(CO)MONADS AND DESCENT

CLAUDIA MENINI

CONTENTS

1.	Introduction	1
2.	Monads	2
3.	Comonads	7
4.	Johnstone for Monads	9
5.	Distributive laws and lifting of monads	13
6.	Descent data and quasi-symmetries associated to a monad	16
Re	ferences	26

1. INTRODUCTION

The following is inspired to the Introductions of [MS] and [KLV] respectively.

Let R be an arbitrary ring and let us denote the category of right modules over R by Mod-R. If S is an extension of R, i.e. there is an arbitrary morphism of rings with unit $R \to S$, then the categories Mod-R and Mod-S are connected by a pair of adjoint functors (f^*, f_*) where $f^* : Mod$ - $R \to Mod$ -S, $f^*(N) = N \otimes_R S$ is the so called extension of scalars functor and $f^* : Mod$ - $S \to Mod$ -R, $f^*(M) = M$ regarded as an R-module via f, is the restriction of scalars functor. Roughly speaking, classical descent theory of modules and morphisms is concerned with the description of the image of f^* . To be more specific we list below three problems of classical descent theory.

- (1) (Descent of modules) Let M be a right S-module. Is there any right R-module N such that $M \simeq N \otimes_R S$ as right S-modules?
- (2) (Descent of morphisms) Let N and N' be right R-modules and let $f : N \otimes_R S \rightarrow N' \otimes_R S$ be a morphism of right S-modules. Does there exist a morphism of right R-modules $g : N \rightarrow N'$ such that $f = g \otimes id_S$?
- (3) (Classifications of S-forms) Given a right R-module N classify all right R-modules N' such that $N' \otimes_R S \simeq N \otimes_R S$.

A well-known example, due to Grothendieck, is faithfully flat descent theory $(R \to S \text{ is now a} faithfully flat extension of commutative rings}), see [Gro] and [KO]. The existence of an <math>N \in Mod$ -R as in the first problem is equivalent to the existence of a "descent datum" on M. Let us briefly recall the definition of descent datum in this setting. First let us note that we have an algebra morphism $i_S: S \to S \otimes_R S, i_S(x) = x \otimes 1$. Hence, for any $M \in Mod$ -S, the S-modules $S \otimes_R M$ and $M \otimes_R S$ are modules over $S \otimes_R S$ via extension of scalars from S to $S \otimes_R S$. Let $g: S \otimes_R M \to M \otimes_R S$ be an arbitrary $S \otimes_R S$ -linear map. We define $g_1 := S \otimes_R g$ and $g_3 := g \otimes_R S$ and let g_2 be the map from $S \otimes_R S \otimes_R M$ to $M \otimes_R S \otimes_R S$ given by

$$g_2(s\otimes t\otimes m)=\sum m_j\otimes t\otimes s_j,$$

where $g(s \otimes m) = \sum m_j \otimes s_j$. Then a descent datum on M is an $S \otimes_R S$ -linear map $g: S \otimes_R M \to M \otimes_R S$ such that $g_2 = g_3 g_1$ and $\sum m_j s_j = m$ if $g(1 \otimes m) = \sum m_j \otimes s_j$. (See Theorem 6.17 and the considerations just above it).

Date: March 24, 2016.

CLAUDIA MENINI

One can easily describe descent data in another equivalent way. Let $\sigma_M : M \to M \otimes_R S$ be the map $m \mapsto m \otimes_R 1$. Then any $S \otimes_R S$ -linear map $g : S \otimes_R M \to M \otimes_R S$ is uniquely determined by the map $g\sigma_M : M \to M \otimes_R S$. Let us denote $g\sigma_M$ by ρ_g . Then g is a descent datum if and only if ρ_g is a morphism of right S-modules and satisfies the following properties (see Theorem 6.17)

$$(\rho_g \otimes_R S)\rho_g = (\sigma_M \otimes_R S)\rho_g,$$

$$\mu_M \rho_g = \mathrm{Id}_M,$$

This means that $(M, \rho_q) \in \mathbb{C} (Mod-A)$ where \mathbb{C} is the canonical comonad of the adjunction (f^*, f_*) .

In the paper [MS], extending results by Nuss [Nu] on noncommutative rings, the situation (f^*, f_*) was replaced $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ where \mathbb{A} is a monad over a category \mathcal{A} and ${}_{\mathbb{A}}F : \mathcal{A} \to {}_{\mathbb{A}}\mathcal{A}$ is the free functor while ${}_{\mathbb{A}}U : {}_{\mathbb{A}}\mathcal{A} \to \mathcal{A}$ is the forgetful functor. Let $\mathbb{A}^* = ({}_{\mathbb{A}}F_{\mathbb{A}}U, {}_{\mathbb{A}}Fu_{\mathbb{A}}U, \lambda)$ be the comonad on the category ${}_{\mathbb{A}}\mathcal{A}$ associated to this adjunction. In this context, it was proved that, if the monad \mathbb{A} is equipped with a "compatible flip" $\Phi : A^2 \to A^2$, then to give an \mathbb{A}^* -comodule structure on an \mathbb{A} -module (X, μ) is equivalent to giving a "symmetry" on X, that is an involution $AX \to AX$ satisfying some suitable conditions.

Unfortunately, the following natural example, which is a direct generalization of the classical case of commutative rings, does not fit into their general context: let C be a braided monoidal category and let (S, m_S, u_S) be an algebra in C, then the braiding

$$c_{S,S}: S \otimes S \to S \otimes S$$

induces a natural isomorphism $\Phi:A^2\to A^2$ on the monad

 $\mathbb{A} = (-\otimes_R S, -\otimes_R m_S, (-\otimes_R u_S) \circ r_-)$, but this natural isomorphism is not a flip unless the braiding is a symmetry and the monoid is commutative. To encompass this example, in [KLV] the notion of BD-law on a monad \mathbb{A} is introduced (see Definitions 6.1) and, given a BD-law Φ on the monad \mathbb{A} , the notion of "compatible flip" is substituted by Φ -braiding on an \mathbb{A} -module. In these notes we prefer to call this quasi Φ -symmetry (see Definitions 6.2) since we could not find meaningful relation with the usual meaning of a braiding (on the other hand a BD-law on a monad \mathbb{A} could be called a braiding on the monad \mathbb{A}). We give a self-contained proof of [KLV, Theorem 3.7] (see Theorem 6.12) which shows that the category of quasi Φ -symmetries is isomorphic to the category of \mathbb{A}^* -comodules.

These are the notes of a short Ph.D. course I gave at the Department of Mathematics and Computer Science of the University of Ferrara during January and February 2016.

I would like to thank Leonardo Spinosa for a careful reading of them.

2. Monads

DEFINITION 2.1. A monad on a category \mathcal{A} is a triple $\mathbb{A} = (A, m_A, u_A)$, where $A : \mathcal{A} \to \mathcal{A}$ is a functor, $m_A : AA \to A$ and $u_A : \mathcal{A} \to A$ are functorial morphisms satisfying the associativity and the unitality conditions:

(1)
$$m_A \circ (m_A A) = m_A \circ (A m_A)$$
 and $m_A \circ (A u_A) = A = m_A \circ (u_A A)$.

DEFINITION 2.2. A morphism between two monads $\mathbb{A} = (A, m_A, u_A)$ and $\mathbb{B} = (B, m_B, u_B)$ on a category \mathcal{A} is a functorial morphism $\varphi : A \to B$ such that

$$\varphi \circ m_A = m_B \circ (\varphi \varphi) \text{ and } \varphi \circ u_A = u_B.$$

Here $\varphi \varphi = \varphi B \circ A \varphi = B \varphi \circ \varphi A$.

EXAMPLE 2.3. Let $f: R \to S$ be a morphism of rings. Let ${}_RS_R$ denote the *R*-bimodule structure on *S* defined by

$$r \cdot s = f(r)s$$
 $s \cdot r = sf(r)$ for every $r \in R$ and $s \in S$.

Since

$$(s \cdot r) s' = (sf(r)) s' = s(f(r) s') = s(r \cdot s)$$

the multiplication $m: S \times S \to S$ on S factorizes through $S \otimes_R S$ i.e. there is a group morphism

$$m_S: S \otimes_R S \to S$$

such that $m_S = \tau \circ m$ where $\tau : S \times S \to S \otimes_R S$ is the canonical map. m_S is a morphism of S-S-bimodules. Clearly we get that

(2)
$$m_S \circ (S \otimes_R m_S) = m_S \circ (m_S \otimes_R S)$$

For any right R-module M let

 $r_M: M \to M \otimes_R R$

denote the usual isomorphism defined by $r_M(x) = x \otimes_R 1_R$. It is easy to check that this defines a functorial isomorphism

$$r_{-}: Mod - R \to - \otimes_{R} R.$$

Set

$$u_S = -\otimes_R f : -\otimes_R R \to -\otimes_R S$$

and

$$u_A = (-\otimes_R u_S) \circ r_{_} : Mod - R \to - \otimes_R R \to - \otimes_R S$$

For every right R-module M

$$u_AM: M \to M \otimes_R S$$

is defined by

$$(u_A M)(x) = x \otimes_R 1_S$$
 for every $x \in M$

For every $x \in M$ and $s \in S$ we compute

$$[(M \otimes_R m_S) \circ (u_A M \otimes_R S)] (x \otimes_R s) = (M \otimes_R m_S) (x \otimes_R 1_S \otimes_R s)$$
$$= (x \otimes_R s) = (M \otimes_R S) (x \otimes_R s)$$

so that we get

(3)
$$(M \otimes_R m_S) \circ (u_A M \otimes_R S) = M \otimes_R S.$$

A similar computation gives

(4)
$$(M \otimes_R m_S) \circ (u_A (M \otimes_R S)) = M \otimes_R S$$

Let us consider the triple $\mathbb{A} = (A, m_A, u_A)$ where

$$\begin{array}{lll} A & = & - \otimes_R S : \mathit{Mod-R} \to \mathit{Mod-R} \\ m_A & = & - \otimes_R m_S : - \otimes_R S \otimes_R S \to - \otimes_R S \\ u_A & = & (- \otimes_R u_S) \circ r_- : \mathit{Mod-R} \to - \otimes_R S \end{array}$$

We prove that $\mathbb{A} = (A, m_A, u_A)$ is a monad on the category *Mod-R*. For every $M \in Mod-R$ we compute

$$[m_A \circ (m_A A)](M) = (M \otimes_R m_S) \circ (M \otimes_R S \otimes_R m_S) = M \otimes_R [m_S \circ (S \otimes_R m_S)] \stackrel{(2)}{=} M \otimes_R [m_S \circ (m_S \otimes_R S)] = (M \otimes_R m_S) \circ (M \otimes_R m_S \otimes_R S) = [m_A \circ (Am_A)](M)$$

$$[m_A \circ (Au_A)] M = [(-\otimes_R m_S) \circ (u_A \otimes_R S)] M$$
$$= (M \otimes_R m_S) \circ (u_A M \otimes_R S) \stackrel{3}{=} M \otimes_R S = AM$$

and

$$[m_A \circ (u_A A)] M = [(-\otimes_R m_S) \circ (u_A (-\otimes_R S))] M$$
$$= (M \otimes_R m_S) \circ (u_A (M \otimes_R S)) \stackrel{4}{=} M \otimes_R S = AM$$

PROPOSITION 2.4 ([H]). Let (L, R) be an adjunction with unit η and counit ϵ where $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$. Then $\mathbb{A} = (RL, R\epsilon L, \eta)$ is a monad on the category \mathcal{B} . *Proof.* We have to prove that

$$(R\epsilon L) \circ (RLR\epsilon L) = (R\epsilon L) \circ (R\epsilon LRL)$$
 and
 $(R\epsilon L) \circ RL\eta = RL = (R\epsilon L) \circ (\eta RL)$.

In fact we have

$$(R\epsilon L) \circ (RLR\epsilon L) \stackrel{\epsilon}{=} (R\epsilon L) \circ (R\epsilon LRL)$$

and

$$(R\epsilon L) \circ RL\eta \stackrel{(L,R)}{=} RL \stackrel{(L,R)}{=} (R\epsilon L) \circ (\eta RL).$$

EXERCISE 2.5. Let A, B rings and let M be an B-A-bimodule. Consider the functors

$$\begin{array}{rcl} L &=& - \otimes_B M : Mod - B \to Mod - A \\ R &=& \operatorname{Hom}_A(M, -) : Mod - A \to Mod - B. \end{array}$$

Then $(L, R) = (- \otimes_B M, \operatorname{Hom}_A(M, -))$ is an adjunction. Compute the monad \mathbb{RL} associated to this adjunction. Moreover, compute the monad \mathbb{RL} in the particular case $B = R, A = S, f : R \to S$ is a ring morphism and M = S endowed with the left *B*-module structure defined by f.

DEFINITION 2.6. A module for a monad $\mathbb{A} = (A, m_A, u_A)$ on a category \mathcal{A} is a pair $(X, {}^{A}\mu_X)$ where $X \in \mathcal{A}$ and ${}^{A}\mu_X : AX \to X$ is a morphism in \mathcal{A} such that

(5)
$${}^{A}\mu_{X}\circ\left(A^{A}\mu_{X}\right)={}^{A}\mu_{X}\circ\left(m_{A}X\right) \text{ and } X={}^{A}\mu_{X}\circ\left(u_{A}X\right).$$

A morphism f between two A-modules $(X, {}^{A}\mu_{X})$ and $(X', {}^{A}\mu_{X'})$ is a morphism $f: X \to X'$ in \mathcal{A} such that

$${}^{A}\mu_{X'} \circ (Af) = f \circ {}^{A}\mu_X.$$

We will denote by $_{\mathbb{A}}\mathcal{A}$ the category of \mathbb{A} -modules and their morphisms. This is the so-called *Eilenberg-Moore category* which is sometimes also denoted by $\mathcal{A}^{\mathbb{A}}$.

REMARK 2.7. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} and let $(X, {}^{A}\mu_X) \in {}_{\mathbb{A}}\mathcal{A}$. From the unitality property of ${}^{A}\mu_X$ we deduce that ${}^{A}\mu_X$ is an epimorphism for every $(X, {}^{A}\mu_X) \in {}_{\mathbb{A}}\mathcal{A}$ and that $u_A X$ is mono for every $(X, {}^{A}\mu_X) \in {}_{\mathbb{A}}\mathcal{A}$, i.e. u_A is a monomorphism.

EXAMPLE 2.8. Consider the monad $\mathbb{A} = (A, m_A, u_A)$ on *Mod-R* of Example 2.3. We want to understand the category of modules with respect to this monad. The underlying category is $\mathcal{A} = Mod-R$. Let $(X, {}^{A}\mu_X) \in \mathbb{A}(Mod-R)$. This means that

$${}^{A}\mu_{X}: AX = X \otimes_{R} S \to X$$

is a morphism in *Mod-R* such that ${}^{A}\mu_{X} \circ (A^{A}\mu_{X}) = {}^{A}\mu_{X} \circ (m_{A}X)$ and $X = {}^{A}\mu_{X} \circ (u_{A}X)$. For every $x \in X$ and $s \in S$ write $xs = {}^{A}\mu_{X} (x \otimes_{R} s)$. Then we get

$$\begin{pmatrix} ^{A}\mu_{X} \circ \left(A^{A}\mu_{X}\right) \end{pmatrix} (x \otimes_{R} s \otimes_{R} s') = {}^{A}\mu_{X} (xs) \otimes_{R} s' = (xs) s'$$
$$\begin{pmatrix} ^{A}\mu_{X} \circ (m_{A}X) \end{pmatrix} (x \otimes_{R} s \otimes_{R} s') = {}^{A}\mu_{X} (x \otimes_{R} ss') = x (ss')$$
$$\begin{pmatrix} ^{A}\mu_{X} \circ (u_{A}X) \end{pmatrix} (x) = {}^{A}\mu_{X} (x \otimes_{R} 1_{S}) = x1_{S}$$

Let $\tau : X \times S \to X \otimes_R S$ denote the canonical map. Then, in view of the equalities above we have that $(X, {}^{A}\mu_X \circ \tau) \in Mod$ -S. It is easy to see that the assignment $(X, {}^{A}\mu_X) \mapsto (X, {}^{A}\mu_X \circ \tau)$ defines an isomorphism of categories from ${}_{\mathbb{A}}\mathcal{A}$ to Mod-S.

DEFINITION 2.9. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on \mathcal{A} . The functor

$${}_{\mathbb{A}}U: {}_{\mathbb{A}}\mathcal{A} \to \mathcal{A} \\ \left(X, {}^{A}\mu_{X}\right) \to X \\ f \to f$$

is called the *forgetful functor*.

PROPOSITION 2.10. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} . Let $f, g: (X, {}^{A}\mu_X) \to (Y, {}^{A}\mu_Y)$ be morphisms in $\mathbb{A}\mathcal{A}$. Then

$$f = g \Leftrightarrow_{\mathbb{A}} Uf = {}_{\mathbb{A}} Ug$$

i.e. the functor $_{\mathbb{A}}U : _{\mathbb{A}}\mathcal{A} \to \mathcal{A}$ is faithful

PROPOSITION 2.11. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} . Then $\mathbb{A}U$ reflects isomorphisms.

Proof. Let $f: (X, {}^{A}\mu_{X}) \to (Y, {}^{A}\mu_{Y})$ be a morphism in ${}_{\mathbb{A}}\mathcal{A}$ such that ${}_{\mathbb{A}}Uf$ is an isomorphism in \mathcal{A} . Since

$${}^{A}\mu_{Y} \circ (A_{\mathbb{A}}Uf) = {}_{\mathbb{A}}Uf \circ {}^{A}\mu_{X}$$

we get that

$$\left({}_{\mathbb{A}}Uf\right)^{-1} \circ {}^{A}\mu_{Y} = {}^{A}\mu_{X} \circ \left(A\left({}_{\mathbb{A}}Uf\right)^{-1}\right)$$

which entails that $({}_{\mathbb{A}}Uf)^{-1}$ gives rise to a morphism $g: (Y, {}^{A}\mu_{Y}) \to (X, {}^{A}\mu_{X})$ such that ${}_{\mathbb{A}}Ug = ({}_{\mathbb{A}}Uf)^{-1}$. Hence

$${}_{\mathbb{A}}U(f \circ g) = \mathrm{Id}_Y \quad \text{and} \quad {}_{\mathbb{A}}U(g \circ f) = \mathrm{Id}_X$$

so that

$$f \circ g = \mathrm{Id}_{(Y, {}^{A}\mu_{Y})}$$
 and $g \circ f = \mathrm{Id}_{(X, {}^{A}\mu_{X})}$.

DEFINITION 2.12. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on \mathcal{A} . The functor

$${}_{\mathbb{A}}F: \ {\mathcal{A}} \to {}_{\mathbb{A}}{\mathcal{A}} X \to (AX, m_A X) f \to Af.$$

is called the *free functor*.

PROPOSITION 2.13. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on \mathcal{A} . Then $(\mathbb{A}F, \mathbb{A}U)$ is an adjunction with unit the unit u_A of the monad \mathbb{A}

$$A: \mathcal{A} \to {}_{\mathbb{A}}U_{\mathbb{A}}F = A.$$

The counit $\lambda_A : {}_{\mathbb{A}}F_{\mathbb{A}}U \to {}_{\mathbb{A}}\mathcal{A}$ is uniquely determined by setting

$$U\left(\lambda_A\left(X, {}^{A}\mu_X\right)\right) = {}^{A}\mu_X \text{ for every } \left(X, {}^{A}\mu_X\right) \in {}_{\mathbb{A}}\mathcal{A}.$$

Moreover we have

(6)
$${}_{\mathbb{A}}U\lambda_{A\mathbb{A}}F = m_A$$

Proof. Let $(X, {}^{A}\mu_{X}) \in {}_{\mathbb{A}}\mathcal{A}$. In view of (5) we have

$${}^{A}\mu_{X}\circ\left(A^{A}\mu_{X}\right)={}^{A}\mu_{X}\circ\left(m_{A}X\right).$$

This means that there exists a morphism

$$\lambda_{A}\left(X,{}^{A}\mu_{X}\right):\left(AX,m_{A}X\right)={}_{\mathbb{A}}F_{\mathbb{A}}U\left(X,{}^{A}\mu_{X}\right)\rightarrow\left(X,{}^{A}\mu_{X}\right)$$

such that

$${}_{\mathbb{A}}U\lambda_A\left(X,{}^{A}\mu_X\right) = {}^{A}\mu_X$$

It is easy to show that in this way we get a functorial morphism $\lambda_A : {}_{\mathbb{A}}F_{\mathbb{A}}U \to {}_{\mathbb{A}}\mathcal{A}$. Let $(X, {}^{A}\mu_X) \in {}_{\mathbb{A}}\mathcal{A}$. We compute

$$\left[\left({}_{\mathbb{A}}U\lambda_{A}\right)\circ\left(u_{A\mathbb{A}}U\right)\right]\left(\left(X,{}^{A}\mu_{X}\right)\right) = \left({}_{\mathbb{A}}U\lambda_{A}\right)\left(\left(X,{}^{A}\mu_{X}\right)\right)\circ\left(u_{A\mathbb{A}}U\right)\left(\left(X,{}^{A}\mu_{X}\right)\right)$$
$$= {}^{A}\mu_{X}\circ u_{A}X \stackrel{5}{=} X.$$

From this we deduce that $(_{\mathbb{A}}U\lambda_A) \circ (u_{A\mathbb{A}}U) = _{\mathbb{A}}U$.

Let $X \in \mathcal{A}$. We compute

$${}_{\mathbb{A}}U\left[\left(\lambda_{A\mathbb{A}}F\right)\circ\left({}_{\mathbb{A}}Fu_{A}\right)\right](X)=\left[{}_{\mathbb{A}}U\left(\lambda_{A\mathbb{A}}F\right)\circ\left({}_{\mathbb{A}}U_{\mathbb{A}}Fu_{A}\right)\right](X)$$

$$= {}_{\mathbb{A}}U\left(\lambda_{A\mathbb{A}}F\right)\left(X\right) \circ \left({}_{\mathbb{A}}U_{\mathbb{A}}Fu_A\right)\left(X\right) = m_A X \circ Au_A X \stackrel{1}{=} X.$$

From this we deduce that

$${}_{\mathbb{A}}U\left[\left(\lambda_{A\mathbb{A}}F\right)\circ\left({}_{\mathbb{A}}Fu_{A}\right)\right]={}_{\mathbb{A}}U\left({}_{\mathbb{A}}F\right)$$

and hence, by Proposition 2.10, that $(\lambda_{A\mathbb{A}}F) \circ (_{\mathbb{A}}Fu_A) = _{\mathbb{A}}F$.

For every $(X, {}^{A}\mu_{X}) \in {}_{\mathbb{A}}\mathcal{A}$ we compute

$$\left(_{\mathbb{A}}U\lambda_{A\mathbb{A}}F\right)X = _{\mathbb{A}}U\lambda_{A}\left(X, m_{A}X\right) = m_{A}X.$$

EXERCISE 2.14. Prove that $_{\mathbb{A}}FX = (AX, m_AX) \in _{\mathbb{A}}\mathcal{A}$.

PROPOSITION 2.15. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} . Then for every $Z, W \in {}_{\mathbb{A}}\mathcal{A}$ we have that

$$Z = W \text{ if and only if}_{\mathbb{A}}U\left(Z\right) = {}_{\mathbb{A}}U\left(W\right) \text{ and }_{\mathbb{A}}U\left(\lambda_{A}Z\right) = {}_{\mathbb{A}}U\left(\lambda_{A}W\right).$$

In particular, if $F, G : \mathcal{X} \to {}_{\mathbb{A}}\mathcal{A}$ are functors, we have

$$F = G$$
 if and only if $_{\mathbb{A}}UF = _{\mathbb{A}}UG$ and $_{\mathbb{A}}U(\lambda_A F) = _{\mathbb{A}}U(\lambda_A G)$

LEMMA 2.16. Let (L, R) be an adjunction where $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$. and let $\mathbb{A} = (A = RL, m_A = R\epsilon L, u_A = \eta)$ be the associated monad on the category \mathcal{B} . Then

- for every $X \in \mathcal{A}$ we have that $(RX, R \in X) \in {}_{\mathbb{A}}\mathcal{B}$,
- for every morphism $f: X \to X'$ in \mathcal{A} there is a unique morphism $\overline{R(f)}: (RX, R\epsilon X) \to (RX', R\epsilon X')$ in $_{\mathbb{A}}\mathcal{B}$ such that $_{\mathbb{A}}U\left(\overline{R(f)}\right) = R(f)$

Proof. For every $X \in \mathcal{A}$ we compute

$$R\epsilon X \circ RLR\epsilon X \stackrel{e}{=} R\epsilon X \circ R\epsilon LRX$$

and

$$R\epsilon X \circ \eta RX = RX.$$

Thus we deduce that $(RX, R\epsilon X) \in \mathcal{AB}$. Let $f: X \to X'$ be a morphism in \mathcal{A} . We compute

$$R\epsilon X' \circ RLRf \stackrel{\epsilon}{=} Rf \circ R\epsilon X.$$

Thus we deduce that there is a morphism $\overline{R(f)} : (RX, R\epsilon X) \to (RX', R\epsilon X')$ in ${}_{\mathbb{A}}\mathcal{B}$ such that ${}_{\mathbb{A}}U\left(\overline{R(f)}\right) = R(f)$. This morphism is unique in view of Proposition 2.10.

DEFINITIONS 2.17. Let (L, R) be an adjunction where $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$. and let $\mathbb{A} = (A = RL, m_A = R\epsilon L, u_A = \eta)$ be the associated monad on the category \mathcal{B} . In view of Lemma 2.16, we can consider the functor

$$K = {}_{R}K : \mathcal{A} \to {}_{\mathbb{A}}\mathcal{B}$$

defined by setting

$$K(X) = (RX, R\epsilon X)$$
 and $K(f) = \overline{R(f)}$.

This is called the *comparison functor* of the adjunction (L, R). Note that ${}_{\mathbb{A}}U \circ K = R$.

A functor $R : \mathcal{A} \to \mathcal{B}$ which has a left adjoint $L : \mathcal{B} \to \mathcal{A}$ for which the corresponding comparison functor $K : \mathcal{A} \to {}_{\mathbb{A}}\mathcal{B}$ is an equivalence of categories is called *monadic* (*tripleable* in Beck's terminology [[Be2, Definition 3, page 8]]).

PROPOSITION 2.18. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} . Then the monad associate to the adjunction $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ is the monad \mathbb{A} and the corresponding comparison functor is the identity on the category ${}_{\mathbb{A}}\mathcal{A}$. In particular the functor ${}_{\mathbb{A}}U$ is monadic.

Proof. We already observed that ${}_{\mathbb{A}}U \circ {}_{\mathbb{A}}F = A$ and that the unit of this adjunction is u_A . For every $X \in \mathcal{A}$ we compute

$${}_{\mathbb{A}}U\lambda_{A\mathbb{A}}FX = {}_{\mathbb{A}}U\lambda_A (AX, m_AX) = m_AX.$$

We deduce that ${}_{\mathbb{A}}U\lambda_{A\mathbb{A}}F = m_A$ and hence we get that the monad associate to the adjunction $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ is the monad \mathbb{A} . Let now $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$ and we compute

$$K\left(\left(X,\mu\right)\right) = \left(_{\mathbb{A}}U\left(X,\mu\right),_{\mathbb{A}}U\lambda\left(X,\mu\right)\right) = \left(X,\mu\right).$$

Let $f:(X,\mu)\to (X',\mu')$ be a morphism in $_{\mathbb{A}}\mathcal{A}$. Then $K(f)=\overline{_{\mathbb{A}}U(f)}$ where

$$\overline{AU(f)}: K((X,\mu)) = (X,\mu) \to K((X',\mu')) = (X',\mu')$$

is the unique morphism such that $_{\mathbb{A}}U\left(\overline{_{\mathbb{A}}U(f)}\right) = _{\mathbb{A}}U(f)$. Since $_{\mathbb{A}}U$ is faithful, this entails $K(f) = \overline{_{\mathbb{A}}U(f)} = f$ and we deduce that $K = _{\mathbb{A}}\mathcal{A}$.

3. Comonads

DEFINITION 3.1. A comonal on a category \mathcal{A} is a triple $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$, where $C : \mathcal{A} \to \mathcal{A}$ is a functor, $\Delta^C : C \to CC$ and $\varepsilon^C : C \to \mathcal{A}$ are functorial morphisms satisfying the coassociativity and the counitality conditions

$$(\Delta^C C) \circ \Delta^C = (C\Delta^C) \circ \Delta^C$$
 and $(C\varepsilon^C) \circ \Delta^C = C = (\varepsilon^C C) \circ \Delta^C$.

DEFINITION 3.2. A morphism between two comonads $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ and $\mathbb{D} = (D, \Delta^D, \varepsilon^D)$ on a category \mathcal{A} is a functorial morphism $\varphi : C \to D$ such that

$$\Delta^D \circ \varphi = (\varphi \varphi) \circ \Delta^C \quad \text{and} \quad \varepsilon^D \circ \varphi = \varepsilon^C.$$

EXAMPLE 3.3. Let $(\mathcal{C}, \Delta^{\mathcal{C}}, \varepsilon^{\mathcal{C}})$ an A-coring where A is a ring. This means that

- C is an A-A-bimodule
- $\Delta^{\mathcal{C}}: \mathcal{C} \to \mathcal{C} \otimes_A \mathcal{C}$ is a morphism of A-A-bimodules
- $\varepsilon^{\mathcal{C}} : \mathcal{C} \to A$ is a morphism of A-A-bimodules satisfying the following

$$\left(\Delta^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ \Delta^{\mathcal{C}} = \left(\mathcal{C} \otimes_{A} \Delta^{\mathcal{C}}\right) \circ \Delta^{\mathcal{C}}, \left(\mathcal{C} \otimes_{A} \varepsilon^{\mathcal{C}}\right) \circ \Delta^{\mathcal{C}} = r_{\mathcal{C}}^{-1} \quad \text{and} \quad \left(\varepsilon^{\mathcal{C}} \otimes_{A} \mathcal{C}\right) \circ \Delta^{\mathcal{C}} = l_{\mathcal{C}}^{-1}$$

where $r_{\mathcal{C}}: \mathcal{C} \otimes_A A \to \mathcal{C}$ and $l_{\mathcal{C}}: A \otimes_A \mathcal{C} \to \mathcal{C}$ are the right and left constraints. Let

$$C = -\otimes_A \mathcal{C} : Mod - A \to Mod - A$$

$$\Delta^C = -\otimes_A \Delta^C : -\otimes_A \mathcal{C} \to -\otimes_A \mathcal{C} \otimes_A \mathcal{C}$$

$$\varepsilon^C = r_- \circ (-\otimes_A \varepsilon^C) : -\otimes_A \mathcal{C} \to -\otimes_A A \to -$$

We prove that $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ is a comonad on the category *Mod-A*. For every $M \in Mod-A$ we compute

$$\begin{bmatrix} (\Delta^{C}C) \circ \Delta^{C} \end{bmatrix} (M) = (\Delta^{C}CM) \circ (\Delta^{C}M)$$

= $(M \otimes_{A} \mathcal{C} \otimes_{A} \Delta^{\mathcal{C}}) \circ (M \otimes_{A} \Delta^{\mathcal{C}}) = M \otimes_{A} [(\mathcal{C} \otimes_{A} \Delta^{\mathcal{C}}) \circ \Delta^{\mathcal{C}}]$
$$\stackrel{Ccoring}{=} M \otimes_{A} [(\Delta^{\mathcal{C}} \otimes_{A} \mathcal{C}) \circ \Delta^{\mathcal{C}}] = (M \otimes_{A} \Delta^{\mathcal{C}} \otimes_{A} \mathcal{C}) \circ (M \otimes_{A} \Delta^{\mathcal{C}})$$

= $(C\Delta^{C}M) \circ (\Delta^{C}M) = [(C\Delta^{C}) \circ \Delta^{C}] (M)$

and

$$\begin{bmatrix} \left(\varepsilon^{C} C \right) \circ \Delta^{C} \end{bmatrix} (M) = \left(\varepsilon^{C} C M \right) \circ \left(\Delta^{C} M \right)$$
$$= r_{CM} \circ \left(M \otimes_{A} \mathcal{C} \otimes_{A} \varepsilon^{\mathcal{C}} \right) \circ \left(M \otimes_{A} \Delta^{\mathcal{C}} \right) = r_{M \otimes_{A} \mathcal{C}} \circ \left(M \otimes_{A} \left[\left(\mathcal{C} \otimes_{A} \varepsilon^{\mathcal{C}} \right) \circ \Delta^{\mathcal{C}} \right] \right) \right]$$
$$\stackrel{\mathcal{C}coring}{=} r_{M \otimes_{A} \mathcal{C}} \circ \left(M \otimes_{A} r_{\mathcal{C}}^{-1} \right) = M \otimes_{A} \mathcal{C} = CM$$
$$\begin{bmatrix} \left(C \varepsilon^{C} \right) \circ \Delta^{C} \end{bmatrix} (M) = \left(C \varepsilon^{C} M \right) \circ \left(\Delta^{C} M \right)$$
$$= \left(\left[r_{M} \circ \left(M \otimes_{A} \varepsilon^{\mathcal{C}} \right) \right] \otimes_{A} \mathcal{C} \right) \circ \left(M \otimes_{A} \Delta^{\mathcal{C}} \right)$$
$$= \left(r_{M} \otimes_{A} \mathcal{C} \right) \circ \left(M \otimes_{A} \varepsilon^{\mathcal{C}} \otimes_{A} \mathcal{C} \right) \circ \left(M \otimes_{A} \Delta^{\mathcal{C}} \right)$$

$$= (r_M \otimes_A \mathcal{C}) \circ [M \otimes_A ((\varepsilon^{\mathcal{C}} \otimes_A \mathcal{C}) \circ \Delta^{\mathcal{C}})]$$

= $(r_M \otimes_A \mathcal{C}) \circ (M \otimes_A l_{\mathcal{C}}^{-1}) = M \otimes_A \mathcal{C} = CM.$

PROPOSITION 3.4. Let (L, R) be an adjunction with unit η and counit ϵ where $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$. Then $\mathbb{C} = (LR, L\eta R, \epsilon)$ is a comonad on the category \mathcal{A} .

Proof. Dual to the proof of Proposition 2.4.

DEFINITION 3.5. A comodule for a comonad $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ on a category \mathcal{A} is a pair $(X, {}^C\rho_X)$ where $X \in \mathcal{A}$ and ${}^C\rho_X : X \to CX$ is a morphism in \mathcal{A} such that

$$(C^C \rho_X) \circ {}^C \rho_X = (\Delta^C X) \circ {}^C \rho_X$$
 and $X = (\varepsilon^C X) \circ {}^C \rho_X$.

A morphism between two \mathbb{C} -comodules $(X, {}^{C}\rho_{X})$ and $(X', {}^{C}\rho_{X'})$ is a morphism $f: X \to X'$ in \mathcal{A} such that

$${}^C\rho_{X'}\circ f=(Cf)\circ {}^C\rho_X.$$

We denote by ${}^{\mathbb{C}}\mathcal{A}$ the category of \mathbb{C} -comodule and their morphisms.

DEFINITION 3.6. Let $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ be a comonad on a category \mathcal{A} . The functor

is called the *forgetful functor*.

PROPOSITION 3.7. Let $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ be a comonad on a category \mathcal{A} . Let $f, g : (X, {}^C\rho_X) \to (Y, {}^C\rho_Y)$ be morphisms in ${}^{\mathbb{C}}\mathcal{A}$. Then

$$f = g \Leftrightarrow_{\mathbb{A}} U f = {}_{\mathbb{A}} U g$$

i.e. the functor $^{\mathbb{C}}U: ^{\mathbb{C}}\mathcal{A} \to \mathcal{A}$ is faithful

PROPOSITION 3.8. Let $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ be a comonad on a category \mathcal{A} . Then $^{\mathbb{C}}U$ reflects isomorphisms.

Proof. Analogous to the proof of Proposition 2.11.

DEFINITION 3.9. Let $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ be a comonad on a category \mathcal{A} . The functor

$$\begin{array}{cccc} {}^{\mathbb{C}}F : & \mathcal{A} & \to & {}^{\mathbb{C}}\mathcal{A} \\ & X & \to & \left(CX, \Delta^{C}X\right) \\ & f & \to & Cf \end{array}$$

is called the *free functor*.

PROPOSITION 3.10. Let $\mathbb{C} = (C, \Delta^C, \varepsilon^C)$ be a comonad on a category \mathcal{A} . Then $({}^{\mathbb{C}}U, {}^{\mathbb{C}}F)$ is an adjunction with counit the counit ε^C of the comonad \mathbb{C}

$$C^C: C = {}^{\mathbb{C}}U^{\mathbb{C}}F \to \mathcal{A}$$

The unit $\gamma^C : {}^{\mathbb{C}}\mathcal{A} \to {}^{\mathbb{C}}F{}^{\mathbb{C}}U$ is defined by setting

$$U\left(\gamma^{C}\left(X, {}^{C}\rho_{X}\right)\right) = {}^{C}\rho_{X} \text{ for every } \left(X, {}^{C}\rho_{X}\right) \in {}^{\mathbb{C}}\mathcal{A}.$$

Moreover we have

$${}^{\mathbb{C}}U\gamma^{C\mathbb{C}}F = \Delta^C.$$

LEMMA 3.11. Let (L, R) be an adjunction where $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$. and let $\mathbb{C} = (C = LR, \Delta^C = L\eta R, \varepsilon^C = \epsilon)$ be the associated comonad on the category \mathcal{A} . Then

- for every $Y \in \mathcal{B}$ we have that $(LY, L\eta Y) \in {}^{\mathbb{C}}\mathcal{A}$,
- for every morphism $f : Y \to Y'$ in \mathcal{B} there is a unique morphism $\overline{L(f)} : (LY, L\eta Y) \to (LY', L\eta Y')$ in $^{\mathbb{C}}\mathcal{A}$ such that $_{\mathbb{A}}U\left(\overline{L(f)}\right) = L(f)$.

Proof. Dual to the proof of Lemma 2.16.

DEFINITIONS 3.12. Let (L, R) be an adjunction where $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$ and let $\mathbb{C} = (C = LR, \Delta^C = L\eta R, \varepsilon^C = \epsilon)$ be the associated comonad on the category \mathcal{A} . In view of Lemma 3.11, we can consider the functor

$$K^{co} = K_L^{co} : \mathcal{B} \to {}^{\mathbb{C}}\mathcal{A}$$

defined by setting

$$K^{co}(Y) = (LY, L\eta Y)$$
 and $K^{co}(f) = \overline{L(f)}.$

This is called the *cocomparison functor* of the adjunction (L, R). Note that $^{\mathbb{C}}U \circ K^{co} = L$.

A functor $L : \mathcal{B} \to \mathcal{A}$ which has a right adjoint $R : \mathcal{A} \to \mathcal{B}$ for which the corresponding cocomparison functor $K_L^{co} : \mathcal{B} \to {}^{\mathbb{C}}\mathcal{A}$ is an equivalence of categories is called *comonadic*.

4. Johnstone for Monads

PROPOSITION 4.1 ([Appel] and [J]). Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} and let $\mathbb{B} = (B, m_B, u_B)$ be a monad on a category \mathcal{B} and let $Q : \mathcal{A} \to \mathcal{B}$ be a functor. Then there is a bijection between the following collections of data

 \mathcal{F} functors $\widetilde{Q} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{B}}\mathcal{B}$ that are liftings of Q (i.e. ${}_{\mathbb{B}}U\widetilde{Q} = Q_{\mathbb{A}}U$) \mathcal{M} functorial morphisms $\Phi : BQ \to QA$ such that

$$\Phi \circ (m_B Q) = (Qm_A) \circ (\Phi A) \circ (B\Phi) \qquad and \qquad \Phi \circ (u_B Q) = Qu_A$$

given by

$$a: \mathcal{F} \to \mathcal{M} \text{ where } a\left(\widetilde{Q}\right) = \left({}_{\mathbb{B}}U\lambda_B\widetilde{Q}_{\mathbb{A}}F\right) \circ (BQu_A)$$
$$b: \mathcal{M} \to \mathcal{F} \text{ where } b\left(\Phi\right)\left(\left(X, {}^{A}\mu_X\right)\right) = \left(QX, \left(Q^{A}\mu_X\right) \circ \left(\Phi X\right)\right)$$
$$and \ {}_{\mathbb{B}}U\left[b\left(\Phi\right)\left(f\right)\right] = Q\left({}_{\mathbb{A}}Uf\right).$$

Proof. First of all let us note that,

$$\lambda_A \circ_{\mathbb{A}} F_{\mathbb{A}} U \lambda_A \stackrel{\lambda_A}{=} \lambda_A \circ \lambda_{A\mathbb{A}} F_{\mathbb{A}} U$$

so that we get

$${}_{\mathbb{A}}U\lambda_{A} \circ {}_{\mathbb{A}}U_{\mathbb{A}}F_{\mathbb{A}}U\lambda_{A} = {}_{\mathbb{A}}U\lambda_{A} \circ {}_{\mathbb{A}}U\lambda_{A\mathbb{A}}F_{\mathbb{A}}U \stackrel{(6)}{=} {}_{\mathbb{A}}U\lambda_{A} \circ m_{A\mathbb{A}}U$$

and hence

(7)

$${}_{\mathbb{A}}U\lambda_{A}\circ A_{\mathbb{A}}U\lambda_{A} = {}_{\mathbb{A}}U\lambda_{A}\circ m_{A\mathbb{A}}U$$

Let $\widetilde{Q} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{B}}\mathcal{B}$ be a lifting of the functor $Q : \mathcal{A} \to \mathcal{B}$ (i.e. ${}_{\mathbb{B}}U\widetilde{Q} = Q_{\mathbb{A}}U$). Define a functorial morphism Φ by setting:

$$\Phi = \left({}_{\mathbb{B}}U\lambda_B\widetilde{Q}_{\mathbb{A}}F\right) \circ \left(BQu_A\right) : BQ \to {}_{\mathbb{B}}U\widetilde{Q}_{\mathbb{A}}F = Q_{\mathbb{A}}U_{\mathbb{A}}F = QA$$

where $u_A : \mathcal{A} \to {}_{\mathbb{A}}U_{\mathbb{A}}F = A$ is also the unit of the adjunction $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ and $\lambda_B : {}_{\mathbb{B}}F_{\mathbb{B}}U \to {}_{\mathbb{B}}\mathcal{B}$ is the counit of the adjunction. We have to prove that such a Φ satisfies $\Phi \circ (m_B Q) = (Qm_A) \circ (\Phi A) \circ (B\Phi)$ and $\Phi \circ (u_B Q) = Qu_A$. First, let us note that

(8)
$$Qm_A = Q_{\mathbb{A}}U\lambda_{A\mathbb{A}}F = {}_{\mathbb{B}}UQ\lambda_{A\mathbb{A}}F$$

Now let us compute

$$(Qm_A) \circ (\Phi A) \circ (B\Phi) = (Qm_A) \circ \left({}_{\mathbb{B}}U\lambda_B \widetilde{Q}_{\mathbb{A}}FA \right) \circ (BQu_A A)$$
$$\circ \left(B_{\mathbb{B}}U\lambda_B \widetilde{Q}_{\mathbb{A}}F \right) \circ (BBQu_A)$$
$$\stackrel{(8)}{=} \left({}_{\mathbb{B}}U\widetilde{Q}\lambda_{A\mathbb{A}}F \right) \circ \left({}_{\mathbb{B}}U\lambda_B \widetilde{Q}_{\mathbb{A}}FA \right) \circ (BQu_A A)$$
$$\circ \left(B_{\mathbb{B}}U\lambda_B \widetilde{Q}_{\mathbb{A}}F \right) \circ (BBQu_A)$$
$$= {}_{\mathbb{B}}U \left[\left(\widetilde{Q}\lambda_{A\mathbb{A}}F \right) \circ \left(\lambda_B \widetilde{Q}_{\mathbb{A}}FA \right) \circ \left({}_{\mathbb{B}}FQu_AA \right) \right]$$

Moreover we have

(9)

$$\Phi \circ (u_B Q) = \left({}_{\mathbb{B}} U \lambda_B \widetilde{Q}_{\mathbb{A}} F \right) \circ (B Q u_A) \circ (u_B Q)$$
$$\stackrel{u_B}{=} \left({}_{\mathbb{B}} U \lambda_B \widetilde{Q}_{\mathbb{A}} F \right) \circ (u_B Q A) \circ (Q u_A)$$
$$= \left({}_{\mathbb{B}} U \lambda_B \widetilde{Q}_{\mathbb{A}} F \right) \circ (u_B Q_{\mathbb{A}} U_{\mathbb{A}} F) \circ (Q u_A)$$
$$\stackrel{\widetilde{Q}_{\text{lifting}}}{=} \left({}_{\mathbb{B}} U \lambda_B \widetilde{Q}_{\mathbb{A}} F \right) \circ \left(u_{B \mathbb{B}} U \widetilde{Q}_{\mathbb{A}} F \right) \circ (Q u_A)$$
$$\stackrel{({}_{\mathbb{B}} F, {}_{\mathbb{B}} U) \text{adj}}{=} Q u_A.$$

Conversely, let $\Phi: BQ \to QA$ be a functorial morphism satisfying $\Phi \circ (m_BQ) = (Qm_A) \circ (\Phi A) \circ (B\Phi)$ and $\Phi \circ (u_BQ) = Qu_A$. We define $\widetilde{Q}: {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{B}}\mathcal{B}$ by setting, for every $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$,

$$\widetilde{Q}\left((X,\mu)\right) = \left(QX, \left(Q\mu\right)\circ\left(\Phi X\right)\right) = \left(Q_{\mathbb{B}}U\left(X,\mu\right), \left[Q_{\mathbb{A}}U\lambda_{A}\circ\Phi_{\mathbb{A}}U\right]\left(X,\mu\right)\right).$$

Note that, a posteriori, we will have

$${}_{\mathbb{B}}U\lambda_B\widetilde{Q} = Q_{\mathbb{A}}U\lambda_A \circ \Phi_{\mathbb{A}}U$$

We have to check that $(Q(X), (Q\mu) \circ (\Phi X)) \in {}_{\mathbb{B}}\mathcal{B}$, that is

$$\widetilde{\mu} \circ B\widetilde{\mu} = \widetilde{\mu} \circ (m_B Q X)$$
 and $\widetilde{\mu} \circ (u_B Q X) = Q X$

where $\widetilde{\mu} = (Q\mu) \circ (\Phi X)$. We compute

$$\begin{split} \widetilde{\mu} \circ (B\widetilde{\mu}) &= (Q\mu) \circ (\Phi X) \circ (BQ\mu) \circ (B\Phi X) \\ &\stackrel{\Phi}{=} (Q\mu) \circ (QA\mu) \circ (\Phi AX) \circ (B\Phi X) \\ &\stackrel{5}{=} (Q\mu) \circ (Qm_A X) \circ (\Phi AX) \circ (B\Phi X) \\ &\stackrel{\text{propertyof}\Phi}{=} (Q\mu) \circ (\Phi X) \circ (m_B QX) \\ &= \widetilde{\mu} \circ (m_B QX) \,. \end{split}$$

Moreover we have

$$\widetilde{\mu} \circ (u_B Q X) = (Q \mu) \circ (\Phi X) \circ (u_B Q X)$$

$$\stackrel{\text{propertyof}\Phi}{=} (Q \mu) \circ (Q u_A X)$$

$$\stackrel{5}{=} Q X.$$

Now, let $f: (X, \mu) \to (X', \mu')$ be a morphism of A-modules, that is a morphism $f: X \to X'$ in \mathcal{A} such that

$$\mu' \circ (Af) = f \circ \mu.$$

We want to prove that Q(f) lifts to a morphism $\widetilde{Q}(f) : \widetilde{Q}(X,\mu) = (QX,(Q\mu)\circ(\Phi X)) \rightarrow \widetilde{Q}(X',\mu') = (QX',(Q\mu')\circ(\Phi X'))$ of \mathbb{B} -modules i.e.

$$[(Q\mu') \circ (\Phi X')] \circ (BQf) \stackrel{?}{=} (Qf) \circ [(Q\mu) \circ (\Phi X)].$$

We compute

$$\begin{split} [(Q\mu') \circ (\Phi X')] \circ (BQf) &\stackrel{\Phi}{=} (Q\mu') \circ (QAf) \circ (\Phi X) \\ \stackrel{f \text{morph}A\text{-mod}}{=} (Qf) \circ (Q\mu) \circ (\Phi X) \,. \end{split}$$

Let now check that \widetilde{Q} is a lifting of Q. Let $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$ and let us compute

$${}_{\mathbb{B}}UQ\left((X,\mu)\right) = {}_{\mathbb{B}}U\left(QX,(Q\mu)\circ(\Phi X)\right) = QX = Q_{\mathbb{A}}U\left((X,\mu)\right).$$

Let $f: (X, \mu) \to (X', \mu')$ be a morphism in ${}_{\mathbb{A}}\mathcal{A}$. By construction we have

$$_{\mathbb{B}}UQ\left(f\right) = Q_{\mathbb{A}}U\left(f\right) : QX \to QX'.$$

Therefore \widetilde{Q} is a lifting of the functor Q.

We have to prove that we have a bijection. Let us start with $\widetilde{Q} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{B}}\mathcal{B}$ a lifting of the functor $Q : \mathcal{A} \to \mathcal{B}$. Then we construct $\Phi : BQ \to QA$ given by

$$\Phi = \left({}_{\mathbb{B}}U\lambda_B\widetilde{Q}_{\mathbb{A}}F\right)\circ\left(BQu_A\right)$$

and using this functorial morphism we define a functor $\overline{Q} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{B}}\mathcal{B}$ as follows: for every $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$

$$\overline{Q}\left((X,\mu)\right) = \left(QX, \left(Q\mu\right) \circ \left(\Phi X\right)\right).$$

Since both \widetilde{Q} and \overline{Q} are liftings of Q, we have that ${}_{\mathbb{B}}U\widetilde{Q} = Q_{\mathbb{A}}U = {}_{\mathbb{B}}U\overline{Q}$. In view of Proposition 2.15, it remains to prove that ${}_{\mathbb{B}}U\left(\lambda_{B}\overline{Q}\right) = {}_{\mathbb{B}}U\left(\lambda_{B}\widetilde{Q}\right)$. Since $\overline{Q}\left(X,\mu\right) = \left(Q_{\mathbb{B}}U\left(X,\mu\right), \left[Q_{\mathbb{A}}U\lambda_{A}\circ\Phi_{\mathbb{A}}U\right](X,\mu)\right)$ for every $\left((X,\mu)\right) \in {}_{\mathbb{A}}\mathcal{A}$ we have that

$${}_{\mathbb{B}}U\lambda_B\overline{Q} = Q_{\mathbb{A}}U\lambda_A \circ \Phi_{\mathbb{A}}U$$

We compute

$${}_{\mathbb{B}}U\left(\lambda_{B}\overline{Q}\right) = Q_{\mathbb{A}}U\lambda_{A}\circ\Phi_{\mathbb{A}}U$$

$$= (Q_{\mathbb{A}}U\lambda_{A})\circ\left({}_{\mathbb{B}}U\lambda_{B}\widetilde{Q}_{\mathbb{A}}F_{\mathbb{A}}U\right)\circ\left(BQu_{A\mathbb{A}}U\right)$$

$$\overset{\widetilde{Q}\text{lifting}Q}{=}\left({}_{\mathbb{B}}U\widetilde{Q}\lambda_{A}\right)\circ\left({}_{\mathbb{B}}U\lambda_{B}\widetilde{Q}_{\mathbb{A}}F_{\mathbb{A}}U\right)\circ\left(BQu_{A\mathbb{A}}U\right)$$

$$\overset{\lambda_{B}}{=}\left({}_{\mathbb{B}}U\lambda_{B}\widetilde{Q}\right)\circ\left({}_{\mathbb{B}}U_{\mathbb{B}}F_{\mathbb{B}}U\widetilde{Q}\lambda_{A}\right)\circ\left(BQu_{A\mathbb{A}}U\right)$$

$$= \left({}_{\mathbb{B}}U\lambda_{B}\widetilde{Q}\right)\circ\left(B\left[{}_{\mathbb{B}}U\widetilde{Q}\lambda_{A}\circ Qu_{A\mathbb{A}}U\right]\right)$$

$$= \left({}_{\mathbb{B}}U\lambda_{B}\widetilde{Q}\right)\circ\left(B\left[Q_{\mathbb{A}}U\lambda_{A}\circ Qu_{A\mathbb{A}}U\right]\right)$$

$$\overset{(\mathbb{A}F,\mathbb{A}U)\text{adj}}{=}U\lambda_{B}\widetilde{Q}.$$

CLAUDIA MENINI

Conversely, let us start with a functorial morphism $\Phi : BQ \to QA$ satisfying $\Phi \circ (m_BQ) = (Qm_A) \circ (\Phi A) \circ (B\Phi)$ and $\Phi \circ (u_BQ) = Qu_A$. Then we construct a functor $\widetilde{Q} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{B}}\mathcal{B}$ by setting, for every $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$,

$$\widetilde{Q}\left((X,\mu)\right) = \left(QX, (Q\mu) \circ (\Phi X)\right)$$

which lifts $Q: \mathcal{A} \to \mathcal{B}$. Now, we define a functorial morphism $\Psi: BQ \to QA$ given by

 $\Psi = \left({}_{\mathbb{B}}U\lambda_B\widetilde{Q}_{\mathbb{A}}F\right)\circ\left(BQu_A\right).$

Then we have

$$\Psi = \left({}_{\mathbb{B}}U\lambda_B \widetilde{Q}_{\mathbb{A}}F \right) \circ (BQu_A)$$

$$\stackrel{(9)}{=} \left(Q_{\mathbb{A}}U\lambda_{A\mathbb{A}}F \right) \circ \left(\Phi_{\mathbb{A}}U_{\mathbb{A}}F \right) \circ \left(BQu_A \right)$$

$$= \left(Qm_A \right) \circ \left(\Phi A \right) \circ \left(BQu_A \right)$$

$$\stackrel{\Phi}{=} \left(Qm_A \right) \circ \left(QAu_A \right) \circ \Phi$$

$$\stackrel{A\text{monad}}{=} \Phi.$$

DEFINITION 4.2. A left module functor for a monad $\mathbb{A} = (A, m_A, u_A)$ on a category \mathcal{A} is a pair $(Q, {}^A\mu_Q)$ where $Q: \mathcal{B} \to \mathcal{A}$ is a functor and ${}^A\mu_Q: AQ \to Q$ is a functorial morphism satisfying:

$${}^{A}\mu_{Q}\circ\left(A^{A}\mu_{Q}\right)={}^{A}\mu_{Q}\circ\left(m_{A}Q\right)$$
 and $Q={}^{A}\mu_{Q}\circ\left(u_{A}Q\right).$

EXAMPLE 4.3. In the setting of Example 2.3, $\mathbb{A} = (A, m_A, u_A)$ where

$$A = - \bigotimes_R S : Mod \cdot R \to Mod \cdot R$$

$$m_A = - \bigotimes_R m_S : - \bigotimes_R S \bigotimes_R S \to - \bigotimes_R S$$

$$u_A = : Mod \cdot R \to - \bigotimes_R S$$

Let M be an R-S-bimodule and let $Q =: Mod-R \to Mod-R$. Then Q is a left module functor for the monad A via the map via the map

$${}^{A}\mu_{Q} = -\otimes_{R}\mu_{M}^{A}: AQ = -\otimes_{R}M \otimes_{R}S \longrightarrow Q = -\otimes_{R}M$$

where we denote by $\mu_M^S: M \otimes_R S \longrightarrow M$ the map induced by the multiplication by S on M.

COROLLARY 4.4. Let \mathcal{X}, \mathcal{A} be categories, let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} and let $F : \mathcal{X} \to \mathcal{A}$ be a functor. Then there exists a bijective correspondence between the following collections of data:

 \mathcal{H} Left \mathbb{A} -module actions ${}^{A}\mu_{F}: AF \to F$

 \mathcal{G} Functors $_{A}F: \mathcal{X} \to {}_{\mathbb{A}}\mathcal{A}$ such that $_{\mathbb{A}}U_{A}F = F$,

given by

$$\widetilde{a}: \mathcal{H} \to \mathcal{G} \text{ where }_{\mathbb{A}} U\widetilde{a} \left({}^{A}\mu_{F} \right) = F \text{ and }_{\mathbb{A}} U\lambda_{A}\widetilde{a} \left({}^{A}\mu_{F} \right) = {}^{A}\mu_{F} \text{ i.e.}$$
$$\widetilde{a} \left({}^{A}\mu_{F} \right) (X) = \left(FX, {}^{A}\mu_{F}X \right) \text{ and } \widetilde{a} \left({}^{A}\mu_{F} \right) (f) = F (f)$$
$$\widetilde{b}: \mathcal{G} \to \mathcal{H} \text{ where } \widetilde{b} ({}_{A}F) = {}_{\mathbb{A}} U\lambda_{AA}F : AF \to F.$$

Proof. Apply Proposition 4.1 to the case $\mathcal{A} = \mathcal{X}, \mathcal{B} = \mathcal{A}, \mathbb{A} = \mathrm{Id}_{\mathcal{X}}$ and $\mathbb{B} = \mathbb{A}$. Then $\widetilde{Q} = {}_{A}F$ is the lifting of F and $\Phi = {}^{A}\mu_{F}$ satisfies ${}^{A}\mu_{F} \circ (m_{A}F) = {}^{A}\mu_{F} \circ (A^{A}\mu_{F})$ and ${}^{A}\mu_{F} \circ (u_{A}F) = F$ that is $(F, {}^{A}\mu_{F})$ is a left \mathbb{A} -module functor. \Box

COROLLARY 4.5. Let (L, R) be an adjunction with $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$ and let $\mathbb{A} = (A, m_A, u_A)$ be a monad on \mathcal{B} . Then there is a bijective correspondence between the following collections of data

 \mathfrak{K} Functors $K: \mathcal{A} \to {}_{\mathbb{A}}\mathcal{B}$ such that ${}_{\mathbb{A}}U \circ K = R$,

 \mathfrak{L} functorial morphism $\alpha : AR \to R$ such that (R, α) is a left module functor for the monad \mathbb{A}

given by

- $\Phi : \mathfrak{K} \to \mathfrak{L} \text{ where } \Phi(K) = {}_{\mathbb{A}}U\lambda_A K : AR \to R$
- Ω : $\mathfrak{L} \to \mathfrak{K}$ where $\Omega(\alpha)(X) = (RX, \alpha X)$ and $_{\mathbb{A}}U\Omega(\alpha)(f) = R(f)$.

Proof. Apply Corollary 4.4 to the case "F" = $R : \mathcal{A} \to \mathcal{B}$ where (L, R) is an adjunction with $L : \mathcal{B} \to \mathcal{A}$ and $R : \mathcal{A} \to \mathcal{B}$ and $\mathbb{A} = (A, m_A, u_A)$ a monad on \mathcal{B} .

5. DISTRIBUTIVE LAWS AND LIFTING OF MONADS

From 4.1 we get

PROPOSITION 5.1. Let $\mathbb{A} = (A, m_A, u_A)$ be a monad on a category \mathcal{A} and let $B : \mathcal{A} \to \mathcal{A}$ be a functor. Then there is a bijection between the following collections of data

 \mathcal{F} functors $\widetilde{B} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{A}}\mathcal{A}$ that are liftings of B (i.e. ${}_{\mathbb{A}}U\widetilde{B} = B_{\mathbb{A}}U$) \mathcal{M} functorial morphisms $\Phi : AB \to BA$ such that

$$\Phi \circ (m_A B) = (Bm_A) \circ (\Phi A) \circ (A\Phi)$$
 and $\Phi \circ (u_A B) = Bu_A$

given by

$$a: \mathcal{F} \to \mathcal{M} \text{ where } a\left(\widetilde{B}\right) = \left({}_{\mathbb{A}}U\lambda_{A}\widetilde{B}_{\mathbb{A}}F\right) \circ (ABu_{A})$$
$$b: \mathcal{M} \to \mathcal{F} \text{ where } b\left(\Phi\right)\left(\left(X, {}^{A}\mu_{X}\right)\right) = \left(BX, \left(B^{A}\mu_{X}\right) \circ \left(\Phi X\right)\right)$$
$$and \ _{\mathbb{A}}U\left[b\left(\Phi\right)\left(f\right)\right] = B_{\mathbb{A}}U\left(f\right).$$

DEFINITION 5.2. [Be1] Let $\mathbb{A} = (A, m_A, u_A)$ and $\mathbb{B} = (B, m_B, u_B)$ be monads on a category \mathcal{A} . A functorial morphisms $\Phi : AB \to BA$ such that

(10)
$$\Phi \circ (m_A B) = (Bm_A) \circ (\Phi A) \circ (A\Phi)$$
 and $\Phi \circ (u_A B) = Bu_A$

and

(11)
$$\Phi \circ (Am_B) = (m_B A) \circ (B\Phi) \circ (\Phi B)$$
 and $\Phi \circ (Au_B) = u_B A$

is said to be a distributive law of \mathbb{A} over \mathbb{B} .

THEOREM 5.3. Let $\mathbb{A} = (A, m_A, u_A)$ and $\mathbb{B} = (B, m_B, u_B)$ be monads on a category \mathcal{A} . Then there is a bijection between the following collections of data

 \mathcal{D} distributive laws of \mathbb{A} over \mathbb{B}

 $\mathcal{M} \text{ monads } \widehat{\mathbb{B}} = \left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right) \text{ on }_{\mathbb{A}}\mathcal{A} \text{ that are lifting of } \mathbb{B} \text{ (i.e. }_{\mathbb{A}}U\widehat{B} = B_{\mathbb{A}}U, {}_{\mathbb{A}}Um_{\widehat{B}} = m_{B\mathbb{A}}U, {}_{\mathbb{A}}Uu_{\widehat{B}} = u_{B\mathbb{A}}U)$

given by

$$a : \mathcal{D} \to \mathcal{M} \text{ where } a\left(\Phi\right) = \widehat{\mathbb{B}} \text{ where } \widehat{\mathbb{B}} = \left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right) \text{ and}$$
$$\widehat{B}\left(\left(X, {}^{A} \mu_{X}\right)\right) = \left(BX, \left(B^{A} \mu_{X}\right) \circ \left(\Phi X\right)\right), \ _{\mathbb{A}}U\widehat{B}\left(f\right) = B_{\mathbb{A}}U\left(f\right)$$
$$b : \mathcal{M} \to \mathcal{D} \text{ where } b\left(\left(\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}}\right)\right) = \left(_{\mathbb{A}}U\lambda_{A}\widehat{B}_{\mathbb{A}}F\right) \circ \left(ABu_{A}\right).$$

Proof. Let $\Phi : AB \to BA$ be a distributive law of \mathbb{A} over \mathbb{B} . By Proposition 5.1 we know that $\widehat{B} : {}_{\mathbb{A}}\mathcal{A} \to {}_{\mathbb{A}}\mathcal{A}$ defined by setting $\widehat{B}((X,{}^{A}\mu_{X})) = (BX, (B^{A}\mu_{X}) \circ (\Phi X)), {}_{\mathbb{A}}U\widehat{B}(f) = B_{\mathbb{A}}U(f)$ is a functor.

Let $(X, {}^{A} \mu_{X}) \in {}_{\mathbb{A}}\mathcal{A}$ and let us prove that $m_{B}X : B^{2}X \to BX$ lifts to a morphism $m_{\widehat{B}}(X, {}^{A} \mu_{X})$ in ${}_{\mathbb{A}}\mathcal{A}$ from $(\widehat{B})^{2}((X, {}^{A} \mu_{X}))$ to $\widehat{B}((X, {}^{A} \mu_{X}))$. Note that $(\widehat{B})^{2}((X, {}^{A} \mu_{X})) = \widehat{B}(\widehat{B}((X, {}^{A} \mu_{X}))) = \widehat{B}(BX, (B^{A} \mu_{X}) \circ (\Phi X))$ $= (B^{2}(X), (B^{2A} \mu_{X}) \circ (B\Phi X) \circ (\Phi BX)).$ We compute

$$(m_B X) \circ (B^{2A} \mu_X) \circ (B \Phi X) \circ \Phi B X \stackrel{m_B}{=} (B^A \mu_X) \circ (m_B A X) \circ (B \Phi X) \circ (\Phi B X)$$
$$\stackrel{(11)}{=} (B^A \mu_X) \circ (\Phi X) \circ (A m_B X) .$$

We have to check that in this way we get a functorial morphism $m_{\widehat{B}} : (\widehat{B})^2 \to \widehat{B}$. Let $f : (X, \mu) \to (X', \mu')$ be a morphism in ${}_{\mathbb{A}}\mathcal{A}$. We have to prove that

$$m_{\widehat{B}}\left(X',\mu'\right)\circ\left(\widehat{B}\right)^{2}f=\left(\widehat{B}\right)f\circ m_{\widehat{B}}\left(X,\mu\right)$$

which amounts, in view of Proposition 2.10, to

$${}_{\mathbb{A}}U\left[m_{\widehat{B}}\left(X',\mu'\right)\circ\left(\widehat{B}\right)^{2}f\right] = {}_{\mathbb{A}}U\left[\left(\widehat{B}\right)f\circ m_{\widehat{B}}\left(X,\mu\right)\right].$$

We compute

$${}_{\mathbb{A}}U\left[m_{\widehat{B}}\left(X',\mu'\right)\circ\left(\widehat{B}\right)^{2}f\right] = {}_{\mathbb{A}}Um_{\widehat{B}}\left(X',\mu'\right)\circ{}_{\mathbb{A}}U\left(\widehat{B}\right)^{2}f = m_{B}X'\circ B^{2}{}_{\mathbb{A}}Uf$$
$$\stackrel{m_{B}}{=} B_{\mathbb{A}}Uf\circ m_{B}X = {}_{\mathbb{A}}U\widehat{B}f\circ{}_{\mathbb{A}}Um_{\widehat{B}}\left(X,\mu\right) = {}_{\mathbb{A}}U\left[\left(\widehat{B}\right)f\circ m_{\widehat{B}}\left(X,\mu\right)\right].$$

Let us prove that $u_B X : X \to BX$ lifts to a morphism $u_{\widehat{B}}(X,\mu)$ in ${}_{\mathbb{A}}\mathcal{A}$ from $((X,{}^{A}\mu_X))$ to $\widehat{B}((X,{}^{A}\mu_X))$. We compute

$$(B^{A}\mu_{X})\circ(\Phi X)\circ(Au_{B}X) \stackrel{(11)}{=} (B^{A}\mu_{X})\circ(u_{B}AX) \stackrel{u_{B}}{=} (u_{B}X)\circ^{A}\mu_{X}.$$

We have to check that in this way we get a functorial morphism $u_{\widehat{B}} : {}_{\mathbb{A}}\mathcal{A} \to \widehat{B}$. Let $f : (X, \mu) \to (X', \mu')$ be a morphism in ${}_{\mathbb{A}}\mathcal{A}$. We have to prove that

$$u_{\widehat{B}}(X',\mu')\circ f = \left(\widehat{B}\right)f\circ u_{\widehat{B}}(X,\mu)$$

which amounts, in view of Proposition 2.10, to

$${}_{\mathbb{A}}U\left[u_{\widehat{B}}\left(X',\mu'\right)\circ f\right] = {}_{\mathbb{A}}U\left[\left(\widehat{B}\right)f\circ u_{\widehat{B}}\left(X,\mu\right)\right].$$

We compute

$${}_{\mathbb{A}}U\left[u_{\widehat{B}}\left(X',\mu'\right)\circ f\right] = {}_{\mathbb{A}}Uu_{\widehat{B}}\left(X',\mu'\right)\circ {}_{\mathbb{A}}Uf = u_{B}X'\circ {}_{\mathbb{A}}Uf \stackrel{u_{B}}{=} B_{\mathbb{A}}Uf\circ u_{B}X$$
$$= {}_{\mathbb{A}}U\left[\left(\widehat{B}\right)f\circ u_{\widehat{B}}\left(X,\mu\right)\right].$$

Now we have to check that $\widehat{\mathbb{B}} = (\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}})$ is a monad on ${}_{\mathbb{A}}\mathcal{A}$. We compute

$${}_{\mathbb{A}}U\left[m_{\widehat{B}}\circ\left(m_{\widehat{B}}\widehat{B}\right)\right] = m_{B\mathbb{A}}U\circ m_{B}B_{\mathbb{A}}U$$
$$\overset{(B,m_{B},u_{B}) \text{ is a monad}}{=} m_{B\mathbb{A}}U\circ\left(Bm_{B\mathbb{A}}U\right) = {}_{\mathbb{A}}U\left[m_{\widehat{B}}\circ\widehat{B}m_{\widehat{B}}\right]$$

so that, in view of Proposition 2.10, we conclude that

$$m_{\widehat{B}} \circ \left(m_{\widehat{B}} \widehat{B} \right) = m_{\widehat{B}} \circ \widehat{B} m_{\widehat{B}}.$$

We compute

$${}_{\mathbb{A}}U\left[m_{\widehat{B}}\circ\left(\widehat{B}u_{\widehat{B}}\right)\right] = m_{B\mathbb{A}}U\circ Bu_{B\mathbb{A}}U$$
$$\stackrel{(B,m_B,u_B) \text{ is a monad}}{=} m_{B\mathbb{A}}U\circ u_BB_{\mathbb{A}}U = {}_{\mathbb{A}}U\left[m_{\widehat{B}}\circ\left(\widehat{B}u_{\widehat{B}}\right)\right]$$

so that, in view of Proposition 2.10, we conclude that

$$m_{\widehat{B}} \circ \left(\widehat{B}u_{\widehat{B}}\right) = \widehat{B} = m_{\widehat{B}} \circ \left(\widehat{B}u_{\widehat{B}}\right).$$

Let now $\widehat{\mathbb{B}} = (\widehat{B}, m_{\widehat{B}}, u_{\widehat{B}})$ be a monad on ${}_{\mathbb{A}}\mathcal{A}$ that is a lifting of \mathbb{B} . By Proposition 5.1 we already know that $\Phi = ({}_{\mathbb{A}}U\lambda_A\widehat{B}_{\mathbb{A}}F) \circ (ABu_A)$ is a functorial morphism from AB to BA which satisfies (10). Let us prove it satisfies also (11). We compute

$$(m_{B}A) \circ (B\Phi) \circ (\Phi B)$$

$$= (m_{B}A) \circ (B_{A}U\lambda_{A}\hat{B}_{A}F) \circ (BABu_{A}) \circ (_{A}U\lambda_{A}\hat{B}_{A}FB) \circ (ABu_{A}B)$$

$$= (m_{B}AU_{A}F) \circ (B_{A}U\lambda_{A}\hat{B}_{A}F) \circ (B_{A}U_{A}FBu_{A}) \circ (_{A}U\lambda_{A}\hat{B}_{A}FB) \circ (_{A}U_{A}FBu_{A}B)$$

$$= (_{A}Um_{\bar{B}}^{A}F) \circ (_{A}U\hat{B}\lambda_{A}\hat{B}_{A}F) \circ (_{A}U\hat{B}_{A}FBu_{A}) \circ (_{A}U\lambda_{A}\hat{B}_{A}FB) \circ (_{A}U_{A}FBu_{A}B)$$

$$= _{A}U \left[(m_{\bar{B}}^{A}F) \circ (\hat{B}\lambda_{A}\hat{B}_{A}F) \circ (\hat{B}_{A}FBu_{A}) \circ (\lambda_{A}\hat{B}_{A}FB) \circ (_{A}FBu_{A}B) \right]$$

$$= _{A}U \left[(m_{\bar{B}}^{A}F) \circ ((\hat{B}\lambda_{A}\hat{B}_{A}F) \circ (\hat{B}_{A}FBu_{A})) \circ (\lambda_{A}\hat{B}_{A}FB) \circ (_{A}FBu_{A}B) \right]$$

$$= _{A}U \left[(m_{\bar{B}}^{A}F) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}F_{A}U\hat{B}\lambda_{A}\hat{B}_{A}F) \circ (_{A}FB_{A}U\hat{B}_{A}FBu_{A}) \circ (_{A}FBu_{A}B) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}F_{A}U\hat{B}\lambda_{A}\hat{B}_{A}F) \circ (_{A}FB_{A}U_{A}FBu_{A}) \circ (_{A}FBu_{A}B) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}F_{A}U\hat{B}\lambda_{A}\hat{B}_{A}F) \circ _{A}FB (ABu_{A} \circ u_{A}B) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}FB_{A}U\hat{A}\hat{B}_{A}F) \circ _{A}FB (u_{A}BA \circ Bu_{A}) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}FB_{A}U\lambda_{A}\hat{B}_{A}F) \circ _{A}FB (u_{A}BA \circ Bu_{A}) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}FB_{A}U\lambda_{A}\hat{B}_{A}F) \circ _{A}FB (u_{A}BA \circ Bu_{A}) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}FB_{A}U\lambda_{A}\hat{B}_{A}F) \circ (u_{A}UB_{A}\nabla Bu_{A}) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (_{A}FB_{A}U\lambda_{A}\hat{B}_{A}F) \circ (u_{A}UB_{A}\nabla Bu_{A}) \right]$$

$$= _{A}U \left[(m_{\bar{B}}AF) \circ (\lambda_{A}\hat{B}\hat{B}_{A}F) \circ (AFBu_{A}) \right]$$

$$= _{A}U \left[(M_{\bar{B}}AF) \circ (A_{A}\hat{B}\hat{B}_{A}F) \circ (A_{A}B\hat{B}_{A}F) \circ (A_{A}BB_{A}F) \circ (u_{A}UB_{A}\nabla Bu_{A}) \right]$$

$$= _{A}U \left[(\lambda_{A}\hat{B}_{A}F) \circ (A_{A}FB_{A}\nabla Bu_{A}) \circ (A_{A}FBBu_{A}) \right]$$

$$= _{A}U \left[(\lambda_{A}\hat{B}_{A}F) \circ (A_{A}FBA_{A}\nabla Bu_{A}) \circ (A_{A}FBBu_{A}) \right]$$

$$= _{A}U \left[(\lambda_{A}\hat{B}_{A}F) \circ (A_{A}FBA_{A}\nabla Bu_{A}) \circ (A_{A}FBBu_{A}) \right]$$

$$= _{A}U \left[(\lambda_{A}\hat{B}_{A}F) \circ (A_{A}FBA_{A}\nabla Bu_{A}) \circ (A_{A}FBBu_{A}) \right]$$

$$= _{A}U \left[(\lambda_{A}\hat{B}_{A}F) \circ (A_{A}FBA_{A}\nabla Bu_{A}) \circ (A_{A}FBBu$$

We also compute

$$\begin{split} \Phi \circ (Au_B) &= \left({}_{\mathbb{A}}U\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ (ABu_A) \circ (Au_B) \\ &= \left({}_{\mathbb{A}}U\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ \left({}_{\mathbb{A}}U_{\mathbb{A}}FBu_A \right) \circ \left({}_{\mathbb{A}}U_{\mathbb{A}}Fu_B \right) \\ &= {}_{\mathbb{A}}U \left[\left(\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ {}_{\mathbb{A}}F \left(Bu_A \circ u_B \right) \right] \\ &\stackrel{u_B}{=} {}_{\mathbb{A}}U \left[\left(\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ {}_{\mathbb{A}}F \left(u_B A \circ u_A \right) \right] \\ &= {}_{\mathbb{A}}U \left[\left(\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ {}_{\mathbb{A}}F \left(u_B A \cup u_A \right) \right] \\ &= {}_{\mathbb{A}}U \left[\left(\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ {}_{\mathbb{A}}F \left(u_B A \cup u_A \right) \right] \\ &= {}_{\mathbb{A}}U \left[\left(\lambda_A \widehat{B}_{\mathbb{A}}F \right) \circ {}_{\mathbb{A}}F \left({}_{\mathbb{A}}Uu_{\widehat{B}\mathbb{A}}F \circ u_A \right) \right] \end{split}$$

CLAUDIA MENINI

$$=_{\mathbb{A}} U\left[\left(\lambda_{A}\widehat{B}_{\mathbb{A}}F\right) \circ \left(_{\mathbb{A}}F_{\mathbb{A}}Uu_{\widehat{B}\mathbb{A}}F\right) \circ \left(_{\mathbb{A}}Fu_{A}\right)\right]$$

$$\stackrel{\lambda_{A}}{=}_{\mathbb{A}} U\left[\left(u_{\widehat{B}}\mathbb{A}F\right) \circ \left(\lambda_{A\mathbb{A}}F\right) \circ \left(_{\mathbb{A}}Fu_{A}\right)\right]$$

$$\stackrel{(\lambda_{A\mathbb{A}}F)\circ\left(_{\mathbb{A}}Fu_{A}\right)=_{\mathbb{A}}F}{=}_{\mathbb{A}}Uu_{\widehat{B}}\mathbb{A}F = u_{B\mathbb{A}}U_{\mathbb{A}}F = u_{B}A.$$

6. Descent data and quasi-symmetries associated to a monad

DEFINITIONS 6.1. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} . Let $\Phi : A^2 \to A^2$ be a functorial morphism.

We will say that Φ satisfies the Yang-Baxter equation if

(12)
$$A\Phi \circ \Phi A \circ A\Phi = \Phi A \circ A\Phi \circ \Phi A$$

holds true.

We will say that Φ is a BD-law on A [KLV, Definition 2.2] provided it is a distributive law of A over itself i.e. it satisfies

(13)
$$\Phi \circ (m_A A) = (Am_A) \circ (\Phi A) \circ (A\Phi)$$
 and $\Phi \circ (u_A A) = Au_A$

and

(14)
$$\Phi \circ (Am_A) = (m_A A) \circ (A\Phi) \circ (\Phi A)$$
 and $\Phi \circ (Au_A) = u_A A$

and it satisfies the Yang-Baxter equation.

DEFINITIONS 6.2. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi : A^2 \to A^2$ be a BD-law on \mathbb{A} . Let $(X, \mu) \in \mathcal{A}A$. A quasi Φ -symmetry on (X, μ) is a morphism $c : AX \to AX$ such that

(15)
$$\mu \circ c \circ uX = X$$

(16)
$$Ac \circ \Phi X \circ Ac = \Phi X \circ Ac \circ \Phi X$$

(17) $c \circ A\mu = mX \circ Ac \circ \Phi X$

We denote by Φ -QSymm (X, μ) the set of quasi Φ -symmetries on (X, μ) . Moreover we write QSymm (\mathbb{A}, Φ) for the category having as objects pairs

$$((X,\mu),c)$$
 where $(X,\mu) \in {}_{\mathbb{A}}\mathcal{A}$ and $c \in \Phi$ -QSymm (X,μ) .

A morphism $f: ((X,\mu), c) \to ((X',\mu'), c')$ is a morphism $f: (X,\mu) \to (X',\mu')$ in $\mathcal{A}\mathcal{A}$ such that $c' \circ Af = Af \circ c$.

A quasi Φ -symmetry c on (X, μ) is called a Φ -symmetry if $c^2 = AX$. We denote by Φ -Symm (X, μ) the subset of Φ -QSymm (X, μ) consisting of Φ -symmetries and by Symm (\mathbb{A}, Φ) the full subcategory of QSymm (\mathbb{A}, Φ) whose objects are pairs $((X, \mu), c)$ where $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$ and $c \in \Phi$ -Symm (X, μ) .

REMARK 6.3. $(X,\mu) \in {}_{\mathbb{A}}\mathcal{A}$. In [KLV, Definition 3.3] a quasi Φ -symmetry on (X,μ) is called Φ -braiding on (X,μ) .

REMARK 6.4. Let $f: B \to A$ be a morphism of rings. Every $M \in Mod-A$ has a natural structure of right *B*-module defined by setting

$$m \cdot b = mf(b)$$
 for every $m \in M$ and $b \in B$.

We will denote by M endowed with this $f_*(M)$ right B-module structure. It is easy to check that every morphism of right A-modules $g: M \to M'$ becomes automatically a morphism $f_*(g):$ $f_*(M) \to f_*(M')$ in Mod-B and in this way we get a functor $f_*: Mod$ - $A \to Mod$ -B. On the other hand, A has a left B-module structure defined by

$$b \cdot a = f(b) a$$
 for every $b \in B$ and $a \in A$.

In this way A becomes a B-A-bimodule. Let $L := (-) \otimes_B A : Mod - B \to Mod - A$ be the extension of scalars functor and $R := \text{Hom}_A(BA, -) : Mod - A \to Mod - B$ be the restriction of scalars functor

(see 2.5). In the following we will identify R with f_* through the natural isomorphism of right B-modules:

$$\nu_M : \operatorname{Hom}_A ({}_BA_A, M) \to f_*(M), \qquad h \mapsto h(1_A)$$

EXAMPLE 6.5. Let $f: B \to A$ be a morphism of rings. Let $L := (-) \otimes_B A = f^* : Mod - B \to Mod - A$ be the extension of scalars functor and $R := \operatorname{Hom}_A(_BA, -) = f_* : Mod - A \to Mod - B$ be the restriction of scalars functor (see 2.5). Let $\mathbb{A} = (RL, m = R\epsilon L, u = \eta)$ be the associated monad on Mod - B (see Proposition 2.4). For any $E \in Mod - B$ we have

 $RLE = E \otimes_B A$ regarded as a right *B*-module

$$mE : E \otimes_B A \otimes_B A \to E \otimes_B A$$
$$x \otimes a \otimes a' \mapsto x \otimes aa'$$
$$uE : E_B \to E \otimes_B A$$
$$x \mapsto x \otimes 1.$$

Assume now that Im (f) is contained in the center of A. Let $\Phi : (RL)^2 \to (RL)^2$, be the functorial morphism defined by

$$\Phi E = E \otimes_B \tau : E \otimes_B A \otimes_B A \to E \otimes_B A \otimes_B A \text{ for any } E \in Mod-B$$

where $\tau : A \otimes_B A \to A \otimes_B A$ is the usual flip $\tau(x \otimes y) = y \otimes x$. Note for $\Phi E = E \otimes_B \tau$ to be a morphism in *Mod-B* we need that

$$x \otimes a' \otimes ab = (x \otimes a' \otimes a) b = [\Phi E (x \otimes a \otimes a')] b = \Phi E ((x \otimes a \otimes a') b)$$

= $\Phi E (x \otimes a \otimes a'b) = x \otimes a'b \otimes a = x \otimes a' \otimes ba$

which is satisfied in view of our assumption. We compute

x

$$RLuE : E \otimes_B A \to E \otimes_B A \otimes_B A$$
$$x \otimes a \mapsto x \otimes 1 \otimes a$$
$$uRLE : E \otimes_B A \to E \otimes_B A \otimes_B A$$

$$uRLE: E \otimes_B A \to E \otimes_B A \otimes_B A$$
$$x \otimes a \mapsto x \otimes a \otimes 1$$

$$RLmE \quad : \quad [E \otimes_B A \otimes_B A] \otimes_B A \to [E \otimes_B A] \otimes_B A \\ \otimes a \otimes a' \otimes a'' \quad \mapsto \quad x \otimes aa' \otimes a''$$

i.e.

$$RLm = -\otimes_B m \otimes_B A$$

$$\begin{array}{rcl} mRLE & : & [E \otimes_B A] \otimes_B A \otimes_B A \to [E \otimes_B A] \otimes_B A \\ x \otimes a \otimes a' \otimes a'' & \mapsto & x \otimes a \otimes a'a'' \end{array}$$

i.e.

$$mRL = -\otimes_B A \otimes_B m$$

 $\Phi RLE : [E \otimes_B A] \otimes_B A \otimes_B A \to [E \otimes_B A] \otimes_B A \otimes_B A$ $x \otimes a \otimes a' \otimes a'' \mapsto x \otimes a \otimes a'' \otimes a'$

so that

$$\Phi RL = -\otimes_B A \otimes_B \tau$$

$$RL(\Phi E): [E \otimes_B A \otimes_B A] \otimes_B A \to [E \otimes_B A \otimes_B A] \otimes_B A$$
$$x \otimes a \otimes a' \otimes a'' \mapsto x \otimes a' \otimes a \otimes a''$$

so that

$$RL\Phi = -\otimes_B \tau \otimes_B A$$

CLAUDIA MENINI

Let us check that Φ satisfies (13). For every $x \in E, a, a', a'' \in A$ we have: $(\Phi E \circ mRLE) (x \otimes a \otimes a' \otimes a'') = \Phi E (x \otimes a \otimes a'a'') = x \otimes a'a'' \otimes a$

$$\begin{split} & [(RLmE) \circ (\Phi RLE) \circ (RL\Phi E)] \, (x \otimes a \otimes a' \otimes a'') \\ & = [(RLmE) \circ (\Phi RLE)] \, (x \otimes a' \otimes a \otimes a'') \\ & = (RLmE) \, (x \otimes a' \otimes a'' \otimes a) = x \otimes a'a'' \otimes a \end{split}$$

and

 $[\Phi E \circ (uRLE)] (x \otimes a) = \Phi E (x \otimes a \otimes 1) = x \otimes 1 \otimes a = (RLuE) (x \otimes a).$ Let us check that Φ satisfies (14). For every $x \in E, a, a', a'' \in A$ we have:

$$[\Phi E \circ (RLmE)] (x \otimes a \otimes a' \otimes a'') = \Phi E (x \otimes aa' \otimes a'') = x \otimes a'' \otimes aa'$$

$$[(mRLE) \circ (RL\Phi E) \circ (\Phi RLE)] (x \otimes a \otimes a' \otimes a'')$$

=
$$[(mRLE) \circ (RL\Phi E)] (x \otimes a \otimes a'' \otimes a')$$

=
$$(mRLE) (x \otimes a'' \otimes a \otimes a') = x \otimes a'' \otimes aa'$$

so that we get

$$\Phi E \circ (RLmE) = (mRLE) \circ (RL\Phi E) \circ (\Phi RLE)$$

We compute

$$[\Phi E \circ (RLuE)] = (\Phi E) (x \otimes 1 \otimes a) = x \otimes a \otimes 1 = (uRLE) (x \otimes a)$$

Thus we obtain

$$\Phi \circ (RLm) = (mRL) \circ (RL\Phi) \circ (\Phi RL)$$
 and $\Phi \circ (RLu) = uRL$

Let us check that Φ satisfies (12). We have

$$RL\Phi \circ \Phi RL \circ RL\Phi = -\otimes_B \left[(\tau \otimes_B A) \circ (A \otimes_B \tau) \circ (\tau \otimes_B A) \right]$$
$$= -\otimes_B \left[(A \otimes_B \tau) \circ (\tau \otimes_B A) \circ (A \otimes_B \tau) \right] = \Phi RL \circ RL\Phi \circ \Phi RL$$

Thus Φ is a BD-law on *Mod-B*.

REMARK 6.6. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi : A^2 \to A^2$ be a BD-law on \mathbb{A} . For every $X \in \mathcal{A}$, $\Phi X : A^2 X \to A^2 X$ is a quasi Φ -symmetry on $\mathbb{A}F(X) = (AX, mX)$. In fact we have

$$mX \circ \Phi X \circ uAX \stackrel{(13)}{=} mX \circ AuX = AX$$
$$A\Phi X \circ \Phi AX \circ A\Phi X \stackrel{(12)}{=} \Phi AX \circ A\Phi X \circ \Phi AX$$
$$\Phi X \circ AmX \stackrel{(14)}{=} mAX \circ A\Phi X \circ \Phi AX$$

Note that if $f: X \to X'$ is a morphism in \mathcal{A} , then

$$Af: ((AX, mX), \Phi AX) \to ((AX', mX'), \Phi AX')$$

is a morphism in QSymm (\mathbb{A}, Φ) . Then it is easy to show that in this way we obtain a functor

$$J: \mathcal{A} \to \operatorname{QSymm}(\mathbb{A}, \Phi)$$
$$X \mapsto ((AX, mX), \Phi X)$$

DEFINITION 6.7. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} . and let $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ the corresponding adjunction with unit u and counit λ . Let $\mathbb{A}^* = ({}_{\mathbb{A}}F_{\mathbb{A}}U, {}_{\mathbb{A}}Fu_{\mathbb{A}}U, \lambda)$ be the comonad on the category ${}_{\mathbb{A}}\mathcal{A}$ associated to this adjunction (Proposition 3.4). Let $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$. A descent datum on (X, μ) is a morphism

$$\rho: (X,\mu) \to {}_{\mathbb{A}}F_{\mathbb{A}}U(X,\mu) = (AX,mX)$$

in $_{\mathbb{A}}\mathcal{A}$ such that $((X,\mu),\rho) \in {}^{\mathbb{A}^*}(_{\mathbb{A}}\mathcal{A})$ i.e. the following equalities are satisfied

(18)
$$mX \circ A\rho = \rho \circ \mu$$
 i.e. ρ is a morphism in ${}_{\mathbb{A}}\mathcal{A}$

(19)
$$A\rho \circ \rho = AuX \circ \rho$$

(20)
$$\mu \circ \rho = \mathrm{Id}_{X}$$

The set of all descent data on (X, μ) will be denoted by $\text{Des}(X, \mu)$.

REMARK 6.8. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} . For every $X \in \mathcal{A}$, $AuX : {}_{\mathbb{A}}FX = (AX, mX) \rightarrow (AAX, mAX)$ is a descent datum on (AX, mX). In fact we have:

$$mAX \circ AAuX \stackrel{\text{\tiny{m}}}{=} AuX \circ mX$$
$$AAuX \circ AuX \stackrel{u}{=} AuAX \circ AuX$$
$$mX \circ AuX = AX.$$

This is the canonical comparison $K : \mathcal{A} \to {}^{\mathbb{A}^*}({}_{\mathbb{A}}\mathcal{A})$ of the adjoint pair $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ sending $X \in \mathcal{A}$ to

$$({}_{\mathbb{A}}FX, {}_{\mathbb{A}}FuX) = ((AX, mX), AuX).$$

NOTATIONS 6.9. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi : A^2 \to A^2$ be a BD-law on \mathbb{A} . We denote by $V : \operatorname{QSymm}(\mathbb{A}, \Phi) \to {}_{\mathbb{A}}\mathcal{A}$ the forgetful functor and with $J : \mathcal{A} \to \operatorname{QSymm}(\mathbb{A}, \Phi)$ the functor defined by (see Remark 6.6)

$$J(X) = ((AX, mX), \Phi X)$$

PROPOSITION 6.10. [KLV, Theorem 3.7] Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi: A^2 \to A^2$ be a BD-law on \mathbb{A} . Then

$$\begin{pmatrix} \mathcal{A} \stackrel{\wedge F}{\to} {}_{\mathbb{A}}\mathcal{A} \end{pmatrix} = \begin{pmatrix} \mathcal{A} \stackrel{J}{\to} \operatorname{QSymm}\left(\mathbb{A}, \Phi\right) \stackrel{V}{\to} {}_{\mathbb{A}}\mathcal{A} \end{pmatrix}$$
$${}_{\mathbb{A}}F = V \circ J, \qquad {}_{\mathbb{A}}F \circ {}_{\mathbb{A}}U = V \circ J \circ {}_{\mathbb{A}}U$$

and $(V, J \circ_{\mathbb{A}} U)$ is an adjunction with counit $\lambda_A : {}_{\mathbb{A}} F \circ_{\mathbb{A}} U = V \circ J \circ_{\mathbb{A}} U \to {}_{\mathbb{A}} \mathcal{A}$ and unit $\beta :$ QSymm $(\mathbb{A}, \Phi) \to J \circ_{\mathbb{A}} U \circ V$

defined by

$$\beta\left(\left(X,\mu\right),c\right)=c\circ uX \qquad for \ every \ \left(\left(X,\mu\right),c\right)\in \operatorname{QSymm}\left(\mathbb{A},\Phi\right).$$

Moreover the comonad corresponding to the adjunction $(V, J \circ_{\mathbb{A}} U)$ coincides with the comonad $\mathbb{A}^* = ({}_{\mathbb{A}}F_{\mathbb{A}}U, {}_{\mathbb{A}}Fu_{\mathbb{A}}U, \lambda)$ corresponding to the adjunction $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$.

Proof. Let $X \in \mathcal{A}$. Then

$$(V \circ J)(X) = V((AX, mX), \Phi X) = (AX, mX) = {}_{\mathbb{A}}F(X)$$

Thus $_{\mathbb{A}}F \circ _{\mathbb{A}}U = V \circ J \circ _{\mathbb{A}}U$. Let now $((X, \mu), c) \in \operatorname{QSymm}(\mathbb{A}, \Phi)$ and let us check that $\beta((X, \mu), c) = c \circ uX$ is a morphism

$$\beta\left(\left(X,\mu\right),c\right):\left(\left(X,\mu\right),c\right)\to\left(J\circ_{\mathbb{A}}U\circ V\right)\left(\left(X,\mu\right),c\right)=\left(\left(AX,mX\right),\Phi X\right)$$

in QSymm (\mathbb{A}, Φ) . We compute

$$c \circ uX \circ \mu \stackrel{u}{=} c \circ A\mu \circ uAX \stackrel{(17)}{=} mX \circ Ac \circ \Phi X \circ uAX \stackrel{(13)}{=} mX \circ Ac \circ AuX$$

and

$$Ac \circ AuX \circ c \stackrel{(13)}{=} Ac \circ \Phi X \circ uAX \circ c \stackrel{u}{=} Ac \circ \Phi X \circ uAX$$
$$\stackrel{(16)}{=} \Phi X \circ Ac \circ \Phi X \circ uAX \stackrel{(13)}{=} \Phi X \circ Ac \circ AuX.$$

Let us check that in this way we get a functorial morphism β : QSymm $(\mathbb{A}, \Phi) \to J \circ_{\mathbb{A}} U \circ V$. Let

$$f:((X,\mu),c) \to ((X',\mu'),c')$$

be a morphism in QSymm (\mathbb{A}, Φ) . We have

$$(J \circ_{\mathbb{A}} U \circ V) (f) \beta ((X, \mu), c) = Af \circ c \circ uX$$
$$= c' \circ Af \circ uX \stackrel{u}{=} c' \circ uX' \circ f = \beta ((X', \mu'), c') \circ f.$$

Let us know show $(V, J \circ_{\mathbb{A}} U)$ is an adjunction with counit $\lambda = \lambda_A$ and unit β .

For every $((X, \mu), c) \in \operatorname{QSymm}(\mathbb{A}, \Phi)$, we compute

$${}_{\mathbb{A}}U\left[\lambda V\left(\left(\left(X,\mu\right),c\right)\right)\circ V\beta\left(\left(\left(X,\mu\right),c\right)\right)\right] = {}_{\mathbb{A}}U\lambda\left(\left(X,\mu\right)\right)\circ c\circ uX$$
$$= \mu\circ c\circ uX \stackrel{(15)}{=} X = {}_{\mathbb{A}}U\left[V\left(\left(\left(X,\mu\right),c\right)\right)\right]$$

and for every $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$, we compute

Since both the functors ${}_{\mathbb{A}}U$ and $V \circ {}_{\mathbb{A}}U$ are faithful, we conclude.

In view of the foregoing, to prove the last statement it remains to prove that

$$V\beta J_{\mathbb{A}}U = {}_{\mathbb{A}}Fu_{\mathbb{A}}U$$

Let $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$. We compute

$$(V\beta J_{\mathbb{A}}U)(X,\mu) = V\beta J(X) = V\beta (AX,mX,\Phi X)$$
$$= \Phi X \circ uAX \stackrel{(13)}{=} AuX = ({}_{\mathbb{A}}Fu_{\mathbb{A}}U)(X,\mu).$$

PROPOSITION 6.11. Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi : A^2 \to A^2$ be a BD-law on \mathbb{A} . For every $(X, \mu) \in {}_{\mathbb{A}}\mathcal{A}$ the assignment

$$c \mapsto c \circ uX$$

defines a bijection

$$\Gamma(X,\mu): \Phi$$
-QSymm $(X,\mu) \to Des(X,\mu)$

whose inverse $\Gamma'(X,\mu)$ is defined by setting

$$\Gamma'(X,\mu)(\rho) = A\mu \circ \Phi X \circ A\rho.$$

Moreover if $\Phi X \circ \Phi X = A^2 X$, then Φ -QSymm $(X, \mu) = \Phi$ -Symm (X, μ) .

Proof. Let $c \in \Phi$ -QSymm (X, μ) and let us check that $c \circ uX \in \text{Des}(X, \mu)$. Let us check (18).

$$mX \circ A (c \circ uX) = mX \circ Ac \circ AuX \stackrel{(13)}{=} mX \circ Ac \circ \Phi X \circ uAX \stackrel{(17)}{=} c \circ A\mu \circ uAX$$
$$\stackrel{u}{=} (c \circ uX) \circ \mu.$$

Let us check (19).

$$\begin{array}{l} AuX\circ (c\circ uX) \stackrel{(13)}{=} \Phi X\circ (uAX\circ c)\circ uX \stackrel{u}{=} \Phi X\circ Ac\circ uAX\circ uX \\ \stackrel{(14)}{=} (\Phi X\circ Ac\circ \Phi X)\circ AuX\circ uX \stackrel{(16)}{=} Ac\circ \Phi X\circ (Ac\circ AuX)\circ uX \end{array}$$

 $\stackrel{u}{=} Ac \circ \Phi X \circ uAX \circ c \circ uX \stackrel{(13)}{=} Ac \circ AuX \circ c \circ uX = A (c \circ uX) \circ c \circ uX.$ neck (20).

Let us check (20).

$$\mu \circ (c \circ uX) \stackrel{(15)}{=} X$$

Let $\rho \in \text{Des}(X,\mu)$. Let us check that $A\mu \circ \Phi X \circ A\rho \in \Phi$ -QSymm (X,μ) . Let us check (15)

$$\mu \circ A\mu \circ \Phi X \circ A\rho \circ uX \stackrel{(5)}{=} \mu \circ mX \circ \Phi X \circ (A\rho \circ uX) \stackrel{u}{=} \mu \circ mX \circ (\Phi X \circ uAX) \circ \rho$$
$$\stackrel{(13)}{=} \mu \circ mX \circ (AuX \circ \rho) \stackrel{(19)}{=} \mu \circ (mX \circ A\rho) \circ \rho \stackrel{(18)}{=} \mu \circ \rho \circ \mu \circ \rho = X.$$

Let us check (16)

$$A^{2}\mu \circ A\Phi X \circ A^{2}\rho \circ (\Phi X \circ A^{2}\mu) \circ A\Phi X \circ A^{2}\rho$$
$$\stackrel{\Phi}{=} A^{2}\mu \circ A\Phi X \circ (A^{2}\rho \circ A^{2}\mu) \circ \Phi A X \circ A\Phi X \circ A^{2}\rho$$

(CO)MONADS AND DESCENT

Let us check (17)

$$mX \circ A (A\mu \circ \Phi X \circ A\rho) \circ \Phi X$$

$$= (mX \circ A^{2}\mu) \circ A\Phi X \circ A^{2}\rho \circ \Phi X$$

$$\stackrel{m}{=} A\mu \circ mAx \circ A\Phi X \circ (A^{2}\rho \circ \Phi X)$$

$$\stackrel{\Phi}{=} A\mu \circ (mAX \circ A\Phi X \circ \Phi AX) \circ A^{2}\rho$$

$$\stackrel{(14)}{=} A\mu \circ \Phi X \circ (AmX \circ A^{2}\rho)$$

$$\stackrel{(18)}{=} A\mu \circ \Phi X \circ A\rho \circ A\mu$$

$$= (A\mu \circ \Phi X \circ A\rho) \circ A\mu.$$

Let $c \in \Phi$ -QSymm (X, μ) . Since, by Proposition 6.10, $\beta((X, \mu), c) = c \circ uX$ is a morphism in QSymm (\mathbb{A}, Φ) , we have that

(21)
$$Ac \circ AuX \circ c = \Phi X \circ Ac \circ AuX.$$

We deduce that

$$(\Gamma'(X,\mu)\circ\Gamma(X,\mu))(c) = A\mu\circ(\Phi X\circ Ac\circ AuX) \stackrel{(21)}{=} (A\mu\circ Ac\circ AuX)\circ c \stackrel{(15)}{=} c.$$

Let $\rho \in \text{Des}(X,\mu)$.

$$(\Gamma(X,\mu)\circ\Gamma'(X,\mu))(\rho) = A\mu\circ\Phi X\circ(A\rho\circ uX) \stackrel{u}{=} A\mu\circ\Phi X\circ uAX\circ\rho$$
$$\stackrel{(13)}{=} A\mu\circ AuX\circ\rho \stackrel{(5)}{=}\rho$$

Assume now that $\Phi X \circ \Phi X = A^2 X$ and let $\rho \in \text{Des}(X, \mu)$. We compute

$$\begin{aligned} A\mu \circ \Phi X \circ (A\rho \circ A\mu) \circ \Phi X \circ A\rho \stackrel{(18)}{=} & A\mu \circ \Phi X \circ Am X \circ (A^2\rho \circ \Phi X) \circ A\rho \\ & \stackrel{\Phi}{=} & A\mu \circ \Phi X \circ Am X \circ \Phi AX \circ (A^2\rho \circ A\rho) \\ \stackrel{(19)}{=} & A\mu \circ \Phi X \circ Am X \circ (\Phi AX \circ A^2 u X) \circ A\rho \\ & \stackrel{\Phi}{=} & A\mu \circ \Phi X \circ Am X \circ A^2 u X \circ \Phi X \circ A\rho \\ & = & A\mu \circ \Phi X \circ \Phi X \circ A\rho = A\mu \circ A\rho \stackrel{(20)}{=} & AX. \end{aligned}$$

Since any $c \in \Phi$ -QSymm (X, μ) is of the form $\Gamma'(X, \mu)(\rho)$ for $\rho = \Gamma(X, \mu)(c)$, we conclude. \Box

We now give a new and self-contained proof of the following Theorem.

THEOREM 6.12. [KLV, Theorem 3.7] Let $\mathbb{A} = (A, m, u)$ be a monad on a category \mathcal{A} and let $\Phi : A^2 \to A^2$ be a BD-law on \mathbb{A} . Let K^{co} be the cocomparison functor K^{co} of the adjunction $(V, J_{\mathbb{A}}U)$

$$K^{co}: \operatorname{QSymm}(\mathbb{A}, \Phi) \to^{VJ_{\mathbb{A}}U} (_{\mathbb{A}}\mathcal{A}) = {}^{\mathbb{A}^{F}_{\mathbb{A}}U} (_{\mathbb{A}}\mathcal{A}) = {}^{\mathbb{A}^{*}} (_{\mathbb{A}}\mathcal{A})$$

defined by

$$K^{co}(((X,\mu),c)) = (V(((X,\mu),c)), V\beta((X,\mu),c)) = ((X,\mu), c \circ uX)$$

is an isomorphism of categories whose inverse is the functor Λ defined by setting

$$\Lambda\left(\left(\left(X,\mu\right),\rho\right)\right) = \left(\left(X,\mu\right),A\mu\circ\Phi X\circ A\rho\right).$$

In particular the functor V is comonadic.

Proof. In view of Proposition 6.11, we know that $((X, \mu), A\mu \circ \Phi X \circ A\rho) \in \operatorname{QSymm}(\mathbb{A}, \Phi)$ for every $((X, \mu), \rho) \in^{\mathbb{A}^*} (_{\mathbb{A}}\mathcal{A})$. Let

$$f:((X,\mu),\rho)\to((X',\mu'),\rho')$$

be a morphism in \mathbb{A}^* ($_{\mathbb{A}}\mathcal{A}$). We have

 $Af \circ (A\mu \circ \Phi X \circ A\rho) = A\mu' \circ A^2 f \circ \Phi X \circ A\rho \stackrel{\Phi}{=} A\mu' \circ \Phi X' \circ A^2 f \circ A\rho = (A\mu' \circ \Phi X' \circ A\rho') \circ Af$ so that

$$f:((X,\mu),A\mu\circ\Phi X\circ A\rho)\to((X',\mu'),A\mu'\circ\Phi X'\circ A\rho')$$

is a morphism in QSymm (\mathbb{A}, Φ) . We deduce that Λ is a functor. In view of Proposition 6.11, we get that K^{co} is an isomorphism of categories with inverse Λ .

EXAMPLE 6.13. Let $f: B \to A$ be a morphism of rings. Let $L := (-) \otimes_B A = f^* : Mod - B \to Mod - A$ be the extension of scalars functor and $R := \operatorname{Hom}_A(_BA, -) = f_* : Mod - A \to Mod - B$ be the restriction of scalars functor. Let $\mathbb{A} = (RL, m = R\epsilon L, u = \eta)$ be the associated monad on Mod - B. Recall from Example (6.5) that for any $E \in Mod - B$ we have

 $RLE = E \otimes_B A$ regarded as a right *B*-module

$$mE : E \otimes_B A \otimes_B A \to E \otimes_B A$$
$$x \otimes a \otimes a' \mapsto x \otimes aa'$$
$$uE : E_B \to E \otimes_B A$$
$$x \mapsto x \otimes 1.$$

Let $(E, \mu) \in {}_{\mathbb{A}}(Mod-B)$. Then $\mu : RLE = E \otimes_B A \to E$ is a morphism in Mod-B satisfying $\mu \circ (\mu \otimes_B A) = \mu \circ RL\mu = \mu \circ mE$ and $E = \mu \circ uE$

i.e.

$$(xa) a' = [\mu \circ (\mu \otimes_B A)] (x \otimes a \otimes a') = (\mu \circ mE) (x \otimes a \otimes a') = x (aa')$$

where, for any $x \in E$ and $a \in A$ we write $xa = \mu(x \otimes a)$ and

$$x = x1$$

Let

 $t: E \times A \to E \otimes_B A$

the canonical projection. Then $(E, \mu \circ t) \in Mod$ -A. Let $f : (E, \mu) \to (E', \mu')$ be a morphism in $\mathbb{A}(Mod$ -B). This means that $f : E \to E'$ is a morphism in (Mod-B) and $f \circ \mu = \mu' \circ (f \otimes_B A)$ i.e.

$$f\left(xa\right) = f\left(x\right)a$$

i.e. $f: (E, \mu \circ t) \to (E', \mu' \circ t)$ is a morphism in *Mod-A*.

Conversely let $(M, \nu) \in Mod$ -A. Since ν is B-balanced, there is a unique morphism $\mu : M \otimes_B A \to M$ such that $\nu = \mu \circ t$. Hence the assignment $(E, \mu) \mapsto (E, \mu \circ t)$ yields a category isomorphism

$$H : {}_{\mathbb{A}} (Mod - B) \to Mod - A.$$

Let $({}_{\mathbb{A}}F, {}_{\mathbb{A}}U)$ be the adjunction corresponding to our monad \mathbb{A} . Then it is easy to check that

$$Mod-A \xrightarrow{H^{-1}} {}_{\mathbb{A}} (Mod-B) \xrightarrow{\mathbb{A}U} Mod-B$$

is just the restriction of scalars functor $R = \operatorname{Hom}_A(A, -) = f_* : Mod - A \to Mod - B$ while

$$Mod-B \stackrel{\mathbb{A}^F}{\to}_{\mathbb{A}} (Mod-B) \stackrel{H}{\to} Mod-A$$

coincides with the extension of scalars functor $L := (-) \otimes_B A = f^* : Mod - B \to Mod - A$. Therefore the category isomorphism H induces a category isomorphism

$${}^{\mathbb{A}F_{\mathbb{A}}U}(\mathbb{A}(Mod-B)) \to {}^{\mathbb{C}}(Mod-A)$$

where \mathbb{C} is the canonical comonad of the adjunction (L, R) i.e. $\mathbb{C} = (LR, \Delta = L\eta R = LuR, \varepsilon)$. For any $M \in Mod-A$ we have

 $LRM = M \otimes_B A$ regarded as a right A-module

$$\Delta M : M \otimes_B A \to M \otimes_B A \otimes_B A$$
$$x \otimes a \mapsto x \otimes 1 \otimes a$$
$$\varepsilon M : LRM = M \otimes_B A \to M$$
$$x \otimes a \mapsto xa$$

Let $(M, \rho) \in \mathbb{C} (Mod-A)$ and for every $x \in M$ we write

$$\rho(x) = \sum x_i \otimes \alpha_i$$
 where $x_i \in M$ and $\alpha_i \in A$ for every *i*.

(18) means that

(22) $\sum x_i \otimes \alpha_i a = \rho(xa) \quad \text{for every } x \in M \text{ and } a \in A.$

(19) means that

(23)
$$\sum \rho(x_i) \otimes \alpha_i = \sum x_i \otimes 1 \otimes \alpha_i \quad \text{for every } x \in M$$

(20) means that

(24)
$$\sum x_i \alpha_i = x \quad \text{for every } x \in M.$$

Now let us consider the cocomparison functor of the adjunction (L, R)

 $K^{co}: Mod-B \to {}^{\mathbb{C}}(Mod-A).$

For every $E \in B$ -Mod we have

$$K^{co}(E) := (L(E), L\eta(E))$$

where $\rho_{L(E)} = L\eta(E) : E \otimes_B A \to E \otimes_B A \otimes_B A$ and

$$L\eta(E) (x \otimes a) = x \otimes 1 \otimes a.$$

Let $e: RM \to RLRM = M \otimes_B A$ be the map defined by $e(x) = x \otimes 1$. Note that e is a map in *Mod-B*. Let $E = \text{Ker}(\rho - e)$. We have the exact sequence in *Mod-B*

 $0 \to E \xrightarrow{i} RM \xrightarrow{\rho-e} RLRM$

and

$$M^{cov} = E = \{ x \in M \mid \rho(x) = x \otimes 1 \}$$

It is easy to show that the assignment $M \mapsto M^{cov}$ defines a functor

$$()^{cov} : {}^{\mathbb{C}} (Mod-A) \to Mod-B.$$

THEOREM 6.14. [CIP, Teorema page 45] Using the assumptions and notations of Example 6.13, assume also that A is a faithfully flat left B-module. Then the cocomparison functor K^{co} : Mod- $B \rightarrow \mathbb{C} (Mod-A)$ is an equivalence of categories with inverse functor

$$()^{cov} : ^{\mathbb{C}} (Mod-A) \to Mod - B.$$

CLAUDIA MENINI

Proof. Let $(M, \rho) \in \mathbb{C}$ (Mod-A). Since A is a flat left B-module we get the exact sequence

$$0 \to M^{cov} \otimes_B A \to RM \otimes_B A \xrightarrow{(\rho-e) \otimes_B A} RLRM \otimes_B A$$

Let us show that $\operatorname{Im}(\rho) \subseteq M^{cov} \otimes_B A$ i.e. that $[(\rho - e) \otimes_B A] (\operatorname{Im}(\rho)) = 0$. Let $x \in M$ and let

$$\rho(x) = \sum x_i \otimes \alpha_i$$
 where $x_i \in M$ and $\alpha_i \in A$ for every i

We compute

$$\left[\left(\rho - e \right) \otimes_B A \right] (\rho) (x) = \left[\left(\rho - e \right) \otimes_B A \right] \left(\sum x_i \otimes \alpha_i \right)$$
$$= \sum \rho (x_i) \otimes \alpha_i - \sum x_i \otimes 1 \otimes \alpha_i \stackrel{(23)}{=} 0.$$

Hence we can consider the corestriction $\overline{\rho}: RM \to RLM^{cov} = M^{cov} \otimes_B A$ of ρ to $M^{cov} \otimes_B A$ so that $\rho = (i \otimes A) \circ \overline{\rho}$. Clearly $\overline{\rho}$ is a morphism in *Mod-A*. Let us show that it is a morphism in ${}^{\mathbb{C}}(Mod-A)$ from (M, ρ) to $K^{co}(M^{cov})$. For every $x \in M$, let

$$\rho(x) = \sum x_i \otimes \alpha_i \text{ where } x_i \in M \text{ and } \alpha_i \in A \text{ for every } i.$$

We compute

$$\begin{bmatrix} (i \otimes_B A \otimes_B A) \circ (\overline{\rho} \otimes_B A) \circ \rho \end{bmatrix} (x) = \begin{bmatrix} (\rho \otimes_B A) \circ \rho \end{bmatrix} (x) = \sum \rho (x_i) \otimes \alpha_i$$

$$\stackrel{(23)}{=} \sum x_i \otimes 1 \otimes \alpha_i = ((i \otimes A \otimes A) \circ \rho_{L(M^{cov})} \circ \overline{\rho}) (x).$$

Since ${}_{B}A$ is flat, $i \otimes_{B} A \otimes_{B} A$ is a monomorphism so that we deduce that

$$(\overline{\rho} \otimes_B A) \circ \rho = \rho_{L(M^{cov})} \circ \overline{\rho}$$

and hence $\overline{\rho}$ is a morphism in $^{\mathbb{C}}(Mod-A)$.

Let $h: M^{cov} \otimes_B A \to M$ be defined by

$$h\left(x\otimes a\right)=xa.$$

For every $x \in M$, let

$$\rho(x) = \sum x_i \otimes \alpha_i$$
 where $x_i \in M$ and $\alpha_i \in A$ for every *i*.

We compute

$$(h \circ \overline{\rho})(x) = \sum x_i \alpha_i \stackrel{(24)}{=} x$$

and for every $x \in M^{cov}$ and $a \in A$

$$(\overline{\rho} \circ h) (x \otimes a) = \rho (xa) \stackrel{(22)}{=} \sum x_i \otimes \alpha_i a$$
$$= \left(\sum x_i \otimes \alpha_i\right) a \stackrel{x \in M^{cov}}{=} (x \otimes 1) a = x \otimes a.$$

This proves that $\overline{\rho}$ is an isomorphism in ^{\mathbb{C}} (*Mod-A*) with inverse *h*.

Let now $E \in Mod$ -B and let $x \in E$. Then

$$\rho_{L(E)}\left(x\otimes 1\right) = x\otimes 1\otimes 1$$

so that $x \otimes 1 \in (E \otimes_B A)^{cov}$ and hence we can consider the morphism of right *B*-modules $v : E \to (E \otimes_B A)^{cov}$ defined by $v(x) = x \otimes 1$. We want to prove that v is an isomorphism in *Mod-B*. Since *A* is a faithfully flat left *B*-module, in view of [Bou, Proposition 2 page 47], this is equivalent to show that $v \otimes_B A$ is bijective. For every $x \in E$ and $a \in A$ we have

$$(v \otimes_B A) (x \otimes a) = x \otimes 1 \otimes a = \overline{\rho_{L(E)}} (x \otimes a)$$

so that we deduce that $v \otimes_B A = \overline{\rho_{L(E)}}$. By the foregoing we know that $\overline{\rho_{L(E)}}$ is an isomorphism in *Mod-A*.

NOTATION 6.15. Let $R : \mathcal{A} \to \mathcal{B}$. We will denote by ImR the full subcategory of \mathcal{B} consisting of those objects $B \in \mathcal{B}$ such that there is an object $A \in \mathcal{A}$ and an isomorphism $B \cong RA$ in \mathcal{B} .

PROBLEM 1. (Descent problem for modules) Let $M \in A$ -Mod. Is there any $E \in B$ -Mod such that $M \cong L(E) = E \otimes_B A$ in A-Mod? Such an E will be called a **form** of M over B.

THEOREM 6.16. Using the assumptions and notations of Example 6.13, let $f : B \to A$ be a morphism of rings and assume that A is a faithfully flat left B-module. Then

$$\operatorname{Obj}\left(\operatorname{Im}\left(L\right)\right) = \operatorname{Obj}\left(U^{\mathbb{C}}\left[^{\mathbb{C}}\left(Mod - A\right)\right]\right).$$

Proof. In view of Theorem 6.14, $K^{co} : Mod-B \to {}^{\mathbb{C}} (Mod-A)$ is an equivalence of categories so that $Obj(Im(K^{co})) = {}^{\mathbb{C}} (Mod-A)$. Therefore

$$\operatorname{Obj}\left(\operatorname{Im}\left(L\right)\right) = \operatorname{Obj}\left(\operatorname{Im}\left(U^{\mathbb{C}} \circ K^{co}\right)\right) = \operatorname{Obj}\left(U^{\mathbb{C}}\left[^{\mathbb{C}}\left(Mod-A\right)\right]\right)$$

Assume now A and B commutative. All modules over a commutative ring S are considered as symmetrical S-S-bimodules.

Let M be an A-module and let $g : A \otimes_B M \to M \otimes_B A$ be a morphism of A-A-bimodules. Let $g_1 = A \otimes_B g, g_3 = g \otimes_B A$ and define $g_2 : A \otimes_B A \otimes_B M \to M \otimes_B A \otimes_B A$ and $\overline{g} : M \to M$ by setting

$$g_{2}(a \otimes a' \otimes x) = \sum x_{i} \otimes a' \otimes \alpha_{i} \quad \text{where } g(a \otimes x) = \sum x_{i} \otimes \alpha_{i}.$$

$$\overline{g}(x) = \sum x_{i}\alpha_{i} \quad \text{where } g(1 \otimes x) = \sum x_{i} \otimes \alpha_{i}.$$

$$(g_{3} \circ g_{1})(a \otimes a' \otimes x) = g_{3}(a \otimes g(a' \otimes x)) = g_{3}(a \otimes a'g(1 \otimes x))$$

$$= g_{3}\left(\sum a \otimes a'x_{i} \otimes \alpha_{i}\right) = \sum ag(1 \otimes a'x_{i}) \otimes \alpha_{i}$$

$$\text{where } g(1 \otimes x) = \sum x_{i} \otimes \alpha_{i}$$

$$g_{2}(a \otimes a' \otimes x) = \sum ax_{i} \otimes a' \otimes \alpha_{i}$$

$$\text{where } g(1 \otimes x) = \sum ax_{i} \otimes \alpha_{i}$$

$$g_{1}(a \otimes x) = ag(1 \otimes x) = \sum ax_{i} \otimes \alpha_{i}$$

$$g_{2}(a \otimes a' \otimes x) = ag(1 \otimes x) = \sum ax_{i} \otimes \alpha_{i}$$

$$\frac{1}{2} \sum x_{i} \otimes \alpha_{i}$$

Hence $g_2 = g_3 \circ g_1$ means

(25)
$$\sum_{i=1}^{n} ag\left(1 \otimes a'x_{i}\right) \otimes \alpha_{i} = \sum_{i=1}^{n} ax_{i} \otimes a' \otimes \alpha_{i} \text{ where } g\left(1 \otimes x\right) = \sum_{i=1}^{n} x_{i} \otimes \alpha_{i}$$

while
$$g = \mathrm{Id}_M$$
 means

(26)
$$\sum x_i \alpha_i = x \quad \text{where } g(1 \otimes x) = \sum x_i \otimes \alpha_i.$$

Let

$$\Gamma = \left\{ \begin{array}{c} g : A \otimes_B M \to M \otimes_B A \\ \mid g \text{ is a morphism of } A\text{-}A\text{-bimodules } g_2 = g_3 \circ g_1 \text{ and } \overline{g} = \mathrm{Id}_M \end{array} \right\}$$

For every $g \in \Gamma$ consider the map

$$\rho_q: M \to M \otimes_B A$$

defined by

$$\rho_g\left(x\right) = g\left(1 \otimes x\right).$$

For every $\rho \in \text{Des}(X,\mu)$, where $\mu : A \otimes_B M \to M$ denotes the map induced by the multiplication by A on M, consider the map

$$g_{\rho}: A \otimes_B M \to M \otimes_B A$$

defined by

$$g_{\rho}(a \otimes x) = a\rho(x) = \sum ax_i \otimes \alpha_i \text{ where } \rho(x) = \sum x_i \otimes \alpha_i$$

THEOREM 6.17. The assignment $g \mapsto \rho_g$ defines a bijection $\Lambda : \Gamma \to \text{Des}(M, \mu)$ whose inverse is defined by the assignment $\rho \mapsto g_{\rho}$.

Proof. Let us check that $\rho_g \in \text{Des}(M,\mu)$. Let $x \in M$. We write

$$\rho_g(x) = g(1 \otimes x) = \sum x_i \otimes \alpha_i$$

For every $a \in A$, we compute

$$\rho_g(xa) = g(1 \otimes xa) = g((1 \otimes x)a) = g(1 \otimes x)a = \rho_g(x)a$$
$$= \left(\sum x_i \otimes \alpha_i\right)a = \left(\sum x_i \otimes \alpha_i a\right)$$

so that ρ_g satisfies (22).

We compute

$$\sum \rho_g(x_i) \otimes \alpha_i = \sum g(1 \otimes x_i) \otimes \alpha_i \stackrel{(25)}{=} \sum x_i \otimes 1 \otimes \alpha_i$$

so that ρ_g fulfils (23). Moreover, in view of (26), for every $x \in X$ we have

$$\sum_{i \in A} x_i a_i = x \quad \text{where } \rho_g(x) = g(1 \otimes x) = \sum_{i \in A} x_i \otimes a_i.$$

so that ρ_g fulfils (24).

Conversely let $\rho \in \text{Des}(M, \mu)$. Let $x \in M$. We write

$$\rho\left(x\right)=\sum x_{i}\otimes\alpha_{i}.$$

Then, for every $a \in A$ we have

$$g_{\rho}\left(a\otimes x\right) = a\rho\left(x\right) = \sum ax_{i}\otimes a_{i}$$

For every $a, a' \in A$, we compute

$$\sum ag_{\rho} (1 \otimes a'x_i) \otimes \alpha_i = \sum ag_{\rho} (1 \otimes a'x_i) \otimes \alpha_i = \sum ag_{\rho} (1 \otimes x_ia') \otimes \alpha_i$$
$$= \sum a\rho (x_ia') \otimes \alpha_i = \sum a\rho (x_i) a' \otimes \alpha_i \stackrel{(23)}{=} \sum ax_i \otimes a' \otimes \alpha_i$$

so that g_{ρ} fulfils (25). Moreover in view of (24) we have that

$$\sum x_i \alpha_i = x$$

so that g_{ρ} fulfils (26).

Let now $g \in \Gamma$ and, for every $a \in A$ and $x \in M$ let us compute

$$g_{\rho_g}(a \otimes x) = a\rho_g(1 \otimes x) = ag(1 \otimes x) = g(a \otimes x).$$

Therefore we deduce that $g_{\rho_g} = g$. Let now $\rho \in \text{Des}(M, \mu)$ and, for every $x \in M$ let us compute

$$\rho_{q_{\rho}}\left(x\right) = g_{\rho}\left(1 \otimes x\right) = \rho\left(x\right).$$

Therefore we deduce that $\rho = \rho_{g_{\rho}}$.

References

- [Appel] H. Appelgate, Acyclic models and resolvent functors, Ph.D. thesis (Columbia University, 1965).
- [Be1] J.M. Beck, *Distributive laws*, Lect. Notes Math., **80** (1969), 119–140.
- [Be2] J.M. Beck, Triples, algebras and cohomology, Reprints in Theory and Applications of Categories 2 (2003), 1–59.
- [Bou] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 1 a 4, Springer Verlag Berlin (2006). (Réimpression inchangée de l'édition originale de 1985 Masson, Paris 1985).
 - J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, Journal of the Amer. Math. Soc., 8 (1995), 251-289.
- [CIP] M. Cipolla, Discesa fedelmente piatta dei moduli, Rend. Circ. Mat. Palermo 25 (1976), 43–46
- [Gro] A. Grothendieck, Technique de descente et théorèmes d'existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Vol. 5, Exp. No. 190, 299–327, (1995).
- [H] P. Huber, Homotopy theory in general categories, Math. Ann. 144 (1961), 361-385.
 [J] P.T. Johnstone, Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc., 7 (1975), 294-297.
- [KLV] S. Kasangian, S. Lack, E. Vitale, Coalgebras, braidings, and distributive laws, Theory Appl. Categ. 13 (2004), 129–146.
- [KO] M. Knus, M. Ojanguren, Théorie de la descente et algèbres d'Azumaya, Lect. Notes Math., 389 (1974)

26

[MS] C. Menini, D. Ştefan, Descent theory and Amitsur cohomology of triples, J. Algebra 266 (2003), 261–304.
 [Nu] Ph. Nuss, Noncommutative descent and nonabelian cohomologie, K-Theory, 12 (1997), 23-74.