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Abstract
We investigate slice-quaternionic Hopf surfaces. In particular, we construct new struc-
tures of slice-quaternionicmanifold onS

1×S
7, we study their group of automorphisms

and their deformations.
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1 Introduction

Holomorphic functions on open domains of C
n yield a category, whence the notion of

complex manifold. In fact, just a directed graph structure may suffice to get models for
constructing structures on manifolds. In particular, we are interested in slice-regular
functions over the quaternions in the sense of [16], see Definition 2.3 adapted to the
two variables. Such a notion has its source in the work by Fueter, further developed
by Ghiloni and Perotti. It represents a counterpart in several variables of the notion of
slice-regular function in one quaternionic variable studied in [14,15], which appeared
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to share with holomorphic functions a rich theory from the analytic point of view, [4],
[6]; see also [7]. We refer to [13,16] for precise definitions and for results.

The first examples of manifolds modelled over quaternions are constructed and
studied in [3,10,20,21]: quaternionic tori [3], quaternionic projective spaces HP

1 and
HP

n [20], (affine) Hopf quaternionic manifolds [21], blow-up of H
n at 0 and, more in

general, of a quaternionic manifold at a point [10], quaternionic Iwasawa manifolds
[21], affine quaternionic manifolds [10,11]. But for some exceptions [10], they are
indeed affine quaternionic structures.

In Physics also, large classes of examples of noncommutative finite-dimensional
manifolds have been exhibited in connectionwith theYang-Baxter equation: for exam-
ple, the so called θ−deformations of C

2 (identified with R
4 and H), C2

θ , studied in [8]
and in [9] with their natural quantum groups of symmetries which are θ−deformations
of the classical groups GL(4, R), SL(4, R) and GL(2, C).

This note has the aim to extend the above class of examples. More precisely, we
construct and investigate slice-quaternionic primaryHopf surfaces, namely,manifolds
whose universal cover is H

2 \ {(0, 0)} and the fundamental group equals the infinite
cyclic group Z, endowed with a structure of slice-quaternionic manifold. In a sense,
these are the simplest examples other than tori. Notice indeed, as in [21], that these
constructions correspond to the two ways of constructing affine complex manifolds
in dimension 1, namely, C

/
(Z ⊕ √−1Z) and C

∗ \ {0}/Z . (For the affine complex
case, see also [23].) This is done in view to further understand a possible notion of
manifold in the slice-quaternionic class.

Other than quaternionic affine structures [21], case (A) in Theorem 3.1, we get new
slice-quaternionic structures: take λ ∈ H\{0}, p ∈ N\{0, 1},β ∈ Hwith 0 < |β| < 1,
(in a moment, we will restrict to β ∈ R) and define

f (z, w) := (
z · β p + w p · λ, w · β

)
.

As for notation, recall that any (non-real) quaternion q ∈ H can be written (uniquely)
as q = x + y · I with I ∈ S

2 = {q ∈ H : q2 = −1} and y ≥ 0. We denote Iq := I ,
and we set L Iq := R ⊕ R · Iq � C. In case q ∈ R, we set L Iq = H. Moreover,
ext denotes the regular extension: it acts on a function defined on H × L Iβ giving a
slice-regular extension on H

2. Consider then

� :=
{
ext

(
f �◦k

H×L Iβ

) = f ◦k : k ∈ Z

}
.

Note that, in order to � being a group of automorphisms in the sense of [16] in
Aut(H2 \ {(0, 0)}), we have to force β ∈ R. In fact, in this case, this allows us to avoid
regular extension. Then we consider

H
2 \ {(0, 0)}

/
� ,

see case (B) in Theorem 3.1.
We prove the following result.
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Main Theorem Let f : H
2 → H

2 be the function

f (z, w) := (
z · α + w p · λ, w · β

)
, (1.1)

where p ∈ N \ {0}, α, β, λ ∈ H are such that

0 < |α| ≤ |β| < 1 and
(
α − β p) · λ = 0.

In the following cases, the quotient of H
2 \ {(0, 0)} by the subgroup generated by f

yields a structure of slice-quaternionic Hopf surface:

Case A.:

Case A.1.: when λ = 0, α = β ∈ H with 0 < |α| < 1;
Case A.2.: when λ = 0, α, β ∈ H with 0 < |α| ≤ |β| < 1 and α �= β;
Case A.3.: when λ ∈ H with λ �= 0, p = 1, α = β ∈ H with 0 < |α| < 1;

Case B.: when λ ∈ H with λ �= 0, p ∈ N with p > 1, β ∈ R with 0 < |β| < 1,
and α = β p.

Remark We wonder whether other slice-quaternionic structures on S
1 × S

7 may be
constructed; see Remark 3.3.

The automorphism groups of the above slice-quaternionic structures are inves-
tigated in Theorem 4.1. Notice that, in general, a slice-quaternionic structure does
not induce a holomorphic structure; compare also Remark 3.2. (Note indeed that
(X0 + X1 · J ) · (Y0 + Y1 · J ) = (X0 · Y0 − X1 · Ȳ1) + (X0 · Y1 + X1 · Ȳ0) · J for
X0, X1,Y0,Y1 ∈ R ⊕ I · R, where I , J are orthogonal complex structures on R

4.)
Therefore, the slice-quaternionic Hopf surfaces in case (B) do not underlie a complex
Calabi-Eckmann structure.

We prove the following result.

Theorem 4.1 Let X = H
2 \ {(0, 0)}/〈 f 〉 be a slice-quaternionicHopf surface, where

f is as in equation (1.1). The dimension of the group of automorphisms of X is as
follows:

Case A.1.: dimRAut(X) ∈ {8, 16};
Case A.2.: dimRAut(X) ∈ {4, 6, 8};
Case A.3.: dimRAut(X) ∈ {4, 8};
Case B.: dimRAut(X) = 5.

Finally, we provide families of slice-quaternionic Hopf surfaces, connecting cases
(A.1) and (A.3), respectively cases (A.2.1) and (B), see Sect. 5.

Remark 1.1 As suggested by the anonymous Referee, we observe that analogous con-
structions can be performed to obtain slice-quaternionic Hopf manifolds of higher
dimension, and that similar techniques might be possibly developed for the study of
other slice-quaternionic manifolds, for example manifolds of Calabi-Eckmann type
and Inoue surfaces type. This will be investigated in a forthcoming paper.
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The plan of this note is as follows: In Sect. 2, we recall the notions of
slice-quaternionic manifold and slice-quaternionic map. In Sect. 3, we study slice-
quaternionic Hopf surfaces, proving Theorem 3.1. In Sect. 4, we describe the group
of automorphisms of these manifolds, Theorem 4.1. Finally, in Sect. 5, we construct
families of slice-quaternionic Hopf surfaces.

2 Regular Slice-Quaternionic Structures onManifolds

Slice-quaternionic manifolds are introduced and studied in [3,10]. For sake of com-
pleteness and for reader’s convenience we rephase here the definition of slice regular
function of several quaternionic variables, as introduced by [16] and [10, Sect. 2],
adapted to the two variables. Let D be an open subset of C

2, invariant with respect
to complex conjugation in each variable z1, z2. Let R2 be the real Clifford algebra
(isomorphic to H) with basic units e1, e2 and let e12 = e1e2.

Definition 2.1 Acontinuous function F : D → H⊗R2,with F = F0+e1F1+e2F2+
e12F12 and FK : D → H is called a stem function if it is Clifford-intrinsic, i.e. for each
K ∈ P(2), h ∈ {1, 2} and z = (z1, z2) ∈ D, the components F0, F1, F2, F12 are,
respectively, even-even, odd-even, even-odd, odd-odd with respect to (β1, β2) where
β1 = �m(z1) and β2 = �m(z2), e.g. F1(z1, z2) = −F1(z1, z2) and so on.

Let �D be the circular subset of H
2 associated to D ⊂ C

2 :

�D = {x = (x1, x2) ∈ H
2 | xh = αh

+βh Jh ∈ CJh , Jh ∈ SH, (α1 + iβ1, α2 + iβ2) ∈ D}.

Definition 2.2 Given a stem function F : D → H⊗R2,wedefine the left slice function
I(F) : �D → H induced by F by setting, for each x = (x1, x2) = (α1 + J1β1, α2 +
J2β2)

I(F)(x) := F0(z1, z2) + J1F1(z1, z2) + J2F1(z1, z2) + J1 J2F12(z1, z2),

where (z1, z2) = (α1 + iβ1, α2 + iβ2) ∈ D.

Definition 2.3 Let F : D → H ⊗ R2 be a stem function of class C1 and let f =
I(F) : �D → H the induced slice function. Then F is called holomorphic stem
function if ∂h F = 0 on D for h = 1, 2, where

∂1F = 1

2

(
∂F

∂α1
+ e1

(
∂F

∂β1

))
and ∂2F = 1

2

(
∂F

∂α2
+

(
∂F

∂β2

)
e2

)
.

If F is holomorphic, then we say that f = I(F) is a (left) slice regular function on
�D .

We consider now the geometric notion of manifold associated with slice regular
functions.
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Definition 2.4 ([10, Def ini tions 3.1–3.2]) Let X be a differentiable manifold. Then
X is said to be a slice(-regular)-quaternionic manifold when endowed with a
slice(-regular)-quaternionic structure, that is, a differentiable structure with changes
of charts being slice regular in the sense of [16, Definition 7] (for surfaces you can also
see Definition 2.3). (Note, in particular, that the domains of definition of transition
functions must be circular [16, p. 736].) Slice(-regular)-quaternionic maps between
slice-quaternionicmanifolds aremaps being slice regular in the sense of [16,Definition
7] in local coordinates.

Note that, since the composition of slice regular functions is not slice regular in
general, then the conditions have to be checked on any charts. (This motivates the
possible preferred choice of special sub-classes of slice regular functions, e.g., affine
functions.)

By automorphism,wemean a slice-quaternionicmap from X to itself whose inverse
is still slice-quaternionic.

In particular, slice regular functions f : D → H in the sense of [16, Definition 7]
in one variable on a circular domain D ⊆ H such that D ∩ R �= ∅ are slice regular in
the sense of [14,15]. In [3], slice-quaternionic structures on a 4-real-dimensional torus
are constructed and classified. More in general, since ordered polynomial functions
p(x) = ∑

	 x
	a	 with right coefficients in H are slice regular, [16, Examples 3.1],

then any affine structure is slice-quaternionic.
The following result allows to single out a first class of manifolds admitting quater-

nionic structures, see also [10, Sect. 3.3]. For its holomorphic analogue, see, e.g., [17,
2.1.5, 2.1.7]. (Note indeed that we can choose circular domains as charts.)

Lemma 2.5 Let M be a differentiable manifold of dimension 4n. Then M admits an
affine (whence slice-quaternionic) structure [10, Definition 3.8] if and only if there is
an immersion ψ : M̃ → H

n of the universal covering M̃ of M such that, for every
covering transformation γ we have ψ ◦ γ = Xγ ◦ ψ for some affine transformation
Xγ of H

n.

Another class of slice-quaternionic manifolds is constructed as follows: Let G be
a group of automorphisms acting on a slice-quaternionic manifold X . We recall the
following notions:

• G is called properly discontinuous if, for any compact sets K1 and K2 in X , there
are only a finite number of elements g ∈ G such that g(K1) ∩ K2 �= ∅.

• A point x ∈ X is called a fixed-point of g ∈ G if g(p) = p. The group G is called
fixed-point free if, for any g ∈ G \ {id}, there is no fixed-point of g.

Analogously as in the holomorphic case, (see, e.g., [18, Theorem 2.2],) we have the
following results.

Proposition 2.6 Let X be a slice-quaternionic manifold. Let G be a group of auto-
morphisms of X such that: G is properly discontinuous; G is fixed-point free. Then
the quotient space X

/
G has a structure of slice-quaternionic manifold, such that the

projection map π : X → X
/
G is a slice-quaternionic map.
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Proposition 2.7 Let X1 and X2 be slice-quaternionic manifolds. Let G1 and G2 be
groups of automorphisms of X1, respectively X2, being properly discontinuous and
fixed-point free. Let f : X1/G1 → X2/G2 be a slice-quaternionic map. Then there
exists a slice-quaternionic map F : X1 → X2 such that the diagram

X1

π1

F
X2

π2

X1
/
G1 f

X2
/
G2

is commutative, where π1 and π2 denote the natural projections.

3 Slice-Quaternionic Hopf Surfaces

A slice-quaternionic (primary) Hopf surface is a slice-quaternionic manifold whose
universal covering isH

2 \{(0, 0)} and the fundamental group equals the infinite cyclic
group Z.

As a differentiable manifold, a slice-quaternionic Hopf surface X is the same as
the smooth manifold underlying a complex Hopf manifold C

4 \ {0}/Z, that is, it is
diffeomorphic to S

1 × S
7. Its cohomology is then H•(X; Z) = Z[0] ⊕ Z[−1] ⊕

Z[−7] ⊕ Z[−8]. Note also that the differentiable manifold underlying X admits a
hypercomplex structure.

We state now the main result, where we construct slice-quaternionic Hopf surfaces.
(The choice for the normal forms is assumed up to regular ∗-inverse and in accordance
to the classical complex case, see [22], to which we are reduced at least in the case of
the generator f of � preserving one or all slices.)

Theorem 3.1 Let f : H
2 → H

2 be the function

f (z, w) := f p,α,β,λ(z, w) := (
z · α + w p · λ, w · β

)
,

where p ∈ N \ {0}, α, β, λ ∈ H are such that

0 < |α| ≤ |β| < 1 and
(
α − β p) · λ = 0.

We consider the following cases:

Case A.: Consider the following sub-cases.

Case A.1.: When λ = 0, α = β ∈ H with 0 < |α| < 1.
Case A.2.: When λ = 0, α, β ∈ H with 0 < |α| ≤ |β| < 1 and α �= β.
Case A.3.: When λ ∈ H with λ �= 0, p = 1, α = β ∈ H with 0 < |α| < 1.

Case B.: When λ ∈ H with λ �= 0, p ∈ N with p > 1, α = β p ∈ H with
0 < |β| < 1. Assume moreover that β ∈ R.
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Set

� :=
{
f ◦k : k ∈ Z

}
⊆ Aut(H2 \ {(0, 0)}).

Then

X := X p,α,β,λ := H
2 \ {(0, 0)}

/
�

is a slice-quaternionic Hopf surface. More precisely, it admits affine structures if and
only if it belongs to case (A).

Proof Case (A) is a consequence of Lemma 2.5. Now we are reduced to prove case
(B) by applying Proposition 2.6. First, take β ∈ H, possibly non-real. By computing
f �◦k

H×L Iβ
(z, w), we get

ext
(
f �◦k

H×L Iβ

)
(z, w) =

⎛

⎜⎜⎜
⎜
⎝
z · βkp + w p ·

⎛

⎜⎜⎜
⎜
⎝

∑

	+m=k−1
	,m≥0 if k≥0
	,m<0 if k<0

β	·p · λ · βm·p

⎞

⎟⎟⎟
⎟
⎠

, w · βk

⎞

⎟⎟⎟
⎟
⎠

.

In fact, because of the specific form of the function, this is just a regular extension

of the second variable. Note that, when β /∈ R, then

{
ext

(
f �◦k

H×L Iβ

)
: k ∈ Z

}
is

not a group: indeed, since f is not linear, the extension of the composition is different
from the (non-slice regular) composition of extensions. This motivates the choice for

β ∈ R. For any k ∈ Z\{0}, the map ext

(
f �◦k

H×L Iβ

)
has no fixed point: otherwise, we

would have w = w · βk whence, by taking norms, |w| = 0; therefore, we would have
z ·βkp = z whence, by taking norms, |z| = 0. Moreover, � is properly discontinuous.
Indeed, take K1 and K2 compact sets in H

2 \ {(0, 0)}. We may assume that

K1 ⊂
{
(z, w) ∈ H

2 : r1 < |w| < R1

}
and

K2 ⊂
{
(z, w) ∈ H

2 : r2 < |w| < R2

}

where 0 < r1 < R1 and 0 < r2 < R2 are real numbers. Then, for any k > lg r2
r1

/ lg |β|,
it holds ext

(
f �◦k

H×L Iβ

)
(K1) ∩ K2 = ∅. ��

Remark 3.2 We point out that the quaternionic structure given to the Hopf surfaces
in cases (A), being linear quaternionic, coincides with a complex structure on C

2.
Indeed, let q = z + w · j ∈ H, a = α + β · j ∈ H, and z, w, α, β ∈ C, then:

q · a = (z + w · j) · (α + β · j) = (z · α − w · β) + (z · β + w · α) · j ,
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i.e., the right quaternionic multiplication by α + β · j coincides with the map:

C
2 � (z, w) �→ (z · α − w · β, z · β + w · α) ∈ C

2,

which in matrix form reads as

(z, w) ·
(

α β

−β α

)
= (z · α − w · β, z · β + w · α).

If α �= 0, the complex matrix A =
(

α β

−β α

)
has two different (complex conjugated)

eigenvalues, and hence, A is conjugated to a diagonal matrix. Therefore, the quater-
nionic actions described on the Hopf surfaces in cases (A.1) and (A.2) are particular
diagonal complex actions on C

4. Similarly for the case (A.3). On the other hand, the
quaternionic structure on Hopf surfaces of case (B) are new, at our knowledge.

Remark 3.3 We wonder whether other slice-quaternionic structures on S
1 × S

7 may
be constructed.

A first tentative could be by using the following extension result, that we recall.
Let f : H

2 → H
2 be a smooth function. Let L1, L2 be slices of H such

that f �L1×L2 : C
2 � L1 × L2 → H

2 is holomorphic. Then, any component
f ( j)�L1×L2 : L1 × L2 → H is analytic, let us say

f ( j)�L1×L2(z1, z2) =:
∑

k1,k2∈N
zk11 · zk22 · a( j)

k1,k2
,

where a( j)
k1,k2

∈ H. We set

f ∗ := ext( f �L1×L2) :=
(
f̃ (1), f̃ (2)

)
: H

2 → H
2,

where

f̃ ( j)(z, w) :=
∑

z,w∈N
zk1 · wk2 · a( j)

k1,k2
.

Then ext( f �L1×L2) is a slice regular function in the sense of [16] such that

ext( f �L1×L2)�L1×L2 = f �L1×L2 .

Aswe learnt fromAlessandroPerotti,we have the following representation formula.
Define f ∗ : H

2 → H
2 as follows: For any

x := (x1, x2) = (α1 + J1β1, α2 + J2β2) ∈ H
2,
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consider

(y1, y2) := (α1 + I1β1, α2 + I2β2) ∈ L I1 × L I2 ⊂ H
2.

Denote, e.g., by yc1 = (α1 + I1β1)
c := α1 − I1β1 the complex conjugate of y1 ∈

L I1 � C with respect to the complex structure I1. Define

4 · f ∗(x) := f (y1, y2) + f
(
yc1, y2

) + f
(
y1, y

c
2

) + f
(
yc1, y

c
2

)

−J1 I1 f (y1, y2) + J1 I1 f
(
yc1, y2

) − J1 I1 f
(
y1, y

c
2

) + J1 I1 f
(
yc1, y

c
2

)

−J2 I2 f (y1, y2) − J2 I2 f
(
yc1, y2

) + J2 I2 f
(
y1, y

c
2

) + J2 I2 f
(
yc1, y

c
2

)

+J1 J2 I2 I1 f (y1, y2) − J1 J2 I2 I1 f
(
yc1, y2

)

−J1 J2 I2 I1 f
(
y1, y

c
2

) + J1 J2 I2 I1 f
(
yc1, y

c
2

)
,

where H
2 is endowed with a structure of left-H-module by a · (b, c) = (a · b, a · c).

Then f ∗ is the extension as before.

Remark 3.4 We recall that the Hopf surfaces are related to Hopf fibrations, which are
important in twistor theory, see, e.g., [12]. More precisely, consider the fibration:

S
3

S
7

p

HP
1,

whence S
3 × S

1
S
7 × S

1

p

HP
1.

Take local charts for U1 := {[z1 : z2] ∈ HP
1 : z1 �= 0} ⊆ HP

1 and U2 := {[z1 :
z2] ∈ HP

1 : z2 �= 0} ⊆ HP
1. The maps

ψ1([1 : ζ 2
1 ], a) =

(
a

(
1 + |ζ 2

1 |2)1/2
,

ζ 2
1 · a

(
1 + |ζ 2

1 |2)1/2
)

and

ψ2([ζ 1
2 : 1], a) =

(
ζ 1
2 · a

(
1 + |ζ 1

2 |2)1/2
,

a
(
1 + |ζ 1

2 |2)1/2
)

yield diffeomorphisms

ψ1 : U1 × S
3 �→ p−1(U1) and ψ2 : U2 × S

3 �→ p−1(U2).

4 Automorphisms of Slice-Quaternionic Hopf Surfaces

In this section, we compute the group of automorphisms of the slice-quaternionic Hopf
surfaces in Theorem 3.1. (For results in the holomorphic context, see [19,24].)
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Theorem 4.1 Let X = H
2 \ {(0, 0)}/〈 f 〉 be a slice-quaternionic Hopf surface. The

group of automorphisms of X is as follows.

Case A.1.: In case f (z, w) = (z · α,w · α) for 0 < |α| < 1 :

Aut(X) = {
ϕ(z, w) = (

z · a1,0 + w · a0,1, z · b1,0 + w · b0,1
)

: a1,0, a0,1, b1,0, b0,1 ∈ L Iα such that b0,1 · a1,0 − b1,0 · a0,1 �= 0
}/〈 f 〉 ;

in particular, dimRAut(X) ∈ {8, 16}.
Case A.2.1.: In case f (z, w) = (z · α,w · β) for 0 < |α| < |β| < 1 :

Aut(X) = {
ϕ(z, w) = (

z · a1,0, w · b0,1
)

: a1,0 ∈ L Iα , b0,1 ∈ L Iβ such that b0,1 · a1,0 �= 0
}/〈 f 〉 ;

in particular, dimRAut(X) ∈ {4, 6, 8}.
Case A.2.2.: In case f (z, w) = (z · α,w · β) for 0 < |α| = |β| < 1 and α �= β :

Aut(X) = {
ϕ(z, w) = (

z · a1,0 + w · a0,1, z · b1,0 + w · b0,1
)

: a1,0 ∈ L Iα , b0,1 ∈ L Iβ , β · a0,1 = a0,1 · α, α · b1,0 = b1,0 · β

such that b1,0 · (a0,1 − b0,1 · b−1
1,0 · a1,0) �= 0

}/
〈 f 〉 ;

in particular, dimRAut(X) ∈ {4, 6, 8}.
Case A.3.: In case f (z, w) = (z · α + w · λ,w · α) for λ ∈ H \ {0} and 0 < |α|
< 1 :

Aut(X) = {
ϕ(z, w) = (

z · a1,0 + w · a0,1, z · b1,0 + w · b0,1
)

: equations (4.4) hold }/〈 f 〉 ;

in particular, dimRAut(X) ∈ {4, 8}.
Case B.: In case f (z, w) = (z · β p + w p · λ,w · β) for p ∈ N\{0, 1}, λ ∈ H\{0}
and 0 < |β| < 1, β ∈ R :

Aut(X) =
{
ϕ(z, w) =

(
z · bp

0,1 + w p · a0,p, w · b0,1
)

: b0,1 ∈ R, a0,p ∈ H such that b0,1 �= 0
}/〈 f 〉 ;

in particular, dimRAut(X) = 5.

Proof Let X = H
2 \ {(0, 0)}/〈 f 〉 . Let ϕ : X → X be an automorphism of X . By

Proposition 2.7, it is induced by an automorphism� : H
2 \{(0, 0)} → H

2 \{(0, 0)} of
the universal covering of X . By the Hartogs extension phenomenon for slice regular
functions [16, Theorem 2], see also [7, Corollary 4.9], removability of singularity
yields an automorphism � : H

2 → H
2. By [16, Corollary 2], the set of slice regular
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functions on H
2 coincides with the one of the convergent ordered power series (with

right coefficients). Whence we get that

�(z, w) =
⎛

⎝
∑

h,k≥0

zh · wk · ah,k,
∑

h,k≥0

zh · wk · bh,k

⎞

⎠ , with a0,0 = b0,0 = 0,

which satisfies

� ◦ f = f ◦ �. (4.1)

We consider separately each case.

Case A.1.: Consider the case f (z, w) = (z · α,w · α)for 0 < |α| < 1.

By imposing (4.1), we get

∑

h,k≥0

(z · α)h · (w · α)k · ah,k =
∑

h,k≥0

zh · wk · ah,k · α,

∑

h,k≥0

(z · α)h · (w · α)k · bh,k =
∑

h,k≥0

zh · wk · bh,k · α.

Suppose α /∈ R. Since the right-hand sides are slice regular series, the left-hand
sides have to be slice regular, too: that is, the non-real coefficients have to be on
the right. In particular, it follows that

ah,k = bh,k = 0 for any h + k �= 1.

Suppose now α ∈ R. Then we get

∑

h,k≥0

zh · wk · αh+k · bh,k =
∑

h,k≥0

zh · wk · bh,k · α,

whence, for any h, k ∈ N,

αh+k · ah,k = ah,k · α and αh+k · bh,k = bh,k · α.

Since α is real and by equalling the norms, we get that, for any h, k ∈ N,

|α|h+k−1 · |ah,k | = |ah,k | and |α|h+k−1 · |bh,k | = |bh,k |.

Since |α| < 1, therefore we get again

ah,k = bh,k = 0 for any h + k �= 1.
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Moreover, in both cases,

a1,0 · α = α · a1,0, a0,1 · α = α · a0,1,
b1,0 · α = α · b1,0, b0,1 · α = α · b0,1,

that is,

a1,0, a0,1, b1,0, b0,1 ∈ L Iα .

We recall, by [1, Proposition 2.1], [2] and [5], that � is (right-)invertible if and
only if

b0,1 ·
(
a1,0 − b1,0 · b−1

0,1 · a0,1
)

�= 0 or a0,1 ·
(
b1,0 − a1,0 · a−1

0,1 · b0,1
)

�= 0.

(4.2)

Finally we get that � is an automorphism if and only if

b0,1 · a1,0 − b1,0 · a0,1 �= 0.

Therefore dimRAut(X) ∈ {8, 16}, according to α ∈ H \ R, respectively α ∈ R.

Case A.2.: Consider the case f (z, w) = (z · α,w · β) for 0 < |α| ≤ |β| < 1 and
α �= β.

By imposing (4.1), we get

∑

h,k≥0

(z · α)h · (w · β)k · ah,k =
∑

h,k≥0

zh · wk · ah,k · α, (4.3)

∑

h,k≥0

(z · α)h · (w · β)k · bh,k =
∑

h,k≥0

zh · wk · bh,k · β.

Suppose first that both α and β are non-real. Since the right-hand side is a slice reg-
ular series, the left-hand side has to be slice regular, too. This yields the following
conditions on ah,k and bh,k :

ah,k = 0 for any (h, k) �= {(1, 0), (0, 1)},
bh,k = 0 for any (h, k) �= {(1, 0), (0, 1)}.

In the other cases, when either α or β or both are real, with similar arguments as
before, we recover the same conditions.
Now, we distinguish two cases.

Case A.2.1.: In case |α| �= |β|, by equalling the norms, we get that

a0,1 = 0,

b1,0 = 0.
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Moreover,

a1,0 · α = α · a1,0, b0,1 · β = β · b0,1,

that is,

a1,0 ∈ L Iα , b0,1 ∈ L Iβ .

Finally, we get that � is an automorphism if and only if

b0,1 · a1,0 �= 0.

In the general case that both α and β are non-real, then dimR Aut(X) = 4. If only
one among α and β is real, then dimR Aut(X) = 6, and if both α and β are real,
then dimR Aut(X) = 8.

Case A.2.2.: In case |α| = |β|, by equalling the norms, we always get that

ah,k = 0 for any h + k �= 1,

bh,k = 0 for any h + k �= 1.

Moreover,

a1,0 · α = α · a1,0, b0,1 · β = β · b0,1,

that is,

a1,0 ∈ L Iα , b0,1 ∈ L Iβ ;

but also

a0,1 · α = β · a0,1, b1,0 · β = α · b1,0.

Note that the map, e.g., a0,1 �→ β · a0,1 · α−1 is given by the composition of two
rotations along two orthogonal planes, with angles given by the sum, respectively
the difference, of the arguments of α and β. Then its fixed-locus is either a point
or a plane: it is a plane iff β = α, and it is a point in all remaining cases.
Hence if α, β ∈ H \ R and α = β then dimR Aut(X) = 8; if α, β ∈ H \ R and
α �= β then dimRAut(X) = 4; if α, or β, or both, are real, a0,1 = b1,0 = 0 and
dimRAut(X) is equal to 6, respectively 8.
Finally, we get that � is an automorphism if and only if

b1,0 · (
a0,1 − b0,1 · b−1

1,0 · a1,0
) �= 0.
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Case A.3.: Consider the case f (z, w) = (z · α + w · λ,w · α) for λ ∈ H \ {0}
and 0 < |α| < 1.

By imposing (4.1), we get

∑

h,k≥0

(z · α + w · λ)h · (w · α)k · ah,k =
∑

h,k≥0

zh · wk · (ah,k · α + bh,k · λ),

∑

h,k≥0

(z · α + w · λ)h · (w · α)k · bh,k =
∑

h,k≥0

zh · wk · bh,k · α.

We restrict it to the quaternionic line rμ := {(z, z · μ) : z ∈ H} where μ ∈ R is
any fixed real number:

∑

h,k≥0

(z · (α + μ · λ))h · (z · μ · α)k · ah,k =
∑

h,k≥0

zh · (z · μ)k · (ah,k · α + bh,k · λ),

∑

h,k≥0

(z · (α + μ · λ))h · (z · μ · α)k · bh,k =
∑

h,k≥0

zh · (z · μ)k · bh,k · α.

Suppose first that α is non-real. For μ in a dense subset of R, it holds that also
α+μ·λ /∈ R.We notice that the right-hand sides are slice regular. Notwithstanding,
the left-hand sides are slice regular if and only if

ah,k = 0 for any h + k �= 1,

bh,k = 0 for any h + k �= 1.

So we are reduced to

(α + μ · λ) · a1,0 + μ · α · a0,1 = (a1,0 · α + b1,0 · λ) + μ · (a0,1 · α + b0,1 · λ),

(α + μ · λ) · b1,0 + μ · α · b0,1 = b1,0 · α + μ · b0,1 · α.

By equalling the coefficients in the polynomial in μ, we get

λ · a1,0 + α · a0,1 = a0,1 · α + b0,1 · λ, (4.4)

α · a1,0 = a1,0 · α + b1,0 · λ,

λ · b1,0 + α · b0,1 = b0,1 · α,

α · b1,0 = b1,0 · α.

The last condition gives

– b1,0 ∈ L Iα � C.

The other conditions give

– b0,1 as fixed point of X �→ α · X · α−1 + λ · b1,0 · α−1,
– a1,0 as fixed point of X �→ α · X · α−1 − b1,0 · λ · α−1,
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– a0,1 as fixed point of X �→ α · X · α−1 + λ · a1,0 · α−1 − b0,1 · λ · α−1.

We add further the condition of invertibility (4.2).
The dimension of the group of automorphisms in this case can be computed rea-
soning in the following way.

– If λ · b1,0 · α−1 ∈ L Iα , equivalently, λ ∈ L Iα in case b1,0 �= 0, (for example,
if λ ∈ R,) then b0,1 cannot be in L⊥

Iα
because it is a 2-plane invariant by the

rotation X → α · X · α−1; therefore, no point on it can be fixed by such a
rotation followed by a translation of an element in L Iα . For the same reason,
the component of b0,1 along L⊥

Iα
has to be zero. On the other hand, b0,1 can

be in L Iα if and only if b1,0 = 0 because the rotation X → α · X · α−1 fixes
point by point the elements of L Iα ; in this case b0,1 can be chosen arbitrarily
in L Iα . In this case also a1,0 can be chosen arbitrarily in L Iα because b1,0 is
zero also in the second map, and from the third map it follows that a1,0 = b0,1
and a0,1 is arbitrarily chosen in L Iα . Hence dimR Aut(X) = 4.

– If λ is such that λ · b1,0 · α−1 ∈ L⊥
Iα
, (equivalently, λ ∈ L⊥

Iα
in case b1,0 �=

0,) then the map X �→ α · X · α−1 + λ · b1,0 · α−1 is a roto-translation
of the invariant 2-plane L⊥

Iα
which has a unique fixed point on that 2-plane

and in this case the component of b0,1 along L⊥
Iα

has to be this fixed point

which depends on b1,0. Notice that also b1,0 · λ · α−1 is in L⊥
Iα
, so, for the

same reason, also the component of a1,0 along L⊥
Iα
has to be the unique fixed

point of a roto-translation of the invariant 2-plane L⊥
Iα

depending on b1,0.
Finally, the last equation yields the condition that the component along L Iα of
λ · a1,0 − b0,1 · λ is zero. Since λ ∈ L⊥

Iα
, this last condition is translated in

λ·a⊥,α
1,0 −b⊥,α

0,1 ·λ = 0 where a⊥,α
1,0 b⊥,α

0,1 are respectively the components of a1,0
and b0,1 along L⊥

Iα
. If the equation is not satisfied, then necessarily b1,0 = 0,

then we are again in the previous case. Otherwise, we have dimRAut(X) =
2 + 2 + 2 + 2 = 8.

– Finally, in the general case, split X = X1 + X2 with X1 ∈ L Iα and X2 ∈ L⊥
Iα
.

If the component of λ · b1,0 · α−1 along L Iα is zero, then λ · b1,0 · α−1 ∈ L⊥
Iα
,

so we are back to the previous case. If the component of λ · b1,0 · α−1 along
L Iα is non-zero, then this implies, as before, that λ · b1,0 · α−1 = 0. Note that
this happens exactly when the component of λ along L⊥

Iα
is non-zero. Then we

argue as in the previous case, getting dimR Aut(X) ∈ {4, 8}.
Suppose now α ∈ R, and that λ /∈ R. By imposing the slice regularity of the left-
hand side, we get that: ah,k = 0 and bh,k = 0 for (h, k) /∈ {(1, 0), (0, k) : k ≥ 1}.
Therefore, we are reduced to

z · (α + μ · λ) · a1,0 +
∑

k≥1

zk · μk · αk · a0,k

= z · (a1,0 · α + b1,0 · λ) +
∑

k≥1

zk · μk · (a0,k · α + b0,k · λ),
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z · (α + μ · λ) · b1,0 +
∑

k≥1

zk · μk · αk · b0,k

= z · b1,0 · α +
∑

k≥1

zk · μk · b0,k · α.

We equal, firstly, the coefficients in z; secondly, the coefficients in μ. We are
reduced to

α · a1,0 = a1,0 · α + b1,0 · λ,

λ · a1,0 + α · a0,1 = a0,1 · α + b0,1 · λ,

αk · a0,k = a0,k · α + b0,k · λ, for k > 1,

α · b1,0 = b1,0 · α,

λ · b1,0 + α · b0,1 = b0,1 · α,

αk · b0,k = b0,k · α, for k > 1.

From the first equation, α being real, we get that

b1,0 = 0.

From the last equation, since |α| < 1, we get that b0,k = 0 for k > 1. Whence,
from the third equation, the same argument gives a0,k = 0 for k > 1. Therefore,
we are reduced to

a1,0 ∈ H, a0,1 ∈ H, b0,1 = λ · a1,0 · λ−1,

and the other coefficients are zero, with the condition of invertibility (4.2). Hence
dimR Aut(X) = 8.
The last case is when α ∈ R and λ ∈ R. We get the equations:

∑

h,k≥0

zh+k · (α + μ · λ)h · μk · αk · ah,k =
∑

h,k≥0

zh+k · μk · (ah,k · α + bh,k · λ),

∑

h,k≥0

zh+k · (α + μ · λ)h · μk · αk · bh,k =
∑

h,k≥0

zh+k · μk · bh,k · α.

In the second equation, we compare the coefficients in zt for t = h + k > 1 and
then in μ0, getting αt · bt,0 = bt,0 · α, whence

bh,0 = 0 for h > 1.

Then, in the second equation, we compare the coefficients in zt for t = h + k > 1
and then in μ, getting αt−1 · α · bt−1,1 + t · α · λ · bt,0 = bt−1,1 · α, whence

bh−1,1 = 0 for h > 1.

123



Slice-Quaternionic Hopf Surfaces

By induction on 	 ≥ 0, by comparing the coefficients in zt for t > 1 and then in
μ	, we get that

bh−	,	 = 0 for h > 1, 	 ≥ 0.

Now, in the first equation, we compare the coefficients in zt for t > 1 and then in
μ0, we get that ah,0 = 0 for h > 1; proceeding by induction as before, we finally
get

ah−	,	 = 0 for h > 1, 	 ≥ 0.

Finally, by looking at the degree h + k = 1, we have that

a1,0 ∈ H, a0,1 ∈ H, b1,0 = 0, b0,1 = a1,0,

and the other coefficients are zero, and we assume the invertibility condition (4.2).
Hence, dimR Aut(X) = 8.

CaseB.:Consider the case f (z, w) = (z · β p + w p · λ,w · β) for p ∈ N\{0, 1},
λ ∈ H \ {0} and 0 < |β| < 1, β ∈ R.

Consider first the case λ ∈ R. By imposing (4.1) on the quaternionic curve γμ :=
{(z p, μ · z) : z ∈ H} for a fixed μ ∈ R, we get

∑

h,k

(
z ph+k · μk · ah,k

)
· β p +

⎛

⎝
∑

h,k

z ph+k · μk · bh,k

⎞

⎠

p

· λ

=
∑

h,k

z ph+k · (β p + μp · λ)h · μk · βk · ah,k,

∑

h,k

z ph+k · μk · bh,k · β

=
∑

h,k

z ph+k · (β p + μp · λ)h · μk · βk · bh,k .

We argue now as in case (A.3), the only difference being that we consider h with
weight p. Namely, from the second equation, we compare the coefficients in zt

for t = p · h + k > 1 and we get that

bh,k = 0 for (h, k) /∈ {(1, 0), (0, 1), . . . , (0, p)}.

Notice also that, in order to the left-hand side of the first equation being slice-
regular, we need

b1,0 ∈ R, b0,1 ∈ R, . . . , b0,p ∈ R.
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The same argument again, applied to the first equation, gives

ah,k = 0 for (h, k) /∈ {(1, 0), (0, 1), . . . , (0, p)}.

Moreover, we get the conditions:

a0,k = 0 for k ∈ {1, . . . , p − 1},
bp
0,1 = a1,0,

b0,k = 0 for k ∈ {2, . . . , p − 1},
bp
1,0 = 0,

b0,p = 0.

Finally, we have

�(z, w) =
(
z · bp

0,1 + w p · a0,p, w · b0,1
)

,

where

b0,1 ∈ R and a0,p ∈ H.

The invertibility of � is guaranteed if b0,1 ∈ R \ {0}.
Consider now the case that λ /∈ R. As before, we impose (4.1) on the quaternionic
curve γμ := {(z p, μ · z) : z ∈ H}, and look at the second component. We have

∑

h,k

z ph+k · μk · bh,k · β =
∑

h,k

(
z p · (β p + μp · λ)

)h · zk · μk · βk · bh,k .

The slice regularity of the left-hand side forces

bh,k = 0 for (h, k) /∈ {(0, k), (1, 0)}.

Arguing as we did before in the case λ ∈ R, we get

bh,k = 0 for (h, k) �= (0, 1).

Look now at the first component of (4.1) on the quaternionic curve γμ:

∑

h,k

z ph+k · μk · ah,k · β p + (z · μ · b0,1)p · λ

=
∑

h,k

(
z p · (β p + μp · λ)

)h · zk · βk · ah,k .

The slice regularity of the first series forces

b0,1 ∈ R and ah,k = 0 for (h, k) /∈ {(0, k), (1, 0)}.
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In order to have an automorphism, b0,1 ∈ R \ {0}. We argue as before to conclude
that the conditions for automorphisms are the same.

This concludes the proof. ��

5 Families of Slice-Quaternionic Structures and Deformations

In this section, we construct families of slice-quaternionic Hopf surfaces, connecting
cases (A.1) and (A.3), respectively cases (A.2.1) and (B), in the notation of Theorem
3.1. These are examples of deformations in the slice-quaternionic setting. (For the
holomorphic analogue, see [18, Example 2.15].)

We start constructing a smooth family of slice-quaternionic Hopf surfaces, con-
necting cases (A.1) and (A.3), in Theorem 3.1.

Consider

H
2 \ {(0, 0)} × H.

Fix α ∈ H such that 0 < |α| < 1. Consider the slice-regular function

F : H
2 \ {(0, 0)} × H → H

2 \ {(0, 0)} × H,

F(z, w, λ) := F1,α,α(z, w, λ) := (z · α + w · λ, w · α, λ),

where α ∈ H is such that 0 < |α| < 1. Define

M := H
2 \ {(0, 0)} × H

/
� where � :=

{
F◦k : k ∈ Z

}
.

Since the action of � is fixed-point free and properly discontinuous, then M is a
smooth manifold. (Note that, for α ∈ R, then any F◦k is slice-regular, then we get a
slice-quaternionic family.)

The slice-quaternionic projection

π : H
2 \ {(0, 0)} × H → H

makes the following diagram commutative:

H
2 \ {(0, 0)} × H

π

F1,α,α
H

2 \ {(0, 0)} × H

π

H

whence it induces a map

π : M → H,
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whose fibres are the slice-regular manifolds

π−1(λ) = X1,α,α,λ.

Note how the group of automorphisms changes:

dimR Aut(π−1(0)) ∈ {8, 16} and dimRAut(π−1(λ)) ∈ {4, 8}.

In particular, assume α ∈ R as a special example:

dimRAut(π−1(0)) = 16 and dimRAut(π−1(λ)) = 8.

We construct now a slice-quaternionic family of slice-quaternionic Hopf surfaces,
connecting cases (A.2.1) and (B), respectively in Theorem 3.1.

Consider

H
2 \ {(0, 0)} × H.

Fix p ∈ N with p > 1, and β ∈ R such that 0 < |β| < 1, and take α = β p. Consider
the slice-regular function

F : H
2 \ {(0, 0)} × H → H

2 \ {(0, 0)} × H,

F(z, w, λ) := (z · β p + w p · λ, w · β, λ).

Define

M := H
2 \ {(0, 0)} × H

/
� where � :=

{
F◦k : k ∈ Z

}
.

Since the action of � is fixed-point free and properly discontinuous, M is a slice-
quaternionic manifold by Proposition 2.6.

The slice-quaternionic projection

π : H
2 \ {(0, 0)} × H → H

makes the following diagram commutative:

H
2 \ {(0, 0)} × H

π

F
H

2 \ {(0, 0)} × H

π

H

whence it induces a slice-quaternionic map

π : M → H,
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whose fibres are

π−1(λ) = X p,β p,β,λ.

They are in case (B) for λ �= 0. In particular, for λ = 0, we have

π−1(0) = X p,β p,β,0 = X1,β p,β,0,

which is in case (A.2.1) with β ∈ R, α = β p ∈ R, α �= β, and which is different
from π−1(λ), for λ �= 0, because of Theorem 4.1.

Note how the group of automorphisms changes:

Aut(π−1(0)) = {
ϕ(z, w) = (

z · a1,0, w · b0,1
)

: a1,0, b0,1 ∈ H such that b0,1 · a1,0 �= 0
}/〈 f 〉 ,

and, for λ �= 0,

Aut(π−1(λ)) =
{
ϕ(z, w) =

(
z · bp

0,1 + w p · a0,p, w · b0,1
)

: b0,1 ∈ R, a0,p ∈ H such that b0,1 �= 0
}/〈 f 〉 .

In particular,

dimR Aut(π−1(0)) = 8 and dimR Aut(π−1(λ)) = 5.
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