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On quaternionic tori and their moduli space
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Abstract. Quaternionic tori are defined as quotients of the skew field H of quaternions
by rank-4 lattices. Using slice regular functions, these tori are endowed with natural
structures of quaternionic manifolds (in fact quaternionic curves), and a fundamental region
in a 12-dimensional real subspace is then constructed to classify them up to biregular
diffeomorphisms. The points of the moduli space correspond to suitable special bases of rank-4
lattices, which are studied with respect to the action of the group GL.4;Z/, and up to biregular
diffeomeorphisms. All tori with a non trivial group of biregular automorphisms — and all
possible groups of their biregular automorphisms — are then identified, and recognized to
correspond to five different subsets of boundary points of the moduli space.
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1. Introduction

A new notion of regularity for quaternion-valued functions of a quaternionic variable
was introduced in 2006, in [19, 20]. The newly defined class of (slice) regular
functions has already proved to be interesting as a quaternionic counterpart of
complex holomorphic functions. In this quaternionic setting, a Casorati–Weierstrass
theorem was proved in [30] and it allowed the study of the group Aut.H/ of all
biregular transformations of the space of quaternions H. This group turned out to
coincide with the group of all affine transformations of H of the form q 7! qaC b,
with a; b 2 H and a ¤ 0. As we can see, notwithstanding the fact that the algebraic,
abstract structure of the group Aut.C2/ of biholomorphic transformations of C2 is
still unknown, that of biregular transformations of H Š C2 inherits the simplicity of
the group Aut.C/.

The fact that all quaternionic regular affine transformations of H form a group
under composition, the group Aut.H/, permits the direct construction of a class of
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natural quaternionic manifolds (actually quaternionic curves): the quaternionic tori.
These tori are studied in the present paper. Together with the quaternionic projective
spaces, [28], and the Hopf surfaces, [1], they are among the few directly constructed
quaternionic manifolds, and bear with them the genuine interest that accompanies
any analog of elliptic complex Riemann surfaces.

In this paper we construct quaternionic tori, realized as quotients of H with
respect to rank-4 lattices, and endow them with natural structures of quaternionic
1-dimensional manifolds. We then use the basic features of quaternionic regular
maps to characterize biregularly diffeomorphic tori by means of properties of their
generating lattices; this approach introduces into the scenery the group GL.4;Z/,
that plays a fundamental role in this context. In fact the use of classical results on the
reduction of Gram matrices, based on the Minkowski–Siegel reduction algorithm,
allows us to express any “normalized” rank-4 lattice of H in terms of a generating
special basis. These special bases parameterize the classes of equivalence of
biregular diffeomorphism of quaternionic tori, and are used to define a fundamental
set (see (7.2)) for this equivalence relation, as the subset of H3 Š R12

M D f.v2; v3; v4/ 2 H3
W f1; v2; v3; v4g is a special basisg:

We will not define a special basis here in the Introduction (see Definition 6.10), but
we want to say that special bases have properties that urge a comparison with the
complex case of elliptic curves, like the following: if f1; v2; v3; v4g is a special basis
of a rank-4 lattice, i.e., if .v2; v3; v4/ 2M, then, in particular
(1) 1 � hv2; v2i � hv3; v3i � hv4; v4i;
(2) �1

2
� Re.vk/ � 1

2
, for all k D 2; 3; 4;

(3) �1
2
hvl ; vli � hvk; vli �

1
2
hvl ; vli, for all .k; l/ 2 f2; 3; 4g � f2; 3; 4g such that

l ¤ k.
The fundamental set M � H3 of the equivalence relation of biregular diffeomor-
phism among quaternionic tori has some boundary points that are equivalent. In
fact there are different elements belonging to the boundary @M of the fundamental
set, that correspond to the same torus; as an example we can take the distinct points
.i; j; k/ and .j; i; k/: the two special bases f1; i; j; kg and f1; j; i; kg generate the
same lattice (the ring of Lipschitz quaternions) and hence the same torus. However,
in (7.4) we define the proper subset T of the fundamental set M, which coincides
with the interior of M, and which is a moduli space for the subset of equivalence
classes of the so called tame tori. The complete quotient of the boundary @M, with
respect to the equivalence relation of biregular diffeomorphism of the corresponding
tori, is still unknown. However, as it happens in the complex case of elliptic curves,
the classification of all the boundary tori of @M having non trivial groups of biregular
automorphisms is an important step towards the understanding of the subtle features
of the geometry of the moduli space.
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In this perspective, by exploiting the classification of the finite subgroups of
unitary quaternions, we identify all the groups that can play the role of groups of
biregular automorphisms of tori, i.e.,

2T ; 2D4; 2D6; 2C1; 2C2; 2C3;

called respectively tetrahedral, 8-dihedral, 12-dihedral, trivial-cyclic, cyclic-
dihedral, and cyclic group. We then find those points of the boundary of the
fundamental setMwhich correspond to tori whose group of biregular automorphisms
either contains, or is isomorphic to, one of the groups listed above. We then prove

Theorem 1.1. The only quaternionic tori T with a non trivial group of biregular
automorphisms Aut.T / ¤ f˙1g correspond to the following elements of M:

� .I; ˛3; ˛3I / 2M with j˛3j � 1 and I 2 D �1 [ 2C2 � Aut.T / ];

� .e
�I=3; ˛3; ˛3e

�I=3/ 2M with j˛3j � 1 and I 2 D �1 [ 2C3 � Aut.T / ].

The most structured groups of biregular automorphisms appear in the tori with the
richest symmetries: examples are the torus generated by the lattice of Lipschitz
quaternions and the one generated by the lattice of Hurwitz quaternions, whose
groups of automorphisms are the 8-dihedral group 2D4 and the tetrahedral group 2T ,
respectively. Notice that the complex counterpart of the tori listed in Theorem 1.1
consists of the harmonic and equianharmonic tori, having moduli i and e�i=3,
respectively.

Appendices present a computational approach to the study of the modulus of a
torus: for example, in the last appendix, an algorithm is produced that checks if a
given basis of a lattice is tame.

To conclude the Introduction, we point out that the theory of slice regular
functions, presented in detail in the monograph [18], has been applied to the study
of a non-commutative functional calculus, (see for example the monograph [9] and
references therein) and to address the problem of the construction and classification
of orthogonal complex structures in open subsets of the space H of quaternions
(see [17]). Recent results of geometric theory of regular functions appear in
[3–7,12, 13, 21–23]. Paper [14] is strictly related to the topic of the present article.

2. Preliminary results

In this section we will briefly present those results on slice regular functions that are
essential for what follows.

The 4-dimensional real algebra of quaternions is denoted by H. An element q
in H can be expressed in terms of the standard basis, denoted by f1; i; j; kg, as
q D x0Cx1i Cx2j Cx3k, where i; j; k are imaginary units, i2 D j 2 D k2 D �1,
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related by the multiplication rule ij D k. To every non-real quaternion q 2 H n R
we can associate an imaginary unit, with the map

q 7! Iq D
Im.q/
j Im.q/j

:

If instead q 2 R, we can set Iq to be any arbitrary imaginary unit. In this way, for
any q 2 H there exist, and are unique, x; y 2 R, with y � 0 (y D 0 if q 2 R), such
that

q D x C yIq:

The set of all imaginary units is denoted by S,

S D fq 2 H j q2 D �1g

and, from a topological point of view, it is a 2-dimensional sphere sitting in the
3-dimensional space of purely imaginary quaternions. The symbol B will denote the
open unit ball fq 2 H W jqj < 1g of the space H of quaternions, and the 3-sphere of
all the points of its boundary @B will be denoted by S3.
Remark 2.1. It is worthwhile recalling that the two possible multiplications of a
quaternion q by any fixed element u 2 @B, that is q 7! qu and q 7! uq, both
represent Euclidean rigid motions (rotations) of H Š R4. Moreover, if v 2 H�

is any fixed non zero quaternion, then both multiplications, q 7! qv and q 7! vq,
can be decomposed as the composition of a Euclidean rigid motion of H Š R4 and
a multiplication by a strictly positive real number: the reason is immediate, since
v D jvj v

jvj
with v

jvj
2 @B.

To each element I of S there corresponds a copy of the complex plane, namely
LI D RC IR Š C. All these complex planes, also called slices, intersect along the
real axis, and their union gives back the space of quaternions,

H D
[
I2S

.RC IR/ D
[
I2S

LI :

Since LI D RC IR Š C, with the symbol e˛I , we will mean cos˛C I sin˛. The
following definition appears in [19, 20].
Definition 2.2. Let � be a domain in H and let f W� ! H be a function. For all
I 2 S let us consider �I D � \ LI and fI D fj�I

. The function f is called
(slice) regular if, for all I 2 S, the restriction fI has continuous derivatives and the
function N@If W�I ! H defined by

N@If .x C Iy/ D
1

2

�
@

@x
C I

@

@y

�
fI .x C Iy/

vanishes identically.
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The same articles introduce the Cullen (or slice) derivative @cf of a slice regular
function f as

@cf .x C Iy/ D
1

2

�
@

@x
� I

@

@y

�
f .x C Iy/ (2.1)

for I 2 S; x; y 2 R.
Remark 2.3. The Cullen derivative of a slice regular function turns out to be still a
slice regular function (see, e.g., [18, Definition 1.7, page 2], [20]).

Using theCullen derivative, it is possible to characterize the slice regular functions
defined in the entire space H, or on a ball B.0;R/ D fq 2 H W jqj < Rg centered
at 0 2 H, as follows (see, e.g., [18]).
Theorem 2.4. A function f is regular in B.0;R/ if and only if f has a power series
expansion

f .q/ D
X
n�0

qnan with an D
1

nŠ

@nf

@xn
.0/

converging in B.0;R/. Moreover its Cullen derivative can be expressed as

@cf .q/ D
X
n�0

qnbn with bn D
1

nŠ

@nC1f

@xnC1
.0/

in B.0;R/.
The existence of the power series expansion yields a Liouville Theorem, that we

will use in the sequel:
Theorem 2.5 (Liouville). Let f WH ! H be slice regular. If f is bounded then f
is constant.

3. Lattices in the space of quaternions

Let !1; : : : ; !m (with m � 4) be R-linearly independent vectors in H.
Definition 3.1. The additive subgroup of .H;C/ generated by !1; : : : ; !m is called
a rank-m lattice, generated by !1; : : : ; !m.

We will focus our attention on (topologically) discrete subgroups of .H;C/, for
which the following result holds:
Lemma 3.2. Let M be a discrete (infinite) subgroup of .H;C/. Then M has no
accumulation points.

Proof. Since M is discrete, there are no accumulation points of M belonging
to M . By contradiction, assume that there exists an accumulation point q of M ,
belonging to H nM . Then there exists a sequence fqngn2N � M converging to q.
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Since fqngn2N � M is a Cauchy sequence, for all m 2 N, there exist rm, sm 2 N
such that qrm ¤ qsm and that

0 < jqrm � qsm j <
1

m
: (3.1)

If we define ˛m D qrm � qsm 2 M , inequality (3.1) would imply that 0 2 M is not
isolated, being the limit of f˛mgm2N when m!C1.

As a straightforward consequence we obtain:
Corollary 3.3. LetM be a subgroup of .H;C/, let R 2 RC and let B.0;R/ be the
closure ofB.0;R/. ThenM is discrete if and only if, for allR 2 RC, the intersection
B.0;R/ \M is a finite set.

The following classical characterization of discrete subgroups of .H;C/ will be
used as a basic fact in the sequel (for a proof see, e.g., [29, Theorem 6.1, page 136]).
Theorem 3.4. A subgroup of .H;C/ is a lattice if and only if it is discrete.

This last theorem implies that the study of all possible quotient spaces of .H;C/
with respect to a discrete additive subgroupM is reduced to the case in whichM is a
lattice. With the aim of classifying these quotients, let Tm denote the direct product
of m copies of the unit circle S of R2, and call it the m-dimensional torus.

It is well known that, given the rank m of a lattice in H Š R4, there exists only
“one” quotient, up to real diffeomorphisms (see, e.g., [29, Theorem 6.4, page 140]):
Theorem 3.5. Let L be a rank-m lattice in H (withm � 4). Then the group H=L is
isomorphic to Tm �R4�m.

The case of a rank-4 lattice is the one in which the quotient originates “the” real
4-dimensional torus:
Corollary 3.6. Let L be a rank-4 lattice in H. Then the group H=L is isomorphic
to T 4.

As we can see, up to real diffeomorphisms the classification is quite simple.
Following the guidelines of the classical theory of complex elliptic functions we will
work at the classification of 4-(real)-dimensional, quaternionic tori, up to biregular
diffeomorphisms. In the next section we will define slice quaternionic structures on
tori, that will be the object of our classification.

4. A regular quaternionic structure on a 4-(real)-dimensional torus

Since quaternionic regular affine transformations form a group with respect to
composition, and analogously to what happens for complex tori, the field H induces
on a quaternionic torus T 4 D H=L a structure of quaternionic manifold. This
structure will be called a regular quaternionic structure or simply a quaternionic
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structure on T 4. From now on, a torus T 4 endowed with a quaternionic structure
will be called a quaternionic torus. Moreover, the 4-(real)-dimensional torus T 4 will
always be denoted simply by T .

To construct such a structure, we will first of all consider the classical atlas U

of the real torus T , and then adopt the procedure used in the complex case (see,
e.g., [8, 16, 31]). Let L be a rank-4 lattice of H, generated by !1; !2; !3; !4.
Consider the canonical projection � WR4 Š H ! H=L D T and, for any p 2 H,
an open neighborhood Up of p small enough to make �jUp an homeomorphism
of Up onto its image �.Up/. The atlas U will consist of the local coordinate
systems f.�.Up/; .�jUp /

�1/gp2H. If we suppose that, for p; q 2 H, the intersection
�.Up/\ �.Uq/ is (open and) connected, then the change of coordinates is such that

��1
jUp
ı �jUq .x/ D x C

4X
lD1

nl!l

for fixed n1, n2, n3, n4. Hence the change of coordinates is a regular function.
Therefore we obtain a quaternionic structure on T . Using the classical approach,
regularmaps between quaternionic tori can be defined in the naturalmanner, aswell as
biregular diffeomorphisms between quaternionic tori, and biregular automorphisms
of a quaternionic torus. We can then proceed to study the quaternionic tori up to
biregular diffeomorphisms, and give the following:

Definition 4.1. If there is a biregular diffeomorphism of a 4-(real)-dimensional
torus T1 onto a (4-(real)-dimensional) torus T2, we will say that the two tori are
equivalent.

To proceed, we recall that the group Aut.H/ of biregular transformations (or
automorphisms) of H consists of all slice regular affine transformations, that is

Aut.H/ D ff .q/ D qaC b W a; b 2 H; a ¤ 0g

(see [30]).
The result stated in the next proposition has a complete analog in the complex

setting, [16, Theorem 4.1, page 10]. Nevertheless we will produce a proof, to acquire
familiarity with the quaternionic environment and to establish notations to be used.

Proposition 4.2. LetL1 andL2 be two rank-4 lattices inH, let�1WH! H=L1 D T1
and �2WH ! H=L2 D T2 be the projections on the quotient tori. For any
F 2 Aut.H/ such that F.L1/ D L2 there exists a biregular diffeomorphism f of T1
onto T2 which allows the equality f ı �1 D �2 ı F . Conversely, for any biregular
diffeomorphism f of T1 onto T2, there exists F 2 Aut.H/ such that f ı�1 D �2 ıF
and F.L1/ D L2.
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Proof. Let F.v/ D vaCb. Since 0 2 L1 we have F.0/ D b 2 L2 and hence we can
suppose b D 0. By definition of regular map between tori, to show that F.v/ D va
induces a biregular diffeomorphism f of T1 onto T2,

H
F //

�1

��

H

�2

��
T1

f
// T2

(4.1)

it is enough to show that q � p implies F.q/ � F.p/. Indeed, if q � p then
q � p 2 L1 and hence

F.q/ � F.p/ D qa � pa D .q � p/a D F.q � p/ 2 L2:

To prove the converse statement, we start by recalling that the map f WT1 ! T2
lifts to a continuous map F WH! H, in such a way that the diagram (4.1) commutes.
Moreover the map F is regular since f is a regular map of T1 onto T2.

For any� 2 L1, considerG�.q/ D F.qC�/�F.q/. SinceF lifts a map between
the quotients, F maps L1-equivalent points into L2-equivalent points. Hence the
image of G� is contained in the (discrete, see Theorem 3.4) lattice L2 and, being
continuous, is therefore constant. At this point it is clear that, taking the Cullen
derivative, we obtain @cF.q C �/ D @cF.q/, for all q 2 H. Thus the map @cF is
regular (see Remark 2.3) andL1-periodic, which makes it bounded. By the Liouville
theorem for regular functions (see Theorem 2.5) the Cullen derivative @cF of F is
constant. Since F expands as a power series (see Theorem 2.4)

F.q/ D
X
n2N

qn
1

nŠ

@nF

@xn
.0/

converging in the entire H, we obtain (again by Theorem 2.4)

@cF.q/ D
X
n2N

qn
1

nŠ

@nC1F

@xnC1
.0/ D

@F

@x
.0/

and hence
F.q/ D F.0/C q

@F

@x
.0/ D b C qa

is a first degree regular polynomial. Again, since F lifts a map between quotients,
necessarily L1a � L2. If the inclusion L1a � L2 is proper, then f is not injective:
indeed if some q 2 L2 satisfies qa�1 62 L1 then there exists p1; p 2 L1 and p2 2 L2
such that .qa�1 C p1/ … L1 and

f .qa�1 C p1/ D �2.q C p1aC b/ D �2.p2/ D f .p/;

with qa�1 C p1 ¤ p.
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Now we know that L1a D L2, that is L2a�1 D L1. The map F �1WH ! H
defined by F �1.w/ D .w � b/a�1 induces the map f �1WT2 ! T1. Indeed

f �1
�
f .qCL1/

�
D f �1.qaC bCL2/ D .qaCL2/a

�1
D qCL2a

�1
D qCL1:

This concludes the proof.

5. Equivalence of quaternionic tori

To classify the 4-(real)-dimensional, quaternionic tori, up to biregular diffeomor-
phisms, we start with the following:
Theorem 5.1. Two rank-4 lattices L1; L2 of the space H, generated respectively by
the bases f˛1; ˛2; ˛3; ˛4g and f!1; !2; !3; !4g, determine equivalent tori T1; T2 if
and only if there exist a 2 H� D H n f0g and a linear transformation A 2 GL.4;Z/
such that

A

0BB@
!1
!2
!3
!4

1CCA D
0BB@
˛1
˛2
˛3
˛4

1CCA a:
Proof. By Proposition 4.2, if f is a biregular diffeomorphism of T1 onto T2, then
there exists a biregular transformation F of H such that the diagram (4.1) commutes.
Since F is biregular on H, then F.q/ D qa C b, with a 2 H�, and b 2 H. As we
pointed out in the proof of Proposition 4.2, without loss of generality, we can suppose
both that b D 0 and that the function F maps the set of generators of L1 to a set of
generators of L2. Taking into account that

„
F.˛1/ D ˛1a

F.˛2/ D ˛2a

F.˛3/ D ˛3a

F.˛4/ D ˛4a

there exists a matrix

A D

0BB@
n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44

1CCA
with integer entries, such that

„
˛1a D n11!1 C n12!2 C n13!3 C n14!4

˛2a D n21!1 C n22!2 C n23!3 C n24!4

˛3a D n31!1 C n32!2 C n33!3 C n34!4

˛4a D n41!1 C n42!2 C n43!3 C n44!4

(5.1)
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or, more concisely, 0BB@
˛1
˛2
˛3
˛4

1CCA a D A
0BB@
!1
!2
!3
!4

1CCA : (5.2)

The same argument applied in the opposite direction, implies the existence of a
matrix B with integer entries such that0BB@

!1
!2
!3
!4

1CCA a�1 D B
0BB@
˛1
˛2
˛3
˛4

1CCA (5.3)

and hence, substituting equation (5.3) into equation (5.2), we get0BB@
˛1
˛2
˛3
˛4

1CCA a D AB
0BB@
˛1
˛2
˛3
˛4

1CCA a;
which implies AB D I4 and hence that A (and B) is such that det.A/ D ˙1, i.e. A
(and B) belongs to GL.4;Z/.

On the other side, suppose there exists a matrix A 2 GL.4;Z/, of this form:

A D

0BB@
n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44

1CCA
such that

A

0BB@
!1
!2
!3
!4

1CCA D
0BB@
˛1
˛2
˛3
˛4

1CCA a
then we can compute F.q/ D qa in four different ways:

F.q/ D q˛�11 .n11!1 C n12!2 C n13!3 C n14!4/;

F .q/ D q˛�12 .n21!1 C n22!2 C n23!3 C n24!4/;

F .q/ D q˛�13 .n31!1 C n32!2 C n33!3 C n34!4/;

F .q/ D q˛�14 .n41!1 C n42!2 C n43!3 C n44!4/;
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for all q 2 H. Simple computations show that:

F.q C ˛1/ D F.q/C n11!1 C n12!2 C n13!3 C n14!4;

F .q C ˛2/ D F.q/C n21!1 C n22!2 C n23!3 C n24!4;

F .q C ˛3/ D F.q/C n31!1 C n32!2 C n32!3 C n34!4;

F .q C ˛4/ D F.q/C n41!1 C n42!2 C n43!3 C n44!4:

Hence F defines a biregular diffeomorphism f between T1 and T2.

It is natural at this point to give the following
Definition 5.2. Two rank-4 latticesL1; L2 of the space H are called equivalent if the
generated quaternionic toriH=L1 andH=L2 are equivalent. A basis f!1; !2; !3; !4g
of a rank-4 lattice L1 and a basis f˛1; ˛2; ˛3; ˛4g of a rank-4 lattice L2 are called
equivalent if L1 and L2 are equivalent lattices, i.e. if (according to Theorem 5.1)
there exist a 2 H� and a linear transformation A 2 GL.4;Z/ such that

A

0BB@
!1
!2
!3
!4

1CCA D
0BB@
˛1
˛2
˛3
˛4

1CCA a: (5.4)

Notice that two (different) equivalent bases f!1; !2; !3; !4g and f˛1; ˛2; ˛3; ˛4g
of rank-4 lattices may generate exactly the same lattice, and hence exactly the
same quaternionic torus. This happens when there exists a linear transformation
A 2 GL.4;Z/ such that

A

0BB@
!1
!2
!3
!4

1CCA D
0BB@
˛1
˛2
˛3
˛4

1CCA
i.e., when a D 1 in (5.4).

6. Minkowski–Siegel reduction algorithm: reduced and special bases

In this section we will specialize to the quaternionic setting the general Minkowski–
Siegel reduction algorithm presented in [24, Section 4], [26, Section 9], and use it to
construct reduced Gram matrices and reduced bases associated to lattices. In turn,
reduced bases will be used to find special bases for lattices, useful in the sequel to
identify and parameterize equivalence classes of quaternionic tori.

We explicitly present here some basic facts of this algorithmic construction, both
to make the paper as much self-contained as possible, and to have a starting point for
the proofs of the results that will follow.
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Let h�; �i denote the usual scalar product of R4. Let p D x0 C x1i C x2j C x3k
and q D y0Cy1iCy2j Cy3k be two quaternions. We set, and use in what follows,

hp; qi D

3X
`D0

x`y`: (6.1)

Let fv1; v2; v3; v4g be a basis of the lattice L � H Š R4. For any u D

.n1; n2; n3; n4/ 2 Z4 the squared norm of the element v D n1v1 C n2v2 C n3v3 C
n4v4 2 L can be expressed by hv; vi D v tv D uS0 tu where the matrix

S0 D

0BB@
hv1; v1i hv1; v2i hv1; v3i hv1; v4i

hv2; v1i hv2; v2i hv2; v3i hv2; v4i

hv3; v1i hv3; v2i hv3; v3i hv3; v4i

hv4; v1i hv4; v2i hv4; v3i hv4; v4i

1CCA (6.2)

is symmetric and positive definite, and is usually called the Gram matrix associated
to the basis fv1; v2; v3; v4g. In this setting and with the notations established, we will
use the following procedure (see, e.g., [26, page 122]):
Algorithm 6.1 (Minkowski–Siegel reduction algorithm).
This algorithmacts on aGrammatrixS0 and produces amatrixU D U.S0/ belonging
to GL.4;Z/ and a Gram matrix R D R.S0/ D US0

tU . The produced matrix R
has, and is in fact characterized by, the properties which follow.

Here are the steps of the algorithm:
� The Gram matrix S0 (of a certain basis fv1; v2; v3; v4g) is given.
� Consider the functionQ1WZ4 ! RC defined as

Q1.u/ D uS0
tu:

By our assumption, Q1 is (the restriction to Z4 of) a positive definite quadratic
form, and hence it attains its strictly positive minimum value at a point u1 D
.n11; n12; n13; n14/ 2 Z4.
� To proceed, we need to recall that there exist infinitely many matrices of GL.4;Z/
having the first row equal tou1 (see e.g. [24, Section 4, pages 191–192], [26, Section 9,
pages 122–123] for a proof of this assertion, and of the analogous ones, used in this
algorithm). With this inmind, we consider the functionQ2 obtained by restrictingQ1
to the elements u 2 Z4 such that there exists a matrix of GL.4;Z/ having the first
two rows equal to u1 and u, respectively. Let u2 D .n21; n22; n23; n24/ 2 Z4 be a
point in whichQ2 attains its strictly positive minimum value. Up to a change of sign,
we can assume that u1S0 tu2 � 0.
� In the next step, we consider the restriction Q3 of Q2 to the elements u 2 Z4

such that there exists a matrix of GL.4;Z/ having the first three rows equal to u1, u2,
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and u, respectively. Let u3 D .n31; n32; n33; n34/ 2 Z4 be a point in which Q3
attains its strictly positive minimum value. Again, up to a change of sign, we can
assume that u2S0 tu3 � 0.
� Finally, we take the restriction Q4 of Q3 to the elements u 2 Z4 such that
there exists a matrix of GL.4;Z/ having the four rows equal to u1, u2, u3 and u,
respectively, and set u4 D .n41; n42; n43; n44/ 2 Z4 to be a point in whichQ4 has a
strictly positive minimum value. As before, we can assume u3S0 tu4 � 0.
� The output of the algorithm consists of the matrix

U D U.S0/ D

0BB@
n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34
n41 n42 n43 n44

1CCA ;
(belonging to GL.4;Z/ by construction) and of the Gram matrix R D US0 tU .

As we mentioned, the importance of the Minkowski–Siegel reduction algorithm
stays in the features of the matrices (U and) R that it produces; in fact, following
[24, Section 4] and [26, Section 9], we can give the next definition.
Definition 6.2. IfR is a Grammatrix obtained by applying to a given Grammatrix S0
the Minkowski–Siegel reduction algorithm 6.1, then R is called a reduced Gram
matrix (relative to S0). The symbol R will denote the set of all reduced Gram
matrices.

It turns out that there are two necessary and sufficient conditions that characterize
the elements of the set R of reduced Gram matrices; we recall these conditions here
(see [26, equations (1), page 123]):
Proposition 6.3. A Gram matrix R D .ri;j /i;jD1;:::;4 is a reduced Gram matrix if
and only if the two following sets of conditions hold:
(B1) rk;kC1 � 0 for all k D 1; 2; 3I
(B2) for all fixed k D 1; 2; 3; 4, we have .n1; n2; n3; n4/ R t .n1; n2; n3; n4/ � rk;k

for any integer vector .n1; n2; n3; n4/ such that nk; : : : ; n4 are without common
divisors.

We point out, and we will use it in the sequel, the fact that conditions (B2) are
equivalent to (B20):
(B20) for all fixed k D 1; 2; 3; 4, if a vector .n1; n2; n3; n4/ 2 Z4 has the property

that .n1; n2; n3; n4/ R t .n1; n2; n3; n4/ < rk;k , then necessarily nk; : : : ; n4
have common divisors.

Remark 6.4. Let L be a rank-4 lattice. Consider any basis fv1; v2; v3; v4g of L
whose Gram matrix is S0. The Minkowski–Siegel reduction algorithm, applied to
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the Gram matrix S0, produces a matrix U of GL.4;Z/ which can be used to define
the four elements

„
!1 D n11v1 C n12v2 C n13v3 C n14v4;

!2 D n21v1 C n22v2 C n23v3 C n24v4;

!3 D n31v1 C n32v2 C n33v3 C n34v4;

!4 D n41v1 C n42v2 C n43v3 C n44v4:

(6.3)

The elements f!1; !2; !3; !4g form a basis of L since the matrix U belongs to
GL.4;Z/, with its inverse. Notice that

U

0BB@
v1
v2
v3
v4

1CCA D
0BB@
!1
!2
!3
!4

1CCA
and therefore that the two bases fv1; v2; v3; v4g and f!1; !2; !3; !4g are equivalent
(in particular they generate the same lattice). We conclude the remark by pointing
out that the Gram matrix R associated to the basis f!1; !2; !3; !4g is obtained as
(recall formula (6.1)):

US0
tU D R D

0BB@
h!1; !1i h!1; !2i h!1; !3i h!1; !4i

h!2; !1i h!2; !2i h!2; !3i h!2; !4i

h!3; !1i h!3; !2i h!3; !3i h!3; !4i

h!4; !1i h!4; !2i h!4; !3i h!4; !4i

1CCA
and is therefore independent of the choice of a particular basis fv1; v2; v3; v4g among
those that have the same Gram matrix S0. In fact, in this sense, the matrixR depends
only on the Gram matrix S0.

To classify rank-4 lattices and generated tori, we will define the set of bases
naturally emphasized by Algorithm 6.1.
Definition 6.5. Let L be a rank-4 lattice in H. A basis f!1; !2; !3; !4g of L will be
called a reduced basis if its Gram matrix is reduced.

A direct application of theMinkowski–Siegel reduction algorithm andRemark 6.4
prove a first result in the study of equivalence of lattices.
Theorem 6.6. Let L be a rank-4 lattice and let fv1; v2; v3; v4g be a basis of L. Then
there exists a matrix U of GL.4;Z/ such that

U

0BB@
v1
v2
v3
v4

1CCA D
0BB@
!1
!2
!3
!4

1CCA
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is a reduced basis of the lattice L. As a consequence

L D Zv1 C Zv2 C Zv3 C Zv4 D Z!1 C Z!2 C Z!3 C Z!4

and we can suppose that the lattice L is generated by a reduced basis.
We will now present the basic features of reduced Gram matrices (and bases).

Proposition 6.7. If R D .ri;j /i;jD1;:::;4 is a reduced Gram matrix, then the two
following conditions hold:
(1) rk;k � rl;l , for all .k; l/ 2 f1; 2; 3; 4g � f1; 2; 3; 4g such that l > k;
(2) �1

2
rl;l � rk;l �

1
2
rl;l , for all .k; l/ 2 f1; 2; 3; 4g � f1; 2; 3; 4g such that l ¤ k.

Proof. To verify .1/, we use condition (B2) at step k, applied to the vector el D
.n1; n2; n3; n4/ (l > k) where el is the l th vector of the standard basis of R4.
Inequalities .2/ are obtained by applying the same condition (B2) at step k, to the
vector .n1; n2; n3; n4/ D ek ˙ el (l ¤ k), where el ; ek are, respectively, the l th and
kth vector of the standard basis of R4 (see also [26, page 123]).

Remark 6.8. Concerning conditions (B2) on the Gram matrix R D .ri;j /i;jD1;:::;4,
we observe that: for each k 2 f1; 2; 3; 4g, if ek is the kth element of the standard basis
of R4, then we obtain the obvious equality ekR tek D rk;k that gives no conditions.

We restate here a deep result that appears in [26, theorem stated at page 139],
adapting it to our setting and notations.
Theorem 6.9. The set R of all reduced Gram matrices is a convex cone in R10 with
VR ¤ ;. If G denotes the set of all Gram matrices, then

G D
[

U2GL.4;Z/

UR tU: (6.4)

If U 2 GL.4;Z/; U ¤ ˙I4, and R \ .UR tU/ ¤ ;, then R \ .URtU/ � @R.
Only for a finite set of matrices U 2 GL.4;Z/ it is possible that R\ .URtU/ ¤ ;.

The fact that VR ¤ ; is not obvious, and a non constructive proof is given
in [26, page 137].

Now, our second step in the classification of rank-4 lattices and quaternionic tori
makes use of a proper subset of the set of reduced bases.
Definition 6.10. A reduced basis f!1; !2; !3; !4g of a rank-4 lattice L with the
property that !1 D 1 will be called a special basis.
Theorem 6.11. Let L1 be a rank-4 lattice and let fv1; v2; v3; v4g be a basis of L1.
Then fv1; v2; v3; v4g is equivalent to a special basis f1; !2; !3; !4g of a rank-4
lattice L2. As a consequence

L1 D Zv1 C Zv2 C Zv3 C Zv4 and L2 D ZC Z!2 C Z!3 C Z!4

are equivalent, and hence they generate equivalent tori.
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Proof. By Theorem 6.6, there there exist a matrixU of GL.4;Z/ and a reduced basis
fu1; u2; u3; u4g of the lattice L1 such that

U

0BB@
v1
v2
v3
v4

1CCA D
0BB@
u1
u2
u3
u4

1CCA :
Therefore

U

0BB@
v1
v2
v3
v4

1CCA D
0BB@

1

u2u
�1
1

u3u
�1
1

u4u
�1
1

1CCAu1 D
0BB@
1

!2
!3
!4

1CCAu1
and, by Definition 5.2, the bases fv1; v2; v3; v4g and f1; !2; !3; !4g are equivalent.
This latter basis is special, since it is obtained multiplying the reduced basis
fu1; u2; u3; u4g on the right by u�11 ¤ 0, which corresponds to applying a rigid
motion composed with a “positive” homothety of H Š R4, see Remark 2.1.
Indeed such a transformation maintains the fact that the Gram matrix is reduced
(see Proposition 6.3).

At this point it is possible to associate to each class of equivalence of quaternionic
tori at least a special basis of a rank-4 lattice, according to
Corollary 6.12. Let T be a quaternionic torus. Then, up to biregular diffeomor-
phisms, we can suppose that T D H=L where the lattice L is generated by a special
basis f1; !2; !3; !4g.

We will now pass to identify a natural and useful subset of the possible bases for
rank-4 lattices. Let p D x0 C x1i C x2j C x3k 2 H and let A be a 4 � 4 matrix
with real coefficients. We set the notation A.p/ to denote the quaternion whose real
components are

A

0BB@
x0
x1
x2
x3

1CCA : (6.5)

The following is a useful elementary result of linear algebra:
Proposition 6.13. If two bases f!1; !2; !3; !4g and fv1; v2; v3; v4g have the same
Gram matrix, then there exists an orthogonal matrix B 2 O.4;R/ such that
B.!l/ D vl for l D 1; 2; 3; 4.

Proof. Since the two bases have the same Gram matrix we have h!l ; !pi D hvl ; vpi
for l; p D 1; : : : ; 4. Let B be the matrix which transforms the first basis into the
second one, then h!l ; !pi D hB.!l/; B.!p/i, for all l; p D 1; : : : ; 4. Hence B is an
isometry with respect to the standard scalar product and the assertion follows.
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We will end this section with some remarks. A lattice L is called normalized
if 1 2 L and if every element of L has norm greater or equal than 1. It can be proved
that conditions (1)–(2) of Proposition 6.7 together with (B1) are sufficient for a Gram
matrix to be a reduced Grammatrix if and only if the associated lattice is normalized.
To clarify what we mean, we provide an example of a non-normalized lattice L
having a basis B whose Gram matrix satisfies conditions (1)–(2) of Proposition 6.7
together with (B1), but is not reduced. In fact L is such that an integer combination
of three vectors of B is inside B. To see this, notice that if

I D
1
p
2
i C

1
p
2
j and J D

1
p
3
i C

r
2

3
j;

then
B D

˚
1; v1 D e

�I=3; v2 D e
2�J=3; k

	
is a basis for L whose (approximated) Gram matrix

G D

0BB@
1 1

2
�
1
2

0
1
2

1 .0:4891/ 0

�
1
2

.0:4891/ 1 0

0 0 0 1

1CCA
satisfies conditions (1)–(2) of Proposition 6.7 and (B1). Nevertheless it is easy to see
that .1 � v1 C v2/ 2 B, and hence G is not reduced.

7. A moduli space for quaternionic tori. Tame tori

The aim of this section is to find a fundamental set, and possibly a moduli space, to
“parameterize” the equivalence classes of quaternionic tori, with respect to the action
of biregular diffeomorphisms. We will then study the families of tame lattices and
tame tori, whose definition is inspired by Theorem 6.9, and whose moduli correspond
to the interior of the fundamental set M.

Wewill start by identifying a useful subset of the setR of reduced Grammatrices.
Remark 7.1. In the sequel wewill always consider reducedGrammatrices associated
to special bases, i.e. matrices of the form

S0 D

0BB@
1 h1; v2i h1; v3i h1; v4i

hv2; 1i hv2; v2i hv2; v3i hv2; v4i

hv3; 1i hv3; v2i hv3; v3i hv3; v4i

hv4; 1i hv4; v2i hv4; v3i hv4; v4i

1CCA (7.1)

where hv4; v4i � hv3; v3i � hv2; v2i � 1. This means, in particular, that we restrict
to reduced Grammatrices belonging to an affine hyperplane ofR10. We point out that
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we will consider, in the boundary of the set of reduced Gram matrices, only those
elements that represent rank-4 lattices, and hence only definite positive matrices.
Instead, as it appears in [26, page 136], when considering the entire set of reduced
Gram matrices as a subset of the space of symmetric matrices, then its boundary
contains also semi-positive definite, reduced matrices.

The promised space of “parameters” for the equivalence classes of biregular
diffeomorphism of quaternionic tori is defined as follows.
Definition 7.2. The set M defined as

M D
˚
.v2; v3; v4/ 2 H3

W f1; v2; v3; v4g is a special basis
	

(7.2)

is called the fundamental set of quaternionic tori. If we identify elements of M

when they correspond to special bases originating regularly diffeomorphic tori, then
as customary the quotient set zM is called moduli space of quaternionic tori. Let
.v2; v3; v4/ be a point ofM, and letL D ZCZv2CZv3CZv4 be the lattice generated
by the special basis f1; v2; v3; v4g. Wewill say that .v2; v3; v4/ is (a representative of)
the modulus of any quaternionic torus equivalent to T D H=L.

Corollary 6.12 guarantees an important property of the fundamental set:
Proposition 7.3. Every quaternionic torus T has (at least) a modulus in M. In other
words: for every quaternionic torus T , there exists .v2; v3; v4/ 2 M such that T is
equivalent to H=L, where L D ZC Zv2 C Zv3 C Zv4 is the lattice generated by
the special basis f1; v2; v3; v4g.

With obvious notations, set now

yO.3;R/ D

�
1 0
t0 O.3;R/

�
and define

S D
[

B2 yO.3;R/

B:M D yO.3;R/:M (7.3)

where B:M means the set of all B:.v2; v3; v4/ D .B.v2/; B.v3/; B.v4//, for all
.v2; v3; v4/ 2 M. The fundamental set M has a natural symmetry, namely we have
that:
Proposition 7.4. The fundamental set M and the set S coincide. Equivalently,
yO.3;R/ acts on M. Moreover, if .v2; v3; v4/ 2M, then all elements of its orbit with
respect to the action of yO.3;R/,

yO.3;R/:.v2; v3; v4/;

correspond to special bases having the same reduced Gram matrix as f1; v2; v3; v4g.

Proof. The proof is a direct computation.
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The geometric symmetry of the fundamental set stated in Proposition 7.4 is
interesting, and suggests a remark and a few considerations, that help to identify
similarities in the moduli of tori.
Remark 7.5. Denote as usual by E D f1; i; j; kg the standard basis for the space H
of quaternions. Recall that, for every two unitary quaternions I; J 2 S with
I ? J , the set A D f1; I; J; IJ D Kg is also a (positively oriented) basis for
the space H, having the same multiplication rules of the basis E . Let us consider two
lattices L1 and L2 generated, respectively, by the special bases V D f1; v2; v3; v4g

and W D f1;w2; w3; w4g. Let the coefficients of the elements of V with respect to
the basis E coincide with the coefficients of the elements of W with respect to the
basis A. Then, in view of the last statement of Proposition 7.4, the two generated
tori T1 and T2 - notwithstanding not equivalent according to our definition - have the
same reduced Gram matrix and completely similar structures.

Let L be a lattice having a special basis V D f1; v2; v3; v4g. Then there exists
a basis A D f1; I; J; IJ D Kg of H such that v2 2 R C IR. What is stated in
Proposition 7.4 and in Remark 7.5 allows us to study only the case of lattices having
a special basis V D f1; v2; v3; v4g with v2 2 RC IR, where I 2 S is the second
element of a (positively oriented) basis A D f1; I; J; IJ D Kg of H.

It is easy to see (and in any case we will see it later on, in this paper) that there are
different elements belonging to @M that correspond to the same equivalence class of
quaternionic tori, or equivalently that there are quaternionic tori having more than
one representative in M. However, this last phenomenon is not present in the case of
the family of quaternionic tori that we are going to define.
Definition 7.6. Let L be a rank-4 lattice in H.
(1) The lattice L is called a tame lattice if there exists a reduced basis of L whose

Gram matrix is an interior point of R. Such a basis will be called a tame basis.
(2) A quaternionic torus T is called a tame torus if there exists a tame lattice L such

that T is equivalent to H=L.
Here is an easy criterion to decide if a given torus is tame or not.
Proposition 7.7. Let L be a lattice and B D fv1; v2; v3; v4g be a reduced basis
for L. Consider the torus T D H=L. Then T is a tame torus, if, and only if, ˙B

are the unique reduced bases for L.

Proof. If the torus T is tame, then suppose that there are two different reduced
bases, B D fv1; v2; v3; v4g and B1 D f!1; !2; !3; !4g for the tame lattice L, with
B1 ¤ ˙B. As a consequence, there exists U 2 GL.4;Z/ n f˙I4g such that

U

0BB@
v1
v2
v3
v4

1CCA D
0BB@
!1
!2
!3
!4

1CCA :
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If R and R1 denote the reduced Gram matrices associated, respectively, to the bases
B and B1, then

U R tU D R1:

Therefore, R and R1 belong to the boundary of R by Theorem 6.9, and hence the
torus is not tame. To prove the converse, suppose that T is not tame, i.e. that the
Gram matrix R D .ri;j / associated to B belongs to @R. Therefore, equality holds
either in (B1) or in (B2). In the first case, since rk;kC1 D 0 for some k D 1; 2; 3, the
two consecutive vectors vk and vkC1 are orthogonal. We can then consider a second
reduced basis B 0 obtained by substituting vkC1 with �vkC1; : : : ; v4 with �v4. If
instead equality holds in (B2), the Minkowski–Siegel reduction algorithm directly
implies the existence of a second reduced basis.

We will now find, inside the fundamental set M, a moduli space for the classes
of equivalence of tame quaternionic tori. In fact if we set

T D
˚
.v2; v3; v4/ 2M W f1; v2; v3; v4g is a (special) tame basis

	
(7.4)

then, with the aid of a preliminary lemma, we can prove a uniqueness result for the
modulus of a tame torus.

Lemma 7.8. Let two lattices L1 and L2 of H be generated respectively, by the
special bases f1; ˛2; ˛3; ˛4g and f1; !2; !3; !4g. If F.q/ D qa, with a 2 H�, is an
automorphism of H such that F.L1/ D L2, then jaj D 1.

Proof. Since a D F.1/, we have that a 2 L2, and hence jaj � 1. Moreover, since
fa; ˛2a; ˛3a; ˛4ag are linearly independent vectors which generate the lattice L2,
then there exist n1; n2; n3; n4 2 Z such that

n1.a/C n2.˛2a/C n3.˛3a/C n4.˛4a/ D 1:

This equality implies that

.n1 C n2˛2 C n3˛3 C n4˛4/a D 1:

But jn1Cn2˛2Cn3˛3Cn4˛4j � 1 because n1Cn2˛2Cn3˛3Cn4˛4 is an element
of L1. Hence jaj � 1.

Theorem 7.9. The set T � M is a moduli space for the equivalence classes of
tame tori. In other words, every tame torus has exactly one representative in T (its
modulus).
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Proof. Suppose that the two elementsV D.v2; v3; v4/ 2 T andW D.!2; !3; !4/ 2 T

correspond to equivalent tame tori. If this is the case, then (see Definition 5.2) there
exist U 2 GL.4;Z/ and a quaternion a ¤ 0 such that

U

0BB@
1

!2
!3
!4

1CCA D
0BB@
1

v2
v3
v4

1CCA a:
Lemma 7.8 implies that jaj D 1. Since multiplication by the unitary quaternion a is
an Euclidean rotation (see Remark 2.1), then .a; Va/ has the same (reduced) Gram
matrix as .1; V /, and hence it is a reduced basis. Now, since .a; Va/ and .1;W / are
both reduced bases, then by Proposition 7.7 we reach the conclusion that a D ˙1
and hence that V D W .

8. On the groups of automorphisms of “boundary” tori

According to Theorem 6.9, a reduced Gram matrix R belongs to @R if, and only if,
there exists a reduced Gram matrix S such that

S D UR tU

for some U 2 GL.4;Z/, U ¤ ˙I4. Notice that to each of these reduced
Gram matricesR; S there correspond infinitely many GL.4;Z/-nonequivalent bases
(see (7.3)). Therefore the study of the equivalence classes of non tame tori consists
in the identification and classification of reduced Gram matrices belonging to the
boundary of R, and corresponding to non equivalent special bases. We plan to
address this fascinating problem in a forthcoming paper.

However, as it happens in the complex case, the first interesting and fundamental
step in this direction is the search and classification of boundary tori with non
trivial groups of (biregular) automorphisms. These tori, which are the quaternionic
counterpart of tori with complex multiplication (classically indicated as harmonic
and equianharmonic), will be found and classified in the rest of this section.
Remark 8.1. Every vector of H Š R4 lies in an invariant real plane of the rotation
q 7! qa, (see Remark 2.1), where a D cos˛ C Ia sin˛. This fact can be verified
directly as follows: for any quaternion q, we define q0 D qIa, and notice that, since 1
and Ia are perpendicular vectors in H Š R4, so are q and q0. Moreover I 2a D �1,
q0Ia D �qI thus

a D cos˛ C Ia sin˛;
qa D q cos˛ C q0 sin˛; q0a D q0 cos˛ � q sin˛:

Therefore, the plane containing the vectors q and q0 is invariant, and the rotation in
this plane is of an angle ˛, [15, page 37].
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Lemma 8.2. Let L be a lattice of H generated by the special basis f1; ˛2; ˛3; ˛4g
and let F.q/ D qa, with a 2 S3, be an automorphism of H such that F.L/ D L.
Then a has finite order, i.e. there exists n 2 N such that an D 1, and the order of a
divides either 4 or 6.

Proof. Since 1 is an element of the lattice L and since F.q/ D qa maps L onto L,
it follows that 1a D a 2 L; similarly for all m 2 N, it holds that am 2 L.
By compactness, the sequence famgm2N of unit vectors in L, has a convergent
subsequence. Unless famgm2N is a finite set, this is in contradiction with Lemma 3.2
and Theorem 3.4 which assert respectively that L is a (closed) discrete subgroup
of H. In order to prove the second assertion, we use what is stated in Remark 8.1:
since 1 and a are elements of L, it follows that the complex plane LIa , which
contains 1 and a, is invariant by rightmultiplication by a, i.e. the integer combinations
of 1 and a form a rank-2 sublatticeL0 ofL, contained in the complex planeLIa , with
F.q/ D qa as an automorphism restricted to the sublattice L0 � LIa ; therefore a
is a root of unity of order n, where n divides either 4 or 6, because in the complex
setting these are the only possibilities (see, e.g., [15, page 82]).

Proposition 4.2 directly suggests how to define the automorphisms of a
quaternionic torus.
Definition 8.3. Let T D H=L be the quaternionic torus associated to the rank-4
lattice L. The group of biregular automorphisms of the torus T is defined as

Aut.T / D
˚
F 2 Aut.H/ j F.q/ D qa with a 2 S3 and F.L/ D L

	
:

We point out that the group Aut.T / of biregular automorphisms of the torus
T D H=L can also be interpreted as the group of biregular automorphisms Aut0.L/
of a rank-4 lattice L fixing the point 0 2 L � H.
Proposition 8.4. Let L be a rank-4 lattice of H containing 1. Let T D H=L be the
associated quaternionic torus, and let

AT D
˚
a 2 S3 W 9F 2 Aut.T / defined as F.q/ D qa

	
:

Then:

(1) the set AT � S3 \L is a subgroup (with respect to quaternionic multiplication)
of the group S3 of unitary quaternions;

(2) the group AT is isomorphic to Aut.T /;
(3) for any fixed R � 0, each F 2 Aut.T / acts as a permutation on the finite set of

all vectors of L \ @B.0;R/.

Proof. The group structure of the set AT with respect to the quaternionic
multiplication is inherited by the one of Aut.T /with respect to composition. The fact
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that eachF 2 Aut.T / acts as a permutation on vectors of fixed norm is straightforward
by Lemma 7.8 and 8.2 and by the fact that an automorphism F of T maps T onto
itself.

We now pass to recall and list all the finite subgroups of the unitary quaternions,
and refer the reader to the classical books [10, 11, 15] and [25] for the underlying
theory. We point out that in the literature there is a diffused confusion in the use of
notations that concern the groups we are dealing with; here we will mainly refer to,
and use the notations of, the book [10] by Conway and Smith.

We begin by listing all (up to conjugation) finite subgroups of the group of
rotations SO.3;R/:

(1) the icosahedral group; I Š A5; 60 elementsI
(2) the octahedral group; O Š S4; 24 elementsI
(3) the tetrahedral group; T Š A4; 12 elementsI
(4) the dihedral group; D2n Š D.n/; 2n elementsI
(5) the cyclic group; Cn Š C.n/; n elements:

Every unitary quaternion q is associated to a precise rotation of SO.3;R/ by
means of the 2-to-1 correspondence that maps q to the rotation Œq�W x ! Nqxq

(see, e.g., [10, Theorem 4, page 24]). As a consequence, every finite group Q of
unitary quaternions is mapped to a group ŒQ� D fŒq� W q 2 Qg (isomorphic to)
Cn;D2n;T ;O; I. The number of elements of Q is 2 or 1 times the number of
elements of ŒQ�, according to whether �1 is or is not inQ.

If G denotes one of the finite subgroups of the group of rotations, then we set

2G D
˚
q 2 S3 W Œq� 2 G

	
:

The only possible cases inwhich�1 2 Q are thosewhereQD2Cn; 2D2n; 2T ; 2O; 2I.
On the other hand, let us suppose that�1 62 Q. In this case,G can contain no order 2
rotation g: if Œq� D g then q2 D �1must be inQ. The only groupG without order 2
elements is Cn with n odd; this gives rise to a group Q D 1Cn in S3 isomorphic
to Cn. In fact, the following result holds (see, e.g., [10, Theorem 12, page 33]).

Theorem 8.5. The finite subgroups of unitary quaternions are

2I; 2O; 2T ; 2D2n; 2Cn; 1Cn(n odd):
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With the usual notations for quaternions, let I; J 2 S, with I ? J , and let
f1; I; J; IJ D Kg be a basis for H having the usual multiplication rules. We
then set

II D
I C �J C �K

2
; � D

p
5 � 1

2
; � D

p
5C 1

2
I

IO D
J CK
p
2
I

! D
�1C I C J CK

2
I

IT D I I

en D e
�I=n:

Theorem 8.6. The finite subgroups of unitary quaternions are generated as follows:

2I D ⟪II; !⟫; 2O D ⟪IO; !⟫; 2T D ⟪IT ; !⟫;
2D2n D ⟪en; j⟫; 2Cn D ⟪en⟫; 1Cn D ⟪en

2
⟫ (n odd):

Theorem 8.7. There is no quaternionic torus whose group of automorphisms is
isomorphic to 2I, 2O, 2D2n (n � 4), 2Cn (n � 4), 1Cn (n odd).

Proof. Since the subgroup I contains an element of order 5, then 2I has an element
of order 10. Hence, by Lemma 8.2, it cannot be the group of automorphisms of a
quaternionic torus. The same argument holds to exclude 2O that has an element
of order 8. Analogously the groups 2D2n .n � 4/, 2Cn .n � 4/ are excluded since
they both contain the element en whose order is 2n. Finally, the group 1Cn (n odd)
cannot be isomorphic to the group of automorphisms of a quaternonic torus since it
does not contain �1.

This last result reduces the possible groups of automorphisms of a quaternionic
torus to the list

2T ; 2D2; 2D4; 2D6; 2C1; 2C2; 2C3:

Since, as it is well known and easy to check, the groups 2C2 and 2D2 are isomorphic,
the final list of these groups becomes

2T ; 2D4; 2D6; 2C1; 2C2; 2C3: (8.1)

Remark 8.8. We observe that the following group inclusions hold:

2C1 � 2C2 � 2D4 � 2T ; 2C1 � 2C3 � 2D6;

and 2C3 � 2T :
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For each group 2G in the list (8.1), we will exhibit all tori whose group of
automorphisms contains, or coincides with, 2G. We will begin with the group
2C1 D f1;�1g, which appears for each quaternionic torus. As the reader may
imagine, for reasons of neat presentation we will from now on suppose, without loss
of generality, that the lattices which generate the tori involved have 1 as a vector of
minimum modulus.

Proposition 8.9. The group 2C1 is (isomorphic to) a subgroup of the group of
biregular automorphisms of any quaternionic torus T .

Proof. Let L be a rank-4 lattice of H generated by the special basis f1; ˛2; ˛3; ˛4g
and such that T D H=L. Then 2C1 D f1;�1g consists of automorphisms of T since
f�1;�˛2;�˛3;�˛4g generates the lattice L.

Proposition 8.10. Let T be a quaternionic torus. The group of biregular
automorphisms of the torus T contains a subgroup (isomorphic to) 2C2 Š 2D2,
if and only if there exists I 2 S and a quaternion ˛3 with j˛3j � 1 such that
.I; ˛3; ˛3I / is (a representative of) the modulus of T .

Proof. If there exists I 2 S and ˛3 2 H with j˛3j � 1 such that .I; ˛3; ˛3I / is (a
representative of) the modulus of T , then B D f1; I; ˛3; ˛3I g is a special basis of a
lattice L such that T is equivalent to H=L. Then the four bases

BI 0 D B D f1; I; ˛3; ˛3I g

BI 1 D BI D fI;�1; ˛3I;�˛3g

BI 2 D �B D f�1;�I;�˛3;�˛3I g

BI 3 D �BI D f�I; 1;�˛3I; ˛3g

all generate the lattice L, and hence the subgroup 2C2 Š f˙1;˙I g is a subgroup
of the group of automorphisms Aut.T /. On the other hand, if 2C2 � Aut.T /,
then thanks to Theorem 8.6, Lemma 8.2 and Proposition 8.4, the vectors f˙1;˙I g
must belong to, and generate, the rank-2 sublattice L \ LI of L. Therefore (by the
classification of rank-2 lattices of C), while using the Minkowski–Siegel reduction
algorithm, we can choose ˛2 D I in the special basis B D f1; ˛2; ˛3; ˛4g that
generates L. We can also suppose that the third vector ˛3 is chosen (again according
to Algorithm 6.1) among those vectors that can complete the special basis B. As a
consequence, ˛3I;�˛3;�˛3I;must belong to L together with ˛3. Since these three
elements of L have the same norm of ˛3, and since Aut.T / contains a subgroup
isomorphic to 2C2, then the Minkowski–Siegel reduction Algorithm 6.1 can produce
a special basis that generates L by using suitable ˛3 and taking, automatically,
˛4 D ˛3I ; this concludes the proof.
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Let f1; I; J;Kg be a standard basis for the skew field of quaternions. We recall
that the ring of Lipschitz quaternions (or Lipschitz integers) consists of the set

L D
˚
mC nI C pJ C qK W m; n; p; q 2 Z

	
� H:

The ring L is, in turn, a subring of the ring of Hurwitz quaternions (or Hurwitz
integers)

H D
˚
aC bI C cJ C dK W a; b; c; d 2 Z or a; b; c; d 2 ZC 1

2

	
:

The surprising properties of these rings are described, for instance, in [10, Chapter
II, Section 5].

Remark 8.11. Concerning the proof of Proposition 8.10, notice that only in the case
in which the lattice L consists of the ring of Hurwitz integers H , it can happen that
there exists ˛3 such that the special basis B D f1; I; ˛3; ˛3I g simply generates a
proper sublattice ofL and not thewholeL W for example if˛3 D J is an imaginary unit
quaternion orthogonal to I , then the set B D f1; I; J; JI g generates the sublattice
of the Lipschitz quaternions instead of the whole lattice of Hurwitz quaternions.
According to Remark 8.8 and to the classification (8.1) of the finite subgroups of
unitary quaternions which can be contained inL\S3, this is the only case in which a
set of linearly independent vectors of type B D f1; I; ˛3; ˛3I g � L (with j˛3j D 1)
can generate a proper sublattice instead of the whole lattice. In this particular case,
it is enough to change ˛3 with another vector of L \ S3 which can be reached by
means of the Minkowski–Siegel reduction algorithm and such that 1; I; ˛3 are not in
the same multiplicative subgroup of L\S3 W we know that at least an ˛3 of this kind
exists (this last fact depends on the well known structure of the subgroups of 2T ).

If the group of automorphisms Aut.T / of the torus T contains a subgroup
isomorphic to 2C2, and if the torus T has a special basis of type f1; I; ˛3; ˛3I g
with j˛3j > 1, then Aut.T / Š 2C2: this is a consequence of the classification of
the rank-2 lattices of C, and of the fact that, in these hypotheses, there are only four
points in L \ S3, all belonging to LI \ S3 (see Proposition 8.4).

Definition 8.12. A quaternionic torus whose group of biregular automorphisms is
isomorphic to 2C2 Š 2D2 is called a cyclic-dihedral torus.

Proposition 8.13. Let T be a quaternionic torus. The group of biregular
automorphisms of the torus T contains a subgroup (isomorphic to) 2C3 if and only
if there exists I 2 S and a quaternion ˛3 with j˛3j � 1 such that .e�I=3; ˛3; ˛3e�I=3/
is (a representative of) the modulus of T .
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Proof. If .e�I=3; ˛3; ˛3e�I=3/ is (a representative of) the modulus of T then B D

f1; e
�I=3; ˛3; ˛3e

�I=3g is a special basis of a latticeL such thatT is equivalent toH=L.
Then the six bases

B.e
�I=3/0 D B D f1; e

�I=3; ˛3; ˛3e
�I=3
g

B.e
�I=3/1 D Be

�I=3
D fe

�I=3; e
2�I=3; ˛3e

�I=3; ˛3e
2�I=3
g

B.e
�I=3/2 D Be

2�I=3
D fe

2�I=3;�1; ˛3e
2�I=3;�˛3g

B.e
�I=3/3 D �B D f�1;�e

�I=3;�˛3;�˛3e
�I=3
g

B.e
�I=3/4 D �Be

�I=3
D f�e

�I=3;�e
2�I=3;�˛3e

�I=3;�˛3e
2�I=3
g

B.e
�I=3/5 D �Be

2�I=3
D f�e

2�I=3; 1;�˛3e
2�I=3; ˛3g

all generate the lattice L, and hence the subgroup 2C3 Š f˙1;˙e�I=3;˙e2�I=3g
is a subgroup of the group of automorphisms Aut.T /. On the other hand,
if 2C3 � Aut.T /, then thanks to Theorem 8.6, Lemma 8.2 and Proposition 8.4,
there exists I 2 S such that the vectors f˙1;˙e�I=3;˙e2�I=3g must belong to, and
generate, the rank-2 sublattice L \ LI of L. Therefore (using the classification of
the rank-2 lattices of C), while using the Minkowski–Siegel reduction algorithm to
construct the special basis B D f1; ˛2; ˛3; ˛4g that generates L, we can choose
˛2 D e

�I=3. We can also suppose that the third vector ˛3 is chosen (according to
Algorithm 6.1) among those vectors that can complete the special basis B. As a
consequence, the points ˛3e�I=3, ˛3e2�I=3, �˛3, �˛3e�I=3, �˛3e2�I=3 must belong
toL together with ˛3. Since these five elements have the same norm of ˛3, and since
Aut.T / contains a subgroup isomorphic to 2C3, then theMinkowski–Siegel reduction
algorithm 6.1 can produce a special basis that generates L by using suitable ˛3 and,
automatically, ˛4 D ˛3e�I=3; this completes the proof.

If the group of automorphisms Aut.T / of the torus T contains a subgroup
isomorphic to 2C3, and if the torusT has a special basis of type f1; e�I=3; ˛3; ˛3e�I=3g
with j˛3j > 1, then Aut.T / Š 2C3: this is a consequence of the classification of the
rank-2 lattices of C, and of the fact that, in these hypotheses, there are only six points
in L \ S3, all belonging to LI \ S3 (see Proposition 8.4).

Definition 8.14. A quaternionic torus whose group of biregular automorphisms is
isomorphic to 2C3 is called a cyclic torus.

Proposition 8.15. Let T be a quaternionic torus. The group of biregular
automorphisms of the torus T is isomorphic to the group 2D4, if and only if, there
exist I; J 2 S with J ? I , such that the point .I; J; JI / is (a representative of) the
modulus of T .
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Proof. Let B D f1; I; J; JI g be the special basis associated to .I; J; JI / 2 M,
and let L be the generated lattice such that T is equivalent to H=L. Thanks to
Proposition 8.10, we know that the multiplication by I on the right generates a 2C2
subgroup of Aut.T /. Using Theorem 8.6, we are left to prove that the multiplication
by J on the right generates a second subgroup of type 2C2 of Aut.T /. To this aim
notice that the four bases

BJ 0 D B D f1; I; J; JI g D f1; I; J;�Kg

BJ 1 D BJ D fJ;K;�1; I g

BJ 2 D �B D f�1;�I;�J;Kg

BJ 3 D �BJ D f�J;�K; 1;�I g

all generate the lattice L. It is then easy to conclude that the subgroup 2D4 Š
f˙1;˙I;˙J;˙Kg is a subgroup of the group of automorphisms Aut.T /. On
the other hand, if 2D4 � Aut.T /, then 2C2 � 2D4 is a subgroup of Aut.T /,
and hence thanks to Theorem 8.10, in the special basis B D f1; ˛2; ˛3; ˛4g that
generates L, we can choose I D ˛2 and ˛4 D ˛3I . Theorem 8.6, Lemma 8.2 and
Proposition 8.4 imply that the vectors f˙1;˙J g must belong to, and generate, the
rank-2 sublattice L \ LJ of L. Since J and �J have the same norm of I , then by
the Minkowski–Siegel reduction algorithm used to construct a special basis forL, we
can suppose that ˛3 D J and find the desired basis. To prove that 2D4 Š Aut.T /,
begin by noticing that B is an orthonormal basis of H; it is then easy to see that
L \ S3 D f˙1;˙I;˙J;˙JI g and that this set has exactly the same cardinality of
the group 2D4. Proposition 8.4 leads now to the conclusion.

Definition 8.16. A quaternionic torus whose group of biregular automorphisms is
isomorphic to 2D4 is called a 8-dihedral torus (or a dihedral torus of order 8).
Remark 8.17. Aswe alreadymentioned, the notations concerning finite subgroups of
unit quaternions vary very much. We observe that the group 2D4, that we (following
[10, Subsection 3.5]) called dihedral group of order 8, coincides with the so called
multiplicative group of unit quaternions (and not withD8, sometimes called dihedral
group of order 8, D8 D ⟪a; b⟫ with the relations a4 D b2 D 1; bab�1 D a�1;
see [2, Theorem 3.4, page 164]).
Notice that the lattice of a dihedral torus of order 8 is generated by the group 2D4
and coincides with the ring of Lipschitz quaternions, defined after Proposition 8.10.
Proposition 8.18. Let T be a quaternionic torus. The group of biregular
automorphisms of the torusT is isomorphic to the group 2D6, if and only if, there exist
I; J 2 S, with J ? I , such that the point .e�I=3; J; Je�I=3/ is (a representative of)
the modulus of T .

Proof. LetBDf1; e�I=3; J; Je�I=3g be the special basis associated to .e�I=3; J; Je�I=3/
2 M and let L be the generated lattice such that T is equivalent to H=L. Thanks
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to Proposition 8.13, we know that the multiplication by e�I=3 on the right generates
a 2C3 subgroup of Aut.T /. We are then left to prove that the multiplication by J on
the right generates a subgroup of type 2C2 of Aut.T /. To this aim notice that the
four bases

BJ 0 D B D f1; e
�I=3; J; Je

�I=3
g

BJ 1 D BJ D fJ; Je
��I=3;�1;�e

��I=3
g

BJ 2 D �B D f�1;�e
�I=3;�J;�Je

�I=3
g

BJ 3 D �BJ D f�J;�Je
��I=3; 1; e

��I=3
g

all generate the lattice L. We then conclude that the dihedral subgroup of order 12,
2D6 Š f˙1;˙e

�I=3;˙e
2�I=3;˙J;˙Je

�I=3;˙Je
2�I=3g, is a subgroup of the group

of automorphisms Aut.T /. On the other hand, if 2D6 � Aut.T /, then 2C3 � 2D6
is a subgroup of Aut.T /, and hence, thanks to Proposition 8.13, in the special basis
B D f1; ˛2; ˛3; ˛4g that generates L, we can choose ˛2 D e�I=3 and ˛4 D ˛3e�I=3.
Theorem 8.6, Lemma 8.2 and Proposition 8.4 imply that the vectors f˙1;˙J g must
belong to, and generate, the rank-2 sublattice L \ LJ of L. Since J and �J have
the same norm of e�I=3, then by the Minkowski–Siegel reduction algorithm used to
construct a special basis for L, we can suppose that ˛3 D J and find the desired
basis. To prove that 2D6 Š Aut.T /, begin by noticing that LI is orthogonal to JLI ;
it is then easy to see that

L \ S3 D
˚
˙ 1;˙e

�I=3;˙e
2�I=3;˙J;˙Je

�I=3;˙Je
2�I=3

	
and that this set has exactly the same cardinality of the group 2D6. Proposition 8.4
leads now to the conclusion.

Definition 8.19. A quaternionic torus whose group of biregular automorphisms is
isomorphic to 2D6 is called a 12-dihedral torus (or a dihedral torus of order 12).

Proposition 8.20. Let T be a quaternionic torus. The group of biregular
automorphisms of the torus T is isomorphic to the group 2T , if and only if, for
some I; J 2 S with J ? I , setting K D IJ and ! D .�1C I C J C K/=2, the
point .�!;�I; I!/ is (a representative of) the modulus of T .

Proof. Notice, first of all, that ifM D .
p
3=3/.I C J CK/ 2 S, then ! D e

2�M=3.
Consider the special basis B D f1;�!;�I; I!g associated to .�!;�I; I!/ 2 M

and let L be the generated lattice such that T is equivalent to H=L. Thanks to
Theorem 8.6, we know that �! and �I generate a 2T subgroup of Aut.T /. Set
z! D .�1C I � J �K/=2, and notice that z! D �! � 1C I belongs to L. It is now
necessary (and it is only a direct computation) to verify that the iteratedmultiplication
by powers of e2�M=3 and by powers of I (on the right) maps the basis B onto bases
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that generate the lattice L. For example, as for the multiplication by I on the right,
we get that

B.�I /0 D B D f1;�!;�I; I!g

B.�I /1 D �BI D f�I; I z!;�1; z!g

B.�I /2 D �B D f�1; !; I;�I!g

B.�I /3 D BI D fI;�I z!; 1;�z!g

are all generating bases forL. We then conclude that the subgroup 2T D ⟪�!;�I⟫
is a subgroup of the group of automorphisms Aut.T /. On the other hand, if
2T � Aut.T /, then 2C3 � 2T is a subgroup of Aut.T /, and hence, thanks to
Proposition 8.13, in the special basis B D f1; ˛2; ˛3; ˛4g that generates L, we can
choose ˛2 D �! and ˛4 D ˛3.�!/. Theorem 8.6, Lemma 8.2 and Proposition 8.4
imply that the vectors f˙1;˙I g must belong to, and generate, the rank-2 sublattice
L \ LI of L. Since I and �I have the same norm of �!, then by the Minkowski–
Siegel reduction algorithm used to construct a special basis for L, we can suppose
that ˛3 D �I and find the desired basis. To prove that 2T Š Aut.T /, begin by
noticing that the 16 elements f.˙1˙ I ˙ J ˙K/=2g belong to L \ S3 as well as
the 8 elements f˙1;˙I;˙J;˙Kg. Therefore the set L \ S3 has to have the same
cardinality of the group 2T . As in the previous cases, at this point Proposition 8.4
leads to the conclusion.

Definition 8.21. A quaternionic torus whose group of biregular automorphisms is
isomorphic to 2T is called a tetrahedral torus.

Notice that the lattice of the tetrahedral torus is the ringH of the Hurwitz quaternions,
defined after Proposition 8.10. This lattice is generated by the group 2T .

The next result can be obtained directly as a consequence of the investigation
performed up to now, on the possible groups of biregular automorphisms of
“boundary” tori. Recall that, for a quaternionic torus T , in Proposition 8.4 we
have introduced the group AT D fa 2 S3 W 9 F 2 Aut.T / defined as F.q/ D qag.

Proposition 8.22. Let L be a rank-4 lattice of H containing 1. Let T D H=L be
the associated quaternionic torus. When the group AT Š Aut.T / is not reduced
to f˙1g, then it coincides with the biggest subgroup of L \ S3.

Proof. Suppose Aut.T / ¤ f˙1g D 2C1. Thanks to the classification (8.1), we get
that Aut.T / has to coincide with 2C2, 2C3, 2D4, 2D6 or 2T . If Aut.T / Š 2C2
and 2C2 is, by contradiction, strictly contained in a larger subgroup of S3, then
using Remark 8.8 we obtain Aut.T / Š 2D4 or Aut.T / Š 2T . In both cases
2D4 and 2T generate a lattice associated to a different torus (see Propositions 8.15
and 8.20). If Aut.T / Š 2D4 and 2D4 is, by contradiction, strictly contained in a
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larger subgroup of S3, then using Remark 8.8 we obtain Aut.T / Š 2T . In this last
case 2T generates a lattice associated to a different torus (see Proposition 8.20). In
the remaining case in which Aut.T / Š 2C3 the proof is totally analogous.

Example 8.23. We give an example which shows, in connection to Proposition 8.22,
that when Aut.T / Š 2C1 D f˙1g, then it can be strictly contained in a larger
subgroup of S3. Let f1; I; J;Kg be the standard basis for the skew field of
quaternions. Consider the lattice L generated by the special basis˚

1; I; 3J C 1
10
; 4K C 1

100

	
:

If T D H=L, then the unitary vectors of L are f˙1;˙I g and they form a group
isomorphic to 2C2.

We conclude this section by stating a summarizing result.
Theorem 8.24. The cyclic, cyclic dihedral, 8-dihedral, 12-dihedral, tetrahedral tori
defined in this section are the unique (up to biregular diffeomorphisms) tori with
Aut.T / ¤ f˙1g.

Proof. Follows directly from Propositions 8.10, 8.13, 8.15, 8.18, 8.20.

To close the section, we recall that the lattices generating tori T with Aut.T / Š
2C2 or Aut.T / Š 2C3 are classically called regular tessellations of R2; the lattices
generating tori T with Aut.T / Š 2D4, Aut.T / Š 2D6 or Aut.T / Š 2T are called
regular tessellations of R4.

A. An algorithm to check if a basis is reduced

Let R D .ri;j /i;jD1;:::;4 be the Gram matrix associated to a given basis B D

fv1; v2; v3; v4g of the rank-4 lattice L. Reordering the four vectors fv1; v2; v3; v4g,
without loss of generality, we can always suppose that r1;1 � r2;2 � r3;3 � r4;4.
To check that B is a reduced basis, we will check the fact that R is a reduced Gram
matrix.

The first step of our algorithm is the easiest:
Step 0. We check if rk;kC1 D hvk; vkC1i (for k D 1; 2; 3) are all non negative
quantities. If this is true, we proceed in the algorithm; otherwise we conclude that
the Gram matrix R, and the basis B, are not reduced, and stop. Since R is a .4 � 4/
symmetric, real and positive definite matrix, there exists a positive definite diagonal
matrix

D D

2664
�21 0 0 0

0 �22 0 0

0 0 �23 0

0 0 0 �24

3775
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and an orthogonal matrix Q such that tQRQ D D. Moreover, we can suppose that
0 < �1 � �2 � �3 � �4. In order to verify if R is a reduced Gram matrix we
proceed as follows:
Step 1. Since R D QD tQ, the quadratic form .n1; n2; n3; n4/ R

t .n1; n2; n3; n4/

can also be written as

.n1; n2; n3; n4/QD
tQ t .n1; n2; n3; n4/ D �

2
1x
2
1 C � � � C �

2
4x
2
4 ;

where �21; : : : ; �24 are the ordered positive eigenvalues of D and .x1; : : : ; x4/ D
.n1; : : : ; n4/Q. The geometric locus of vectors .x1; : : : ; x4/ 2 R4 for which the
diagonalized quadratic form is equal to r1;1 D hv1; v1i is an ellipsoid having the
length of the maximal axis of symmetry equal to 2jv1j=�1. Therefore, the quadruplets
.n1; n2; n3; n4/ 2 Z4 such that

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ < r1;1 (A.1)

belong necessarily to the finite set E1 D Z4 \ I 41 where

I1 D

�
�
jv1j

�1
;
jv1j

�1

�
:

At this point we recall the first step of the construction of the Minkowski–Siegel
reduction algorithm: we check if there exists a point .n1; n2; n3; n4/ in the finite
set E1 n f0g such that inequality (A.1) is fulfilled. If the answer is yes, then we
conclude that the Gram matrix R, and hence the basis B, are not reduced, and stop.
Otherwise we proceed in the algorithm.
Step 2. In this step we consider the quadratic equation

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r2;2:

Let
I2 D

�
�
jv2j

�1
;
jv2j

�1

�
and set E2 to be the finite set Z4 \ I 42 . By Definition 6.2 and by condition (B20), a
reduced Gram matrix is such that: if there exists .n1; n2; n3; n4/ 2 E2 n f0g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ < r2;2 (A.2)

then n2; n3; n4 have common divisors. Therefore we check if (B20) holds true. If the
answer is no, then we conclude that the Gram matrix R, and hence the basis B, are
not reduced, and stop. Otherwise we proceed in the algorithm.
Step 3. Similar procedure applies to the quadratic equation

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r3;3:
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Let
I3 D

�
�
jv3j

�1
;
jv3j

�1

�
and set E3 to be the finite set Z4 \ I 43 . By Definition 6.2 and by condition (B20), a
reduced Gram matrix is such that: if there exists .n1; n2; n3; n4/ 2 E3 n f0g with

.n1; n2; n3; n4/R
t .n1; n2; n3; n4/ < r3;3 (A.3)

then n3; n4 have common divisors. Therefore we check if (B20) holds true. If the
answer is no, then we conclude that the Gram matrix R, and hence the basis B, are
not reduced, and stop. Otherwise we proceed in the algorithm.
Step 4. In the last step our procedure is applied to the quadratic equation

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r4;4:

Let
I4 D

�
�
jv4j

�1
;
jv4j

�1

�
and set E4 to be the finite set Z4 \ I 44 . By Definition 6.2 and by condition (B20), a
reduced Gram matrix is such that: if there exists .n1; n2; n3; n4/ 2 E4 n f0g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ < r4;4 (A.4)

then n4 must be different from ˙1. Therefore we check if (B20) holds true. If the
answer is no, then we conclude that the Gram matrix R, and hence the basis B, are
not reduced. Otherwise we finally conclude that the Gram matrix R, and hence the
basis B, are reduced.

A few significant examples, useful to illustrate themeaning of the results obtained,
are the following.

Let f1; I; J;Kg be the standard basis for the skew field of quaternions.
Example A.1. An example of a cyclic-dihedral torus is the one associated to
.I; e

2�J=5; e
2�J=5I / 2 M. Indeed, running the Algorithm presented in this section,

we find out that Step 0 is satisfied and that the only vector of the lattice L generated
by the special basis B D f1; I; e2�J=5; e2�J=5I g inside the unit ball is the null vector;
besides, on S3 \ L we only find the set of vectors B [ �B.
Example A.2. A second example of a cyclic-dihedral torus is the one associated
to .I; 4J C 3K;�4K C 3J / 2 M. Indeed, running the Algorithm presented
in this section, we find out that Step 0 is satisfied and all conditions in (B2)
are verified. The only vector of the lattice L generated by the special basis
B D f1; I; 4J C 3K;�4K C 3J g inside the unit ball is the null vector; besides,
on S3 \L we only find the set of vectors f˙1;˙I g. On the sphere of radius 5 there
are 16 elements of L and the product by a 2 f˙1;˙I g permutes them, as explained
in Proposition 8.4.
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Example A.3. To present an example of a cyclic torus we use the one associated to
.e
�I=3; e

2�J=5; e
2�J=5e

�I=3/ 2M, and hence to the lattice L generated by the special
basis B D f1; e�I=3; e2�J=5; e2�J=5e�I=3g. Indeed, running the Algorithm presented
in this section, we find out that Step 0 is satisfied and the only vector of the lattice L
inside the unit ball is the null vector; besides, on L \ S3 we have 12 vectors: 8 of
them are in B [ �B and 4 other vectors correspond to f˙e2�I=3;˙e2�J=5e2�I=3g.

B. An algorithm to check if a basis is tame

We want now to provide an algorithm to establish when a reduced basis is a tame
basis.

LetR D .ri;j /i;jD1;:::;4 be the reduced Grammatrix associated to a reduced basis
B D fv1; v2; v3; v4g of a rank-4 lattice L. We will use precisely the same notations
as in the algorithm of the previous section. The first step of our new algorithm is the
following:
Step 0. We check if rk;kC1 D hvk; vkC1i (for k D 1; 2; 3) are all strictly positive
quantities. If this is true, we proceed in the algorithm; otherwise we conclude that
the basis B is not tame, and stop.
Step 1. Since R D QDtQ, the quadratic form .n1; n2; n3; n4/ R

t .n1; n2; n3; n4/

can also be written as

.n1; n2; n3; n4/QD
tQ t .n1; n2; n3; n4/ D �

2
1x
2
1 C � � � C �

2
4x
2
4

where �21; : : : ; �24 are the ordered positive eigenvalues of D and .x1; : : : ; x4/ D
.n1; : : : ; n4/Q. The geometric locus of vectors .x1; : : : ; x4/ 2 R4 for which the
diagonalized quadratic form is equal to r1;1 D hv1; v1i is an ellipsoid having the
length of the maximal axis of symmetry equal to 2jv1j=�1. Therefore, the quadruplets
.n1; n2; n3; n4/ 2 Z4 such that

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r1;1 (B.1)

belong necessarily to the finite set E1 D Z4 \ I 41 , where

I1 D

�
�
jv1j

�1
;
jv1j

�1

�
:

At this point we recall the first step of the construction of the Minkowski–Siegel
reduction algorithm: we check if there exists a point .n1; n2; n3; n4/ in the finite set
E1 n f.˙1; 0; 0; 0/g such that equality (B.1) is fulfilled. If the answer is yes, then the
integers .n1; n2; n3; n4/ have common divisors: indeed, if no non-trivial common
divisor exists, we can find a vector in the lattice L whose squared norm is equal
to r1;1 and which can substitute v1 in B. If this is the case the basis B is not unique
and it is not tame. Otherwise we proceed in the algorithm.
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Step 2. In this step we consider the quadratic equation

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r2;2:

Let
I2 D

�
�
jv2j

�1
;
jv2j

�1

�
and set E2 to be the finite set Z4 \ I 42 . Suppose there exists no quadruplet
.n1; n2; n3; n4/ 2 E2 n f.0;˙1; 0; 0/g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r2;2: (B.2)

Then we go to the next step of the algorithm. Suppose that instead we find a (finite)
set B of quadruplets .n1; n2; n3; n4/ 2 E2 n f.0;˙1; 0; 0/g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r2;2: (B.3)

We use now Definition 7.6, Proposition 7.7 and condition (B20): if, for all elements
.n1; n2; n3; n4/ 2 B , .n2; n3; n4/ have common divisors, we go to the next step of
the algorithm. Otherwise we conclude that the basis B is not tame, and stop.

Step 3. Similar procedure applies to the quadratic equation

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r3;3:

Let
I3 D

�
�
jv3j

�1
;
jv3j

�1

�
and set E3 to be the finite set Z4 \ I 43 . Suppose there exists no quadruplet
.n1; n2; n3; n4/ 2 E3 n f.0; 0;˙1; 0/g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r3;3: (B.4)

Then we go to the next step of the algorithm. Suppose that instead we find a (finite)
set C of quadruplets .n1; n2; n3; n4/ 2 E3 n f.0; 0;˙1; 0/g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r3;3: (B.5)

We use again Definition 7.6, Proposition 7.7 and condition (B20): if, for all elements
.n1; n2; n3; n4/ 2 C , .n3; n4/ have common divisors, we go to the next step of the
algorithm. Otherwise we conclude that the basis B is not tame, and stop.

Step 4. In the last step our procedure is applied to the quadratic equation

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r4;4:
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Let
I4 D

�
�
jv4j

�1
;
jv4j

�1

�
and set E4 to be the finite set Z4 \ I 44 . Suppose there exists no quadruplet
.n1; n2; n3; n4/ 2 E4 n f.0; 0; 0;˙1/g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r4;4: (B.6)

Then we conclude that B is tame. Suppose that instead we find a (finite) set D of
quadruplets .n1; n2; n3; n4/ 2 E4 n f.0; 0; 0;˙1/g with

.n1; n2; n3; n4/ R
t .n1; n2; n3; n4/ D r4;4: (B.7)

We use again Definition 7.6, Proposition 7.7 and condition (B20): if, for all elements
.n1; n2; n3; n4/ 2 D, n4 D ˙1, then the basisB is not tame. Otherwise we conclude
that the basis B is tame.

To conclude, we present an explicit example of special tame lattice (i.e. a lattice
whose reduced Gram matrix belongs to VR).

Let f1; I; J;Kg be the standard basis for the skew field of quaternions.
Example B.1. The lattice L generated by the special basis

B D
˚
1; 2I C 1

10
; 3J C 1

100
; 4K C 1

1000

	
is a tame lattice. The proof follows by a direct application of the algorithm.
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