
ON QUATERNIONIC TORI AND THEIR MODULI SPACE

CINZIA BISI ∗, GRAZIANO GENTILI ∗

Abstract. Quaternionic tori are defined as quotients of the skew field H of

quaternions by rank-4 lattices. Using slice regular functions, these tori are en-

dowed with natural structures of quaternionic manifolds (in fact quaternionic
curves), and a moduli space in a 12-dimensional real space is then constructed

to classify them up to biregular diffeomorphisms. The points of the moduli

space correspond to suitable special bases of rank-4 lattices, which are studied
with respect to the action of the group GL(4,Z), and up to biregular diffeome-

orphisms. All tori with a non trivial group of biregular automorphisms - and

all possible groups of their biregular automorphisms - are then identified, and
recognized to correspond to five different subsets of boundary points of the

moduli space.

1. Introduction

A new notion of regularity for quaternion-valued functions of a quaternionic
variable was introduced in 2006, by Gentili and Struppa in [19, 20]. This newly
defined class of slice regular functions (often called simply regular functions) has
already proved to be a good candidate in the search for a quaternionic counterpart
of complex holomorphic functions. The relative theory, presented in detail in the
monograph [18], has been applied to the study of a non-commutative functional
calculus, (see for example the monograph [8] and references therein) and to address
the problem of the construction and classification of orthogonal complex structures
in open subsets of the space H of quaternions (see [15]). Recent results of geometric
theory of regular functions appear in [5],[6], [3],[4], [11], [12], [16], [21], [27].

In this quaternionic setting, the Casorati-Weierstrass Theorem was proved in
[32] and it allowed the study of the group Aut(H) of all biregular transformations
of the space of quaternions H. This group turned out to coincide with the group
of all affine transformations of H of the form q 7→ qa+ b, with a, b ∈ H and a 6= 0.
As we can see, notwithstanding the fact that the group Aut(C2) of biholomorphic
transformations of C2 is still unknown, that of biregular transformations of H ∼= C2

inherits the simplicity of the group Aut(C).
The knowledge of the group Aut(H) permits the direct construction of a class

of natural, and interesting, quaternionic manifolds (actually quaternionic curves):
the quaternionic tori. These tori are studied in the present paper; together with the
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quaternionic projective spaces, [28], they are among the few directly constructed
quaternionic manifolds, and bear with them the genuine interest that accompanies
any analog of elliptic complex Riemann surfaces. In fact it is worthwhile recalling
that, as the distinguished Italian mathematician Guido Castelnuovo stated, the
theory of elliptic curves is one of the “jewels” of 19-th Century mathematics.

In this paper we construct quaternionic tori, realized as quotients of H with re-
spect to rank-4 lattices, and endow them with natural structures of quaternionic
1-dimensional manifolds. We then use the basic features of quaternionic regular
maps to characterize biregularly diffeomorphic tori by means of properties of their
generating lattices; this approach introduces into the scenery the group GL(4,Z),
that plays a fundamental role in this context. In fact the use of classical results
on the reduction of Gram matrices, based on the Minkowski-Siegel Reduction Al-
gorithm, allows us to express any “normalized” rank-4 lattice of H in terms of a
generating special basis. These special bases parameterize the classes of equivalence
of biregular diffeomorphism of quaternionic tori, and suggest to define their moduli
space (see (7.2)) as the subset of H3 ∼= R12

M = {(v2, v3, v4) ∈ H3 : {1, v2, v3, v4} is a special basis}.
Notice that special bases have properties that urge a comparison with the complex
case of elliptic curves:

Proposition 1.1. If {1, v2, v3, v4} is a special basis of a rank-4 lattice, i.e., if
(v2, v3, v4) ∈M, then

(1) 1 ≤ 〈v2, v2〉 ≤ 〈v3, v3〉 ≤ 〈v4, v4〉;
(2) − 1

2 ≤ Re(vk) ≤ 1
2 , for all k = 2, 3, 4;

(3) − 1
2 〈vl, vl〉 ≤ 〈vk, vl〉 ≤

1
2 〈vl, vl〉, for all (k, l) ∈ {2, 3, 4} × {2, 3, 4} such that

l 6= k.

The moduli space M is not a fundamental domain for the equivalence relation
of biregular diffeomorphism of quaternionic tori. In fact there are different moduli,
belonging to the boundary ∂M of the moduli space, that correspond to the same
torus; as an example we can take the distinct points (i, j, k) and (j, i, k): the two
special bases {1, i, j, k} and {1, j, i, k} generate the same lattice (the ring of Lipschitz
quaternions) and hence the same torus. However, in (7.4) we define the proper
subset T of the moduli space that turns out to be a fundamental domain (and in
turn a moduli space) for the subset of equivalence classes of the so called tame
tori. The complete quotient of the boundary ∂M, with respect to the equivalence
relation of biregular diffeomorphism of the corresponding tori, is still unknown.
However, as it happens in the complex case of elliptic curves, the classification of
all the boundary tori of ∂M having non trivial groups of biregular automorphisms
is of great geometrical interest, and is an important step towards the understanding
of the subtle features of the geometry of the moduli space.

In this perspective, by exploiting the classification of the finite subgroups of
unitary quaternions, we identify all the groups that can play the role of groups of
biregular automorphisms of tori, i.e.,

2T, 2D4, 2D6, 2C1, 2C2, 2C3,

called respectively tetrahedral, 8-dihedral, 12-dihedral, trivial-cyclic, cyclic-dihedral
and cyclic group. We then find those points of the boundary of the moduli spaceM
which correspond to tori whose group of biregular automorphisms either contains,
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or is isomorphic to, one of the groups listed above. Establishing that the equivalence
class of biregular diffeomorphism of a boundary torus inherits the name of the group
of its biregular automorphisms, we then prove

Theorem 1.2. The only quaternionic tori T with a non trivial group of biregular
automorphisms Aut(T ) 6= {±1} correspond to the following moduli of M:

• (I, α3, α3I) ∈M with |α3| ≥ 1 and I2 = −1 [ 2C2 ⊆ Aut(T ) ];

• (e
πI
3 ,α3, α3e

πI
3 ) ∈M with |α3| ≥ 1 and I2 = −1 [ 2C3 ⊆ Aut(T ) ].

The most structured groups of biregular automorphisms appear in the tori with
the richest symmetries: the 8-dihedral torus (generated by the lattice of Lipschitz
quaternions), the 12-dihedral torus, and the tetrahedral torus (the latter generated
by the lattice of Hurwitz quaternions).

We recall that, in the complex case, the tori (or lattices) with non trivial group

of holomorphic automorphisms, corresponding to the moduli i and e
πi
3 , are called

respectively harmonic and equianharmonic tori.
Appendices present a computational approach to the study of the modulus of a

torus: for example, in the last appendix, an algorithm is produced that checks if a
given basis of a lattice is tame.

2. Preliminary results

In this section we will briefly present those results on slice regular functions that
are essential for what follows.

The 4-dimensional real algebra of quaternions is denoted by H. An element q
in H can be expressed in terms of the standard basis, denoted by {1, i, j, k}, as
q = x0 + x1i + x2j + x3k, where i, j, k are imaginary units, i2 = j2 = k2 = −1,
related by the multiplication rule ij = k. To every non-real quaternion q ∈ H \ R
we can associate an imaginary unit, with the map

q 7→ Iq =
Im(q)

|Im(q)|
.

If instead q ∈ R, we can set Iq to be any arbitrary imaginary unit. In this way, for
any q ∈ H there exist, and are unique, x, y ∈ R, with y ≥ 0 (y = 0 if q ∈ R), such
that

q = x+ yIq.

The set of all imaginary units is denoted by S,

S = {q ∈ H | q2 = −1}

and, from a topological point of view, it is a 2-dimensional sphere sitting in the
3-dimensional space of purely imaginary quaternions. The symbol B will denote
the open unit ball {q ∈ H : |q| < 1} of the space H of quaternions, and the 3-sphere
of all the points of its boundary ∂B will be denoted by S3.

To each element I of S there corresponds a copy of the complex plane, namely
LI = R + IR ∼= C. All these complex planes, also called slices, intersect along the
real axis, and their union gives back the space of quaternions,

H =
⋃
I∈S

(R + IR) =
⋃
I∈S

LI .

The following definition appears in [19, 20].
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Definition 2.1. Let Ω be a domain in H and let f : Ω → H be a function. For
all I ∈ S let us consider ΩI = Ω ∩ LI and fI = f|ΩI . The function f is called

(slice) regular if, for all I ∈ S, the restriction fI has continuous derivatives and the
function ∂̄If : ΩI → H defined by

∂̄If(x+ Iy) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy)

vanishes identically.

The same articles introduce the Cullen derivative ∂cf of a slice regular function f
as

(2.1) ∂cf(x+ Iy) =
1

2

(
∂

∂x
− I ∂

∂y

)
f(x+ Iy)

for I ∈ S, x, y ∈ R.

Remark 2.2. The Cullen derivative of a slice regular function turns out to be still
a slice regular function (see, e.g, [18]).

Using the Cullen derivative, it is possible to characterize the slice regular func-
tions defined in the entire space H, or on a ball B(0, R) = {q ∈ H : |q| < R}
centered at 0 ∈ H, as follows (see, e.g., [18]).

Theorem 2.3. A function f is regular in B(0, R) if and only if f has a power
series expansion

f(q) =
∑
n≥0

qnan with an =
1

n!

∂nf

∂xn
(0)

converging in B(0, R). Moreover its Cullen derivative can be expressed as

∂cf(q) =
∑
n≥0

qnbn with bn =
1

n!

∂n+1f

∂xn+1
(0)

in B(0, R).

The existence of the power series expansion yields a Liouville Theorem, that we
will use in the sequel:

Theorem 2.4 (Liouville). Let f : H → H be slice regular. If f is bounded then f
is constant.

3. Lattices in the space of quaternions

Let ω1, . . . , ωm (with m ≤ 4) be R-linearly independent vectors in H.

Definition 3.1. The additive subgroup of (H,+) generated by ω1, . . . , ωm is called
a rank-m lattice, generated by ω1, . . . , ωm.

We will focus our attention on (topologically) discrete subgroups of (H,+), for
which the following result holds:

Lemma 3.2. Let M be a discrete (infinite) subgroup of (H,+). Then M has no
accumulation points.
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Proof Since M is discrete, there are no accumulation points of M belonging to
M . By contradiction, assume that there exists an accumulation point q of M ,
belonging to H \M . Then there exists a sequence {qn}n∈N ⊆ M converging to q.
Since {qn}n∈N is a Cauchy sequence, for all m ∈ N, there exist rm, sm ∈ N such
that

(3.1) |qrm − qsm | <
1

m
.

If we define αm = qrm − qsm ∈ M, inequality (3.1) would imply that 0 ∈ M is not
isolated, being the limit of {αm}m∈N when m→ +∞. �

As a straightforward consequence we obtain:

Corollary 3.3. Let M be a subgroup of (H,+), let R ∈ R+ and let B(0, R) be
the closure of B(0, R). Then M is discrete if and only if, for all R ∈ R+, the

intersection B(0, R) ∩M is a finite set.

The following classical characterization of discrete subgroups of (H,+) will be
used as a basic fact in the sequel (for a proof see, e.g., [31]).

Theorem 3.4. A subgroup of (H,+) is a lattice if and only if it is discrete.

This last theorem implies that the study of all possible quotient spaces of (H,+)
with respect to a discrete additive subgroup M is reduced to the case in which M
is a lattice. With the aim of classifying these quotients, let Tm denote the direct
product of m copies of the unit circle S of R2, and call it the m-dimensional torus.

It is well known that, given the rank m of a lattice in H ∼= R4, there exists only
“one” quotient, up to real diffeomorphisms (see, e.g., [31]):

Theorem 3.5. Let L be a rank-m lattice in H (with m ≤ 4). Then the group H/L
is isomorphic to Tm × R4−m.

The case of a rank-4 lattice is the one in which the quotient originates “the” real
4-dimensional torus:

Corollary 3.6. Let L be a rank-4 lattice in H. Then the group H/L is isomorphic
to T 4.

As we can see, up to real diffeomorphisms the classification is quite simple. If
one recalls the beautiful theory of complex elliptic functions - which leads, among
other things, to the study of the space of moduli of complex tori (see, e.g., [29],
[33]) - he will be inspired to classify the 4-(real)-dimensional, quaternionic tori, up
to biregular diffeomorphisms. In the next section we will define slice quaternionic
structures on tori, that will be the object of our classification.

4. A regular quaternionic structure on a 4-(real)-dimensional torus

We will give a differential structure on the 4-dimensional torus, whose change
of coordinates are regular functions. This structure will be called a regular quater-
nionic structure or simply a quaternionic structure on T 4. A torus T 4 endowed
with a quaternionic structure will be called a quaternionic torus.

To do this we will first of all consider the classical atlas U of the real torus
T 4. Let L be a rank-4 lattice of H, generated by ω1, ω2, ω3, ω4. Consider the
canonical projection π : R4 ∼= H → H/L = T 4 and, for any p ∈ H, an open
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neighborhood Up of p small enough to make π|Up an homeomorphism of Up onto

its image π(Up) (see, e.g., [7, 14]). The atlas U will consist of the local coordinate

systems
{(
π(Up), (π|Up )−1

)}
p∈H

. If we suppose that, for p, q ∈ H, the intersection

π(Up) ∩ π(Uq) is (open and) connected, then the change of coordinates is such

that π−1|Up
◦ π|Uq (x) = x +

∑4
l=1 nlωl for fixed n1, n2, n3, n4. Hence the change of

coordinates is a regular function. Therefore we obtain a quaternionic structure on
T 4. Using the classical approach, we can now give the following.

Definition 4.1. Let T 4
1 and T 4

2 be two 4-(real)-dimensional tori. A continuous
map f : T 4

1 → T 4
2 is said regular at w ∈ T 4

1 if there exist a local coordinate system
(C,ϕ) in a neighborhood of w ∈ T 4

1 and a local coordinate system (D,ψ) in a
neighborhood of f(w) ∈ T 4

2 such that ψ ◦ f ◦ ϕ−1 is regular. The function f is
regular if it is regular for all w ∈ T 4

1 . A regular homeomorphism f from T 4
1 to T 4

2 ,
whose inverse is regular, is called a biregular diffeomorphism of T 4

1 onto T 4
2 . Finally,

a biregular diffeomorphism g of T 4
1 onto itself is called a biregular automorphism of

T 4
1 .

We are now going to study the quaternonic tori, up to biregular diffeomorphisms.
More precisely we will give the following:

Definition 4.2. If there is a biregular diffeomorphism of a 4-(real)-dimensional
torus T 4

1 onto a (4-(real)-dimensional) torus T 4
2 we will say that the two tori are

equivalent.

To proceed, we recall that the group Aut(H) of biregular transformations (or
automorphisms) of H consists of all slice regular affine transformations, that is

Aut(H) = {f(q) = qa+ b : a, b ∈ H, a 6= 0}

(see [30], [32]).
The result stated in the next proposition has a complete analog in the complex

setting, [14]. Nevertheless we will produce a proof, to acquire familiarity with the
quaternionic environment.

Proposition 4.3. Let L1 and L2 be two rank-4 lattices in H, let π1 : H→ H/L1 =
T 4
1 and π2 : H → H/L2 = T 4

2 be the projections on the quotient tori. For any
F ∈ Aut(H) such that F (L1) = L2 there exists a biregular diffeomorphism f of T 4

1

onto T 4
2 which allows the equality f ◦ π1 = π2 ◦ F . Conversely, for any biregular

diffeomorphism f of T 4
1 onto T 4

2 , there exists F ∈ Aut(H) such that f ◦π1 = π2 ◦F
and F (L1) = L2.

Proof.

(4.1) H F //

π1

��

H

π2

��
T 4
1 f

// T 4
2

Let F (v) = va+ b. Since 0 ∈ L1 we have F (0) = b ∈ L2 and hence we can suppose
b = 0. By definition of regular map between tori, to show that F (v) = va induces a
biregular diffeomorphism f of T 4

1 onto T 4
2 , it is enough to show that q ∼ p implies
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F (q) ∼ F (p). Indeed, if q ∼ p then q − p ∈ L1 and hence F (q)− F (p) = qa− pa =
(q − p)a = F (q − p) ∈ L2.

To prove the converse statement, we start by recalling that the map f : T 4
1 → T 4

2

lifts to a continuous map F : H → H, in such a way that the diagram (4.1)
commutes. This latter statement depends on the fact that (H, π1) is a (topological)
universal covering of T 4

1 and hence, if Π1 denotes the Poincaré fundamental group,
we have (f ◦ π1)∗(Π1(H)) = 1 (for details on this matter see, e.g., [25]). Moreover
the map F is regular since f is a regular map of T 4

1 onto T 4
2 .

For any λ ∈ L1, consider Gλ(q) = F (q+ λ)−F (q). Since F lifts a map between
the quotients, Gλ maps L1-equivalent points into L2-equivalent points. Hence its
image is contained in the (discrete, see Theorem 3.4) lattice L2 and, being continu-
ous, is therefore constant. At this point it is clear that, taking the Cullen derivative,
we obtain ∂cF (q + λ) = ∂cF (q), for all q ∈ H. Thus the map ∂cF is regular (see
Remark 2.2) and L1-periodic, which makes it bounded. By the Liouville Theorem
for regular functions (see Theorem 2.4) the Cullen derivative ∂cF of F is constant.
Since F expands as a power series (see Theorem 2.3)

F (q) =
∑
n∈N

qn
1

n!

∂nF

∂xn
(0)

converging in the entire H, we obtain (again by Theorem 2.3)

∂cF (q) =
∑
n∈N

qn
1

n!

∂n+1F

∂xn+1
(0) =

∂F

∂x
(0)

and hence

F (q) = F (0) + q
∂F

∂x
(0) = b+ qa

is a first degree regular polynomial. Again, since F lifts a map between quotients,
necessarily L1a ⊆ L2. If the inclusion L1a ⊂ L2 is proper, then f is not injective:
indeed if some q ∈ L2 satisfies qa−1 6∈ L1 then (qa−1+L1) 6= L1 and f(qa−1+L1) =
π2(q + L1a+ b) = π2(L2) = f(L1).

Now we know that L1a = L2, that is L2a
−1 = L1. The map F−1 : H → H

defined by F−1(w) = (w − b)a−1 induces the map f−1 : T 4
2 → T 4

1 . Indeed

f−1(f(q + L1)) = f−1(qa+ b+ L2) = (qa+ L2)a−1 = q + L2a
−1 = q + L1.

This concludes the proof. �

5. Equivalence of quaternionic tori

To classify the 4-(real)-dimensional, quaternionic tori, up to biregular diffeomor-
phisms, we start with the following:

Theorem 5.1. Two rank-4 lattices L1, L2 of the space H, generated respectively by
the bases {α1, α2, α3, α4} and {ω1, ω2, ω3, ω4}, determine equivalent tori T 4

1 , T
4
2 if

and only if there exist a ∈ H∗ = H \ {0} and a linear transformation A ∈ GL(4,Z)
such that

A


ω1

ω2

ω3

ω4

 =


α1

α2

α3

α4

 a
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Proof. By Proposition 4.3, if f is a biregular diffeomorphism of T 4
1 onto T 4

2 , then
there exists a biregular transformation F of H such that the diagram (4.1) com-
mutes. Since F is biregular on H, then F (q) = qa+ b, with a ∈ H∗, and b ∈ H. As
we pointed out in the proof of Proposition 4.3, without loss of generality, we can
suppose both that b = 0 and that the function F maps the set of generators of L1

to a set of generators of L2. Taking into account that
F (α1) = α1a
F (α2) = α2a
F (α3) = α3a
F (α4) = α4a

there exists a matrix

A =


n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44


with integer entries, such that

(5.1)


α1a = n11ω1 + n12ω2 + n13ω3 + n14ω4

α2a = n21ω1 + n22ω2 + n23ω3 + n24ω4

α3a = n31ω1 + n32ω2 + n33ω3 + n34ω4

α4a = n41ω1 + n42ω2 + n43ω3 + n44ω4

or, more concisely,

(5.2)


α1

α2

α3

α4

 a = A


ω1

ω2

ω3

ω4

 .

The same argument applied in the opposite direction, implies the existence of a
matrix B with integer entries such that

(5.3)


ω1

ω2

ω3

ω4

 a−1 = B


α1

α2

α3

α4


and hence, substituting equation (5.3) into equation (5.2), we get

α1

α2

α3

α4

 a = AB


α1

α2

α3

α4

 a

which implies AB = I4 and hence that A (and B) is such that det(A) = ±1, i.e. A
(and B) belongs to GL(4,Z).

On the other side, suppose there exists a matrix A ∈ GL(4,Z), of this form:

A =


n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44
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such that

A


ω1

ω2

ω3

ω4

 =


α1

α2

α3

α4

 a

then we can compute F (q) in four different expressions:

F (q) = qα−11 (n11ω1 + n12ω2 + n13ω3 + n14ω4)

F (q) = qα−12 (n21ω1 + n22ω2 + n23ω3 + n24ω4)

F (q) = qα−13 (n31ω1 + n32ω2 + n33ω3 + n34ω4)

F (q) = qα−14 (n41ω1 + n42ω2 + n43ω3 + n44ω4)

for all q ∈ H. Simple computations show that:

F (q + α1) = F (q) + n11ω1 + n12ω2 + n13ω3 + n14ω4,

F (q + α2) = F (q) + n21ω1 + n22ω2 + n23ω3 + n24ω4,

F (q + α3) = F (q) + n31ω1 + n32ω2 + n32ω3 + n34ω4,

F (q + α4) = F (q) + n41ω1 + n42ω2 + n43ω3 + n44ω4.

Hence F defines a biregular diffeomorphism f between T 4
1 and T 4

2 . �

It is natural at this point to give the following

Definition 5.2. Two rank-4 lattices L1, L2 of the space H are called equiva-
lent if the generated quaternionic tori H/L1 and H/L2 are equivalent. A basis
{ω1, ω2, ω3, ω4} of a rank-4 lattice L1 and a basis {α1, α2, α3, α4} of a rank-4 lattice
L2 are called equivalent if L1 and L2 are equivalent lattices, i.e. if (according to
Theorem 5.1) there exist a ∈ H∗ and a linear transformation A ∈ GL(4,Z) such
that

(5.4) A


ω1

ω2

ω3

ω4

 =


α1

α2

α3

α4

 a.

Notice that two (different) equivalent bases {ω1, ω2, ω3, ω4} and {α1, α2, α3, α4}
of rank-4 lattices may generate exactly the same lattice, and hence exactly the
same quaternionic torus. This happens when there exists a linear transformation
A ∈ GL(4,Z) such that

A


ω1

ω2

ω3

ω4

 =


α1

α2

α3

α4


i.e., when a = 1 in (5.4).
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6. Minkowski-Siegel Reduction Algorithm: reduced and special bases

In this section we will specialize to the quaternionic setting the general Minkowski-
Siegel Reduction Algorithm presented in [22, 24], and use it to construct reduced
Gram matrices and reduced bases associated to lattices. In turn, reduced bases
will be used to find special bases for lattices, useful in the sequel to identify and
parameterize equivalence classes of quaternionic tori.

We explicitly present here some basic facts of this algorithmic construction, both
to make the paper as much self-contained as possible, and to have a starting point
for the proofs of the results that will follow.

Let 〈·, ·〉 denote the usual scalar product of R4. Let p = x0 + x1i + x2j + x3k
and q = y0 + y1i+ y2j + y3k be two quaternions. We set, and use in what follows,

(6.1) 〈p, q〉 =

3∑
`=0

x`y`.

Let {v1, v2, v3, v4} be a basis of the lattice L ⊂ H ∼= R4. For any u = (n1, n2, n3, n4) ∈
Z4 the squared norm of the element v = n1v1 + n2v2 + n3v3 + n4v4 ∈ L can be
expressed by 〈v, v〉 = v tv = uS0

tu where the matrix

(6.2) S0 =


〈v1, v1〉 〈v1, v2〉 〈v1, v3〉 〈v1, v4〉
〈v2, v1〉 〈v2, v2〉 〈v2, v3〉 〈v2, v4〉
〈v3, v1〉 〈v3, v2〉 〈v3, v3〉 〈v3, v4〉
〈v4, v1〉 〈v4, v2〉 〈v4, v3〉 〈v4, v4〉


is symmetric and positive definite, and is usually called the Gram matrix associated
to the basis {v1, v2, v3, v4}. In this setting and with the notations established, we
will use the following procedure (see, e.g., [24], page 122):

Algorithm 6.1 (Minkowski-Siegel Reduction Algorithm).

This algorithm acts on a Gram matrix S0 and produces a matrix U = U(S0)
belonging to GL(4,Z) and a Gram matrix R = R(S0) = US0

tU . Here are the
steps of the algorithm:

• The Gram matrix S0 (of a certain basis {v1, v2, v3, v4}) is given.
• Consider the function Q1 : Z4 → R+ defined as

Q1(u) = uS0
tu.

By our assumption, Q1 attains its strictly positive minimum value at a
point u1 = (n11, n12, n13, n14) ∈ Z4.
• To proceed, we need to recall that there exist infinitely many matrices of
GL(4,Z) having the first row equal to u1 (see e.g. [22, 24] for a proof of
this assertion, and of the analogous ones, used in this algorithm). With
this in mind, we consider the function Q2 obtained by restricting Q1 to the
elements u ∈ Z4 such that there exists a matrix of GL(4,Z) having the first
two rows equal to u1 and u, respectively. Let u2 = (n21, n22, n23, n24) ∈ Z4

be a point in which Q2 attains its strictly positive minimum value. Up to
a change of sign, we can assume that u1S0

tu2 ≥ 0.
• In the next step, we consider the restriction Q3 of Q2 to the elements u ∈ Z4

such that there exists a matrix of GL(4,Z) having the first three rows equal
to u1, u2 and u, respectively. Let u3 = (n31, n32, n33, n34) ∈ Z4 be a point
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in which Q3 attains its strictly positive minimum value. Again, up to a
change of sign, we can assume that u2S0

tu3 ≥ 0.
• Finally, we take the restriction Q4 of Q3 to the elements u ∈ Z4 such that

there exists a matrix of GL(4,Z) having the four rows equal to u1, u2, u3
and u, respectively, and set u4 = (n41, n42, n43, n44) ∈ Z4 to be a point in
which Q4 has a strictly positive minimum value. As before, we can assume
u3S0

tu4 ≥ 0.
• The output of the algorithm consists of the matrix

U = U(S0) =


n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44

 ,

(belonging to GL(4,Z) by construction) and of the Gram matrix R =
US0

tU .

Remark 6.2. Let L be a rank-4 lattice. Consider any basis {v1, v2, v3, v4} of L
whose Gram matrix is S0. The Minkowski-Siegel Reduction Algorithm, applied to
the Gram matrix S0, produces a matrix U of GL(4,Z) which can be used to define
the four elements

(6.3)


ω1 = n11v1 + n12v2 + n13v3 + n14v4
ω2 = n21v1 + n22v2 + n23v3 + n24v4
ω3 = n31v1 + n32v2 + n33v3 + n34v4
ω4 = n41v1 + n42v2 + n43v3 + n44v4.

The elements {ω1, ω2, ω3, ω4} form a basis of L since the matrix U belongs to
GL(4,Z), with its inverse. Notice that

U


v1
v2
v3
v4

 =


ω1

ω2

ω3

ω4


and therefore that the two bases {v1, v2, v3, v4} and {ω1, ω2, ω3, ω4} are equivalent
(in particular they generate the same lattice). We conclude the remark by pointing
out that the Gram matrix R associated to the basis {ω1, ω2, ω3, ω4} is obtained as
(recall formula (6.1))

US0
tU = R =


〈ω1, ω1〉 〈ω1, ω2〉 〈ω1, ω3〉 〈ω1, ω4〉
〈ω2, ω1〉 〈ω2, ω2〉 〈ω2, ω3〉 〈ω2, ω4〉
〈ω3, ω1〉 〈ω3, ω2〉 〈ω3, ω3〉 〈ω3, ω4〉
〈ω4, ω1〉 〈ω4, ω2〉 〈ω4, ω3〉 〈ω4, ω4〉


and is therefore independent of the choice of the particular basis {v1, v2, v3, v4} that
generates the Gram matrix S0. In fact the matrix R depends only on the Gram
matrix S0.

As in [22] and [24], we can give the following definition.

Definition 6.3. If R is a Gram matrix obtained by applying to a given Gram
matrix S0 the Minkowski-Siegel Reduction Algorithm 6.1, then R is called a reduced
Gram matrix (relative to S0). The symbolR will denote the set of all reduced Gram
matrices.
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To classify rank-4 lattices and generated tori, we will define the set of bases
naturally emphasized by Algorithm 6.1.

Definition 6.4. Let L be a rank-4 lattice in H. A basis {ω1, ω2, ω3, ω4} of L will
be called a reduced basis if its Gram matrix is reduced.

A direct application of the Minkowski-Siegel Reduction Algorithm and Remark
6.2 prove a first result in the study of equivalence of lattices.

Theorem 6.5. Let L be a rank-4 lattice and let {v1, v2, v3, v4} be a basis of L.
Then there exists a matrix U of GL(4,Z) such that

U


v1
v2
v3
v4

 =


ω1

ω2

ω3

ω4


is a reduced basis of the lattice L. As a consequence L = Zv1 + Zv2 + Zv3 + Zv4 =
Zω1 + Zω2 + Zω3 + Zω4 and we can suppose that the lattice L is generated by a
reduced basis.

We will now present the basic features of reduced Gram matrices (and bases).
It turns out that there are two necessary and sufficient conditions that characterize
the elements of the set R of reduced Gram matrices; we recall these conditions here
(see [24]):

Proposition 6.6. A Gram matrix R = (ri,j)i,j=1,···4 is a reduced Gram matrix if
and only if the two following sets of conditions hold:

B1) rk,k+1 ≥ 0 for all k = 1, 2, 3;

B2) for all fixed k = 1, 2, 3, 4, we have (n1, n2, n3, n4) R t(n1, n2, n3, n4) ≥
rk,k for any integer vector (n1, n2, n3, n4) such that nk, · · ·n4 are without
common divisors.

We point out, and we will use in the sequel, the fact that conditions B2) are
equivalent to B2)′:

B2)′ for all fixed k = 1, 2, 3, 4, if a vector (n1, n2, n3, n4) ∈ Z4 has the property
that (n1, n2, n3, n4) R t(n1, n2, n3, n4) < rk,k, then necessarily nk, · · · , n4
have common divisors.

Proposition 6.7. If R = (ri,j)i,j=1,···4 is a reduced Gram matrix, then the two
following conditions hold:

(1) rk,k ≤ rl,l, for all (k, l) ∈ {1, 2, 3, 4} × {1, 2, 3, 4} such that l > k;
(2) − 1

2rl,l ≤ rk,l ≤
1
2rl,l, for all (k, l) ∈ {1, 2, 3, 4}× {1, 2, 3, 4} such that l 6= k.

Proof. To verify (1), we use condition B2) at step k, applied to the vector el =
(n1, n2, n3, n4) (l > k) where el is the l-th vector of the standard basis of R4.
Inequalities (2) are obtained by applying the same condition B2) at step k, to the
vector (n1, n2, n3, n4) = ek ± el (l 6= k), where el, ek are, respectively, the l-th and
k-th vector of the standard basis of R4 (see also [24], page 123). �

Remark 6.8. Concerning conditions B2) on the Gram matrix R = (ri,j)i,j=1,···4,
we observe that: for each k ∈ {1, 2, 3, 4}, if ek is the k-th element of the standard
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basis of R4, then we obtain the obvious equality ekR
tek = rk,k that gives no

conditions.

We restate here a deep result that appears in [24], adapting it to our setting and
notations.

Theorem 6.9. The set R of all reduced Gram matrices is a convex cone with
R̊ 6= ∅. If G denotes the set of all Gram matrices, then

(6.4) G =
⋃

U∈GL(4,Z)

UR tU.

If U ∈ GL(4,Z), U 6= ±I4, and R ∩ (UR tU) 6= ∅, then R ∩ (URtU) ⊂ ∂R. Only
for a finite set of matrices U ∈ GL(4,Z) it is possible that R∩ (URtU) 6= ∅.

The fact that R̊ 6= ∅ is not obvious, and a non constructive proof is given in [24].
Now, our second step in the classification of rank-4 lattices and quaternionic tori
makes use of a proper subset of the set of reduced bases.

Definition 6.10. A reduced basis {ω1, ω2, ω3, ω4} of a rank-4 lattice L with the
property that ω1 = 1 will be called a special basis.

Theorem 6.11. Let L1 be a rank-4 lattice and let {v1, v2, v3, v4} be a basis of L1.
Then {v1, v2, v3, v4} is equivalent to a special basis {1, ω2, ω3, ω4} of a rank-4 lattice
L2. As a consequence L1 = Zv1 +Zv2 +Zv3 +Zv4 and L2 = Z+Zω2 +Zω3 +Zω4

are equivalent, and hence they generate equivalent tori.

Proof. By Theorem 6.5, there there exist a matrix U of GL(4,Z) and a reduced
basis {u1, u2, u3, u4} of the lattice L1 such that

U


v1
v2
v3
v4

 =


u1
u2
u3
u4

 .

Therefore

U


v1
v2
v3
v4

 =


1
u2u
−1
1

u3u
−1
1

u4u
−1
1

u1 =


1
ω2

ω3

ω4

u1

and, by Definition 5.2, the bases {v1, v2, v3, v4} and {1, ω2, ω3, ω4} are equiva-
lent. This latter basis is special, since it is obtained multiplying the reduced basis
{u1, u2, u3, u4} on the right by u−11 6= 0 (rigid motion of H ∼= R4). �

At this point it is possible to associate to each class of equivalence of quaternionic
tori at least a special basis of a rank-4 lattice, according to

Corollary 6.12. Let T be a quaternionic torus. Then, up to biregular diffeomor-
phisms, we can suppose that T = H/L where the lattice L is generated by a special
basis {1, ω2, ω3, ω4}.

We will now pass to identify a natural and useful subset of the possible bases
for rank-4 lattices. Let p = x0 + x1i+ x2j + x3k ∈ H and let A be a 4× 4 matrix
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with real coefficients. We set the notation A(p) to denote the quaternion whose
real components are

(6.5) A


x0
x1
x2
x3

 .

The following is a useful elementary result of linear algebra:

Proposition 6.13. If two bases {ω1, ω2, ω3, ω4} and {v1, v2, v3, v4} have the same
Gram matrix, then there exists an orthogonal matrix B ∈ O(4,R) such that B(ωl) =
vl for l = 1, 2, 3, 4.

Proof. Since the two bases have the same Gram matrix we have 〈ωl, ωp〉 = 〈vl, vp〉
for l, p = 1, ..., 4. Let B be the matrix which transforms the first basis into the
second one, then 〈ωl, ωp〉 = 〈B(ωl), B(ωp)〉. Hence B is an isometry with respect to
the standard scalar product and the assertion follows. �

A notion that reveals to be useful to deal with lattices in our setting is the
following

Definition 6.14. A lattice L is called normalized if 1 ∈ L and if every element of
L has norm greater or equal than 1.

Remark 6.15. It can be proved that conditions (1)-(2) of Proposition 6.7 together
with B1) are sufficient for a Gram matrix to be a reduced Gram matrix if and only
if the associated lattice is normalized.

Example 6.16. We provide an example of a non-normalized lattice L having a
basis B whose Gram matrix satisfies conditions (1)-(2) of Proposition 6.7 together
with B1), but is not reduced. In fact L is such that an integer combination of three

vectors of B is inside B. To see this, notice that if I = 1√
2
i+ 1√

2
j and J = 1√

3
i+
√

2
3j,

then B = {1, eπ3 I , e 2π
3 J , k} is a basis for L whose (approximated) Gram matrix

G =


1 1

2 − 1
2 0

1
2 1 (0.4891) 0
− 1

2 (0.4891) 1 0
0 0 0 1


satisfies conditions (1)-(2) of Proposition 6.7 and B1). Nevertheless it is easy to see
that (1− v1 + v2) ∈ B, and hence G is not reduced.

7. A moduli space for quaternionic tori. Tame tori

The aim of this section is to find a moduli space to “parameterize” the equiv-
alence classes of quaternionic tori, with respect to the action of biregular diffeo-
morphisms. We will then study the families of tame lattices and tame tori, whose
definition is inspired by Theorem 6.9, and whose moduli correspond to the interior
of the moduli space.

We will start by identifying a useful subset of the setR of reduced Gram matrices.
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Remark 7.1. In the sequel we will always consider reduced Gram matrices asso-
ciated to special bases, i.e. matrices of the form

(7.1) S0 =


1 〈1, v2〉 〈1, v3〉 〈1, v4〉
〈v2, 1〉 〈v2, v2〉 〈v2, v3〉 〈v2, v4〉
〈v3, 1〉 〈v3, v2〉 〈v3, v3〉 〈v3, v4〉
〈v4, 1〉 〈v4, v2〉 〈v4, v3〉 〈v4, v4〉


where 〈v4, v4〉 ≥ 〈v3, v3〉 ≥ 〈v2, v2〉 ≥ 1. This means, in particular, that we restrict
to reduced Gram matrices belonging to a hyperplane of R10. We point out that
we will consider, in the boundary of the set of reduced Gram matrices, only those
elements that represent rank-4 lattices, and hence only definite positive matrices.
Instead, as it appears in [24], when considering the entire set of reduced Gram
matrices as a subset of the space of symmetric matrices, then its boundary contains
also semi-positive definite, reduced matrices.

The promised space of “parameters” for the equivalence classes of biregular dif-
feomorphism of quaternionic tori is defined as follows.

Definition 7.2. The set M defined as

(7.2) M = {(v2, v3, v4) ∈ H3 : {1, v2, v3, v4} is a special basis}

is called the moduli space of quaternionic tori. Let (v2, v3, v4) be a point of M,
and let L = Z + Zv2 + Zv3 + Zv4 be the lattice generated by the special basis
{1, v2, v3, v4}. We will say that (v2, v3, v4) is a modulus of any quaternionic torus
equivalent to T = H/L.

Corollary 6.12 guarantees a fundamental property of the moduli space:

Proposition 7.3. Every quaternionic torus T has (at least) a modulus in M. In
other words: for every quaternionic torus T , there exists (v2, v3, v4) ∈M such that
T is equivalent to H/L, where L = Z + Zv2 + Zv3 + Zv4 is the lattice generated by
the special basis {1, v2, v3, v4}.

With obvious notations, set now

Ô(3,R) =

[
1 0
t0 O(3,R)

]
and define

(7.3) S =
⋃

B∈Ô(3,R)

B.M = Ô(3,R).M

where B.M means the set of all B.(v2, v3, v4) = (B(v2), B(v3), B(v4)), for all
(v2, v3, v4) ∈ M. The moduli space M has a natural axial symmetry with respect
to the real axis, namely we have that

Proposition 7.4. The moduli space M and the set S coincide.

Proof. The proof is a direct computation. �

The geometric symmetry of the moduli space is interesting, and suggests a re-
mark and a few considerations, that help to identify similarities in the moduli of
tori.
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Remark 7.5. Denote as usual by E = {1, i, j, k} the standard basis for the space
H of quaternions. Recall that, for every two unitary quaternions I, J ∈ S with
I ⊥ J , the set A = {1, I, J, IJ = K} is also a (positively oriented) basis for the
space H, having the same multiplication rules of the basis E . Let us consider two
lattices L1 and L2 generated, respectively, by the special bases V = {1, v2, v3, v4}
and W = {1, w2, w3, w4}. It is clear that, if the coefficients of the elements of V
with respect to the basis E coincide with the coefficients of the elements of W with
respect to the basis A, then the two generated tori T1 and T2 - notwithstanding
not equivalent according to our definition - have completely similar structures.

Let L be a lattice, and let A = {1, I, J, IJ = K} be a basis of H. What is stated
in Remark 7.5 allows us, when necessary or useful, to consider - without loss of
generality - a special basis V = {1, v2, v3, v4} of L such that v2 ∈ R + IR.

It is easy to see (and in any case we will see it later on, in this paper) that there
are different moduli belonging to ∂M that correspond to the same equivalence class
of quaternionic tori, or equivalently that there are quaternionic tori having more
than one modulus. However, this last phenomenon is not present in the case of the
family of quaternionic tori that we are going to define.

Definition 7.6. Let L be a rank-4 lattice in H.

(1) The lattice L is called a tame lattice if there exists a reduced basis of L
whose Gram matrix is an interior point of R. Such a basis will be called a
tame basis.

(2) A quaternionic torus T is called a tame torus if there exists a tame lattice
L such that T is equivalent to H/L.

Here is an easy criterion to decide if a given torus is tame or not.

Proposition 7.7. Let L be a lattice and B = {v1, v2, v3, v4} be a reduced basis for
L. Consider the torus T = H/L. Then T is a tame torus, if, and only if, ±B are
the unique reduced bases for L.

Proof. If the torus T 4 is tame, then suppose that there are two different reduced
bases, B = {v1, v2, v3, v4} and B1 = {ω1, ω2, ω3, ω4} for the tame lattice L, with
B1 6= ±B. As a consequence, there exists U ∈ GL(4,Z) \ {±I4} such that

U


v1
v2
v3
v4

 =


ω1

ω2

ω3

ω4

 .

If R and R1 denote the reduced Gram matrices associated, respectively, to the bases
B and B1, then

U R tU = R1.

Therefore, R and R1 belong to the boundary of R by Theorem 6.9, and hence the
torus is not tame. To prove the converse, suppose that T 4 is not tame, i.e. that the
Gram matrix R = (ri,j) associated to B belongs to ∂R. Therefore, equality holds
either in B1) or in B2). In the first case, since rk,k+1 = 0 for some k = 1, 2, 3, the
two consecutive vectors vk and vk+1 are orthogonal. We can then consider a second
special basis B′ obtained by substituting vk+1 with −vk+1, ... , v4 with −v4. If
instead equality holds in B2), the Minkowski-Siegel Reduction Algorithm directly
implies the existence of a second reduced basis.
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�

We will now find, inside the moduli space M, a fundamental domain for the
classes of equivalence of tame quaternionic tori. In fact if we set

(7.4) T = {(v2, v3, v4) ∈M : {1, v2, v3, v4} is a (special) tame basis}

then, with the aid of a preliminary lemma, we can prove a uniqueness result for the
modulus of tame torus.

Lemma 7.8. Let two lattices L1 and L2 of H be generated respectively, by the
special bases {1, α2, α3, α4} and {1, ω2, ω3, ω4}. If F (q) = qa, with a ∈ H∗, is an
automorphism of H such that F (L1) = L2, then |a| = 1.

Proof. By Theorem 5.1, and more precisely by the first equation of the system
(5.1) with α1 = 1, it follows that a ∈ L2, and hence |a| ≥ 1. Moreover, since
{a, α2a, α3a, α4a} are linearly independent vectors which generate the lattice L2,
then there exist n1, n2, n3, n4 ∈ Z such that n1(a)+n2(α2a)+n3(α3a)+n4(α4a) = 1.
This equality implies that (n1 +n2α2 +n3α3 +n4α4)a = 1. But |n1 +n2α2 +n3α3 +
n4α4| ≥ 1 because n1 +n2α2 +n3α3 +n4α4 is an element of L1. Hence |a| ≤ 1. �

Theorem 7.9. The set T ⊂M is a fundamental domain for the equivalence classes
of tame tori. In other words, every tame torus has exactly one modulus.

Proof. Suppose that the two moduli V = (v2, v3, v4) ∈ T and W = (ω2, ω3, ω4) ∈ T
correspond to equivalent tame tori. If this is the case, then (see Definition 5.2) there
exist U ∈ GL(4,Z) and a quaternion a 6= 0 such that

U


1
ω2

ω3

ω4

 =


1
v2
v3
v4

 a.

Lemma 7.8 implies that |a| = 1, and hence that (a, V a) is a reduced basis. Now,
since (a, V a) and (1,W ) are both reduced bases, then by Proposition 7.7 we reach
the conclusion that a = ±1 and hence that V = W . �

8. On the groups of automorphisms of “boundary” tori

According to Theorem 6.9, a reduced Gram matrix R belongs to ∂R if, and only
if, there exists a reduced Gram matrix S such that

S = UR tU

for some U ∈ GL(4,Z), U 6= ±I4. Notice that to each of these reduced Gram
matrices R,S there correspond infinitely many GL(4,Z)-nonequivalent bases (see
(7.3)). Therefore the study of the equivalence classes of non tame tori consists
in the identification and classification of reduced Gram matrices belonging to the
boundary of R, and corresponding to non equivalent special bases. We plan to
address this fascinating problem in a forthcoming paper.

However, as it happens in the complex case, the very interesting and fundamental
step in this direction is the search and classification of boundary tori with non
trivial groups of (biregular) automorphisms. These tori, which are the quaternionic
counterpart of tori with complex multiplication (classically indicated as harmonic
and equianharmonic), will be found and classified in the rest of this section.
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Remark 8.1. We recall the geometric interpretation of the quaternionic multipli-
cation by a on the right, with a ∈ H, |a| = 1. Every vector of H ∼= R4 lies in an
invariant real plane of the rotation q 7→ qa, where a = cosα + Ia sinα. This fact
can be verified directly as follows: for any quaternion q, we define q′ = qIa, and
notice that, since 1 and Ia are perpendicular vectors in H ∼= R4, so are q and q′.
Moreover I2a = −1, q′Ia = −q; thus

a = cosα+ Ia sinα

qa = q cosα+ q′ sinα, q′a = q′ cosα− q sinα.

Therefore, the plane containing the vectors q and q′ is invariant, and the rotation
in this plane is of an angle α, [13].

Lemma 8.2. Let L be a lattice of H generated by the special basis {1, α2, α3, α4}
and let F (q) = qa, with a ∈ S3, be an automorphism of H such that F (L) = L.
Then a has finite order, i.e. there exists n ∈ N such that an = 1, and the order of
a divides either 4 or 6.

Proof. Since 1 is an element of the lattice L and since F (q) = qa maps L onto
L, it follows that 1a = a ∈ L; similarly for all m ∈ N, it holds that am ∈ L.
By compactness, the sequence {am}m∈N of unit vectors in L, has a convergent
subsequence. Unless {am}m∈N is a finite set, this is in contradiction with Lemma
3.2 and Theorem 3.4 which assert respectively that L is a (closed) discrete subgroup
of H. In order to prove the second assertion, we use what is stated in Remark 8.1:
since 1 and a are elements of L, it follows that the complex plane LIa , which contains
1 and a, is invariant by right multiplication for a, i.e. the integer combinations of
1 and a form a rank-2 sublattice of L, contained in the complex plane LIa , with
F (q) = qa as an automorphism of the sublattice LIa ; therefore a is a root of unity
of order n, where n divides either 4 or 6, because in the complex setting these are
the only possibilities (see, e.g., [1, 26]). �

Proposition 4.3 directly suggests how to define the automorphisms of a quater-
nionic torus.

Definition 8.3. Let T = H/L be the quaternionic torus associated to the rank-4
lattice L. The group of biregular automorphisms of the torus T is defined as

Aut(T ) = {F ∈ Aut(H) | F (q) = qa with a ∈ S3 and F (L) = L}.

We point out that the group Aut(T ) of biregular automorphisms of the torus
T = H/L can also be interpreted as the group of biregular automorphisms Aut0(L)
of a rank-4 lattice L fixing the point 0 ∈ L ⊂ H.

Proposition 8.4. Let T = H/L be a quaternionic torus, and let AT = {a ∈ S3 :
∃ F ∈ Aut(T ) defined as F (q) = qa}. Then:

(1) the set AT ⊂ S3 ∩ L is a subgroup (with respect to quaternionic multiplica-
tion) of the group S3 of unitary quaternions;

(2) the group AT is isomorphic to Aut(T );
(3) for any fixed R ≥ 0, each F ∈ Aut(T ) acts as a permutation on the finite

set of all vectors of L ∩ ∂B(0, R).

Proof. The group structure of the set AT with respect to the quaternionic multipli-
cation is inherited by the one of Aut(T ) with respect to composition. The fact that
each F ∈ Aut(T ) acts as a permutation on vectors of fixed norm is straightforward
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by Lemma 7.8 and 8.2 and by the fact that an automorphism F of T maps T onto
itself. �

We now pass to recall and list all the finite subgroups of the unitary quaternions,
following the classical books [9], [10], [13] and [23]. We point out that in the
literature there is a diffused confusion in the use of notations that concern the
groups we are dealing with; here we will mainly refer to, and use the notations of,
the book [9] by Conway and Smith.

We begin by listing all (up to conjugation) finite subgroups of the group of
rotations SO(3,R):

(1) the icosahedral group, I ∼= A5, 60 elements;
(2) the octahedral group, O ∼= S4, 24 elements;
(3) the tetrahedral group, T ∼= A4, 12 elements;
(4) the dihedral group, D2n

∼= D(n), 2n elements;
(5) the cyclic group, Cn ∼= C(n), n elements.

Every unitary quaternion q is associated to a precise rotation of SO(3,R) by
means of the 2−to−1 correspondence that maps q to the rotation [q] : x → q̄xq
(see, e.g., [9]). As a consequence, every finite group Q of unitary quaternions is
mapped to a group [Q] = {[q] : q ∈ Q}(isomorphic to) Cn, D2n,T,O, I. The number
of elements of Q is 2 or 1 times the number of elements of [Q], according to whether
−1 is or is not in Q.

If G denotes one of the finite subgroups of the group of rotations, then we set

2G = {q ∈ S3 : [q] ∈ G}.
The only possible cases in which −1 ∈ Q are those where Q = 2Cn, 2D2n, 2T, 2O, 2I.
On the other hand, let us suppose that −1 6∈ Q. In this case, G can contain no
order 2 rotation g: if [q] = g then q2 = −1 must be in Q. The only group G
without order 2 elements is Cn with n odd; this gives rise to a group Q = 1Cn in
S3 isomorphic to Cn. In fact, the following result holds (see, e.g., [9]).

Theorem 8.5. The finite subgroups of unitary quaternions are

2I, 2O, 2T, 2D2n, 2Cn, 1Cn(n odd).

With the usual notations for quaternions, let I, J ∈ S, with I ⊥ J , and let
{1, I, J, IJ = K} be a basis for H having the usual multiplication rules. We then
set

II =
I + σJ + τK

2
, σ =

√
5− 1

2
, τ =

√
5 + 1

2
;

IO =
J +K√

2
;

ω =
−1 + I + J +K

2
;

IT = I;

en = e
πI
n .

Theorem 8.6. The finite subgroups of unitary quaternions are generated as follows:

2I = 〈〈II, ω〉〉, 2O = 〈〈IO, ω〉〉, 2T = 〈〈IT, ω〉〉,
2D2n = 〈〈en, j〉〉, 2Cn = 〈〈en〉〉, 1Cn = 〈〈en

2
〉〉 (n odd).
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Theorem 8.7. There is no quaternionic torus whose group of automorphisms is
isomorphic to 2I, 2O, 2D2n(n ≥ 4), 2Cn(n ≥ 4), 1Cn(n odd).

Proof. Since the subgroup I contains an element of order 5, then 2I has an element
of order 10. Hence, by Lemma 8.2, it cannot be the group of automorphisms of a
quaternionic torus. The same argument holds to exclude 2O that has an element
of order 8. Analogously the groups 2D2n(n ≥ 4), 2Cn(n ≥ 4) are excluded since
they both contain the element en whose order is 2n. Finally, the group 1Cn(n odd)
cannot be isomorphic to the group of automorphisms of a quaternonic torus since
it does not contain −1. �

This last result reduces the possible groups of automorphisms of a quaternionic
torus to the list

2T, 2D2, 2D4, 2D6, 2C1, 2C2, 2C3.

Since, as it is well known and easy to check, the groups 2C2 and 2D2 are isomorphic,
the final list of these groups becomes

(8.1) 2T, 2D4, 2D6, 2C1, 2C2, 2C3.

Remark 8.8. We observe that the following group inclusions hold:

2C1 ⊂ 2C2 ⊂ 2D4 ⊂ 2T
and

2C1 ⊂ 2C3 ⊂ 2D6.

For each group 2G in the list (8.1), we will exhibit all tori whose group of
automorphisms contains, or coincides with, 2G. We will begin with the group
2C1 = {1,−1}, which appears for each quaternionic torus. As the reader may
imagine, for reasons of neat presentation we will from now on suppose, without loss
of generality, that the lattices which generate the tori involved have 1 as a vector
of minimum modulus.

Proposition 8.9. The group 2C1 is (isomorphic to) a subgroup of the group of
biregular automorphisms of any quaternionic torus T .

Proof. Let L be a rank-4 lattice of H generated by the special basis {1, α2, α3, α4}
and such that T = H/L. Then 2C1 = {1,−1} consists of automorphisms of T since
{−1,−α2,−α3,−α4} generates the lattice L. �

Proposition 8.10. Let T be a quaternionic torus. The group of biregular auto-
morphisms of the torus T contains a subgroup (isomorphic to) 2C2

∼= 2D2, if and
only if there exists I ∈ S and a quaternion α3 with |α3| ≥ 1 such that (I, α3, α3I)
is a modulus of T .

Proof. If (I, α3, α3I) is a modulus of T then B = {1, I, α3, α3I} is a special basis
of a lattice L such that T is equivalent to H/L. Then the four bases

BI0 = B = {1, I, α3, α3I}
BI1 = BI = {I,−1, α3I,−α3}
BI2 = −B = {−1,−I,−α3,−α3I}
BI3 = −BI = {−I, 1,−α3I, α3}

all generate the lattice L, and hence the subgroup 2C2
∼= {±1,±I} is a subgroup

of the group of automorphisms Aut(T ). On the other hand, if 2C2 ⊆ Aut(T ),
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then thanks to Theorem 8.6, Lemma 8.2 and Proposition 8.4, the vectors {±1,±I}
must belong to, and generate, the rank-2 sublattice L∩LI of L. Therefore (by the
classification of rank-2 lattices of C), while using the Minkowski-Siegel Reduction
Algorithm, we can choose α2 = I in the special basis B = {1, α2, α3, α4} that
generates L. We can also suppose that the third vector α3 is chosen (again according
to Algorithm 6.1) among those vectors that can complete the special basis B. As a
consequence, α3I,−α3,−α3I, must belong to L together with α3. Since these three
elements of L have the same norm of α3, and since Aut(T ) contains a subgroup
isomorphic to 2C2, then the Minkowski-Siegel Reduction Algorithm 6.1 can produce
a special basis that generates L by using suitable α3 and taking, automatically,
α4 = α3I; this concludes the proof. �

Let {1, I, J,K} be a standard basis for the skew field of quaternions. We recall
that the ring of Lipschitz quaternions (or Lipschitz integers) consists of the set
L = {m + nI + pJ + qK : m,n, p, q ∈ Z} ⊂ H. The ring L is, in turn, a subring
of the ring of Hurwitz quaternions (or Hurwitz integers) H = {a+ bI + cJ + dK :
a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1

2}. The surprising properties of these rings are
described, for instance, in [9].

Remark 8.11. Concerning the proof of Proposition 8.10, notice that only in the
case in which the lattice L consists of the ring of Hurwitz integers H, it can happen
that there exists α3 such that the special basis B = {1, I, α3, α3I} simply gener-
ates a proper sublattice of L and not the whole L : for example if α3 = J is an
imaginary unit quaternion orthogonal to I, then the set B = {1, I, J, JI} generates
the sublattice of the Lipschitz quaternions instead of the whole lattice of Hurwitz
quaternions. According to Remark 8.8 and to the classification (8.1) of the finite
subgroups of unitary quaternions which can be contained in L∩S3, this is the only
case in which a set of linearly independent vectors of type B = {1, I, α3, α3I} ⊂ L
(with |α3| = 1) can generate a proper sublattice instead of the whole lattice. In
this particular case, it is enough to change α3 with another vector of L ∩ S3 which
can be reached by means of the Minkowski-Siegel Reduction Algorithm and such
that 1, I, α3 are not in the same multiplicative subgroup of L ∩ S3 : we know that
at least an α3 of this kind exists (this last fact depends on the well known structure
of the subgroups of 2T).

If the group of automorphisms Aut(T ) of the torus T contains a subgroup iso-
morphic to 2C2, and if the torus T has a special basis of type {1, I, α3, α3I} with
|α3| > 1, then Aut(T ) ∼= 2C2: this is a consequence of the classification of the
rank-2 lattices of C, and of the fact that, in these hypotheses, there are only four
points in L ∩ S3, all belonging to LI ∩ S3 (see Proposition 8.4).

Definition 8.12. A quaternionic torus whose group of biregular automorphisms
is isomorphic to 2C2

∼= 2D2 is called a cyclic-dihedral torus.

Proposition 8.13. Let T be a quaternionic torus. The group of biregular auto-
morphisms of the torus T contains a subgroup (isomorphic to) 2C3 if and only if

there exists I ∈ S and a quaternion α3 with |α3| ≥ 1 such that (e
πI
3 , α3, α3e

πI
3 ) is

a modulus of T .
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Proof. If (e
πI
3 , α3, α3e

πI
3 ) is a modulus of T then B = {1, eπI3 , α3, α3e

πI
3 } is a special

basis of a lattice L such that T is equivalent to H/L. Then the six bases

B(e
πI
3 )0 = B = {1, eπI3 , α3, α3e

πI
3 }

B(e
πI
3 )1 = BeπI3 = {eπI3 , e 2πI

3 , α3e
πI
3 , α3e

2πI
3 }

B(e
πI
3 )2 = Be 2πI

3 = {e 2πI
3 ,−1, α3e

2πI
3 ,−α3}

B(e
πI
3 )3 = −B = {−1,−eπI3 ,−α3,−α3e

πI
3 }

B(e
πI
3 )4 = −BeπI3 = {−eπI3 ,−e 2πI

3 ,−α3e
πI
3 ,−α3e

2πI
3 }

B(e
πI
3 )5 = −Be 2πI

3 = {−e 2πI
3 , 1,−α3e

2πI
3 , α3}

all generate the lattice L, and hence the subgroup 2C3
∼= {±1,±eπI3 ,±e 2πI

3 }
is a subgroup of the group of automorphisms Aut(T ). On the other hand, if
2C3 ⊆ Aut(T ), then thanks to Theorem 8.6, Lemma 8.2 and Proposition 8.4,

the vectors {±1,±eπI3 ,±e 2πI
3 } must belong to, and generate, the rank-2 sublat-

tice L ∩ LI of L. Therefore (using the classification of the rank-2 lattices of C),
while using the Minkowski-Siegel Reduction Algorithm to construct the special ba-

sis B = {1, α2, α3, α4} that generates L, we can choose α2 = e
πI
3 . We can also

suppose that the third vector α3 is chosen (according to Algorithm 6.1) among
those vectors that can complete the special basis B. As a consequence, the points

α3e
πI
3 , α3e

2πI
3 ,−α3,−α3e

πI
3 ,−α3e

2πI
3 must belong to L together with α3. Since

these five elements have the same norm of α3, and since Aut(T ) contains a sub-
group isomorphic to 2C3, then the Minkowski-Siegel Reduction Algorithm 6.1 can
produce a special basis that generates L by using suitable α3 and, automatically,

α4 = α3e
πI
3 ; this completes the proof. �

If the group of automorphisms Aut(T ) of the torus T contains a subgroup iso-

morphic to 2C3, and if the torus T has a special basis of type {1, eπI3 , α3, α3e
πI
3 }

with |α3| > 1, then Aut(T ) ∼= 2C3: this is a consequence of the classification of the
rank-2 lattices of C, and of the fact that, in these hypotheses, there are only six
points in L ∩ S3, all belonging to LI ∩ S3 (see Proposition 8.4).

Definition 8.14. A quaternionic torus whose group of biregular automorphisms
is isomorphic to 2C3 is called a cyclic torus.

Proposition 8.15. Let T be a quaternionic torus. The group of biregular automor-
phisms of the torus T is isomorphic to the group 2D4, if and only if, for I, J ∈ S
with J ⊥ I, the point (I, J, JI) is a modulus of T .

Proof. Let B = {1, I, J, JI} be the special basis associated to the modulus (I, J, JI),
and let L be the generated lattice such that T is equivalent to H/L. Thanks to
Proposition 8.10, we know that the multiplication by I on the right generates a 2C2

subgroup of Aut(T ). Using Theorem 8.6, we are left to prove that the multiplication
by J on the right generates a second subgroup of type 2C2 of Aut(T ). To this aim
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notice that the four bases

BJ0 = B = {1, I, J, JI} = {1, I, J,−K}
BJ1 = BJ = {J,K,−1, I}
BJ2 = −B = {−1,−I,−J,K}
BJ3 = −BJ = {−J,−K, 1,−I}

all generate the lattice L. It is then easy to conclude that the subgroup 2D4
∼=

{±1,±I,±J,±K} is a subgroup of the group of automorphisms Aut(T ). On the
other hand, if 2D4 ⊆ Aut(T ), then 2C2 ⊂ 2D4 is a subgroup of Aut(T ), and hence
thanks to Theorem 8.10, in the special basis B = {1, α2, α3, α4} that generates L,
we can choose α2 = I and α4 = α3I. Theorem 8.6, Lemma 8.2 and Proposition
8.4 imply that the vectors {±1,±J} must belong to, and generate, the rank-2
sublattice L ∩ LJ of L. Since J and −J have the same norm of I, then by the
Minkowski-Siegel Reduction Algorithm used to construct a special basis for L, we
can suppose that α3 = J and find the desired basis. To prove that 2D4

∼= Aut(T ),
begin by noticing that B is an orthonormal basis of H; it is then easy to see that
L ∩ S3 = {±1,±I,±J,±JI} and that this set has exactly the same cardinality of
the group 2D4. Proposition 8.4 leads now to the conclusion. �

Definition 8.16. A quaternionic torus whose group of biregular automorphisms
is isomorphic to 2D4 is called a 8-dihedral torus (or a dihedral torus of order 8).

Remark 8.17. As we already mentioned, the notations concerning finite sub-
groups of unit quaternions vary very much. We observe that the group 2D4, that
we (following [9]) called dihedral group of order 8, coincides with the so called mul-
tiplicative group of unit quaternions (and not with D8, sometimes called dihedral
group of order 8 , D8 = 〈〈a, b〉〉 with the relations a4 = b2 = 1, bab−1 = a−1, see
[2]).

Notice that the lattice of the dihedral torus of order 8 is generated by the group
2D4 and coincides with the ring of Lipschitz quaternions, defined after Proposition
8.10.

Proposition 8.18. Let T be a quaternionic torus. The group of biregular automor-
phisms of the torus T is isomorphic to the group 2D6, if and only if, for I, J ∈ S
with J ⊥ I the point (e

πI
3 , J, Je

πI
3 ) is a modulus of T .

Proof. Let B = {1, eπI3 , J, JeπI3 } be the special basis associated to the modulus

(e
πI
3 , J, Je

πI
3 ) and let L be the generated lattice such that T is equivalent to H/L.

Thanks to Proposition 8.13, we know that the multiplication by e
πI
3 on the right

generates a 2C3 subgroup of Aut(T ). We are then left to prove that the multipli-
cation by J on the right generates a subgroup of type 2C2 of Aut(T ). To this aim
notice that the four bases

BJ0 = B = {1, eπI3 , J, JeπI3 }

BJ1 = BJ = {J, Je
−πI

3 ,−1,−e
−πI

3 }
BJ2 = −B = {−1,−eπI3 ,−J,−JeπI3 }

BJ3 = −BJ = {−J,−Je
−πI

3 , 1, e
−πI

3 }
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all generate the lattice L. We then conclude that the dihedral subgroup of order

12, 2D6
∼= {±1,±eπI3 ,±e 2πI

3 ,±J,±JeπI3 ,±Je 2πI
3 }, is a subgroup of the group of

automorphisms Aut(T ). On the other hand, if 2D6 ⊆ Aut(T ), then 2C3 ⊂ 2D6 is
a subgroup of Aut(T ), and hence, thanks to Proposition 8.13, in the special basis

B = {1, α2, α3, α4} that generates L, we can choose α2 = e
πI
3 and α4 = α3e

πI
3 .

Theorem 8.6, Lemma 8.2 and Proposition 8.4 imply that the vectors {±1,±J}
must belong to, and generate, the rank-2 sublattice L ∩ LJ of L. Since J and −J
have the same norm of e

πI
3 , then by the Minkowski-Siegel Reduction Algorithm

used to construct a special basis for L, we can suppose that α3 = J and find the
desired basis. To prove that 2D6

∼= Aut(T ), begin by noticing that LI is orthogonal

to JLI ; it is then easy to see that L∩ S3 = {±1,±eπI3 ,±e 2πI
3 ,±J,±JeπI3 ,±Je 2πI

3 }
and that this set has exactly the same cardinality of the group 2D6. Proposition
8.4 leads now to the conclusion. �

Definition 8.19. A quaternionic torus whose group of biregular automorphisms
is isomorphic to 2D6 is called a 12-dihedral torus (or a dihedral torus of order 12).

Proposition 8.20. Let T be a quaternionic torus. The group of biregular auto-
morphisms of the torus T is isomorphic to the group 2T, if and only if, for some
I, J ∈ S with J ⊥ I, setting K = IJ and ω = −1+I+J+K

2 , the point (−ω,−I, Iω)
is a modulus of T .

Proof. Notice, first of all, that if M =
√
3
3 (I + J + K) ∈ S, then ω = e

2πM
3 . Con-

sider the special basis B = {1,−ω,−I, Iω} associated to the modulus (−ω,−I, Iω)
and let L be the generated lattice such that T is equivalent to H/L. Thanks to
Theorem 8.6, we know that −ω and −I generate a 2T subgroup of Aut(T ). Set
ω̃ = −1+I−J−K

2 , and notice that ω̃ = −ω − 1 + I belongs to L. It is now necessary
(and it is only a direct computation) to verify that the iterated multiplication by

powers of e
2πM

3 and by powers of I (on the right) maps the basis B onto bases that
generate the lattice L. For example, as for the multiplication by I on the right, we
get that

B(−I)0 = B = {1,−ω,−I, Iω}
B(−I)1 = −BI = {−I, Iω̃,−1, ω̃}
B(−I)2 = −B = {−1, ω, I,−Iω}
B(−I)3 = BI = {I,−Iω̃, 1,−ω̃}

are all generating bases for L. We then conclude that the subgroup 2T = 〈〈−ω,−I〉〉
is a subgroup of the group of automorphisms Aut(T ). On the other hand, if 2T ⊆
Aut(T ), then 2C3 ⊂ 2T is a subgroup of Aut(T ), and hence, thanks to Proposition
8.13, in the special basis B = {1, α2, α3, α4} that generates L, we can choose α2 =
−ω and α4 = α3(−ω). Theorem 8.6, Lemma 8.2 and Proposition 8.4 imply that the
vectors {±1,±I} must belong to, and generate, the rank-2 sublattice L ∩ LI of L.
Since I and −I have the same norm of −ω, then by the Minkowski-Siegel Reduction
Algorithm used to construct a special basis for L, we can suppose that α3 = −I and
find the desired basis. To prove that 2T ∼= Aut(T ), begin by noticing that the 16
elements {±1±I±J±K2 } belong to L∩S3 as well as the 8 elements {±1,±I,±J,±K}.
Therefore the set L ∩ S3 has to have the same cardinality of the group 2T. As in
the previous cases, at this point Proposition 8.4 leads to the conclusion. �
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Definition 8.21. A quaternionic torus whose group of biregular automorphisms
is isomorphic to 2T is called a tetrahedral torus.

Notice that the lattice of the tetrahedral torus is the ring H of the Hurwitz quater-
nions, defined after Proposition 8.10. This lattice is generated by the group 2T.

The next result can be obtained directly as a consequence of the investigation per-
formed up to now, on the possible groups of biregular automorphisms of “boundary”
tori. Recall that, for a quaternionic torus T , in Proposition 8.4 we have introduced
the group AT = {a ∈ S3 : ∃ F ∈ Aut(T ) defined as F (q) = qa}.

Proposition 8.22. Let T be a quaternionic torus. When the group AT ∼= Aut(T )
is not reduced to {±1}, then it coincides with the biggest subgroup of L ∩ S3.

Proof. Suppose Aut(T ) 6= {±1} = 2C1. Thanks to the classification (8.1), we get
that Aut(T ) has to coincide with 2C2, 2C3, 2D4, 2D6 or 2T. If Aut(T ) ∼= 2C2 and
2C2 is, by contradiction, strictly contained in a larger subgroup of S3, then using
Remark 8.8 we obtain Aut(T ) ∼= 2D4 or Aut(T ) ∼= 2T. In both cases 2D4 and 2T
generate a lattice associated to a different torus (see Propositions 8.15 and 8.20). If
Aut(T ) ∼= 2D4 and 2D4 is, by contradiction, strictly contained in a larger subgroup
of S3, then using Remark 8.8 we obtain Aut(T ) ∼= 2T. In this last case 2T generates
a lattice associated to a different torus (see Proposition 8.20). In the remaining case
in which Aut(T ) ∼= 2C3 the proof is totally analogous.

�

Example 8.23. We give an example which shows, in connection to Proposition
8.22, that when Aut(T ) ∼= 2C1 = {±1}, then it can be strictly contained in a larger
subgroup of S3: consider the lattice L generated by the special basis {1, i, 3j +
1
10 , 4k + 1

100}. If T = H/L, then the unitary vectors of L are {±1,±i} and they
form a group isomorphic to 2C2.

We conclude this section by stating a summarizing result.

Theorem 8.24. The cyclic, cyclic dihedral, 8-dihedral, 12-dihedral, tetrahedral tori
defined in this section are the unique (up to biregular diffeomorphisms) tori with
Aut(T ) 6= {±1}.

Proof. Follows directly from Propositions 8.10, 8.13, 8.15, 8.18, 8.20. �

Remark 8.25. The lattices generating tori T with Aut(T ) ∼= 2C2 or Aut(T ) ∼= 2C3

are called regular tessellations of R2; the lattices generating tori T with Aut(T ) ∼=
2D4, Aut(T ) ∼= 2D6 or Aut(T ) ∼= 2T are called regular tessellations of R4.

9. Appendix A: an algorithm to check if a basis is reduced

Let R = (ri,j)i,j=1,··· ,4 be the Gram matrix associated to a given basis B =
{v1, v2, v3, v4} of the rank-4 lattice L. Reordering the four vectors {v1, v2, v3, v4},
without loss of generality, we can always suppose that r1,1 ≤ r2,2 ≤ r3,3 ≤ r4,4. To
check that B is a reduced basis, we will check the fact that R is a reduced Gram
matrix.

The first step of our algorithm is the easiest:
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Step 0: We check if rk,k+1 = 〈vk, vk+1〉 (for k = 1, 2, 3) are all non negative quan-
tities. If this is true, we proceed in the algorithm; otherwise we conclude
that the Gram matrix R, and the basis B, are not reduced, and stop. Since
R is a (4 × 4) symmetric, real and positive definite matrix, there exists a
positive definite diagonal matrix

D =


λ21 0 0 0
0 λ22 0 0
0 0 λ23 0
0 0 0 λ24


and an orthogonal matrix Q such that tQRQ = D. Moreover, we can
suppose that 0 < λ1 ≤ λ2 ≤ λ3 ≤ λ4. In order to verify if R is a reduced
Gram matrix we proceed as follows:

Step 1: Since R = QD tQ, the quadratic form (n1, n2, n3, n4)R t(n1, n2, n3, n4) can
also be written as

(n1, n2, n3, n4)QD tQ t(n1, n2, n3, n4) = λ21x
2
1 + · · ·+ λ24x

2
4

where λ21, · · · , λ24 are the ordered positive eigenvalues ofD and (x1 · · · , x4) =
(n1, · · · , n4)Q. The geometric locus of vectors (x1, · · · , x4) ∈ R4 for which
the diagonalized quadratic form is equal to r1,1 = 〈v1, v1〉 is an ellipsoid

having the length of the maximal axis of symmetry equal to 2|v1|
λ1

. There-

fore, the quadruplets (n1, n2, n3, n4) ∈ Z4 such that

(9.1) (n1, n2, n3, n4)R t(n1, n2, n3, n4) < r1,1

belong necessarily to the finite set E1 = Z4 ∩ I41 where

I1 =

[
−|v1|
λ1

,
|v1|
λ1

]
.

At this point we recall the first step of the construction of the Minkowski-
Siegel Reduction Algorithm: we check if there exists a point (n1, n2, n3, n4)
in the finite set E1 \{0} such that inequality (9.1) is fulfilled. If the answer
is yes, then we conclude that the Gram matrix R, and hence the basis B,
are not reduced, and stop. Otherwise we proceed in the algorithm.

Step 2: In this step we consider the quadratic equation

(n1, n2, n3, n4)R t(n1, n2, n3, n4) = r2,2.

Let

I2 =

[
−|v2|
λ1

,
|v2|
λ1

]
and set E2 to be the finite set Z4 ∩ I42 . By Definition 6.3 and by condition
B2)′, a reduced Gram matrix is such that: if there exists (n1, n2, n3, n4) ∈
E2 \ {0} with

(9.2) (n1, n2, n3, n4)R t(n1, n2, n3, n4) < r2,2

then n2, n3, n4 have common divisors. Therefore we check if B2)′ holds
true. If the answer is no, then we conclude that the Gram matrix R, and
hence the basis B, are not reduced, and stop. Otherwise we proceed in the
algorithm.
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Step 3: Similar procedure applies to the quadratic equation

(n1, n2, n3, n4)R t(n1, n2, n3, n4) = r3,3.

Let

I3 =

[
−|v3|
λ1

,
|v3|
λ1

]
and set E3 to be the finite set Z4 ∩ I43 . By Definition 6.3 and by condition
B2)′, a reduced Gram matrix is such that: if there exists (n1, n2, n3, n4) ∈
E3 \ {0} with

(9.3) (n1, n2, n3, n4)R t(n1, n2, n3, n4) < r3,3

then n3, n4 have common divisors. Therefore we check if B2)′ holds true. If
the answer is no, then we conclude that the Gram matrix R, and hence the
basis B, are not reduced, and stop. Otherwise we proceed in the algorithm.

Step 4: In the last step our procedure is applied to the quadratic equation

(n1, n2, n3, n4)R t(n1, n2, n3, n4) = r4,4.

Let

I4 =

[
−|v4|
λ1

,
|v4|
λ1

]
and set E4 to be the finite set Z4 ∩ I44 . By Definition 6.3 and by condition
B2)′, a reduced Gram matrix is such that: if there exists (n1, n2, n3, n4) ∈
E4 \ {0} with

(9.4) (n1, n2, n3, n4)R t(n1, n2, n3, n4) < r4,4

then n4 must be different from ±1. Therefore we check if B2)′ holds true.
If the answer is no, then we conclude that the Gram matrix R, and hence
the basis B, are not reduced. Otherwise we finally conclude that the Gram
matrix R, and hence the basis B, are reduced.

We also provide here a Matlab Script which “implements” part of the algorithm

that we have just described. Let us consider in particular Step 3, and let p3 = d |v3|
λ1
e

(the smallest integer greater or equal than |v3|
λ1

). Set:

i = 1;
for n1 = −p3 : 1 : p3,
for n2 = −p3 : 1 : p3,
for n3 = −p3 : 1 : p3,
for n4 = −p3 : 1 : p3,
m = (n1, n2, n3, n4)R t(n1, n2, n3, n4);
if (m < r3,3) A(i, :) = [n1, n2, n3, n4];
i = i+ 1;
end
end
end
end
end
for j=1:1:i-1
if (gcd(A(j, 3), A(j, 4)) == 1) disp(’the matrix is not reduced’)



28 C. BISI, G. GENTILI

break
end
end

A few significant examples, useful to illustrate the meaning of the results ob-
tained, are the following.

Example 9.1. An example of a cyclic-dihedral torus is the one associated to the
modulus (i, e

2
5πj , e

2
5πji). Indeed, running the Algorithm presented in this section,

we find out that Step 0 is satisfied and that the only vector of the lattice L generated
by the special basis B = {1, i, e 2

5πj , e
2
5πji} inside the unit ball is the null vector;

besides, on S3 ∩ L we only find the set of vectors B ∪ −B.

Example 9.2. A second example of a cyclic-dihedral torus is the one associated to
the modulus (i, 4j+3k,−4k+3j). Indeed, running the Algorithm presented in this
section, we find out that Step 0 is satisfied and all conditions in B2) are verified. The
only vector of the lattice L generated by the special basis B = {1, i, 4j+3k,−4k+3j}
inside the unit ball is the null vector; besides, on S3 ∩ L we only find the set of
vectors {±1,±i}. On the sphere of radius 5 there are 16 elements of L and the
product by a ∈ {±1,±i} permutes them, as explained in Proposition 8.4.

Example 9.3. To present an example of a cyclic torus we use the one associated
to the modulus (e

π
3 i, e

2
5πj , e

2
5πje

π
3 i), and hence to the lattice L generated by the

special basis B = {1, eπ3 i, e 2
5πj , e

2
5πje

π
3 i}. Indeed, running the Algorithm presented

in this section, we find out that Step 0 is satisfied and the only vector of the lattice
L inside the unit ball is the null vector; besides, on L∩ S3 we have 12 vectors: 8 of
them are in B ∪ −B and 4 other vectors correspond to {±e 2

3πi,±e 2
5πje

2
3πi}.

10. Appendix B: an algorithm to check if a basis is tame

We want now to provide an algorithm to establish when a reduced basis is a
tame basis.

Let R = (ri,j)i,j=1,··· ,4 be the reduced Gram matrix associated to a reduced basis
B = {v1, v2, v3, v4} of a rank-4 lattice L. We will use precisely the same notations
as in the algorithm of the previous section. The first step of our new algorithm is
the following:

Step 0: We check if rk,k+1 = 〈vk, vk+1〉 (for k = 1, 2, 3) are all strictly positive quan-
tities. If this is true, we proceed in the algorithm; otherwise we conclude
that the basis B is not tame, and stop.

Step 1: Since R = QDtQ, the quadratic form (n1, n2, n3, n4)R t(n1, n2, n3, n4) can
also be written as

(n1, n2, n3, n4)QD tQ t(n1, n2, n3, n4) = λ21x
2
1 + · · ·+ λ24x

2
4

where λ21, · · · , λ24 are the ordered positive eigenvalues ofD and (x1 · · · , x4) =
(n1, · · · , n4)Q. The geometric locus of vectors (x1, · · · , x4) ∈ R4 for which
the diagonalized quadratic form is equal to r1,1 = 〈v1, v1〉 is an ellipsoid

having the length of the maximal axis of symmetry equal to 2|v1|
λ1

. There-

fore, the quadruplets (n1, n2, n3, n4) ∈ Z4 such that

(10.1) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r1,1
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belong necessarily to the finite set E1 = Z4 ∩ I41 , where

I1 =

[
−|v1|
λ1

,
|v1|
λ1

]
.

At this point we recall the first step of the construction of the Minkowski-
Siegel Reduction Algorithm: we check if there exists a point (n1, n2, n3, n4)
in the finite set E1 \ {(±1, 0, 0, 0)} such that equality (10.1) is fulfilled. If
the answer is yes, then the integers (n1, n2, n3, n4) have common divisors:
indeed, if no non-trivial common divisor exists, we can find a vector in the
lattice L whose squared norm is equal to r1,1 and which can substitute v1 in
B. If this is the case the basis B is not unique and it is not tame. Otherwise
we proceed in the algorithm.

Step 2: In this step we consider the quadratic equation

(n1, n2, n3, n4)R t(n1, n2, n3, n4) = r2,2.

Let

I2 =

[
−|v2|
λ1

,
|v2|
λ1

]
and set E2 to be the finite set Z4 ∩ I42 . Suppose there exists no quadruplet
(n1, n2, n3, n4) ∈ E2 \ {(0,±1, 0, 0)} with

(10.2) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r2,2.

Then we go to the next step of the algorithm. Suppose that instead we find
a (finite) set B of quadruplets (n1, n2, n3, n4) ∈ E2 \ {(0,±1, 0, 0)} with

(10.3) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r2,2.

We use now Definition 7.6, Proposition 7.7 and condition B2)′: if, for all
elements (n1, n2, n3, n4) ∈ B, (n2, n3, n4) have common divisors, we go to
the next step of the algorithm. Otherwise we conclude that the basis B is
not tame, and stop.

Step 3: Similar procedure applies to the quadratic equation

(n1, n2, n3, n4)R t(n1, n2, n3, n4) = r3,3.

Let

I3 =

[
−|v3|
λ1

,
|v3|
λ1

]
and set E3 to be the finite set Z4 ∩ I43 . Suppose there exists no quadruplet
(n1, n2, n3, n4) ∈ E3 \ {(0, 0,±1, 0)} with

(10.4) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r3,3.

Then we go to the next step of the algorithm. Suppose that instead we find
a (finite) set C of quadruplets (n1, n2, n3, n4) ∈ E3 \ {(0, 0,±1, 0)} with

(10.5) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r3,3.

We use again Definition 7.6, Proposition 7.7 and condition B2)′: if, for all
elements (n1, n2, n3, n4) ∈ C, (n3, n4) have common divisors, we go to the
next step of the algorithm. Otherwise we conclude that the basis B is not
tame, and stop.
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Step 4: In the last step our procedure is applied to the quadratic equation

(n1, n2, n3, n4)R t(n1, n2, n3, n4) = r4,4.

Let

I4 =

[
−|v4|
λ1

,
|v4|
λ1

]
and set E4 to be the finite set Z4 ∩ I44 . Suppose there exists no quadruplet
(n1, n2, n3, n4) ∈ E4 \ {(0, 0, 0,±1)} with

(10.6) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r4,4.

Then we conclude that B is tame. Suppose that instead we find a (finite)
set D of quadruplets (n1, n2, n3, n4) ∈ E4 \ {(0, 0, 0,±1)} with

(10.7) (n1, n2, n3, n4)R t(n1, n2, n3, n4) = r4,4.

We use again Definition 7.6, Proposition 7.7 and condition B2)′: if, for
all elements (n1, n2, n3, n4) ∈ D, n4 = ±1, then the basis B is not tame.
Otherwise we conclude that the basis B is tame.

We provide a Matlab Script which implements part of the third step of the Algo-
rithm we just presented, under the hypothesis that the basis is reduced.

Let p3 = d |v3|
λ1
e and set:

i = 1;
for n1 = −p3 : 1 : p3,
for n2 = −p3 : 1 : p3,
for n3 = −p3 : 1 : p3,
for n4 = −p3 : 1 : p3,
m = (n1, n2, n3, n4)R t(n1, n2, n3, n4);
if (m == r3,3) A(i, :) = [n1, n2, n3, n4];
i = i+ 1;
end
end
end
end
end
for j=1:1:i-1
if (gcd(A(j, 3), A(j, 4)) == 1)&((A(j, :) ∼= [0, 0, 1, 0])|(A(j, :) ∼= [0, 0,−1, 0])
disp(’the basis is not tame’)
break
end
end

To conclude, we present an explicit example of special tame lattice (i.e. a lattice

whose reduced Gram matrix belongs to R̊).

Example 10.1. The lattice L generated by the special basis

B = {1, 2i+
1

10
, 3j +

1

100
, 4k +

1

1000
}
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is a tame lattice. The proof follows by a direct application of the algorithm and of
the Matlab Script presented in this section.
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