \mu_{X}\right)\right)$ to $\widehat{B}\left(\left(X,{ }^{A} \mu_{X}\right)\right)$. Note that

$$
\begin{aligned}
(\widehat{B})^{2}\left(\left(X,{ }^{A} \mu_{X}\right)\right) & =\widehat{B}\left(\widehat{B}\left(\left(X,{ }^{A} \mu_{X}\right)\right)\right)=\widehat{B}\left(B X,\left(B^{A} \mu_{X}\right) \circ(\Phi X)\right) \\
& =\left(B^{2}(X),\left(B^{2 A} \mu_{X}\right) \circ(B \Phi X) \circ(\Phi B X)\right)
\end{aligned}
$$

We compute

$$
\begin{aligned}
& \left(m_{B} X\right) \circ\left(B^{2 A} \mu_{X}\right) \circ(B \Phi X) \circ \Phi B X \stackrel{m_{B}}{=}\left(B^{A} \mu_{X}\right) \circ\left(m_{B} A X\right) \circ(B \Phi X) \circ(\Phi B X) \\
& \stackrel{(口)}{=}\left(B^{A} \mu_{X}\right) \circ(\Phi X) \circ\left(A m_{B} X\right) .
\end{aligned}
$$

We have to check that in this way we get a functorial morphism $m_{\widehat{B}}:(\widehat{B})^{2} \rightarrow \widehat{B}$ ．Let $f:(X, \mu) \rightarrow$ $\left(X^{\prime}, \mu^{\prime}\right)$ be a morphism in ${ }_{\mathbb{A}} \mathcal{A}$ ．We have to prove that

$$
m_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ(\widehat{B})^{2} f=(\widehat{B}) f \circ m_{\widehat{B}}(X, \mu)
$$

which amounts，in view of Proposition［．］．to

$$
{ }_{\mathbb{A}} U\left[m_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ(\widehat{B})^{2} f\right]={ }_{\mathbb{A}} U\left[(\widehat{B}) f \circ m_{\widehat{B}}(X, \mu)\right] .
$$

We compute

$$
\begin{aligned}
{ }_{\mathbb{A}} U\left[m_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ(\widehat{B})^{2} f\right] & ={ }_{\mathbb{A}} U m_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ{ }_{\mathbb{A}} U(\widehat{B})^{2} f=m_{B} X^{\prime} \circ B^{2}{ }_{\mathbb{A}} U f \\
\stackrel{m_{B}}{=} B_{\mathbb{A}} U f \circ m_{B} X & ={ }_{\mathbb{A}} U \widehat{B} f \circ{ }_{\mathbb{A}} U m_{\widehat{B}}(X, \mu)={ }_{\mathbb{A}} U\left[(\widehat{B}) f \circ m_{\widehat{B}}(X, \mu)\right]
\end{aligned}
$$

Let us prove that $u_{B} X: X \rightarrow B X$ lifts to a morphism $u_{\widehat{B}}(X, \mu)$ in ${ }_{\mathbb{A}} \mathcal{A}$ from $\left(\left(X,{ }^{A} \mu_{X}\right)\right)$ to $\widehat{B}\left(\left(X,{ }^{A} \mu_{X}\right)\right)$ ．We compute

$$
\left(B^{A} \mu_{X}\right) \circ(\Phi X) \circ\left(A u_{B} X\right) \stackrel{(\mathbb{\text { (⿴囗 }})}{=}\left(B^{A} \mu_{X}\right) \circ\left(u_{B} A X\right) \stackrel{u_{B}}{=}\left(u_{B} X\right) \circ^{A} \mu_{X}
$$

We have to check that in this way we get a functorial morphism $u_{\widehat{B}}:{ }_{\mathbb{A}} \mathcal{A} \rightarrow \widehat{B}$ ．Let $f:(X, \mu) \rightarrow$ $\left(X^{\prime}, \mu^{\prime}\right)$ be a morphism in ${ }_{\mathbb{A}} \mathcal{A}$ ．We have to prove that

$$
u_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ f=(\widehat{B}) f \circ u_{\widehat{B}}(X, \mu)
$$

which amounts，in view of Proposition［．0．

$$
{ }_{\mathbb{A}} U\left[u_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ f\right]={ }_{\mathbb{A}} U\left[(\widehat{B}) f \circ u_{\widehat{B}}(X, \mu)\right] .
$$

We compute

$$
\begin{aligned}
\mathbb{A} U\left[u_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ f\right] & ={ }_{\mathbb{A}} U u_{\widehat{B}}\left(X^{\prime}, \mu^{\prime}\right) \circ{ }_{\mathbb{A}} U f=u_{B} X^{\prime} \circ{ }_{\mathbb{A}} U f \stackrel{u_{B}}{=} B_{\mathbb{A}} U f \circ u_{B} X \\
& ={ }_{\mathbb{A}} U\left[(\widehat{B}) f \circ u_{\widehat{B}}(X, \mu)\right] .
\end{aligned}
$$

Now we have to check that $\widehat{\mathbb{B}}=\left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right)$ is a monad on ${ }_{\mathbb{A}} \mathcal{A}$ ．We compute

$$
\begin{gathered}
{ }_{\mathbb{A}} U\left[m_{\widehat{B}} \circ\left(m_{\widehat{B}} \widehat{B}\right)\right]=m_{B \mathbb{A}} U \circ m_{B} B_{\mathbb{A}} U \\
\left(B, m_{B}, u_{B}\right) \text { is a monad }=m_{B \mathbb{A}} U \circ\left(B m_{B \mathbb{A}} U\right)={ }_{\mathbb{A}} U\left[m_{\widehat{B}} \circ \widehat{B} m_{\widehat{B}}\right]
\end{gathered}
$$

so that，in view of Proposition［JTU，we conclude that

$$
m_{\widehat{B}} \circ\left(m_{\widehat{B}} \widehat{B}\right)=m_{\widehat{B}} \circ \widehat{B} m_{\widehat{B}}
$$

We compute

$$
\begin{gathered}
{ }_{\mathbb{A}} U\left[m_{\widehat{B}} \circ\left(\widehat{B} u_{\widehat{B}}\right)\right]=m_{B \mathbb{A}} U \circ B u_{B \mathbb{A}} U \\
\left(B, m_{B}, u_{B}\right) \text { is a monad } m_{B \mathbb{A}} U \circ u_{B} B_{\mathbb{A}} U={ }_{\mathbb{A}} U\left[m_{\widehat{B}} \circ\left(\widehat{B} u_{\widehat{B}}\right)\right]
\end{gathered}
$$

$$
m_{\widehat{B}} \circ\left(\widehat{B} u_{\widehat{B}}\right)=\widehat{B}=m_{\widehat{B}} \circ\left(\widehat{B} u_{\widehat{B}}\right) .
$$

Let now $\widehat{\mathbb{B}}=\left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right)$ be a monad on ${ }_{\mathbb{A}} \mathcal{A}$ that is a lifting of \mathbb{B}. By Proposition we already know that $\Phi=\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(A B u_{A}\right)$ is a functorial morphism from $A B$ to $B A$ which satisfies ((\|) . Let us prove it satisfies also (■). We compute

$$
\begin{aligned}
& \left(m_{B} A\right) \circ(B \Phi) \circ(\Phi B) \\
& =\left(m_{B} A\right) \circ\left(B_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(B A B u_{A}\right) \circ\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F B\right) \circ\left(A B u_{A} B\right) \\
& =\left(m_{B \mathbb{A}} U_{\mathbb{A}} F\right) \circ\left(B_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(B_{\mathbb{A}} U_{\mathbb{A}} F B u_{A}\right) \circ\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F B\right) \circ\left({ }_{\mathbb{A}} U_{\mathbb{A}} F B u_{A} B\right) \\
& =\left({ }_{\mathbb{A}} U m_{\widehat{B}_{\mathbb{A}}} F\right) \circ\left({ }_{\mathbb{A}} U \widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} U \widehat{B}_{\mathbb{A}} F B u_{A}\right) \circ\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F B\right) \circ\left({ }_{\mathbb{A}} U_{\mathbb{A}} F B u_{A} B\right) \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(\widehat{B}_{\mathbb{A}} F B u_{A}\right) \circ\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F B\right) \circ\left({ }_{\mathbb{A}} F B u_{A} B\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left[\left(\widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(\widehat{B}_{\mathbb{A}} F B u_{A}\right)\right] \circ\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F B\right) \circ\left({ }_{\mathbb{A}} F B u_{A} B\right)\right] \\
& \stackrel{\lambda_{A}}{=}{ }_{\mathbb{A}} U\left[\left(m_{\widehat{B}_{\mathbb{A}}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U \widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U \widehat{B}_{\mathbb{A}} F B u_{A}\right) \circ\left({ }_{\mathbb{A}} F B u_{A} B\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U \widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B_{\mathbb{A}} U_{\mathbb{A}} F B u_{A}\right) \circ\left({ }_{\mathbb{A}} F B u_{A} B\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U \widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ_{\mathbb{A}} F B\left(A B u_{A} \circ u_{A} B\right)\right] \\
& \stackrel{u_{A}}{=}{ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U \widehat{B} \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ_{\mathbb{A}} F B\left(u_{A} B A \circ B u_{A}\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ_{\mathbb{A}} F B\left(u_{A} B A \circ B u_{A}\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F \circ\left(u_{A} B_{\mathbb{A}} U_{\mathbb{A}} F \circ B u_{A}\right)\right)\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B\left(\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(u_{A \mathbb{A}} U \widehat{B}_{\mathbb{A}} F\right) \circ B u_{A}\right)\right)\right] \\
& \left.{ }_{\left({ }_{A}\right.} U \lambda_{A}\right) \circ\left(u_{A \mathbb{A}} U\right)={ }_{A} U{ }_{\mathbb{A}} U\left[\left(m_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A} \widehat{B} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B B u_{A}\right)\right] \\
& \stackrel{\lambda_{A}}{=}{ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U m_{\widehat{B} \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B B u_{A}\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F m_{B \mathbb{A}} U_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B B u_{A}\right)\right] \\
& ={ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F m_{B} A\right) \circ\left({ }_{\mathbb{A}} F B B u_{A}\right)\right] \\
& \stackrel{m_{B}}{=}{ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F B u_{A}\right) \circ\left({ }_{\mathbb{A}} F m_{B}\right)\right] \\
& =\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(A B u_{A}\right) \circ\left(A m_{B}\right) \\
& =\Phi \circ\left(A m_{B}\right) .
\end{aligned}
$$

We also compute

$$
\begin{gathered}
\Phi \circ\left(A u_{B}\right)=\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left(A B u_{A}\right) \circ\left(A u_{B}\right) \\
=\left({ }_{\mathbb{A}} U \lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} U_{\mathbb{A}} F B u_{A}\right) \circ\left({ }_{\mathbb{A}} U_{\mathbb{A}} F u_{B}\right) \\
={ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ_{\mathbb{A}} F\left(B u_{A} \circ u_{B}\right)\right] \\
\stackrel{u_{B}}{=}{ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ_{\mathbb{A}} F\left(u_{B} A \circ u_{A}\right)\right] \\
={ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ_{\mathbb{A}} F\left(u_{B \mathbb{A}} U_{\mathbb{A}} F \circ u_{A}\right)\right] \\
={ }_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ{ }_{\mathbb{A}} F\left({ }_{\mathbb{A}} U u_{\widehat{B} \mathbb{A}} F \circ u_{A}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
=_{\mathbb{A}} U\left[\left(\lambda_{A} \widehat{B}_{\mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F_{\mathbb{A}} U u_{\widehat{B} \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F u_{A}\right)\right] \\
\stackrel{\lambda_{A}}{=}{ }_{\mathbb{A}} U\left[\left(u_{\widehat{B} \mathbb{A}} F\right) \circ\left(\lambda_{A \mathbb{A}} F\right) \circ\left({ }_{\mathbb{A}} F u_{A}\right)\right] \\
\left(\lambda_{A \mathbb{A}} F\right) \circ{ }_{\left({ }_{A} F u_{A}\right)={ }_{\mathbb{A}} F}^{=}{ }_{\mathbb{A}} U u_{\widehat{B} \mathbb{A}} F=u_{B \mathbb{A}} U_{\mathbb{A}} F=u_{B} A .
\end{gathered}
$$

6. Descent data and quasi-Symmetries associated to a monad

Definitions 6.1. Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A}. Let $\Phi: A^{2} \rightarrow A^{2}$ be a functorial morphism.

We will say that Φ satisfies the Yang-Baxter equation if

$$
\begin{equation*}
A \Phi \circ \Phi A \circ A \Phi=\Phi A \circ A \Phi \circ \Phi A \tag{12}
\end{equation*}
$$

holds true.
We will say that Φ is a $B D$-law on $\mathbb{A} \mathbb{K} \mathbb{Z}$, Definition 2.2] provided it is a distributive law of \mathbb{A} over itself i.e. it satisfies

$$
\begin{equation*}
\Phi \circ\left(m_{A} A\right)=\left(A m_{A}\right) \circ(\Phi A) \circ(A \Phi) \quad \text { and } \quad \Phi \circ\left(u_{A} A\right)=A u_{A} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi \circ\left(A m_{A}\right)=\left(m_{A} A\right) \circ(A \Phi) \circ(\Phi A) \quad \text { and } \quad \Phi \circ\left(A u_{A}\right)=u_{A} A \tag{14}
\end{equation*}
$$

and it satisfies the Yang-Baxter equation.
Definitions 6.2. Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^{2} \rightarrow A^{2}$ be a BD-law on \mathbb{A}. Let $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$. A quasi Φ-symmetry on (X, μ) is a morphism $c: A X \rightarrow A X$ such that

$$
\begin{gather*}
\mu \circ c \circ u X=X \tag{15}\\
A c \circ \Phi X \circ A c=\Phi X \circ A c \circ \Phi X \tag{16}\\
c \circ A \mu=m X \circ A c \circ \Phi X \tag{17}
\end{gather*}
$$

We denote by Φ-QSymm (X, μ) the set of quasi Φ-symmetries on (X, μ). Moreover we write $\operatorname{QSymm}(\mathbb{A}, \Phi)$ for the category having as objects pairs

$$
((X, \mu), c) \text { where }(X, \mu) \in_{\mathbb{A}} \mathcal{A} \text { and } c \in \Phi-\operatorname{QSymm}(X, \mu)
$$

A morphism $f:((X, \mu), c) \rightarrow\left(\left(X^{\prime}, \mu^{\prime}\right), c^{\prime}\right)$ is a morphism $f:(X, \mu) \rightarrow\left(X^{\prime}, \mu^{\prime}\right)$ in ${ }_{\mathbb{A}} \mathcal{A}$ such that $c^{\prime} \circ A f=A f \circ c$.

A quasi Φ-symmetry c on (X, μ) is called a Φ-symmetry if $c^{2}=A X$. We denote by Φ $\operatorname{Symm}(X, \mu)$ the subset of Φ-QSymm (X, μ) consisting of Φ-symmetries and by $\operatorname{Symm}(\mathbb{A}, \Phi)$ the full subcategory of $\operatorname{QSymm}(\mathbb{A}, \Phi)$ whose objects are pairs $((X, \mu), c)$ where $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$ and $c \in \Phi-\operatorname{Symm}(X, \mu)$.
Remark 6.3. $(X, \mu) \in \mathbb{A} \mathcal{A}$. In $[\mathbb{K} \mathbb{D}$, Definition 3.3] a quasi Φ-symmetry on (X, μ) is called Φ-braiding on (X, μ).

Remark 6.4. Let $f: B \rightarrow A$ be a morphism of rings. Every $M \in \operatorname{Mod}$ - A has a natural structure of right B-module defined by setting

$$
m \cdot b=m f(b) \quad \text { for every } m \in M \text { and } b \in B
$$

We will denote by M endowed with this $f_{*}(M)$ right B-module structure. It is easy to check that every morphism of right A-modules $g: M \rightarrow M^{\prime}$ becomes automatically a morphism $f_{*}(g)$: $f_{*}(M) \rightarrow f_{*}\left(M^{\prime}\right)$ in $\operatorname{Mod}-B$ and in this way we get a functor $f_{*}: \operatorname{Mod}-A \rightarrow \operatorname{Mod}-B$. On the other hand, A has a left B-module structure defined by

$$
b \cdot a=f(b) a \quad \text { for every } b \in B \text { and } a \in A
$$

In this way A becomes a $B-A$-bimodule. Let $L:=(-) \otimes_{B} A: M o d-B \rightarrow M o d-A$ be the extension of scalars functor and $R:=\operatorname{Hom}_{A}\left({ }_{B} A,-\right): M o d-A \rightarrow M o d-B$ be the restriction of scalars functor
(see [2.3). In the following we will identify R with f_{*} through the natural isomorphism of right B-modules:

$$
\nu_{M}: \operatorname{Hom}_{A}\left({ }_{B} A_{A}, M\right) \rightarrow f_{*}(M), \quad h \mapsto h\left(1_{A}\right) .
$$

Example 6.5. Let $f: B \rightarrow A$ be a morphism of rings. Let $L:=(-) \otimes_{B} A=f^{*}: \operatorname{Mod}-B \rightarrow$ ModA be the extension of scalars functor and $R:=\operatorname{Hom}_{A}\left({ }_{B} A,-\right)=f_{*}: \operatorname{Mod}-A \rightarrow \operatorname{Mod}-B$ be the restriction of scalars functor (see $\mathbf{L . 4})$. Let $\mathbb{A}=(R L, m=R \epsilon L, u=\eta)$ be the associated monad on $\operatorname{Mod}-B$ (see Proposition [.4]). For any $E \in \operatorname{Mod}-B$ we have

$$
\begin{gathered}
R L E=E \otimes_{B} A \text { regarded as a right } B \text {-module } \\
m E: E \otimes_{B} A \otimes_{B} A \rightarrow E \otimes_{B} A \\
x \otimes a \otimes a^{\prime} \mapsto x \otimes a a^{\prime} \\
u E: E_{B} \rightarrow E \otimes_{B} A \\
x \mapsto x \otimes 1
\end{gathered}
$$

Assume now that $\operatorname{Im}(f)$ is contained in the center of A. Let $\Phi:(R L)^{2} \rightarrow(R L)^{2}$, be the functorial morphism defined by

$$
\Phi E=E \otimes_{B} \tau: E \otimes_{B} A \otimes_{B} A \rightarrow E \otimes_{B} A \otimes_{B} A \text { for any } E \in M o d-B
$$

where $\tau: A \otimes_{B} A \rightarrow A \otimes_{B} A$ is the usual flip $\tau(x \otimes y)=y \otimes x$. Note for $\Phi E=E \otimes_{B} \tau$ to be a morphism in Mod- B we need that

$$
\begin{aligned}
x \otimes a^{\prime} \otimes a b & =\left(x \otimes a^{\prime} \otimes a\right) b=\left[\Phi E\left(x \otimes a \otimes a^{\prime}\right)\right] b=\Phi E\left(\left(x \otimes a \otimes a^{\prime}\right) b\right) \\
& =\Phi E\left(x \otimes a \otimes a^{\prime} b\right)=x \otimes a^{\prime} b \otimes a=x \otimes a^{\prime} \otimes b a
\end{aligned}
$$

which is satisfied in view of our assumption. We compute

$$
\begin{gathered}
R L u E: E \otimes_{B} A \rightarrow E \otimes_{B} A \otimes_{B} A \\
x \otimes a \mapsto x \otimes 1 \otimes a \\
u R L E: E \otimes_{B} A \rightarrow E \otimes_{B} A \otimes_{B} A \\
x \otimes a \mapsto x \otimes a \otimes 1 \\
R L m E \quad\left[E \otimes_{B} A \otimes_{B} A\right] \otimes_{B} A \rightarrow\left[E \otimes_{B} A\right] \otimes_{B} A \\
x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime} \mapsto \quad x \otimes a a^{\prime} \otimes a^{\prime \prime}
\end{gathered}
$$

i.e.

$$
\begin{gathered}
R L m=-\otimes_{B} m \otimes_{B} A \\
m R L E \quad: \quad\left[E \otimes_{B} A\right] \otimes_{B} A \otimes_{B} A \rightarrow\left[E \otimes_{B} A\right] \otimes_{B} A \\
x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime} \quad \mapsto x \otimes a \otimes a^{\prime} a^{\prime \prime}
\end{gathered}
$$

i.e.

$$
\begin{gathered}
m R L=-\otimes_{B} A \otimes_{B} m \\
\Phi R L E:\left[E \otimes_{B} A\right] \otimes_{B} A \otimes_{B} A \rightarrow\left[E \otimes_{B} A\right] \otimes_{B} A \otimes_{B} A \\
x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime} \mapsto x \otimes a \otimes a^{\prime \prime} \otimes a^{\prime}
\end{gathered}
$$

so that

$$
\begin{gathered}
\Phi R L=-\otimes_{B} A \otimes_{B} \tau \\
R L(\Phi E):\left[E \otimes_{B} A \otimes_{B} A\right] \otimes_{B} A \rightarrow\left[E \otimes_{B} A \otimes_{B} A\right] \otimes_{B} A \\
x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime} \mapsto x \otimes a^{\prime} \otimes a \otimes a^{\prime \prime}
\end{gathered}
$$

so that

$$
R L \Phi=-\otimes_{B} \tau \otimes_{B} A
$$

Let us check that Φ satisfies ([3]). For every $x \in E, a, a^{\prime}, a^{\prime \prime} \in A$ we have:

$$
\begin{gathered}
(\Phi E \circ m R L E)\left(x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime}\right)=\Phi E\left(x \otimes a \otimes a^{\prime} a^{\prime \prime}\right)=x \otimes a^{\prime} a^{\prime \prime} \otimes a \\
{[(R L m E) \circ(\Phi R L E) \circ(R L \Phi E)]\left(x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime}\right)} \\
=[(R L m E) \circ(\Phi R L E)]\left(x \otimes a^{\prime} \otimes a \otimes a^{\prime \prime}\right) \\
=(R L m E)\left(x \otimes a^{\prime} \otimes a^{\prime \prime} \otimes a\right)=x \otimes a^{\prime} a^{\prime \prime} \otimes a
\end{gathered}
$$

and

$$
[\Phi E \circ(u R L E)](x \otimes a)=\Phi E(x \otimes a \otimes 1)=x \otimes 1 \otimes a=(R L u E)(x \otimes a)
$$

Let us check that Φ satisfies ([\|]). For every $x \in E, a, a^{\prime}, a^{\prime \prime} \in A$ we have:

$$
\begin{gathered}
{[\Phi E \circ(R L m E)]\left(x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime}\right)=\Phi E\left(x \otimes a a^{\prime} \otimes a^{\prime \prime}\right)=x \otimes a^{\prime \prime} \otimes a a^{\prime}} \\
{[(m R L E) \circ(R L \Phi E) \circ(\Phi R L E)]\left(x \otimes a \otimes a^{\prime} \otimes a^{\prime \prime}\right)} \\
=[(m R L E) \circ(R L \Phi E)]\left(x \otimes a \otimes a^{\prime \prime} \otimes a^{\prime}\right) \\
=(m R L E)\left(x \otimes a^{\prime \prime} \otimes a \otimes a^{\prime}\right)=x \otimes a^{\prime \prime} \otimes a a^{\prime}
\end{gathered}
$$

so that we get

$$
\Phi E \circ(R L m E)=(m R L E) \circ(R L \Phi E) \circ(\Phi R L E) .
$$

We compute

$$
[\Phi E \circ(R L u E)]=(\Phi E)(x \otimes 1 \otimes a)=x \otimes a \otimes 1=(u R L E)(x \otimes a) .
$$

Thus we obtain

$$
\Phi \circ(R L m)=(m R L) \circ(R L \Phi) \circ(\Phi R L) \quad \text { and } \quad \Phi \circ(R L u)=u R L
$$

Let us check that Φ satisfies (표) . We have

$$
\begin{aligned}
& R L \Phi \circ \Phi R L \circ R L \Phi=-\otimes_{B}\left[\left(\tau \otimes_{B} A\right) \circ\left(A \otimes_{B} \tau\right) \circ\left(\tau \otimes_{B} A\right)\right] \\
= & -\otimes_{B}\left[\left(A \otimes_{B} \tau\right) \circ\left(\tau \otimes_{B} A\right) \circ\left(A \otimes_{B} \tau\right)\right]=\Phi R L \circ R L \Phi \circ \Phi R L .
\end{aligned}
$$

Thus Φ is a BD-law on Mod-B.
Remark 6.6. Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^{2} \rightarrow A^{2}$ be a BD-law on \mathbb{A}. For every $X \in \mathcal{A}, \Phi X: A^{2} X \rightarrow A^{2} X$ is a quasi Φ-symmetry on ${ }_{\mathbb{A}} F(X)=(A X, m X)$. In fact we have

$$
\begin{gathered}
m X \circ \Phi X \circ u A X \stackrel{(\text { (IT) }}{=} m X \circ A u X=A X \\
A \Phi X \circ \Phi A X \circ A \Phi X \stackrel{(\mathbb{D D)}}{=} \Phi A X \circ A \Phi X \circ \Phi A X \\
\Phi X \circ A m X \stackrel{(\mathbb{I T I)})}{=} m A X \circ A \Phi X \circ \Phi A X
\end{gathered}
$$

Note that if $f: X \rightarrow X^{\prime}$ is a morphism in \mathcal{A}, then

$$
A f:((A X, m X), \Phi A X) \rightarrow\left(\left(A X^{\prime}, m X^{\prime}\right), \Phi A X^{\prime}\right)
$$

is a morphism in $\operatorname{QSymm}(\mathbb{A}, \Phi)$. Then it is easy to show that in this way we obtain a functor

$$
\begin{aligned}
J: \mathcal{A} & \rightarrow \quad \operatorname{QSymm}(\mathbb{A}, \Phi) \\
& X
\end{aligned} \mapsto^{\prime}((A X, m X), \Phi X) .
$$

Definition 6.7. Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A}. and let $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ the corresponding adjunction with unit u and counit λ. Let $\mathbb{A}^{*}=\left({ }_{\mathbb{A}} F_{\mathbb{A}} U,{ }_{\mathbb{A}} F u_{\mathbb{A}} U, \lambda\right)$ be the comonad on the category ${ }_{\mathbb{A}} \mathcal{A}$ associated to this adjunction (Proposition [.4). Let $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$. A descent datum on (X, μ) is a morphism

$$
\rho:(X, \mu) \rightarrow_{\mathbb{A}} F_{\mathbb{A}} U(X, \mu)=(A X, m X)
$$

in ${ }_{\mathbb{A}} \mathcal{A}$ such that $((X, \mu), \rho) \in \mathbb{A}^{*}(\mathbb{A} \mathcal{A})$ i.e. the following equalities are satisfied

$$
\begin{align*}
m X \circ A \rho & =\rho \circ \mu \text { i.e. } \rho \text { is a morphism in }{ }_{\mathbb{A}} \mathcal{A} \tag{18}\\
A \rho \circ \rho & =A u X \circ \rho \tag{19}
\end{align*}
$$

$$
\mu \circ \rho=\operatorname{Id}_{X}
$$

The set of all descent data on (X, μ) will be denoted by $\operatorname{Des}(X, \mu)$.
Remark 6.8. Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A}. For every $X \in \mathcal{A}, A u X:{ }_{\mathbb{A}} F X=$ $(A X, m X) \rightarrow(A A X, m A X)$ is a descent datum on $(A X, m X)$. In fact we have:

$$
\begin{gathered}
m A X \circ A A u X \stackrel{m}{=} A u X \circ m X \\
A A u X \circ A u X \stackrel{u}{=} A u A X \circ A u X \\
m X \circ A u X=A X
\end{gathered}
$$

This is the canonical comparison $K: \mathcal{A} \rightarrow \mathbb{A}^{*}\left({ }_{\mathbb{A}} \mathcal{A}\right)$ of the adjoint pair $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ sending $X \in \mathcal{A}$ to

$$
\left({ }_{\mathbb{A}} F X,{ }_{\mathbb{A}} F u X\right)=((A X, m X), A u X)
$$

Notations 6.9. Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^{2} \rightarrow A^{2}$ be a BD-law on \mathbb{A}. We denote by $V: \operatorname{QSymm}(\mathbb{A}, \Phi) \rightarrow_{\mathbb{A}} \mathcal{A}$ the forgetful functor and with $J: \mathcal{A} \rightarrow$ $\operatorname{QSymm}(\mathbb{A}, \Phi)$ the functor defined by (see Remark $\overline{6} \mathbf{6}$)

$$
J(X)=((A X, m X), \Phi X)
$$

Proposition 6.10. [$\mathbb{K} \mathbb{Z}$, Theorem 3.7]Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^{2} \rightarrow A^{2}$ be a $B D$-law on \mathbb{A}. Then

$$
\begin{gathered}
\left(\mathcal{A} \xrightarrow{\mathbb{A}^{F}}{ }_{\mathbb{A}} \mathcal{A}\right)=\left(\mathcal{A} \xrightarrow{J} \operatorname{QSymm}(\mathbb{A}, \Phi) \xrightarrow{V}_{\mathbb{A}} \mathcal{A}\right) \\
{ }_{\mathbb{A}} F=V \circ J, \quad{ }_{\mathbb{A}} F \circ_{\mathbb{A}} U=V \circ J \circ_{\mathbb{A}} U
\end{gathered}
$$

and $\left(V, J \circ_{\mathbb{A}} U\right)$ is an adjunction with counit $\lambda_{A}:{ }_{\mathbb{A}} F \circ_{\mathbb{A}} U=V \circ J \circ{ }_{\mathbb{A}} U \rightarrow{ }_{\mathbb{A}} \mathcal{A}$ and unit $\beta:$ $\operatorname{QSymm}(\mathbb{A}, \Phi) \rightarrow J \circ{ }_{\mathbb{A}} U \circ V$
defined by

$$
\beta((X, \mu), c)=c \circ u X \quad \text { for every }((X, \mu), c) \in \operatorname{QSymm}(\mathbb{A}, \Phi)
$$

Moreover the comonad corresponding to the adjunction $\left(V, J \circ_{\mathbb{A}} U\right)$ coincides with the comonad $\mathbb{A}^{*}=\left({ }_{\mathbb{A}} F_{\mathbb{A}} U,{ }_{\mathbb{A}} F u_{\mathbb{A}} U, \lambda\right)$ corresponding to the adjunction $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$.

Proof. Let $X \in \mathcal{A}$. Then

$$
(V \circ J)(X)=V((A X, m X), \Phi X)=(A X, m X)={ }_{\mathbb{A}} F(X)
$$

Thus ${ }_{\mathbb{A}} F \circ{ }_{\mathbb{A}} U=V \circ J \circ{ }_{\mathbb{A}} U$. Let now $((X, \mu), c) \in \operatorname{QSymm}(\mathbb{A}, \Phi)$ and let us check that $\beta((X, \mu), c)=c \circ u X$ is a morphism

$$
\beta((X, \mu), c):((X, \mu), c) \rightarrow\left(J \circ_{\mathbb{A}} U \circ V\right)((X, \mu), c)=((A X, m X), \Phi X)
$$

in $\operatorname{QSymm}(\mathbb{A}, \Phi)$. We compute

$$
c \circ u X \circ \mu \stackrel{u}{=} c \circ A \mu \circ u A X \stackrel{(\boxed{\square})}{=} m X \circ A c \circ \Phi X \circ u A X \stackrel{(\boxed{\boxed{O N})}}{=} m X \circ A c \circ A u X
$$

and

$$
\begin{gathered}
A c \circ A u X \circ c \stackrel{(\text { (IJI) }}{=} A c \circ \Phi X \circ u A X \circ c \stackrel{u}{=} A c \circ \Phi X \circ A c \circ u A X \\
\stackrel{(\text { (I0) })}{=} \Phi X \circ A c \circ \Phi X \circ u A X \stackrel{(\text { ([J]) }}{=} \Phi X \circ A c \circ A u X .
\end{gathered}
$$

Let us check that in this way we get a functorial morphism $\beta: \operatorname{QSymm}(\mathbb{A}, \Phi) \rightarrow J \circ{ }_{\mathbb{A}} U \circ V$. Let

$$
f:((X, \mu), c) \rightarrow\left(\left(X^{\prime}, \mu^{\prime}\right), c^{\prime}\right)
$$

be a morphism in $\operatorname{QSymm}(\mathbb{A}, \Phi)$. We have

$$
\begin{aligned}
&\left(J \circ{ }_{\mathbb{A}} U \circ V\right)(f) \beta((X, \mu), c)=A f \circ c \circ u X \\
&=c^{\prime} \circ A f \circ u X \stackrel{u}{=} c^{\prime} \circ u X^{\prime} \circ f=\beta\left(\left(X^{\prime}, \mu^{\prime}\right), c^{\prime}\right) \circ f .
\end{aligned}
$$

Let us know show $\left(V, J \circ_{\mathbb{A}} U\right)$ is an adjunction with counit $\lambda=\lambda_{A}$ and unit β.

For every $((X, \mu), c) \in \operatorname{QSymm}(\mathbb{A}, \Phi)$ ，we compute

$$
\begin{gathered}
{ }_{\mathbb{A}} U[\lambda V(((X, \mu), c)) \circ V \beta(((X, \mu), c))]={ }_{\mathbb{A}} U \lambda((X, \mu)) \circ c \circ u X \\
=\mu \circ c \circ u X \stackrel{(\text { (丁口) })}{=} X={ }_{\mathbb{A}} U[V(((X, \mu), c))]
\end{gathered}
$$

and for every $(X, \mu) \in_{\mathbb{A}} \mathcal{A}$ ，we compute

$$
\begin{aligned}
& \left({ }_{\mathbb{A}} U \circ V\right)\left(\left[\left(J \circ_{\mathbb{A}} U\right) \lambda(X, \mu)\right] \circ\left[\beta\left(J \circ{ }_{\mathbb{A}} U\right)(X, \mu)\right]\right) \\
= & J \mu \circ\left(V \circ \circ_{\mathbb{A}} U\right)[\beta((A X, m X), \Phi X)]=A \mu \circ \Phi X \circ u A X \\
& \stackrel{([\boxed{[3)})}{=} A \mu \circ A u X \stackrel{\text { 鳥 }}{=} A X=\left({ }_{\mathbb{A}} U \circ V\right)\left(J \circ{ }_{\mathbb{A}} U\right)(X, \mu) .
\end{aligned}
$$

Since both the functors ${ }_{\mathbb{A}} U$ and $V \circ_{\mathbb{A}} U$ are faithful，we conclude．
In view of the foregoing，to prove the last statement it remains to prove that

$$
V \beta J_{\mathbb{A}} U={ }_{\mathbb{A}} F u_{\mathbb{A}} U .
$$

Let $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$ ．We compute

$$
\begin{aligned}
\left(V \beta J_{\mathbb{A}} U\right)(X, \mu) & =V \beta J(X)=V \beta(A X, m X, \Phi X) \\
& =\Phi X \circ u A X \stackrel{(\mathbb{(\mathbb { 3 })})}{=} A u X=\left({ }_{\mathbb{A}} F u_{\mathbb{A}} U\right)(X, \mu) .
\end{aligned}
$$

Proposition 6．11．Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^{2} \rightarrow A^{2}$ be a $B D$－law on \mathbb{A} ．For every $(X, \mu) \in{ }_{\mathbb{A}} \mathcal{A}$ the assignment

$$
c \mapsto c \circ u X
$$

defines a bijection

$$
\Gamma(X, \mu): \Phi \text { - } \operatorname{QSymm}(X, \mu) \rightarrow \operatorname{Des}(X, \mu)
$$

whose inverse $\Gamma^{\prime}(X, \mu)$ is defined by setting

$$
\Gamma^{\prime}(X, \mu)(\rho)=A \mu \circ \Phi X \circ A \rho
$$

Moreover if $\Phi X \circ \Phi X=A^{2} X$ ，then $\Phi-\operatorname{QSymm}(X, \mu)=\Phi-\operatorname{Symm}(X, \mu)$ ．
Proof．Let $c \in \Phi-\operatorname{QSymm}(X, \mu)$ and let us check that $c \circ u X \in \operatorname{Des}(X, \mu)$ ．Let us check（［区）．

$$
\begin{aligned}
m X \circ A(c \circ u X)= & m X \circ A c \circ A u X \stackrel{(\mathbb{\square \Omega})}{=} m X \circ A c \circ \Phi X \circ u A X \stackrel{(\boxed{\square})}{=} c \circ A \mu \circ u A X \\
& \stackrel{u}{=}(c \circ u X) \circ \mu .
\end{aligned}
$$

Let us check（［⿴囗

$$
\begin{gathered}
A u X \circ(c \circ u X) \stackrel{(\text { (I3) }}{=} \Phi X \circ(u A X \circ c) \circ u X \stackrel{u}{=} \Phi X \circ A c \circ u A X \circ u X \\
\stackrel{(\text { (I44) }}{=}(\Phi X \circ A c \circ \Phi X) \circ A u X \circ u X \stackrel{(\text { (IG) }}{=} A c \circ \Phi X \circ(A c \circ A u X) \circ u X \\
\stackrel{u}{=} A c \circ \Phi X \circ u A X \circ c \circ u X \stackrel{(\text { (IT3) }}{=} A c \circ A u X \circ c \circ u X=A(c \circ u X) \circ c \circ u X .
\end{gathered}
$$

Let us check（ （ᄌI）．

$$
\mu \circ(c \circ u X) \stackrel{(\text { (图) }}{=} X
$$

Let $\rho \in \operatorname{Des}(X, \mu)$ ．Let us check that $A \mu \circ \Phi X \circ A \rho \in \Phi-\operatorname{QSymm}(X, \mu)$ ．Let us check（［5］）

$$
\begin{aligned}
& \mu \circ A \mu \circ \Phi X \circ A \rho \circ u X \stackrel{(\text { (■) }}{=} \mu \circ m X \circ \Phi X \circ(A \rho \circ u X) \stackrel{u}{=} \mu \circ m X \circ(\Phi X \circ u A X) \circ \rho \\
& \stackrel{(\text { (0JT) }}{=} \mu \circ m X \circ(A u X \circ \rho) \stackrel{(\text { (⿴囗⿰丨丨⿱十⿴⿱冂一三八土 })}{=} \mu \circ(m X \circ A \rho) \circ \rho \stackrel{(\text { (IX) })}{=} \mu \circ \rho \circ \mu \circ \rho=X .
\end{aligned}
$$

Let us check（106）

$$
\begin{gathered}
A^{2} \mu \circ A \Phi X \circ A^{2} \rho \circ\left(\Phi X \circ A^{2} \mu\right) \circ A \Phi X \circ A^{2} \rho \\
\stackrel{\Phi}{=} A^{2} \mu \circ A \Phi X \circ\left(A^{2} \rho \circ A^{2} \mu\right) \circ \Phi A X \circ A \Phi X \circ A^{2} \rho
\end{gathered}
$$

$$
\begin{gathered}
\stackrel{(\text { (I8) }}{=} A^{2} \mu \circ A \Phi X \circ\left(A^{2} m X \circ A^{3} \rho \circ \Phi A X\right) \circ A \Phi X \circ A^{2} \rho \\
\stackrel{\Phi}{=} A^{2} \mu \circ A \Phi X \circ \Phi A X \circ A^{2} m X \circ\left(A^{3} \rho \circ A \Phi X\right) \circ A^{2} \rho \\
\stackrel{\Phi}{=} A^{2} \mu \circ A \Phi X \circ \Phi A X \circ A^{2} m X \circ A \Phi A X \circ\left(A^{3} \rho \circ A^{2} \rho\right) \\
\stackrel{(\mathbb{D Q)}}{=} A^{2} \mu \circ A \Phi X \circ \Phi A X \circ A^{2} m X \circ\left(A \Phi A X \circ A^{3} u X\right) \circ A^{2} \rho \\
\stackrel{\Phi}{=} A^{2} \mu \circ A \Phi X \circ \Phi A X \circ\left(A^{2} m X \circ A^{3} u X\right) \circ A \Phi X \circ A^{2} \rho \\
\quad=A^{2} \mu \circ(A \Phi X \circ \Phi A X \circ A \Phi X) \circ A^{2} \rho \\
\stackrel{(\mathbb{D D)}}{=}\left(A^{2} \mu \circ \Phi A X\right) \circ A \Phi X \circ\left(\Phi A X \circ A^{2} \rho\right) \stackrel{\Phi}{=} \Phi X \circ A^{2} \mu \circ A \Phi X \circ A^{2} \rho \circ \Phi X
\end{gathered}
$$

Let us check（ㄸ）

$$
\begin{aligned}
& m X \circ A(A \mu \circ \Phi X \circ A \rho) \circ \Phi X \\
= & \left(m X \circ A^{2} \mu\right) \circ A \Phi X \circ A^{2} \rho \circ \Phi X \\
& \stackrel{m}{=} A \mu \circ m A x \circ A \Phi X \circ\left(A^{2} \rho \circ \Phi X\right) \\
& \stackrel{\Phi}{=} A \mu \circ(m A X \circ A \Phi X \circ \Phi A X) \circ A^{2} \rho \\
& \stackrel{(I \boxed{14)}}{=} A \mu \circ \Phi X \circ\left(A m X \circ A^{2} \rho\right) \\
& \stackrel{(\boxed{\boxed{D P})}}{=} A \mu \circ \Phi X \circ A \rho \circ A \mu \\
= & (A \mu \circ \Phi X \circ A \rho) \circ A \mu .
\end{aligned}
$$

Let $c \in \Phi-\operatorname{QSymm}(X, \mu)$ ．Since，by Proposition $\quad \beta((X, \mu), c)=c \circ u X$ is a morphism in $\operatorname{QSymm}(\mathbb{A}, \Phi)$ ，we have that

$$
\begin{equation*}
A c \circ A u X \circ c=\Phi X \circ A c \circ A u X \tag{21}
\end{equation*}
$$

We deduce that

$$
\left(\Gamma^{\prime}(X, \mu) \circ \Gamma(X, \mu)\right)(c)=A \mu \circ(\Phi X \circ A c \circ A u X) \stackrel{(\text { (20) })}{=}(A \mu \circ A c \circ A u X) \circ c \stackrel{(\text { ([J) })}{=} c
$$

Let $\rho \in \operatorname{Des}(X, \mu)$ ．

$$
\begin{aligned}
\left(\Gamma(X, \mu) \circ \Gamma^{\prime}(X, \mu)\right)(\rho) & =A \mu \circ \Phi X \circ(A \rho \circ u X) \stackrel{u}{=} A \mu \circ \Phi X \circ u A X \circ \rho \\
& \stackrel{([\boxed{3})}{=} A \mu \circ A u X \circ \rho \stackrel{(\text { (a) })}{=} \rho
\end{aligned}
$$

Assume now that $\Phi X \circ \Phi X=A^{2} X$ and let $\rho \in \operatorname{Des}(X, \mu)$ ．We compute

$$
\begin{aligned}
& A \mu \circ \Phi X \circ(A \rho \circ A \mu) \circ \Phi X \circ A \rho \stackrel{(\mathbb{区)})}{=} A \mu \circ \Phi X \circ A m X \circ\left(A^{2} \rho \circ \Phi X\right) \circ A \rho \\
& \stackrel{\Phi}{=} A \mu \circ \Phi X \circ A m X \circ \Phi A X \circ\left(A^{2} \rho \circ A \rho\right) \\
& \stackrel{(\mathbb{\text { (⿴囗 }})}{=} A \mu \circ \Phi X \circ A m X \circ\left(\Phi A X \circ A^{2} u X\right) \circ A \rho \\
& \stackrel{\Phi}{=} A \mu \circ \Phi X \circ A m X \circ A^{2} u X \circ \Phi X \circ A \rho \\
&= A \mu \circ \Phi X \circ \Phi X \circ A \rho=A \mu \circ A \rho \stackrel{\text { (四) }}{=} A X .
\end{aligned}
$$

Since any $c \in \Phi-\operatorname{QSymm}(X, \mu)$ is of the form $\Gamma^{\prime}(X, \mu)(\rho)$ for $\rho=\Gamma(X, \mu)(c)$ ，we conclude．
We now give a new and self－contained proof of the following Theorem．
THEOREM 6．12．［区్V］，Theorem 3．7］Let $\mathbb{A}=(A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^{2} \rightarrow A^{2}$ be a BD－law on \mathbb{A} ．Let $K^{c o}$ be the cocomparison functor $K^{c o}$ of the adjunction $\left(V, J_{\mathbb{A}} U\right)$

$$
K^{c o}: \operatorname{QSymm}(\mathbb{A}, \Phi) \rightarrow^{V J_{\mathbb{A}} U}\left({ }_{\mathbb{A}} \mathcal{A}\right)={ }^{\wedge} F_{\mathbb{A}} U\left({ }_{\mathbb{A}} \mathcal{A}\right)==^{\mathbb{A}^{*}}\left({ }_{\mathbb{A}} \mathcal{A}\right)
$$

defined by

$$
K^{c o}(((X, \mu), c))=(V(((X, \mu), c)), V \beta((X, \mu), c))=((X, \mu), c \circ u X)
$$

is an isomorphism of categories whose inverse is the functor Λ defined by setting

$$
\Lambda(((X, \mu), \rho))=((X, \mu), A \mu \circ \Phi X \circ A \rho) .
$$

In particular the functor V is comonadic.
Proof. In view of Proposition [.]. we know that $((X, \mu), A \mu \circ \Phi X \circ A \rho) \in \operatorname{QSymm}(\mathbb{A}, \Phi)$ for every $((X, \mu), \rho) \in^{\mathbb{A}^{*}}(\mathbb{A} \mathcal{A})$. Let

$$
f:((X, \mu), \rho) \rightarrow\left(\left(X^{\prime}, \mu^{\prime}\right), \rho^{\prime}\right)
$$

be a morphism in $\mathbb{A}^{*}\left({ }_{\mathbb{A}} \mathcal{A}\right)$. We have

$$
A f \circ(A \mu \circ \Phi X \circ A \rho)=A \mu^{\prime} \circ A^{2} f \circ \Phi X \circ A \rho \stackrel{\Phi}{=} A \mu^{\prime} \circ \Phi X^{\prime} \circ A^{2} f \circ A \rho=\left(A \mu^{\prime} \circ \Phi X^{\prime} \circ A \rho^{\prime}\right) \circ A f
$$

so that

$$
f:((X, \mu), A \mu \circ \Phi X \circ A \rho) \rightarrow\left(\left(X^{\prime}, \mu^{\prime}\right), A \mu^{\prime} \circ \Phi X^{\prime} \circ A \rho^{\prime}\right)
$$

is a morphism in $\operatorname{QSymm}(\mathbb{A}, \Phi)$. We deduce that Λ is a functor. In view of Proposition \mathbb{C}, we get that $K^{c o}$ is an isomorphism of categories with inverse Λ.
Example 6.13. Let $f: B \rightarrow A$ be a morphism of rings. Let $L:=(-) \otimes_{B} A=f^{*}: M o d-B \rightarrow$ ModA be the extension of scalars functor and $R:=\operatorname{Hom}_{A}\left({ }_{B} A,-\right)=f_{*}: \operatorname{Mod}-A \rightarrow \operatorname{Mod}-B$ be the restriction of scalars functor . Let $\mathbb{A}=(R L, m=R \epsilon L, u=\eta)$ be the associated monad on Mod-B. Recall from Example (5.5) that for any $E \in M o d-B$ we have

$$
\begin{gathered}
R L E=E \otimes_{B} A \text { regarded as a right } B \text {-module } \\
m E: E \otimes_{B} A \otimes_{B} A \rightarrow E \otimes_{B} A \\
x \otimes a \otimes a^{\prime} \mapsto x \otimes a a^{\prime} \\
u E: E_{B} \rightarrow E \otimes_{B} A \\
x \mapsto x \otimes 1
\end{gathered}
$$

Let $(E, \mu) \in_{\mathbb{A}}(\operatorname{Mod}-B)$. Then $\mu: R L E=E \otimes_{B} A \rightarrow E$ is a morphism in Mod- B satisfying

$$
\mu \circ\left(\mu \otimes_{B} A\right)=\mu \circ R L \mu=\mu \circ m E \text { and } E=\mu \circ u E
$$

i.e.

$$
(x a) a^{\prime}=\left[\mu \circ\left(\mu \otimes_{B} A\right)\right]\left(x \otimes a \otimes a^{\prime}\right)=(\mu \circ m E)\left(x \otimes a \otimes a^{\prime}\right)=x\left(a a^{\prime}\right)
$$

where, for any $x \in E$ and $a \in A$ we write $x a=\mu(x \otimes a)$ and

$$
x=x 1
$$

Let

$$
t: E \times A \rightarrow E \otimes_{B} A
$$

the canonical projection. Then $(E, \mu \circ t) \in \operatorname{Mod}-A$. Let $f:(E, \mu) \rightarrow\left(E^{\prime}, \mu^{\prime}\right)$ be a morphism in $\mathbb{A}^{(}(M o d-B)$. This means that $f: E \rightarrow E^{\prime}$ is a morphism in $(M o d-B)$ and $f \circ \mu=\mu^{\prime} \circ\left(f \otimes_{B} A\right)$ i.e.

$$
f(x a)=f(x) a
$$

i.e. $f:(E, \mu \circ t) \rightarrow\left(E^{\prime}, \mu^{\prime} \circ t\right)$ is a morphism in $\operatorname{Mod}-A$.

Conversely let $(M, \nu) \in M o d-A$. Since ν is B-balanced, there is a unique morphism $\mu: M \otimes_{B} A \rightarrow$ M such that $\nu=\mu \circ t$. Hence the assignment $(E, \mu) \mapsto(E, \mu \circ t)$ yields a category isomorphism

$$
H: \mathbb{A}(M o d-B) \rightarrow M o d-A .
$$

Let $\left({ }_{\mathbb{A}} F,{ }_{\mathbb{A}} U\right)$ be the adjunction corresponding to our monad \mathbb{A}. Then it is easy to check that

$$
\operatorname{Mod}-A \xrightarrow{H^{-1}} \mathbb{A}(\operatorname{Mod}-B) \xrightarrow{\mathbb{A} U} \operatorname{Mod}-B
$$

is just the restriction of scalars functor $R=\operatorname{Hom}_{A}(A,-)=f_{*}: \operatorname{Mod}-A \rightarrow \operatorname{Mod}-B$ while

$$
\operatorname{Mod}-B \xrightarrow{\wedge} \underset{\mathbb{A}}{ }(M o d-B) \xrightarrow{H} \operatorname{Mod}-A
$$

coincides with the extension of scalars functor $L:=(-) \otimes_{B} A=f^{*}: \operatorname{Mod}-B \rightarrow \operatorname{Mod}-A$. Therefore the category isomorphism H induces a category isomorphism

$$
{ }_{\mathbb{A}} F_{\mathbb{A}} U\left({ }_{\mathbb{A}}(\operatorname{Mod}-B)\right) \rightarrow{ }^{\mathbb{C}}(\operatorname{Mod}-A)
$$

where \mathbb{C} is the canonical comonad of the adjunction (L, R) i.e. $\mathbb{C}=(L R, \Delta=L \eta R=L u R, \varepsilon)$. For any $M \in \operatorname{Mod}-A$ we have

$$
\begin{gathered}
L R M=M \otimes_{B} A \text { regarded as a right } A \text {-module } \\
\qquad M: M \otimes_{B} A \rightarrow M \otimes_{B} A \otimes_{B} A \\
x \otimes a \mapsto x \otimes 1 \otimes a \\
\varepsilon M: L R M=M \otimes_{B} A \rightarrow M \\
x \otimes a \mapsto x a
\end{gathered}
$$

Let $(M, \rho) \in{ }^{\mathbb{C}}(\operatorname{Mod}-A)$ and for every $x \in M$ we write

$$
\rho(x)=\sum x_{i} \otimes \alpha_{i} \text { where } x_{i} \in M \text { and } \alpha_{i} \in A \text { for every } i
$$

(『) means that

$$
\begin{equation*}
\sum x_{i} \otimes \alpha_{i} a=\rho(x a) \quad \text { for every } x \in M \text { and } a \in A \tag{22}
\end{equation*}
$$

(표) means that

$$
\begin{equation*}
\sum \rho\left(x_{i}\right) \otimes \alpha_{i}=\sum x_{i} \otimes 1 \otimes \alpha_{i} \quad \text { for every } x \in M \tag{23}
\end{equation*}
$$

(지) means that

$$
\begin{equation*}
\sum x_{i} \alpha_{i}=x \quad \text { for every } x \in M \tag{24}
\end{equation*}
$$

Now let us consider the cocomparison functor of the adjunction (L, R)

$$
K^{c o}: \operatorname{Mod}-B \rightarrow{ }^{\mathbb{C}}(\operatorname{Mod}-A)
$$

For every $E \in B$-Mod we have

$$
K^{c o}(E):=(L(E), L \eta(E))
$$

where $\rho_{L(E)}=L \eta(E): E \otimes_{B} A \rightarrow E \otimes_{B} A \otimes_{B} A$ and

$$
\operatorname{L\eta }(E)(x \otimes a)=x \otimes 1 \otimes a .
$$

Let $e: R M \rightarrow R L R M=M \otimes_{B} A$ be the map defined by $e(x)=x \otimes 1$. Note that e is a map in $\operatorname{Mod}-B$. Let $E=\operatorname{Ker}(\rho-e)$. We have the exact sequence in $\operatorname{Mod}-B$

$$
0 \rightarrow E \xrightarrow{i} R M \xrightarrow{\rho-e} R L R M
$$

and

$$
M^{c o v}=E=\{x \in M \mid \rho(x)=x \otimes 1\}
$$

It is easy to show that the assignment $M \mapsto M^{c o v}$ defines a functor

$$
()^{\operatorname{cov}}:{ }^{\mathbb{C}}(M o d-A) \rightarrow M o d-B
$$

Theorem 6.14. [D], Teorema page 45] Using the assumptions and notations of Example [.].3, assume also that A is a faithfully flat left B-module. Then the cocomparison functor $K^{c o}: M o d-$ $B \rightarrow{ }^{\mathbb{C}}(\operatorname{Mod}-A)$ is an equivalence of categories with inverse functor

$$
()^{\operatorname{cov}}:{ }^{\mathbb{C}}(\operatorname{Mod}-A) \rightarrow M o d-B
$$

Proof. Let $(M, \rho) \in{ }^{\mathbb{C}}(\operatorname{Mod}-A)$. Since A is a flat left B-module we get the exact sequence

$$
0 \rightarrow M^{c o v} \otimes_{B} A \rightarrow R M \otimes_{B} A \xrightarrow{(\rho-e) \otimes_{B} A} R L R M \otimes_{B} A .
$$

Let us show that $\operatorname{Im}(\rho) \subseteq M^{c o v} \otimes_{B} A$ i.e. that $\left[(\rho-e) \otimes_{B} A\right](\operatorname{Im}(\rho))=0$. Let $x \in M$ and let

$$
\rho(x)=\sum x_{i} \otimes \alpha_{i} \text { where } x_{i} \in M \text { and } \alpha_{i} \in A \text { for every } i .
$$

We compute

$$
\begin{gathered}
{\left[(\rho-e) \otimes_{B} A\right](\rho)(x)=\left[(\rho-e) \otimes_{B} A\right]\left(\sum x_{i} \otimes \alpha_{i}\right)} \\
=\sum \rho\left(x_{i}\right) \otimes \alpha_{i}-\sum x_{i} \otimes 1 \otimes \alpha_{i} \stackrel{(\text { (VZ3) }}{=} 0 .
\end{gathered}
$$

Hence we can consider the corestriction $\bar{\rho}: R M \rightarrow R L M^{c o v}=M^{c o v} \otimes_{B} A$ of ρ to $M^{\text {cov }} \otimes_{B} A$ so that $\rho=(i \otimes A) \circ \bar{\rho}$. Clearly $\bar{\rho}$ is a morphism in Mod- A. Let us show that it is a morphism in ${ }^{\mathbb{C}}(M o d-A)$ from (M, ρ) to $K^{c o}\left(M^{c o v}\right)$. For every $x \in M$, let

$$
\rho(x)=\sum x_{i} \otimes \alpha_{i} \text { where } x_{i} \in M \text { and } \alpha_{i} \in A \text { for every } i .
$$

We compute

$$
\begin{aligned}
{\left[\left(i \otimes_{B} A \otimes_{B} A\right) \circ\left(\bar{\rho} \otimes_{B} A\right) \circ \rho\right](x) } & =\left[\left(\rho \otimes_{B} A\right) \circ \rho\right](x)=\sum \rho\left(x_{i}\right) \otimes \alpha_{i} \\
\stackrel{(\overline{\mathrm{DBJI})}=}{=} \sum x_{i} \otimes 1 \otimes \alpha_{i} & =\left((i \otimes A \otimes A) \circ \rho_{L\left(M^{c o v}\right)} \circ \bar{\rho}\right)(x)
\end{aligned}
$$

Since ${ }_{B} A$ is flat, $i \otimes_{B} A \otimes_{B} A$ is a monomorphism so that we deduce that

$$
\left(\bar{\rho} \otimes_{B} A\right) \circ \rho=\rho_{L\left(M^{c o v}\right)} \circ \bar{\rho}
$$

and hence $\bar{\rho}$ is a morphism in ${ }^{\mathbb{C}}(\operatorname{Mod}-A)$.
Let $h: M^{c o v} \otimes_{B} A \rightarrow M$ be defined by

$$
h(x \otimes a)=x a .
$$

For every $x \in M$, let

$$
\rho(x)=\sum x_{i} \otimes \alpha_{i} \text { where } x_{i} \in M \text { and } \alpha_{i} \in A \text { for every } i
$$

We compute

$$
(h \circ \bar{\rho})(x)=\sum x_{i} \alpha_{i} \stackrel{(\text { (IU4) })}{=} x
$$

and for every $x \in M^{c o v}$ and $a \in A$

$$
\begin{aligned}
& (\bar{\rho} \circ h)(x \otimes a)=\rho(x a) \stackrel{(\mathbb{D Z})}{=} \sum x_{i} \otimes \alpha_{i} a \\
= & \left(\sum x_{i} \otimes \alpha_{i}\right) a \stackrel{x \in \underline{M}^{c o v}}{=}(x \otimes 1) a=x \otimes a
\end{aligned}
$$

This proves that $\bar{\rho}$ is an isomorphism in ${ }^{\mathbb{C}}(\operatorname{Mod}-A)$ with inverse h.
Let now $E \in M o d-B$ and let $x \in E$. Then

$$
\rho_{L(E)}(x \otimes 1)=x \otimes 1 \otimes 1
$$

so that $x \otimes 1 \in\left(E \otimes_{B} A\right)^{c o v}$ and hence we can consider the morphism of right B-modules $v: E \rightarrow$ $\left(E \otimes_{B} A\right)^{c o v}$ defined by $v(x)=x \otimes 1$. We want to prove that v is an isomorphism in Mod-B. Since A is a faithfully flat left B-module, in view of [BOU, Proposition 2 page 47], this is equivalent to show that $v \otimes_{B} A$ is bijective. For every $x \in E$ and $a \in A$ we have

$$
\left(v \otimes_{B} A\right)(x \otimes a)=x \otimes 1 \otimes a=\overline{\rho_{L(E)}}(x \otimes a)
$$

so that we deduce that $v \otimes_{B} A=\overline{\rho_{L(E)}}$. By the foregoing we know that $\overline{\rho_{L(E)}}$ is an isomorphism in Mod-A.

Notation 6.15. Let $R: \mathcal{A} \rightarrow \mathcal{B}$. We will denote by $\operatorname{Im} R$ the full subcategory of \mathcal{B} consisting of those objects $B \in \mathcal{B}$ such that there is an object $A \in \mathcal{A}$ and an isomorphism $B \cong R A$ in \mathcal{B}.

Problem 1. (Descent problem for modules) Let $M \in A$ - Mod. Is there any $E \in B$ - Mod such that $M \cong L(E)=E \otimes_{B} A$ in $A-M o d$? Such an E will be called a form of M over B.

Theorem 6.16. Using the assumptions and notations of Example 6.T.3, let $f: B \rightarrow A$ be a morphism of rings and assume that A is a faithfully flat left B-module. Then

$$
\operatorname{Obj}(\operatorname{Im}(L))=\operatorname{Obj}\left(U^{\mathbb{C}}\left[{ }^{\mathbb{C}}(\operatorname{Mod}-A)\right]\right)
$$

Proof. In view of Theorem C .4 , $K^{c o}: \operatorname{Mod}-B \rightarrow{ }^{\mathbb{C}}(\operatorname{Mod}-A)$ is an equivalence of categories so that $\operatorname{Obj}\left(\operatorname{Im}\left(K^{c o}\right)\right)={ }^{\mathbb{C}}(\operatorname{Mod}-A)$. Therefore

$$
\operatorname{Obj}(\operatorname{Im}(L))=\operatorname{Obj}\left(\operatorname{Im}\left(U^{\mathbb{C}} \circ K^{c o}\right)\right)=\operatorname{Obj}\left(U^{\mathbb{C}}\left[{ }^{\mathbb{C}}(\operatorname{Mod}-A)\right]\right)
$$

Assume now A and B commutative. All modules over a commutative ring S are considered as symmetrical S - S-bimodules.

Let M be an A-module and let $g: A \otimes_{B} M \rightarrow M \otimes_{B} A$ be a morphism of A - A-bimodules. Let $g_{1}=A \otimes_{B} g, g_{3}=g \otimes_{B} A$ and define $g_{2}: A \otimes_{B} A \otimes_{B} M \rightarrow M \otimes_{B} A \otimes_{B} A$ and $\bar{g}: M \rightarrow M$ by setting

$$
\begin{gathered}
g_{2}\left(a \otimes a^{\prime} \otimes x\right)=\sum x_{i} \otimes a^{\prime} \otimes \alpha_{i} \quad \text { where } g(a \otimes x)=\sum x_{i} \otimes \alpha_{i} \\
\bar{g}(x)=\sum x_{i} \alpha_{i} \quad \text { where } g(1 \otimes x)=\sum x_{i} \otimes \alpha_{i} \\
\left(g_{3} \circ g_{1}\right)\left(a \otimes a^{\prime} \otimes x\right)=g_{3}\left(a \otimes g\left(a^{\prime} \otimes x\right)\right)=g_{3}\left(a \otimes a^{\prime} g(1 \otimes x)\right) \\
=g_{3}\left(\sum a \otimes a^{\prime} x_{i} \otimes \alpha_{i}\right)=\sum a g\left(1 \otimes a^{\prime} x_{i}\right) \otimes \alpha_{i} \\
\text { where } g(1 \otimes x)=\sum x_{i} \otimes \alpha_{i} \\
g_{2}\left(a \otimes a^{\prime} \otimes x\right)=\sum a x_{i} \otimes a^{\prime} \otimes \alpha_{i}
\end{gathered}
$$

where $g(a \otimes x)=a g(1 \otimes x)=\sum a x_{i} \otimes \alpha_{i}$ where $g(1 \otimes x)=\sum x_{i} \otimes \alpha_{i}$
Hence $g_{2}=g_{3} \circ g_{1}$ means

$$
\begin{equation*}
\sum a g\left(1 \otimes a^{\prime} x_{i}\right) \otimes \alpha_{i}=\sum a x_{i} \otimes a^{\prime} \otimes \alpha_{i} \text { where } g(1 \otimes x)=\sum x_{i} \otimes \alpha_{i} \tag{25}
\end{equation*}
$$

while $\bar{g}=\operatorname{Id}_{M}$ means

$$
\begin{equation*}
\sum x_{i} \alpha_{i}=x \quad \text { where } g(1 \otimes x)=\sum x_{i} \otimes \alpha_{i} \tag{26}
\end{equation*}
$$

Let

$$
\Gamma=\left\{\begin{array}{c}
g: A \otimes_{B} M \rightarrow M \otimes_{B} A \\
\mid g \text { is a morphism of } A \text { - } A \text {-bimodules } g_{2}=g_{3} \circ g_{1} \text { and } \bar{g}=\operatorname{Id}_{M}
\end{array}\right\}
$$

For every $g \in \Gamma$ consider the map

$$
\rho_{g}: M \rightarrow M \otimes_{B} A
$$

defined by

$$
\rho_{g}(x)=g(1 \otimes x) .
$$

For every $\rho \in \operatorname{Des}(X, \mu)$, where $\mu: A \otimes_{B} M \rightarrow M$ denotes the map induced by the multiplication by A on M, consider the map

$$
g_{\rho}: A \otimes_{B} M \rightarrow M \otimes_{B} A
$$

defined by

$$
g_{\rho}(a \otimes x)=a \rho(x)=\sum a x_{i} \otimes \alpha_{i} \text { where } \rho(x)=\sum x_{i} \otimes \alpha_{i}
$$

Theorem 6.17. The assignment $g \mapsto \rho_{g}$ defines a bijection $\Lambda: \Gamma \rightarrow \operatorname{Des}(M, \mu)$ whose inverse is defined by the assignment $\rho \mapsto g_{\rho}$.

Proof. Let us check that $\rho_{g} \in \operatorname{Des}(M, \mu)$. Let $x \in M$. We write

$$
\rho_{g}(x)=g(1 \otimes x)=\sum x_{i} \otimes \alpha_{i} .
$$

For every $a \in A$, we compute

$$
\begin{gathered}
\rho_{g}(x a)=g(1 \otimes x a)=g((1 \otimes x) a)=g(1 \otimes x) a=\rho_{g}(x) a \\
=\left(\sum x_{i} \otimes \alpha_{i}\right) a=\left(\sum x_{i} \otimes \alpha_{i} a\right)
\end{gathered}
$$

so that ρ_{g} satisfies (ए2).
We compute

$$
\sum \rho_{g}\left(x_{i}\right) \otimes \alpha_{i}=\sum g\left(1 \otimes x_{i}\right) \otimes \alpha_{i} \stackrel{(\text { (2n) })}{=} \sum x_{i} \otimes 1 \otimes \alpha_{i}
$$

so that ρ_{g} fulfils ([2.3). Moreover, in view of ([ᄌ6) , for every $x \in X$ we have

$$
\sum x_{i} a_{i}=x \quad \text { where } \rho_{g}(x)=g(1 \otimes x)=\sum x_{i} \otimes a_{i}
$$

so that ρ_{g} fulfils (24).
Conversely let $\rho \in \operatorname{Des}(M, \mu)$. Let $x \in M$. We write

$$
\rho(x)=\sum x_{i} \otimes \alpha_{i}
$$

Then, for every $a \in A$ we have

$$
g_{\rho}(a \otimes x)=a \rho(x)=\sum a x_{i} \otimes a_{i}
$$

For every $a, a^{\prime} \in A$, we compute

$$
\begin{gathered}
\sum a g_{\rho}\left(1 \otimes a^{\prime} x_{i}\right) \otimes \alpha_{i}=\sum a g_{\rho}\left(1 \otimes a^{\prime} x_{i}\right) \otimes \alpha_{i}=\sum a g_{\rho}\left(1 \otimes x_{i} a^{\prime}\right) \otimes \alpha_{i} \\
=\sum a \rho\left(x_{i} a^{\prime}\right) \otimes \alpha_{i}=\sum a \rho\left(x_{i}\right) a^{\prime} \otimes \alpha_{i} \stackrel{(\text { (LZ3) })}{=} \sum a x_{i} \otimes a^{\prime} \otimes \alpha_{i}
\end{gathered}
$$

so that g_{ρ} fulfils ([20]). Moreover in view of ([2]) we have that

$$
\sum x_{i} \alpha_{i}=x
$$

so that g_{ρ} fulfils ([26]).
Let now $g \in \Gamma$ and, for every $a \in A$ and $x \in M$ let us compute

$$
g_{\rho_{g}}(a \otimes x)=a \rho_{g}(1 \otimes x)=a g(1 \otimes x)=g(a \otimes x)
$$

Therefore we deduce that $g_{\rho_{g}}=g$. Let now $\rho \in \operatorname{Des}(M, \mu)$ and, for every $x \in M$ let us compute

$$
\rho_{g_{\rho}}(x)=g_{\rho}(1 \otimes x)=\rho(x) .
$$

Therefore we deduce that $\rho=\rho_{g_{\rho}}$.

References

[Appel] H. Appelgate, Acyclic models and resolvent functors, Ph.D. thesis (Columbia University, 1965).
[Be1] J.M. Beck, Distributive laws, Lect. Notes Math.,80 (1969), 119-140.
[Be2] J.M. Beck, Triples, algebras and cohomology, Reprints in Theory and Applications of Categories 2 (2003), 1-59.
[Bou] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 1 a 4, Springer Verlag Berlin (2006). (Réimpression inchangée de l'édition originale de 1985 Masson, Paris 1985).
[1] J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, Journal of the Amer. Math. Soc., 8 (1995), 251-289.
[CIP] M. Cipolla, Discesa fedelmente piatta dei moduli, Rend. Circ. Mat. Palermo 25 (1976), 43-46
[Gro] A. Grothendieck, Technique de descente et théorèmes d'existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Vol. 5, Exp. No. 190, 299-327, (1995).
[H] P. Huber, Homotopy theory in general categories, Math. Ann. 144 (1961), 361-385.
[J] P.T. Johnstone, Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc., 7 (1975), 294-297.
[KLV] S. Kasangian, S. Lack, E. Vitale, Coalgebras, braidings, and distributive laws, Theory Appl. Categ. 13 (2004), 129-146.
[KO] M. Knus, M. Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lect. Notes Math., 389 (1974)
[MS] C. Menini, D. Ştefan, Descent theory and Amitsur cohomology of triples, J. Algebra 266 (2003), 261-304. $[\mathrm{Nu}] \quad$ Ph. Nuss, Noncommutative descent and nonabelian cohomologie, K-Theory, 12 (1997), 23-74.

