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For two cycles in a manifold, the localized intersection product of their classes is
defined, in the homology of their set theoretical intersection, via Alexander dualities and
the cup product in the relative cohomology. Thus for a cycle C in a manifold W , the
corresponding class in the relative cohomology carries the local information on C. For a
submanifoldM ofW , this is the Thom class ofM , which may be identified with the Thom
class of the normal bundle ofM inW by the tubular neighborhood theorem. In this paper
we take up the localization problem of currents. We introduce the notion of a Thom class
of a current and define the localized intersection of two currents. In particular we consider
the intersections of a fixed submanifold M and currents, obtain a residue theorem on M
and give explicit expressions of the residues in some cases (see Theorems 3.12 and 3.17
below for precise statements). As an application we study the coincidence point problem
for two maps.

The coincidence point formula discovered by S. Lefschetz (cf. [6], [7]) is formulated for
a pair of continuous maps between compact oriented topological manifolds of the same
dimension. Using the above, we define global and local homology classes of coincidence
for a pair of C∞ maps M → N and give a general coincidence point theorem, even in the
case the dimensions m and n of M and N are different and the coincidence points are
non-isolated (Definitions 4.1 and 4.2). In the case m = n, the use of Thom class in the
Čech-de Rham cohomology immediately gives us an explicit expression of the coincidence
index at an isolated coincidence point (Propositions 4.5). This gives in turn an explicit
coincidence homology class at a certain non-isolated coincidence component in the case
m > n (Proposition 4.8). We then have a general coincidence point formula, including
the Lefschetz coincidence point formula.

The paper is organized as follows. In Section 2, we recall preliminary materials such as
Poincaré and Alexander dualities, global and localized intersection products, Thom classes
in various settings and an explicit expression, in the Čech-de Rham cohomology, of the
Thom class of an oriented vector bundle (Proposition 2.16). In Section 3, we consider the
localization problem of currents, introduce the notion of a Thom class of a current and
give some examples. We then consider localized intersections of currents. In particular we
study intersections of a fixed submanifoldM in a manifold W and currents on W . In fact
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we consider a more general situation where we have a map F :M → W (Definition 3.10).
For a closed current T on W , we have the intersection product M ·F T in the homology
of M and, if T is localized at a compact set S̃ in W and if ΨT is a Thom class of T along
S̃, we have the residue of F ∗ΨT in the homology of S = F−1S̃ as a localized intersection
product. If S has several connected components, we have a “residue theorem” (Theorem
3.12). We give an explicit formula for the residue at a non-isolated component of S in the
case it is a submanifold of M (Theorem 3.17). These are conveniently used in Section 4,
where we study the coincidence point problem for two maps.

Let M and N be manifolds of dimensions m and n and let f, g : M → N be two
maps. We define the global coincidence class of the pair (f, g) in the (m−n)-th homology
of M (Definition 4.1). If M is compact, we also define the local coincidence class of
the pair in the (m − n)-th homology of the set of points in M where f and g coincide
(Definition 4.2). We then apply Theorem 3.12 to get a general coincidence point theorem
(Theorem 4.4). In the case m = n we have a formula for the coincidence index at an
isolated coincidence point as the local mapping degree of g− f (Proposition 4.5). This is
in fact a classical result, however we give a short direct proof using the aforementioned
expression of the Thom class in the Čech-de Rham cohomology. This together with
Theorem 3.17 gives an explicit expression of the coincidence homology class at a non-
isolated component (Proposition 4.8). If M and N are compact manifolds of the same
dimension, we have a general coincidence point formula (Theorem 4.11), which reduces
to the Lefschetz coincidence point formula in the case the coincidence points are isolated
(Corollary 4.12).

1 Notation and conventions

Let M be a C∞ manifold. We denote by H∗(M,C) and H∗(M,C) its homology and
cohomology of finite singular chains with C coefficients. Also we denote by H̆∗(M,C) the
homology of locally finite chains (Borel-Moore homology). They can be computed taking
a triangulation of M . Recall that any C∞ manifold admits a C∞ triangulation, which is
essentially unique. In the sequel a locally finite C∞ chain is simply called a chain unless
otherwise stated. Thus a chain C is expressed as a locally finite sum C =

∑
aisi with ai

in C and si oriented C
∞ simplices. We set |C| =

∪
si and call it the support of C. It is

a closed set. For a cycle C, its class in the homology of the ambient space is denoted by
[C], while the class in the homology of its support is simply denoted by C.

For an open set U in M , we denote by Ap(U) and Apc(U), respectively, the spaces of
complex valued C∞ p-forms and p-forms with compact support on U . The cohomology of
the complex (A∗(M), d) is the de Rham cohomology H∗

dR(M) and that of (A∗
c(M), d) is

the cohomology H∗
c (M) with compact support. A C∞ form will be simply called a form

unless otherwise stated.

2 Čech-de Rham cohomology and the Thom class

For the background on the Čech-de Rham cohomology, we refer to [2]. The integration
theory on this cohomology is developed in [8]. See [9] also for these materials and for the
description of the Thom class in the framework of relative Čech-de Rham cohomology.
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The relation with the combinatorial viewpoint, as given in [3], is discussed in [10].
In this section we let M denote a C∞ manifold of dimension m.

2.1 Poincaré duality

We recall the Poincaré duality and global intersection products of homology classes.
Suppose that M is connected and oriented. Then the pairing

Ap(M)× Am−p
c (M) −→ C given by (ω, φ) 7→

∫
M

ω ∧ φ

induces the Poincaré duality for a possibly non-compact manifold :

P : Hp(M,C) ≃ Hp
dR(M)

∼−→ Hm−p
c (M)∗ ≃ H̆m−p(M,C). (2.1)

In the sequel we sometimes omit the coefficient C in homology and cohomology. In fact
the Poincaré duality holds with Z coefficient. Note that P is given by the left cap product
with the fundamental class of M , the class of the sum of all m-simplices in M . We also
denote P by PM if we wish to make the manifold M under consideration explicit.

In the isomorphism (2.1), the class [ω] of a closed p-form ω corresponds to the func-
tional on Hm−p

c (M) given by

[φ] 7→
∫
M

ω ∧ φ, (2.2)

or to the class [C] of an (m− p)-cycle C such that∫
M

ω ∧ φ =

∫
C

φ (2.3)

for any closed form φ in Am−p
c (M). We call ω a de Rham representative of C.

For two classes [C1] ∈ H̆q1(M) and [C2] ∈ H̆q2(M), the intersection product [C1] · [C2]
is defined by

[C1] · [C2] := P (P−1[C1] ` P−1[C2]) in H̆q1+q2−m(M), (2.4)

where ` denotes the cup product, which corresponds to the exterior product in the first
isomorphism in (2.1).

IfM is compact and connected, then H̆0(M,C) = H0(M,C) = C. Thus if q1+q2 = m,
[C1] · [C2] is a number given by

[C1] · [C2] =

∫
M

ω1 ∧ ω2 =

∫
C1

ω2 = (−1)q1q2
∫
C2

ω1,

where ω1 and ω2 are de Rham representatives of C1 and C2, respectively.

2.2 Čech-de Rham cohomology

The Čech-de Rham cohomology is defined for an arbitrary open covering of M , however
here we only consider coverings consisting of two open sets. Thus let U = {U0, U1} be an
open covering of M . We set U01 = U0 ∩U1 and define the complex vector space Ap(U) as

Ap(U) := Ap(U0)⊕ Ap(U1)⊕ Ap−1(U01).
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An element σ in Ap(U) is given by a triple σ = (σ0, σ1, σ01) with σi a p-form on Ui, i = 0, 1,
and σ01 a (p− 1)-form on U01. We define an operator D : Ap(U) → Ap+1(U) by

Dσ := (dσ0, dσ1, σ1|U01 − σ0|U01 − dσ01).

Then we see that D ◦ D = 0 so that we have a complex (A∗(U), D). The p-th Čech-
de Rham cohomology of U , denoted by Hp

D(U), is the p-th cohomology of this complex.
It is also abbreviated as ČdR cohomology. We denote the class of a cocycle σ by [σ].
It can be shown that the map Ap(M) → Ap(U) given by ω 7→ (ω|U0 , ω|U1 , 0) induces an
isomorphism

α : Hp
dR(M)

∼−→ Hp
D(U). (2.5)

Note that α−1 assigns to the class of a ČdR cocycle (σ0, σ1, σ01) the class of the closed
form ρ0σ0 + ρ1σ1 − dρ0 ∧ σ01, where {ρ0, ρ1} is a partition of unity subordinate to U .

Now we could define the cup product for ČdR cochains and describe the Poincaré
duality in terms of the ČdR cohomology as in [9] in the caseM is compact. However here
we proceed as follows. Let M and U = {U0, U1} be as above. A system of honeycomb
cells adapted to U is a collection {R0, R1} of two submanifolds of M of dimension m with
C∞ boundary having the following properties :

(1) Ri ⊂ Ui for i = 0, 1,

(2) Int R0 ∩ Int R1 = ∅ and

(3) R0 ∪R1 =M ,

where Int denotes the interior. Suppose M is oriented. Then R0 and R1 are naturally
oriented. Let R01 = R0 ∩ R1 with the orientation as the boundary of R0 ; R01 = ∂R0, or
equivalently, the orientation opposite to that of the boundary of R1 ; R01 = −∂R1. We
consider the pairing

Ap(U)× Am−p
c (M) −→ C

given by

(σ, φ) 7→
∫
R0

σ0 ∧ φ+

∫
R1

σ1 ∧ φ+

∫
R01

σ01 ∧ φ. (2.6)

Then it induces the Poincaré duality (2.1) through the isomorphism α in (2.5).

2.3 Relative Čech-de Rham cohomology and Alexander duality

We introduce the relative Čech-de Rham cohomology and describe the Alexander duality,
which is used to define localized intersection products.

Let S be a closed set in M . Letting U0 = MrS and U1 a neighborhood of S in M ,
we consider the covering U = {U0, U1} of M . If we set

Ap(U , U0) = {σ ∈ Ap(U) | σ0 = 0 },

we see that (A∗(U , U0), D) is a subcomplex of (A∗(U), D). We denote by Hp
D(U , U0) the

p-th cohomology of this complex. From the short exact sequence

0 −→ A∗(U , U0)
j∗−→ A∗(U) ι∗−→ A∗(U0) −→ 0,
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where j∗ is the inclusion and ι∗ is the homomorphism that assigns σ0 to σ = (σ0, σ1, σ01),
we have the long exact sequence

· · · −→ Hp−1
D (U) ι∗−→ Hp−1

dR (U0)
δ∗−→ Hp

D(U , U0)
j∗−→ Hp

D(U)
ι∗−→ Hp

dR(U0) −→ · · · . (2.7)

In the above, δ∗ assigns the class [(0, 0,−θ)] to the class of a closed (p− 1)-form θ on U0.
Comparing with the long cohomology exact sequence for the pair (M,MrS), we have a
natural isomorphism (see [10] for a precise proof) :

Hp
D(U , U0) ≃ Hp(M,MrS;C).

We describe the Alexander duality in terms of the relative ČdR cohomology in the case
S is compact and admits a regular neighborhood (cf. [9]). Thus suppose M is oriented
and let {R0, R1} be a system of honeycomb cells adapted to U . We assume that S is
compact so that we may also assume that R1 is compact. Consider the pairing

Ap(U , U0)× Am−p(U1) −→ C (2.8)

given by

(σ, φ) 7→
∫
R1

σ1 ∧ φ+

∫
R01

σ01 ∧ φ.

Then it induces the Alexander homomorphism :

A : Hp(M,MrS;C) ≃ Hp
D(U , U0) −→ Hm−p

dR (U1)
∗ ≃ Hm−p(U1,C). (2.9)

The homomorphism (2.9) depends on U1 and is not an isomorphism in general. Here we
consider the following hypothesis :

(*) there exists a triangulation of M such that S is (the polyhedron of) a subcomplex.

The hypothesis is satisfied if S is the support of a chain. Under this hypothesis, we may
take as U1 a regular neighborhood of S so that there is a deformation retract U1 → S.
We then have Hm−p(U1) ≃ Hm−p(S) and (2.8) induces the Alexander duality :

A : Hp(M,MrS;C) ≃ Hp
D(U , U0)

∼−→ Hm−p
dR (U1)

∗ ≃ Hm−p(S,C). (2.10)

Note that A is also given by the left cap product with the fundamental class M . We also
denote A by AM,S if we wish to make the pair (M,S) explicit.

In the isomorphism (2.10), the class [σ] of a p-cochain σ corresponds to the functional
on Hm−p

dR (U1) given by

[φ1] 7→
∫
R1

σ1 ∧ φ1 +

∫
R01

σ01 ∧ φ1, (2.11)

or to the class [C] of an (m− p)-cycle C in S such that∫
R1

σ1 ∧ φ1 +

∫
R01

σ01 ∧ φ1 =

∫
C

φ1 (2.12)

for any closed form φ1 in Am−p(U1).
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Denoting by i : S ↪→M the inclusion, we have the following commutative diagram :

Hp(M,MrS) ∼−−−→
A

Hm−p
dR (U1)

∗ ≃ Hm−p(S)yj∗ yi∗
Hp(M)

∼−−−→
P

Hm−p
c (M)∗ ≃ H̆m−p(M).

(2.13)

Remark 2.14 1. If we denote the homomorphism Hm−p
dR (U1)

∗ → Hm−p
c (M)∗ correspond-

ing to i∗ in the homology also by i∗, it is described as follows. For any functional F1 on
Hm−p

dR (U1), there is a corresponding cycle C in S and i∗F1 is given by

i∗F1[φ] =

∫
C

φ for [φ] ∈ Hm−p
c (M).

Alternatively, if (0, σ1, σ01) is a ČdR representative of A−1F1, then

i∗F1[φ] =

∫
R1

σ1 ∧ φ+

∫
R01

σ01 ∧ φ.

2. For a closed set S (which may not be compact) in M satisfying (*), we may define the
Alexander isomorphism

A : Hp(M,MrS) ∼−→ H̆m−p(S)

via combinatorial topology (cf. [3]).

Let S1 and S2 be compact sets in M satisfying (*) and set S = S1 ∩ S2. Let A1, A2

and A denote the Alexander isomorphisms for (M,S1), (M,S2) and (M,S), respectively.
For two classes c1 ∈ Hq1(S1) and c2 ∈ Hq2(S2), the localized intersection product (c1 · c2)S
is defined by

(c1 · c2)S := A(A−1
1 c1 ` A−1

2 c2) in Hq1+q2−m(S), (2.15)

where ` denotes the cup product

Hm−q1(M,MrS1)×Hm−q2(M,MrS2)
`−→ H2m−q1−q2(M,MrS).

Letting i1 : S1 ↪→ M , i2 : S2 ↪→ M and i : S ↪→ M be the inclusions, from (2.13) we see
that the definitions (2.4) and (2.15) are consistent in the sense that

i∗(c1 · c2)S = (i1)∗c1 · (i2)∗c2.

2.4 Thom class

In this subsection, we sometimes omit the coefficient C in homology and cohomology. In
fact the isomorphisms we consider below can be defined from combinatorial viewpoint in
homology and cohomology with Z coefficient (cf. [3], also [10]).
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(a) Thom class of an oriented real vector bundle : Let π : E →M be an oriented
real vector bundle of rank k. We identify M with the image of the zero section. Then we
have the Thom isomorphism

TE : Hp(M,C) ∼−→ Hp+k(E,ErM ;C),

whose inverse is given by the integration along the fiber of π (see [9, Ch.II, 5]).
The Thom class ΨE of E, which is in Hk(E,ErM), is the image of the constant

function 1 in H0(M,C) by TE. Note that TE is given by the cup product with ΨE. Let
W0 = ErM and W1 a neighborhood ofM in E and consider the covering W = {W0,W1}
of E. We refer to [9, Ch.II, Proposition 5.7] for an explicit expression of a ČdR cocycle
representing ΨE in the isomorphism Hk(E,ErM) ≃ Hk

D(W ,W0). In particular suppose
E is trivial on an open set U of M . Then, setting Ak(W ,W0)|U = Ak(W ′,W ′

0) with
W ′
i =Wi ∩ π−1(U), we have (cf. [9, Ch.III, Lemma 1.4]) :

Proposition 2.16 Suppose E is trivial on an open set U of M ; E|U ≃ Rk × U and let
ρ : E|U → Rk denote the projection on to the fiber direction. Then ΨE|U is represented by
a cocycle in Ak(W ,W0)|U of the form

(0, 0,−ρ∗ψk),

where ψk is an angular form on Rkr{0}, i.e., a closed (k − 1)-form with
∫
Sk−1 ψk = 1.

Suppose M is compact and oriented. We orient the total space E so that, if ξ =
(ξ1, . . . , ξk) is a positive fiber coordinate system of E and if x = (x1, . . . , xm) is a positive
coordinate system on M , then (ξ, x) is a positive coordinate system on E. We then have
the commutative diagram :

Hp(M)
∼−−−→
TE

Hp+k(E,ErM)

≀
yP ≀

yA
Hm−p(M)

=−−−→ Hm−p(M).

(2.17)

(b) Thom class of a submanifold : Let W be an oriented C∞ manifold of dimension
m′ and M a compact and oriented submanifold of W of dimension m. Set k = m′ −m.
In view of (2.17), we define the Thom isomorphism TM as the composition

TM : Hp(M)
∼−→
P

Hm−p(M)
∼−→
A−1

Hp+k(W,W rM)

and the Thom class ΨM of M , which is in Hk(W,W rM), by

ΨM =: TM(1) = A−1(M). (2.18)

Let NM → M denote the normal bundle of M in W . Suppose the orientation of
M is compatible with that of W in the sense that NM is orientable. We orient NM

as follows. Namely, if (x1, . . . , xk, . . . , xm′) is a positive coordinate system on W such
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that M is given by x1 = · · · = xk = 0 and that (xk+1, . . . , xm′) is a positive coordinate
system of M , then the vectors ( ∂

∂x1
, . . . , ∂

∂xk
) determine a positive frame of NM . By the

tubular neighborhood theorem, there is a neighborhoodW1 ofM inW and an orientation
preserving diffeomorphism of W1 onto a neighborhood of the zero section of NM , which
is identified with M . By excision we have

Hk(W,W rM) ≃ Hk(W1,W1rM) ≃ Hk(NM , NMrM)

and, in the above isomorphisms, the Thom class ΨM of M corresponds to the Thom class
ΨNM

of the vector bundle NM .

Remark 2.19 More generally, for a pseudo-manifoldM inW , we may define the Poincaré
homomorphism P : Hp(M) −→ H̆m−p(M). Thus we have the Thom homomorphism and
the Thom class ΨM of M (cf. [3]).

(c) Thom class of a cycle : Let C be a finite (m′ − p)-cycle in W and S̃ its support.
We may define the Thom class ΨC of C by

ΨC := A−1(C),

where A is the Alexander isomorphism (2.10) for the pair (W, S̃).

3 Localized intersection of currents

3.1 Thom class of a current

Let W be an oriented C∞ manifold of dimension m′. Recall that a p-current T on W is
a continuous linear functional on the space Am

′−p
c (W ). We use the notation

T (φ) = ⟨T, φ⟩, φ ∈ Am
′−p

c (W ).

Let Dp(W ) denote the space of p-currents on W . The differential d : Dp(W ) → Dp+1(W )
is defined by

⟨dT, φ⟩ = (−1)p+1⟨T, dφ⟩, φ ∈ Am
′−p−1

c (W ).

Then (D∗(W ), d) forms a complex, whose p-th cohomology is denoted by Hp(D∗(W )).
For a closed p-current T , we denote by [T ] its cohomology class.

A form ω in Ap(W ) may be naturally thought of as a p-current Tω by

⟨Tω, φ⟩ =
∫
W

ω ∧ φ, φ ∈ Am
′−p

c (W ).

If ω is closed, then Tω is closed and the assignment ω 7→ Tω induces an isomorphism

β : Hp
dR(W )

∼−→ Hp(D∗(W )). (3.1)

A Čech-de Rham cochain σ on a covering W of W may be also thought of as a current
Tσ via integration given as (2.6). If Dσ = 0, then Tσ is closed and the assignment σ 7→ Tσ
induces the isomorphism β ◦ α−1 : Hp

D(W)
∼→ Hp(D∗(W )).

8



Also an (m′ − p)-chain C may be thought of as a p-current TC by

⟨TC , φ⟩ =
∫
C

φ, φ ∈ Am
′−p

c (W ).

If C is a cycle, TC is closed and the assignment C 7→ TC induces an isomorphism

γ : H̆m−p(W )
∼−→ Hp(D∗(W )).

By (2.3), we have γ ◦ P = β.

If U is an open set of W , there is a natural inclusion A∗
c(U) ↪→ A∗

c(W ), given by
extension by zero, so that we may consider the restriction T |U to U of a current T on W .
The support supp(T ) of T is the smallest closed subset of W such that T |Wrsupp(T ) = 0.

Now we consider the localization problem of currents. Thus let S̃ be a closed set
in W . Let W0 = W r S̃ and W1 a neighborhood of S̃ in W and consider the covering
W = {W0,W1} of W . We have the commutative diagram with exact row (cf. (2.7)) :

Hp
D(W ,W0)

j∗−−−→ Hp
D(W)

ι∗−−−→ Hp
dR(W0)

≀
yβ◦α−1 ≀

yβ
Hp(D∗(W ))

ι∗−−−→ Hp(D∗(W0)).

(3.2)

Suppose T is a closed p-current on W such that ι∗[T ] = 0, i.e., [T |W0 ] = 0. Then there
is a class ΨT in Hp

D(W ,W0) such that [T ] = j∗ΨT . We then say that T is localized at S̃
and call ΨT a Thom class of T along S̃. Here some comments are in order :

(1) Any closed current T is localized at supp(T ) in the above sense.

(2) The set S̃ as above may be different from supp(T ), see Example 3.6 below.

(3) The class ΨT is not uniquely determined, as j∗ is not injective in general, however
in some cases, there is a natural choice of ΨT , see Examples 3.4 and 3.8 below.

In the above situation, suppose S̃ is a compact set satisfying (*). Let (0, ψ1, ψ01) be
a ČdR representative of ΨT and {R̃0, R̃1} a system of honeycomb cells adapted to W .
Then, from the commutativity of the diagram obtained by replacing M and U by W and
W in (2.13) (see also Remark 2.14), for any closed form φ in Am

′−p
c (W ) we have :

⟨T, φ⟩ =
∫
R̃1

ψ1 ∧ φ+

∫
R̃01

ψ01 ∧ φ. (3.3)

Thus the value of T is “concentrated” near S̃ and is explicitly given by the above. Also
note that the right hand side does not depend on the choice of ΨT .

Example 3.4 Let C be a finite (m′−p)-cycle in W . Then TC is localized at S̃ = |C| and
ΨC is a natural choice for ΨTC . In particular, if C =M is a compact oriented submanifold
of codimension p, then the Thom class ΨM of M is a natural choice for ΨTM .
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We show that, starting from a closed p-form ω such that [Tω] = [T ], there is a natural
way of constructing such a class. Thus let S̃ be a closed set of W and let W = {W0,W1}
be as before.

Proposition 3.5 Let T be a closed p-current onW such that [T |W0 ] = 0 and ω a de Rham
representative of T . Then there exists a Thom class ΨT which is represented by a ČdR
cocycle of the form (0, ω,−ψ) with ψ a (p− 1)-form on W01 satisfying ω = −dψ on W01.

Proof: Just to make sure we denote the restrictions of forms explicitly. From the
assumption, there exists a (p−1)-form ψ onW0 such that dψ = −ω|W0 . Hence the cocycle
(ω|W0 , ω|W1 , 0) is cohomologous as a ČdR cocycle to (0, ω|W1 ,−ψ|W01) since

(0, ω|W1 ,−ψ|W01)− (ω|W0 , ω|W1 , 0) = (dψ, 0,−ψ|W01) = D(ψ, 0, 0).

Thus the class ΨT = [(0, ω|W1 ,−ψ|W01)] satisfies [T ] = j∗ΨT . 2

In this case, if S̃ is a compact set satisfying (*), (3.3) is written as∫
W

ω ∧ φ =

∫
R̃1

ω ∧ φ−
∫
R̃01

ψ ∧ φ.

Thus the value of the integral away from R̃1 is cut off and is compensated by an integral
on R̃01.

Example 3.6 Let C be an (m′ − p)-cycle in W and ω a de Rham representative of C.
Let S̃ be the support of C and set W0 =WrS̃. Then Tω is localized at S̃ as [Tω] = [TC ],
although we do not have any precise information about supp(Tω). Its Thom class ΨTω
along S̃ is represented by a ČdR cocycle of the form (0, ω,−ψ).

Remark 3.7 Let C, ω and S̃ be as in Example 3.6. Then there is a (p − 1)-current R
such that

TC − Tω = dR.

We may think of R as the current defined by a (p − 1)-form ψ on W r S̃ that can be
extended as a locally integrable L1 form onW and with dψ = −ω onWrS̃. The equation
above becomes then

dTψ − Tdψ = TC ,

which is a residue formula (cf. [5, Ch.3,1]), and the identitiy

D(ψ, 0, 0) + (ω, ω, 0) = (0, ω,−ψ)

may be thought of as the corresponding expression in terms of ČdR cochains.

Example 3.8 Let π : E → W be a C∞ complex vector bundle of rank r and ∇ a
connection for E. For q = 0, . . . , r, we have the q-th Chern form cq(∇), which is a closed
2q-form defining the q-th Chern class cq(E) in H2q

dR(W ). We call Tcq(∇) the q-th Chern
current associated with ∇. Suppose E admits ℓ sections s = (s1, . . . , sℓ) that are linearly
independent on the complement of a closed set S̃ ⊂ W . Then we see that Tcq(∇) is localized

at S̃ and there is a natural way of choosing a Thom class along S̃ for q = r− ℓ+1, . . . , r.
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For this, we take an s-trivial connection ∇0 for E on W0 = W r S̃, i.e., a connection
satisfying ∇0si = 0 for i = 1, . . . , ℓ. Denoting by cq(∇0,∇) the Bott difference form (cf.
[1], [9]), we have cq(∇)|W0 − cq(∇0) = d cq(∇0,∇). Since the connection ∇0 is s-trivial, it
follows that cq(∇0) = 0 so that cq(∇)|W0 is exact for q = r− ℓ+1, . . . , r. Hence the Chern
current Tcq(∇) localizes at S̃. As its Thom class along S̃, we may take the class cq(E, s)

in H2q(W,W r S̃) ≃ H2q
D (W ,W0) represented by the cocycle (cf. Proposition 3.5) :

(0, cq(∇)|W1 , cq(∇0,∇)).

This class does not depend on the choice of ∇ or ∇0 (cf. [9, Ch.III, Lemma 3.1]) and is
a natural choice of Thom class for Tcq(∇). It is the localization of cq(E) at S̃ by s.

The Thom class of a complex vector bundle as a real oriented bundle may be expressed
in this manner (cf. [9, Ch.III, Theorem 4.4]).

3.2 Localized intersection of currents

Let W be an oriented C∞ manifold of dimension m′ as before. For closed currents T1 and
T2, it is possible to define the intersection product T1 ·T2 in the homology of W using the
isomorphism β and the Poincaré duality (cf. (3.1), (2.4)). Also if T1 and T2 are localized
at compact sets S̃1 and S̃2 satisfying (*), we may define the localized intersection (T1 ·T2)S̃
in the homology of S̃ = S̃1∩ S̃2 using Thom classes ΨT1 and ΨT2 and the Alexander duality
(cf. (2.15)).

Here we consider the case T1 = TM with M a compact oriented submanifold of di-
mension m in W and obtain a residue theorem on M . In the sequel we take the Thom
class ΨM of M (cf. Subsection 2.4 (b)) as ΨTM and set k = m′ −m. Recall that by the
Alexander isomorphism

AW,M : Hk(W,W rM)
∼−→ Hm(M),

the class ΨM corresponds to the fundamental class M . Let i : M ↪→ W denote the
inclusion.

First localization : Let c be a class in H̆m′−p(W ). Recall that we have the intersection
product (M · c)M localized at M (cf. (2.15)), which is a class in Hm−p(M) defined as
AW,M(ΨM ` P−1

W c). We denote it by M · c :

M · c := (M · c)M .

It is sent to [M ] · c by i∗ : Hm−p(M) → H̆m−p(W ).

Second localization : Let S̃ be a compact set ofW satisfying (*). We have the Alexan-
der isomorphism

AW,S̃ : Hp(W,W r S̃) ∼−→ Hm′−p(S̃).

We set S = S̃ ∩M and suppose it also satisfies (*). For a class c in Hm′−p(S̃), we have
the class (M · c)S in Hm−p(S) (cf. (2.15)).

11



Proposition 3.9 The following diagrams are commutative :

Hp(W )
∼−−−→
PW

H̆m′−p(W )yi∗ yM ·

Hp(M)
∼−−−→
PM

Hm−p(M),

Hp(W,W r S̃) ∼−−−→
AW,S̃

Hm′−p(S̃)yi∗ y(M · )S

Hp(M,MrS) ∼−−−→
AM,S

Hm−p(S).

Proof: We prove the commutativity of the second diagram, the proof for the first one
being similar. We have the cup product followed by the Alexander isomorphism :

Hk(W,W rM)×Hp(W,W r S̃) `−→ Hk+p(W,W rS)
AW,S−→ Hm−p(S).

Nothing that the Alexander isomorphism is given by the left cap product with the fun-
damental class and using properties of cap and cup products, we have, for a class u in
Hp(W,W r S̃),

AM,S(i
∗u) = AW,S(ΨM ` u) = (M · AW,S̃u)S.

2

In view of the above, we define intersection products in a more general situation where
M is not necessarily a submanifold of W :

Definition 3.10 Let W and M be oriented C∞ manifolds of dimensions m′ and m,
respectively, and F : M → W a C∞ map. We define the intersection product M ·F so
that the first diagram below is commutative. Also, for a compact set S̃ satisfying (*) in
W , we set S = F−1(S̃) and suppose S is compact and satisfy (*). We then define the
localized intersection product (M ·F )S so that the second diagram is commutative :

Hp(W )
∼−−−→
PW

H̆m′−p(W )yF ∗

yM ·F

Hp(M)
∼−−−→
PM

H̆m−p(M),

Hp(W,W r S̃) ∼−−−→
AW,S̃

Hm′−p(S̃)yF ∗

y(M ·F )S

Hp(M,MrS) ∼−−−→
AM,S

Hm−p(S).

Remark 3.11 1. Let M be a submanifold of W and i : M ↪→ W the inclusion. If M is
compact, M ·i is the product M · defined before. We may also define the product M · as
M ·i in the case M is not compact.

2. The products as above are defined in the algebraic category in [4].

For a closed p-current T on W , we define

M ·F T :=M ·F Pβ−1[T ].

Suppose T is localized at S̃. Then taking a Thom class ΨT of T along S̃, we define the
residue of ΨT on M at S by

Res(F ∗ΨT , S) := (M ·F A(ΨT ))S.

Suppose S has a finite number of connected components (Sλ)λ. Then we have a
decomposition Hm−p(S) =

⊕
λHm−p(Sλ) and accordingly Res(F ∗ΨT , S) determines a

class in Hm−p(Sλ), which is denoted by Res(F ∗ΨT , Sλ). We can state the following general
residue theorem, which follows from the commutativity of the diagram (2.13) :
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Theorem 3.12 Let W and M be oriented C∞ manifolds of dimensions m′ and m, re-
spectively, and F : M → W a C∞ map. Let T be a closed p-current on W such that
[T |WrS̃] = 0 for some compact subset S̃ satisfying (*) in W . Suppose that S = F−1S̃ is
compact, satisfies (*) and has a finite number of connected components (Sλ). Then

(1) For each λ we have a class Res(F ∗ΨT , Sλ) in Hm−p(Sλ).

(2) We have the “residue formula” :

M ·F T =
∑
λ

(iλ)∗ Res(F
∗ΨT , Sλ) in H̆m−p(M),

where iλ : Sλ ↪→M denotes the inclusion.

We may express M ·F T and Res(F ∗ΨT , Sλ) as follows. Let T be a closed p-current on
W and ω a de Rham representative of T . From (2.2) and (2.3), we have :

Proposition 3.13 (1) The intersection product M ·F T in H̆m−p(M) is represented by a
cycle C such that ∫

M

F ∗ω ∧ φ =

∫
C

φ

for any closed form φ in Am−p
c (M).

(2) In the isomorphism H̆m−p(M) ≃ Hm−p
c (M)∗, M ·F T corresponds to the functional on

Hp
c (M) that assigns to [φ] the left hand side above.

(3) In particular, if p = m and if M is compact, M ·F T is a number given by

M ·F T =

∫
M

F ∗ω.

Suppose T satisfies the conditions in Theorem 3.12. Let W0 = W r S̃ and W1 a
neighborhood of S̃ and consider the covering W = {W0,W1}. Let ΨT be represented by
a ČdR cocycle (0, ψ1, ψ01) in A

p(W ,W0). For each λ we take a regular neighborhood Uλ
of Sλ in M such that F (Uλ) ⊂ W1 and that Uλ ∩ Uµ = ∅ if λ ̸= µ. For each λ, we take a
compact submanifold Rλ of dimension m with C∞ boundary in Uλ, containing Sλ in its
interior. From (2.11) and (2.12), we have :

Proposition 3.14 (1) The residue Res(F ∗ΨT , Sλ) in Hm−p(Sλ) is represented by a cycle
C such that ∫

Rλ

F ∗ψ1 ∧ φ+

∫
R0λ

F ∗ψ01 ∧ φ =

∫
C

φ

for any closed form φ in Am−p(Uλ).

(2) In the isomorphism Hm−p(Sλ) ≃ Hm−p
dR (Uλ)

∗, Res(F ∗ΨT , Sλ) corresponds to the func-
tional on Hm−p

dR (Uλ) that assigns to [φ] the left hand side above.

(3) In particular, if p = m, the residue is a number given by

Res(F ∗ΨT , Sλ) =

∫
Rλ

F ∗ψ1 +

∫
R0λ

F ∗ψ01.
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Example 3.15 Let C be a finite (m′ − p)-cycle on W , S̃ = |C| and S = F−1S̃. We take
ΨC as ΨTC . Then

M ·F TC =M ·F [C], Res(F ∗ΨC , Sλ) = (M ·F C)Sλ

and the residue formula becomes

M ·F [C] =
∑
λ

(iλ)∗(M ·F C)Sλ
in H̆m−p(M).

In particular, if M is compact and p = m,

M ·F [C] =
∑
λ

(M ·F C)Sλ
.

Let ω be a de Rham representative of C. Then Tω is localized at S̃. As ΨTω we may
take the class represented by a cocycle of the form (0, ω,−ψ) (cf. Example 3.6). As
a homology class, M ·F Tω = M ·F [C]. As a functional, it is given as in Proposition
3.13. Also Res(F ∗ΨTω , Sλ) is a functional given as in Proposition 3.14 with ψ1 = ω and
ψ01 = −ψ.

See Propositions 4.5 and 4.8 below for explicit expressions of (M ·F C)Sλ
in some

special cases.

Example 3.16 LetW be a complex manifold of dimension n′ andM a complex subman-
ifold of dimension n. Also let V be an analytic subvariety of W of dimension k. Recall
that there exists a subanalytic triangulation of W compatible with M , V and Sing(V ),
the singular set of V . Thus V may be thought of as a chain, which is not C∞ but still has
the associated current TV of integration. Moreover it is a cycle, as the real codimension
of Sing(V ) in V is greater than or equal to two. If n+ k = n′ and if p is an isolated point
of M ∩ V , we have

(M · V )p ≥ multp(V ),

the multiplicity of V at p. The equality holds, by definition, if M is general with respect
to V , i.e., the intersection of the tangent space of M at p and the tangent cone of V at p
consists only of p. Note that multp(V ) coincides with the Lelong number of TV at p (e.g.,
[5, Ch.3, 2]).

We finish this section by giving a formula for the residue at a non-isolated component.
Thus, in the situation of Theorem 3.12, suppose that Sλ is an oriented submanifold of M
of dimension m− p with orientation compatible with that of M in the sense described in
Subsection 2.4 (b). Let pλ be a point in Sλ and Bλ a small open ball of dimension p in
M transverse to Sλ at pλ. We orient Bλ so that the orientation of Bλ followed by that of
Sλ gives the orientation of M . Setting Fλ = F |Bλ

, we have the commotative diagram

Hp(W,W r S̃) ∼−−−→
AW,S̃

Hm′−p(S̃)yF ∗
λ

y(Bλ·Fλ
)pλ

Hp(Bλ, Bλrpλ)
∼−−−−→

ABλ,pλ

H0(pλ).

We have the residue Res(F ∗
λΨT , pλ) = (Bλ ·Fλ

A(ΨT ))pλ in H0(pλ) ≃ C so that it is a
number.
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Theorem 3.17 In the situation of Theorem 3.12, suppose that Sλ is an oriented sub-
manifold of M of dimension m− p and let pλ and Fλ be as above. Then we have :

Res(F ∗ΨT , Sλ) = Res(F ∗
λΨT , pλ) · Sλ in Hm−p(Sλ).

Proof: We try to find Res(F ∗ΨT , Sλ) by Proposition 3.14. As Uλ, we take a tubular
neighborhood of Sλ with a C∞ projection π : Uλ → Sλ, which gives Uλ the structure of
a bundle of open balls of dimension p. Setting U0 = UλrSλ, we consider the covering
Uλ = {U0, Uλ} of Uλ. As Rλ, we take a bundle on Sλ of closed balls of dimension p in
Uλ. Then R0λ is a bundle on Sλ of (p− 1)-spheres. We denote the restrictions of π to Rλ

and R0λ by πλ and π0λ, respectively. For a closed (m− p)-form φ on Uλ, we compute the
integral

I :=

∫
Rλ

F ∗ψ1 ∧ φ+

∫
R0λ

F ∗ψ01 ∧ φ.

Since π induces an isomorphism π∗ : Hm−p
dR (Sλ)

∼→ Hm−p
dR (Uλ), there exist a closed

(m− p)-form on Sλ and an (m− p− 1)-form τ on Uλ such that

φ = π∗θ + dτ.

Using the projection formula, the fact that dF ∗ψ1 = 0 and the Stokes formula, we have∫
Rλ

F ∗ψ1 ∧ φ =

∫
Sλ

(πλ)∗F
∗ψ1 · θ + (−1)p+1

∫
R0λ

F ∗ψ1 ∧ τ,

where (πλ)∗ denotes the integration along the fiber of πλ. Note that (πλ)∗F
∗ψ1 is a C∞

function on Sλ. Noting that dF ∗ψ01 = F ∗ψ1 on U0λ and ∂R0λ = ∅, we also compute to
get ∫

R0λ

F ∗ψ01 ∧ φ =

∫
Sλ

(π0λ)∗F
∗ψ01 · θ + (−1)p

∫
R0λ

F ∗ψ1 ∧ τ.

Thus we have

I =

∫
Sλ

((πλ)∗F
∗ψ1 + (π0λ)∗F

∗ψ01) · θ

Now recall that we have the integration along the fiber on the ČdR cochains :

π∗ : A
q(Uλ, U0) −→ Aq−p(Sλ),

which assigns to σ = (0, σλ, σ0λ) the form (πλ)∗σλ + (π0λ)∗σ0λ on Sλ. Moreover it is
compatible with the differentials D and d (cf. [9, Ch.II, 5]). Since (0, F ∗ψ1|Uλ

, F ∗ψ01|U0λ
)

is a ČdR cocycle in Ap(Uλ, U0), the function (πλ)∗F
∗ψ1 + (π0λ)∗F

∗ψ01 is d-closed so that
it is a constant. By definition the constant is exactly Res(F ∗

λΨT , pλ) above. Finally from∫
Sλ

θ =

∫
Sλ

φ,

we have the theorem. 2

Remark 3.18 1. In the above situation, Hm−p(Sλ,Z) ≃ Z and is generated by the
fundamental class Sλ. Thus if Res(F ∗

λΨT , pλ) is an integer, Res(F ∗ΨT , Sλ) is an integral
class.

2. The above theorm can also be proved topologically as [10, Theorem 4.1.1, see also
Theorem 7.3.2]. In fact, using techniques and results in [10], we may compute residues in
various settings.
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4 Coincidence point theorem

4.1 Coincidence homology classes and coincidence indices

Let M and N be connected and oriented C∞ manifolds of dimensions m and n, respec-
tively, with m ≥ n. We set W = M × N and orient W so that the orientation of M
followed by that of N gives the orientation of W . Let f, g : M → N be C∞ maps and
denote by Γf and Γg the graphs of f and g in W . We consider the map

f̃ :M −→ Γf ⊂ W defined by f̃(x) = (x, f(x)),

which is a diffeomorphism onto Γf . We orient Γf so that f̃ is orientation preserving.
Similarly we define g̃ for g. Recall the diagram (cf. Definition 3.10) :

Hn(W )
∼−−−→
P

H̆m(W )yf̃∗ yM ·f̃

Hn(M)
∼−−−→
P

H̆m−n(M).

Definition 4.1 The global coincidence class Λ(f, g) of the pair (f, g) is defined by

Λ(f, g) =M ·f̃ [Γg] in H̆m−n(M).

Note that f̃ induces an isomorphism f̃∗ : H̆m−n(M)
∼→ H̆m−n(Γf ) and Λ(f, g) corre-

sponds to Γf · [Γg] in H̆m−n(Γf ), which is sent to [Γf ] · [Γg] in H̆m−n(W ) by the canonical

homomorphism H̆m−n(Γf ) → H̆m−n(W ).
We define the coincidence point set of the pair (f, g) by

Coin(f, g) = { p ∈M | f(p) = g(p) }.

Note that Coin(f, g) = f̃−1(Γg). For shortness, we set S = Coin(f, g).
From now on we assume that M is compact so that Γg and S are compact. Recall the

diagram (cf. Definition 3.10) :

Hn(W,W rΓg)
∼−−−→
A

Hm(Γg)yf̃∗ y(M ·f̃ )S

Hn(M,MrS) ∼−−−→
A

Hm−n(S).

Definition 4.2 The local coincidence class Λ(f, g;S) of the pair (f, g) at S is defined to
be the localized intersection class :

Λ(f, g;S) = (M ·f̃ Γg)S in Hm−n(S).

Note that f̃ induces a homomorphism f̃∗ : Hm−n(S) → Hm−n(Γf ) and Λ(f, g;S) is
sent to Γf · [Γg].
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Remark 4.3 1. The classes Λ(f, g) and Λ(f, g;S) are in fact in homology with Z coeffi-
cients.

2. We have

Λ(g, f) = (−1)mΛ(f, g), Λ(g, f ;S) = (−1)mΛ(f, g;S).

Suppose S = Coin(f, g) has a finite number of connected components (Sλ). Then
we have Hm−n(S) =

⊕
Hm−n(Sλ) and accordingly we have the local coincidence class

Λ(f, g;Sλ) in Hm−n(Sλ). From Theorem 3.12, we have a general coincidence point theo-
rem :

Theorem 4.4 In the above situation

Λ(f, g) =
∑

(iλ)∗Λ(f, g;Sλ) in Hm−n(M).

In general, Λ(f, g) and Λ(f, g;Sλ) are given as in Propositions 3.13 and 3.14. The
theorem becomes more meaningful if we have explicit descriptions of them.

In the case m = n, Λ(f, g;Sλ) is in H0(Sλ) = C so that it is a number (in fact an
integer), which we call the coincidence index of (f, g) at Sλ. If Sλ consists of a point p,
we have the following explicit formula. In fact it is already known, however we give an
alternative short proof using the Thom class in the Čech-de Rham cohomology. Let U
be a coordinate neighborhood around p with coordinates x = (x1, . . . , xm) in M and V
a coordinate neighborhood around f(p) = g(p) with coordinates y = (y1, . . . , ym) in N .
Also let D be a closed ball around p in U such that f(D) ⊂ V and g(D) ⊂ V . Thus we
may consider the map g − f : D → Rm whose image is the origin 0 in Rm only at p. The
boundary ∂D is homeomorphic to the unit sphere Sm−1 and we have the map

γ : ∂D −→ Sm−1 defined by γ(x) =
g(x)− f(x)

∥g(x)− f(x)∥
.

We denote the degree of this map by deg(g − f, p).

Proposition 4.5 In the above situation

Λ(f, g; p) = deg(g − f, p).

Proof: Let ΨΓg be the Thom class of Γg and (0, ψ1, ψ01) its ČdR representative. We
may take D as Rλ in Proposition 3.14. Since R0λ = −∂D, we have

Λ(f, g; p) =

∫
D

f̃∗ψ1 −
∫
∂D

f̃∗ψ01. (4.6)

Recall that ΨΓg may be naturally identified with the Thom class of the normal bundle
NΓg , which is trivial over g̃(U) ; NΓg |g̃(U) ≃ Rm × g̃(U) (cf. Subsection 2.4 (b)). Let
ρg : NΓg |g̃(U) → Rm denote the projection onto the fiber direction. Also let ψm be an
angular form on Rmr{0}. Then on g̃(U) the Thom class of NΓg is represented by the
cocycle (cf. Proposition 2.16)

(0, 0,−ρ∗gψm).
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Let π1 and π2 denote the projections of W =M ×N onto the first and second factors,
respectively. We set x = π∗

1x and y = π∗
2y on U × V . By our orientation convention,

in a neighborhood of g̃(p) in NΓg , we may take g(x) − y as fiber coordinates and x as
base coordinates of the bundle NΓg so that we may write ρg(x, y) = g(x)− y. Then (4.6)
becomes

Λ(f, g; p) =

∫
∂D

(ρg ◦ f̃)∗ψm =

∫
∂D

(g − f)∗ψm,

which is nothing but deg(g − f, p). 2

In the above situation, let Jf (p) and Jg(p) denote the Jacobian matrices of f and g at
p. A coincidence point p of the pair (f, g) is said to be non-degenerate if

det(Jg(p)− Jf (p)) ̸= 0.

Corollary 4.7 If p is a non-degenerate coincidence point,

Λ(f, g; p) = sgn det(Jg(p)− Jf (p)).

Now consider the case m > n. Suppose Sλ is an oriented submanifold of M of di-
mension m − n. Let pλ be a point in Sλ and Bλ a small open ball of dimension n in M
transverse to Sλ at pλ. Setting fλ = f |Bλ

and gλ = g|Bλ
, we have deg(gλ − fλ; pλ). From

Theorem 3.17, we have :

Proposition 4.8 Let Sλ be a connected component of Coin(f, g). If Sλ is an oriented
submanifold of M of dimension m− n,

Λ(f, g;Sλ) = deg(gλ − fλ, pλ) · Sλ in Hm−n(Sλ).

4.2 Lefschetz coincidence point formula

Let M and N be compact, connected and oriented C∞ manifolds of the same dimension
m and let f, g : M → N be C∞ maps. In this situation, H̆0(M) = H0(M) = C and Λ(f, g)
is a number (in fact an integer), which has an explicit description. Let

Hp(f) : Hp(N) −→ Hp(M)

be the homomorphism induced by f on the p-th cohomology group and similarly for
Hp(g). We set q = m− p. The Poincaré duality allows us to define the composition

Hq(M) ≃ Hp(M)∗
Hp(g)∗−−−−→ Hp(N)∗ ≃ Hq(N)

Hq(f)−−−→ Hq(M).

We define the Lefschetz coincidence number L(f, g) of the pair (f, g) as

L(f, g) :=
m∑
q=0

(−1)q · tr(Hq(f) ◦Hm−q(g)∗).

Although the following is already known, we include a proof for the sake of complete-
ness. It is a modification of the presentation as given in [5] for the fixed point case, i.e.,
the case M = N and g = 1M , the identity map of M .
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Proposition 4.9 In the above situation we have :

Λ(f, g) = L(f, g).

Proof: Let {µpi }i be a set of closed forms representing a basis of Hp
dR(M). We set

q = m− p and let {µ̌qj}j be a set of forms representing a basis of Hq
dR(M) dual to {[µpi ]}i :∫

M

µpi ∧ µ̌
q
j = δij.

We also take a set of forms {νpk}k representing a basis of Hp
dR(N) and a set of forms

{ν̌qℓ }ℓ representing a basis of Hq
dR(N) dual to {[νpk ]}k. By the Künneth formula, a basis of

Hm
dR(W ), W =M ×N , is represented by{

ξp,qi,ℓ = π∗
1µ

p
i ∧ π∗

2 ν̌
q
ℓ

}
p+q=m

,

where π1 and π2 are projections onto the first and second factors.
Note that in general, for a p-form ω on M and a q-form θ on N , we have∫

Γf

π∗
1ω ∧ π∗

2θ =

∫
M

ω ∧ f∗θ (4.10)

and similarly for the integration on Γg.
Let Gp = (gpki) be the matrix representing Hp(g) in the bases {[νpk ]}k and {[µpi ]}i :

Hp(g)[νpk ] =
∑
i

gpik[µ
p
i ].

Thus the dual map Hp(g)∗ is represented by the transposed tGp in the bases {[µ̌qj ]}j and
{[ν̌qℓ ]}ℓ. Also let F̌ q = (f̌ qℓj) be the matrix representing Hq(f) in the bases {[ν̌qℓ ]}ℓ and
{[µ̌qj}j :

Hq(f)[ν̌qℓ ] =
∑
j

f̌ qjℓ[µ̌
q
j ].

Let ηg be an m-form representing the Poincaré dual of [Γg] in W . Using (2.3) and
(4.10) for Γg, we compute to get

[ηg] =
∑
q,i,ℓ

(−1)qgpiℓ [ξ
p,q
i,ℓ ].

Thus we have

Λ(f, g) =

∫
M

f̃∗ηg =
∑
q,i,ℓ

(−1)qgpiℓ

∫
M

µpi ∧ f ∗ν̌qℓ =
∑
q,i,ℓ

(−1)qgpiℓ f̌
q
iℓ.

Since f̌ qiℓ is the ℓi entry of F̌ q and gpiℓ the iℓ entry of tGp, we have the proposition. 2

From Theorem 4.4 and Propositions 4.5 and 4.9, we have :
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Theorem 4.11 Let M and N be compact oriented C∞ manifolds of same dimension
and let f, g : M → N be C∞ maps. Suppose Coin(f, g) has a finite number of connected
components (Sλ). Then

L(f, g) =
∑
λ

Λ(f, g;Sλ).

In the case the set of coincidence points consists only of isolated points, we have :

Corollary 4.12 (Lefschetz coincidence point formula) Let M and N be compact
oriented C∞ manifolds of the same dimension and let f, g : M → N be C∞ maps. Suppose
Coin(f, g) consists of a finite number of isolated points. Then

L(f, g) =
∑

p∈Coin(f,g)

deg(g − f ; p).

Moreover, if all coincidence points are isolated and non-degenerate then

L(f, g) =
∑

p∈Coin(f,g)

sgn det(Jg(p)− Jf (p)).

Remark 4.13 1. The above theory applied to the case N =M and g = 1M , the identity
map ofM , gives a general fixed point theorem for f and the Lefschetz fixed point formula,
which is effective also in the study of periodic points.

2. Let f, g : M → N be C∞ maps. If g is a diffeomorphism, the coincidence theory for
the pair (f, g) is equivalent to the fixed point theory for the map g−1 ◦ f of M .
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