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1. INTRODUCTION

The following is inspired to the Introductions of [MS] and [KTM] respectively.

Let R be an arbitrary ring and let us denote the category of right modules over R by Mod-R.
If S is an extension of R, i.e. there is an arbitrary morphism of rings with unit R — 5, then the
categories Mod-R and Mod-S are connected by a pair of adjoint functors (f*, f.) where f* : Mod-
R — Mod-S, f*(N) = N®pgS is the so called extension of scalars functor and f* : Mod-S — Mod-
R, f*(M) = M regarded as an R-module via f, is the restriction of scalars functor. Roughly
speaking, classical descent theory of modules and morphisms is concerned with the description of
the image of f*. To be more specific we list below three problems of classical descent theory.

(1) (Descent of modules) Let M be a right S-module. Is there any right R-module N such
that M ~ N ®g S as right S-modules?

(2) (Descent of morphisms) Let N and N’ be right R-modules and let f : N ®p S —
N' ®r S be a morphism of right S-modules. Does there exist a morphism of right R-
modules g : N — N’ such that f = g®idg?

(3) (Classifications of S-forms) Given a right R-module N classify all right R-modules N’
such that N' @ S ~ N ®g S.

A well-known example, due to Grothendieck, is faithfully flat descent theory (R — S is now a
faithfully flat extension of commutative rings), see [Gxd| and [EQ]. The existence of an N € Mod-R
as in the first problem is equivalent to the existence of a “descent datum” on M. Let us briefly recall
the definition of descent datum in this setting. First let us note that we have an algebra morphism
is:S—=S®rS, ig(x) =z ® 1. Hence, for any M € Mod-S, the S-modules S ®p M and M ®g S
are modules over S ®p S via extension of scalars from S to S®rS. Let g: SQr M — M ®z S be
an arbitrary S ®@pg S-linear map. We define g; := S ®r g and g3 := g ®g S and let go be the map
from S®r S®r M to M ®r S ®r S given by

gg(s®t®m)=ij®t®sj,

where g(s ®@m) = > m; ® s;. Then a descent datum on M is an S ®pg S-linear map g : SQr M —
M ®pg S such that go = g3g1 and > mjs; = mif g(1 ® m) =Y m; ® s;.(See Theorem EIA and
the considerations just above it).
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One can easily describe descent data in another equivalent way. Let oy : M — M ®pg S be the
map m +— m ®g 1. Then any S ®p S-linear map g : S ®p M — M ®pg S is uniquely determined
by the map goyr : M — M ®g S. Let us denote goas by pg. Then g is a descent datum if and only
if pg is a morphism of right S-modules and satisfies the following properties (see Theorem BEI4)

(pg ®r S)pg = (oM ®r S)pg,
1y pg = Idas,

This means that (M, p,) € © (Mod-A) where C is the canonical comonad of the adjunction (f*, f.).

In the paper [MJ], extending results by Nuss [Nd] on noncommutative rings, the situation
(f*, f«) was replaced (4 F, sU) where A is a monad over a category A and o F : A — 4A is the free
functor while oU : 4 A — A is the forgetful functor. Let A* = (A FpU, pFuaU, \) be the comonad
on the category oA associated to this adjunction. In this context, it was proved that, if the monad
A is equipped with a “compatible flip” ® : A2 — A2, then to give an A*-comodule structure on
an A-module (X, p) is equivalent to giving a “symmetry” on X, that is an involution AX — AX
satisfying some suitable conditions.

Unfortunately, the following natural example, which is a direct generalization of the classical
case of commutative rings, does not fit into their general context: let C be a braided monoidal
category and let (S, mg,us) be an algebra in C, then the braiding

0575:S®S%S®S

induces a natural isomorphism ® : A2 — A2 on the monad
A= (—®rS,—®rms,(—@rug)or_), but this natural isomorphism is not a flip unless the
braiding is a symmetry and the monoid is commutative. To encompass this example, in [KTM]
the notion of BD-law on a monad A is introduced (see Definitions E1) and, given a BD-law ® on
the monad A, the notion of “compatible flip” is substituted by ®-braiding on an A-module. In
these notes we prefer to call this quasi ®-symmetry (see Definitions BE32) since we could not find
meaningful relation with the usual meaning of a braiding (on the other hand a BD-law on a monad
A could be called a braiding on the monad A). We give a self-contained proof of [KTM, Theorem
3.7] (see Theorem BET2) which shows that the category of quasi ®-symmetries is isomorphic to the
category of A*-comodules.

These are the notes of a short Ph.D. course I gave at the Department of Mathematics and
Computer Science of the University of Ferrara during January and February 2016.

I would like to thank Leonardo Spinosa for a careful reading of them.

2. MONADS

DEFINITION 2.1. A monad on a category A is a triple A = (A,m4,us), where A: A — Ais a
functor, m4 : AA — A and uu : A — A are functorial morphisms satisfying the associativity and
the unitality conditions:

(1) mao(maA)=mao(Ama) and myo(Aug)=A=mgo (uad).
DEFINITION 2.2. A morphism between two monads A = (A,ma,us) and B = (B,mp,up) on a
category A is a functorial morphism ¢ : A — B such that
poma=mpo(pp) and @ous =ug.
Here o = pB o Ap = By o pA.

EXAMPLE 2.3. Let f: R — S be a morphism of rings. Let gpSr denote the R-bimodule structure
on S defined by

r-s=f(r)s s-r=sf(r) for every r € R and s € S.

Since
(s-r)s' = (sf (1) 8" =s(f (1)) =s(r-5)

the multiplication m : S x S — S on S factorizes through S ®p S i.e. there is a group morphism
ms:S®rS—S
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such that mg = 7 om where 7 : S X S — S ®g S is the canonical map. mg is a morphism of
S-S-bimodules. Clearly we get that

(2) mgo (S®gmg) =mgo(mg®gS)
For any right R-module M let
ruy: M — M®grR

denote the usual isomorphism defined by 7y () = © ®g 1. It is easy to check that this defines a
functorial isomorphism

r_:Mod-R — — Qgr R.

Set

us=—Qrf:—®rR——®rS
and

us=(—Qrug)or.: Mod-R— —r R— —®gr S
For every right R-module M
uasM - M — M Qg S
is defined by
(uaM) (z) =z ®gr 1s for every xz € M.
For every x € M and s € S we compute
(M ®@gmg)o(uaM @g S)] (x ®@r s) = (M @r ms) (v @r 1s @R 5)

=(z®rs)=(M®RrS)(x®rs)

so that we get

(3) (M ®gmg)o(uaM @r S) =M ®gr S.
A similar computation gives
(4) (M ®rmg)o(ua(M®rS)=M®®grS
Let us consider the triple A = (A, ma,u4) where
A = —@pS:Mod-R— Mod-R
mag = —Q@rmg:—QrS®rS = —QrS
ug = (—®pug)or—:Mod-R— —QpS

We prove that A = (A, m4,u4) is a monad on the category Mod-R. For every M € Mod-R we
compute

[mao(mad)] (M) = (M®gpms)o(M®grS®rms)=

M ®pr [mso (S ®@rms)) Q@ Mer [ms o (ms ®@r S)]

= (M ®rmg)o(M®@grms®gS)=[mao(Ama)] (M)
[mao(Aua)]M = [(—®rms)o (ua®r S)|M
= (M®gms)o(uaM®@rS) 2 Mers =AM
and
[mao (uad)]M = [(—®@rms)o(ua(-®rS))|M
= (M®gms)o(ua(M®r8) 2 MorS=AM.

PRrROPOSITION 2.4 ([H]). Let (L, R) be an adjunction with unit n and counit € where L : B — A
and R: A— B. Then A = (RL, ReL,n) is a monad on the category B.
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Proof. We have to prove that
(ReL) o (RLReL) = (ReL) o (ReLRL) and
(ReL) o RLn = RL = (ReL) o (nRL).
In fact we have
(ReL) o (RLReL) = (ReL) o (ReLRL)
and

(ReL) o RLp "2 RL "2 (ReL) o (nRL).

EXERCISE 2.5. Let A, B rings and let M be an B-A-bimodule. Consider the functors
L = —®pM:Mod-B— Mod-A
R = Homy (M,—): Mod-A — Mod-B.
Then (L, R) = (— ®p M,Homy (M, —)) is an adjunction. Compute the monad RL associated to

this adjunction. Moreover, compute the monad RL in the particular case B=R,A=S5,f: R— S
is a ring morphism and M = S endowed with the left B-module structure defined by f.

DEFINITION 2.6. A module for a monad A = (A, ma,us) on a category A is a pair (X,Aux)
where X € A and 4ux : AX — X is a morphism in A such that
(5) Apx o (A'ux) = px o (maX) and X ="pyo(uaX).

A morphism f between two A-modules (X7A,uX) and (X’,A,uX/) is a morphism f: X — X’ in A
such that

Axro (Af) = folux.
We will denote by 4.A the category of A-modules and their morphisms. This is the so-called
FEilenberg-Moore category which is sometimes also denoted by A*.

REMARK 2.7. Let A = (A, ma,us) be a monad on a category A and let (X,Aux) € s A. From
the unitality property of 4ux we deduce that 4 x is an epimorphism for every (X, AMX) € 5 A
and that u4X is mono for every (X7 A,ux) € aA, i.e. uy is a monomorphism.

ExaMPLE 2.8. Consider the monad A = (A, ma,ua) on Mod-R of Example E3. We want to
understand the category of modules with respect to this monad. The underlying category is
A= Mod-R. Let (X,“pnx) € s (Mod-R). This means that

Apx AX=XopS—X

is a morphism in Mod-R such that 4pux o (AAuX) =4y o(maX)and X = “4ux o (usaX). For
every r € X and s € S write 25 = Ay (z ®r s) . Then we get

(“px o (A'px)) (z @R s @R ') = Ypix (05) Op s’ = (ws) s
(“ux o (maX)) (z@rs®ps) = ux (z@p ss’) =z (ss)

(AMX o (uAX)) (z) = px (x ®p 1g) = zlg
Let 7: X xS - X ®r S denote the canonical map. Then, in view of the equalities above we
have that (X,4pux o7) € Mod-S. 1t is easy to see that the assignment (X,4py) — (X, 4pux o7)
defines an isomorphism of categories from 5. A to Mod-S.

DEFINITION 2.9. Let A = (A,m4,u4) be a monad on A. The functor

AU : A.A - A
(XyA/-LX) - X
f - f

is called the forgetful functor.
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PROPOSITION 2.10. Let A = (A,ma,ua) be a monad on a category A. Let f,g : (X,Aux) —
(Y, Auy) be morphisms in pA. Then

f=g9easUf=4Ug
i.e. the functor p\U : pnA — A is faithful

PROPOSITION 2.11. Let A = (A, ma,ua) be a monad on a category A. Then pU reflects isomor-
phisms.

Proof. Let f : (X,A;LX) — (Y,Auy) be a morphism in g A such that U f is an isomorphism in
A. Since
Ay o (ApUf) = sUf o px
we get that
(WU odpy =4pxo (A (AUf)il) :

which entails that (AUf)_1 gives rise to a morphism g : (Y, A/,Ly) — (X, A,ux) such that ,Ug =
(uUf)~". Hence

AU (fog)=1Idy and AU (go f)=Tdx
so that

fog=Idwy,a.y) and gof=Idxa,y)-

DEFINITION 2.12. Let A = (A, ma,ua) be a monad on A. The functor

A A > AA
X - (AX,mAX)
f - Af.

is called the free functor.

PROPOSITION 2.13. Let A = (A,ma,ua) be a monad on A. Then (4 F, p\U) is an adjunction with
unit the unit ua of the monad A
upg A — pJUpF = A.
The counit A : pAF oAU — p A is uniquely determined by setting
AU (M4 (X, 2ux)) = Aux for every (X,*pux) € sA.
Moreover we have
(6) AU)\AAF =MmMAa
Proof. Let (X,*ux) € s A. In view of (B) we have
A,LLX o (AA,uX) = AuX o(maX).
This means that there exists a morphism
A (X, Apx)  (AX,maX) = 4 FaU (X, *ux) = (X, *px)
such that
AU (X, Apx) = “ux.
It is easy to show that in this way we get a functorial morphism A4 : s FpU — A A.
Let (X,“ux) € aA. We compute

[(aUX4) 0 (uanU)] (X, *px)) = (aUMa) (X, *px)) o (wanU) ((X,*1x))
=AuxousX LS¢

From this we deduce that (4UX4) o (uaaU) = aU.
Let X € A. We compute

AU [(AaaF) o (aFua)] (X) = [aU (AanF) o (aUsFua)] (X)
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= aU AAaF) (X) 0 (WUnFun) (X) =maX o Aus X 2 X.
From this we deduce that
AU [(AanF) o (aFua)] = aU (o F)

and hence, by Proposition 10, that (AyaF) o (3Fuas) = aF.
Fore every (X A X) € A A we compute

(AU)\AAF)X = AU)\A (X,mAX) = mAX.

EXERCISE 2.14. Prove that s F X = (AX,maX) € 5 A.

PROPOSITION 2.15. Let A = (A,ma,ua) be a monad on a category A. Then for every Z, W € 5 A
we have that

Z =W if and only ifaU (Z) = p\U (W) and pU (AaZ) = AU (AaW).
In particular, if F,G : X — A are functors, we have
F =G if and only if \UF = yUG and U (A F) = U (A4G)

LEMMA 2.16. Let (L,R) be an adjunction where L : B — A and R : A — B. and let A =
(A= RL,my = ReL,us =n) be the associated monad on the category B. Then
o for every X € A we have that (RX, ReX) € 4B,
o for every morphism [ : X — X'in A there is a unique morphism R(f) : (RX, ReX) —
(RX',ReX') in uBB such that U (R (f)) = R(f)

Proof. For every X € A we compute
ReX o RLReX = ReX o ReLRX

and
ReX onRX = RX.

Thus we deduce that (RX, ReX) € pB. Let f: X — X’ be a morphism in A. We compute
ReX' o RLRf = Rf o ReX.

Thus we deduce that there is a morphism R (f) : (RX,ReX) — (RX',ReX’) in o8B such that
WU (R ( f)) = R(f). This morphism is unique in view of Proposition I, O

DEFINITIONS 2.17. Let (L, R) be an adjunction where L : B — A and R : A — B. and let
A= (A= RL,my = ReL,us =) be the associated monad on the category B. In view of Lemma
14, we can consider the functor
K =grK: A — AB
defined by setting
K (X)=(RX,ReX) and K (f)=R(f).

This is called the comparison functor of the adjunction (L, R). Note that 42U o K = R.

A functor R : A — B which has a left adjoint L : B — A for which the corresponding com-

parison functor K : A — 5B is an equivalence of categories is called monadic (tripleable in Beck’s
terminology [[Bed, Definition 3, page 8]]).

PROPOSITION 2.18. Let A = (A, ma,ua) be a monad on a category A. Then the monad associate
to the adjunction (o F, aU) is the monad A and the corresponding comparison functor is the identity
on the category pA. In particular the functor »U is monadic.
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Proof. We already observed that 4U o 4 F' = A and that the unit of this adjunction is u4. For
every X € A we compute
AU)\AAFX = AU)\A (AX,mAX) = mAX.

We deduce that ,\UAapsF' = ma and hence we get that the monad associate to the adjunction
(oF, aU) is the monad A. Let now (X, ) € 4A and we compute

K((X,p) = (WU (X, 1), aUN (X, p)) = (X, 1) .
Let f:(X,p) — (X', 1) be a morphism in 4 A. Then K (f) U (f) where

=A
WU (f) s K (X, ) = (X, p) = K (X', 1)) = (X', )
is the unique morphism such that ,U (AU (f)) = AU (f) . Sincep U is faithful, this entails K (f) =

AU (f) = f and we deduce that K = 5 A. O

3. COMONADS

DEFINITION 3.1. A comonad on a category A is a triple C = (C, Ac,ec) , where C' : A — Ais
a functor, A : C' — CC and ¢ : C — A are functorial morphisms satisfying the coassociativity
and the counitality conditions

(A9C) 0 A9 = (CA®) 0 AY and (C:€) 0 AY =(C = (c9C) 0 A°.

DEFINITION 3.2. A morphism between two comonads C = (C, Ac,ec) and D = (D, AD,sD) on a
category A is a functorial morphism ¢ : C' — D such that

AP oy =(pp)oA® and ePop=cC.

EXAMPLE 3.3. Let (C, AC, sc) an A-coring where A is a ring. This means that
e C is an A-A-bimodule

e AC:C = C®,4C is a morphism of A-A-bimodules
e € :C — Ais a morphism of A-A-bimodules satisfying the following

(A®®4C) oA = (C®AA) 0 A, (C®AC) o A =rg' and (°®4C)0 A =1;!
where 7¢ : C®4A — C and l¢ : AQ4C — C are the right and left constraints. Let

C = —®aC:Mod-A— Mod-A
A = —@AA°:—®@4C—>—R4CR4C
¢ = r_o(—®Asc):—®AC—>—®AA—>—

We prove that C = (C’7 A, EC) is a comonad on the category Mod-A. For every M € Mod-
A we compute

[(A9C) o AC) (M) = (A°CM) o (A“ M)
=(M@a4C®aA%) 0 (M®sA%)=M®4 [(C®aA°) oA’
LI M @4 [(AC @4 C) 0 A°] = (M @4 A ®4C) o (M ®4 A°)
= (CA°M) o (A°M) = [(CAT) o A°] (M)
and
[(e9C) o AC) (M) = (°CM) o (A° M)
=rcmo (M®4C®4e%) 0 (M&sA%) =ryg.co (M4 [(CRC) 0 AC)

Ccoring

=" ryugaco (M@arg') =M ®4C=CM
[(C9) o AC) (M) = (Ce“M) o (A°M)
= ([TM o (M ®A 6c)] ®A C) o (M XA AC)
=(rmy®aC)o(M®a €4 C)o (M ®a Ac)
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=(rm®aC)o[M®a ((ec ®a4C) oAC)]
=(rm®aC)o(M@als')=M®sC=CM.

PROPOSITION 3.4. Let (L, R) be an adjunction with unit n and counit € where L : B — A and
R: A — B. Then C= (LR, LnR,€) is a comonad on the category A.

Proof. Dual to the proof of Proposition Z4. O

DEFINITION 3.5. A comodule for a comonad C = (C, AC, EC) on a category A is a pair (X, Cpx)
where X € A and “px : X — CX is a morphism in A such that

(C%x)0%x = (A°X) 0%y and X = (e9X)o0%px.
A morphism between two C-comodules (X,Cpx) and (X’,Cpxl) is a morphism f: X — X’ in A
such that

“pxrof=(Cf) o px.
We denote by €A the category of C-comodule and their morphisms.

DEFINITION 3.6. Let C = (C7 A, EC) be a comonad on a category.A. The functor

CU . €A - A
(Xach) - X
f = f

is called the forgetful functor.

ProroSITION 3.7. Let C = (C7Ac7ec) be a comonad on a category A. Let f, g : (X7CpX) —
(Y,%py) be morphisms in ©A. Then

f=g9ge2Uf=4Ug
i.e. the functor U : CA — A is faithful

PrROPOSITION 3.8. Let C = (C, AC,EC) be a comonad on a category A. Then CU reflects isomor-
phisms.

Proof. Analogous to the proof of Proposition EZT. |
DEeFINITION 3.9. Let C = (C7 A, sC) be a comonad on a category A. The functor
CF: A = CA
X o (CX.ACKX)
= cf

is called the free functor.
ProprosiTION 3.10. Let C = (C’, Ac,ec) be a comonad on a category A. Then (CU,CF) is an
adjunction with counit the counit €€ of the comonad C
e 0="U°F - A
The unit v¢ : €A — CFCU is defined by setting
U (Wc (X,Cpx)) = Ypx for every (X,Cpx) cCA
Moreover we have
CUACF = A,

LeMMA 3.11. Let (L,R) be an adjunction where L : B — A and R : A — B. and let C =
(C = LR,A% = LnR, ¢ = e) be the associated comonad on the category A. Then

e for every Y € B we have that (LY,LnY) € CA,

o for every morphism f 1Y — Y'in B there is a unique morphism L(f) : (LY,LnY) —

(LY', LyY") in CA such that ,U (L (f)) = L(f).

Proof. Dual to the proof of Lemma P14. |
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DEFINITIONS 3.12. Let (L, R) be an adjunction where L : B — A and R : A — B and let
C = (C’ = LR,A® = LnR, ¢ = e) be the associated comonad on the category A. In view of
Lemma B, we can consider the functor

K®°=Kp:B—%A
defined by setting
K®(Y)=(LY,LyY)  and  K“(f)=L(f).
This is called the cocomparison functor of the adjunction (L, R). Note that U o K = L.
A functor L : B — A which has a right adjoint R : A — B for which the corresponding
cocomparison functor K7°: B — €A is an equivalence of categories is called comonadic.

4. JOHNSTONE FOR MONADS

ProPOSITION 4.1 ([Bppel] and [M]). Let A = (A,ma,ua) be a monad on a category A and let
B = (B,mp,up) be a monad on a category B and let Q : A — B be a functor. Then there is a
bijection between the following collections of data

F functors @ : 8 A — B that are liftings of Q (i.e. BU@ =QaU)
M functorial morphisms ® : BQ — QA such that

Do (mpQ) = (Qma) o (PA) o (BD) and Do (upQ) = Qua
given by
a:F — M where a (@) = (BU)\B@AF) o (BQua)
b: M — F where b(P) ((X,A px)) = (QX, (QAMX) o (PX))
and gU [b(®) (f)] = Q (uUf).
Proof. First of all let us note that,
A0 aFaUNs 2 Ap 0 AanFalU
so that we get
AUAA 0 pAUAFAUNA = pUXg 0 sUNAAF AU © aUAgomapU
and hence
(7) wUMs 0 ApUNa = 4UNs 0 manl

Let @ : aA — B be a lifting of the functor @ : A — B (i.e. BU@ = QaU).
Define a functorial morphism ® by setting:

@ = (sUAsQuF ) © (BQua) : BQ — sUQAF = QuUAF = QA

where uy : A — 4UpF = A is also the unit of the adjunction (o F, oU) and Ap : gFgU — pB
is the counit of the adjunction. We have to prove that such a ® satisfies ® o (mpQ) = (Qma4) o
(PA) o (B®) and ® o (up®) = Qua. First, let us note that

(®) Qma = QuUAAnF = sUQAAsF
Now let us compute
(Qma) o (®A) o (BP) = (Qma) o (BUAB@AFA) o (BQuaA)
o (BBU)\B@AF) o (BBQu.)
® (BU@/\AAF) ° (BUAB@AFA) o (BQuaA)
o (BBUAB@AF) o (BBQu.)

= 50U [(@AanF) o (As@uFA) 0 (sFQuad)]



10 CLAUDIA MENINI

° (BBU)\B@AF) o (BBQu.)
25U [(As@uF) o (sFsUQAALF) 0 (sFQuaA)]
o (BaUABQAF) o (BBQua)
WL U [(AsQaF) 0 (sFQUUAALF) 0 (sFQuaA)]
° (BBU)\B@AF) o (BBQu.)
20 [(A6QuF) o (5FQma) o (sFQuaA)|
° (BBU)\B@AF) o (BBQu.)
Amered (QUAQAF) o (BaUARQAF) o (BBQua)
2 [GUAs 0 mpsU) QuF| 0 (BBQua)
= (sUABQAF) o (mpsUGLF) o (BBQua)
" (sUABQuF ) o (BQua) o (m5Q)
= (8UA8QaF) 0 (U FQua) o (m5Q)
=®o (mpQ).
Moreover we have
@0 (upQ) = (sUAsQ4F)  (BQua) © (u5Q)
%2 (5UAaQ4F) 0 (upQA) o (Qua)
= (3UABQLF) 0 (upQuUAF) o (Qua)
YL (JUARQAF) o (upsUGLF) o (Qua)

(eF,pU)adj
=" " Qua

Conversely, let ® : BQ — QA be a functorial morphism satisfying ®o(mpQ) = (Qm4)o(PA)o(BP)
and ® o (upQ) = Qua. We define Q : , A — B by setting, for every (X, u) € oA,

Q((X, 1) = (QX, (Qu) o (2X)) = (QeU (X, ) , [QaUNa 0 ®oU] (X, 1)) .
Note that, a posteriori, we will have
(9) BUNEQ = QU4 0 @pU
We have to check that (Q (X), (Qu) o (®X)) € B3, that is
fioBpi=po(mpQX) and po(upQX)=0QX
where 1 = (Qu) o (PX). We compute
fi o (Bfi) = (Qu) o (®X) o (BQu) o (BOX)
£ (Qu) © (QA) © (PAX) o (BDX)
2 (Qu) © (QmaX) o (PAX) o (BEX)
P (Qu) o (8X) 0 (mpQX)
=po(mpRX).
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Moreover we have
fio (upQX) = (Qu) o (2X) o (upQX)
PP (Qu) o (QuaX)
2 ox.

Now, let f: (X, u) — (X', 1) be a morphism of A-modules, that is a morphism f: X — X’ in A
such that

Wo(Af) = fop.
We want to prove that Q (f) lifts to a morphism @(f) : @(X, p) = (QX,(Qu)o (2X)) —

Q (X', 1) = (QX",(Qu') o (BX")) of B-modules i.e.
[(Qu') o (@X")] 0 (BQS) = (Qf) o [(Qu) o (DX)].
We compute
(@) o (BX")] 0 (BQF) = (Qu') © (QAS) o (X))
[mor2med (Q f) o (Qu) o (9X) .
Let now check that @ is a lifting of Q. Let (X, u) € 4.4 and let us compute
sUQ (X, ) = 8U (QX,(Qu) o (9X)) = QX = QuU ((X, 1))
Let f: (X,u) — (X', /) be a morphism in 4 A. By construction we have
sUQ(f) = QuU (f): QX — QX

Therefore Q is a lifting of the functor Q. N
We have to prove that we have a bijection. Let us start with @ : s A — B a lifting of the
functor @ : A — B. Then we construct ® : BQ — QA given by

@ = (sUAsQAF) o (BQua)

and using this functorial morphism we define a functor @ : 4. A — B as follows: for every (X, u) €
aA

Q((X, ) = (QX, (Qu) o (2X)).
Since both @ and @ are liftings of ), we have that gUQ = Q,U = gUQ. In view of Proposition
I3, it remains to prove that gU (ApQ) = gU (AB@) Since Q (X, 1) = (QsU (X, 1), [QaUNs 0 ®U] (X, 1))
for every ((X,p)) € oA we have that

BUABQ = QaUMg 0 ®pU

We compute

BU (ApQ) = QuUAa 0 @,U
= (QuUA1) o (UABQAFA) o (BQuasU)
WL (LUQAL) o (sUABGAFAT) 0 (BQuaD)
2 (sUA5Q) o (eUsFsUQA4 )  (BQuasU)
= (s025Q) o (B [2UQAs 0 Quasl])
= (3UA5Q) © (BIQaUMs © Quanl))

(AEA\:U)adJ ]BUAB@-
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Conversely, let us start with a functorial morphism ® : BQ — QA seitisfying ® o (mpQ) =
(Qma)o(PA)o(B®P) and Po(upQ) = Qua. Then we construct a functor @ : 4. A — B by setting,
for every (X, u) € 4 A,

Q (X, 1)) = (QX, (Qu) o (PX))
which lifts @ : A — B. Now, we define a functorial morphism ¥ : BQ — QA given by
U= (BUAB@AF) o (BQuy).
Then we have
U= (BU/\B@AF) o (BQua)
D (QuUALAF) o (@,ULF) o (BQua)
= (@ma) o (®A) o (BQua)

£ (Qma) o (QAua) 0 @
Amgnad .

O

DEFINITION 4.2. A left module functor for a monad A = (A, m4,us) on a category A is a pair
(Q, AMQ) where @ : B — A is a functor and “pg : AQ — @Q is a functorial morphism satisfying:

g o (AMg) = Mg o (maQ) and Q =g o (usQ).
EXAMPLE 4.3. In the setting of Example B3, A = (A, ma,u4) where

A = —®prS:Mod-R— Mod-R
mag = —Q@rms:—QrSOrS > —QRrS
Uy = :Mod-R— —Q®grS

Let M be an R-S-bimodule and let @ =: Mod-R — Mod-R. Then @ is a left module functor for
the monad A via the map via the map

A
AMQ:*®R/LM:AQ:*®RM®RS—>Q:*®RM
where we denote by u%, : M ®r S — M the map induced by the multiplication by S on M.
COROLLARY 4.4. Let X, A be categories, let A = (A,ma,ua) be a monad on a category A and

let F': X — A be a functor. Then there exists a bijective correspondence between the following
collections of data:

H Left A-module actions “pup : AF — F
G Functors oF : X — p A such that y\U sF = F,

given by
a:H — G where \Ua (Aup) =F and ,UMXsa (Aup) = AuF i.e.
a(tur) (X) = (FX,*urX) anda(“ur) (f) = F (f)
b:G—H whereg(AF) = aUMguF : AF — F.
Proof. Apply Proposition BT to the case A = X', B = A, A =Idy and B = A. Then Q = 4F is
the lifting of F' and ® = 45 satisfies “pup o (maF) = Aupo (AA[LF) and A pup o (uaF) = F that
is (F, Aup) is a left A-module functor. |
COROLLARY 4.5. Let (L,R) be an adjunction with L : B — A and R : A — B and let A =

(A, ma,us) be a monad on B. Then there is a bijective correspondence between the following
collections of data

R Functors K : A — oB such that \U o K = R,



(CO)MONADS AND DESCENT 13

£ functorial morphism o : AR — R such that (R, «) is a left module functor for the monad
A

given by
® : R— L where ®(K)=,UMK:AR— R
Q : £— 8 where Q(a) (X) = (RX,aX) and p\UQ (o) (f) = R(f).
Proof. Apply Corollary B4 to the case "F” = R : A — B where (L, R) is an adjunction with
L:B—sAand R: A— Band A= (A,m4,us) a monad on B. O

5. DISTRIBUTIVE LAWS AND LIFTING OF MONADS
From B we get

PROPOSITION 5.1. Let A = (A,ma,us) be a monad on a category A and let B : A — A be a
functor. Then there is a bijection between the following collections of data

F functors B : g A — oA that are liftings of B (i.e. WUB = BpU)
M functorial morphisms ® : AB — BA such that

Do (maB)=(Bma)o (DA)o (AD) and Do (usB) = Bugy
given by
a:F — M where a (E) = (AU)\AEAF) o (ABuy4)
b: M — F where b(P) ((X,A,ux)) = (BX, (BA,uX) o (®X))
and pU [b(®) (f)] = BaU (f) -

DEFINITION 5.2. [Bell] Let A = (A, m4,u4) and B = (B, mp,up) be monads on a category A. A
functorial morphisms ® : AB — BA such that

(10) Do (myB)=(Bmga)o (PA)o (AD) and Do (ugB) = Bug
and
(11) ®o(Amp) = (mpA)o (BP)o (PB) and  ®o(Aup) =upA

is said to be a distributive law of A over B.
THEOREM 5.3. Let A = (A,ma,us) and B = (B,mp,up) be monads on a category A. Then there
s a bijection between the following collections of data
D distributive laws of A over B
M monads B = (B mB,uB) on pA that are lifting of B (i.e. WUB = ByU, A\ Umpg =
mBAU,AUu§ = uBAU)

given by
a : D— M where a(®) =B where B = (E,mg,ug) and
B((XAux)) = (BX,(B*ux)o(®X)), sUB(f) = BsU (f)
b : M—>D whereb((§7m§,u§)) = (AU)\AEAF)O(ABuA).

Proof. Let ® : AB — BA be a distributive law of A over B. By Proposition B we know that
B : p A — 5 A defined by setting B ((X,* ux)) = (BX, (BAux) o (8X)), sUB (f) = BoU (f) is
a functor.

Let (X /LX € aA and let us prove that mpX : B2X — BX lifts to a morphism mg (X ,uX)

in 4 A from (B)2 XAMX to B ((X7A ,ux)). Note that

(E) (XA ux)) = E( (X4 1x))) = B (BX, (BYux) o (2X))
(B*(X), (B*ux) o (B®X) o (PBX)).
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We compute
(mpX)o (B**ux) o (B®X) o ®BX "™ (B*ux) o (mpAX) o (B®X)o (PBX)
D (BAux) o (8X) 0 (AmpX).

~\ 2 ~
We have to check that in this way we get a functorial morphism m : (B) — B. Let f: (X, pn) —
(X', 1) be a morphism in 4.A. We have to prove that

~\ 2 ~
mg (XY o (B) f=(B) fomg (X,
which amounts, in view of Proposition EZ11, to

~

2 ~
WU [mg (X', ') o (B) f} =4U [(B) fomg (X, )]
We compute
N2 N2
AU |:m§ (X’,,u’) o (B) f:| = AUmE (X/,//) oaU (B) f = ’I’I’LBX/ o BzAUf
" BUfompX = aUBfoaUmg(X,p) = U [(E) fomg (X, u)} .
Let us prove that upX : X — BX lifts to a morphism ug (X,p) in 44 from ((X,4 px)) to
B ((X,A MX))- We compute
(BA4ix) o (®X) o (AupX) 2 (BAux) o (upAX) "2 (upX) o? pix.

We have to check that in this way we get a functorial morphism ug : o A — B. Let (X, n—
X', 1) be a morphism in 4. A. We have to prove that
1

ug (X', 1) o f = (B) f oug (X, n)
which amounts, in view of Proposition EZ11, to
WU [ug (X', 1) 0 f] = U [(B) foug (X,m)].
We compute
WU ug (X 1Yo f] = aUug (X', 1) oaUf =upX o sUfE BuUf oupX
= AU KE) foug (X, u)} .
Now we have to check that B = (é, mg, u§> is a monad on z.A. We compute

AU [mgo (mgg)} =mppU ompBaU

(B7mB7’LLB):iS a monad mpall o (BmBAU) — U |:m§ o §m§:|

so that, in view of Proposition 10, we conclude that

mg o (mgB) =mg oémg.

We compute

AU [mg o (éug)} =mpaU o BupaU

(B,mp,up) is a monad

mBAUouBBAU = AU {mé o (§u§>]
so that, in view of Proposition EZ10, we conclude that

mg o (éu]?) = § = m]§ o (B\UE) .
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Let now B = (E,mg,ué) be a monad on ,A that is a lifting of B. By Proposition B we

already know that ® = (AU)\ AE o F ) o (ABuy) is a functorial morphism from AB to BA which

satisfies (). Let us prove it satisfies also (). We compute

(mpA) o (BS) o (BB)
= (mpA)o (BAUAAﬁAF) (BABu ) o (AU)\A]?AFB> (ABu,B)
= (mpaUaF) o (BAU/\ABAF) (BAUAFBuy) o (AU)\ABAFB) (WU nFBusB)
— (:UmgaF) o (\UBAABAF) o (sUBsFBus) o (\UNaBAFB) o ({UsFBuaB)
= 4U [(mgaF) o (BAABAF) o (BuFBua) o (AaBrFB) o (4F BuaB)|
=AU [(mBAF) [(BABAF) o (BuFBua)| o (A\aBAFB) o (4FBuaB)|
Ul (mg (AABBAF) (AFAUE)\ABAF> (AFAUBAFBuA) (AFBuAB)]

- {( (AABBAF> (AFAUEAABAF)o(AFBAUAFBuA)o(AFBuAB)}
;

II;>
—

[ mpal ()\ ABBAF) (AFAUEA AEAF> o wFB (ABusou AB)}
U [(mgaF) o (\MBBAF) o (\FAUBAABAF) 0 4FB (uaBAo Buy)|
WU |(mgaF) o (\aBBuF) o (4FBAUNABALF ) 0 nFB (uaBAo Buy)]
U [(mgaF) o (\MBBAF) o (aFB (sUABAF o (uaBAUAF 0 Buy)) )]
= U [(mBAF) (MBBuF) o (aFB ((sUNaBoF) o (0asUB4F) 0 Buy) )]
WO IS U [(mpaF) o (AaBBAF) o (4FBBua)|
2,0 [(AaBaF) o (WFsUmgaF) o (4FBBu,)|
=2U [(AaBaF) o (sFmpsUsF) o (uFBBuy)]
= U [()\AEAF) o (sFmpA) o (AFBBuA)}
"8 U [(AMBaF) o (4FBua) o (4Fmp)]

_ (AU/\AEAF) o (ABus) o (Amp)
=do(Amp).

We also compute
® o (Aup) = (AU)\AEAF) o (ABua) o (Aup)
= (\UMBAF) 0 (WUsFBua) o (sUsFup)
= U K/\AEAF) o uF (Buy o uB)}
w U [(/\AEAF) o AF(uBAouA)}
= U [()\AEAF) o o F (upalUaF o uA)]

= U [()\AEAF) onF (AUUEAFOU’A)}
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=0 [(MBAF) o (\FallugaF) o (sFu)]

23U [(ugaF) o AanF) o (1Fua)]

()\AAF)O(A:FMA):AF AUUEAF = UBAUAF = ’LLBA.

6. DESCENT DATA AND QUASI-SYMMETRIES ASSOCIATED TO A MONAD

DEFINITIONS 6.1. Let A = (A, m,u) be a monad on a category A. Let ® : A2 — A2 be a functorial
morphism.
We will say that ® satisfies the Yang-Baxter equation if

(12) APoPAoc AD =PAo ADo DA

holds true.
We will say that ® is a BD-law on A [KIM, Definition 2.2] provided it is a distributive law of
A over itself i.e. it satisfies

(13) Do (maA)=(Ama)o (PA)o (AD) and Do (ugd) = Aug
and
(14) Do (Amy) = (maA) o (AD) o (PA) and Do (Aug) =usA

and it satisfies the Yang-Baxter equation.

DEFINITIONS 6.2. Let A = (A,m,u) be a monad on a category A and let ® : A2 — A2 be a
BD-law on A. Let (X, ) € aA. A quasi ®-symmetry on (X, p) is a morphism ¢ : AX — AX such
that

(15) pocouX =X
(16) Aco®PX oAc=P®X 0 Aco X
(17) coAp=mXoAcodX

We denote by ®-QSymm (X, u) the set of quasi ®-symmetries on (X, u). Moreover we write
QSymm (A, @) for the category having as objects pairs

((X,u),c) where (X, p) € aA and ¢ € D-QSymm (X, p) .
A morphism f: ((X,pn),c) = (X', '),c) is a morphism f : (X,pu) — (X', /) in oA such that
doAf =Afoc.

A quasi ®-symmetry ¢ on (X, p) is called a ®-symmetry if ¢ = AX. We denote by ®-
Symm (X, 1) the subset of ®-QSymm (X, 1) consisting of ®-symmetries and by Symm (A, @) the
full subcategory of QSymm (A, ®) whose objects are pairs ((X,p),c) where (X,pu) € aA and
¢ € &-Symm (X, p).

REMARK 6.3. (X,u) € aA. In [KTM, Definition 3.3] a quasi ®-symmetry on (X, p) is called
O-braiding on (X, u).

REMARK 6.4. Let f: B — A be a morphism of rings. Every M € Mod-A has a natural structure
of right B-module defined by setting
m-b=mf (b) for every m € M and b € B.

We will denote by M endowed with this f. (M) right B-module structure. It is easy to check
that every morphism of right A-modules g : M — M’ becomes automatically a morphism f, (g) :
f« (M) — f« (M’) in Mod-B and in this way we get a functor f. : Mod-A — Mod-B . On the
other hand, A has a left B-module structure defined by

b-a=f(b)a for every b € B and a € A.

In this way A becomes a B-A-bimodule. Let L := (—) ® g A : Mod-B — Mod-A be the extension
of scalars functor and R := Homy (A, —) : Mod-A — Mod-B be the restriction of scalars functor
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(see E3). In the following we will identify R with f. through the natural isomorphism of right
B-modules:
1/1\4:HOIIlA(BfL4,]\4)—>f*(]\4)7 h'—)h(lA)

EXAMPLE 6.5. Let f: B — A be a morphism of rings. Let L := (—)®p A = f*: Mod-B — Mod-
A be the extension of scalars functor and R := Homy (A, —) = f« : Mod-A — Mod-B be the
restriction of scalars functor (see EH). Let A = (RL,m = ReL,u = 1) be the associated monad on
Mod-B (see Proposition EA). For any E € Mod-B we have

RLE = E ®p A regarded as a right B-module

mE: EQp A®p A— E®p A

rRa®d = x®ad

ul : EB — F ®pB A
T ® 1L
Assume now that Im (f) is contained in the center of A. Let ® : (RL)* — (RL)?, be the functorial
morphism defined by
PE=FEQpT:EFRp AR A— E®g A®p A for any E € Mod-B

where 7: A®p A - A®p A is the usual flip 7(x ® y) = y ® z. Note for PE = F ®p 7 to be a
morphism in Mod-B we need that

r@d ®ab = (z@d Ra)b=[PFE(r®a®d)|b=PE(r®a®ad)b)
= PEF(r®a®db)=rxdb®@a=2®d Qba
which is satisfied in view of our assumption. We compute
RIuE : EQpA—>ERp A A
rTRa—rR@1®a

wRLE : EQp A — EQRg A®Rp A
rR@a—rRa®l

RLmE : [ERpARpA|®pA—|[E®pAl®pA
r®a®d ®d = r®ad ®ad"
ie.
RLm=—-®gm®p A
mRLE : [EQpAl®@pA®pA—[E®pAl®pA
r®a®d ®d = r®a®dd’
ie.
mRL=—-Qp A®pm
QRLE :[E@p Al®op A®p A~ [E®p Al®p A®p A
r1®a®d ®@d' —r®a®d ®@d
so that
PRL=—-QpARpT
RL(®E):[E®p Aop Al®p A— [E®p A®p Al@p A
rRae®d ®@d = r®da®ad”
so that

RL® = -QpT7Qp A
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Let us check that ® satisfies (IR). For every « € F,a,a’,a” € A we have:
(PEomRLE)(z®a®d @) =PFE(z®a®dd)=2®dd" ®a

[((RLmE) o (PRLE) o (RLOPE)] (z®a®a ®@a")
= [(RLmE) o (PRLE)] (r ® d' ® a® a")

=(RLmE) (z®d ®d" ®a)=2z®dd ®a

and
[PEo (uRLE)] (z®a)=PE(z®a®1)=2®1®a=(RLuE) (z®a).
Let us check that ® satisfies (IA). For every « € E,a,a’,a” € A we have:

[PE o (RLmE)] (z®a®d ®a")=PE(z®@ad' ®ad") =2 ®d" ®ad

[(MRLE) o (RL®E) o (PRLE)] (z ® a® a’ ® a”)
= [(mRLE) o (RL®E)] (z ® a®d" ®d’)
= (mRLE)(z®d" ®a®d)=r®d" ®ad

so that we get

®F o (RLmE) = (mRLE) o (RL®E) o (PRLE).
We compute

[PE o (RLuE)| = (PE) (z®1®a)=2®a® 1= (uRLE) (z®a).
Thus we obtain
® o (RLm) = (mRL) o (RL®) o (PRL) and ® o (RLu) = uRL
Let us check that @ satisfies (I?). We have
RL® o ®RLo RL® = — @p [(1®p A) o (A®p 7)o (T ®p A)]
=-®Rp[(A®pT)o(T1®p A)o(A®Rp T)] = PRLo RLD o PRL.

Thus @ is a BD-law on Mod-B.
REMARK 6.6. Let A = (A,m,u) be a monad on a category A and let ® : A2 — A? be a BD-law

on A. For every X € A, ®X : A2X — A%X is a quasi ®-symmetry on 4 F (X) = (AX,mX). In
fact we have

mXo®dX ouAX @ mX o AuX = AX

ADX 0o DAX 0 ADX B PAX 0 ADX 0 DAX

X 0 AmX 2 mAX 0 ADX 0 DAX

Note that if f: X — X’ is a morphism in 4, then
Af: ((AX,mX),PAX) = (AX',mX"), PAX")
is a morphism in QSymm (A, ®). Then it is easy to show that in this way we obtain a functor
J: A —  QSymm (A, d)
X = ((AX,mX),®X) "’

DEFINITION 6.7. Let A = (A, m,u) be a monad on a category A. and let (o F, oU) the correspond-
ing adjunction with unit v and counit A. Let A* = (AFaU, psFuaU, \) be the comonad on the
category a.A associated to this adjunction (Proposition BA). Let (X, u) € aA. A descent datum
on (X, p) is a morphism

p(Xpu) = aFaU (X, p) = (AX, mX)
in 4 A such that (X, u),p) €* (4A) ie. the following equalities are satisfied
(18) mXoAp = popie. pisa morphism in zA4
(19) Apop = AuXop
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(20) pop = Idx
The set of all descent data on (X, i) will be denoted by Des (X, u).

REMARK 6.8. Let A = (A, m,u) be a monad on a category A. For every X € A, AuX : ,\FX =
(AX,mX) = (AAX, mAX) is a descent datum on (AX,mX). In fact we have:

mAX o AAuX Z AuX omX
AAuX o AuX £ AuAX o AuX
mX o AuX = AX.
This is the canonical comparison K : A — A" (4.A) of the adjoint pair (4F, 4U) sending X € A to
(WFX, pFuX) = ((AX,mX), AuX).

NOTATIONS 6.9. Let A = (A, m,u) be a monad on a category A and let ® : A2 — A? be a
BD-law on A. We denote by V : QSymm (A, ®) — 4.A the forgetful functor and with J : A —
QSymm (A, @) the functor defined by (see Remark G8)

J(X) = (AX,mX),®X).

PROPOSITION 6.10. [KTLM, Theorem 3.7]Let A = (A,m,u) be a monad on a category A and let
®: A% — A? be a BD-law on A. Then

(A A AA) - (A 2 QSymm (A, @) % AA)

2F=Vold aAFop,U=VoJo,U

and (V,J o pU) is an adjunction with counit Ag : aF o \U = Vo Jo U — aA and unit 38 :
QSymm (A, ®) - Jo,UoV
defined by

B((X,u),c)=couX for every ((X,p),c) € QSymm (A, D).

Moreover the comonad corresponding to the adjunction (V,J o aU) coincides with the comonad
A* = (\FaU, sFupU, X) corresponding to the adjunction (4 F, zU).

Proof. Let X € A. Then
(Vod)(X)=V((AX,mX),0X) = (AX,mX) =,F(X).

Thus oF o o,U = Vo JoaU. Let now ((X,u),c) € QSymm (A,®) and let us check that
B((X,n),c) =couX is a morphism

BUKXom), ) (X,1),6) = (T 0 4T 0 V) (X, ), ) = ((AX,mX), BX)
in QSymm (A, ®). We compute
couXopncoAuoudX 2 mXodcodX oudX = mX o Aco AuX
and
Aco AuX 0¢'D Aco®X oudX oc™ Aco ®X o Aco uAX
@ X 0AcodX oudX B X 0 Aco AuX.
Let us check that in this way we get a functorial morphism 8 : QSymm (A, ®) — Jo ,U o V. Let
fo((Xp),e) = (X 1), )
be a morphism in QSymm (A, ®). We have
(JopaUoV)(f)B((X,u),c)=AfocouX
=cdoAfouX £ ouX'of =X, 1), c)of.

Let us know show (V,J o 4U) is an adjunction with counit A = A4 and unit 3.
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For every ((X, u),c) € QSymm (A, ), we compute

AUV (X, 1), €) o VB (X, 1) €))] = aUA((X, p)) 0 couX

:uocouX (E)X:AU[V(((XaN>7C))]

and for every (X, u) € oA, we compute
(WU o V) ([(J o aU) M(X, )] o [B(J 0 alU) (X, u)])
=Juo (Vo U)[B((AX,mX),PX)] = Appo X ouAX
D ApoAuX T AX = (WU o V) (Jonl) (X, ).

Since both the functors ,U and V o 4U are faithful, we conclude.
In view of the foregoing, to prove the last statement it remains to prove that

VBIAU = s FusU.
Let (X, pu) € o A. We compute
(VBIAU) (X, 1) = VBJ (X) = VB (AX, mX, ®X)

—0X 0udX 2 AuX = (WFunl) (X, 1)
O

PROPOSITION 6.11. Let A = (A, m,u) be a monad on a category A and let ® : A — A2 be a
BD-law on A. For every (X, pu) € oA the assignment

c—couX
defines a bijection
I'(X,p): ©-QSymm (X, ) — Des (X, i)
whose inverse IV (X, 1) is defined by setting
(X, 1) (p) = Ao ®X o Ap.
Moreover if X o ®X = A2X, then ®-QSymm (X, u) = ®-Symm (X, ).
Proof. Let ¢ € ®-QSymm (X, 1) and let us check that ¢ o uX € Des (X, ). Let us check (IR).

mXoA(couX) = mXoAcoAuX © X 0 Aco X 0 uAX (E)COA,uouAX
U
= (couX)opu.
Let us check (I9).

AuX o (couX) =

(@)

®X o (uAX oc)ouX = ®X o AcouAX ouX
(PX o0Aco®dX)o AuX ouX @ Aco®X o (Aco AuX)ouX

% AcodX oudX ocouX = Aco AuX ocouX = A(couX)ocouX.

Let us check (£0).
po(couX) @ x

Let p € Des (X, u1). Let us check that Apo ®X o Ap € -QSymm (X, ) . Let us check (I3)
/LOA,uoq)XOApouX@uomqu)XO(ApouX)é,uomXO(CDXouAX)Op
@ pomX o (AuX o p) (

Let us check (I@)

IJ3)Mo(mXoAp)op(u::s)Mopouop:X.

A% 0 ADX 0 A%po (@XOAQM) 0 ADX o0 A%p
2 A%0 ADX o (A%po A%1) 0 DAX 0 ADX o A%p
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® 420 ADX o (A2mX 0 A%po DAX) 0 ADX o A%p
2 4210 ADX 0 ®AX 0 A’mX o (Apo ADX) 0 A%p
2 A1 0 ADX 0 DAX 0 A2mX o ADAX o (A%po A%p)
© 420 ADX 0 BAX 0 A2mX o (ADAX o APuX) o A2p
2 4210 ADX 0 DAX o (A2mX o A*uX) 0 ADX o A%p
=A% o (ADX 0 PAX 0 ADX) 0 A?p
@ (A0 BAX) 0 ADX o (BAX 0 A%) L X 0 A0 ADX 0 A2po BX
Let us check (I)

mX o A(Auo®X o Ap) o X

= (mX °A2H) 0 ADPX 0 A%po dX
Z ApomAz o APX o (Aonq)X)
2 Apo (mAX 0 ADX 0 DAX) 0 A
@ ApodX o (AmX o Azp)
@) Apod®X o Apo Ap

= (Apo®X o Ap)o Ap.

Let ¢ € ®-QSymm (X, 11). Since, by Proposition B0, 8 ((X,u),c) = couX is a morphism in
QSymm (A, @), we have that

(21) Aco AuX oc = ®X o Aco AuX.
We deduce that
(I (X, 1) o T (X, 1)) (¢) = Apo (BX 0 Aco AuX) B (Apo Aco AuX)oc ® e
Let p € Des (X, p).
(T(X,pm) oI (X, 1)) (p) = Ao ®X o (ApouX) = Ao dX ouAX op
@ AquuXop(E:) p
Assume now that ®X o ®X = A2X and let p € Des (X, u). We compute
Apo®X o (Apo Ap)o X 0 Ap B Apo®X o AmX o (A2p0 BX) o Ap
2 Apo®X o AmX o ®AX o (A%po Ap)
D 4o dX 0 AmX o (PAX 0 A%uX) 0 Ap
2 ApodX o AmX o A2uX o ®X o Ap
— Apo®X o ®X 0 Ap = Apo Ap 2 AX.
Since any ¢ € ®-QSymm (X, p) is of the form I (X, ) (p) for p =T (X, u) (¢), we conclude. O
We now give a new and self-contained proof of the following Theorem.

THEOREM 6.12. [KTM, Theorem 3.7] Let A = (A, m,u) be a monad on a category A and let
® : A2 — A? be a BD-law on A. Let K be the cocomparison functor K of the adjunction
(Va JAU)

K : QSymm (A, @) V74U (y A) =+F4U (, A) =27 (4 A)
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defined by
K ((X,p1),0) = (V(((X,1),0), VB((X, 1), ¢) = ((X,pn),couX)
is an isomorphism of categories whose inverse is the functor A defined by setting
A(((X, 1), p)) = ((X,p) , Ao @X 0 Ap) .

In particular the functor V is comonadic.

Proof. In view of Proposition B0, we know that ((X,u),Auo®X o Ap) € QSymm (A, ®) for
every ((X,p),p) € (aA). Let

f((Xm),p) = (X)), 0)
be a morphism in 4™ (4.A). We have
Af o (Apo®X o Ap) :A,u’oAZfo@XoApiAu'o@X’oAzfoApz (Ap' o ®X' 0 Ap') o Af
so that
fo((X ), Apo ®X o Ap) — (X', '), Ap' 0 X" 0 Ap')

is a morphism in QSymm (A, ®). We deduce that A is a functor. In view of Proposition B, we
get that K“° is an isomorphism of categories with inverse A. O

EXAMPLE 6.13. Let f : B — A be a morphism of rings. Let L := (—=)®p A = f* : Mod-B — Mod-
A be the extension of scalars functor and R := Homyu (gA,—) = f« : Mod-A — Mod-B be the
restriction of scalars functor . Let A = (RL,m = ReL,u = n) be the associated monad on Mod-B.
Recall from Example (E3) that for any E € Mod-B we have

RLE = E ®p A regarded as a right B-module

mE: EQp A®p A— E®p A

rRa®d = r®ad

ul :Ep - EQpA
r—=r® 1.
Let (E,u) € o (Mod-B). Then p: RLE = E®p A — E is a morphism in Mod-B satisfying
po(p®@p A)=poRLu=pomE and E = pouF
ie.
(za)d = [0 (n@p A)] (t®a® d) = (nomE) (8 a®d') = z (ad)
where, for any = € F and a € A we write za = p (z ® a) and
r=uzl

Let

t:ExA— EQA
the canonical projection. Then (E,pot) € Mod-A. Let f : (E,u) — (E', ') be a morphism in
A (Mod-B). This means that f : E — E’ is a morphism in (Mod-B) and fou=p'o(f ®p A) i.e.

f(za)=f(z)a

ie. f:(E,pot) = (E' i ot) is a morphism in Mod-A.
Conversely let (M, v) € Mod-A. Since v is B-balanced, there is a unique morphism p : M@pA —
M such that v = p o t. Hence the assignment (E, ) — (F, pot) yields a category isomorphism

H: 4 (Mod-B) — Mod-A.
Let (4 F, oAU) be the adjunction corresponding to our monad A. Then it is easy to check that

Mod-A™S" , (Mod-B) *Y Mod-B
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is just the restriction of scalars functor R = Homy (4, —) = fi« : Mod-A — Mod-B while
Mod-B*% , (Mod-B) & Mod-A

coincides with the extension of scalars functor L := (—)®p A = f*: Mod-B — Mod-A. Therefore
the category isomorphism H induces a category isomorphism

#FaU (4 (Mod-B)) — € (Mod-A)

where C is the canonical comonad of the adjunction (L, R) i.e. C =(LR,A = LnR = LuR,¢) . For
any M € Mod-A we have

LRM = M ®p A regarded as a right A-module

AM M A— MeQpARQp A
rRQa—rR1R®a

eM :LRM =M A— M
T Q@ avw— xa.

Let (M, p) € € (Mod-A) and for every x € M we write
p(x) = le ® a; where x; € M and o; € A for every 1.

[[) means that

22 Z x; @ aa = p(za) for every x € M and a € A.

23 Zp(mi)ébaizzgci@l@ai for every x € M

P1) means that

(=)
(22)
(™) means that
(23)
(em)
(24)

24 inai =z for every x € M.

Now let us consider the cocomparison functor of the adjunction (L, R)

K : Mod-B — © (Mod-A).
For every F € B-Mod we have

K (E) := (L(E), Ln(E))
where prpy = Ln(E) : E®p A - E®p A®p A and

In(E)(z®a) =28 1®a.

Let e : RM — RLRM = M ®p A be the map defined by e (z) = 2 ® 1. Note that e is a map

in Mod-B. Let E = Ker (p — e¢). We have the exact sequence in Mod-B

0— E-% RM =S RLRM

and
M =E={xeM|px)=2z1}.
It is easy to show that the assignment M — M<°Y defines a functor
0" : € (Mod-A) — Mod-B.

THEOREM 6.14. [CIB, Teorema page 45]Using the assumptions and notations of Example BI3,
assume also that A is a faithfully flat left B-module. Then the cocomparison functor K : Mod-
B — ©(Mod-A) is an equivalence of categories with inverse functor

0" : € (Mod-A) — Mod — B.
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Proof. Let (M, p) € ©(Mod-A). Since A is a flat left B-module we get the exact sequence

0 M @5 A— RMog AP 2% RLRM @5 A.

Let us show that Im (p) C M°°” ®p A i.e. that [(p —e) ®p A] Im (p)) = 0. Let x € M and let
p(x) = Z“TZ ® a; where x; € M and «; € A for every 1.

We compute

(p =) @5 Al (p) (@) = [(p ) 5 A] (Y © )
=Y rE)ea-Y neltea 2o

Hence we can consider the corestriction p: RM — RLM®’ = M ®p A of p to M’ ®p A so
that p = (i ® A) o p. Clearly p is a morphism in Mod-A. Let us show that it is a morphism in
€ (Mod-A) from (M, p) to K (M) . For every = € M, let

p(x) = le ® «; where x; € M and «; € A for every i.
We compute

[(i©p AcpA)o(popA)opl(z) = [(popA)opl(x)= plw)®a

= .
(:)le@)l@az = ((Z@A@A)OpL(Mcov)Oﬁ) (117)
Since gA is flat, i ® g A ® g A is a monomorphism so that we deduce that
(p®@p A)op=prmecvyop

and hence 7 is a morphism in © (Mod-A).
Let h: M’ @ A — M be defined by

h(z®a) = za.
For every x € M, let
p(x) = sz ® a; where x; € M and «; € A for every 1.
We compute

(hop)(z) = Z T @,

and for every x € M and a € A
(poh)(z®a)=p(xa) Zzz@)az
:(Z;vi@)ai)a M (z®1l)a=zRa.

This proves that 7 is an isomorphism in © (Mod-A) with inverse h.
Let now F € Mod-B and let x € E. Then
pL(E)($®1):£L’®1®1

sothat z®1 € (E®p A)“" and hence we can consider the morphism of right B-modules v : E —
(E®p A)*" defined by v (z) = 2®1. We want to prove that v is an isomorphism in Mod-B. Since
A is a faithfully flat left B-module, in view of [Bad, Proposition 2 page 47|, this is equivalent to
show that v ®g A is bijective. For every z € F and a € A we have

(vepA)(r®a)=r®1®a=prE) (r®a)

so that we deduce that v @p A = pr(g). By the foregoing we know that pr(z) is an isomorphism
in Mod-A. |

NOTATION 6.15. Let R : A — B. We will denote by ImR the full subcategory of B consisting of
those objects B € B such that there is an object A € A and an isomorphism B = RA in B.
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PROBLEM 1. (Descent problem for modules) Let M € A-Mod. Is there any E € B-Mod such that
M>=L(E)=FE®pAin A-Mod? Such an E will be called a form of M over B.

THEOREM 6.16. Using the assumptions and notations of Example B3, let f : B — A be a
morphism of rings and assume that A is a faithfully flat left B-module. Then

Obj (Im (L)) = Obj (U® [* (Mod-A)]) .

Proof. In view of Theorem B4, K : Mod-B — © (Mod-A) is an equivalence of categories so that
Obj (Im (K)) = € (Mod-A). Therefore

Obj (Im (L)) = Obj (Im (U 0 K*°)) = Obj (U® [* (Mod-A)])
O

Assume now A and B commutative. All modules over a commutative ring S are considered as
symmetrical S-S-bimodules.

Let M be an A-module and let g : A®p M — M ®p A be a morphism of A-A-bimodules. Let
g1 =AR®pg,93 = g®p A and define g0 : AQp AQp M - M g AQp Aand g: M — M by
setting

pla®d @) = Z%‘@CLI@CM where g (a Zmz®al
Z:Eiai where g (1 ® ) 2::@@&Z

g (x)

(gsog)(a@a' @x)=g3(a@g(a @) =gs(a@a'g(l®))
= g3 (Za@a’xi(@ai):Zag(l(X)a’xi)@ai
where g (1 ® x) sz(@az
g2 (a®ad @) :Zami@)a ® o
where g (a®z) =ag(1®z) = Zaxl(@azwhereg (1®x) ZUCZ@%

Hence g = g3 0 g1 means

(25) E:CLg(l(Ega'xi)(@ozZ Za:@@a ® a; where g (1 ® x) sz@)%
while g = Id; means
(26) inai =z where g (1® z) = sz ® ay.
Let
= gA@BM—>M®BA
"1 |gis a morphism of A-A-bimodules go = g3 0 g1 and g = Idy

For every g € I' consider the map
pg:M—M®@p A
defined by
py(@) = g(182).
For every p € Des (X, ), where p: A®p M — M denotes the map induced by the multiplication
by A on M, consider the map

gp: A®p M — M ®p A
defined by
gp(a®z)=ap(z Zaxz®azwherep sz@)az

THEOREM 6.17. The assignment g — pg defines a bijection A : T' — Des (M, ) whose inverse is
defined by the assignment p — g,,.
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Proof. Let us check that p, € Des (M, p). Let x € M. We write

() =915 = Y s
For every a € A, we compute

pg(xa) =g(1®za)=g((1@z)a)=g(1@z)a=py(r)a

= (Zl‘l ®Ozi) a= (Zl‘l ®0zia)
so that p, satisfies (23).
We compute
o3
Zpg (z:) @ a; = Zg(1®$i)®ai @ in®1®ai

so that p, fulfils (23). Moreover, in view of (EB), for every € X we have
inai:x where pg(x):g(1®x):2xi®ai.
so that p, fulfils (24).
Conversely let p € Des (M, u). Let x € M. We write
p(z)= in ® .
Then, for every a € A we have
g0 (1@ ) —ap(a) = 3 ez @ s

For every a,a’ € A, we compute

Zagp (I®dz)@a; = Zagp 1l®dz)®a = Zagp (1®zad) @ q;

- Zap (via') @ oy = Zap (2;)ad' @ oy @ Za:ci ®a ® o

so that g, fulfils (23). Moreover in view of (E4) we have that

Z r,o; =X
so that g, fulfils (23).
Let now g € I and, for every a € A and x € M let us compute

G, (@@ ) = ap, (1@ 7) = ag(182) = g(a® 7).
Therefore we deduce that g,, = g. Let now p € Des (M, p1) and, for every x € M let us compute

Py, (1) = g, (1@ x) = p(2).
Therefore we deduce that p = p,, . ]
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