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ON A QUATERNIONIC PICARD THEOREM

CINZIA BISI AND JÖRG WINKELMANN

(Communicated by Filippo Bracci)

Abstract. The classical theorem of Picard states that a non-constant holo-
morphic function f : C → C can avoid at most one value.

We investigate how many values a non-constant slice regular function of a
quaternionic variable f : H → H may avoid.

1. Introduction

A function f : C → C which is given by a globally convergent power series
f(z) =

∑∞
k=0 akz

k (ak ∈ C) is called an entire function. By the theorem of Picard,
a non-constant entire function f : C → C can avoid at most one value [10], [11],
[12].

Our goal is a similar statement for entire slice regular functions, i.e., for functions
f : H → H (where H denotes the skew field of quaternions) which are given as a
globally convergent power series f(q) =

∑∞
k=0 q

kak (ak ∈ H).
For a function f : H → H being “slice regular” is equivalent to the assumption

that for every imaginary unit I ∈ S its restriction to CI = {x + yI : x, y ∈ R} is
holomorphic with respect to the complex structures induced by left multiplication
by I; see [4, 5].

Here we show the following:

(i) For every 2-dimensional real affine subspace P of H � R4, there exists
an entire slice regular function f : H → H such that f(H) = H \ P . In
particular, for every triple q1, q2, q3 ∈ H there is an entire slice regular
function avoiding these three values.

(ii) Let q1, . . . , q5 ∈ H be in general position (i.e., these five quaternions are
not contained in any 3-dimensional real affine subspace of H). Then every
entire slice regular function avoiding all these five values must be constant.
In particular, for every non-constant entire slice regular function the image
is dense in H.

We do not know whether an entire slice regular function may avoid a generic
choice of four quaternionic numbers.

A key tool is the following fundamental correspondence (see Proposition 2.2):
Let f be a slice regular function and let F be its stem function. Let x, y ∈ R and

c ∈ H. Then there exists an imaginary unit I ∈ S such that f(x + yI) = c if and
only if F (x+ yi)− c⊗ 1 is a zero divisor in the algebra H⊗ C.
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Maybe this work can be of some inspiration in studying hyperbolic quaternionic
slice regular manifolds. Indeed recently many examples of quaternionic slice regular
manifolds have been introduced; see for example [2], [1].

2. Preparations

2.1. Quaternions. The quaternionic numbers are a real 4-dimensional skew field
H, which may be described as the non-commutative R-algebra with 1, generated
by I, J,K with I2 = J2 = K2 = −1, K = IJ = −JI, I = JK = −KJ and
J = KI = −IK.

The set of all elements q ∈ H with q2 = −1 is called the set of imaginary units
and denoted by S.

One may check easily that

S = {c2I + c3J + c4K : ci ∈ R,

4∑
i=2

c2i = 1}.

2.2. Slice regular functions and stem functions. We recall the theory of slice
regular functions and their stem functions ([5], [6]).

An entire slice regular function f : H → H is a function which is given by a
globally convergent power series f(q) =

∑∞
k=0 q

kak (with ak ∈ H).
A stem function F is a holomorphic map from C to the C-algebra HC = H⊗R C

such that F (z) = F (z̄). The tensor product H ⊗R C inherits a complex structure
from its second factor, C, hence it makes sense to talk about holomorphicity and
complex conjugation.

In explicit terms, the stem function F associated to a slice regular function
f(q) =

∑∞
k=0 q

kak may be defined as F (z) =
∑∞

k=0 ak ⊗ zk.
Equivalently, the correspondence may be described as follows:

F (x+ yi) = F1(x+ yi)⊗ 1 + F2(x+ yi)⊗ i

with

F1(x+ yi) =
1

2
(f(x+ yI) + f(x− yI))

and

F2(x+ yi) = −1

2
I (f(x+ yI)− f(x− yI)) .

For a slice regular function f the terms on the right hand side can be shown to be
independent of the choice of the imaginary unit I.

Conversely, one has

f(x+ yH) = F1(x+ yi) +HF2(x+ yi) ∀x, y ∈ R, H ∈ S.

2.3. A remarkable quadric in HC. The euclidean scalar product on H � R4

induces a complex symmetric bilinear form 〈 , 〉 on HC. Explicitly: 〈z, w〉 =∑4
i=1 ziwi.
We observe that HC naturally carries the structure of an R-algebra.
Both the field of complex numbers C and the quaternionic skew field H embed

into HC via z 	→ 1 ⊗ z, resp., q 	→ q ⊗ 1. In this way we may regard C and H as
subrings of HC.
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Proposition 2.1. Let v = 1⊗ v0 + I ⊗ v1 + J ⊗ v2 +K ⊗ v3 = v′ ⊗ 1+ v′′ ⊗ i (with
vi ∈ C, v′, v′′ ∈ H) be an element of HC.

Then the following are equivalent:

(i) v is a zero divisor, i.e., there exists an element w ∈ HC, w 
= 0 with
w · v = 0.

(ii) 〈v, v〉 = 0, i.e.,
∑3

i=0 v
2
i = 0.

(iii) There exists an imaginary unit H ∈ S such that Hv′ = v′′. (Geometrically:
The vectors v′ and v′′ are orthogonal.)

The above equivalence (i) ⇐⇒ (ii) is contained in [13] where it is attributed to
Hamilton, while (ii) ⇐⇒ (iii) may be deduced from the work of Mongodi ([7]). In
addition, these equivalences may be obtained as a special case of a result of Ghiloni
and Perotti ([6, Theorem 17 on page 1679]).

For the convenience of the reader we nevertheless give a proof here.

Proof. (i) =⇒ (iii): We assume that v is a zero divisor (but v 
= 0). Since H has
no zero divisors, it follows that v′, v′′ 
= 0. Now v′ ∈ H∗ and v being a zero divisor,
imply that v ·

(
(v′)−1 ⊗ 1

)
is again a zero divisor. Hence we may assume that v′ = 1.

The same reasoning also shows that we can find an element w = w′ + w′′ ⊗ i with
w′ = 1 and w · v = 0. Thus we obtain

0 = w · v = (1 + w′′ ⊗ i) · (1 + v′′ ⊗ i) = (1− w′′v′′)⊗ 1 + (v′′ + w′′)⊗ i.

Hence v′′ = −w′′ and (v′′)2 = −v′′w′′ = −1, i.e., v′′ ∈ S. In particular, v′′ = H ·1 =
H · v′ for some H ∈ S.

(iii) =⇒ (i): We have v = (1⊗ 1 +H ⊗ i) · v′. Define w = 1⊗ 1−H ⊗ i. Then
w · v = 0, as easily seen by explicit calculation.

(iii) ⇐⇒ (ii): Note that

〈v, v〉 =
〈
v′ + v′′ ⊗ i, v′ + v′′ ⊗ i

〉
=

〈
v′, v′

〉
−

〈
v′′, v′′

〉
+ 2i

〈
v′, v′′

〉
.

Hence 〈v, v〉 = 0 iff v′ and v′′ have the same norm and are orthogonal to each
other. This in turn is equivalent to the existence of an imaginary unit H ∈ S with
v′′ = Hv′. �

Thus the set of all zero divisors of HC is a quadric subvariety of HC � C4. This
quadric has also been investigated by Mongodi ([7]), who pointed out the relevance
for the zero locus, but not the relation with zero divisors of the algebra HC.

2.4. Zeros. Let f be a slice function and let F denote its stem function. Write
F = F1 ⊗ 1 + F2 ⊗ i, with Fh : C → H. Since

f(x+ yI) = F1(x+ yi) + IF2(x+ yi) ∀x, y ∈ R, I ∈ S,

this implies
f(x+ yI) = 0 ⇐⇒ F1(x+ yi) = −IF2(x+ yi),

The following result is implied by Proposition 2.1, but may also be deduced from
[7, Proposition 4.1] in combination with Corollary 3.4 of [7]:

Proposition 2.2. Let f : H → H be a slice regular function and let F : C →
HC = H⊗R C be its stem function. Let x, y ∈ R. Then the following conditions are
equivalent:

(i) There exists an imaginary unit H ∈ S with f(x+ yH) = 0.
(ii) 〈F (x+ yi), F (x+ yi)〉 = 0.
(iii) F (x+ yi) is a zero divisor in the algebra H⊗R C.
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This has the following consequence: let c ∈ H. Then a slice regular function f
avoids c as value (i.e., f(H) ⊂ H \ {c}) if and only if z 	→ F (z)− c⊗ 1 has no zero
which happens if and only if the entire function

Qc : z 	→ 〈F (z)− c, F (z)− c〉 = 〈F (z), F (z)〉 − 2 〈F (z), c〉+ 〈c, c〉
has no zeros.

3. Avoiding five generic values

The purpose of this section is to show that a non-constant entire slice regular
function cannot avoid five values if these are generic in the following sense: there
is no real 3-dimensional affine subspace of H � R

4 containing all of them.
We start with some preparations.
First we recall two results of Noguchi on holomorphic curves in semi-abelian

varieties. Here we do not need to deal with arbitrary semi-abelian varieties, it
suffices to know that (C∗)g is a semi-abelian variety.

Proposition 3.1 (Logarithmic Bloch Ochiai theorem). Let f : C → G = (C∗)g be
a holomorphic map and let X denote the Zariski closure of its image.

Then X is an orbit of an algebraic subgroup H of G = (C∗)g (acting by left
multiplication), i.e., there is an element λ = (λ1, . . . , λg) ∈ G = (C∗)g such that

X = {λ · h : h ∈ H}.

See Main Theorem (i) in [8].

Proposition 3.2. Let

f : Δ∗ = {z ∈ C : 0 < |z| < 1} → G = (C∗)g ⊂ Ḡ = (P1)
g

be a holomorphic map and let X denote the Zariski closure of its image. Define

Stab(X) = {g ∈ G : g · x ∈ X ∀x ∈ X}.
If Stab(X) is discrete, then f extends to a holomorphic map from Δ to Ḡ.

Proof. This is a consequence of Theorem 4.5. of [9], applied with taking the Zariski
closure of f(Δ∗) as X. In the notation of [9] non-extendibility of f implies f(Δ∗) ⊂
W . Since we take X to be the Zariski closure of the image of f , the inclusion
f(Δ∗) ⊂ W implies X = W . In view of Lemma 4.1 in [9] the condition X = W
implies that Stab(X) is not discrete. �

Proposition 3.3. Let Z be an algebraic subvariety of G = (C∗)5. Assume that

there exists a non-constant holomorphic map g : C → Z with g(z) = g(z̄) for all
z ∈ C.

Then there exist α1, . . . , α5 ∈ R
∗ and (m1, . . . ,m5) ∈ Z

5 \ {(0, . . . , 0)} such that
ζ(C∗) ⊂ Z for

ζ(z)
def
= (α1z

m1 , . . . , α5z
m5) .

Proof. The Zariski closure of the image g(C) in G is an orbit of an algebraic sub-
group H of G acting by multiplication (Proposition 3.1). We choose a connected
1-dimensional algebraic subgroup T of H. Such a subgroup T is isomorphic to C∗

and parametrized by a map ζ0 : C∗ → G = (C∗)5 given as

ζ0(z)
def
= (zm1 , . . . , zm5) .
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Define α = (α1, . . . , α5)
def
= g(0). The condition g(z) = g(z̄) implies that αi ∈ R

for all i ∈ {1, . . . , 5}. By our construction the H-orbit through α must be contained
in Z. It follows that ζ(C∗) ⊂ Z for

ζ(z) = ζ0(z) · α = (α1z
m1 , . . . , α5z

m5) .

�

Proposition 3.4. Let c1, . . . , c4 be a basis of the real vector space H. Let M ∈
Mat(4 × 4,R) be a positive definite symmetric real matrix. Let Z denote the zero
set of the function ψ in G = (C∗)5 where

ψ(v1, . . . , v4; p) = p− wtMw, (v = (v1, · · · , v4) ∈ C
4, p ∈ C)

with

w = v −

⎛
⎜⎝
p+ 〈c1, c1〉

...
p+ 〈c4, c4〉

⎞
⎟⎠ .

Let αi ∈ R
∗ and mi ∈ Z such that the image of the map ζ : C∗ → G given as

ζ(z)
def
= (α1z

m1 , . . . , α5z
m5)

is contained in Z (i.e., ζ(C∗) ⊂ Z).
Then mi = 0 for all i ∈ {1, . . . , 5}, i.e., ζ must be constant.

Proof. We discuss the coefficients of the Laurent series
∑

k∈Z
bkz

k of the holomor-
phic function z 	→ (ψ ◦ ζ)(z) defined on C∗. Since ψ ◦ ζ ≡ 0 due to ζ(C∗) ⊂ Z,
we know that bk = 0 for all k ∈ Z. On the other hand, the Laurent coefficients bk
depend on the matrix M and the coefficients αi,mi. Using these facts we will see
that we arrive at a contradiction if we assume that ζ is not constant.

We start by observing that ψ is a polynomial map of degree 2 whose purely
quadratic term is given by

ψ2(v; p) = −(v − pd)tM(v − pd) with d = (1, . . . , 1)t.

We may replace ζ with its composition with the inverse element map z 	→ 1/z
and thereby assume m5 ≥ 0. By permuting variables we may also assume that

m1 ≤ m2 ≤ m3 ≤ m4.

Let us now assume that ζ is not constant, i.e., let us assume that (m1, . . . ,m5) 
=
(0, . . . , 0). Our strategy is to show that the Laurent series of ψ ◦ ζ cannot vanish
unless (m1, . . . ,m5) = (0, . . . , 0).

Case 1. We assume m1 < 0.
Fix k such that mi = m1 for 1 ≤ i ≤ k and mi > m1 for k < i ≤ 4. We consider

the Laurent coefficient of degree 2m1. Note that ζ has no homogeneous component
of degree less that m1. Recall that ψ is a quadratic polynomial. It follows that ψ◦ζ
has no homogeneous component of degree less that 2m1 and that the homogeneous
component of degree 2m1 equals (ψ2 ◦ ζ)2m1

where ψ2 is the purely quadratic part
of ψ and (ψ2 ◦ ζ)2m1

is the homogeneous component of ψ2 ◦ ζ of degree 2m1. Thus
(ψ2 ◦ ζ)2m1

= b2m1
z2m1 .

By the definition of ψ and ζ, it follows that b2m1
= −utMu with

u = (α1, . . . , αk, 0, . . . , 0).
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But M is positive definite and the αi are all real and non-zero. Hence utMu > 0,
contradicting ψ ◦ ζ ≡ 0.

Case 2. We assume m5 > 0 and m1 ≥ 0.
Fix k ∈ {1, . . . , 4} such that mi = 0 iff i ≤ k. Here we investigate the constant

term of the Laurent series of ψ ◦ ζ, i.e., its degree-0-coefficient.
This is b0 = −utMu with

u = (α1 + 〈c1, c1〉 , . . . , αk + 〈ck, ck〉 , 〈ck+1, ck+1〉 , . . . , 〈c4, c4〉) .
We employ again the facts thatM is positive definite and u is real. Hence utMu = 0
requires that u is the zero vector. Because 〈ci, ci〉 > 0, it follows that k = 4. Thus
mi = 0 for all i < 5. But now it follows that the degree 2m5-term is −vtMv with

v = (α5, . . . , α5)

which yields a contradiction.

Case 3. We assume m5 = 0 and m1 ≥ 0.
Then m4 = max{m1, . . . ,m5} and we discuss the term of degree 2m4. Let k be

such that mi = m4 iff 4 ≥ i ≥ k. Then the degree 2m4-coefficient of the Laurent
series equals −utMu with

u = (0, . . . , αk, . . . , α4)

which cannot be zero by the same arguments as before.
Thus we have checked by contradiction that (m1, . . . ,m5) cannot be different

from (0, . . . , 0). �

Corollary 1. Under the assumptions of Proposition 3.4, let X be an algebraic
subvariety of Z such that X ∩ (R∗)5 is not empty.

Then the stabilizer group Stab(X) = {g ∈ G : g ·X = X} is discrete.

Proof. If Stab(X) is not discrete, it contains an algebraic subgroup H isomorphic
to C∗, i.e., given as

H = {(zm1 , . . . , zm5) : z ∈ C
∗}

with (m1, . . . ,m5) ∈ Z5 \ {(0, . . . , 0)}.
Since X ∩ (R∗)5 is non-empty, there are αi ∈ R

∗ with (α1, . . . , α5) ∈ X. Then

(α1z
m1 , . . . , α5z

m5) ∈ X ∀z ∈ C
∗

contradicting the preceding proposition. �

Remark. The assumption that X contains a real point is crucial. E.g., for M = I4
consider

X = {(1, 1, z, iz; 2) : z ∈ C
∗}.

Then X ∩ (R∗)5 is empty and Stab(X) is 1-dimensional.

Theorem 3.5. Let c1, . . . , c5 ∈ H be given such that there is no proper real affine
3-subspace of H containing all ci.

Then every slice regular function f : H → H with f(H) ⊂ H \ {c1, . . . , c5} is
constant.

Proof. Without loss of generality we may assume that c5 = 0. By abuse of language
we identify ci ∈ H with ci ⊗ 1 ∈ HC. Let 〈 , 〉 denote the complex bilinear form on
HC induced by the euclidean scalar product on H � R4, i.e., 〈z, w〉 =

∑
i ziwi.
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We define a holomorphic map φ : HC = C4 → C5 by

(3.1) φ :

⎛
⎜⎝
z1
...
z4

⎞
⎟⎠ 	→

⎛
⎜⎜⎜⎝
〈z, z〉 − 2 〈z, c1〉+ 〈c1, c1〉

...
〈z, z〉 − 2 〈z, c4〉+ 〈c4, c4〉

〈z, z〉

⎞
⎟⎟⎟⎠ .

Observe that φ(z) = φ(z̄).
By assumption the vectors c1, . . . , c4 form a real vector space basis for H. It

follows that there exists an invertible real 4× 4-matrix B such that

(3.2)

⎛
⎜⎝
〈z, c1〉

...
〈z, c4〉

⎞
⎟⎠ = B−1 · z ∀z ∈ R

4 � H.

Let M = BtB. Then M is a positive definite symmetric real matrix M such that
for every z ∈ C4 we have

〈z, z〉 = vt ·M · v
if

v =

⎛
⎜⎝
〈z, c1〉

...
〈z, c4〉

⎞
⎟⎠ .

We observe that

φi(z) = 〈z, z〉 − 2 〈z, ci〉+ 〈ci, ci〉
for z = (z1, . . . , z4) and i ∈ {1, 2, 3, 4} implies that

〈z, ci〉 = −1

2
(φi(z)− 〈z, z〉 − 〈ci, ci〉) .

Combined with φ5(z) = 〈z, z〉 we obtain that

φ5(z) = vtMv

for

vi = −1

2
(φi(z)− 〈z, z〉 − 〈ci, ci〉) .

On C5 we define an algebraic subvariety Z as the zero set of the function

ψ(w1, . . . , w4; p) = p− utMu, with

u = −1

2
(w1 − p− 〈c1, c1〉 , . . . , w4 − p− 〈c4, c4〉)t .

Due to the definition of ψ it is clear that ψ(w; p) = 0 if (w, p) = φ(z) for some
z ∈ C4.

Therefore φ(C4) ⊂ Z.
We claim that φ : C4 → Z is biholomorphic. Indeed, consider

μ :

⎛
⎜⎜⎜⎝
v1
...
v4
v5

⎞
⎟⎟⎟⎠ 	→ B ·

⎛
⎜⎝
− 1

2 (v1 − 〈c1, c1〉 − v5))
...

− 1
2 (v4 − 〈c4, c4〉 − v5))

⎞
⎟⎠



ON A QUATERNIONIC PICARD THEOREM 113

with B defined as in (3.2). Due to the definitions of φ and B ((3.1), resp., (3.2)) this
map μ : Z → C4 is an inverse for φ : C4 → Z. Thus C4 and Z are biholomorphic
and even isomorphic as algebraic varieties.

Now let f be a non-constant slice regular function avoiding the values c1,. . . , c4,
c5 = 0 and let F : C → HC � C4 be its stem function. Since φ(C4) ⊂ Z = {ψ = 0},
we obtain a holomorphic map g = φ ◦ F : C → Z. By construction g(z) = g(z̄)
for all z ∈ C. Furthermore g is non-constant, because F is non-constant and φ is
injective.

Because f : H → H is assumed to avoid ci for every i, we know (thanks to
Proposition 2.2) that φi(F (z)) 
= 0 for all z ∈ C and all i, i.e., φ(F (C)) ⊂ Z∩(C∗)5.

Thus we may apply Proposition 3.3 and conclude that there exist α1 . . . , α5 ∈ R∗

and (m1, . . . ,m5) ∈ Z
5 \ {(0, . . . , 0)} such that ζ(C∗) ⊂ Z for

ζ(z)
def
= (α1z

m1 , . . . , α5z
m5) .

But such a holomorphic map cannot exist due to Proposition 3.4. Contradiction!
Thus there is no non-constant slice regular function f : H → H avoiding all the
ci. �

Remark. If f : H → H is non-constant and slice preserving (i.e., it preserves each
slice), then it can avoid only real points and at most one.

If f is non-constant and one-slice preserving (i.e., it preserves a unique slice),
then it can avoid only one point on the slice which is preserved.

4. Big Picard

In complex analysis, the “Big Picard theorem” states the following: If f is a
holomorphic function on Δ∗ = {z ∈ C : 0 < |z| < 1} with an essential singularity
at 0, then f assumes every value in P1 infinitely often with at most two exceptions.

Proposition 4.1. Let Z be defined as in Proposition 3.4. Let η be a holomorphic
map from Δ∗ to Z ⊂ (C∗)5 ⊂ (P1)

5 with η(z̄) = η(z) for all z.
Then η extends through 0 to a holomorphic map to (P1)

5, i.e., the isolated sin-
gularity of η at 0 is not essential.

Proof. Let X denote Zariski closure of η(Δ∗) in Z. Note that η(z) ∈ (R∗)5 for
z ∈ R ∩ Δ∗. Thus X has non-trivial intersection with (R∗)5. It follows that
Stab(X) is discrete (see Corollary 1 of Section 3). This implies that η extends to a
holomorphic map defined on Δ (Proposition 3.2). �

Theorem 4.2 (Quaternionic Big Picard). Let B denote the open unit ball in H and
let f : B \ {0} → H be a slice regular function with stem function F : Δ∗ → HC.
Assume that F has an essential singularity at 0 (i.e., at least one of the components
of F has an essential singularity).

Let S denote the set of all v ∈ H for which the level set f−1(v) = {q ∈ H : f(q) =
v} is finite.

Then S is contained in an affine real hyperplane in H.

Proof. Assume the contrary. Then there are five values c0, . . . , c4 for which the level
set is finite such that these five values generate H as an affine real space. Since
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⋃4
m=0 f

−1(cm) is finite, we may define

r = min

{
|q| : q ∈

4⋃
m=0

f−1(cm), q 
= 0

}
, Br = {q ∈ H : |q| < r}.

Now f |Br\{0} avoids c0, . . . , c4. Hence φ(F (z)) ∈ (C∗)5 ∩ Z for all z ∈ C, |z| < r
(with φ and Z defined as in Theorem 3.5). Due to Proposition 4.1 the holomorphic
map φ ◦ F : {z ∈ C : 0 < |z| < r} → Z extends to a holomorphic map with
values in (P1)

5. But φ : HC → Z is a biholomorphic map, whose inverse map
φ−1 = μ is polynomial (see the proof of Theorem 3.5). It follows immediately that
φ−1 ◦ (φ ◦ F ) = F extends to a holomorphic map from Δ to (P1)

4. This yields a
contradiction to our assumptions. �

Since over the complex field, Picard’s theorems are the global version of the local
Landau’s Theorem, we point out that a quaternionic Landau’s Theorem for slice
regular functions already exists in the literature; see [3].

Proposition 4.3. For every non-constant slice regular function f : H → H the
image is dense in H.

Proof. If the image is not dense, its complement contains a non-empty open set.
But it is trivially possible to choose five points in general position inside any given
non-empty open set, leading to a contradiction with Theorem 3.5. �

In particular, a bounded slice regular function f : H → H must be constant, a
fact which was first proved in [5, Theorem 3.7].

5. The example of a function avoiding CI

Here we provide an example of a slice regular function avoiding infinitely many
values.

Proposition 5.1. Let f : H → H be the slice regular function induced by the stem
function

F (z) = J ⊗ sin(z) +K ⊗ cos(z).

Then

f(H) = H \ CI = {c1 + c2I + c3J + c4K; ci ∈ R, (c3, c4) 
= (0, 0)}.

Proof. We start with some preparations concerning complex trigonometric func-
tions.

We recall that sin(iy) = i sinh(y) and cos(iy) = cosh(y) for all y ∈ R.
For z = x+ iy (x, y ∈ R) we obtain

sin(z) = sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy)

= sin(x) cosh(y) + i cos(x) sinh(y)

and

cos(z) = cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y).

Given c = c1 + c2I + c3J + c4K ∈ H, there exists a quaternionic number q with
f(q) = c iff there exists a complex number z = x+ iy with

〈F (z)− c⊗ 1, F (z)− c⊗ 1〉 = 0.
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Now

〈F (z)− c⊗ 1, F (z)− c⊗ 1〉
= 〈F (z), F (z)〉 − 2 〈c⊗ 1, F (z)〉+ ||c||2

=1− 2 (c3 sin(z) + c4 cos(z)) + ||c||2

implying

(5.1) � (〈F (z)− c⊗ 1, F (z)− c⊗ 1〉) = −2 sinh(y) (c3 cos(x)− c4 sin(x))

and

(5.2) � (〈F (z)− c⊗ 1, F (z)− c⊗ 1〉)
= 1− 2 cosh(y) (c3 sin(x) + c4 cos(x)) + ||c||2.

It follows that

� (〈F (z)− c⊗ 1, F (z)− c⊗ 1〉) = 1 + ||c||2 ≥ 1 > 0

if c3 = c4 = 0. This proves that f does not assume any value in CI .
It remains to prove that all other values are assumed.
We claim: For every c ∈ H � R4 with (c3, c4) 
= (0, 0) there exist x, y ∈ R such

that 〈F (x+ yi)− c⊗ 1, F (x+ yi)− c⊗ 1〉 = 0.
First we choose x ∈ R such that

c3 cos(x)− c4 sin(x) = 0.

Due to (5.1) this guarantees that

�(〈F (x+ yi)− c⊗ 1, F (x+ yi)− c⊗ 1〉) = 0.

If c3 sin(x) + c4 cos(x) < 0, we replace x by x+ π. This ensures that

c3 sin(x) + c4 cos(x) > 0.

Define

t =
1 + ||c||2

2 (c3 sin x+ c4 cosx)
.

We have to show that there exists a number y ∈ R with cosh(y) = t, because then
it follows from (5.1) and (5.2) that 〈F (x+ iy), F (x+ iy)〉 = 0.

An application of the Cauchy Schwarz Inequality to the vectors (c3, c4) and
(sin(x), cos(x)) yields the inequality

|c3 sin(x) + c4 cos(x)| ≤
√
c23 + c24.

Using c3 sin(x) + c4 cos(x) > 0 it follows that

t =
1 + ||c||2

2 (c3 sin x+ c4 cosx)
≥ 1 + (c3 sin x+ c4 cosx)

2

2 (c3 sinx+ c4 cosx)
≥ 1.

Now t ≥ 1 implies that there exists a real number y with cosh(y) = t. This
completes the proof. �
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6. Avoiding three points

Proposition 6.1. Let c1, c2, c3 be three arbitrary quaternionic numbers.
Then there exists a non-constant slice regular function f(q) =

∑
qkak such that

f(H) ⊂ H \ {c1, c2, c3}.

Proof. We have seen that there exists a slice regular function f(q) =
∑

k q
kak with

f(H) ⊂ H \ CI (Proposition 5.1).
We modify this function in the following way: Let λ ∈ H∗, p ∈ H and let φ be a

ring automorphism of H.
Then we define a slice regular function g by

g(q)
def
=

(∑
k

qkφ(ak)

)
λ+ p.

For any c ∈ H we have

c = g(φ(q))

⇐⇒ c = φ(f(q))λ+ p

⇐⇒ φ−1(c) = f(q)φ−1(λ) + φ−1(p)

⇐⇒ f(q) =
(
φ−1(c)− φ−1(p)

)
φ−1(1/λ).

Let c1, c2, c3 ∈ H be three given distinct quaternionic numbers. (Evidently it
suffices to consider only the case of three distinct numbers.)

We choose p, λ, φ such that:

(i) p = c1,
(ii) λ = c2 − c1,
(iii) φ−1

(
(c3 − c1)(c2 − c1)

−1
)
∈ CI .

In order to verify that this is possible, let H ∈ H be an imaginary unit (i.e., H2 =
−1) such that

(c3 − c1)(c2 − c1)
−1 ∈ CH = R⊕HR.

Let φ be an orientation preserving linear orthogonal transformation of H fixing R

pointwise and such that φ(I) = H. Then φ is a ring automorphism of H satisfying
(iii).

It is easily verified that(
φ−1(ci)− φ−1(p)

)
φ−1(1/λ) ∈ CI

for all three indices i ∈ {1, 2, 3}. Since f avoids values in CI , it follows that g avoids
the three values c1, c2, c3. �

Remark. Since any 2-dimensional real affine subspace P of H � R
4 is spanned

by three points, it follows from the above that there exists an entire slice regular
function f : H → H such that f(H) = H \ P .

Open Problem. Is or isn’t there a non-constant slice regular entire function of H
avoiding four general points?

7. Octonions

In view of the results of [6], in particular theorem 17, one may easily modify our
arguments in order to obtain a Picard theorem for the algebra of octonions, namely
we have the following.
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Theorem 7.1. For every non-constant slice regular function f : O → O the set
O \ f(O) is contained in a real affine hyperplane of O.
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