A class of lattices and boolean functions related to the Manickam-Miklös-Singhi conjecture

Cinzia Bisi* and Giampiero Chiaselotti
(Communicated by G. Gentili)

Abstract

The aim of this paper is to build a new family of lattices related to some combinatorial extremal sum problems, in particular to a conjecture of Manickam, Miklös and Singhi. We study the fundamental properties of such lattices and of a particular class of boolean functions defined on them.

Key words. Graded lattices, involution posets, weight functions, boolean maps, extremal sum problems.

2000 Mathematics Subject Classification. 05D05

0 Introduction

Let n, r be two fixed integers such that $0 \leq r \leq n$ and let $I_{n}=\{1,2, \ldots, n\}$. In the first part of this paper (Section 1) we define a partial order \sqsubseteq on the power set $\mathcal{P}\left(I_{n}\right)$ having the following property: if X, Y are two subsets of I_{n} such that $X \sqsubseteq Y$, then $\sum_{i \in X} a_{i} \leq \sum_{i \in Y} a_{i}$, for each n-multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ of real numbers such that $a_{1} \geq$ $\cdots \geq a_{r} \geq 0>a_{r+1} \geq \cdots \geq a_{n}$. This order defines a lattice structure on $\mathcal{P}\left(I_{n}\right)$ that we will denote by $(S(n, r), \sqsubseteq)$. We show that this lattice is distributive, graded (Section 2), involutive (Section 3), i.e. $X \sqsubseteq Y$ implies $Y^{c} \sqsubseteq X^{c}$, and we also give an algorithmic method to generate uniquely its Hasse diagram (Section 4) and a recursive formula to count the number of its elements having fixed rank (Section 5).

In Section 6 we establish the connection between the lattice $S(n, r)$ and some combinatorial extremal sum problems related to a conjecture of Manickam, Miklös and Singhi. We give an interpretation of these problems in terms of a particular class of boolean maps defined on $S(n, r)$ (Section 7).

[^0]Now we briefly summarize the historical motivations that have led us to build the lattice $S(n, r)$ and the other associated structures. In [19] the authors asked the following question: let n be an integer strictly greater than 1 and a_{1}, \ldots, a_{n} be real numbers satisfying the property $\sum_{1=1}^{n} a_{i} \geq 0$. We may ask: how many subsets of the set $\left\{a_{1}, \ldots, a_{n}\right\}$ will have a non-negative sum?

Following the notation of [19], the authors denote with $A(n)$ the minimum number of the non-negative partial sums of a sum $\sum_{i=1}^{n} a_{i} \geq 0$, not counting the empty sum, if we take all the possible choices of the a_{i} 's. They prove (see Theorem 1 in [19]) that $A(n)=2^{n-1}$ and they explain that Erdös, Ko and Rado investigated a question with an answer similar to this one: what is the maximum number of pairwise intersecting subsets of an n-elements set? As in their case, here also the question becomes more difficult if we restrict ourselves to the d-subsets. More details about this remark can be found in the famous theorem of Erdös-Ko-Rado [14] (see also [15] for an easy proof of it).

Formally, with the introduction of the positive integer d, the problem is the following. Let $1 \leq d<n$ be an integer; a function $f: I_{n} \rightarrow \mathbb{R}$ is called an n-weight function if $\sum_{x \in I_{n}} f(x) \geq 0$. Denote with $W_{n}(\mathbb{R})$ the set of all the n-weight functions and if $f \in W_{n}(\mathbb{R})$ we set

$$
\begin{aligned}
f^{+} & =\left|\left\{x \in I_{n}: f(x) \geq 0\right\}\right| \\
\alpha(f) & =\left|\left\{Y \subseteq I_{n}: \sum_{y \in Y} f(y) \geq 0\right\}\right| \\
\phi(f, d) & =\left|\left\{Y \subseteq I_{n}:|Y|=d, \sum_{y \in Y} f(y) \geq 0\right\}\right|
\end{aligned}
$$

and furthermore

$$
\psi(n, d)=\min \left\{\phi(f, d): f \in W_{n}(\mathbb{R})\right\}
$$

If f is such that $f(1)=n-1, f(2)=\cdots=f(n)=-1$, it follows that $\psi(n, d) \leq\binom{ n-1}{d-1}$.
In [9], Bier and Manickam proved that $\psi(n, d)=\binom{n-1}{d-1}$ if $n \geq d(d-1)^{d}(d-2)^{d}+d^{4}$ and $\psi(n, d)=\binom{n-1}{d-1}$ if $d \mid n$. Both proofs use the Baranyai theorem on the factorization of complete hypergraphs [4] (see also [24] for a modern exposition of the theorem).

In [19] and [20] it was conjectured that $\psi(n, d) \geq\binom{ n-1}{d-1}$ if $n \geq 4 d$. In [20] this conjecture has been set in the more general context of association schemes (see [3] for general references on the subject). In the sequel we will refer to this conjecture as the Manickam-Miklös-Singhi (MMS) Conjecture. This conjecture is connected with the first distribution invariant of the Johnson association scheme (see [9], [20], [17], [18]). The distribution invariants were introduced by Bier [7], and later investigated in [8], [16], [17], [20]. In [20] the authors claim that this conjecture is, in some sense, dual to the theorem of Erdös-Ko-Rado [14]. Moreover, as pointed out in [22], this conjecture settles some cases of another conjecture on multiplicative functions by Alladi, Erdös and Vaaler, [2]. Partial results related to the Manickam-Miklös-Singhi conjecture have been obtained also in [6], [5], [11], [12], [21].

Now, if $1 \leq r \leq n$, we set:

$$
\begin{align*}
\gamma(n, r) & =\min \left\{\alpha(f): f \in W_{n}(\mathbb{R}), f^{+}=r\right\} \tag{1}\\
\gamma(n, d, r) & =\min \left\{\phi(f, d): f \in W_{n}(\mathbb{R}), f^{+}=r\right\} \tag{2}
\end{align*}
$$

The numbers $\gamma(n, d, r)$ have been introduced in [11] and they have been studied also in [12], in order to solve the Manickam-Miklös-Singhi conjecture, because it is obvious that:

$$
\begin{equation*}
\psi(n, d)=\min \{\gamma(n, d, r): 1 \leq r \leq n\} \tag{3}
\end{equation*}
$$

Therefore the complete computation of these numbers gives an answer to the MMS conjecture but this is not the purpose of this paper.

In [19] it has been proved that $\gamma(n, r) \geq 2^{n-1}$ for each r, and that $\gamma(n, 1)=2^{n-1}$.

Question 0.1. Is it true that $\gamma(n, r)=2^{n-1}$ for each r ?
This is true if, for each r such that $1 \leq r \leq n$, we can find a function $f \in W_{n}(\mathbb{R})$ with $f^{+}=r$ and $\alpha(f)=2^{n-1}$.

When we have an n-weight function f, the standard ways to produce n-subsets on which f takes non-negative values are the following:
i) if X and Y are two subsets of I_{n} such that $\sum_{x \in X} f(x) \geq 0$ and $\sum_{x \in X} f(x) \leq$ $\sum_{x \in Y} f(x)$, then also $\sum_{x \in Y} f(x) \geq 0$ (monotone property);
ii) if $\sum_{x \in X} f(x)<0$, then $\sum_{x \in X^{c}} f(x) \geq 0$ (complementary property).

Then we ask:
A) Is it possible to axiomatize the properties (i) and (ii) in some type of abstract structure in such a way that the sum extremal problems described above become particular extremal problems of more general problems?
B) In such an abstract structure, can we find unexpected links with other theories which help us to solve these sum extremal problems?
C) Is it possible to define an algorithmic strategy in such an abstract structure to approach these sum extremal problems in a deterministic way?

In this paper we show that the answer to all the previous questions is affirmative.
We define a partial order \sqsubseteq on the subsets of I_{n} such that if X and Y are two subsets with $X \sqsubseteq Y$, then $\sum_{x \in X} f(x) \leq \sum_{x \in Y} f(x)$, for each n-weight function f. In the first part of this paper, we study the fundamental properties of this order (see Section 1, 2, 3).

The attempt of computing the numbers in (1) and (2) for each n, d, r gives us the idea to construct two types of lattices, denoted by $S(n, r)$ and $S(n, d, r)$, and to transform the problem of computing the numbers $\gamma(n, r)$ and $\gamma(n, d, r)$ into the problem of computing a minimal cardinality on a family of posets.

This way of consider the problem has many advantages. For example, when we try to prove that $\gamma(n, r)$ is not greater than 2^{n-1} for each r, we need to build a particular n-weight function f with $f^{+}=r$ such that $\alpha(f) \leq 2^{n-1}$. In general, one has to examine a certain number of inequalities, and if this number is big the determination of f can be difficult. The case of $\gamma(n, d, r)$ is similar and, obviously, more difficult. In general, if our aim is to prove that $\gamma(n, r) \leq T$ (or $\gamma(n, d, r) \leq T$), for some number T, it is natural to ask: is it possible to determine a minimal number of inequalities which allow us to find an n-weight function f with $f^{+}=r$, such that $\alpha(f) \leq T$ (or $\left.\phi(f, d) \leq T\right)$? If we identify (in some sense) each n-weight function with a particular type of boolean map defined on the lattice of the subsets of I_{n}, with the order \sqsubseteq, the number of these maps will be finite,
and even if this number is large, the study of the properties of the lattice could lead to examine a more restricted class of these maps that lends itself to a simpler study.

Example 0.2. Let $n=8$ and $r=d=5$. Let f be the following 8 -weight function with $f^{+}=5$:

$$
\begin{array}{cccccccc}
\tilde{5} & \tilde{4} & \tilde{3} & \tilde{2} & \tilde{1} & \overline{1} & \overline{2} & \overline{3} \tag{4}\\
\downarrow & \downarrow \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{array}
$$

We have written I_{8} in the form $\{\tilde{5}, \tilde{4}, \tilde{3}, \tilde{2}, \tilde{1}, \overline{1}, \overline{2}, \overline{3}\}$, and in the following we write, for example, the 5-tuple $\tilde{5} \tilde{3} \tilde{1} \overline{3}$ as $531 \mid 23$. It follows easily that $\phi(f, 5)=\binom{5}{5}+3\binom{5}{4}=16$. Therefore, by (2) we have $\gamma(8,5,5) \leq 16$. To prove that also the inverse inequality holds, we fix an arbitrary 8 -weight function f with $f^{+}=5$ and we prove that it has always at least 165 -tuples on which it takes a non-negative value. Then, if we consider the 5-tuple $4321 \mid 3$, it is easy to see that its non-negativity implies the non-negativity of 165 tuples (including itself). This means that in the sublattice $S(8,5,5)$ of the lattice $S(8,5)$ the element $4321 \mid 3$ spans an up-set having 16 elements. Then we say that the element $4321 \mid 3$ has positive weight 16 . Therefore we can assume that f has a negative sum on $4321 \mid 3$. Since f is a weight-function, it takes a non-negative sum on the complementary 3-tuple $5 \mid 12$. It is easily seen then that the non-negativity of $5 \mid 12$ produces exactly the non-negativity of 15 other 5 -tuples. Let us consider now the 5 -tuple $4321 \mid 1$ (which is not included in the non-negative 5-tuples described above). If f takes a non-negative sum on $4321 \mid$, we have produced exactly 16 other 5 -tuples with non-negative sum for f. If f takes a negative sum on $4321 \mid 1$, then it must take a non-negative sum on the complementary 3 -tuple $5 \mid 23$, and this produces 16 other 5-tuples having non-negative sum and different from the previous 155 -tuples; therefore we obtain in this case $(15+16=31)$ 5-tuples with non-negative sums. This shows that $\gamma(8,5,5)=16$.

In the previous computation of the number $\gamma(8,5,5)$, the only properties that we have used are the monotone and the complementary properties. Then, to define an algorithmic procedure which holds for each value of n, d and r, we need an order structure which includes all the subsets of I_{n}, and not only those with d elements, since this set is not closed with respect to the complementary operation.

In this paper we focus on the numbers $\gamma(n, r)$ and we will approach the study of the $\gamma(n, d, r)$'s in subsequent papers. Here we build a formal context which gives sense to what is said above and also to the question raised in [19]: "What is the structure of the constructions giving this extremal value?". We show also that the problems described above can be considered as problems related to a particular class of boolean functions defined on our order structures. The properties of these boolean functions generalize the essential properties of the weight-functions, i.e. the order preserving and the complementary property.

In Section 7, we state two open problems, which are essentially two statements of representation theorems. If the answer to these problems will be affirmative, the problem of determining the numbers $\gamma(n, r)$ and $\gamma(n, d, r)$ will be equivalent to the problem of determining the minimum number of elements which have value 1 for a particular type
of boolean functions. The advantage of this approach consists in the possibility to use the results of combinatorial lattice theory.

To conclude, we believe that the study of the extremal sum problems settled in [19] and in [20] (among which the Manickam-Miklös-Singhi Conjecture), in the setting of the lattices $S(n, r)$, is interesting because it can lead to unexpected links among the combinatorial theory of the lattices, the theory of association schemes (good references for the link between association schemes and the extremal problem on non-negative sums of real numbers are [9], [16], [17], [18], [20]), the transversal theory (see [12], in which the Hall theorem has been used for computing the $\gamma(n, d, r)$'s with $n=2 d+2$ and $n-r=3$) and the theory of boolean functions defined on particular classes of posets. For example the lattice structure $S(n, r)$ could be useful in the computation of the higher order distribution invariants of the Johnson association scheme, [20], [9]: this will be the main object of a forthcoming investigation.

In this paper we adopt the classical terminology and notation usually used in the context of partially ordered sets (see [13] and [23] for the general aspects on this subject). In particular, if (P, \leq) is a poset and $Q \subseteq P$, we set $\downarrow Q=\{y \in P \mid(\exists x \in Q) y \leq x\}$, $\uparrow Q=\{y \in P \mid(\exists x \in Q) y \geq x\}$, and $\downarrow\{x\}=\downarrow x, \uparrow\{x\}=\uparrow x$, for each $x \in P$. A subset Q of P is said to be a down-set (or up-set) of P if $Q=\downarrow Q$ (or $Q=\uparrow Q$).

1 The lattice $S(n, r)$ and its sublattice $S(n, d, r)$

Let n and r be two fixed integers such that $0 \leq r \leq n$. We denote with $A(n, r)$ an alphabet composed by the following $(n+1)$ formal symbols: $\tilde{1}, \ldots, \tilde{r}, 0^{\S}, \overline{1}, \ldots, \overline{n-r}$. We introduce on $A(n, r)$ the following total order:

$$
\begin{equation*}
\overline{n-r} \prec \cdots \prec \overline{2} \prec \overline{1} \prec 0^{\S} \prec \tilde{1} \prec \tilde{2} \prec \cdots \prec \tilde{r}, \tag{5}
\end{equation*}
$$

where $\overline{n-r}$ is the minimal element and \tilde{r} is the maximal element in this chain. If $i, j \in$ $A(n, r)$, then we write $i \preceq j$ for $i=j$ or $i \prec j ; i \curlywedge j$ for the minimum and $i \curlyvee j$ for the maximum between i and j with respect to $\preceq ; i \vdash j$ if j covers i with respect to \preceq (i.e. if $i \prec j$ and if there does not exist $l \in A(n, r)$ such that $i \prec l \prec j)$; $i \nvdash j$ if j does not cover i with respect to $\preceq ; j \succ i$ for $i \prec j ; j \succeq i$ for $i \preceq j$.

Let $(\mathcal{C}(n, r), \sqsubseteq)$ be the n-fold cartesian product poset $A(n, r)^{n}$. An arbitrary element of $\mathcal{C}(n, r)$ can be identified with an n-string $t_{1} \cdots t_{n}$ where $t_{i} \in A(n, r)$ for all $i=$ $1, \ldots, n$. Therefore, if $t_{1} \cdots t_{n}$ and $s_{1} \cdots s_{n}$ are two strings of $\mathcal{C}(n, r)$, we have

$$
t_{1} \cdots t_{n} \sqsubseteq s_{1} \cdots s_{n} \quad \Longleftrightarrow \quad t_{1} \preceq s_{1}, \ldots, t_{n} \preceq s_{n} .
$$

We introduce now a particular subset $S(n, r)$ of $\mathcal{C}(n, r)$. A string of $S(n, r)$ is constructed as follows: it is a formal expression of the following type

$$
\begin{equation*}
i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r}, \tag{6}
\end{equation*}
$$

where $i_{1}, \ldots, i_{r} \in\left\{\tilde{1}, \ldots, \tilde{r}, 0^{\S}\right\}, j_{1}, \ldots, j_{n-r} \in\left\{\overline{1}, \ldots, \overline{n-r}, 0^{\S}\right\}$ and where the choice of the symbols has to respect the following two rules, see (7) and (10):

$$
\begin{equation*}
i_{1} \succeq \cdots \succeq i_{r} \succeq 0^{\S} \succeq j_{1} \succeq \cdots \succeq j_{n-r} \tag{7}
\end{equation*}
$$

furthermore, if we set

$$
p= \begin{cases}\max \left\{l: l \in\{1, \ldots, r\} \text { with } i_{l} \succ 0^{\S}\right\} & \text { if } l \text { exists } \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
q= \begin{cases}\min \left\{l: l \in\{1, \ldots, n-r\} \text { with } j_{l} \prec 0^{\S}\right\} & \text { if } l \text { exists } \tag{9}\\ n-r+1 & \text { otherwise }\end{cases}
$$

then

$$
\begin{array}{ll}
i_{1} \succ \cdots \succ i_{p} \succ 0^{\S}, & i_{p+1}=\cdots=i_{r}=0^{\S} \tag{10}\\
j_{1}=\cdots=j_{q-1}=0^{\S}, & 0^{\S} \succ j_{q} \succ \cdots \succ j_{n-r}
\end{array}
$$

If $p=0$ we assume that $i_{1}=\cdots=i_{r}=0^{\S}$ and the condition $i_{1} \succ \cdots \succ i_{p} \succ 0^{\S}$ is empty; if $q=(n-r+1)$, we assume that $j_{1}=\cdots=j_{n-r}=0^{\S}$ and the condition $0^{\S} \succ$ $j_{q} \succ \cdots \succ j_{n-r}$ is empty. The formal symbols which appear in (6) will be written without ${ }^{\sim},{ }^{-}$, and ${ }^{\S}$; the vertical bar \mid in (6) will indicate that the symbols on the left of \mid are in $\left\{\tilde{1}, \ldots, \tilde{r}, 0^{\S}\right\}$ and the symbols on the right of \mid are in $\left\{0^{\S}, \overline{1}, \ldots, \overline{n-r}\right\}$.

Example 1.1. a) If $n=3$ and $r=2$, then $A(3,2)=\left\{\tilde{2} \succ \tilde{1} \succ 0^{\S} \succ \overline{1}\right\}$ and $S(3,2)=$ $\{21|0,21| 1,10|0,20| 0,10|1,20| 1,00|1,00| 0\}$.
b) If $n=3$ and $r=0$, then $A(3,0)=\left\{0^{\S} \succ \overline{1} \succ \overline{2} \succ \overline{3}\right\}$ and $S(3,0)=\{|123|$,023 , $|013,|012,|003,|002,|001| 000$,$\} .$
c) If $n=0$ and $r=0$, then $S(0,0)$ will be identified with a singleton Γ corresponding to \mid without symbols.

In the sequel $S(n, r)$ will be considered as a sub-poset of $\mathcal{C}(n, r)$ with the induced order from \sqsubseteq after the restriction to $S(n, r)$. Therefore, if $w=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r}$ and $w^{\prime}=i_{1}^{\prime} \cdots i_{r}^{\prime} \mid j_{1}^{\prime} \cdots j_{n-r}^{\prime}$ are two strings in $S(n, r)$, by definition of induced order we have

$$
w \sqsubseteq w^{\prime} \quad \Longleftrightarrow \quad i_{1} \preceq i_{1}^{\prime}, \ldots, i_{r} \preceq i_{r}^{\prime}, \quad j_{1} \preceq j_{1}^{\prime}, \ldots, j_{n-r} \preceq j_{n-r}^{\prime} .
$$

As it is well known, $(\mathcal{C}(n, r), \sqsubseteq)$ is a distributive lattice whose binary operations of inf and sup are given respectively by $\left(t_{1} \cdots t_{n}\right) \wedge\left(s_{1} \cdots s_{n}\right)=\left(t_{1} \curlywedge s_{1}\right) \cdots\left(t_{n} \curlywedge s_{n}\right)$, and $\left(t_{1} \cdots t_{n}\right) \vee\left(s_{1} \cdots s_{n}\right)=\left(t_{1} \curlyvee s_{1}\right) \cdots\left(t_{n} \curlyvee s_{n}\right)$.

Example 1.2. If $n=7$ and $r=4$, and if $w_{1}=4310 \mid 023$ and $w_{2}=2100 \mid 012$ are two elements of $S(7,4)$, then $w_{1} \wedge w_{2}=2100 \mid 023$, and $w_{1} \vee w_{2}=4310 \mid 012$.

Proposition 1.3. $(S(n, r), \sqsubseteq)$ is a distributive lattice.
Proof. $(\mathcal{C}(n, r), \sqsubseteq)$ is a distributive lattice and $S(n, r)$ is closed with respect to \wedge and \vee. Hence $S(n, r)$ is a distributive sublattice of $\mathcal{C}(n, r)$.

Definition 1.4. If $w_{1}, w_{2} \in S(n, r)$, then
i) $w_{1} \sqsubset w_{2}$ if $w_{1} \sqsubseteq w_{2}$ and $w_{1} \neq w_{2}$;
ii) $w_{1} \models w_{2}$ if w_{2} covers w_{1} with respect to the order \sqsubseteq in $S(n, r)$ (i.e. if $w_{1} \sqsubset w_{2}$ and there does not exist $w \in S(n, r)$ such that $\left.w_{1} \sqsubset w \sqsubset w_{2}\right)$;
iii) $w_{1} \not \models w_{2}$ if w_{2} does not cover w_{1} with respect to the order \sqsubseteq in $S(n, r)$.

Remark 1.5. The minimal element of $S(n, r)$ is the string $0 \cdots 0 \mid 12 \cdots(n-r)$ and the maximal element is $r(r-1) \cdots 1 \mid 0 \cdots 0$. Sometimes they are denoted respectively with $\hat{0}$ and $\hat{1}$.

If w is a string in $S(n, r)$ in the form (6) with p and q defined as in (8) and (9) (and (7) and (10) hold), we set:

$$
w^{*}=\left\{i_{1}, \ldots, i_{p}, j_{q}, \ldots, j_{n-r}\right\}
$$

For example, if $w=4310 \mid 013 \in S(7,4)$, then $w^{*}=\{\tilde{1}, \tilde{3}, \tilde{4}, \overline{1}, \overline{3}\}$. In particular, if $w=0 \cdots 0 \mid 0 \cdots 0$ then $w^{*}=\emptyset$. We have defined a bijective map

$$
: w \in S(n, r) \mapsto w^{} \in \mathcal{P}\left(A(n, r) \backslash\left\{0^{\S}\right\}\right)
$$

Conversely, if $B \in \mathcal{P}\left(A(n, r) \backslash\left\{0^{\S}\right\}\right.$), then $B=B_{1} \cup B_{2}$ (with $B_{1} \cap B_{2}=\emptyset$) where $B_{1}=\left\{i_{1}, \ldots, i_{p}\right\} \subseteq\{\tilde{1}, \ldots, \tilde{r}\}$ or $B_{1}=\emptyset$ and $B_{2}=\left\{j_{q}, \ldots, j_{n-r}\right\} \subseteq\{\overline{1}, \ldots, \overline{n-r}\}$ or $B_{2}=\emptyset$, for some integer p and q such that $1 \leq p \leq r, 1 \leq q \leq n-r$, with $i_{1} \succ \cdots \succ i_{p} \succ 0^{\S} \succ j_{q} \cdots \succ j_{n-r}$. We will set

$$
\bar{B}= \begin{cases}i_{1} \cdots i_{p} .0 \cdots 0 \mid 0 \cdots 0 j_{q} \cdots j_{n-r} & B_{1} \neq \emptyset, B_{2} \neq \emptyset \\ i_{1} \cdots i_{p} .0 \cdots 0 \mid 0 \cdots 00 \cdots 0 & B_{1} \neq \emptyset, B_{2}=\emptyset \\ 0 \cdots 00 \cdots 0 \mid 0 \cdots 0 j_{q} \cdots j_{n-r} & B_{1}=\emptyset, B_{2} \neq \emptyset \\ 0 \cdots 00 \cdots 0 \mid 0 \cdots 00 \cdots 0 & B_{1}=\emptyset, B_{2}=\emptyset\end{cases}
$$

We have defined a map:

$$
{ }^{-}: B \in \mathcal{P}\left(A(n, r) \backslash\left\{0^{\S}\right\}\right) \mapsto \bar{B} \in S(n, r)
$$

which is the inverse of the previous map $*$. For example, if $B=\{\tilde{1}, \overline{1}\} \in \mathcal{P}(A(7,5) \backslash$ $\left\{0^{\S}\right\}$), then $\bar{B}=10000 \mid 01$ is the corresponding string in $S(7,5)$.

We define now the following operations on $S(n, r)$: if $w_{1}, w_{2} \in S(n, r)$, we will set
i) $w_{1} \sqcup w_{2}=\bar{w}_{1}^{*} \cup w_{2}^{*}$;
ii) $w_{1} \sqcap w_{2}=\overline{w_{1}^{*} \cap w_{2}^{*}}$;
iii) $w_{1}^{c}=\overline{\left(w_{1}^{*}\right)^{\pi}}$;
where $\left(w_{1}^{*}\right)^{\pi}$ means the complement of w_{1}^{*} in $A(n, r) \backslash\left\{0^{\S}\right\}$.
For example, if $w_{1}=4310 \mid 001$ and $w_{2}=2000 \mid 012$ are two strings of $S(7,4)$, then $w_{1} \sqcup w_{2}=\overline{w_{1}^{*} \cup w_{2}^{*}}=\overline{\{\tilde{1}, \tilde{3}, \tilde{4}, \overline{1}\} \cup\{\tilde{2}, \overline{1}, \overline{2}\}}=\overline{\{\tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \overline{1}, \overline{2}\}}=4321 \mid 012 ; w_{1} \sqcap w_{2}=$ $\overline{w_{1}^{*} \cap w_{2}^{*}}=\overline{\{\tilde{1}, \tilde{3}, \tilde{4}, \overline{1}\} \cap\{\tilde{2}, \overline{1}, \overline{2}\}}=\overline{\{\overline{1}\}}=0000 \mid 001 ; w_{1}^{c}=\overline{\left(w_{1}^{*}\right)^{\pi}}=\overline{\{\tilde{1}, \tilde{3}, \tilde{4}, \overline{1}\}^{\pi}}=$ $\overline{\{\tilde{2}, \overline{2}, \overline{3}\}}=2000 \mid 023$, and $w_{2}^{c}=\overline{\left(w_{2}^{*}\right)^{\pi}}=\overline{\{\tilde{2}, \overline{1}, \overline{2}\}^{\pi}}=\overline{\{\tilde{1}, \tilde{3}, \tilde{4}, \overline{3}\}}=4310 \mid 003$.

Remark 1.6. By the previous definitions, it is immediate to verify that $\left(w^{c}\right)^{c}=w$ for all $w \in S(n, r)$.

Now suppose that $1 \leq r \leq n$ and that d is a fixed integer such that $1 \leq d \leq n$. We denote with $S(n, d, r)$ the set of all the strings of $S(n, r)$ such that their form (6) contains exactly d symbols of the alphabet $A(n, r)$ different from 0^{\S}.

Proposition 1.7. $S(n, d, r)$ is a distributive sublattice of $S(n, r)$.
Proof. It is sufficient to prove that, given $w_{1}, w_{2} \in S(n, d, r)$, it holds that $w_{1} \wedge w_{2} \in$ $S(n, d, r)$ and $w_{1} \vee w_{2} \in S(n, d, r)$. Let

$$
\begin{aligned}
& w_{1}=i_{1} \cdots i_{k} 0 \cdots 0 \mid 0 \cdots 0 i_{q} \cdots i_{n-r} \\
& w_{2}=i_{1}^{\prime} \cdots i_{p}^{\prime} 0 \cdots 0 \mid 0 \cdots 0 i_{s}^{\prime} \cdots i_{n-r}^{\prime}
\end{aligned}
$$

with i_{1}, \ldots, i_{k}, k symbols different from 0^{\S} and $i_{q}, \ldots, i_{n-r},(d-k)$ symbols different from $0^{\S} ; i_{1}^{\prime} \cdots i_{p}^{\prime}, p$ symbols different from 0^{\S} and $i_{s}^{\prime}, \ldots, i_{n-r}^{\prime},(d-p)$ symbols different from 0^{\S}. If $k=p$, then $(d-k)=(d-p)$ and hence $w_{1} \wedge w_{2}$ and $w_{1} \vee w_{2}$ have exactly d symbols different from 0^{\S}.

If $k>p$, then $w_{1} \vee w_{2}$ has k symbols different from 0^{\S} on the left of \mid and since $(d-k)<(d-p), w_{1} \vee w_{2}$ has $(d-k)$ symbols different from 0^{\S} on the right of \mid; hence $w_{1} \vee w_{2}$ has exactly d symbols different from 0^{\S}. On the other hand, $w_{1} \wedge w_{2}$ has p symbols different from 0^{\S} on the left of \mid, and since $(d-k)<(d-p), w_{1} \wedge w_{2}$ has $(d-p)$ symbols different from 0^{\S} on the right of \mid; hence $w_{1} \wedge w_{2}$ has exactly d symbols different from 0^{\S}.

Analogously if $k<p$.

Remark 1.8. The map $*$ induces a bijection between the set of subsets with d elements of $A(n, r) \backslash\left\{0^{\S}\right\}$, denoted with $\mathcal{P}_{d}\left(A(n, r) \backslash\left\{0^{\S}\right\}\right)$, and the distributive lattice $S(n, d, r)$.

2 Fundamental properties of the lattice $S(n, r)$

The Hasse diagrams of the lattices $S(n, r)$ for the first values of n and r are the following:

$$
S(1,1):
$$

$$
S(0,0):
$$

$S(3,2)$:

$S(3,1):$

$S(4,2):$

Proposition 2.1. If $0 \leq r \leq n$, then $S(n, r) \cong S(r, r) \times S(n-r, 0)$.
Proof. Let $\left(w_{P}, w_{N}\right) \in S(r, r) \times S(n-r, 0)$, with $w_{P}=i_{1} \cdots i_{r} \mid$ and $w_{N}=\mid j_{1} \cdots j_{n-r}$, where $i_{1}, \ldots, i_{r} \in\left\{\tilde{1}, \tilde{2}, \cdots \tilde{r}, 0^{\S}\right\}$ and $j_{1}, \ldots, j_{n-r} \in\left\{0^{\S}, \overline{1}, \overline{2}, \ldots, \overline{n-r}\right\}$.

We set $\varphi\left(w_{P}, w_{N}\right)=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r}$. It is easy to verity that φ is an isomorphism between $S(r, r) \times S(n-r, 0)$ and $S(n, r)$.

If we do not want to specify which elements of a string w are in $\left\{\tilde{1}, \ldots, \tilde{r}, 0^{\S}\right\}$ and which are in $\left\{0^{\S}, \overline{1}, \ldots, \overline{n-r}\right\}$, we simply write $w=l_{1} \cdots l_{n}$, without specifying which l_{i} 's are in $\left\{\tilde{1}, \ldots, \tilde{r}, 0^{\S}\right\}$ and which are in $\left\{0^{\S}, \overline{1}, \ldots, \overline{n-r}\right\}$. In any case, the order will be $l_{1} \succeq l_{2} \succeq \cdots \succeq l_{n}$.

If $l, q \in A(n, r)$, we will set

$$
\delta(l, q)= \begin{cases}\emptyset & \text { if } l=q \\ (l, q) & \text { if } l \neq q\end{cases}
$$

If $w=l_{1} \cdots l_{n}$ and $w^{\prime}=l_{1}^{\prime} \cdots l_{n}^{\prime}$ are two strings in $S(n, r)$, we will set

$$
\Delta\left(w, w^{\prime}\right)=\left(\delta\left(l_{1}, l_{1}^{\prime}\right), \ldots, \delta\left(l_{n}, l_{n}^{\prime}\right)\right)
$$

Proposition 2.2. Let $w=l_{1} \cdots l_{n}$ and $w^{\prime}=l_{1}^{\prime} \cdots l_{n}^{\prime}$ be two strings in $S(n, r)$. Then:

$$
w \models w^{\prime} \quad \Longleftrightarrow
$$

$\Delta\left(w, w^{\prime}\right)=\left(\emptyset, \ldots, \emptyset,\left(l_{k}, l_{k}^{\prime}\right), \emptyset, \ldots, \emptyset\right)$ for some $k \in\{1, \ldots, n\}$ where $l_{k} \vdash l_{k}^{\prime}$.
Proof. \Longrightarrow By contradiction, we distinguish three cases:

1) there exists a pair $\left(l_{k}, l_{k}^{\prime}\right)$ different from \emptyset in $\Delta\left(w, w^{\prime}\right)$ such that $l_{k} \nvdash l_{k}^{\prime}$. Since by hypothesis $w \models w^{\prime}$, we have $w \sqsubset w^{\prime}$; therefore $l_{k} \prec l_{k}^{\prime}$ and, for some $l \in A(n, r)$, we have $l_{k} \prec l \prec l_{k}^{\prime}$.

Hence the string $w_{l}=l_{1} \cdots l_{k-1} l l_{k+1} \cdots l_{n}$ is such that $w \sqsubset w_{l} \sqsubset w^{\prime}$, against the hypothesis.
2) there exist at least two pairs $\left(l_{k}, l_{k}^{\prime}\right),\left(l_{s}, l_{s}^{\prime}\right)$ with $s>k$ different from \emptyset in $\Delta\left(w, w^{\prime}\right)$, such that $l_{k} \vdash l_{k}^{\prime}$ and $l_{s} \vdash l_{s}^{\prime}$. Then, if we consider the string:

$$
u=l_{1} \cdots l_{k-1} l_{k} l_{k+1} \cdots l_{s-1} l_{s}^{\prime} l_{s+1} \cdots l_{n}
$$

it follows that $w \sqsubset u \sqsubset w^{\prime}$, against the hypothesis.
3) all the components of $\Delta\left(w, w^{\prime}\right)$ are equal to \emptyset. In this case, by definition of $\Delta\left(w, w^{\prime}\right)$ we will have that $w=w^{\prime}$, against the hypothesis.
\Longleftarrow By hypothesis, $w \sqsubseteq w^{\prime}$ because $\Delta\left(w, w^{\prime}\right)=\left(\emptyset, \ldots, \emptyset,\left(l_{k}, l_{k}^{\prime}\right), \emptyset, \ldots, \emptyset\right)$ with $l_{k} \vdash l_{k}^{\prime}$. Suppose that the assertion is false; then there exists a $w^{\prime \prime} \in S(n, r)$ such that $w \sqsubset w^{\prime \prime} \sqsubset w^{\prime}$. Let $w^{\prime \prime}=l_{1}^{\prime \prime} \cdots l_{n}^{\prime \prime}$. By hypothesis it follows that $l_{i}=l_{i}^{\prime \prime}=l_{i}^{\prime}$ if $i \neq k$, and $l_{k} \prec l_{k}^{\prime \prime} \prec l_{k}^{\prime}$, and hence $l_{k} \nvdash l_{k}^{\prime}$, against the hypothesis.

We define now the function $\rho: S(n, r) \rightarrow \mathbb{N}_{0}$ as follows: if $w=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r} \in$ $S(n, r)$ and we consider the symbols $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{n-r}$ as non-negative integers (without ${ }^{\sim}$ and ${ }^{-}$), then we set:

$$
\begin{aligned}
\rho(w) & =i_{1}+\cdots+i_{r}+\left|j_{1}-1\right|+\cdots+\left|j_{n-r}-(n-r)\right| \\
& =i_{1}+\cdots+i_{r}+\left(1-j_{1}\right)+\cdots+\left((n-r)-j_{n-r}\right) .
\end{aligned}
$$

Proposition 2.3. The function ρ satisfies the following two properties:
i) $\rho(\hat{0})=0$;
ii) if $w, w^{\prime} \in S(n, r)$ and $w \models w^{\prime}$, then $\rho\left(w^{\prime}\right)=\rho(w)+1$.

Proof. i) Since $\hat{0}=0 \cdots 0 \mid 12 \cdots(n-r)$, the assertion follows by the definition of ρ.
ii) If $\left(w=l_{1} \cdots l_{n}\right) \models\left(w^{\prime}=l_{1}^{\prime} \cdots l_{n}^{\prime}\right)$, by Proposition 2.2 we have that $\Delta\left(w, w^{\prime}\right)=$ $\left(\emptyset, \ldots, \emptyset,\left(l_{t}, l_{t}^{\prime}\right), \emptyset, \cdots \emptyset\right)$, for some $t \in\{1, \ldots, n\}$, with $l_{t} \vdash l_{t}^{\prime}$. We distinguish different cases:

1) Suppose that $1 \leq t \leq r$ and $l_{t} \succ 0^{\S}$. Then $w=l_{1} \cdots l_{t-1} l_{t} l_{t+1} \cdots l_{r} \mid l_{r+1} \cdots l_{n}$ and $w^{\prime}=l_{1} \cdots l_{t-1}\left(l_{t}+1\right) l_{t+1} \cdots l_{r} \mid l_{r+1} \cdots l_{n}$. Hence $\rho\left(w^{\prime}\right)=l_{1}+\cdots+l_{t-1}+\left(l_{t}+\right.$ 1) $+l_{t+1}+\cdots+l_{r}+\sum_{k=1}^{n-r}\left(k-l_{r+k}\right)=\sum_{k=1}^{r} l_{k}+\sum_{k=1}^{n-r}\left(k-l_{r+k}\right)+1=\rho(w)+1$.
2) Suppose that $1 \leq t \leq r$ and $l_{t}=0^{\S}$. In this case we have that $l_{t}^{\prime}=1$, hence $w=l_{1} \cdots l_{t-1} 00 \cdots 0 \mid l_{r+1} \cdots l_{n}$ and $w^{\prime}=l_{1} \cdots l_{t-1} 10 \cdots 0 \mid l_{r+1} \cdots l_{n}$, from which it follows that $\rho\left(w^{\prime}\right)=\rho(w)+1$.
3) Suppose that $(r+1) \leq t \leq n$ and that $l_{t}=0^{\S}$. In this case we have a contradiction because there does not exist an element l_{t}^{\prime} in $\left\{0^{\S}, \overline{1}, \ldots, \overline{n-r}\right\}$ which covers 0^{\S}.
4) Suppose that $(r+1) \leq t \leq n$ and that $l_{t} \prec 0^{\S}$; since we consider l_{t} as an integer, it means that $1 \leq l_{t} \leq(n-r)$. In this case we have $w=l_{1} \cdots l_{r} \mid l_{r+1} \cdots l_{t-1} l_{t} l_{t+1} \cdots l_{n}$ and $w^{\prime}=l_{1} \cdots l_{r} \mid l_{r+1} \cdots l_{t-1}\left(l_{t}-1\right) l_{t+1} \cdots l_{n}$, and therefore $\rho\left(w^{\prime}\right)=\sum_{i=1}^{r} l_{i}+$ $\sum_{k=1, k \neq t-r}^{n-r}\left(k-l_{r+k}\right)+\left[(t-r)-\left(l_{t}-1\right)\right]=\sum_{i=1}^{r} l_{i}+\sum_{k=1}^{n-r}\left(k-l_{r+k}\right)+1=\rho(w)+1$.

Proposition 2.4. $S(n, r)$ is a graded lattice having rank $R(n, r)=\binom{r+1}{2}+\binom{n-r+1}{2}$ and its rank function coincides with ρ.

Proof. A finite distributive lattice is also graded (see [23]), therefore $S(n, r)$ is graded by Proposition 1.3. In order to calculate the rank of $S(n, r)$, we need to determine a maximal chain and its length. We consider the following chain C in $S(n, r)$:
$\hat{1}=r(r-1) \cdots 21 \mid 00 \cdots 0 \quad 1$ string with r elements different from 0 on the left of \mid
$\left\{\begin{array}{l}r(r-1)(r-2) 0 \cdots 0 \mid 00 \cdots 0 \quad(r-2) \text { strings with } 3 \text { elem. diff. from } 0 \text { on the left of } \mid \\ \vdots \\ r(r-1) 10 \cdots 0 \mid 00 \cdots 0\end{array}\right.$
$\left\{\begin{array}{l}r(r-1) 0 \cdots 0 \mid 00 \cdots 0 \quad(r-1) \text { strings with } 2 \text { elem. diff. from } 0 \text { on the left of } \mid \\ \vdots \\ r 10 \cdots 0 \mid 00 \cdots 0\end{array}\right.$

$$
\left\{\begin{array}{l}
r 0 \cdots 0 \mid 00 \cdots 0 \quad r \text { strings with } 1 \text { elem. diff. from } 0 \text { on the left of } \mid \\
\vdots \\
10 \cdots 0 \mid 00 \cdots 0
\end{array}\right.
$$

$$
00 \cdots 0 \mid 00 \cdots 0
$$

$$
\left\{\begin{array}{l}
00 \cdots 0 \mid 00 \cdots 1 \quad(n-r) \text { strings with } 1 \text { elem. diff. from } 0 \text { on the right of } \mid \\
\vdots \\
00 \cdots 0 \mid 00 \cdots(n-r)
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{lr}
00 \cdots 0 \mid 001(4 \cdots(n-r)) & 3 \text { strings with }(n-r-2) \text { elements different } \\
00 \cdots 0 \mid 002(4 \cdots(n-r)) & \text { from } 0 \text { on the right of } \mid \\
00 \cdots 0 \mid 003(4 \cdots(n-r))
\end{array}\right. \\
& \left\{\begin{array}{lr}
00 \cdots 0 \mid 01(34 \cdots(n-r)) & 2 \text { strings with }(n-r-1) \text { elements different } \\
00 \cdots 0 \mid 02(34 \cdots(n-r)) & \text { from } 0 \text { on the right of } \mid
\end{array}\right.
\end{aligned}
$$ $\hat{0}=00 \cdots 00 \mid(12 \cdots(n-r)) \quad 1$ string with $(n-r)$ elem. diff. from 0 on the right of \mid

Therefore C has length $(1+2+\cdots+(r-1)+r)+1+(1+2+\cdots+(n-r))=$ $\frac{r(r+1)}{2}+\frac{(n-r+1)(n-r)}{2}+1=\binom{r+1}{2}+\binom{n-r+1}{2}+1$. By Proposition 2.2, each element of the chain covers the previous one with respect to the order \sqsubseteq in $S(n, r)$. Furthermore, C has minimal element $\hat{0}$ (the minimum of $S(n, r)$) and maximal element $\hat{1}$ (the maximum of $S(n, r)$), hence C is a maximal chain in $S(n, r)$. Since C has $R(n, r)+1$ elements and $S(n, r)$ is graded, it follows that $S(n, r)$ has rank $R(n, r)$. Finally, since $S(n, r)$ is a graded lattice of rank $R(n, r)$ and it has $\hat{0}$ as minimal element, its rank function has to be the unique function defined on $S(n, r)$ and with values in $\{0,1, \ldots, R(n, r)\}$ which satisfies i) and ii) of Proposition 2.3 (see [23]). Hence such a function coincides with ρ, by the uniqueness property.

The following proposition shows that w and w^{c} are symmetric in the Hasse diagram of $S(n, r)$.

Proposition 2.5. If $w \in S(n, r)$, then $\rho(w)+\rho\left(w^{c}\right)=R(n, r)$.
Proof. Let $w=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r}$ and $w^{c}=i_{1}^{\prime} \cdots i_{r}^{\prime} \mid j_{1}^{\prime} \cdots j_{n-r}^{\prime}$. Then $\rho(w)+\rho\left(w^{c}\right)=$ $\sum_{k=1}^{r} i_{k}+\sum_{k=1}^{n-r}\left(k-j_{k}\right)+\sum_{k=1}^{r} i_{k}^{\prime}+\sum_{k=1}^{n-r}\left(k-j_{k}^{\prime}\right)$. By definition of w^{c} in $S(n, r)$, it follows that $\sum_{k=1}^{r} i_{k}+\sum_{k=1}^{r} i_{k}^{\prime}=\sum_{k=1}^{r} k$ and $\sum_{k=1}^{n-r} j_{k}+\sum_{k=1}^{n-r} j_{k}^{\prime}=\sum_{k=1}^{n-r} k$.

Hence $\rho(w)+\rho\left(w^{c}\right)=\sum_{k=1}^{r} k+2 \sum_{k=1}^{n-r} k-\sum_{k=1}^{n-r} k=\sum_{k=1}^{r} k+\sum_{k=1}^{n-r} k=\binom{r+1}{2}+$ $\binom{n-r+1}{2}=R(n, r)$.

3 The order reversing property of \sqsubseteq

In general, $(S(n, r), \sqsubseteq, \hat{0}, \hat{1})$ is not a boolean lattice. If $w=54210 \mid 012 \in S(8,5)$, for example, it is easy to verify that there does not exist an element $w^{\prime} \in S(8,5)$ such that $w \wedge w^{\prime}=\hat{0}$ and $w \vee w^{\prime}=\hat{1}$. In this section we will prove that the function $w \in S(n, r) \mapsto$ $w^{c} \in S(n, r)$ is order reversing with respect to the order \sqsubseteq, in the sense that if $w_{1} \sqsubseteq w_{2}$, then $w_{2}^{c} \sqsubseteq w_{1}^{c}$. In the sequel, we will see that this property is fundamental to prove many results of this paper.

Proposition 3.1. Let $w, w^{\prime} \in S(n, r)$ be such that $w^{\prime} \models w$. Then $w^{c} \models\left(w^{\prime}\right)^{c}$.
Proof. Case 1) Let w and w^{\prime} be distinct in the following way:

$$
\begin{aligned}
w & =i_{1} \cdots i_{r-s-1} 10 \cdots 0 \mid \cdots \\
w^{\prime} & =i_{1} \cdots i_{r-s-1} 00 \cdots 0 \mid \cdots
\end{aligned}
$$

where $i_{1} \succ \cdots \succ i_{r-s-1} \succ \tilde{1}$. Consider now $\left(w^{*}\right)^{\pi}$ and $\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$: they are two elements of $\mathcal{P}\left(A(n, r) \backslash\left\{0^{\S}\right\}\right)$. In $\left(w^{*}\right)^{\pi}$ there are (s) elements of $A(n, r) \succ 0^{\S}$ and in $\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$ there are $(s+1)$ elements of $A(n, r) \succ 0^{\S}$. Furthermore, $\tilde{1} \in\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$ and $\tilde{1} \notin\left(w^{*}\right)^{\pi}$, hence the symmetric difference between $\left(w^{*}\right)^{\pi}$ and $\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$ is equal to $\{\tilde{1}\}$. From this, it follows that:

$$
\begin{aligned}
\left(w^{\prime}\right)^{c} & =\overline{\left(\left(w^{\prime}\right)^{*}\right)^{\pi}}=t_{1} \cdots t_{s} 10 \cdots 0 \mid \cdots \\
w^{c} & =\overline{\left(w^{*}\right)^{\pi}}=t_{1} \cdots t_{s} 00 \cdots 0 \mid \cdots,
\end{aligned}
$$

where $\left\{t_{1}, \ldots, t_{s}, \tilde{1}\right\}=\left\{i_{1}, \ldots, i_{r-s-1}, \overline{1}, \ldots, \overline{n-r}\right\}^{c}$ in $A(n, r) \backslash\left\{0^{\S}\right\}$ and $t_{1} \succ \cdots \succ$ $t_{s} \succ \tilde{1}$. By Proposition 2.2, it follows that $\left(w^{\prime}\right)^{c}$ covers w^{c}.

Case 2) Adaptation of Case 1) to the elements on the right of \mid.
Case 3) Let k be the index in which w and w^{\prime} are distinct, $1 \leq k \leq r$, then:

$$
\begin{aligned}
w & =i_{1} \cdots i_{k-1}\left(i_{k}+1\right) i_{k+1} \cdots i_{p .} 0 \cdots 0 \mid \cdots \\
w^{\prime} & =i_{1} \cdots i_{k-1} i_{k} i_{k+1} \cdots i_{p} .0 \cdots 0 \mid \cdots
\end{aligned}
$$

with $i_{1} \succ \cdots \succ i_{k-1} \succ i_{k}+1 \succ i_{k} \succ i_{k+1} \succ \cdots \succ i_{p} \succ 0^{\S}$.
Then, in $\left(w^{*}\right)^{\pi}$ there are exactly $q=(r-p)$ elements $\succ 0^{\S}$ and in $\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$ there are also $q=(r-p)$ elements $\succ 0^{\S}$. Moreover, it follows that $i_{k} \in\left(w^{*}\right)^{\pi} \backslash\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$ and $i_{k+1} \in\left(\left(w^{\prime}\right)^{*}\right)^{\pi} \backslash\left(w^{*}\right)^{\pi}$, hence the symmetric difference between $\left(w^{*}\right)^{\pi}$ and $\left(\left(w^{\prime}\right)^{*}\right)^{\pi}$ is equal to $\left\{i_{k}, i_{k+1}\right\}$. From this, it follows that:

$$
\begin{aligned}
\left(w^{\prime}\right)^{c} & =\overline{\left(\left(w^{\prime}\right)^{*}\right)^{\pi}}: t_{1} \cdots t_{l-1}\left(i_{k}+1\right) t_{l+1} \cdots t_{q} 0 \cdots 0 \mid \cdots \\
w^{c} & =\overline{\left(w^{*}\right)^{\pi}}: t_{1} \cdots t_{m-1} i_{k} t_{m+1} \cdots t_{q} 0 \cdots 0 \mid \cdots,
\end{aligned}
$$

where $i_{k}+1$ appears in the l-th place $(1 \leq l \leq r)$ in $\left(w^{\prime}\right)^{c}$ and i_{k} appears in the m-th place $(1 \leq m \leq r)$ in w^{c}, with

$$
\begin{equation*}
\left\{t_{1}, \ldots, t_{l-1}, t_{l+1}, \ldots, t_{q}\right\}=\left\{t_{1}, \ldots, t_{m-1}, t_{m+1}, \ldots, t_{q}\right\} \tag{11}
\end{equation*}
$$

where $\left\{t_{1}, \ldots, t_{q}\right\}=\left\{i_{1}, \ldots, i_{k}, i_{k}+1, i_{k+1}, \ldots, i_{p}, \overline{1}, \ldots, \overline{n-r}\right\}^{\pi}$ in $A(n, r) \backslash\left\{0^{\S}\right\}$. We prove now that the l-th place coincides with the m-th place. Let $t \in\left\{t_{l+1}, \ldots, t_{q}\right\}$ and suppose by contradiction that $t \notin\left\{t_{m+1}, \ldots, t_{q}\right\}$. By (11) it follows that $t \in$ $\left\{t_{1}, \ldots, t_{m-1}\right\}$, hence we will have $i_{k}+1 \succ t$ and $t \succ i_{k}$, and hence $i_{k}+1 \succ t \succ i_{k}$ in $A(n, r)$ and this contradicts $i_{k} \vdash\left(i_{k}+1\right)$.

Let now $t \in\left\{t_{1}, \ldots, t_{m-1}\right\}$. Suppose by contradiction that $t \notin\left\{t_{1}, \ldots, t_{l-1}\right\}$. By (11) it follows that $t \in\left\{t_{l+1}, \ldots, t_{q}\right\}$, hence we will have $t \succ i_{k}$ and $i_{k}+1 \succ t$, by which $i_{k}+1 \succ t \succ i_{k}$, and this contradicts $i_{k} \vdash i_{k}+1$. By (11) hence follows that $m=l$, and this proves that $w^{c} \models\left(w^{\prime}\right)^{c}$.

Case 4) Analogously to Case 3) with k such that $r+1 \leq k \leq n$.

Proposition 3.2. If $w, w^{\prime} \in S(n, r)$ are such that $w^{\prime} \sqsubseteq w$, then $w^{c} \sqsubseteq\left(w^{\prime}\right)^{c}$.
Proof. It is enough to consider a sequence of elements $w_{0}, w_{1}, \ldots, w_{n}$ such that $w^{\prime}=$ $w_{0} \sqsubseteq w_{1} \sqsubseteq \cdots \sqsubseteq w_{n-1} \sqsubseteq w_{n}=w$ where w_{i} covers w_{i-1} for $i=1, \ldots, n$ and apply Proposition 3.1 to $w_{i-1} \models w_{i}$.

A poset $\mathbb{P}=(P, \leq)$ is called an involution poset if there exists a map ${ }^{\prime}: P \rightarrow P$ such that (i) $\left(x^{\prime}\right)^{\prime}=x$ and (ii) if $x \leq y$, then $y^{\prime} \leq x^{\prime}$ for all $x, y \in P$. Recent studies related to this particular class of posets can be found in [1] and in [10]. Hence by Proposition 3.2 and Remark 1.6, $\left(S(n, r), \sqsubseteq{ }^{c}, \hat{0}, \hat{1}\right)$ is an involution poset and a distributive bounded lattice. If $w=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r}$ is an element of $S(n, r)$, with $0 \leq r \leq n$, we can also consider the symbols $i_{1}, \cdots i_{r}, j_{1}, \ldots, j_{n-r}$ as elements in the alphabet $A(n, n-r)$, where $j_{1}, \ldots, j_{n-r} \in\left\{\widetilde{n-r} \succ \cdots \succ \tilde{1} \succ 0^{\S}\right\}$ and $i_{1}, \ldots, i_{r} \in\left\{0^{\S} \succ \overline{1} \succ \cdots \succ \bar{r}\right\}$; in such a case we will set $w^{t}=j_{n-r} \cdots j_{1} \mid i_{r} \cdots i_{1}$. Then the map $w \in S(n, r) \mapsto w^{t} \in$ $S(n, n-r)$ is bijective and it is such that

$$
\begin{equation*}
w \sqsubseteq w^{\prime} \text { in } S(n, r) \quad \Longleftrightarrow \quad\left(w^{\prime}\right)^{t} \sqsubseteq w^{t} \text { in } S(n, n-r), \tag{12}
\end{equation*}
$$

since $\left(w^{t}\right)^{t}=w$, for each $w \in S(n, r)$. Also the map $w \in S(n, r) \mapsto w^{c} \in S(n, r)$ is bijective, and since $\left(w^{c}\right)^{c}=w$, by Proposition 3.2, it follows that

$$
\begin{equation*}
w \sqsubseteq w^{\prime} \text { in } S(n, r) \quad \Longleftrightarrow \quad\left(w^{\prime}\right)^{c} \sqsubseteq w^{c} \text { in } S(n, r) . \tag{13}
\end{equation*}
$$

Therefore we have the following isomorphism of lattices:

Proposition 3.3. If $0 \leq r \leq n$, then $S(n, r) \cong S(n, n-r)$.
Proof. It is enough to consider the map $\varphi: S(n, r) \rightarrow S(n, n-r)$ defined by $\varphi(w)=$ $\left(w^{t}\right)^{c}$. Since the map φ is the composition of the map $w \in S(n, r) \mapsto w^{t} \in S(n, n-r)$
with the map $u \in S(n, n-r) \mapsto u^{c} \in S(n, n-r)$, it follows that φ is bijective. Furthermore, by (12) and (13), it holds that

$$
w \sqsubseteq w^{\prime} \text { in } S(n, r) \Longleftrightarrow \varphi(w) \sqsubseteq \varphi\left(w^{\prime}\right) \text { in } S(n, n-r) .
$$

Hence φ is an isomorphism of lattices.
Example 3.4. $S(3,1) \cong S(3,2)$ and for example $\varphi(0 \mid 01)=\left((0 \mid 01)^{t}\right)^{c}=(10 \mid 0)^{c}=$ $(20 \mid 1)$, or $\varphi(1 \mid 02)=\left((1 \mid 02)^{t}\right)^{c}=(20 \mid 1)^{c}=(10 \mid 0)$, see the Hasse diagrams of Section 2.

4 An algorithmic method for generating $S(n, r)$

In this section we describe a generating algorithm for $S(n, r)$, which will permit us to fix an order, from the left to the right on each subset of the lattice composed by elements with fixed rank. In the Hasse diagram we will provide an algorithm for giving, on each line, a total order from the left to the right.

Set $w=l_{1} \cdots l_{n} \in S(n, r)$ and let $k \in\{1, \ldots, n\}$ be fixed. If there exists an element $l_{k}^{\prime} \in A(n, r)$ which covers l_{k} with respect to the order \succ and such that $\left(l_{1}, \ldots, l_{k-1}, l_{k}^{\prime}\right.$, $\left.l_{k+1}, \ldots, l_{n}\right) \in S(n, r)$, we will say that k is a generating index for the string w. If k is a generating index for w and if l_{k}^{\prime} is an element of $A(n, r)$ which covers l_{k}, the string $\left(l_{1}, \ldots, l_{k-1}, l_{k}^{\prime}, l_{k+1}, \ldots, l_{n}\right)$ will be called string of index k generated by w and it will be denoted with the symbol $w[k]$. If k is a generating index of w contained in $\{1, \ldots, r\}$, we will say that k is a positive generating index of w; if k is a generating index of w contained in $\{r+1, \ldots, n\}$, we will say that k is a negative generating index of w. Let now s_{1}, \ldots, s_{p} be the positive generating indexes of w (if $p=0$ there are no positive generating indexes of w) and t_{1}, \ldots, t_{q} the negative generating indexes of w (if $q=0$ there are no negative generating indexes of w), with $s_{1}<\cdots<s_{p}<t_{1}<\cdots<t_{q}$.

On the set $\left\{w\left[s_{1}\right], \ldots, w\left[s_{p}\right], w\left[t_{1}\right], \ldots, w\left[t_{q}\right]\right\}$ we introduce the following formal order \lessdot :

$$
\begin{equation*}
w\left[s_{1}\right] \lessdot w\left[s_{2}\right] \lessdot \cdots \lessdot w\left[s_{p}\right] \lessdot w\left[t_{q}\right] \lessdot \cdots \lessdot w\left[t_{1}\right] \tag{14}
\end{equation*}
$$

In the Hasse diagram of $S(n, r)$ we will write the string generated by w following the order given in (14): $w\left[s_{1}\right]$ on the left of $w\left[s_{2}\right], \ldots, w\left[s_{p}\right]$ on the left of $w\left[t_{q}\right], \cdots, w\left[t_{2}\right]$ on the left of $w\left[t_{1}\right]$.

Example 4.1. If $n=9, r=5$ and $w=52000 \mid 0024$, the positive generating indexes of w are 2 and 3 , while the negative generating indexes are 8 and 9 , therefore, by (14), we write $w[2]=53000|0024 \lessdot w[3]=52100| 0024 \lessdot w[9]=52000|0023 \lessdot w[8]=52000| 0014$.

Let now $k \in\{0,1, \ldots, R(n, r)\}$ be fixed. Denote by $S_{k}(n, r)$ the set of elements of $S(n, r)$ with constant rank k. We want to define a total order \leftharpoondown on $S_{k}(n, r)$. If $k=0$ there is nothing to say because there is a unique element of rank 0 . If $k=1, S_{1}(n, r)$ coincides with the set of strings generated by $0 \cdots 0 \mid 12 \cdots(n-r)$ and, in this case, \leftharpoondown will coincide with the order \lessdot given in (14).

Let now k be an integer such that $1 \leq k<R(n, r)$ and suppose we have ordered with the total order \leftharpoondown all the strings of $S_{k}(n, r)$. Suppose that $S_{k}(n, r)=\left\{w_{1}, \ldots, w_{m}\right\}$ and that $w_{1} \leftharpoondown w_{2} \leftharpoondown \cdots \leftharpoondown w_{m}$ (in the Hasse diagram of $S(n, r)$ this implies that w_{1}, \ldots, w_{m} are written from the left to the right).

Let $w_{i}^{1}, \ldots, w_{i}^{k_{i}}$ be the strings of $S(n, r)$ generated by w_{i}, for $i=1, \ldots, m$. By (14), we can suppose that

$$
w_{1}^{1} \lessdot \cdots \lessdot w_{1}^{k_{1}}, \ldots, w_{m}^{1} \lessdot \cdots \lessdot w_{m}^{k_{m}} .
$$

We construct now \leftharpoondown as follows: at first we set

$$
\begin{equation*}
w_{1}^{1} \leftharpoondown \cdots \leftharpoondown w_{1}^{k_{1}} \leftharpoondown w_{2}^{1} \leftharpoondown \cdots \leftharpoondown w_{2}^{k_{2}} \leftharpoondown \cdots \leftharpoondown w_{m}^{1} \leftharpoondown \cdots \leftharpoondown w_{m}^{k_{m}} . \tag{15}
\end{equation*}
$$

Then we have to eliminate in (15) all the repeated strings.
We examine the sequence (15) starting from w_{1}^{1} and continuing to the right until $w_{m}^{k_{m}}$. For $i=1, \ldots, m$ if the string $w_{i}^{k_{i}}$ already appears among the strings on its left, then it will be deleted from the list (15), otherwise it stays. At the end of the process there remain the strings of $S_{k+1}(n, r)$, each one appearing only one time in the list (15).

We have chosen to order the strings generated by w as in (14) because this choice gives great emphasis to the partition of $S(n, r)$ into two sublattices that we will describe in the next section; however we can also choose a different order with respect to (14), in fact, in some cases it is more useful to consider the following order on the subset of strings generated by w :

$$
\begin{equation*}
w\left[s_{1}\right] \gtrless w\left[s_{2}\right] \gtrless \cdots<w\left[s_{p}\right] \gtrless w\left[t_{1}\right] \gtrless \cdots<w\left[t_{q}\right] . \tag{16}
\end{equation*}
$$

In any case, no matter what is the chosen order, (14) or (16), for the subset of the strings generated by w, the previous algorithm stays unchanged in all the other aspects. We will say that the previous generating algorithm for $S(n, r)$ is of type \leftrightarrows if it is based on the order (14), and of type \rightrightarrows if it is based on the order (16). In this paper we use the generative algorithm \leftrightarrows.

Example 4.2. Let $n=6, r=3$ and $k=3$. Then $S_{0}(6,3)=\{000 \mid 123\}$. The generating indexes of $000 \mid 123$ are 1 and 4, therefore, by (14),

$$
000|123[1]=100| 123 \lessdot 000|123[4]=000| 023
$$

hence

$$
S_{1}(6,3)=\{100|123 \leftharpoondown 000| 023\}
$$

The generating indexes of $100 \mid 123$ are 1 and 4, therefore, as above,

$$
100|123[1]=200| 123 \lessdot 100|123[4]=100| 023
$$

the generating indexes of $000 \mid 023$ are 1 and 5:

$$
000|023[1]=100| 023 \lessdot 000|123[5]=000| 013
$$

hence (after having deleted the repeated strings)

$$
S_{2}(6,3)=\{200|123 \leftharpoondown 100| 023 \leftharpoondown 000 \mid 013\} .
$$

The generating indexes of $200 \mid 123$ are 1, 2 and 4 :

$$
200|123[1]=300| 123 \lessdot 200|123[2]=210| 023 \lessdot 200|123[4]=200| 023,
$$

the generating indexes of $100 \mid 023$ are 1 and 5:

$$
100|023[1]=200| 023 \lessdot 100|023[5]=100| 013
$$

the generating indexes of $000 \mid 013$ are 1,5 and 6 :

$$
000|013[1]=100| 013 \lessdot 000|013[6]=000| 012 \lessdot 000|013[5]=000| 003 ;
$$

hence (after having deleted the repeated strings)

$$
S_{3}(6,3)=\{300|123 \leftharpoondown 210| 123 \leftharpoondown 200|023 \leftharpoondown 100| 013 \leftharpoondown 000|012 \leftharpoondown 000| 003\} .
$$

In the figure above we have drawn the complete Hasse diagram of the lattice $S(6,3)$ in which each horizontal line represents the sub-poset $S_{k}(6,3)$ of the elements of rank k, with $0 \leq k \leq 12$, written in a totally ordered way from the left to the right following the total order \leftharpoondown previously described.

5 A recursive formula for the number of elements in $S(n, r)$ of rank k

In this section we give a recursive formula which counts the number of elements in $S(n, r)$ having fixed rank. At first we show that $S(n, r)$ can be seen as a translate union of two copies of $S(n-1, r)$ if $0 \leq r<n$ and of $S(n-1, n-1)$ if $r=n$.

Proposition 5.1. Let $n \geq 1$ and $r \in \mathbb{N}$ such that $0 \leq r \leq n$. Then there exist two disjoint sublattices $S_{1}(n, r)$, $S_{2}(n, r)$ of $S(n, r)$ such that $S(n, r)=S_{1}(n, r) \cup S_{2}(n, r)$, where:
i) $S_{i}(n, r) \cong S(n-1, r)$ for $i=1,2$, if $0 \leq r<n$;
ii) $S_{i}(n, n) \cong S(n-1, n-1)$ for $i=1,2$, if $r=n$.

Proof. We distinguish two cases:
i) $0 \leq r<n$; we denote by $S_{1}(n, r)$ the subset of $S(n, r)$ of all the strings of the form $w=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-1-r}(n-r)$, with $j_{1} \cdots j_{n-1-r} \in\left\{0^{\S}, \overline{1}, \ldots, \overline{n-r-1}\right\}$; moreover, we denote by $S_{2}(n, r)$ the subset of $S(n, r)$ of all the strings of the form $w=$ $i_{1} \cdots i_{r} \mid 0 j_{2} \cdots j_{n-r}$, with $j_{2} \cdots j_{n-r} \in\left\{0^{\S}, \overline{1}, \ldots, \overline{n-r-1}\right\}$.
It is clear that $S(n, r)$ is a disjoint union of $S_{1}(n, r)$ and $S_{2}(n, r)$. We prove now that $S_{i}(n, r) \cong S(n-1, r)$ for $i=1,2$. Let $i=1$ (the case $i=2$ is analogous). It is obvious that there exists a bijective correspondence between $S_{1}(n, r)$ and $S(n-1, r)$. Furthermore, if $w, w^{\prime} \in S_{1}(n, r)$ are such that $w=i_{1} \cdots i_{r} \mid j_{1}, \cdots j_{n-r-1}(n-r)$, $w=$ $i_{1}^{\prime} \cdots i_{r}^{\prime} \mid j_{1}^{\prime} \cdots j_{n-r-1}^{\prime}(n-r)$, it follows that $w \sqsubseteq w^{\prime}$ (with respect to the order on $S(n, r)$) if and only if $i_{1} \cdots i_{r}\left|j_{1} \cdots j_{n-r-1} \sqsubseteq i_{1}^{\prime} \cdots i_{r}^{\prime}\right| j_{1}^{\prime} \cdots j_{n-r-1}^{\prime}$ (with respect to the order in $S(n-1, r)$). Hence $S_{1}(n, r)$ is isomorphic to $S((n-1), r)$.
Finally, since the order on $S(n, r)$ is component by component, it follows that each $S_{i}(n, r)($ for $i=1,2)$ is a sublattice of $S(n, r)$.
ii) $r=n$; by i), there exist two disjoint sublattices $S_{1}(n, 0), S_{2}(n, 0)$, of $S(n, 0)$ such that $S(n, 0)=S_{1}(n, 0) \cup S_{2}(n, 0)$, with $S_{i}(n, 0) \cong S_{i}(n-1,0)$, for $i=1,2$. By Proposition 3.3, it follows that $S(n, n) \cong S(n, 0)$, therefore there also exist two disjoint sublattices $S_{1}(n, n), S_{2}(n, n)$, of $S(n, n)$ such that $S(n, n)=S_{1}(n, n) \cup S_{2}(n, n)$, where $S_{i}(n, n) \cong S_{i}(n, 0) \cong S(n-1,0) \cong S(n-1, n-1)$, for $i=1$, 2, again by Proposition 3.3.

If $n \geq 1$, the element of minimal rank of the sublattice $S_{2}(n, r)$ is obviously $\hat{w}=$ $0 \cdots 0 \mid 012 \cdots(n-r-1)$. This element has rank 0 as an element of $\left(S_{2}(n, r), \sqsubseteq\right)$, but in $S(n, r)$ it has rank given by

$$
\rho(\hat{w})=(1-0)+(2-1)+(3-2)+\cdots+((n-r)-(n-r-1))=n-r .
$$

Therefore we can visualize $S_{2}(n, r)$ (in the Hasse diagram of $S(n, r)$) as an uppertranslation of the sublattice $S_{1}(n, r)$, of height $(n-r)$.

Example 5.2. For example, this is the Hasse diagram of $S(5,3)$ as a translate union of $S_{1}(5,3) \cong S(4,3)$ (red lattice) and of $S_{2}(5,3) \cong S(4,3)$ (green lattice).

Given the lattice $S(n, r)$, for each k with $0 \leq k \leq R(n, r)$, we denote with $s(n, r, k)$ the number of elements of $S(n, r)$ with rank k. The following recursive formula holds for $s(n, r, k)$:

Proposition 5.3. Let $n \geq 1$. If $r \in \mathbb{N}$ is such that $0 \leq r<n$, then
$s(n, r, k)= \begin{cases}s(n-1, r, k) & \text { if } 0 \leq k<(n-r) \\ s(n-1, r, k)+s(n-1, r, k-(n-r)) & \text { if }(n-r) \leq k \leq R(n-1, r) \\ s(n-1, r, k-(n-r)) & \text { if } R(n-1, r)<k \leq R(n, r)\end{cases}$
If $r=n$, then $s(n, n, k)=s(n, 0, k)$.
Proof. Case 1) Let k be such that $0 \leq k<(n-r)$. By what we have asserted before, the element \hat{w} (i.e. the minimum of $S_{2}(n, r)$) has rank $(n-r)$ in $S(n, r)$, hence, by Proposition 5.1, it follows that $s(n, r, k)$ coincides with the number of elements of rank k in $S_{1}(n, r)$ and since $S_{1}(n, r) \cong S(n-1, r)$, it follows that $s(n, r, k)=s(n-1, r, k)$.

Case 2) Let k be such that $(n-r) \leq k \leq R(n-1, r)$. In this case, the number of elements of rank k in $S(n, r)$ coincides with the sum of the number of elements of rank k in $S_{1}(n, r)$ and of the number of elements of rank $k-(n-r)$ in $S_{2}(n, r)$. Since $S_{1}(n, r) \cong$ $S_{2}(n, r) \cong S(n-1, r)$, it follows that $s(n, r, k)=s(n-1, r, k)+s(n-1, r, k-(n-r))$.

Case 3) Let k be such that $R(n-1, r)<k \leq R(n, r)$. In this case $s(n, r, k)$ coincides with the number of elements of rank $k-(n-r)$ in $S_{2}(n, r)$, and since $S_{2}(n, r) \cong$ $S(n-1, r)$ it follows that $s(n, r, k)=s(n-1, r, k-(n-r))$.

If $r=n$, the last equality follows from the isomorphism $S(n, n) \cong S(n, 0)$.
It is clear that we would prefer a closed formula for the numbers $s(n, r, k)$, however at present the previous recursive formula is the best result that we have. By Proposition 5.3, the first values of $s(n, r, k)$ are given by:

$$
\begin{aligned}
& s(0,0,0)=1 \\
& s(1,0,0)=s(0,0,0)=1, \quad s(1,0,1)=s(0,0,0)=1 \\
& s(1,1,0)=s(1,0,0)=1, \quad s(1,1,1)=s(1,0,1)=1 \\
& s(2,0,0)=1, \quad s(2,0,1)=s(1,0,1)=1, \quad s(2,0,2)=s(1,0,0)=1 \\
& s(2,0,3)=s(1,0,1)=1 \\
& s(2,1,0)=s(1,1,0)=1, \quad s(2,1,1)=s(1,1,1)+s(1,1,0)=2 \\
& s(2,1,2)=s(1,1,1)=1, \\
& s(2,2,0)=s(2,0,0)=1, \quad s(2,2,1)=s(2,0,1)=1, \quad s(2,2,2)=s(2,0,2)=1 \\
& s(2,2,3)=s(2,0,3)=1
\end{aligned}
$$

If P is a graded poset of rank m and has p_{i} elements of rank i, for $0 \leq i \leq m$, then the polynomial $F(P, t)=\sum_{i=1}^{m} p_{i} t^{i}$ is called the rank-generating function of P. If P and Q are two graded posets with rank-generating functions $F(P, t)$ and $F(Q, t)$, respectively, then $P \times Q$ is also graded and $F(P \times Q, t)=F(P, t) \cdot F(Q, t)$ (see [23]). This leads to the following Cauchy-type formula for $s(n, r, k)$.

Proposition 5.4. If $0 \leq r \leq n$ and $0 \leq k \leq R(n, r)$ then $s(n, r, k)=\sum_{i=0}^{k} s(r, r, i)$. $s(n-r, n-r, k-i)$.

Proof. The rank-generating function of $S(n, r)$ is $F(S(n, r), t)=\sum_{k=0}^{R(n, r)} s(n, r, k) t^{k}$. By Propositions 2.1 and 3.3 it follows that

$$
S(n, r) \cong S(r, r) \times S(n-r, 0) \cong S(r, r) \times S(n-r, n-r)
$$

Hence
$F(S(n, r), t)=F(S(r, r) \times S(n-r, n-r), t)=F(S(r, r), t) \cdot F(S(n-r, n-r), t)$.
Then

$$
\begin{aligned}
F(S(n, r), t) & =\left(\sum_{l=0}^{R(r, r)} s(r, r, l) t^{l}\right) \cdot\left(\sum_{j=0}^{R(n-r, n-r)} s(n-r, n-r, j) t^{j}\right) \\
& =\sum_{k=0}^{R(r, r)+R(n-r, n-r)} \sum_{i=0}^{k} s(r, r, i) s(r, r, k-i) t^{k}
\end{aligned}
$$

$$
=\sum_{k=0}^{R(n, r)} \sum_{i=0}^{k} s(r, r, i) s(n-r, n-r, k-i) t^{k}
$$

hence the assertion follows.
The last result of this section shows a symmetric property of $S(n, r)$.
Proposition 5.5. If $0 \leq r \leq n$ and $k=R(n, r)$, then $s(n, r, i)=s(n, r, k-i)$ for $0 \leq i \leq k$.

Proof. We recall that $S_{l}(n, r)$ is the set of elements of $S(n, r)$ with rank l, for each $0 \leq l \leq k$. It is enough to consider the map $f: S_{i}(n, r) \rightarrow S_{k-i}(n, r)$ defined by $f(w)=w^{c}$.

At first we observe that f is well-defined, because if $w \in S_{i}(n, r)$ then $\rho(w)=i$ and, by Proposition 2.5, $\rho\left(w^{c}\right)=k-i$, therefore $w^{c} \in S_{k-i}(n, r)$. The map f is injective, because by $\left(w^{c}\right)^{c}=w$ it follows that $w_{1}^{c}=w_{2}^{c} \Rightarrow w_{1}=w_{2}$. To show that f is also onto, we take $v \in S_{k-i}(n, r)$ and $w=v^{c}$. Since $\rho(v)=k-i$, by Proposition 2.5 we have that $k=\rho\left(v^{c}\right)+\rho(v)=\rho(w)+\rho(v)=\rho(w)+(k-i)$, hence $\rho\left(v^{c}\right)=i$, i.e. $w \in S_{i}(n, r)$ and $f(w)=w^{c}=\left(v^{c}\right)^{c}=v$, so f is onto and hence f is bijective.

6 Relation between weight functions, the lattices $S(n, r)$ and $S(n, d, r)$ and the numbers $\gamma(n, r)$ and $\gamma(n, d, r)$

Definition 6.1. An (n, r)-function is an application $f: A(n, r) \rightarrow \mathbb{R}$ which is increasing and such that $f\left(0^{\S}\right)=0$, i.e.:

$$
\begin{equation*}
f(\tilde{r}) \geq \cdots \geq f(\tilde{1}) \geq f\left(0^{\S}\right)=0>f(\overline{1}) \geq \cdots \geq f(\overline{n-r}) . \tag{17}
\end{equation*}
$$

We denote by $F(n, r)$ the set of the (n, r)-functions.
Definition 6.2. The function f is an (n, r)-weight function if (17) holds and if:

$$
\begin{equation*}
f(\tilde{1})+\cdots+f(\tilde{r})+f(\overline{1})+\cdots+f(\overline{n-r}) \geq 0 . \tag{18}
\end{equation*}
$$

We denote by $W F(n, r)$ the set of the (n, r)-weight functions.
Definition 6.3. If f is an (n, r)-function, we define the sum function induced by f on $S(n, r)$

$$
\Sigma_{f}: S(n, r) \rightarrow \mathbb{R}
$$

to be the function that associates to $w \in S(n, r), w=i_{1} \cdots i_{r} \mid j_{1} \cdots j_{n-r}$, the real number $\Sigma_{f}(w)=f\left(i_{1}\right)+\cdots+f\left(i_{r}\right)+f\left(j_{1}\right)+\cdots+f\left(j_{n-r}\right)$.

Proposition 6.4. If f is an (n, r)-function and if $w, w^{\prime} \in S(n, r)$ are such that $w \sqsubseteq w^{\prime}$, then $\Sigma_{f}(w) \leq \Sigma_{f}\left(w^{\prime}\right)$.

Proof. If $w=i_{1} \cdots i_{r}\left|j_{1} \cdots j_{n-r} \sqsubseteq w^{\prime}=i_{1}^{\prime} \cdots i_{r}^{\prime}\right| j_{1}^{\prime} \cdots j_{n-r}^{\prime}$, then $i_{1} \preceq i_{1}^{\prime}, \ldots, i_{r} \preceq i_{r}^{\prime}$, $j_{1} \preceq j_{1}^{\prime}, \ldots, j_{n-r} \preceq j_{n-r}^{\prime}$; hence, since f is increasing on $A(n, r)$, the assertion follows immediately by definition of the sum function Σ_{f}.

Proposition 6.5. If f is an (n, r)-weight function and if $w \in S(n, r)$ is such that $\Sigma_{f}(w)<$ 0 , then $\Sigma_{f}\left(w^{c}\right)>0$.

Proof. By definition of the two binary operations \sqcap, \sqcup and of the complement operation ${ }^{c}$ on $S(n, r)$, we have that

$$
w \sqcup w^{c}=r \cdots 1 \mid 1 \cdots(n-r) \quad \text { and } \quad w \sqcap w^{c}=00 \cdots 0 \mid 0 \cdots 0 .
$$

Hence, by definition of Σ_{f} and since $f\left(0^{\S}\right)=0$, we have that

$$
\Sigma_{f}(w)+\Sigma_{f}\left(w^{c}\right)=\Sigma_{f}\left(w \sqcup w^{c}\right)=f(\tilde{1})+\cdots+f(\tilde{r})+f(\overline{1})+\cdots+f(\overline{n-r}) \geq 0
$$

by (18). Hence, if $\Sigma_{f}(w)<0$, we will have that $\Sigma_{f}\left(w^{c}\right)>0$.
If f is an (n, r)-function, we set:

$$
S_{f}^{+}(n, r)=\left\{w \in S(n, r): \Sigma_{f}(w) \geq 0\right\}
$$

furthermore, if d and r are integers such that $1 \leq d, r \leq n$, we set:

$$
S_{f}^{+}(n, d, r)=\left\{w \in S(n, d, r): \Sigma_{f}(w) \geq 0\right\}
$$

Observe that, in general, neither $S_{f}^{+}(n, r)$ nor $S_{f}^{+}(n, d, r)$ are sublattices of $S(n, r)$, because they are not closed with respect to the operation of inf (\wedge). They are simply subposets of $S(n, r)$ with the induced order.

We set
(β) $\gamma(n, r)=\min \left\{\left|S_{f}^{+}(n, r)\right|: f\right.$ is an (n, r)-weight function $\}$;
($\delta) \gamma(n, d, r)=\min \left\{\left|S_{f}^{+}(n, d, r)\right|: f\right.$ is an (n, r)-weight function $\}$.
It is easy to observe that the numbers defined in (β) are exactly those in (1) of the introduction, while the numbers defined in (δ) are the same as those in (2) of the introduction. We use therefore both the notations.

Theorem 1 of [19] applied to our context, gives the following
Proposition 6.6. For each $r \in \mathbb{N}$ with $1 \leq r \leq n$, we have that:
i) $\gamma(n, r) \geq 2^{n-1}+1$,
ii) $\gamma(n, 1) \leq 2^{n-1}+1$.

The difference between our situation and Theorem 1 of [19] is that we admit the string $0 \cdots 0 \mid 0 \cdots 0$ in the set $S_{f}^{+}(n, r)$, i.e. we admit the empty set. For this reason in i) and ii) the number $2^{n-1}+1$ appears instead of 2^{n-1} of [19].

In the next section, we will link the numbers $\gamma(n, r)$ and $\gamma(n, d, r)$ to a minimum problem on a family of boolean functions defined on the lattices $S(n, r)$ and $S(n, d, r)$.

7 Weight functions and boolean functions on $S(n, r)$

In this section we show how to associate to any (n, r)-function and to any (n, r)-weight function a Boolean function on $S(n, r)$. Our aim is to connect the study of the (n, r) weight functions and of the related extremal problems (in particular the computation of $\gamma(n, r)$ and $\gamma(n, d, r))$ to some boolean functions on $S(n, r)$.

If f is an (n, r)-function (or an (n, r)-weight function), we can define the map

$$
A_{f}: S(n, r) \rightarrow \mathbf{2}
$$

setting

$$
A_{f}(w)= \begin{cases}P & \text { if } \Sigma_{f}(w) \geq 0 \\ N & \text { if } \Sigma_{f}(w)<0\end{cases}
$$

In order to underline the essential properties of the map A_{f}, we introduce the concept of (n, r)-boolean map.

Definition 7.1. An (n, r)-boolean map (briefly (n, r)-BM) is a map $A: S(n, r) \rightarrow \mathbf{2}$ with the following properties:
a_{1}) if $w_{1}, w_{2} \in S(n, r)$ and $w_{1} \sqsubseteq w_{2}$, with $A\left(w_{1}\right)=P$, then $A\left(w_{2}\right)=P$;
a_{2}) if $w_{1}, w_{2} \in S(n, r)$ and $w_{1} \sqsubseteq w_{2}$, with $A\left(w_{2}\right)=N$, then $A\left(w_{1}\right)=N$;
$\left.a_{3}\right) A(0 \cdots 0 \mid 0 \cdots 0)=P$ and $A(0 \cdots 0 \mid 0 \cdots 01)=N$.
Definition 7.2. An (n, r)-weighted boolean map (briefly (n, r)-WBM) is a (n, r)-BM $A: S(n, r) \rightarrow \mathbf{2}$ which satisfies the following two properties:
$\left.a_{4}\right)$ if $w \in S(n, r)$ is such that $A(w)=N$, then $A\left(w^{c}\right)=P$;
$\left.a_{5}\right) ~ A(r(r-1) \cdots 21 \mid 12 \cdots(n-r))=P$.
We denote by $B(n, r)$ the family of all the (n, r)-BM's and by $W B(n, r)$ the family of all the (n, r)-WBM's.

Proposition 7.3. i) If $A: S(n, r) \rightarrow 2$ then:

$$
\text { A satisfies } \left.\left.a_{1}\right) \quad \Longleftrightarrow \quad \text { A satisfies } a_{2}\right) \quad \Longleftrightarrow \quad A \text { is order-preserving. }
$$

ii) if f is an (n, r)-function, then A_{f} is an (n, r)-BM.
iii) if f is an (n, r)-weight function, then A_{f} is an (n, r)-WBM.

Proof. i) The assertion is straightforward, thanks to an argument by contradiction.
ii) Let f be an (n, r)-function. Suppose that $w_{1}, w_{2} \in S(n, r)$ and that $w_{1} \sqsubseteq w_{2}$. By Proposition 6.4, it follows that $\Sigma_{f}\left(w_{1}\right) \leq \Sigma_{f}\left(w_{2}\right)$. Suppose that $A_{f}\left(w_{1}\right)>A_{f}\left(w_{2}\right)$. This would imply that $A_{f}\left(w_{1}\right)=P$ and $A_{f}\left(w_{2}\right)=N$, i.e. (by definition of $\left.A_{f}\right) \Sigma_{f}\left(w_{1}\right) \geq 0$ and $\Sigma_{f}\left(w_{2}\right)<0$ and this is a contradiction. Hence A_{f} is order-preserving. The property a_{3}) holds by definition of Σ_{f} and A_{f}.
iii) Let f be an (n, r)-weight function. Let $w \in S(n, r)$ be such that $A_{f}(w)=N$. By definition of A_{f}, we have that $\Sigma_{f}(w)<0$, and hence, by Proposition 6.5, $\Sigma_{f}\left(w^{c}\right)>0$, i.e. $A_{f}\left(w^{c}\right)=P$. Hence A_{f} satisfies a_{4}). The property a_{5}) is obviously satisfied, by definition of Σ_{f} and A_{f} since f is an (n, r)-weight function.

Definition 7.4. A map $A \in B(n, r)$ is said to be numerically represented if there exists an (n, r)-function $f \in F(n, r)$ such that $A=A_{f}$.

Definition 7.5. A map $A \in W B(n, r)$ is said to be numerically represented if there exists an (n, r)-weight function $f \in W F(n, r)$ such that $A=A_{f}$.

Set
$R B(n, r)=\{A \in B(n, r): A$ is numerically represented $\}$,
$R W B(n, r)=\{A \in W B(n, r): A$ is numerically represented $\}$.
Proposition 7.6. i) $R B(n, r)$ is identified with a quotient of $F(n, r)$.
ii) $R W B(n, r)$ is identified with a quotient of $W F(n, r)$.

Proof. i) We define on $F(n, r)$ the following binary relation: if $f, g \in F(n, r)$, we set $f \sim g$ if for each $w \in S(n, r)$, we have that $\Sigma_{f}(w) \geq 0 \Leftrightarrow \Sigma_{g}(w) \geq 0$.

Then \sim is an equivalence relation on $F(n, r)$. By Proposition 7.3ii), if $f \in F(n, r)$ it follows that $A_{f} \in B(n, r)$. Therefore there is a map $\varphi: F(n, r) \rightarrow B(n, r)$ such that $\varphi(f)=A_{f}$. Then, if $f, g \in F(n, r)$, it follows that:
$f \sim g \quad \Longleftrightarrow \quad$ for each $w \in S(n, r), \Sigma_{f}(w)$ and $\Sigma_{g}(w)$ have the same sign
$\Longleftrightarrow \quad A_{f}(w)=A_{g}(w)$ for each $w \in S(n, r) \quad \Longleftrightarrow \quad \varphi(f)=\varphi(g)$.
By the Universal Property of the quotient, there exists a unique injective map

$$
\tilde{\varphi}: F(n, r) \rightarrow B(n, r)
$$

such that the following diagram commutes:

where ν is the projection on the quotient. Since the image of φ is exactly $R B(n, r)$ and since it coincides with the image of $\tilde{\varphi}$, it follows that $\tilde{\varphi}$ is a bijective map between $F(n, r) / \sim$ and $R B(n, r)$.

Analogously we prove ii), using Proposition 7.3iii).
If $A \in W B(n, r)$, we will set

$$
S_{A}^{+}(n, r)=\{w \in S(n, r): A(w)=P\}
$$

and if $d \geq 1$ is such that $d \leq n$, we will set:

$$
S_{A}^{+}(n, d, r)=\{w \in S(n, d, r): A(w)=P\}
$$

Furthermore, we set:

$$
\begin{aligned}
\tilde{\gamma}(n, r) & =\min \left\{\left|S_{A}^{+}(n, r)\right|: A \in W B(n, r)\right\}, \\
\tilde{\gamma}(n, d, r) & =\min \left\{\left|S_{A}^{+}(n, d, r)\right|: A \in W B(n, r)\right\}, \\
\bar{\gamma}(n, r) & =\min \left\{\left|S_{A}^{+}(n, r)\right|: A \in R W B(n, r)\right\}, \\
\bar{\gamma}(n, d, r) & =\min \left\{\left|S_{A}^{+}(n, d, r)\right|: A \in R W B(n, r)\right\} .
\end{aligned}
$$

Proposition 7.7. i) $\gamma(n, r)=\bar{\gamma}(n, r) \geq \tilde{\gamma}(n, r)$.
ii) $\gamma(n, d, r)=\bar{\gamma}(n, d, r) \geq \tilde{\gamma}(n, d, r)$.

Proof. i) The inequality $\bar{\gamma}(n, r) \geq \tilde{\gamma}(n, r)$ is obvious because $R W B(n, r)$ is a subset of $W B(n, r)$. We prove that $\gamma(n, r)=\bar{\gamma}(n, r)$. Let f be an (n, r)-weight function for which it holds $\gamma(n, r)=\left|S_{f}^{+}(n, r)\right|$. Then $A_{f} \in R W B(n, r)$ and (by definition of A_{f}) we have that $S_{A_{f}}^{+}(n, r)=\left\{w \in S(n, r): A_{f}(w)=P\right\}=\left\{w \in S(n, r): \Sigma_{f}(w) \geq 0\right\}=$ $S_{f}^{+}(n, r)$. Hence $\gamma(n, r)=\left|S_{f}^{+}(n, r)\right|=\left|S_{A_{f}}^{+}\right| \geq \bar{\gamma}(n, r)$, because $A_{f} \in R W B(n, r)$.

Let $A \in R W B(n, r)$ such that $\bar{\gamma}(n, r)=\left|S_{A}^{+}(n, r)\right|$. Since A is numerically represented, there will exist an (n, r)-weight function $f \in W F(n, r)$ such that $A=A_{f}$. Then $S_{A}^{+}(n, r)=S_{A_{f}}^{+}(n, r)=S_{f}^{+}(n, r)$, and hence $\bar{\gamma}(n, r)=\left|S_{A}^{+}(n, r)\right|=\left|S_{f}^{+}(n, r)\right| \geq$ $\gamma(n, r)$. This proves that $\gamma(n, r)=\bar{\gamma}(n, r)$.

The proof of ii) is similar to i).
It is natural now to pose the following two problems:
First open problem: $B(n, r)=R B(n, r)$?
Second open problem: $W B(n, r)=R W B(n, r)$?
If $R W B(n, r)$ coincides with $W B(n, r)$ (i.e. if any (n, r)-weighted boolean map is numerically represented) then $\gamma(n, r)=\tilde{\gamma}(n, r)$ and $\gamma(n, d, r)=\tilde{\gamma}(n, d, r)$, by Proposition 7.7. If the answer to the second open problem is affirmative, this would imply that each time we give the boolean formal values N or P to each string of $S(n, r)$ in such a way that the rules $\left.a_{1}\right)-a_{5}$) are respected, then there exists a numerical attribution to the singletons which permits the reconstruction of the configuration of N's and P's in a unique way. In other words, if the assertion of the second open problem holds we have an effective representation theorem.

References

[1] K. J. Al-Agha, R. J. Greechie, The involutory dimension of involution posets. Order 18 (2001), 323-337 (2002). MR1884425 (2003b:06002) Zbl 0993.03082
[2] K. Alladi, P. Erdős, J. D. Vaaler, Multiplicative functions and small divisors. In: Analytic number theory and Diophantine problems (Stillwater, OK, 1984), 1-13, Birkhäuser 1987. MR1018367 (90h:11089) Zbl 0626.10004
[3] R. A. Bailey, Association schemes. Cambridge Univ. Press 2004. MR2047311 (2005d:05001) Zbl 1051.05001
[4] Z. Baranyai, On the factorization of the complete uniform hypergraph. In: Infinite and finite sets (Colloq., Keszthely, 1973), Vol. I, 91-108. Colloq. Math. Soc. Jánōs Bolyai, Vol. 10, North-Holland 1975. MR0416986 (54 \#5047) Zbl 0306.05137
[5] A. Bhattacharya, Some problems in combinatorics, Ph. D. Thesis, Indian Institute of Technology, Bombay, India, 2004.
[6] A. Bhattacharya, On a conjecture of Manickam and Singhi. Discrete Math. 272 (2003), 259261. MR2009545 (2004h:05002) Zbl 1030.05116
[7] T. Bier, A distribution invariant for association schemes and strongly regular graphs. Linear Algebra Appl. 57 (1984), 105-113. MR729265 (85b:05049) Zbl 0529.05011
[8] T. Bier, P. Delsarte, Some bounds for the distribution numbers of an association scheme. European J. Combin. 9 (1988), 1-5. MR938815 (89e:05054) Zbl 0646.05010
[9] T. Bier, N. Manickam, The first distribution invariant of the Johnson-scheme. Southeast Asian Bull. Math. 11 (1987), 61-68. MR914366 (89b:05061) Zbl 0723.05120
[10] K. Brenneman, R. Haas, A. G. Helminck, Implementing an algorithm for the twisted involution poset for Weyl groups. In: Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 182, 137-144, 2006. MR2311295 (2008c:05189) Zbl 1112.20033
[11] G. Chiaselotti, On a problem concerning the weight functions. European J. Combin. 23 (2002), 15-22. MR1878770 (2002k:05236) Zbl 0998.05064
[12] G. Chiaselotti, G. Infante, G. Marino, New results related to a conjecture of Manickam and Singhi. European J. Combin. 29 (2008), 361-368. MR2388371 (2008m:05293) Zbl 1131.05093
[13] B. A. Davey, H. A. Priestley, Introduction to lattices and order. Cambridge Univ. Press 2002. MR1902334 (2003e:06001) Zbl 1002.06001
[14] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320. MR0140419 (25 \#3839) Zbl 0100.01902
[15] G. O. H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem. J. Combin. Theory Ser. A 13 (1972), 183-184. MR0304181 (46 \#3316) Zbl 0262.05002
[16] N. Manickam, First distribution invariants of association shemes. Ph. D. Thesis, The Ohio State University, 1986.
[17] N. Manickam, Distribution invariants of association schemes. Congr. Numer. 61 (1988), 121131. MR961647 (89i:05071) Zbl 0676.05026
[18] N. Manickam, First distributed sets in the association scheme of bilinear forms. In: Sets, graphs and numbers (Budapest, 1991), volume 60 of Colloq. Math. Soc. János Bolyai, 465468, North-Holland 1992. MR1218212 (94b:05221) Zbl 0785.05088
[19] N. Manickam, D. Miklós, On the number of nonnegative partial sums of a nonnegative sum. In: Combinatorics (Eger, 1987), volume 52 of Colloq. Math. Soc. János Bolyai, 385-392, North-Holland 1988. MR1221577 (94d:05140) Zbl 0726.11014
[20] N. Manickam, N. M. Singhi, First distribution invariants and EKR theorems. J. Combin. Theory Ser. A 48 (1988), 91-103. MR938860 (89d:05044) Zbl 0645.05023
[21] G. Marino, G. Chiaselotti, A method to count the positive 3-subsets in a set of real numbers with non-negative sum. European J. Combin. 23 (2002), 619-629. MR1931945 (2003i:05012) Zbl 1021.05003
[22] S. Srinivasan, On an arithmetical inequality. II. In: Number theory (Tiruchirapalli, 1996), volume 210 of Contemp. Math., 299-301, Amer. Math. Soc. 1998. MR1478499 (98k:11133) Zbl 0893.11003
[23] R. P. Stanley, Enumerative combinatorics. Vol. 1. Cambridge Univ. Press 1997. MR1442260 (98a:05001) Zbl 0889.05001
[24] J. H. van Lint, R. M. Wilson, A course in combinatorics. Cambridge Univ. Press 2001. MR1871828 (2002i:05001) Zbl 0980.05001

Received 9 July, 2010
C. Bisi, Dipartimento di Matematica ed Informatica, Universitá di Ferrara, Via Machiavelli 35, 44100, Ferrara, Italy
Email: bsicnz@unife.it, bisi@math.unifi.it
G. Chiaselotti, Dipartimento di Matematica, Universitá della Calabria, Via Pietro Bucci, Cubo 30B, 87036 Arcavacata di Rende (CS), Italy Email: chiaselotti@unical.it

[^0]: *The first author is partially supported by Progetto MIUR di Rilevante Interesse Nazionale Proprietà geometriche delle varietà reali e complesse and by GNSAGA - INDAM.

