
Michigan Math. J. 65 (2016), 567–572

A Remark on the Ueno–Campana’s Threefold

Cinzia Bisi, Paolo Cascini, & Luca Tasin

Dedicated to Fabrizio Catanese on his 65th birthday

Abstract. We show that the Ueno–Campana’s threefold cannot be
obtained as the blow-up of any smooth threefold along a smooth cen-
ter, answering negatively a question raised by Oguiso and Truong.

1. Introduction

Let Eτ = C/(Z + Zτ) be the complex elliptic curve of period τ . There exist
exactly two elliptic curves with automorphism group bigger than {±1}: these are
defined respectively by the periods

√−1 and the cubic root of unity ω := (−1 +√−3)/2.
We consider the diagonal action of the cyclic group generated by

√−1 (resp.
−ω) on the product

E√−1 × E√−1 × E√−1 (resp. Eω × Eω × Eω),

and we denote by X4 (resp. X6) the minimal resolution of their quotients

E√−1 × E√−1 × E√−1/
〈√−1

〉
(resp. Eω × Eω × Eω/〈−ω〉).

The minimal resolutions are obtained by a single blow-up at the maximal ideal of
each singular point of the quotients.

The threefolds X4 and X6 have been extensively studied in the past. In partic-
ular, they admit an automorphism of positive entropy (e.g., see [Ogu15] for more
details). The variety X4 is now referred as the Ueno–Campana’s threefold. It has
been recently shown that X4 and X6 are rational. Indeed, Oguiso, and Truong
[OT15] showed the rationality of X6, and Colliot-Théléne [Col15] showed the
rationality of X4, after the work of Catanese, Oguiso, and Truong [COT14]. The
unirationality of X4 was conjectured by Ueno [Uen75], whilst Campana asked
about the rationality of X4 in [Cam11].

The aim of this note is to give a negative answer to the following question
raised by Oguiso and Truong (see [Ogu15, Question 5.11] and [Tru15, Ques-
tion 2]).

Question 1.1. Can X4 or X6 be obtained as the blow-up of P3, P2 × P1, or
P1 × P1 × P1 along smooth centers?
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Our main result is the following:

Theorem 1.2. Let A be an Abelian variety of dimension three, and let G be a
finite group acting on A such that the quotient map

ρ : A → Z = A/G

is étale in codimension 2.
Assume that there exists a resolution f : X → Z given by the blow-up of the

singular points of Z and such that the exceptional divisor at each singular point
of Z is irreducible.

Then X cannot be obtained as the blow-up of a smooth threefold along a
smooth centre.

Note that Theorem 1.2 provides a negative answer to Question 1.1. Very recently,
using different methods, Lesieutre [Les15] announced that Question 1.1 admits a
negative answer.

2. Preliminary Results

We use some of the methods introduced in [CT14]. Let X be a normal projec-
tive threefold with isolated quotient singularities. Given a basis γ1, . . . , γm of
H 2(X,C), the cubic form associated to X is the homogeneous polynomial of
degree 3 defined by

FX(x1, . . . , xm) = (x1γ1 + · · · + xmγm)3 ∈C[x1, . . . , xm].
Note that, modulo the natural action of GL(m,C), the cubic FX does not depend
on the choice of the base, and it is a topological invariant of the underlying mani-
fold X (see [OvdV95] for more details). In particular, if

HFX
= (∂xi

∂xj
FX)i,j=1,...,m

denotes the Hessian matrix associated to FX and p ∈ H 2(X,C), then the rank of
HFX

at p is well defined.
The following basic tool was used in [CT14] in a more general context. We

provide a proof for the reader’s convenience.

Lemma 2.1. Let Y be a normal projective threefold with isolated quotient singu-
larities, and let f : X → Y be the blow-up of Y along a point q ∈ Y (resp. a curve
C ⊆ Y ). Assume that the exceptional divisor of f is irreducible and let E be its
class in H 2(X,C).

Then the rank of the Hessian matrix HFX
of FX at E is one (resp. at most two).

Note that by [CT14, Lemmas 2.7 and 2.12] the rank of HFX
is never zero.

Proof of Lemma 2.1. We have H 2(X,C) = 〈E,f ∗(γ1), . . . , f
∗(γm)〉 where γ1,

. . . , γm is a basis of H 2(Y,C).
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Consider the cubic form FX associated to X with respect to this basis:

FX(x0, . . . , xm) =
(

x0E +
m∑

i=1

xif
∗(γi)

)3

.

Since f ∗(γi) · f ∗(γj ) · E = 0 for all i, j = 1, . . . ,m, we have

FX(x0, . . . , xm) =x3
0E3 + 3

m∑
i=1

x2
0xiE

2f ∗(γi) +
( m∑

i=1

xif
∗(γi)

)3

.

Let a = E3, and let bi = E2f ∗(γi) for i = 1, . . . ,m. Note that if f is the blow-up
of a point q ∈ Y , then b1 = · · · = bm = 0.

Thus, we have

FX(x0, . . . , xm) = ax3
0 + 3

m∑
i=1

bix
2
0xi + G(x1, . . . , xm),

where G is a homogeneous cubic polynomial in the variables x1, . . . , xm, that
is, it does not depend on x0. Let p = y0E + ∑m

i=1 yif
∗γi ∈ H 2(X,C) for some

y0, . . . , ym ∈ C, and let p′ = (y1, . . . , ym). After removing the first row and the
first column, the Hessian matrix HFX

(p) of FX at p coincides with the Hessian
matrix HG(p′) of G at p′.

In particular, if p = E, then p′ = (0, . . . ,0), and HG(p′) is the zero matrix.
Thus, the rank of the Hessian of FX at p is at most two. In addition, if b1 = · · · =
bm = 0, then the rank of HF at p is exactly one. �

3. Proofs

Lemma 3.1. Let A be an Abelian variety of dimension 3, and let G be a finite
group acting on A such that the quotient map ρ : A → Z = A/G is étale in codi-
mension 2. Let FZ be the cubic form associated to Z, and let p ∈ H 2(Z,C) such
that rkHFZ

(p) ≤ 1.
Then p = 0.

Proof. The morphism ρ induces an immersion of vector spaces

ρ∗ : H 2(Z,C) → H 2(A,C).

Thus, there exists a basis of H 2(A,C) such that if FA is the cubic associated to
A with respect to this basis and d is the degree of ρ, then

FZ(x1, . . . , xm) = d · FA(x1, . . . , xm,0, . . . ,0).

It is enough to show that if q ∈ H 2(A,C) is such that the rank of HFA
at q is

not greater than one, then q = 0.
Write A = C3/� and consider z1, z2, z3 coordinates on C3. Then a basis of

H 2(A,C) is given by

zij = dzi ∧ dzj , 1 ≤ i < j ≤ 3,

zij̄ = dzi ∧ dz̄j , i, j ∈ {1,2,3},
zīj̄ = dz̄i ∧ dz̄j , 1 ≤ i < j ≤ 3.
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For any x ∈ H 2(A,C), let xij , xij̄ , and xīj̄ be the coordinates of x with respect
to the basis, and let F ′

A be the cubic associated to this basis. It is enough to show
that if q ∈ H 2(A,C) is such that the rank of HF ′

A
at q is not greater than one, then

q = 0. Let qij , qij̄ , and qīj̄ be the coordinates of q .
The (2 × 2)-minor of HF ′

A
at x defined by the rows corresponding to x12 and

x13 and the columns corresponding to x21̄ and x31̄ is given by(
0 6x2̄3̄

6x2̄3̄ 0

)
.

It follows that q2̄3̄ = 0. By choosing suitable (2 × 2)-minors it follows easily that
each coordinate of q is zero. Thus, the claim follows. �

Proof of Theorem 1.2. Suppose not. Then there exists a smooth projective three-
fold Y such that X can be obtained as the blow-up g : X → Y at a smooth centre.
Let E be the exceptional divisor of g. Let k be the number of singular points of Z,
and let E1, . . . ,Ek be the exceptional divisors on X corresponding to the singular
points of Z.

We want to prove that E = Ei for some i = 1, . . . , k. Denote by p the class of
E in H 2(X,C). Lemma 2.1 implies that the rank of HFX

at p is not greater than
two.

Let γ1, . . . , γm ∈ H 2(Z,C) be a basis, and let FZ be the associated cubic form.
Then f ∗γ1, . . . , f

∗γm, [E1], . . . , [Ek] is a basis of H 2(X,C), and if FX denotes
the associated cubic form, then we have

FX(x1, . . . , xm, y1, . . . , yk) = FZ(x1, . . . , xm) +
k∑

i=1

aiy
3
i ,

where ai = E3
i is a nonzero integer, for i = 1, . . . , k.

Thus, the Hessian matrix of FX is composed by two blocks: one is the Hessian
matrix of FZ , and the other one is a diagonal matrix whose only nonzero entries
are 6ai for i = 1, . . . , k. We may write p = (p0,p1) = (p0

1, . . . , p
0
m,p1

1, . . . , p
1
k).

We have rkHFZ
(p0) ≤ 2.

We distinguish two cases. If rkHFZ
(p0) = 2, then p1 = (0, . . . ,0), and, in

particular, E is numerically equivalent to f ∗D for some pseudo-effective Cartier
divisor D on Z. Since A is abelian, it follows that ρ∗D is a nef divisor. Thus, E

is nef, a contradiction.
If rkHFZ

(p0) ≤ 1, then Lemma 3.1 implies that p0 = 0. Thus,

E ≡ csEs + ctEt

for some distinct s, t ∈ {1, . . . , k} and rational numbers cs, ct . Since E is effective
nontrivial, at least one of the ci is positive. By symmetry we may assume that
cs > 0. By the negativity lemma the divisor Es is covered by rational curves C

such that Es ·C < 0. Since Es and Et are disjoint, it follows that E ·C < 0, which
implies that C is contained in E. Thus, Es is contained in E. Since E is prime, it
follows that E = Es and ct = 0.
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Finally, note that g contracts E = Es to a point since otherwise there exists a
small contraction η : Y → Z and in particular Z is not Q-factorial, a contradic-
tion. Thus, g : X → Y is the contraction of Es to the corresponding singular point
on Z, which is again a contradiction. The claim follows. �

Remark 3.2. As K. Oguiso kindly pointed out to us, the same proof shows that
if f : X → Z is as in Theorem 1.2 and g is an automorphism on X, then the set
of exceptional divisors of f is invariant with respect to g. Thus, there exists a
positive integer m such that the power gm descends to an automorphism on Z.
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